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Abstract

In recent years, modelling genetic circuits has emerged as a powerful tool
to unravel underlying mechanisms of gene expression. Experimental data of
single cells expressing two fluorescent proteins (mCherry and eYFP) over
time are available: they present various shapes and behaviours which are not
predictable by standard models of gene regulation assuming infinite resources.
Inspired by many studies suggesting that competition for molecular resources
can modify and shape the response of a genetic circuit, this Master’s Thesis
aims at understanding if a resource-aware model can be used to correctly
predict gene expression in environments with finite pools of intracellular
resources. To do this, a minimal stochastic model is built to study the simple
case where only the ribosomes are present in finite number, we investigate
the effects of this finite pool on gene expression levels, and infer model
parameters. In order to fix as many parameters as possible, we performed
wet-lab experiments with HEK293 Tet-off cells transfected with plasmids
containing sequences for mCherry and eYFP fluorescent proteins. Degrada-
tion rates of the proteins are then estimated using fluorescence microscopy,
while the degradation rates of mRNAs are estimated via quantitative PCR
techniques. Experimental data of the two fluorescent proteins are used to val-
idate the model and to infer other parameters that are difficult to determine
experimentally.
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Introduction

Understanding genetic regulation is crucial for unravelling the underlying
mechanism of our organism. Over the past decades, significant efforts
have been dedicated to discover in depth how cells work. The primary
objective has been to unravel the origins and progression of diseases aiming
at understanding how they start and develop, with the hope of finding effective
treatments. This pursuit is intricately linked to a thorough comprehension of
gene expression mechanisms [1]. This Master’s thesis plans to contribute to
the ongoing attempt to unravel cell behaviour by studying gene expression
via mathematical modelling and statistical analysis.

Collaborative efforts across various disciplines, including molecular biology,
genomics, bioinformatics, and physics, have encouraged research promoting
the translation of scientific discoveries into clinical applications. The inherent
complexity of our organism along with its ability to adapt, evolve and over-
come difficulties that can emerge at cellular level, can be traced back to how
DNA is expressed. Gene expression is a fundamental process that regulates
the behaviour and functionality of cells, and it plays an essential role in
coordinating various biological processes, including cell growth, differentia-
tion, and response to environmental changes. By controlling the synthesis of
specific proteins, gene expression determines the unique characteristics and
functions of different cell types within an organism [2].

The development and progression of many diseases, among which cancer,
involves genetic and epigenetic alterations, disrupting the finely tuned regu-
lation of gene expression in cells [3]: understanding the tangled relationship
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between gene expression and diseases is critical for unravelling the molecular
mechanisms underlying disease’s initiation and progression. Over the past
few decades, advances in genomic technologies have revolutionized our ability
to investigate gene expression patterns. By creating a mathematical model,
more and more accurate and complex, it would be possible to understand
the basal mechanisms of gene expression and eventually exploit the model to
better infer sick cells and their gene regulation.
By now, stochastic simulation and computational biology have been proven
as powerful tools for studying gene expression in cells [4]. Traditional de-
terministic models assume that gene expression follows precise rules and
deterministic kinetics. On the other hand, stochastic simulation approaches,
such as Gillespie’s algorithm [5], allow us to model gene expression at the
single-cell level, capturing the inherent variability and randomness observed
in biological systems. Stochastic models prove invaluable in enhancing our
comprehension of experimental data, especially when dealing with single-cell
fluorescence trajectories [6]. Within this Master’s thesis, we model gene ex-
pression in a competing environment with a basal stochastic model, involving
two genes that compete to bind to ribosomes for translation; this model is
examined to gather more information about the effects of competition for
molecular resources on gene expression. The principal aim is to test model’s
ability to accurately predict behaviours observed in experimental data, which
are not explainable by simplistic models assuming infinite abundance of
resources. To this end, we analyze a dataset at our disposal from previous
experiments, containing results from single-cell fluorescence signals. This
dataset not only serves as a valuable resource for validating our model, but
also plays a pivotal role in the inference of model’s parameters. The available
dataset was obtained following cells in time, after they were transfected with
plasmids encoding for two fluorescence proteins, and the fluorescence signals
were measured.
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Each cell expresses two fluorescent proteins (mCherry and eYFP), fluores-
cence signals are followed in time from 6 hours after cell transfection, and
fluorescence intensities are measured every 20 minutes up to 45 hours.
Fluorescence levels of four different cells are depicted in Figure 1: it is
clearly visible how gene expression varies enormously in shape, behaviour
and intensity between cells. Understanding what causes different conducts
in cells is often impossible to determine from experiments. As an example,
in the transfection experiment conducted to obtain the data in Figure 1, the
quantity of plasmids each cell has uptaken is not known, and this can of
course determine diverse gene expression levels. A possible educated guess
we can make is that if a cell has taken in a high number of plasmids, a greater
demand for molecular resource is expected inside the cell. In this competing
scenario, the available resources become limited and are distributed among
plasmids and endogenous genes; consequently, we would expect a reduced
gene expression level since limited resources represent a bottleneck point,
reducing efficiency of gene expression. Studying the characteristics of a
system in which genes compete for resources (represented in our basal model
by finite ribosomes pool) with stochastic simulation methods gives us a tool
to distinguish a cell in a competing environment from one in which the
resources do not represent a limiting factor.
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Figure 1: Different experimental fluorescence trajectories for four
different cells .
Four representative trajectories over 19.001 cells available are displayed, with
mCherry (red) and eYFP (green) signals. The saturation level, the behaviour
and the shape differ from cell to cell.

Changes in concentration of biochemical species can be formulated as a
system of differential equations which can be solved and/or simulated. First,
all possible reactions in the system are to be identified and each reaction
is associated to a rate. After this, the differential equations for species
concentration can be written. To clarify, consider the rate of change of a
molecule of mRNA m, transcribed with a rate αm and degraded with a rate
βm; similarly, a protein p is translated from a molecule of mRNA with a rate
αp and it degrades with a rate βp: the associated differential equations for
the two species are

dm

dt
= αm − βm m; dp

dt
= αp m − βp p. (1)

The equations 1 are a representation of the mass conservation law, where

viii



the change of a species concentration is the sum of creation contributions,
transcription and translation which increase the corresponding species con-
centration, and consumption contributions leading to a decrease in the species
concentrations. It is common to find the solution of the system of equa-
tions at the steady-state, when the system has stopped evolving, setting the
derivative to zero, i.e. dm

dt = dp
dt = 0. The steady-state solution of the above

system of differential equations leads to a system of algebraic equations,

0 = αm − βm m 0 = αp m − βp p. (2)

The straightforward solutions of this systems are m∗ = αm

βm
and p∗ = αp

βp
m∗ =

αp αm

βp βp
.

This representation of gene expression with a system of ordinary differential
equations (ODE) provides a deterministic approach able to predict average
values of concentrations of species involved in the system. However, the ODE
approach does not take into account the randomness and discrete nature
of the process; when the aforementioned aspects play an important role,
another approach is necessary. Stochastic simulations methods provide a
probabilistic representation considering single random events and correlations
between species: these methods are capable of capturing effect of stochastic
fluctuations on system dynamics.
Once the model has been defined, the following step necessary to completely
determine the system is estimating reactions parameters, which can be
determined experimentally or inferred from data and simulations. In this
work, both procedures are exploited (see Chapter 3).

This Master ’s Thesis is organized in five parts. First of all, a brief
introduction about gene expression from a biological point of view is given
in Chapter 1 in Section 1.1.1; section 1.1.2 focuses on regulation of gene
expression in general and the most important findings available in literature
on competition’s effects on gene expression regulation are presented in Section
1.1.3.
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Chapter 2 offers an overview about modelling genetic circuits in Section
2.1; in Section 2.1.1 the functioning of the stochastic simulation method
utilised in this Master’s Thesis is explained, before actually depicting the used
model, in Section 2.2. Results obtained from simulation are discussed and
compared to experimental findings in Chapter 4, in Chapter 5 conclusions
and suggestions for future research are presented.
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Chapter 1

State of the Art

1.1 Gene expression

1.1.1 How genes are expressed from DNA.

Genetic information in eukaryotes are contained in the DNA located inside
the nucleus of cells. Genes encoded into DNA are firstly transcribed into
messenger RNAs (mRNAs), which are then translated into proteins [7].

The principal enzyme engaged in transcription is RNA polymerase, that
transcribes a molecule of RNA from one strand of DNA via base pairing but
substituting thymine (T) with uracil (U) [8]; transcription starts when RNA
polymerase binds to a specific region of DNA called promoter, where, with
the help of transcription factors (TFs) proteins, the transcription process can
start. Binding to specific regions of the DNA with various affinities, TFs can
enhance or reduce the binding of RNA polymerase, tuning transcription [7].
During the elongation phase of transcription, for each unit in the DNA strand,
a nucleotide is added via base pairing to the mRNA molecule, thereby
increasing its length. This progression halts when the RNA polymerase
complex encounters a specific site on the DNA strand known as the terminator
[9]. The obtained molecule of RNA is called pre-mRNA and it undergoes
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State of the Art

various steps ensuring the production of a functional transcript (mRNA).
During this maturation process, the 5’ end is capped adding a 7-methyl
guanosine residue, and a poly-A tail is added to the 3’ end (polyadenylation)
to stabilize the mRNA. After this, a further step called splicing occurs,
mediated by the spliceosome: non-coding regions (introns) are removed,
and exons (coding regions) are joined together, forming the mRNA mature
molecule [10]. The mature mRNA is transported from the cell nucleus to
the cytoplasm through nuclear pores, where it is available for translation by
ribosomes into a functional protein.
Translation is the process of assembling a protein from the mRNA and it is
performed by an organelle called ribosome. The idea behind the translation is
simple: the nucleotide sequence is read in series of three nucleotides (a codon),
and each triplet is associated to an amino acid. The ribosome is composed
by two subunits that combine when translation occurs, binding together at
a specific region of the mRNA, which is called Kozak sequence in eukaryotes
[11]; Kozak sequence is located near the initiation codon methionine (AUG),
and translation can start [10]. The larger unit of the ribosome reads three
nucleotides of the mRNA at a time, and each codon is associated to a specific
amino acid; the elongation of the protein chain continues until the ribosome
reaches a terminator codon (UUA, UGA or UAG), that symbolises the end
of the coding region.
Apart from mRNA and the two ribosome units, another molecule of RNA
named transfer RNA (tRNA) is necessary for translation to take place; tRNA
functions as a physical link between the nucleotides and the amino acid.
Each tRNA matches a codon of the mRNA with a complementary sequence
of base pairs (anticodon), located at one end of the molecule; the amino acid
corresponding to the anticodon is attached to the opposite end of the tRNA
(see Figure 1.1) [7] [10] .
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Figure 1.1: Ribosome units bind together to allow a translation of
a codon.
The large ribosome unit binds to the smaller units and the initial codon AUG
is aligned with the P site of the ribosome, where the tRNA transporting the
corresponding methionine amino acid (Met) attaches; the next codon to be translated
is positioned in correspondence of the A site of the ribosome.
(Adapted from: Clancy S, Brown W. (2008) "Translation: DNA to mRNA to Protein".
Nature Education 1:101, https://www.nature.com/scitable/topicpage/translation-dna-to-
mrna-to-protein-393/.)

1.1.2 Regulation of gene expression

The wide variety observed in nature and among various type of cells of the
same organism is the result of regulation of gene expression, a fundamental
process that determines the timing and amount of proteins production in
living organisms. Gene regulation involves a complex web of molecular
mechanisms that controls which genes are activated or repressed in response
to various internal and external signals and stimuli. Regulation of gene
expression occurs at various levels: epigenetic control, transcriptional regu-
lation, post-transcriptional regulation, translational and post-translational
regulation [7].

Epigenetic regulation refers to inheritable changes in the structure of
DNA, which do not modify the underlying sequence of nucleotides; these
changes in the DNA structure, named histone modifications (see Figure
1.2), can lead to gene silencing or enhance gene transcription into mRNA.
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Histone proteins change their configuration depending on signals (called
"tags") mainly represented by phosphate, methyl, or acetyl groups located
on the histone; tags can be removed or added depending on whether the
translation of a gene is necessary or not [7].

Figure 1.2: Different conformations of DNA and histone proteins.
Histone proteins can modify their configuration allowing transcription of a part of
DNA (left) or forbidding it (right). In the left configuratiom the RNA polymerase
can have access to the gene and initiate the transcription process.
(Adapted from: https://www.epigentek.com/catalog/antibodies-for-histone-modifications-
lp-49.html).

Transcriptional regulation determines whether a gene is transcribed into
mRNA and its frequency of transcription. In order to initiate transcription
of a gene, it is not sufficient that RNA polymerase binds to the promoter
region, but it also requires the presence of other transcription factors, helping
in the formation of the transcription complex; a longer promoter region is
linked to a higher probability for transcription factors to bind, boosting
transcription [10]. In eukaryotes, there exists some particular DNA regions
called enhancers able to favour transcription: a type of TFs (activators) binds
to the enhancer and creates interactions with the transcription machine,
promoting its formation and advance on the mRNA strand [12]. Once
the RNA polymerase is linked to the promoter, an additional transcription
regulation step requires a set of TFs allowing RNA polymerase to move on
to the next triplet and proceed in the transcription [13].
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Post-transcriptional regulation modulates the processing, stability, and
transport of RNA molecules; this step of gene regulation occurs between
the transcription and translation into protein. The most important post-
transcriptional regulation processes are mediated by microRNA (miRNA),
non-coding RNA molecules of ∼ 21 nucleotides [14], [15]. Various studies
showed that miRNAs are able to enhance degradation of mRNA , binding at
the 3’ untranslated region (UTR) of the mRNA molecule inducing deadenyla-
tion and decapping [16]. In addition to this, miRNA can inhibit translation,
by interfering with the recruitment of the translation machinery [16] - [17].
RNA-binding proteins (RBPs) also act as post-transcriptional regulators:
binding to the untranslated regions of mRNA strand, they enhance or di-
minish its stability, depending on the specific RBP that bind to the mRNA
[7], [18].

Translation and post-translation regulation orchestrate the conversion
of genetic information encoded in mRNA into functional proteins. Post-
translation steps play a crucial role in refining and modifying the nascent
protein. Processes like protein folding, post-translational modifications (e.g.,
phosphorylation, glycosylation), and subcellular trafficking contribute to
the protein’s final structure and function. After translation, proteins may
undergo ubiquitination, a process where ubiquitin molecules are covalently
attached to specific target proteins. This modification serves various cellular
functions, primarily in protein degradation. Ubiquitination marks proteins
for recognition and subsequent degradation by the proteasome, a cellular
complex responsible for breaking down and recycling proteins [19]- [20].

1.1.3 Regulation by competition

Competition for natural resource plays a critical role at all levels in biology.
Different species sharing resources compete, and this competition can lead
to changes in population distributions [21]. Natural evolution is a result of
competition between individuals of the same species, but also identical cells
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can compete to regulate growth and activity, promoting the domination of
the most fitted cell [22].
Within cells, competition plays a key role in the regulation of gene expression.
Many cellular components such as ribosomes, DNA polymerase, transcription
factors, RNA polymerase and various organelles can represent pools of
resources that are subjected to competition in the intracellular environment.

TFs, for example, represent a shared resource among different genes,
each associated with different binding affinities for transcription factors; the
abundance of transcription factors in Escherichia coli and its relevance in
gene expression regulation was examined by Brewster and colleagues in 2014
[23]. The study addresses how the fold-change of a repressor depends on
the presence of different TF copy numbers: the Lac repressor (LacI) is the
specific TF analyzed and the effects on its target genes are examined. The
fold-change in gene expression is largely unaffected when the copy number of
TFs is significantly higher than the copy number of genes. On the contrary,
when the TF copy number is lower than the gene copy number, the effects
of LacI on gene expression are muted, resulting in a poorer repression of the
target genes [23].
Competition is also able to regulate cell growth: circular RNA (circRNAs)
can bind to multiple miRNAs competitively, limiting their activity and pre-
venting them from binding to their target mRNAs. This competition between
circRNAs and miRNAs plays a crucial role in gene expression regulation
and can have significant implications for cell growth, as proved by Zheng
and colleagues in 2016 [24]. MiRNAs are a crucial targets for competition
since their binding with other RNAs can inhibit their function; this effect is
called sponge effect and consist in other molecules of RNA that sequester
miRNAs from binding to their target, regulating their activity. Sponge effect
has been proved to be a basal mechanism for cell differential [25] and tumor
suppression [26].
Another study conducted in 2020 by Frei et al. [27] reveals that endogenous
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and exogenous genes can compete for transcriptional and translational re-
sources. Researchers transfected HEK293t cells with two fluorescent proteins
(mCitrine and mRuby3) driven by the same promoter. When the exogenous
gene is increased in quantity, the levels of the analysed gene decreased,
showing that shared resources constitute a limiting factor in gene expression;
this genetic burden results in a correlation between genes that are normally
independent. Different ratio of the two proteins were used in the transfection
mix and two amounts of encoding plasmids were compared (50 ng and 500
ng) in the study. As expected in a competing environment, higher levels
of encoding plasmids increase the demand for cellular resources, reducing
gene expression levels (Figure 1.3). Furthermore, the fluorescence levels of
mCitrine and mRuby3 were negatively correlated (Figure 1.3 right panels)
and this correlation was exacerbated with high values of encoding plasmids,
showing that competition for molecular resources was more intense when the
genes copy number to translate increases.

Figure 1.3: Effects of competition in genetic circuits.
(Left) The total gene expression is flattened by an higher amount of encoding
plasmids.
(Right) Levels of mCitrine and mRuby are negatively correlated and this correlation
is more pronounced with higher amount of transfected plasmids (lower panel).
(Adapted from: Frei T. et al., Characterization and mitigation of gene expression burden
in mammalian cell, Nature Communications, 2020 [27]).
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Frei et al. also claim that heterologous genetic loads take parts in the
competing environment; to prove this, they co-transfected H1299 cells with
two fluorescent proteins, EGPF and mKate, which are driven by the same
promoter, and measure expression levels of heterologous and endogenous
genes (CyCA2, eIF4E, GAPDH). When cells are transfected with high or
intermediate levels of EGFP and mKate, the expression of endogenous genes
decreases compared to cell that were not transfected [27].
Another comprehensive study carried out by Wei and colleagues in 2019
[28] examined in details what can be the outcomes of competition in gene
expression. Different cellular resources which are involved in competition are
addressed in the study: transcription factors (Figure 1.4 B), competitions for
miRNAs (Figure 1.4 C), ribosomes (Figure 1.4 D), and degradation enzymes
(Figure 1.4 E). A general mathematical model was studied where two target
molecules T1 and T2 are in competition to bind with a shared regulatory
molecule species R (Figure 1.4 F).
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Figure 1.4: Genetic circuits with various competition resources.
(A) Basic structure of a competing model.
(B - E) Competing models with different resources that can cause competition (TFs,
miRNAs, ribosomes and proteases in order).
(F) Kinetic model of a competing system.
(Adapted from: Wei L. et al. Regulation by competition: a hidden layer of gene regulatory
network. Quantitative Biology, 2019 [28]).

The study showed how competition can affect the shape of the dose-
response curve (which analyzes the relationship between the concentration
of the regulator and the response of a biological system), and can generate a
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threshold behaviour in the concentration of the complex T1C as a function of
the concentration of the complex T2C when the regulator (R) is present in a
scarce pool; on the contrary, when the regulator (R) is abundant the two
species are not influenced one by the other (see Figure 1.5). Competition
can also modify the dose-response curve’s dynamics, delaying or accelerating
its edges [28].

Figure 1.5: Abundance of T F
1 as a function of T F

2 , in different
regimes.
In the "scarce R" regime (blue region), level of free T F

1 is not sensitive to abundance
of T F

2 , whereas when the system enters the "near-equimolar" regime (white region),
levels of free T F

1 and T F
2 depend on each other [28].

(Adapted from: Wei L. et al. Regulation by competition: a hidden layer of gene regulatory
network. Quantitative Biology, 2019 [28]).

Inspired by numerous studies on gene expression in a competing environ-
ment and its consequences, the main objective of this work is to build a
mathematical model able to predict the effects of regulation by competition
for a finite pool of ribosomes. An introduction of mathematical modeling
of genetic circuits and simulations are given in Chapter 2, where the used
model is also described.
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Chapter 2

Modeling

2.1 Modeling gene expression

Understanding the dynamics underlying biological processes allows to de-
rive differential equations that represent changes in species concentration
mathematically, as we showed in equation 1 for the simple production and
degradation of a molecule of mRNA or protein. Solving these equations
provides a valuable tool to unravel the behaviour of biological systems, not
only granting the prediction of changes in species concentrations, but it
also leads to a better understanding on how external conditions will affect
biological outcomes.

As pointed out by Scott M. [29] three crucial assumptions are at the root
of mathematical modelling of biological processes; first of all, in order to be
able to predict the evolution of a biological system with differential equations,
one must assume that species concentrations evolve continuously in time and
that they are differentiable. A continuous and differentiable process emerges
when many reactions among a great number of particles pile over time, and
each reaction leads to a finite change in the molecules numbers.
Next, biochemical reactions are usually influenced by the system’s past states
and there exist many feedback mechanisms: to include this feature in a
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system of differential equations, it is necessary to use rates that depend on
the past states of the systems. In this way it is possible to merge together the
assumption of instantaneous reactions necessary for the differential equations
representation, and the more complex and time-dependent nature of biological
systems.
The third and last assumption needed to adapt differential equations to
biological reactions is to presume that reactants are distributed in space in a
homogeneous way; to mathematically account for spatial density of reactants,
it is necessary to adopt partial differential equation formalism instead of
ordinary differential equations [29].

Solution of ODE systems are particularly useful for systems with large
populations, where individual variations are less significant and they can be
averaged out, thus providing a valuable tool to describe the average behaviour
of the system. It is however necessary to point out that ODE models assume
a continuous and deterministic view of processes, excluding randomness and
discrete nature of processes. As a consequence, situations where stochastic
behaviours play a significant role, such as small populations or single events,
require a more appropriate approach: probabilistic models and stochastic
simulations allow us to capture the discreteness of these events.

Since biochemical reactions are the results of discrete reaction events, such
as molecules binding, unbinding or transformation, it is almost immediate to
associate each reaction to a probabilistic event depending on the probability
of encounter and reaction between two molecules. To provide a more accurate
representation of biological systems, we switch to a probability representation,
where P (n, t) represents the probability for the system to be in the state n at
time t, and the vector n = (n1, n2...nN ) represents the number of molecules
for species i = 1, ...N present in the state at that time. To describe how
P (n, t) evolves in time, we can write the so called Master equation (Eqn.
2.1).
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dP (n, t)
dt

=
Ø

n’ /=n
W (n’ → n)P (n’, t) −

Ø
n’ /=n

Wn → n’P (n, t) (2.1)

The first term in RHS represents the transition from another state n’ to
state n with a transition rate W (n’ → n), while the second term is a transi-
tion directed outward from state n to any other state n’, with associated
rate W (n → n’). Writing the Master equation of a process corresponds to
describe it as a kind of random-walk process which is governed by a single
differential-difference equation [30]. Note that writing the Master equation
means that the process describing the jump from one state to another is
Markovian, i.e. the transition probability from state n to a state n’ depends
only on the present state n, no matter what are the past states of the process.
The Master equation describing the time evolution of a system of discrete
states is often challenging to solve analytically, especially for complex systems.
Stochastic simulation methods, such as Gillespie algorithm, offer a practical
and efficient mean to capture the inherent randomness and discrete nature
of molecular interactions within biological systems described by the Master
equation.
Moreover, stochastic simulation methods provide a significant advantage
over deterministic approaches by precisely capturing the random nature
of molecular interactions. In contrast to deterministic methods, which are
based on solving differential equations using average reaction rates, stochastic
simulation deals with the discrete and stochastic behaviour of individual
molecules.
In a biological context, especially at the molecular level, randomness is
omnipresent. Molecules collide, react, and diffuse in a manner that is funda-
mentally probabilistic. Stochastic simulations acknowledge this fundamental
idea, and this allows to model individual reaction events and the time in-
tervals between those events, reflecting real-world scenarios where reactions
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occur sporadically due to chance encounters between reactants. By incor-
porating this discrete and probabilistic perspective, stochastic simulations
provide a powerful tool to explore the full range of possibilities that arise
from random interactions, representing a richer understanding of the system’s
dynamics compared to deterministic models, which tend to smooth out these
fluctuations. To simulate a stochastic process with inherited randomness like
biochemical reactions, we can use the famous stochastic simulation method
called Gillespie algorithm.

2.1.1 Gillespie algorithm

Gillespie algorithm is one of the most famous stochastic simulation algorithms,
created by Joseph L. Doob in 1945 but published by Dan T. Gillespie in
1977 [5], where he applied the algorithm to simulate biochemical reactions.
Consider a system with two species X1 and X2, characterized by the following
chemical reactions:

X1 + X2
c1−→ 2X2 (2.2)

X1
c2−→ 0 (2.3)

The probability that the first reaction happens in a time interval dt depends
of course on the reaction rate per unit time c1, but also on the concentration
of the reactants that have to combine to make the reaction happen; more
specifically, the probability that the reaction 2.2 happens in the time interval
dt is P = c1n1n2dt, where n1 and n2 are the number of molecules of type X1

and X2, and the value h = n1n2 is the number of combinations of reagents
yielding to the reaction 2.2. In a system of M reactions, it is necessary to
understand which of the reactions is going to happen first.

We can write the probability that the system is in state (n1, n2...) at time
t, that the next reaction to happen is of type Ri (i = 1....M) and it happens
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in the interval [t + τ, t + τ + dτ ] as

P (τ, i)dτ (2.4)

This probability can be seen as a product of two parts, i.e. P (τ, i)dτ =
P0(τ) · Pidτ : the probability that nothing happens in the time interval
(t, t + τ), here called P0(τ), multiplied by the probability that the reaction Ri

happens in the time interval (t + τ, t + τ + dτ), with an associated probability
Pi = cihidτ , where hi is the number of combinations of reagents molecules
that can give origin to a reaction of type i.
To evaluate the probability that no reaction happens in the time interval τ

(P0(τ)), we can divide the interval in K sub-intervals, each of size ϵ = τ
K .

The probability that nothing happens in the first interval (t, t + ϵ) is simply:

MÙ
j=1

[1 − cjhjϵ] = 1 −
MØ

j=1
cjhjϵ + O(ϵ). (2.5)

Since equation 2.5 depends only on the size of the interval, and we have K
consecutive intervals of length ϵ, we obtain

P0(τ) = [1 −
MØ

j=1
cjhjϵ + O(ϵ)]

K

= [1 −
MØ

j=1
cjhj

τ

K
+ O(K−1)]

K

(2.6)

Performing the limit K → ∞, the probability that no reaction occurs in the
time interval of size τ becomes

P0(τ) = exp (−
MØ

j=1
cjhjτ) (2.7)

Recalling that P (τ, i)dτ = P0(τ) · Pidτ we arrive at

P (τ, i) = ai exp (−a0τ) (2.8)
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where we have defined the new quantity ai = cihi, the propensity function
for reaction i; the propensity function measures the instantaneous rate at
which the i-th reactions happens. The sum of the propensity functions is
a0 = qM

j=1 cjhj [5], [30]. To summarize, we obtain the famous result stated
by Gillespie in his paper in 1977 [5]:

P (τ, i) =


ai exp (−a0τ) if 0 ≤ τ < ∞ and i = 1, ..., M

0 otherwise
(2.9)

It is necessary to sample the random pair τ, i from distribution 2.9; as shown
by Gillespie [5], to sample the time jump τ we can use the inverse cumulative
function method that allows us to sample from a known distribution (in this
case exponential distribution) [31] yielding to

τ = 1
a0

log
A 1

r1

B
(2.10)

where r1 is a random number generated according to a uniform distribution
in [0,1]. The reaction i must be extracted according to its weight ai

a0
and

this can be achieved again using inverse cumulative distribution method,
sampling from a distribution with associated weights

è
a1
a0

, a2
a0

, ...aM

a0

é
.

Gillespie algorithm consists in the following steps [5]:
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Algorithm 1 Gillespie Algorithm
Step 0: Define the M reaction constants c1, c2, ...cM and the N initial
population numbers X1, X2, ..., XN . Initialize the time variable t = 0, and
the reaction counter n = 0. Initialize uniform random number generator.

Step 1: Calculate and store the M quantities a1 = h1c1, a2 =
h2c2, . . . , aM = hMcM for the current population numbers. Calculate and
store the value a0 = a1 + a2 + . . . + aM .

Step 2: Generate random number r1 using the uniform random generator,
calculate τ according to eqn 2.10 and extract the reaction i from a distribution
with associated weights

è
a1
a0

, a2
a0

, ...aM

a0

é
.

Step 3: Update the time and the state according to the values extracted in
Step 2. Increase t = t + τ and perform reaction Ri (adjust population levels
accordingly). Update the reaction counter n = n + 1. Go to Step 1.

In this Master Thesis the Gillespie algorithm is implemented in Julia
program using the package Gillespie.jl [32].
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2.2 Building the model to reproduce experi-
mental data.

Many previous studies have modeled genetic circuits taking into account
finite shared resource pools. Frei T. and colleagues [27] created a generic
genetic model accounting for limited transcriptional and translational re-
sources and showed how competition shape gene expression levels, resulting
in negative correlation between different genes. A recent study carried out by
Cella F. et al. [33] suggested a resource-aware ODE model to capture post-
transcriptional events and resource reallocation caused by miRNA-mediated
downregulation process.
The experimental data we want to study are obtained from HEK293t cells
transfected with encoding plasmids for mCherry and eYFP fluorescent pro-
teins. Trying to explain the observed discrepancies between theoretical
models and experimental results, we implement a model in which genes
compete for a finite pool of ribosomes.
A schematic but illustrative scheme is displayed in Figure 2.1, containing all
reactions and processes involved in the model used in this work. We want to
model a genetic circuit in which two molecules of mRNAs of two different
genes, m1 and m2, are transcribed together: this correlated transcription is
defined to create a model as similar as possible to our experimental data,
where mCherry and eYFP are driven by a common promoter. Each mRNA
molecule can bind to a free ribosome R and form a translation complex,
b1 or b2, that is in time translated into a protein molecule, one for each
gene (p1 and p2). Proteins and mRNAs are subjected to degradation: more
specifically, the protein can be degraded once it is translated, while the
mRNA molecule can be degraded when it is in its "free" state, but also when
it is bound in the complex with the ribosome.
The most important feature in this model is that the pool of ribosome is
finite: if the number of mRNA molecules is sufficiently higher with respect
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Figure 2.1: Illustrative scheme of processes and reactions studied
in the model used.
(Created in Biorenders.com)

to the size of ribosome’s pool, mRNAs have to compete to bind and form
complexes with the free ribosomes, i.e. ribosomes which are not already
involved in other complexes.
We imagine that during our transfection procedure, some cells may have
assimilated an higher number of encoding plasmids with respect to other cells;
an elevated number of plasmids corresponds to more molecules of mRNA
competing to bind to ribosomes, establishing a competing scenario, not
observed in cell with fewer plasmids where the numbers of mRNA molecules
is smaller with respect to available ribosomes.

19



Modeling

Following the scheme depicted in the Figure 2.1, the analyzed system is
identified in terms of the following chemical reactions (2.11-2.23):

0 α−→ m1 + m2 transcription of correlated mRNAs (2.11)

m1 + R
k+

1−→ b1 association of a molecule of m1 and a ribosome (2.12)

m2 + R
k+

2−→ b2 association of a molecule of m2 and a ribosome (2.13)

b1
k−

1−→ m1 + R dissociation of the complex b1 (2.14)

b2
k−

2−→ m2 + R dissociation of the complex b2 (2.15)
b1

γ1−→ m1 + R + p1 translation of b1 into a protein p1 (2.16)
b2

γ2−→ m2 + R + p2 translation of b1 into a protein p1 (2.17)
b1

η1−→ R degradation of m1 when bound in b1 (2.18)
b2

η2−→ R degradation of m2 when bound in b2 (2.19)

m1
β1−→ 0 degradation of a free m1 (2.20)

m2
β2−→ 0 degradation of a free m2 (2.21)

p1
δ1−→ 0 degradation of a protein p1 (2.22)

p2
δ2−→ 0 degradation of a protein p2 (2.23)

It is now more visible and understandable what are the reactions consid-
ered while building the model and the rate at which each of them happens.
The model is able to describe transcription of two correlated mRNAs at rate
α (reaction 2.11); each of these mRNAs can create a translation complex
binding to a free ribosome (reactions 2.12, 2.13) with rates k+

1 or k+
2 respec-

tively, but these complexes can also undergo dissociation with rate k−
1 or k−

2 ,
freeing the mRNA and a ribosome each (reactions 2.14, 2.15). When the
translation is complete, the mRNA and the ribosome are again freed and
a protein p1 (p2) is produced with rate γ1 (γ2) (reactions 2.16, 2.17). The
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degradation processes described before for the mRNA happen with rates β1

and β2 for the free mRNA (reactions 2.18, 2.19), η1 and η2 when the mRNA
is in a complex (reactions 2.20, 2.21). Finally, the degradation of the proteins
are presented in reactions 2.22 and 2.23, with associated rates δ1 and δ2.
Inspired by the set of ordinary differential equations obtained in the study
of Cella F. [33], available in the supplementary material of the article [34],
we write a ODE system represented by 2.24-2.30. The system of differen-
tial equations describing the changes in concentration of species in time,
associated to the above mentioned system of reactions, is:

dm1

dt
= α − k+

1 m1R + k−
1 b1 + γ1b1 − β1m1 (2.24)

dm2

dt
= α − k+

2 m2R + k−
2 b2 + γ2b2 − β2m2 (2.25)

db1

dt
= k+

1 m1R − k−
1 b1 − γ1b1 − η1b1 (2.26)

db2

dt
= k+

2 m2R − k−
2 b2 − γ2b2 − η2b2 (2.27)

dR

dt
= −k+

1 m1R − k+
2 m2R + k−

1 b1 + k−
2 b2 + γ1b1 + γ2b2 + η1b1 + η2b2

(2.28)
dp1

dt
= γ1b1 − δ1p1 (2.29)

dp2

dt
= γ2b2 − δ2p2 (2.30)

To take into account randomness and correlations between species as
explained in section 2.1, we switch to a probabilistic point of view of the
system, for which we can write the associated Master equation (referring to
equation 2.1). Suppose a system characterised by m1 molecules of mRNA m1,
m2 molecules of mRNA m2, R free ribosomes, b1 (b2) molecules of complexes
of m1 (m2), and p1 (p2) molecules of protein p1 (p2). Equation 2.31 accounts
for the transitions into and out of the state X = (m1, m2, b1, b2, R, p1, p2)
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and is the Master equation for the studied system.

dP (m1, m2, b1, b2, R, p1, p2)
dt

= αP (m1 − 1, m2 − 1, b1, b2, R, p1, p2) +

+ η1(b1 + 1)P (m1, m2, b1 + 1, b2, R − 1, p1, p2) +
+ η2(b2 + 1)P (m1, m2, b1, b2 + 1, R − 1, p1, p2) +

+ β1(m1 + 1)P (m1 + 1, m2, b1, b2, R, p1, p2) +
+ β2(m2 + 1)P (m1, m2 + 1, b1, b2, R, p1, p2) +
+ δ1(p1 + 1)P (m1, m2, b1, b2, R, p1 + 1, p2) +
+ δ2(p2 + 1)P (m1, m2, b1, b2, R, p1, p2 + 1) +

+ k+
1 (m1 + 1)(R + 1)P (m1 + 1, m2, b1 − 1, b2, R + 1, p1, p2) +

+ k+
2 (m2 + 1)(R + 1)P (m1, m2 + 1, b1, b2 − 1, R + 1, p1, p2) +
+ k−

1 (b1 + 1)P (m1 − 1, m2, b1 + 1, b2, R − 1, p1, p2) +
+ k−

2 (b2 + 1)P (m1, m2 − 1, b1, b2 + 1, R − 1, p1, p2) +
+ γ1(b1 + 1)P (m1 − 1, m2, b1 + 1, b2, R − 1, p1 − 1, p2) +
+ γ2(b2 + 1)P (m1, m2 − 1, b1, b2 + 1, R − 1, p1, p2 − 1) −

− P (m1, m2, b1, b2, R, p1, p2)[(η1 + γ1 + k−
1 )b1 + (η2 + γ2 + k−

2 )b2 +
+ k+

1 m1R + k+
2 m2R + β1m1 + β2m2 + δ1p1 + δ2p2] (2.31)

The Master equation 2.31 is highly intricate and poses a formidable challenge
in terms of finding a solution through conventional methods such as generating
function or numerical methods. Acknowledged the complexity of the equation,
the most practical and efficient way to obtain results is to resort to simulation
techniques such as Gillespie algorithm [5], and its implementation in Julia
programming language [32].
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Chapter 3

Parameters Estimation in
Gene Regulation Model

Recalling the reactions based on which the model is built, i.e. reactions
(2.11-2.23), the next necessary step to define the model is to determine
parameters.
Since our experimental data are obtained with HEK293t cells, the same cell
line is used to perform wet-lab experiments to determine model’s parameters.
The most immediate rates we can estimate are the translation rates (γ1 and
γ2) for the two fluorescent proteins, mCherry and eYFP. Knowing the length
of the mRNAs coding for the proteins (data available on SnapGene [35]), and
knowing the elongation rate, i.e. the rate at which a ribosome translates a
codon in cells used in experiments (elongation rate for HEK293t is available
on the database Bionumbers [36]), it is immediate to calculate the translation
rate.

Ribosomes in HEK293 cells translate ∼ 3 codons/s [36] and the molecule
of mRNA of mCherry is 711 bp (base-pairs) long, while eYFP mRNA is
720 bp long [35]. As a consequence, a molecule of mCherry is translated in
nearly ≈ 79 s, whereas a molecule of eYFP is translated in approximately
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≈ 80 s; the rates at which a protein molecule of each species is produced
are evaluated to be γ1 ≈ 0.01266 s−1 and γ2 ≈ 0.0125 s−1. The evaluation
of the translation rate for a mRNA based solely on the speed of ribosomes
and the length of the mRNA strand might oversimplify the complex process
of protein synthesis. It is crucial to acknowledge the intricate journey that
mRNA undergoes before reaching its final translated state into a fluorescent
protein. The mRNA strand not only goes through refinement processes such
as splicing, but it also needs to traverse from the nucleus to the cytoplasm
for translation. Additionally, the subsequent steps involving protein folding
and maturation are integral to the complete development of a functional
protein with observable fluorescence. Ignoring these complex operations in
the translation process may lead to an inaccurate estimation of the translation
rate. Therefore, it becomes imperative to reconsider the initial parameter
estimation and incorporate a more comprehensive understanding of the
mRNA strand’s journey from the transcribed mRNA to the creation of its
fully matured and fluorescent protein state. In line with existing literature,
we estimate the parameter to be determined by the longest time observed
across the various processes involved in protein synthesis from mRNA strand,
encompassing mRNA splicing, translocation from nucleus to cytoplasm, and
the subsequent steps of protein folding and maturation. The maturation
process requires the most time, making the rate equivalent to the duration of
this particular step. Maturation time for mCherry and eYFP are estimated
as ≃ 50 − 60 h [37], corresponding to translation rates γ1 = γ2 ≃ 0.0002 s−1.

3.1 Parameters calculated from experiments.

3.1.1 Experimental Setup

Experiments are performed at IIGM - Italian Institute of Genomic Medicine,
whose laboratories are located at IRCCS in Candiolo (TO).
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HEK293 Tet-off cells are employed during the experiments aimed at esti-
mating degradation rates; these cells are derived from human embryonic
kidney and are commonly used in biological research. Cells are maintained
in DMEM (Gibco) supplemented with 10 % FBS serum.
To insert genes encoding for fluorescent proteins in the cell, transfection
is needed: transfection consists in introducing inside the cell exogenous
material, in our case plasmids that contain genes for mCherry and eYFP,
expressed by the same promoter. For our experiments, EffecteneR⃝ (Qiagen)
is employed as transfection agent. Transfections were carried out on 6-well
plates for both experiments, adding 2 µg of encoding plasmids in each plate,
according to manufacturer’s instructions.

3.1.2 Degradation rate of mRNAs

To determine the degradation rates of the two mRNAs molecules, quanti-
tative PCR experiments are carried out. The aim of the experiment is to
determine how fast the two mRNAs are degraded inside cells: to achieve this,
it is necessary to block transcription and quantify the mRNA over time.
In a Tet-off cell line as HEK293t, blocking transcription is easily achieved
inserting in the medium the antibiotic doxycycline in a concentration of
1 µg/ml of medium. Tet-Off stands for "tetracycline off", indicating the
possibility to regulate gene expression in response to the presence or absence
of tetracycline or its derivative, doxycycline.
In the Tet-Off system, a key component is the tetracycline-controlled trans-
activator (tTA) protein. The tTA protein binds to a specific DNA sequence,
which is placed upstream of the gene of interest in the cell’s genome. When
tetracycline or doxycycline is absent, the tTA protein can bind to the spe-
cific DNA sequence and activate transcription of the gene. However, in the
presence of tetracycline (or doxycycline), these molecules bind to the tTA
protein, causing a conformational change that prevents it from binding to
the DNA sequence, inhibiting gene transcription [10].

25



Parameters Estimation in Gene Regulation Model

Two 6-well plates are transfected 24 hours after plating; the encoding
plasmids for mCherry and eYFP are transfected using EffecteneR⃝ and 2 µg
of DNA per well. To study the degradation in time of mRNA, doxycycline is
administered to eleven of the twelve transfected wells at different times, the
twelfth well is kept as control. Right after the last administration, RNAs
are extracted from all wells using RNeasy Mini Kit (Qiagen) and quantified:
only samples with sufficient concentration of RNA are considered.
To quantify how the mRNA varies over time, a further step is necessary
before performing quantitative PCR. Reverse transcription converts RNA
molecules into complementary DNA (cDNA) strands: the resulting cDNA
can be then amplified using qPCR.
Quantitative Polymerase Chain Reaction (qPCR) is a technique used to
quantify the amount of specific RNA sequences (mCherry and eYFP in our
case) in the biological sample extracted over time.
The amplification process in qPCR is identical to that of traditional PCR. In
a single tube, components necessary for the amplification reaction are mixed
with a segment of target DNA that acts as a template (in our experiment
cDNA obtained with reverse transcription of extracted RNA): these include
fluorescent dye probe BrightGreen, forward and backward primers of the
target genes, and RNase/DNase free water. Following this, the reaction’s
contents go through a number of temperature and time-dependent processes,
including primer annealing, denaturation, and extension (see scheme in
Figure 3.1). The DNA template is amplified exponentially once this set of
procedures is carried out various times [38].
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Figure 3.1: Illustrative scheme of three-step amplification proce-
dure of qPCR: denaturation, annealing, and extension.
(Adapted from https://www.stratech.co.uk/aat-bioquest/real-time-pcr-qpcr/ [38]).

qPCR is performed for each time sample, for mCherry, eYFP and house-
keeping gene (GAPDH), used as control measure and necessary to evaluate
the fold-change. Data obtained from qPCR experiments consist in quantifi-
cation cycles (Ct), the number of PCR cycles required for the fluorescence
signal coming from the dye probe to achieve a threshold level for each sample.
Lower Ct values imply that the target DNA is more abundant in the sample.
Obtained data are analyzed using the ∆∆Ct ("delta delta Ct") method:

1. Calculate ∆Ct: ∆Ct represents the difference in Ct values between the
target gene (mCherry or eYFP) and the housekeeping gene (GAPDH),
for each sample: ∆Ct = Cttarget - Cthousekeeping.

2. Calculate ∆∆Ct: ∆∆Ct is used to compare the ∆Ct values between
the sample result and the control result (the control well not treated
with doxycycline).
It is calculated as ∆∆Ct= ∆Cttarget-∆Ctcontrol

3. Calculate Fold Change: The fold change in gene expression between
the experimental and control samples is calculated using the formula:

Fold Change = 2−∆∆Ct

A fold change greater than 1 indicates upregulation, while a fold change
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smaller than 1 indicates downregulation of the target gene in the experi-
mental sample compared to the control.

Data obtained with this procedure for both mRNAs are used to interpolate
an exponential decreasing function f(t) = e−rt, since we expect that mRNA
degrades exponentially, using LsqFit package in Julia.
The degradation rate is calculated from the half-life time with equation 3.1:

rate = log(2)
ropt

(3.1)

where ropt is the parameter obtained from the fit.
For each time step, three samples are examined and before applying the
∆∆Ct method, and the mean of the samples is calculated. In Figure 3.1.2,
results for degradation rates of mCherry (left) and eYFP (right) are displayed:
black stars represent half-life time evaluated for each fit.

Figure 3.2: Fit and experimental data for mRNAs.
Experimental data (scatter points) of mCherry (A) and eYFP (B) obtained from
qPCR, fitted with an exponential decreasing function. For each species, the data
named sample 1 are obtained evaluating the mean Ct over the triplicate, for each
time point, whereas data labeled with sample 2 are obtained averaging Ct, excluding
the most different data for each triplicate.
(All data are normalized with respect to the first time point.)
Parameters r represent the best fitting parameters of the function f(t) = e−rt for
each dataset. Black stars show the half-life time, the time necessary for normalized
fluorescence to drop from 1.0 to 0.5.
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From the obtained results we can estimate the degradation rate of mRNA
approximately as β1 ≈ 0.0005 s−1 and β2 ≈ 0.0003 s−1 for the mRNAs
associated to mCherry and eYFP, respectively. The obtained results are in
agreement with the different lengths of the two genes, which influence not
only the translation rates, but also their degradation rates.

3.1.3 Degradation rate of proteins

To study the degradation process of fluorescent proteins mCherry and eYFP,
we examine the transfected cells over time with a fluorescence microscope,
and measure the fluorescence signal analyzing the photos captured at the
microscope. In a 6-well plate, a well is used as control and two wells as
samples. Cells are transfected using EffecteneR⃝ as described in section 3.1.2.
After 24 hours from transfection, the medium is changed with medium
containing doxycycline in a concentration of 1 µg/ml to stop transcription
and thus observe only degradation of proteins. Cells are followed for one
week, changing medium every two days so that the action of doxycycline
does not fade in time; photos are taken at fluorescence microscope twice
a day: for each well, ten sectors are examined in red and green channels
to capture both fluorescent proteins. Examples of the photos obtained are
displayed in Figure 3.3.
Images from microscope are analyzed in MATLAB programming language,

opened with Bio-Formats library and the ten sectors are concatenated to
form two 3D matrices of integers (one for each channel), for each time point,
for the two wells.
First of all, saturated pixels and their surroundings are excluded from analysis.
Then, each image is segmented to understand which pixels belong to cells and
what should not be taken into account and therefore considered as background.
The images undergo a binarization process applying a thresholding technique
to convert grayscale images into black and white images: pixels above a
certain intensity level are set to white, while the others are set to black
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Figure 3.3: Example images obtained from fluorescence microscopy.

(A-B) Images taken right after the first administration of doxycycline.
(C-D) Images taken six days after the first administration of doxycycline.
Obs.: The two images are taken from the second sample well and do not represent
the same cells.

and will belong to the background. To determine the optimal value of the
threshold, an iteration procedure is implemented, increasing the threshold
value at each iterative step; this iterative procedure concludes when the
number of objects identified as cells does not increase anymore, ensuring
that the optimal segmentation threshold is determined. In addition to this,
during the analysis, objects identified as cell are retained only if their area
falls within a specif range of areas in term of pixels, in order to exclude too
large or too small structures, that would lead to inexact results. Once the
segmentation is complete, background value is calculated as the mean of
all pixels not segmented as cells plus twice the standard deviation of the
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same data; this background is subtracted from each pixel in the images, to
remove unwanted noise and evaluate the fluorescence of only relevant objects.
To evaluate the mean fluorescence two possible strategies are implemented.
The first one consists in considering only pixels that belong to a segmented
object and are not saturated, summing their value and dividing by their total
number (Figure 3.4 A, B). This process leads to very stable curves and for
this reason we also implemented another strategy: summing all pixels that
are not saturated, both segmented or not, and divide for the total number
(Figure 3.4 C, D).
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Figure 3.4: Fluorescence data obtained after segmentation of mi-
croscopy images.
Transfected cells are followed over a period of 1 week (170 hours) after the first
administration of doxycycline.
(A-B) Fluorescence trajectories as a function of time, obtained summing only pixels
that belong to a segmented object and are not saturated.
(C-D) Trajectories obtained summing all pixels that are not saturated, both seg-
mented or not.
Red trajectories represent mCherry fluorescence, green trajectories represent eYFP
fluorescence signal.

As clearly visible from Figure 3.4, degradation curves obtained summing
only on segmented and non-saturated pixels are very stable signals, especially
mCherry (Figure 3.4 A,B), but summing all non-saturated pixels produce
faster decreasing curves for both proteins (Figure 3.4 C,D); this is due to the
fact that at larger time, more and more cells that were fluorescent before are
considered background since their signal smothers, but we divide by the total
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number of pixels not saturated, which is bigger and bigger in time. In any
case, both strategies lead to half-life time results far greater than half-life
time found in literature of 24 − 48 hours for fluorescent proteins [39].
Indeed, fitting results from our experiments using LsqFit package in Julia with
an exponential decreasing function f(t) = e−rt, we obtain curves reported in
Figure 3.5: half-life times are indicated by black stars, t1/2 ∼ 60 h for eYFP
(Figure 3.5 B) and t1/2 > 100 h for mCherry (Figure 3.5 A); summing over
only non saturated pixels leads to even higher half-life time, especially for
mCherry where t1/2 >> 100 h, as visible also from 3.4 A, B.

Figure 3.5: Fit and experimental fluorescence data for proteins
obtained summing over segmented pixels.
Experimental data (scatter points) of mCherry (A) and eYFP (B) fluorescence for
well 1 and well 2, fitted with an exponential decreasing function.
(All data are normalized with respect to the first time point.)
Parameters r represent the best fitting parameters of the (f(t) = e−rt) for each
dataset. Black stars show the half-life time, the time necessary for normalized
fluorescence to drop from 1.0 to 0.5.

To better understand this discrepancy between half-life times obtained
from our experiments and those found in literature, we have to analyze
conditions in which experiments were carried out. Cells were plated in a
6-well plate, transfected and analyzed at microscope: when the microscopy
observation started, cells were at confluence and a process called contact
inhibition took place. Contact inhibition is a regulation process that occurs
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in cells which stops cells proliferation when all place available is occupied
[40]; consequently, the observed half-life time in our experiment reflects
the degradation in non-diving cells. On the contrary, data at our disposal
represents cells which divide and therefore it becomes evident that the
predominant factor influencing the experimental degradation is the cellular
division process. Accordingly, the degradation rate for fluorescent proteins,
is assigned equal to the cell division rate: HEK293T cells divide every
48 h [41], meaning that the corresponding doubling rate is approximately
5.8 × 10−6 s−1.
Consequently, the degradation rates in our model for mCherry and eYFP
are δ1 = δ2 ∼= 5.8 × 10−6 s−1.

3.2 Parameters inferred from experimental
data.

Values of fluorescence for 19.001 HEK293t cells are available and each chan-
nel is stored in a .mat file. First and foremost, experimental trajectories
must be validated to ensure accuracy and reliability of the obtained results.
Experimental data are indeed prone by nature to imperfection, noise and
missing information. The importance of a validation process is highlighted in
the context of our experimental data, which entails measuring an experimen-
tal variable over time. The nature of the cell cycle and its dynamics bring
about new obstacles such as cell division or segmentation operations, which
might lead to errors or distortions in the detected fluorescence. Validation
procedure is thus essential to account for data gaps, sudden fluctuations or
saturation of signals.
A trajectory validation function is designed to assess individual trajectories
based on multiple criteria. First of all, trajectories containing a too elevated
number of NaN values, corresponding to missing signal, are discharged. After
that, we measure and discharge trajectories which saturate in one or both
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channels: saturation can be caused by overexposure to excitation light or too
high fluorophore concentration. Trajectories presenting sudden downwards
jumps are also excluded; however, we acknowledge that during the experi-
ment cell division can occur, to accommodate for this, trajectories showing a
descending jump equivalent to approximately one-half of the starting fluo-
rescence level are considered valid. This approach aim at distinguishing a
biological event like cell division from other source of noise. If a trajectory
presents more than five consecutive NaN values, it is considered valid only if
it has a sufficient number (> 80) of non-NaN values after the consecutive
NaN sequence. If the signal is not present for more than five time frames, it
corresponds to more than one hour during which the cell was not followed
and the signal not registered. During this time the cell may have divided
or moved, so it is crucial to consider only trajectories that have a sufficient
number of valid data after this sequence of NaN.
The validation procedure described above is performed on both channels
and a cell is kept only if both trajectories (eYFP and mCherry) passed the
validation check. A further adjustment is conducted on valid trajectories,
shifting data to obtain trajectories starting with non NaN values.

3.2.1 Transcription rate of mRNAs

To evaluate the transcription rate of the two mRNAs, the analytical distri-
bution of proteins studied by Swain and Shahrezaei in 2008 [42] is used to
fit high level experimental trajectories. Following our reasoning and findings,
we choose to fit high level trajectories since we expect that they correspond
to cells with an infinite ribosome pool, necessary feature needed to estimate
the transcription rate from distribution 3.2, obtained in an infinite resource
model. They modelled a two-stage model where a single gene is transcribed
and translated, which corresponds to the infinite model described by reactions
4.1-4.7, with only one species. By solving the associated Master equation,
they found the probability to have n proteins at time τ , when γ = β

δ ≫ 1, is
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represented by Pn(τ):

Pn(τ) = Γ(a + n)
Γ(n + 1)Γ(a)

1 b

b + 1
2n11 + be−τ

b + 1
2a

× 2F1
1

−n, −a,1−a−n; 1 + b

eτ + b

2
(3.2)

where a = α
β , is the ratio between the transcription rate and the protein

degradation rate, and b = γ
β , is the protein burst size, i.e. the ratio between

the translation rate and the mRNA degradation rate. 2F1(a, b, c; z) is the
hypergeometric function, and Γ represents the gamma function [42]. We
want to fit experimental data with distribution 3.2 to infer the transcription
rate α from the best fitting parameter a.
It is crucial to note a key assumption in our study: while our experimental
data are based on fluorescence values, all probability distributions are de-
scribed as a function of proteins number, meaning that we operate under
the assumption that fluorescence is directly proportional to the number of
proteins, i.e. f ≃ c · p. This hypothesis is grounded in the fundamental
relationship between protein concentration and fluorescence intensity. The
emitted fluorescence signal is generally assumed to correlate with the con-
centration of fluorescent proteins present in a sample. Consequently, we
need to re-scale experimental fluorescence data with the proportionality
factor c between fluorescence and number of proteins. Following the study
of van Oudenaarden A. and Thatthai M. [43], it is possible to evaluate the
conversion factor between fluorescence and proteins number, analyzing ex-
perimental high-level trajectories evaluated at frame k = 100 (corresponding
to about 39 h ≃ 2360 s) after transfection. According to the study [43]

< p >= a · b · (1 − e−βt) and δp2

< p >
=
11 − e−2βt

1 − e−βt

2
(b + 1) (3.3)

where we recall that β is the degradation rate of the mRNA molecule, a = α
δ

and b = γ
β .

Assuming < f > ≃ c < p >, we can evaluate the conversion factor c as

c = δf2

< f >
· 1

(b + 1)
1

1−e−2βt

1−e−βt

2 = 2886.25 (3.4)
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where δf2 is the variance of our data, and < f > is the mean value.
We scale the fluorescence data of high level trajectories of mCherry evaluated
at frame k = 100 with the calculated factor c from equation 3.4, and fit the
obtained number of proteins with the probability distribution function in
equation 3.2. Additionally, we could also calculate the theoretical value of
parameter a combining equations 3.4 - 3.3, obtaining

a = < f >

c · b · (1 − e−βt) ≃ 19.95 (3.5)

Fit is performed using the Julia package Optim, minimizing the logarithmic
likelihood between experimental data distribution (scaled up by the factor c)
and theoretical distribution (equation 3.2). Results of the fitting for mCherry
are displayed in Figure 3.6: the graph is obtained fitting experimental scaled
data of high level trajectories, optimizing parameter a.
During this procedure, the parameter b = γ

β = 0.0002
0.0005 = 0.4 is kept constant,

since it is already fully determined. Experimental data are displayed with
orange histograms, red line represents the distribution obtained with the fit
minimizing the likelihood, while black dashed line represents the distribution
obtained with parameter a evaluated from equation 3.5.
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Figure 3.6: Probability distribution of proteins fitted with parame-
ter b experimentally determined.
Probability distributions plotted as histogram of high-level trajectories of mCherry
(Orange bars). Fit with distribution in equation 3.2 is represented by red line.
Distribution with parameter a obtained from equation 3.5 is displayed with black
dashed line.

Fitting the scaled experimental data, we obtain the value of parameter
that better fits our data (a = 13.68), from which we obtain the transcription
rate α = a · δ1 = 13.68 · 5.8 × 10−6 ≃ 7.9 × 10−5 s−1.
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Results

As stated in the Introduction, in a competitive environment where resource
are distributed among multiple genes, an anticipated outcome is expected:
an increase in the amount of genes competing for ribosomes (manifested in
experiments by a higher number of transfected plasmids present within a cell),
gives rise to a heightened demand for intracellular resources. The shared
limited resources, particularly ribosomes in our model, are distributed across
the numerous mRNA gene products, resulting in a consequent reduction in
the overall level of gene expression. In our model, we replicate the increases
competition within the cellular environment by reducing the ribosome pool
size, leaving unchanged all other parameters.
As simulations show, reducing the size of the ribosomal pool has a strong
impact on translation efficiency. Indeed, in the competing scenario, when
ribosomal pool size ranges from 50 to 700, our results suggest how reductions
in the ribosomal pool size directly lowers translation efficiency (see Figure
4.1).
We simulated the model conducting 10.000 independent simulations for
different ribosomal pool sizes (all other parameters are fixed), measuring
expected levels of proteins p1 and p2, when the system has reached steady
state. Results of protein levels for p2 are reported in Figure 4.1. Predictably,
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the levels of gene expression for both fluorescence proteins diminishes as the
ribosomal pool size reduces (Figure 4.1). This is due to the bottleneck effect
that limited resources create inside the system, reducing the efficiency of
gene expression.
The number of proteins translated diminishes heavily when the pool size is
reduced: from more than 400.000 proteins obtained with a ribosomal pool
of size R = 700 (see purple box in Figure 4.1) to 150.000 proteins reached
when R = 50 (dark-red box in Figure 4.1).

Figure 4.1: Size of ribosome pool shapes protein levels.
Reducing ribosomes pool size increases competition between genes, leading to a
decreased translation efficiency.
Data obtained simulating the competing symmetric model with 10.000 simulations
per pool size, with parameters para=[0.03, 0.001, 0.001, 0.0009, 0.0009, 0.012,
0.012, 0.0005, 0.0005, 0.0005, 0.0005, 1.7 · 10−6, 1.7 · 10−6].
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Since the simulated model is symmetric, where translation and degrada-
tion rates are equal for both species, we only display results for one protein,
as the results depicted for p2 are equal to those obtained for p1.
Within our competitive environment, another feature affected by the limiting
size of the ribosomal pool is the correlation between the two fluorescent
proteins. Initially, their corresponding mRNAs are transcribed together, nat-
urally resulting in a positive correlation between them (cor(m1, m2) ≈ 0.5).
In an ideal scenario characterized by an infinite pool of molecular resources,
this correlation persists also between the proteins (black dashed line in Figure
4.2 ), taking into account that the translation process can lead to a minor
reduction in correlation with respect to mRNAs.
What proves astonishing, however, is the rapid decrease observed in protein-
protein correlation as we manipulate the ribosomal pool size, ultimately
reaching negative value, indicative of anti-correlated proteins (Figure 4.2).
When the pool has a non-limiting size (cf. R = 1000 in Figure 4.2), correla-
tion results are in accordance with those obtained in a infinite pool model
simulated as described in reactions 4.1 - 4.7, depicted with dashed black line
in Figure 4.2. The correlation reduction as a function of the pool size is
particularly noteworthy when recalling the initial correlation of the mRNAs
at transcriptional stage.
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Figure 4.2: Correlation between the two proteins as a function of
ribosomal pool size (simulations).
Reducing ribosomal pool size increases competition among genes. This competition
produces a reduction of the correlation between the two proteins as the pool shrinks.

What has emerged is that the number of ribosomes imposes a significant
constraint on the cellular system. In line with this idea, it is crucial to show
that a lower size of ribosomal pool results in a surplus of untranslated mRNA
molecules. This proposition indeed arises from the competing scenario where
different mRNA molecules compete for limited resource, ultimately leading
to a reduction in the overall protein expression levels.
To further support our thesis stating that a higher competition leads to an
excess of untranslated mRNA molecules, we can plot the mRNA and protein
distributions for different pool sizes and compare them with results obtained
from an "infinite ribosomes" model.
For the sake of clarity, an "infinite ribosomes" model simply describes a gene
which is first transcribed into mRNA and then translated into protein with
constant rates. In this model, we disregard reactions involving ribosomes,
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since we assume that they are abundantly available and do not pose a
bottleneck to the gene expression process. The basic reactions characterising
the model are the following:

0 α−→ m1 + m2 transcription of correlated mRNAs (4.1)
m1

γ1−→ m1 + p1 translation of m1 into a protein p1 (4.2)
m2

γ2−→ m2 + p2 translation of m2 into a protein p2 (4.3)

m1
β1−→ 0 degradation of a molecule of m1 (4.4)

m2
β2−→ 0 degradation of a molecule of m2 (4.5)

p1
δ1−→ 0 degradation of a protein p1 (4.6)

p2
δ2−→ 0 degradation of a protein p2 (4.7)

We performed simulations of the competing model, gradually increasing the
size of the ribosomal pool. The aim is to show that, while total mRNA
levels (free mRNA and mRNA in complex with ribosomes) between infinite
and competing models are not influenced by the pool sizes, heightened
competition leads to a proportional reduction in protein expression levels, as
displayed in Figure 4.3. When the pool is small (R = 100 in Figure 4.3), the
difference between protein levels in the competing model (green histograms)
and the infinite model (purple histograms) is elevated; on the other hand,
when the pool in not limiting (R = 1000 in Figure 4.3), the protein level
reached in the competing model approaches the result of infinite model.
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Figure 4.3: Distributions of mRNA and proteins for different pool
sizes compared with infinite model results.
(Upper panel) Probability distributions of mRNAs in competing models (green)
obtained summing free mRNAs and mRNAs in complex for one species evaluated
with different pool sizes, compared with probability distributions of mRNA from
infinite model (purple). mRNA transcription is not influenced by ribosome pool.
(Lower panel) Probability distributions of one protein in competing models (green)
evaluated with different pool sizes, compared with protein probability distributions
in a infinite model (purple).
Competition between mRNA molecules leads to a surplus of untranslated mRNA
molecules, thus resulting in lower levels of protein expression. Increasing the pool
size, we recover the infinite model results when the pool becomes non-limiting.

Having outlined our expectations for a competing environment in cells
through simulations, the next step consists in seeking empirical validation of
the anticipated behaviours: a limited resource pool results in poorer protein
translation and leads to a decrease in correlation between two fluorescent
proteins. Trying to confirm a similar pattern of correlation in real scenario,
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we analyzed experimental trajectories, validated as described in section 3.2.
Valid trajectories are then divided into three groups depending on the protein
expression level they reached: low, medium, high. Following our hypothesis
that a stronger competition for resources among genes reduces translation
efficiency, we would expect, on general basis, that trajectories reaching a
lower protein level correspond to the competing regime. Furthermore, a lower
correlation between the two proteins is expected in a competing environment,
as obtained in simulations (cf. Figure 4.1 and 4.2).
Protein-protein correlation at different time frames is calculated for trajecto-
ries belonging to the aforementioned three categories. Results obtained are
partially in agreement with theoretical expectations and they are depicted
in Figure 4.4: trajectories with lower expression level (orange line) show a
diminished correlation between proteins with respect to trajectories with
high protein levels (blue line), but correlation values are more elevated with
respect to those obtained in simulations.
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Figure 4.4: Correlation between the two proteins evaluated in
experimental data, at different time points.
Correlation between mCherry and eYFP is higher in trajectories reaching high
protein levels (blue line); lower protein levels (orange line) are associated to a
decreased correlation between proteins with respect to high levels trajectories.
Trajectories associated with a medium level of gene expression (green line) exhibit
a correlation value between two proteins that falls within the range defined by
trajectories with high and low expression levels at nearly all examined time frames.

The obtained results have to be handled with care: a detailed description
of problems which arised during the analysis of experimental data is given in
the following, and reasons because the obtained results in Figure 4.4 does not
completely align with model results are presented in the ensuing discussion.

First of all, one must consider that trajectories were divided based on
their protein levels: this criterion, however, does not distinguish a trajectory
obtained from a cell which expresses low protein levels because it has assimi-
lated a very low number of encoding plasmids from a low levels trajectory
caused by very high competition among genes due to the elevated number of
encoding plasmids.
As a matter of fact, this scenario can be also obtained through simulations
modifying the transcription rate of correlated mRNAs in the infinite resource
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model; the same protein level can be reached simulating a competing model
with finite and limiting ribosomal pool (Figure 4.5 green histograms) and
with an infinite model where the transcription rate has been lowered to
achieve the same protein levels at steady state (Figure 4.5 purple histograms).
Data displayed in Figure 4.5 for the finite pool model show a surplus of
untranslated mRNAs, in agreement with our findings about competition
lowering gene expression (cf. Figure 4.1).

Figure 4.5: Model with limiting pool and infinite pool model can
lead to same protein levels.
A low level of protein expression can be determined by two possible situations: an
infinite model with a low transcription rate which corresponds to a cell with few
plasmids to be expressed (purple), or a cell expressing low protein level because
many plasmids are competing for the finite ribosomes pool (green); the latter is
modelled with a finite pool model, diminishing the pool size to R=100.

Moreover, high and low level trajectories frequently displayed a different
behaviour in their profiles. More specifically, high level trajectories tend to
extend for a greater number of time frames, whereas trajectories associated
with low protein levels often end early in time. This difference in trajectory
lengths introduces a potential inaccuracy in the evaluation of correlations,
particularly over the last evaluated frames.

If we compare correlation results from simulation of Figure 4.2 and from
experimental data in Figure 4.4, one may argue that even if a decrease in
correlation between high and low level trajectories is visible, correlation

47



Results

values in both cases are higher with respect to those obtained in simulations.
To interpret and explain this discrepancy between theoretical and experimen-
tal outcomes, one must take into account that theoretical results depicted
in Figure 4.2 are derived sampling each simulation when it has reached the
steady state, while we evaluated correlation in experimental trajectories at
different time frames; experimental data often show increasing trend indica-
tive of the transient state present before reaching steady state. Accordingly
to this, we decided to sample simulations at different times in the transient
state, to gasp some more information about correlation behaviour far from
the steady state. We simulated two scenarios, one with a limiting ribosomal
pool R = 100 and another where the pool is finite but not limiting R = 1000,
and evaluated the correlation between proteins p1 and p2 at different time
points during the transient (see Figure 4.6). It appears evident that during
the transient state the two proteins have a correlation value higher with
respect to the value reached at the steady state. Correlation diminishes
during to transient state, reaching steady state value. The rapid decrease is
more enhanced in the limiting pool with R = 100 ribosomes (Figure 4.6 A),
where correlation drops from ≃ 0.70 at 500 s to ≃ −0.15 at 50.000 s.
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Figure 4.6: Correlation between proteins during the transient state.

Correlation between proteins at different time points during the transient shows that
correlation has higher values during the transient state and it reaches the steady
state correlation value (black dashed line) with a rapid decrease.
(A) Simulations performed with a limiting ribosome pool of size R=100.
(B) Simulations performed with a non limiting ribosome pool of size R=1000.
Simulations are sampled at times [1 × 103, 2 × 103, 8 · 103, 5 × 104, 1 × 105, 5 ×
105, 1 × 106] s; steady state is evaluated at time 3 × 106 s.

Since we have proved that in both competing or infinite resource scenario,
the correlation evaluated during the transient state is higher with respect
to steady state values (see Figure 4.4), the difference in value between
theoretical results from simulation in Figure 4.2 and experimental results
in Figure 4.4 can be accounted by the presence of transient behaviour in
numerous trajectories. This dynamics results in a general augmentation of
the addressed correlations. This increase is more pronounced in the first
time frames, reflecting the initial transient before reaching steady state of
the fluorescence trajectory.
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Another issue encountered during the inference of model’s parameter
concerns the value found for the transcription rate and the proportionality
factor between fluorescence and number of proteins c. In section 3.2.1 we
derived α ≃ 7.9 × 10−5 s−1, and c ≃ 2886. However, the obtained results do
not allow us to interpret experimental results in a correct way. Indeed, if we
scale up by the same factor c the experimental data of low level trajectories,
assuming that the proportion coefficient between fluorescence and number of
protein is a fixed quantity, we obtain the distribution in Figure 4.7. These
scaled up data suggest that the mean value of mCherry protein per cell,
in cells expressing a low level fluorescence is smaller than 1, meaning that
some cell may have not assimilated any encoding plasmid. This result is
in contrast with experimental observation, since all trajectories examined
express a non-zero value of fluorescence.

Figure 4.7: Probability distribution obtained scaling up by the
obtained conversion factor c.
Scaling the fluorescence low level trajectories by the same factor obtained in section
3.2.1 lead to a maximum number of proteins per cell equal to 1.

This discrepancy leads us to question the efficacy of utilizing fluorescence
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levels as the only parameter for distinguishing trajectories. It suggests that
relying solely on the fluorescence level may not be a reliable or comprehensive
means to categorize trajectory data based on the scenario (limited / infinite
ribosomes) inside the cell.

All previous considerations strongly indicate that assessing experimental
trajectories solely based on their fluorescence levels results in an imprecise
categorization. The assumption linking a finite ribosome pool to reduced
translation efficiency and lower protein production holds true only when
analyzing cells with equal transcription rates. However, this assumption
cannot be applied to our experimental data: since we are not able to assess
how many plasmids each cell has assimilated, the effective transcriptional
rate may vary from a cell containing many plasmids to one with fewer
plasmids. In the category designated as low-level, where, according to our
initial assumptions, cells with a restricted ribosomal pool were expected, we
can find cells with an infinite pool but low transcription rate (see Figure
4.5), corresponding to cells with few encoding plasmids.

To correctly distinguish cells with a limiting ribosomal pool from those
with an infinite pool, it becomes imperative to assess a new criterion to
categorize trajectories. In this context, stochastic model simulations play
a vital role. One of the key insights obtained during this Thesis is the
observed decrease in proteins correlation when the ribosomal pool is limited.
Building on this awareness, analyzing the correlation between proteins within
the same experimental trajectory emerges as a valuable tool for accurately
determining the trajectory category. However, a further difficulty emerges
from the study of correlation as a function of time reported in Figure 4.6: in
the transient state, proteins exhibit strong correlation both in the limiting
and infinite pool, with differentiation in values based on the finite nature
of the pool occurring only during the steady state. We model the potential
process of measuring protein-protein correlation within an experimental
trajectory. Through simulations, we assessed the correlation among proteins
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within the same trajectory, from the start of the trajectory to a designated
"end-time" (depicted in the Figure 4.8 on the x-axis in logarithmic scale).
As evident, analyzing correlation including the transient state does not
enable the differentiation between trajectories with finite or infinite pools.
The distinction becomes evident only when evaluating correlation up to a
significantly later time beyond the start of the steady state (dashed line in
Figure 4.8).

Figure 4.8: Proteins correlation evaluated up to different times,
along the same trajectory.
Correlation between proteins along the same trajectory, stopping at increasing time.
Correlation is calculated from start to an end-time: [1 × 103, 5 × 103, 6 × 104, 1 ×
105, 6 × 105, , 2 × 106, 6 × 106, 9 × 106, 6 × 107 s].
The steady state is considered to start from t = 2 × 106 s (dashed black line).
Protein- protein correlation diminishes and differentiates only during the steady
state, reaching lower values for the limiting pool (R = 50 orange line). Non-limiting
pool (R = 1000) is represented by blue line.

As depicted in Figure 4.8, it becomes apparent that a very long steady
state phase is imperative for effectively discerning between limiting and
non-limiting cases. However, experimental trajectories frequently present a
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challenging scenario, characterized by extended transients and abbreviated
steady states: some trajectories are depicted as example in Figure 4.9.

Figure 4.9: Examples of trajectorories showing more transient state
than steady state values.
An issue encountered while analyzing experimental trajectories are the complex and
various behaviours observed among different cells. Some cells display only transient
behaviour or very few data in the steady state.

To address this challenge, we try to assess correlation along a simulated
trajectory, but discerning between the transient and steady-state phases. The
outcomes are illustrated in Figure 4.10, for a limiting ribosomal pool of size
R = 50 (upper panel Figure 4.10 A,B) and for a non-limiting pool (R = 1000
in lower panel Figure 4.10 C,D). The graph represented the evaluation of the
correlation (along the same trajectory) in 100 simulated trajectories for each
pool, correlation mean values and standard deviations are displayed. Each
point in the graphs A-C in Figure 4.10 corresponds to the mean value of
correlations (for 100 simulations) evaluated from the start of the trajectory
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up to the time measured on the x-axis.
The steady state is evaluated to start at time t = 2 × 106 s from visual
inspection of simulated trajectories; each point in graphs B-D in Figure 4.10
represents the mean value of correlations (for 100 simulations) evaluated from
t = 2 × 106 s up to the time represented on the x-axis. This representation
allow us to state that if the correlation is evaluated in the transient state of
a trajectory, it does not present any difference between the infinite pool and
a limiting pool (see Figure 4.10 A-C). On the other hand, if we evaluate the
correlation along the trajectory examining only the steady state, correlation
between proteins is lower in the limiting case if compared to correlation
evaluated on the same time interval for the infinite mode. It is important
to observe that this difference is appreciable provided that time analyzed is
sufficiently far from the start of the steady state, i.e. we have a sufficient
number of points in the steady state. Figure 4.10 suggests that an effective
strategy to differentiate cells with a limited pool from those with an infinite
ribosomal pool is to assess protein-protein correlation along the trajectory,
specifically during the steady state.
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Figure 4.10: Proteins correlation evaluated along the same trajec-
tory, during transient and steady state.
Correlation between proteins along the same trajectory, stopping at increasing times.
(A-B) Limiting pool with R = 50. (C-D) Non-limiting pool with R = 1000.
Data are obtained performing 100 simulations for each case, mean values and
standard deviations of the evaluated correlation are depicted.
During the transient state (A-C), correlation is ≃ 1 in both cases, difference in
correlation between limiting- non limiting cases is appreciable if it is evaluated
during the steady state (B-D).
A limiting pool (B) reduces the protein-protein correlation up to negative values,
while a non-limiting pool (D) reduces correlation up to ≃ 0.5.

Categorizing trajectories based on the proteins correlation evaluated at
the steady state for sufficient time can be a good criterion to distinguish cells
with a limiting ribosomal pool from those where the pool is non-limiting.

55



Results

With a better categorization, it would be possible to infer the transcription
rate from a fit of trajectories belonging to the non-limiting pool case.

These considerations collectively contribute to a comprehensive under-
standing of differences between experimental results and simulation expec-
tations. In light of these factors, this Thesis has examined in details the
possible outcomes derived from competition for molecular resources among
genes with simulation, and we found a partial alignment between theoretical
and experimental results. It is however compulsory to acknowledge that the
data analysis is to be improved and trajectories further classified on basis of
protein-protein correlation evaluated during the steady state.
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Chapter 5

Conclusions and Future
Work

In conclusion, this Thesis has successfully investigated the effects of competi-
tion for molecular resources in gene expression, yielding significant insights
into correlation profile and protein expression levels.
Competition for a finite resource pool diminishes protein expression level due
to the limited availability of essential components necessary for translation
process and it induces decrease in correlation between proteins that are
translated from correlated mRNAs.

A more accurate method to analyze and categorize experimental trajecto-
ries is to be implemented, since we have proven that dividing trajectories
based on their fluorescence level leads to only partially accurate results. We
have also demonstrated that distinguishing trajectories based on protein-
protein correlation evaluated on the single trajectory at the steady state
could be a valuable categorization method to distinguish gene products in
a competing environment from those in which the ribosomal pool can be
assumed infinite. To achieve this result, an algorithm able to determine
where the steady state starts for each experimental trajectory is to be defined,
taking into account the noisiness and different behaviours of experimental
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trajectories.

While this study has advanced our understanding of competition in gene
expression, it is essential to acknowledge its limitations, first of all that the
model created is basal, since it only considers one limited resource pool.
Gene expression is a complex and multifaceted process influenced by various
molecular resources. Looking ahead, future research should explore multiple
finite pools scenario, building upon the foundations laid in this work. We have
examined translational resource finiteness but many other resources can lead
to bottleneck effects as we have proved for ribosomes. For instance, in addition
to translation-related resources like ribosomes, degradation and transcription
resources can significantly shape the regulatory landscape within a cell. The
finite availability of degradation resource, including RNA-degrading enzymes
(ribonucleases, exosome...) and degradation machineries, can play a pivotal
role in determining lifetime of mRNA transcripts. In a scenario where
multiple genes are competing for these degradation resources, an increase in
transcription for one gene may lead to higher level of its mRNA, monopolizing
the available degradation resource pool and consequently leading to an
accumulation of other gene products, contributing to their higher expression
levels. This scenario is however context-dependent and should be analyzed
in details.
Transcriptional resources can also be considered as a limiting pool of molecular
resources. RNA polymerases and transcription factors can influence the
initiation and elongation of mRNA synthesis. If a gene is highly active and
utilizes a significant portion of the available transcription resources, it can
result in a reduced access for other genes seeking to initiate or enhance their
transcription. This competition-induced limitation in transcription resources
may lead to a decrease in the expression levels of genes that are not as
actively engaged in this competitive process.

Competition for multiple resource pools introduces a layered complexity,
influencing the rates of transcription, translation, and mRNA degradation
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for individual genes. Consequently, the availability and prioritization of
different resources can shape the overall gene expression landscape, leading
to variations in the abundance of transcripts and proteins. This intricate
interplay highlights the need for a more comprehensive understanding of how
diverse cellular components collectively contribute to the regulation of gene
expression. The presence of multiple finite pools can also help in a deeper
understanding of experimental trajectories: each resource pool and the asso-
ciated competition could contribute to a plateau in the trajectory of protein
levels. As the gene encounters different resource limitations throughout its
expression process, the protein abundance may reach plateaus at distinct
levels, reflecting the availability of the specific resources at each stage.
Future research exploring scenarios involving modelling multiple finite re-
source pools will illuminate the intricate dynamics of these interactions,
providing deeper insights into the orchestration of cellular processes and the
fine-tuning of gene expression patterns.
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