
POLITECNICO DI TORINO
Master’s Degree Thesis in Computer Engineering

Tokenizing Transportation: Blockchain
Solutions for MaaS Ticketing

Supervisors

Prof. Danilo BAZZANELLA

Dott. Davide GAROFALO

Dott. Marco BAZZANI

Candidate

Federico PASQUALINI

December 2023

Abstract

In a world of fast-growing cities and the need for easier, eco-friendly travel, Mobility
as a Service (MaaS) is a promising solution. MaaS combines different types of
transportation like buses, taxis, and bikes into one easy platform for planning
and payment. At the current state, MaaS implementations face several problems
like fragmented territorial systems and privacy concerns between Mobility Service
Providers.

In this thesis, I propose the design and implementation of a possible MaaS infras-
tructure that tries to solve those problems with the use of blockchain and smart
contracts. I created a standard for representing tickets and I was able to code
smart contracts to handle this standard and to allow buying and validating tickets.
On top of that, I also built the back end in NodeJs and the front end of a mobile
application in React Native. The app is able to autonomously fetch data from
the Mobility Service Providers and to buy tickets through the blockchain by only
knowing the address of the main smart contract. All payments are handled through
the blockchain as well.

While in this thesis I focused on coding the contracts for the Ethereum blockchain,
the work could be extended by building a completely private and personalised
blockchain where those contracts can run more efficiently from the point of view of
costs and privacy.

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1

2 Background 3
2.1 Blockchain . 3
2.2 How does a blockchain work? . 4

2.2.1 Digital signatures . 5
2.3 Bitcoin . 9

2.3.1 Hash . 10
2.3.2 Proof of Work . 10

2.4 Ethereum . 12
2.4.1 Proof of Stake . 12
2.4.2 Ethereum Virtual Machine and smart contracts 13
2.4.3 Solidity . 15
2.4.4 MetaMask . 17

2.5 MaaS . 18

3 Rationale for blockchain use in MaaS 21
3.1 Current challenges in MaaS . 21
3.2 Advantages of blockchain . 22
3.3 Disadvantages of blockchain . 22
3.4 Comparison between public and private networks 23

4 Design and implementation 27
4.1 Problem description . 27
4.2 Design . 28

4.2.1 Actors . 28
4.2.2 Functional Requirements . 29

ii

4.3 Implementation . 34
4.3.1 Blockchain . 34
4.3.2 Mps Backend . 40
4.3.3 App Backend . 41
4.3.4 App . 42

5 Conclusion and future improvements 47

Bibliography 49

iii

List of Tables

3.1 Comparison between public and private blockchains [12] 24

iv

List of Figures

2.1 Public ledger . 5
2.2 Elliptic curve example . 6
2.3 Elliptic curve addition example . 7
2.4 Public ledger with signatures and nonce 9
2.5 Blockchain blocks . 11
2.6 Metamask app . 18

4.1 Context diagram . 29
4.2 Interactions unlockable . 31
4.3 Interactions tickets . 33
4.4 Login modal . 43
4.5 Metamask confirm connection . 43
4.6 User tab . 43
4.7 Map tab . 44
4.8 Offer selection . 44
4.9 Map tab while renting . 44
4.10 Plan tab . 45
4.11 Ticket checkout . 45

v

Listings

2.1 ERC20 contract standard . 14
2.2 Simple contract example [9] . 15
2.3 Contract variables . 16
2.4 Contract constructor . 16
2.5 Require statement . 16
4.1 Register function signature . 34
4.2 Msp struct . 34
4.3 mintTicket function signature . 35
4.4 Ticket struct . 35
4.5 validateTicketAndMarkAsUsed function signature 36
4.6 withdraw function signature . 36
4.7 addVehicle function signature . 36
4.8 UnlockableVehicle struct . 37
4.9 addOffer function signature . 37
4.10 UnlockablesOffer struct . 37
4.11 setPosition, setKm and setBattery function signatures 38
4.12 ForceLock function signature . 38
4.13 Unlock function signature . 38
4.14 RentStatus struct . 39
4.15 Lock function signature . 39
4.16 withdraw function signature . 39
4.17 ES6 (ECMAScript-2015) Listing . 40

vi

vii

Glossary

MSP Mobility Service Provider is the company that offers transportation solutions.

MaaS Mobility as a Service integrates various transportation services into a single
platform.

ECDSA Elliptic Curve Digital Signature Algorithm is an algorithm for creating
digital signatures.

DApp Decentralized Application is a software application that runs on a decen-
tralised network utilising blockchain technology.

Web3 Web3 is the next generation of the internet, emphasizing decentralization,
blockchain, and user empowerment.

PoW Proof of Work, a consensus algorithm.

PoS Proof of Stake, a consensus algorithm.

DPoS Delegated Proof of Stake, a consensus algorithm.

EVM Ethereum Virtual Machine is a stack-based Turing-complete virtual machine.

ERC20 Ethereum Request for Comment 20 is a standard for creating fungible
tokens on the Ethereum blockchain.

API Application Programming Interface are defined rules for two or more programs
to communicate.

viii

Chapter 1

Introduction

Public transport is one of the backbones of mobility in a city. With growing
concerns about climate change and pollution, moving to sustainable and eco-friendly
transportation seems one of the only solutions to reduce our carbon footprint and
make cities more livable. One possible solution to deal with the complex problem
of today’s transport is Mobility as a Service, known as MaaS for short. Mobility as
a Service aims to aggregate all the different kinds of transportation in a unique
platform, making it easier for the end user to plan, book, and use public transport.
This platform will enable the user to bring together all types of transportation
like buses, taxis, electric scooter rentals, and more. When looking deeper into the
world of Mobility as a Service, it becomes clear that there are hurdles that need to
be overcome for it to work smoothly.

Firstly, there are gaps in using digital methods for buying tickets at the local,
regional, and national levels. MaaS envisions a world where you can easily plan,
book, and pay for your entire journey in one go. However, the reality is different
in various places. In some areas, you can conveniently purchase electronic tickets
using your smartphone, but in other places, traditional paper tickets are still the
norm. This difference can make MaaS confusing and less useful, especially when
your journey involves multiple regions or cities.

Secondly, there is the challenge of sharing information among the companies that
provide transportation services. When different companies need to work together,
they might be hesitant to share their data. This hesitation can be due to concerns
about privacy, competition, or following the rules.

The objective of this thesis is to implement a full-stack Mobility as a Service
(MaaS) application that addresses the existing challenges by leveraging blockchain
technology. The focus is to create a decentralised platform where Mobility Ser-
vice Providers (MSPs) can register and seamlessly integrate their services. This

1

Introduction

will enable users to conveniently book various mobility options through a uni-
fied application, thus simplifying the user experience in accessing transportation
services.

2

Chapter 2

Background

In this chapter, there will be an overview of the theoretical knowledge needed
to understand the thesis-related work. It will be covered how blockchains work
focusing mainly on the cryptography behind them and the consensus that allows
them to remain decentralised. Bitcoin and Ethereum cryptocurrencies will be
prioritised as they are the most known and innovative projects in the ecosystem.
There will also be a more in-depth overview regarding Ethereum as it is fundamental
that it is discussed what the Ethereum Virtual Machine and smart contracts are.
At the end, there will be a short introduction to Mobility as a Service (MaaS) and
what its purpose is.

2.1 Blockchain
Before the introduction of blockchain, using a trusted third party was nearly the
only way to send money between two parties or complete any other type of financial
transaction. The third party had the job to make the transaction in a reliable
and safe way but also keep track of the balances for every account. This system
has multiple flaws as it relies on trust. When you make use of a trusted financial
institution, you take several risks. For example, the third party can be hacked.
This can determine in the best case a delay in the transaction or worse a loss of
data or funds. On top of that, the financial service provider can also become rogue
and fraud your money altogether. The third party is the single point of failure
[1]. On top of that, using a traditional institution increases transaction costs and
usually limits the maximum amount that can be transferred on a single transaction
[2].

The first proposal to solve those issues was made by Satoshi Nakamoto when he
published the white paper for Bitcoin in 2008. Bitcoin is a trustless distributed
ledger that allows, with the use of cryptographic functions, to transfer value between

3

Background

peers. Bitcoin removes the need for trust. The cryptography and the consensus
system guarantee that the transactions are legit and the latter can be inspected by
anyone to verify their trustworthiness.

2.2 How does a blockchain work?
As previously said, a blockchain is a public ledger.

“In accounting, a ledger is a book or database for recording transactions
such as debits and credits in an account.” [3]

Every user can generate one (or multiple) accounts that are identified by an
alphanumeric string called address (more details on how the address is generated
later).

bc1qxy2kgdygjrsqtzq2n0yrf2493p83kkfjhx0wlh

Example of Bitcoin address

Every user can send funds to another user by adding a record into the ledger
specifying the amount and the address of the receiver. The ledger, therefore,
records all the payments ever made between addresses and all these payments can
be viewed by anyone. For every address, a balance can be associated. The balance
can be calculated as the sum of all the payments received minus the sum of the
payments made. It can therefore be enforced that a user can make a transfer only
if they have enough balance associated with their address. In order to guarantee
that only the owner of the address can send payments from their own funds, a
mechanism is required to authenticate the transaction. This is accomplished by
using digital signatures.

4

2.2 – How does a blockchain work?

Figure 2.1: Public ledger

2.2.1 Digital signatures
Digital signatures use asymmetric cryptography to validate the authenticity and
integrity of a message [4]. To achieve this goal, everyone has to generate a
private key/public key pair. Those two keys, in asymmetric cryptography, are
mathematically linked and it should be easy to go from the private key to the
public key but computationally impossible to go the other way around. Functions
with this property are usually called trapdoor functions [5].

Factoring has been used for a long time as trapdoor functions (for example RSA).
A more modern approach for creating keypairs is using elliptic curves.

Various types of elliptic curves are used for cryptographic purposes like, for example,
secp256k1. In general, they are all defined by an equation that is similar to

y2 = x3 + ax + b

5

Background

Figure 2.2: Elliptic curve example

In image 2.2, it is shown what a graphed elliptic curve looks like. This curve has
2 important properties. First, the graph is horizontally symmetrical. Any point in
the positive y-axis has a corresponding point in the curve on the negative y-axis.
Second, any line that is not vertical will intercept the curve at most 3 points [5].

Given a specific curve, the addition operation can be defined. The best way to
explain how the addition operation is defined is by showing it graphically.

6

2.2 – How does a blockchain work?

Figure 2.3: Elliptic curve addition example

The addition operation is defined on two points that are part of the curve. Given
those two points A and B, a straight line can be drawn passing through them. This
line, for the second property of the elliptic curve, will intercept the curve in a third
point D. By negating the y of D, the result is the point C. For the first property of
the elliptic curves, the point C is still part of the curve. C is the result of the sum
of A and B.

From the addition operation, the multiplication with a scalar can be easily defined.

n ∗ A = B

as it is equivalent to summing the point with himself for n times.

Given this, the private key is defined as an integer k, big enough to not be easily
guessed.

For every curve, a generator G is defined such that you can generate any other
point of the curve by multiplying it by some integer n [6].

The public key can be calculated by multiplying the generator G with the private
key

Publickey = privatekey ∗ G

7

Background

From this, the trapdoor property is pretty straightforward. If you know the
private key, the public key can be easily computed thanks to the double and add
algorithm which has a speed of O (log n) [5].

On the other hand, calculating the private key given only the public key and the
generator n requires doing

Privatekey = publickey/G

which is extremely slow. The only best way to compute the private key is to
bruteforce which has a speed of O (n).

Once a key pair is generated, this can be used to sign and validate messages. The
private key can be used to generate a signature of the message as follows:

Signature = sign(message, privatekey)

The signature depends not only on the private key but also on the message.
This means that the signature depends entirely on the message and it is valid only
for the specific message and private key.

A signature can be validated using the public key associated with the private
key as follows:

verify(message, signature, publickey) = true/false

By using digital signatures, peers can sign transactions with the private key
(that is supposed to be kept secret) to prove they are indeed authors of the
transactions and that they are authorising spending their cryptocurrencies. To
make transactions and signatures unique, and therefore avoid replay attacks where
someone rebroadcasts someone else’s transaction for a second time, a nonce is
added to the transactions. A nonce is just an integer added to the transaction
payload that is different for every transaction. Usually, it is enforced for the nonce
to be sequential for each transaction sent by an address. This means that the first
transaction sent by the address A will be 0 and then it will be incremented by one
for any consecutive transaction. This makes it impossible for an attacker to replay
transactions twice as the second transaction would require a different nonce and
therefore a different signature that only the owner of the account can produce.

8

2.3 – Bitcoin

Figure 2.4: Public ledger with signatures and nonce

2.3 Bitcoin
In order to preserve the integrity and availability of the ledger, this has to be
distributed on multiple nodes. By making the ledger distributed, the problem
of how to make sure that all the ledgers are synced with each other arises. A
mechanism is therefore needed to make sure that every ledger has all transactions
and those transactions are in the same order. Consensus is defined as the protocol
used to achieve distributed agreement about the ledger’s state. There are multiple
ways to achieve consensus. The most famous algorithms are Proof of Work (PoW),
Proof of Stake (PoS), and Delegated Proof of Stake (DPoS).

Bitcoin uses a consensus mechanism known as Proof of Work, PoW for short. All
accounts are represented by an address. The address can be considered as the
equivalent of the IBAN in the traditional banking system. It is used to identify
the account where to send Bitcoin. The address is usually made of alphanumeric
characters and it is connected to the public key. The address is derived by hashing
the public key.

9

Background

2.3.1 Hash
A hashing algorithm is a function that takes a message as an input and gives a
random fixed-length string of bits as an output. A hashing algorithm has a few
important properties. First, it is computationally impossible to reverse. Meaning
that given the hash, it is impossible to tell what was the original message. On top
of that, a slight change in the input should result in a completely random change
in the output.

hash(message) = ab530a13e45914982b79f9...1cea1afbf02b460c6d1d

hash(message1) = 97d035e32036a670058f2b...da6f2af342db4a968e99

There are many types of hashing algorithms available. The most used in the
blockchain space are sha256, part of the sha-2 family and mostly used by Bitcoin
which returns a 256 bits hash, and keccak-256, part of the sha-3 family and used
mainly by Ethereum which returns 256 bits hash as well.

2.3.2 Proof of Work
A blockchain, as the name suggests, is divided into blocks. A block is composed of a
list of transactions and it has its own ID, which is computed by hashing its content.
Every block is linked to the previous one by inserting the id of the previous block in
the current block payload. This link makes it impossible to change one single block
without having to change all the blocks after the modified one. For example, if a
transaction in block number 5 is modified, the id, that is the hash of all the block
payload, will change. If the id changes, an edit to the following block (number 6)
is needed as it contains the id of the previous block that is now different. But if
the previous block ID on block 6 changes, the block 6 ID will also change as the
previous block ID is part of the block payload. If block 6 ID has changed, it means
that block 7 will need to be edited as well and so on until the last block is reached.

10

2.3 – Bitcoin

Figure 2.5: Blockchain blocks

With PoW consensus, the nodes will trust the chain of blocks that has the most
computational power put into it (that’s why it is called proof of work). The way it
works is that for one block to be added to the blockchain, a mathematical problem
has to be solved. The problem consists of adding a nonce to the block payload
such that the id of such a block (that is the hash of the whole block) starts with N
number of zeros. The number N is called difficulty and it increases or decreases
in such a way as to keep the average block time around 10 minutes. When new
computational power enters the network, the mathematical problem will be solved
faster and therefore the network automatically adjusts by increasing the difficulty
to bring back the average time closer to 10 minutes. All the people involved in
trying to solve the mathematical problem are called miners. Once the nonce has
been found, the block is submitted to the network and other peers can easily verify
the validity of the block by just hashing the payload and checking that the first
N bits of the id are zeros. If someone wanted to change even slightly the content
of the block, they would have to go through all the work to rebuild a valid one.
The same applies if you want to change any previous block as it would invalidate
any other consecutive block (as they are linked by the id) and therefore it would
require all the work to rebuild the chain from scratch.

So, as it has been said, the network is programmed to follow the longer chain which
is the one with more computational power. It can happen that two blocks with
the same transactions and different IDs are broadcasted at the same time by two
different miners. This creates a fork on the blockchain where there is a branch with
two viable options and they are both valid as they are the same length. In this
case, the conflict is solved by just waiting. Every miner will focus on creating new

11

Background

blocks on either one of the forks and only one fork will have more than 50% of the
computational power and therefore will be eventually longer than the other, solving
the fork. This is the reason why a transaction is considered confirmed only after
the block in which it is included has been followed by at least 3-4 other blocks. As
long as one miner doesn’t have more than 50% of the total computational power
of the network, it is impossible for a miner to create a fork by sending fraudulent
blocks to only a few selected peers. Eventually, it will be impossible for the miner
to keep up with the computational power of the rest of the network to keep their
fork longer and it will inevitably be invalidated in favour of the network honest
chain.

Miners are incentivized to run the network in two different ways. Transactions can
include fees to be paid to miners to be included in a block. Since the maximum
number of transactions that can be included in a block is limited, the higher the
fee, the more likely it is for the transaction to be included in the block. Fees tend
to increase when the network becomes congested as there is more competition to
be included and decrease when blocks are not completely full. Miners can also
include on a block a special transaction, not signed by anyone, that gives them a
precise amount of cryptocurrency. This is called block reward. The amount of the
block reward is defined by the protocol. With Bitcoin, the network started with
50 BTC block rewards and it is programmed to be reduced in half every 210.000
blocks, which corresponds to around 4 years. The block rewards get halved up
to around the year 2140, where the block reward will become 0. This sets the
maximum amount of BTC to be ever produced to 21M. The hard cap of Bitcoin
supply represents one of its key features. It makes Bitcoin a deflationary and scarce
currency by design and it is considered by many as a digital store of value for this
reason.

2.4 Ethereum
Ethereum is a decentralised, open-source blockchain platform that has gained
significant attention and popularity since its launch in 2015. It was created by
a young programmer named Vitalik Buterin and has since become one of the
leading platforms for developing and deploying smart contracts and decentralised
applications (DApps). It was born as a PoW blockchain, just like Bitcoin, but it
recently changed the consensus to PoS.

2.4.1 Proof of Stake
With Proof of Stake, the actors that validate and create new blocks are called
validators. In PoS, in order to become a validator, you have to lock (or stake) a

12

2.4 – Ethereum

specific amount of cryptocurrency. In the Ethereum case, 32 ETH are required to
become a validator. Validators are responsible for creating new blocks and verifying
that blocks produced by other validators are valid. The process of validation
is called attestation. If one validator decides to behave maliciously by sending
conflicting attestations or proposing multiple blocks, they can be punished by
the rest of the network by destroying a part or all of their staked cryptocurrency.
Unlike PoW, where the timing of blocks is determined by the difficulty, the timing
in Ethereum is fixed in slots of 12 seconds. The validator that is supposed to create
the next block is selected randomly with a deterministic approach so that everyone
can agree on which one is selected [7].

So, as long as an attacker doesn’t hold more than 50% of the staked ETH, it will be
impossible to tamper with the blockchain as the rest of the network would detect
it and destroy their stake.

A transaction can be considered final when it is part of a block that can’t be changed
without burning a huge amount of the staked cryptocurrency. In Ethereum, this
huge amount is defined as one-third of the total staked ETH [7].

PoS has a few advantages when compared to PoW. It is for sure more energy
efficient. A validator can be run on common hardware like a computer and it
isn’t as CPU intensive as mining that requires specific computers designed to be
efficient at hashing. It is also less prone to centralisation as the barrier to entry
is much smaller when it comes to hardware requirements, making it easier to
participate. On top of that, the cost of a 51% attack is higher for an attacker
when compared to PoW. With PoW, the attacker can gather enough computation
power to successfully attack the network without losing the capital needed to reach
such a goal. In fact, the hardware won’t lose its value after the attack and can be
theoretically resold. In PoS, the attacker can gather enough coins to attack the
network but that will result in extreme loss of value of the coins they are holding,
losing nearly entirely the initial capital [7].

2.4.2 Ethereum Virtual Machine and smart contracts
The PoS consensus is not what makes Ethereum special. The Ethereum blockchain
is not only capable of exchanging currencies between accounts but it is also able to
create more complicated interactions through smart contracts.

Inside every node of the Ethereum network, there is an EVM, which stands for
Ethereum Virtual Machine. The EVM is a stack-based Turing-complete virtual
machine that runs its own opcodes. Those opcodes implement the most basic
operations like AND, XOR, and ADD but the inputs are taken from the stack
instead of registers. The EVM also implements some blockchain-specific opcodes

13

Background

like ADDRESS, BALANCE, and BLOCKHASH [8].

Thanks to the EVM, users can deploy smart contracts on the blockchain. Smart
contracts are accounts similar to user accounts. They have their own address
and also their own compiled code, written using the EVM opcodes. A contract is
basically a list of methods that can be called with parameters and that can perform
various actions like sending ETH, doing checks or any other computation. Every
EVM execution is done on a transient memory that is deleted at the end. Every
contract has its own permanent memory or state that can be written or read by
the contract itself.

By generalising, Ethereum can be seen as a complex state machine. The state is
composed of all the accounts balances and all the smart contracts balances and
their internal state. Every transaction, which can be either a transfer or a contract
method call, modifies the current state to a new state.

Y (S, T) = S ′ [8]
The EVM and smart contracts allow developers to create a variety of applications

running on the blockchain with complex logic. For example, one of the most
famous applications is creating a cryptocurrency, called token, inside the Ethereum
ecosystem. In fact, a contract can be created where the internal state records
which address owns which quantity of this new token. The token contract can then
expose methods to send tokens between addresses. The smart contract will be able
to check if the sender address has enough tokens and it will be able to transfer it by
changing its internal state variables. To make integration easier for those tokens,
some standards have been defined like ERC20 (Ethereum Request for Comment)
for fungible tokens. This standard defines an interface a contract should follow to
allow easy integrations of fungible tokens inside the ecosystem.

1 function name () public view returns (string)
2 function symbol () public view returns (string)
3 function dec imals () public view returns (uint8)
4 function to ta lSupp ly () public view returns (uint256)
5 function balanceOf (address _owner) public view returns (uint256

balance)
6 function transfer (address _to , uint256 _value) public returns (bool

s u c c e s s)
7 function transferFrom (address _from , address _to , uint256 _value)

public returns (bool s u c c e s s)
8 function approve (address _spender , uint256 _value) public returns (

bool s u c c e s s)
9 function a l lowance (address _owner , address _spender) public view

returns (uint256 remaining)

Listing 2.1: ERC20 contract standard

14

2.4 – Ethereum

On top of the tokens, many more applications can be built for example de-
centralised token exchanges running entirely with smart contracts or stablecoins,
tokens that are meant to have the same value of some other asset like USD or gold.

2.4.3 Solidity
To write a contract, a programming language that compiles to EVM bytecode is
needed. Solidity is, at the moment, the de facto standard for programming when it
comes to Ethereum smart contracts.

Solidity is a statically-typed programming language. It supports various data types
like signed and unsigned integers up to uint256, strings, arrays, and mappings.
Solidity supports inheritance, enabling developers to create modular and reusable
smart contracts. You can build on existing contracts by inheriting their functions
and variables, and then add your own custom functionality. Another feature of
smart contracts is events. They allow you to emit notifications about specific
occurrences within the contract that can be later easily fetched. This is really
important as the only way to read the state of the contract is to either call a view
function within the contract or listen for events. A best practice is to emit an event
whenever the internal state of the contract has been changed.

A simple example of a contract can be seen on listing 2.2.
1 pragma sol idity >=0.5.0 <0.7 .0 ;
2

3 contract Coin {
4 // The keyword "public" makes variables
5 // accessible from other contracts
6 address public minter ;
7 mapping (address => uint) public ba lances ;
8

9 // Events allow clients to react to specific
10 // contract changes you declare
11 event Sent (address from , address to , uint amount) ;
12

13 // Constructor code is only run when the contract
14 // is created
15 constructor () public {
16 minter = msg . sender ;
17 }
18

19 // Sends an amount of newly created coins to an address
20 // Can only be called by the contract creator
21 function mint (address r e c e i v e r , uint amount) public {
22 require (msg . sender == minter) ;
23 require (amount < 1e60) ;
24 ba lances [r e c e i v e r] += amount ;

15

Background

25 }
26

27 // Sends an amount of existing coins
28 // from any caller to an address
29 function send (address r e c e i v e r , uint amount) public {
30 require (amount <= balances [msg . sender] , "Insufficient balance

.") ;
31 ba lances [msg . sender] −= amount ;
32 ba lances [r e c e i v e r] += amount ;
33 emit Sent (msg . sender , r e c e i v e r , amount) ;
34 }
35 }

Listing 2.2: Simple contract example [9]

It is a very simple example of a token implementation. At the top of the code,
there are the state variables of the contract.

1 address public minter ;
2 mapping (address => uint) public ba lances ;

Listing 2.3: Contract variables

In this case, there is an address variable to record who created the contract and
also a hashmap to record the balance of the token for every address.

Under that, there is the constructor that runs when the contract is deployed.
1 constructor () public {
2 minter = msg . sender ;
3 }

Listing 2.4: Contract constructor

At the end, there are all the methods of the contract that can be called. The
mint function, for example, creates new tokens and sends them to the receiver
address passed as a parameter. This function can only be called by the owner of
the contract as the require statements impose that the sender of the transaction is
the same as the owner saved in the state variable ‘minter‘ that was initialised with
the constructor.

1 require (msg . sender == minter) ;

Listing 2.5: Require statement

The send function instead can be used by anyone to send tokens to another address.
A check of the sender balance is performed to make sure the sender is not allowed
to spend more than they have.

16

2.4 – Ethereum

Therefore, the Ethereum blockchain allows to create agreements enforced by code
between parties. The agreement, represented by the smart contract, once deployed
cannot be modified and it can be easily audited by all parties for transparency.

2.4.4 MetaMask
MetaMask is a popular and widely used cryptocurrency wallet and browser extension
that primarily focuses on providing a user-friendly interface for interacting with
decentralised applications (DApps) and managing Ethereum-based assets.

Metamask is important because, through their browser extension, it allows websites
to connect to it and users can share their address with the website without exposing
their private keys. The website can also request, through the extension, to sign
messages and transactions. Those requests have to be explicitly approved on
Metamask before they are confirmed. Metamask will provide the user with a clear
overview of what they are accepting and only then it will use the private key to
sign the payload. The website, during the whole process, never gains access to the
private keys but only to the approved signatures and related information.

17

Background

Figure 2.6: Metamask app

2.5 MaaS
The traditional transportation system is characterised by local and fragmented
services. Each one of those systems is characterised by its own ticketing scheme and
its own payment methods, making it very hard for the final user to navigate between
them. This leads to inconvenience, suboptimal travel experiences, and limited
options for sustainable mobility. To overcome these difficulties, there is a need for
a comprehensive and integrated approach that combines various transportation
services into a cohesive system.

This is where MaaS comes into play. MaaS stands for Mobility as a Service. It is
a term used to describe the combination of several transportation providers onto
a single, easily navigable platform. By fusing several means of transportation,
including public transportation, ridesharing, bike-sharing, vehicle rentals, and more,

18

2.5 – MaaS

MaaS aims to give passengers convenient and seamless travel experiences.

Users of MaaS platforms can plan, reserve, and pay for their travel using a single
interface like mobile apps or internet platforms that provide them with a variety of
transportation options.

MaaS seeks to promote overall mobility, lessen congestion, and encourage the use of
different modes of transportation by encouraging their use and providing a unified
solution.

The main actors of the MaaS ecosystem are:

• Mobility Service Providers (MSP) are all the businesses that provide mass
transportation like buses, trams or shared mobility like bikes and electric
scooters.

• MaaS Operator is the operator that allows the user to book multiple services
offered by multiple MSPs through a single platform [10].

19

20

Chapter 3

Rationale for blockchain use
in MaaS

In this chapter, there will be an overview on what are the current challenges of
MaaS and how the use of blockchain could solve some of those challenges. There
will also be an outline of some of the potential drawbacks of the blockchain and
how those could be affected by the choice between a private or a public network.

3.1 Current challenges in MaaS
Although MaaS is promising, there are still challenges that need to be fixed in
order to be a viable option for the future.

For example, one of the biggest problems is the fragmented nature of the transporta-
tion system. Given the existence of various suppliers, technologies, operators, and
business models, creating seamless digital infrastructures for MaaS is a challenging
undertaking. Every country, every region, and every local city uses its own solution
for ticketing, its own app and its own payment method making the integration
between them very hard. The difficulty lies in combining these current ticketing
options into a single framework that can accommodate the various stakeholders.

One other problem of MaaS is the intrinsic different ticketing disparity between
public transport and shared/on-demand mobility. The latter frequently have access
fees that are established dynamically, in contrast to fixed-fare systems, which makes
it challenging to manage the integration of the two various fare/pricing systems.
For the purpose of creating a smooth, adaptable, and dependable mobility chain,
these worlds must be bridged.

Last but not least, trust and privacy issues between Mobility Service Providers.

21

Rationale for blockchain use in MaaS

Data exchange plays a vital role in the success of a MaaS application. However,
coordination issues have resulted in data privacy concerns, as private mobility
operators are reluctant to share their data due to intense competition within the
industry. Conversely, public transport authorities and operators hesitate to open
their systems without a compelling business case. Moreover, there are apprehensions
about losing touch with public transport users and potential revenue loss in the long
run. Overcoming these challenges requires addressing regulatory aspects, building
trust among stakeholders, ensuring data privacy, and developing collaborative
frameworks that strike a balance between competition and cooperation. [10]

3.2 Advantages of blockchain
Up until now, a description of the current problems MaaS is facing has been
discussed. In this chapter, there will be an overview of how the use of blockchain
could help solve some of those problems.

The first benefit of the use of blockchain is the possibility to define a common
standard. The blockchain allows to upload a contract that defines all the standards
for ticketing such as the data format for a ticket or how this data has to be
exchanged. Once MSPs adhere to the standard and register through the blockchain,
MaaS Operators are able to easily discover new services and easily interact with
the new MSPs without the need for additional code. This makes it very easy to
develop platforms that offer multimodal journeys on different MSPs.

Having the blockchain as the unique ticketing system gives MSPs some advantages
too. In the first place, it lowers the costs of maintaining the ticketing infrastructure.
Most of the logic will be moved on the blockchain and the blockchain infrastructure
is shared into multiple nodes run by multiple entities. The blockchain also offers a
unique payment system shared between all MSPs. This eliminates the need for any
third party to handle payment like credit card circuits or banks.

3.3 Disadvantages of blockchain
The use of blockchain technology can also bring some disadvantages. Some of them
depend on what kind of network is used (private network or public network) and
the difference will be discussed in the next section.

One of the main problems is privacy for users. As the transactions can be visible
to anyone in a public distributed ledger, privacy concerns arise when you store
all movement information of a person on a blockchain. The only defence is the
pseudo-anonymity of public addresses, but once the association of the real person

22

3.4 – Comparison between public and private networks

with the address is achieved, all movement information can be easily retrieved.
This applies only to public networks like Ethereum but it could be mitigated by
using private networks.

Public networks also face the problem of transaction fees. As fees are determined by
the free market and the current blockchain workload and since a public blockchain
is shared with thousands of other applications, fees can have very large fluctuations
and it may determine the unusability of the system over certain periods of time.
For example, as can be seen on Etherscan [11], the average fees paid to include a
transaction are quite volatile depending especially on the amount of transactions
being sent. In 2022, the average amount for sending transactions was around 22
USD. This fee cost would make the blockchain unusable for the purpose of the
project of this thesis during those times. The problem of transaction fees is less
relevant if a public network that is cheaper than Ethereum is chosen. For example,
there are plenty of EVM-compatible networks that have lower fees like BNB chain,
Avalanche and many more. Another viable possibility is to use a Layer 2 solution
(usually referred to as L2). An L2 is a network of their own that has the aim of
making Ethereum scalable. They allow you to move some of the transactions off
Ethereum (thus reducing their cost) and only periodically batch those transactions
together and submit them to Ethereum in a unique transaction. Although all those
alternatives seem very promising, the focus of this thesis will mostly remain on
Ethereum as it is the most known blockchain and therefore the one with the biggest
community and support.

A more general problem is defining a standard for tickets. The final solution should
be able to support most (if not all) of the possible business models of every MSP.
A generic standard would be able to include most of the MSP but it would mean
that fewer checks and logic can be carried out on the blockchain making the latter
just a distributed database. A stricter logic, on the other end, would inevitably
cut off some of the existing ticketing solutions or make the code on the blockchain
side very complicated and hard to handle.

3.4 Comparison between public and private net-
works

When it comes to the first two disadvantages described in the previous section, the
difference can be made by a wise choice of type of network.

23

Rationale for blockchain use in MaaS

PUBLIC PRIVATE CONSORTIUM
Structure Decentralised Centralised Partially decen-

tralised
Access Open read/write Permissioned Permissioned
Speed Slower (around

10 mins)
Faster (same as a
transactional system)

Depends on the
number of nodes

Consensus Proof of work,
Proof of Stake

Pre-approved Pre-approved

dentity Anonymous Identity known Identity known
Use cases Cryptoeconomy Reference data man-

agement
Secure data shar-
ing

Examples Bitcoin,
Ethereum,
Dash

MONAX, Multichain R3 EWF

Table 3.1: Comparison between public and private blockchains [12]

Public networks, like Ethereum, are run by the community. Everyone can join
the network with a node by running an Ethereum client on their own hardware.
This means that all the data written in the blockchain is public and can be easily
accessed by anyone. On a private network, access can be restricted to a defined
number of parties. This reduces transparency from the point of view of the user
but allows to keep the transactions, and therefore the data, private.

Private networks can solve the privacy and fee problems. The private network could
be run simply by MSPs that will be able to control the network and also share
the data with each other. By using a blockchain, the network can’t be modified
or tampered with by only one or a small group of MSPs but a quorum would be
necessary to make any change. This allows them to increase trust in the system
and, more importantly, between each other. Another advantage of private networks
is that they are more scalable and fast as they will have fewer nodes that will have
to coordinate with each other but also less transaction traffic as the blockchain is
hosting a single use case. Fees for sending transactions can also be decided by the
MPSs or removed altogether.

Although private networks seem a better solution for this problem, the thesis will
focus more on the implementation of the smart contract itself rather than the
design of the network for time constraints reasons. As mentioned before, Ethereum

24

3.4 – Comparison between public and private networks

will be used as it is the most widely known EVM-compatible blockchain with the
biggest community and support.

25

26

Chapter 4

Design and implementation

In this chapter, the proof of concept that has been developed will be presented.
First, a brief introduction of the problem to be addressed will be provided. Then,
there will be a presentation of the design and the requirements for the system. At
the end, there will be a description of the actual implementation of the blockchain
contracts, the mobile application and all the required backend infrastructure.

4.1 Problem description
The aim of the thesis is to create a mobile application that allows users to rent
or book tickets for the widest range of public transport in a decentralised way by
using blockchain technology.

First of all, there will be a need to define which public transport can be supported.
Since the aim is to support as many public transport as possible, the best way to
do it is to generalise the concept of ticketing as much as possible while still being
able to run some validation on the blockchain side. To reach this goal, all public
transport has been split into two main categories:

• Unlockable free-floating transport that includes all kinds of transportation
modes where the MSP makes available a set of vehicles that can be parked
everywhere inside a specific perimeter of a city. To be used, they have to be
explicitly unlocked by the user (usually through a mobile application). Once
the user has finished their journey, the vehicle is locked again and it will be
back available to be used by anyone else. This category includes bike sharing,
car sharing, and scooter sharing but they can also be adapted for parking fees
or taxis.

• Prepaid travel-specific tickets that include all kinds of transportation
modes where a single-use ticket is required to get access to it. This category

27

Design and implementation

contains all traditional city public transport with fixed fares like buses, metro,
or trams but also public transport with variable fares like trains, planes, or
boats.

From this point, those 2 categories will be treated as 2 different problems each
of which will require its own solution.

4.2 Design
4.2.1 Actors
Having defined what is the problem to solve, the next step involves defining the
entities that will participate and interact with the system.

There are 4 main actors:

• Mobility Service Provider is the entity that runs the transport business. It
manages his vehicles by interacting directly with the blockchain and it exposes
an API to advertise all the routes it covers

• MaaS Operator is the entity that aggregates the data of multiple MSPs and
displays it to the user through the app

• Vehicle is associated to a unique address and can interact with the blockchain
to update its status

• User utilises the app to book a trip or rent a vehicle

28

4.2 – Design

Figure 4.1: Context diagram

4.2.2 Functional Requirements
After discussing the actors and their interconnections with the system, the next
step is to proceed with listing the functional requirements.

One important degression before discussing the requirements is deciding what is
better to keep on-chain as opposed to off-chain. The term on-chain means that
the data is directly stored on the blockchain while off-chain means that the data is
stored in traditional databases but enough information is stored on the blockchain
to verify that those data didn’t change. This can be achieved by either storing
hashes of the data or signatures in case some kind of authentication is wanted too.

The main problem of storing data on-chain is that it can be very expensive. In
the case of public blockchains, the fee to pay to include a transaction depends
on the amount of computing power needed to execute such an operation. In
particular, storing data permanently in a blockchain can be one of the most

29

Design and implementation

expensive operations. On top of that, even if the system is run on a private network
where fees can be secondary, storing a lot of data has another side effect too. In
fact, bigger and more frequent transactions lead to bigger blocks. If the blocks are
too big, it may become very difficult for all the nodes participating in the network
to keep up with each other and remain in sync leading to a degraded network.
For this reason, when developing an application that runs on a blockchain, some
thought has to be put into what should be kept on-chain or off-chain.

For this application, it has been decided to keep everything about unlockable
transports on-chain as it doesn’t require storing too much information. For the
tickets side, all the routes advertised from the MSPs will be kept off-chain as there
can be quite a lot and frequent data to update. What is actually stored on-chain is
only the tickets actually purchased by the users.

Having specified that, it is possible to proceed with the functional requirements.

Registration

1. MSP can register themselves on the blockchain to provide services.

2. MSP can register their own vehicles. An address is associated with the vehicle.

3. MSP can advertise the routes that it offers.

4. MSP can define fares for every vehicle/route.

5. MSP can modify fares for any vehicle/route.

Unlockable transport

1. User can unlock a vehicle offered by the MSP not being used by any other
user.

(a) User can fetch the list of vehicles available and their properties and status.
(b) User can pick the vehicle that he prefers.
(c) User can pick the best offer proposed by the MSP that owns the chosen

vehicle.
(d) User can unlock the vehicle by transferring currency to the contract. The

user will be able to use the vehicle as long as the currency transferred is
enough.

2. Vehicle periodically reports its status like battery, km travelled and position.

30

4.2 – Design

3. User can lock back the vehicle if they are currently using it. All the unspent
currency will be sent back to the User.

Figure 4.2: Interactions unlockable

31

Design and implementation

Prepaid Travel-Specific Tickets

1. User can buy a ticket from any MSP.

(a) MSP should offer a standard API where he advertises his routes.
(b) User can fetch all registered MSPs on the blockchain.
(c) User can fetch routes offered by every MSP through their standard API.
(d) MSP can sign route offers.
(e) User chooses a route offer and pays by sending the signed offer from the

MSP with the related currency to pay the ticket. The ticket is created
on-chain.

2. MSP can validate tickets.

3. MSP can set the ticket to used to avoid replays.

32

4.2 – Design

Figure 4.3: Interactions tickets

33

Design and implementation

4.3 Implementation
4.3.1 Blockchain
On the blockchain side, there are a total of 3 contracts:

1. MspRegister.sol

2. PrepaidTickets.sol

3. UnlockableTransport.sol

The contracts have been written using solidity and the foundry framework [13]

MspRegister
MspRegister is the main contract. Its job is to be able to register new MSPs on
the blockchain and also retrieve them when required.

The structure is very simple. Apart from the getter to retrieve the list of registered
MSPs, it is composed of a single function called register.

1 function r e g i s t e r (
2 string c a l l d a t a name ,
3 string c a l l d a t a endpoint
4) external returns (UnlockableTransport , Prepa idTickets)

Listing 4.1: Register function signature

To register a new MSP, it is required to call this register function and pass
the name and the route endpoint of the MSP. The function will internally deploy
the two other contracts PrepaidTickets and UnlockableTransport specific for
the registering MSP and return their addresses. All this information about the
MSP will be saved on the blockchain.

Internally (and when retrieving the MSP from the getters), an Msp struct is returned
that lists the name and the endpoint of the MSP, the latter used to retrieve all the
routes for this specific MSP. On top of that, the struct also contains the addresses of
the MSP PrepaidTickets and UnclockableTrasport contracts deployed during
the registration. Those addresses are needed to interact with those contracts and
therefore rent vehicles or buy tickets from this specific MSP.

1 // Struct representing a Mobility Service Provider
2 struct Msp {
3 string name ; // Name of the MSP
4 string endpoint ; // Url of the MSP standard API
5 UnlockableTransport unlockableContract ; // Address of the MSP

unloackable contract
6 Prepa idTickets t i ck e tCont rac t ; // Address of the MSP ticket

contract

34

4.3 – Implementation

7 }

Listing 4.2: Msp struct

PrepaidTickets
The prepaidTickets contract has the role to store and validate all the tickets
relative to the owner MSP.

Users can mint a new ticket by using the mintTicket function.
1 function mintTicket (Types . Ticket c a l l d a t a t i c k e t) external payable

Listing 4.3: mintTicket function signature

It accepts only one parameter which is a struct of Ticket.
1 // Struct that describes a point of interest with its name and

coordinates
2 struct Po in tOf In t e r e s t {
3 string name ; // Name of the point of interest
4 uint256 x ;
5 uint256 y ;
6 }
7

8

9 // Struct that describes a ticket
10 struct Ticket {
11 bytes s i gna tu r e ; // Signature from the MSP over the id
12 bytes32 id ; // keccak256 over all fields of the ticket
13 TypeOfTransport typeOfTransport ; // Transport type
14 uint256 p r i c e ; // Price to pay (in wei) for the ticket
15 Po in tOf In t e r e s t from ; // Place from where the journey starts
16 Po in tOf In t e r e s t to ; // Place where the journey ends
17 uint256 departureTime ; // Time of departure
18 uint256 eta ; // Estimated time of arrival
19 uint8 class ; // Class at which the passenger travels (MSP defined

)
20 bytes custom ; // Custom data (MSP defined)
21 uint256 e x p i r a t i o n ; // Expiration time (in unix) after which the

ticket offer is invalid
22 address va l idFor ; // Address to which this ticket offer is valid
23 TicketState s t a t e ; // The state of the ticket
24 }

Listing 4.4: Ticket struct

The ticket has a few general fields like from and to that describe the departure
and arrival for the journey, the departure time, the estimated arrival time and
other general attributes.

35

Design and implementation

It is important to highlight the meaning and purpose of id and signature. The id
is a unique hexadecimal string that identifies the ticket. It is generated by hashing
with keccak256 the concatenation of all the other properties. The signature is
used to validate the ticket. When the MSP exposes the routes that it offers, its
API also allows users to sign valid offers. The signature is just an ECDSA (Elliptic
Curve Digital Signature Algorithm) signature over the id. The user, once he has
fetched the routes and picked the one he prefers, needs the MSP to sign the offer.
Once he has the signature, he can submit the ticket to the blockchain and the
mint function will verify that the signature corresponds to the MSP address and
only in that case create the ticket. The offer signed by the MSP is valid only for a
specific address indicated by the validFor property and it also has an expiration
that can be set by the MSP itself with the expiration field. This function is a
payable function. For the creation of the ticket to be successful, the user has to
send exactly the amount of eth to the contract specified in the price field.

Once the ticket has been created, the MSP can validate a ticket with the
validateTicketAndMarkAsUsed function.

1 function validateTicketAndMarkAsUsed (
2 bytes32 id ,
3 bytes c a l l d a t a use rS ignature
4) external onlyOwner

Listing 4.5: validateTicketAndMarkAsUsed function signature

To do so, the MSP has to request the signature of the ticket id from the user
(so that the MSP can’t validate tickets without the user’s approval). Once the user
has provided the signature, the MSP can call the validate function with the id and
user signature and the ticket will be internally marked as used.

The last function is withdraw which allows the MSP to withdraw all the funds
made from ticket sales from the contract to their own wallet.

1 function withdraw () external onlyOwner

Listing 4.6: withdraw function signature

Unlockable Transport
Unlockable transport is the most complicated contract of the three. Basically, it
allows the owner of the contract (the MSP) to manage their fleet of vehicles and it
allows users to rent them. It is also possible for the vehicle itself to send updates
about its status like position, km and battery levels.

The owner has lots of functions available. He can add a vehicle by calling
addVehicle and passing a vehicle struct as a parameter.

1 function addVehic le (

36

4.3 – Implementation

2 Types . Unlockab leVehic l e c a l l d a t a v e h i c l e
3) external onlyOwner

Listing 4.7: addVehicle function signature

1 // Struct that describes a vehicle that can be locked and unlocked
2 struct Unlockab leVehic l e {
3 uint256 id ; // Unique ID that represents this vehicle
4 Pos i t i on p o s i t i o n ; // Current position of the vehicle
5 uint256 totalKm ; // Total km for the vehicle (for car rent)
6 uint8 batte ry ; // Current battery/fuel percentage
7 address veh i c l eAddre s s ; // Address associated with pkey of

vehicle
8 bool enabled ; // Boolean to indicate if the vehicle is currently

in service
9 }

Listing 4.8: UnlockableVehicle struct

The most important part here is the vehicleAddress field. This address is the
address of the vehicle and it determines which private key (corresponding to this
address) can interact with the contract as the vehicle. The id is defined by the
owner but it has to be unique within the contract and it has to be bigger than 0.

The owner can also delete a vehicle by passing its id or change the vehicle availability
status. The bool enabled defines the availability of the vehicle. If the owner needs
the vehicle to be put off renting for a while (for example for maintenance), he can
disable the vehicle. A disabled vehicle cannot be rented anymore by the user and,
if the vehicle is currently in use, it will allow it to finish the current journey but
it can’t be used anymore once locked. Only vehicles that are not in use can be
deleted from the contract. Disabling it can be also used to make it easier for the
owner to delete a vehicle without risking someone else renting it in the meantime.

The owner can also add an offer.
1 function addOffer (
2 Types . Un lockab le sOf f e r c a l l d a t a o f f e r
3) external onlyOwner

Listing 4.9: addOffer function signature

Every contract can have multiple offers (that can be either enabled or disabled)
and the user can pick any of those when they want to start renting a vehicle.

1 // Struct that describes a possible offer at which a vehicle can be
rented

2 struct Unlockab le sOf f e r {
3 uint256 id ; // Unique ID of the offer
4 uint256 pricePerKm ; // Price (in wei) for every km

37

Design and implementation

5 uint256 pr i cePerSec ; // Price (in wei) for every sec
6 uint256 UnlockPrice ; // Price (in wei) to unlock the vehicle
7 uint256 KmAllowance ; // Free of charge amount of Km before

applying the above rate
8 uint256 TimeAllowance ; // Free of charge amount of seconds before

applying the above rate
9 bool enabled ; // Boolean to indicate if the offer is currently

available
10 }

Listing 4.10: UnlockablesOffer struct

An offer is made of multiple parts. The owner can set a price for each km
(mainly used for cars), and a price for each minute (used by both cars and bikes for
example). The owner can also define an allowance for those two. When an allowance
is defined, the user will not pay any amount until the allowance is consumed. The
last parameter they can modify is the price to pay when unlocking.

As for vehicles, the owner can delete and enable/disable offers. As said before, also
vehicles can interact with the contract. In particular, they can set their position,
their km and their battery.

1 function s e t P o s i t i o n (
2 Types . Po s i t i on c a l l d a t a p o s i t i o n
3) external on lyVeh i c l e
4 function setKm(uint256 km) external on lyVeh i c l e
5 function s e tBat te ry (uint8 percentage) external on lyVeh i c l e

Listing 4.11: setPosition, setKm and setBattery function signatures

While the position and battery are used as pure information, the km fed through
the vehicles are used to calculate the charge for the user currently renting. The
vehicle has also the possibility to use the forceLock function that will finish the
current renting and charge the user accordingly. This is used, for example, when
the user has finished the money they provided to the contract for renting.

1 function ForceLock () external on lyVeh i c l e

Listing 4.12: ForceLock function signature

From the side of the user, excluding the getters, they can interact with only 2
functions: unlock and lock.

When the user is in front of a vehicle, he can call unlock to start renting it.
The unlock functions accept as parameters the id of the vehicle to rent and the
offer id to use for the rent.

1 function Unlock (uint256 veh i c l e Id , uint256 o f f e r I D) external
payable

38

4.3 – Implementation

Listing 4.13: Unlock function signature

The function is a payable function. The user has to send to the contract enough
credit to pay for the unlock fees and also allow him to complete the journey. When
the user successfully unlock a device, the rent is kept track thanks to a status
variable called s_status which maps every vehicle to their current rent status.

1 // Struct that represent the status of the ongoing rental
2 struct RentStatus {
3 address currentOwner ; // Address of the owner currently renting
4 uint256 o f f e r I d ; // Id of the offer being used by this rent
5 uint256 startKm ; // Total km of the vehicle at which the rent was

started
6 uint256 startTime ; // Time (in unix) at which the rent was

started
7 uint256 maxToSpend ; // Amount of the ETH sent when the vehicle

was unlocked (and therefore the maximum that can be spent on this
rent)

8 }

Listing 4.14: RentStatus struct

On the rent status, it is stored which address is currently using the vehicle,
which offer they are using, how much credit they sent to the contract for the rent
and it keeps track at which km and time the rent started. Those 2 parameters are
used to calculate the final fare.

When the user finishes his journey, they can use the lock function to lock the
vehicle back and make it available for the next customer.

1 function Lock (uint256 v e h i c l e I d) external

Listing 4.15: Lock function signature

When the lock function is called, the total fare for the rent is calculated and
the user is refunded the difference between the initial credit and the fare cost.

As for tickets, the owner can use the withdraw function to move all the income
from the contract to his own wallet.

1 function withdraw () external onlyOwner

Listing 4.16: withdraw function signature

Testing
The contracts have been tested using mainly unit tests. All the 3 main contracts
have a coverage higher than 90%. Fuzzing was also considered for testing the
contracts but it was deemed hard to apply to this specific case. The difficulty was

39

Design and implementation

to find an invariant that could be considered useful. The way fuzzing works on the
foundry framework requires providing an invariant, that is one or more statements
that always hold true regardless of the inputs and the functions called. Foundry will
then take care of fuzzing combinations of function calls with random parameters
to try to break any of the invariants. On the specific contracts of this thesis, it
was difficult to find any meaningful invariant that would have made fuzzing testing
relevant and therefore it has not been used.

4.3.2 Mps Backend
The Msp backend provides all the data that were not stored in the blockchain for
economical and speed reasons.

This server has to be run on the endpoint that the MSP specified when registering
on the blockchain and it has to follow a standard structure to allow users to easily
gather its content.

Through this server, the MSP can advertise all the routes they service. The server
needs to implement at least 2 routes:

GET /api/routes/

This endpoint will return all the currently available routes for the MSP. The routes
have the schema shown on listing 4.17.

1 class PointOfInterest {
2 name: string;
3 x: number;
4 y: number;
5 }
6

7

8 class Routes {
9 id: string;

10 typeOfTransport: TypeOfTransport;
11 price: number;
12 from: PointOfInterest;
13 to: PointOfInterest;
14 departureTime: number;
15 eta: number;
16 classNumber: number;
17 custom: string;
18 }

40

4.3 – Implementation

Listing 4.17: ES6 (ECMAScript-2015) Listing

This endpoint will not be used directly by the user as it would be too expensive
from the time perspective to fetch all routes from all MSPs just to find a travel
solution. For this reason, this endpoint will be fetched by the MaaS Operator
that runs the app backend to get all the routes at fixed intervals. The MaaS
Operator will handle the task of aggregating all the data and returning it in a more
user-friendly way to the user.

GET /api/sign/:address/:id

This endpoint is used to sign a specific valid travel solution for a specific address so
that the user can submit a ticket to the blockchain. This endpoint accepts two URL
parameters. The address of the user that will be inserted in the field validFor of
the ticket struct that will be returned and the internal MSP id of the route. The
route will be signed only if the id refers to a valid route offered by the MSP.

For this thesis, the web server has been developed on nodejs with typescript.
Expressjs has been used as a framework to handle the requests and SQLite as a
database.

4.3.3 App Backend
The app backend fulfils the purpose of being the middle between the data on
the blockchain and the user. As it has been said, it fetches the data at regular
intervals from both the blockchain and the MSP backend and stores them on its
own database. From this data, they provide a set of APIs used by the app to
display the data in an easy-to-read way for the user.

The API for the App backend doesn’t have to be standard therefore any MaaS
Operator can make their own. On the application developed for this thesis, there
are three main groups of routes:

• Google APIs: the backend provides some Google Maps API for things like
walking distance for the nearest vehicle or searching a place from text

• Routes APIs: provides a way for the user to search the most convenient route
given their destination, arrival and time of departure. It also provides a way
to relay the signature request of a route to the appropriate MSP

• Vehicles APIs: similarly to the routes APIs, it provides a way for the user to
get the vehicles in a defined area of a map, usually the vehicle closer to them.
It also provides a way to check if they are currently renting any vehicle from
any MSP or not.

41

Design and implementation

Like the MSP backend, this web server has been developed on nodejs with
typescript. Expressjs has been used as a framework to handle requests and SQLite
as a database.

4.3.4 App
The application is the only point of contact with the user. It fetches the information
needed from the backend and the blockchain and it manages the transaction with
the blockchain through an external wallet. The application has been developed
with React Native.

In order to be able to make any action in the app, the user has to log in through a
third-party wallet. The wallet will handle the private key management and also
signing and sending transactions.

To handle connections with wallets, the WalletConnect library has been used. The
library provides an easy way to connect to multiple web3 wallets with a few lines of
code. When the user clicks on the login button, in the user tab, a modal is opened
at the bottom with a list of wallets to connect to. In Figure 4.5, the wallet being
used is Metamask. When clicking on the wallet of choice, the respective wallet app
is opened and a request to connect is shown to the user. When accepted, the user
is redirected back to the app where he will be shown his address and all the tickets
he has bought/used. Those tickets are fetched directly from the blockchain. The
app also fetches the ENS (Ethereum Name System) for any username or avatar
the address may have set. If there is any, it will be shown on this screen.

42

4.3 – Implementation

Figure 4.4: Login modal Figure 4.5: Metamask
confirm connection

Figure 4.6: User tab

Once logged in, the user can fully use the app. On the map tab, the user can
see his location and all the vehicles nearby. The vehicles are fetched directly from
the app backend. When he clicks on any of the vehicles, the app shows the user
the vehicle address, how distant it is and what battery level is at this time. Once
clicking on the rent button, the user can choose the offer he prefers. The offers
are directly fetched from the blockchain. Once the user has chosen both the offer
and vehicle, he can click on start rent and he will be redirected to the wallet the
app is connected to where he can review the transaction, sign it and send it to
the network. When he goes back to the app, he will be able to see the vehicle
he is currently renting together with all the stats of time and km passed and the
expected fare to pay at the current time.

When the user has finished with the journey, he can click on the stop rent button
to be redirected to the wallet to send the lock transaction.

43

Design and implementation

Figure 4.7: Map tab Figure 4.8: Offer selec-
tion

Figure 4.9: Map tab
while renting

When it comes to booking a ticket, the user can go to the plan tab where he
can input their starting point, destination and estimated time of departure. The
destination and departure places are fetched thanks to the Google APIs of the app
backend. Once all the fields have been completed, the app shows the best options
that match the user’s request (fetched always from the app’s backend). Once the
user chooses the best option, he is again redirected to the wallet where he can
review the transaction and send it. Once sent, the ticket will be available on the
user screen to be validated.

The validation can be done by clicking the validate button which will once again
redirect the user to the wallet where he will sign the ticket. The signature is
returned back to the app and it will be shown as a QR code that can be easily
scanned by the MSP to submit the validation transaction.

44

4.3 – Implementation

Figure 4.10: Plan tab Figure 4.11: Ticket checkout

45

46

Chapter 5

Conclusion and future
improvements

The thesis aimed to build a MaaS application that would run on the blockchain
thanks to smart contracts. The objective was to check if a MaaS application on
blockchain was possible and to see how it could fix the current problems MaaS is
facing. The result shows that building a decentralised MaaS application is possible
and it brings a few advantages when it comes to sharing information and trust
between MSPs but also making it easy for an application to integrate several MSPs
together.

The app developed is a proof of concept. A lot of work can still be done to
improve the ticket search, and the interaction with the blockchain and make the
blockchain contracts more efficient. The work can be expanded by deploying the
smart contracts on a private custom-made blockchain which is made just for this
specific use case.

47

48

Bibliography

[1] Deepak Puthal, Nisha Malik, Saraju Mohanty, Elias Kougianos, and Gautam
Das. «Everything You Wanted to Know About the Blockchain: Its Promise,
Components, Processes, and Problems». In: IEEE Consumer Electronics
Magazine 7 (July 2018), pp. 6–14. doi: 10.1109/MCE.2018.2816299 (cit. on
p. 3).

[2] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
url: https://bitcoin.org/bitcoin.pdf (visited on 11/04/2023) (cit. on
p. 3).

[3] lisk.com. What is a Blockchain? url: https://lisk.com/learn/about-
web3/what-is-a-blockchain (visited on 11/04/2023) (cit. on p. 4).

[4] cisa.gov. Understanding Digital Signatures. Feb. 2021. url: https://www.ci
sa.gov/news-events/news/understanding-digital-signatures (visited
on 11/04/2023) (cit. on p. 5).

[5] Cloudflare. A (Relatively Easy To Understand) Primer on Elliptic Curve
Cryptography. Oct. 2013. url: https://blog.cloudflare.com/a-relati
vely-easy-to-understand-primer-on-elliptic-curve-cryptography/
(visited on 11/04/2023) (cit. on pp. 5, 6, 8).

[6] Elliptic Curve Cryptography (ECC). url: https://cryptobook.nakov.com/
asymmetric-key-ciphers/elliptic-curve-cryptography-ecc (visited
on 11/04/2023) (cit. on p. 7).

[7] Ethreum community. PROOF-OF-STAKE (POS). url: https://ethere
um.org/en/developers/docs/consensus-mechanisms/pos/ (visited on
11/04/2023) (cit. on p. 13).

[8] Ethreum community. ETHEREUM VIRTUAL MACHINE (EVM). url:
https://ethereum.org/en/developers/docs/evm/ (visited on 11/04/2023)
(cit. on p. 14).

[9] Ethreum community. Solidity. url: https://docs.soliditylang.org/en/
v0.6.4/ (visited on 11/04/2023) (cit. on p. 16).

49

https://doi.org/10.1109/MCE.2018.2816299
https://bitcoin.org/bitcoin.pdf
https://lisk.com/learn/about-web3/what-is-a-blockchain
https://lisk.com/learn/about-web3/what-is-a-blockchain
https://www.cisa.gov/news-events/news/understanding-digital-signatures
https://www.cisa.gov/news-events/news/understanding-digital-signatures
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/evm/
https://docs.soliditylang.org/en/v0.6.4/
https://docs.soliditylang.org/en/v0.6.4/

BIBLIOGRAPHY

[10] Guido Di Pasquale, Jaap de Bie, and Jaspal Singh. TICKETING IN MO-
BILITY AS A SERVICE. July 2022. url: https://cms.uitp.org/wp/wp-
content/uploads/2022/07/Report-Ticketing-MaaS-JULY2022-web.pdf
(visited on 11/04/2023) (cit. on pp. 19, 22).

[11] Average Transaction Fee Chart. url: https://etherscan.io/chart/avg-
txfee-usd (visited on 11/04/2023) (cit. on p. 23).

[12] Ralph Gambetta (Calypso Networks Association), Alok Jain (Trans Con-
sult Ltd), Mark Godin (Trapeze Group), Jaroslaw Kowalski (Huawei), Joao
Almeida (Card4B), Jaspal Singh (UITP), and Yossi Treistman (Jerusalem
Light Railway). DISTRIBUTED LEDGER TECHNOLOGY IN PUBLIC
TRANSPORT: USE CASES FOR BLOCKCHAIN. Mar. 2022. url: https:
//cms.uitp.org/wp/wp-content/uploads/2022/04/Report-Blockchain-
in-PT-March2022-web.pdf (visited on 11/04/2023) (cit. on p. 24).

[13] Foundry. url: https://github.com/foundry- rs/foundry (visited on
11/04/2023) (cit. on p. 34).

50

https://cms.uitp.org/wp/wp-content/uploads/2022/07/Report-Ticketing-MaaS-JULY2022-web.pdf
https://cms.uitp.org/wp/wp-content/uploads/2022/07/Report-Ticketing-MaaS-JULY2022-web.pdf
https://etherscan.io/chart/avg-txfee-usd
https://etherscan.io/chart/avg-txfee-usd
https://cms.uitp.org/wp/wp-content/uploads/2022/04/Report-Blockchain-in-PT-March2022-web.pdf
https://cms.uitp.org/wp/wp-content/uploads/2022/04/Report-Blockchain-in-PT-March2022-web.pdf
https://cms.uitp.org/wp/wp-content/uploads/2022/04/Report-Blockchain-in-PT-March2022-web.pdf
https://github.com/foundry-rs/foundry

	List of Tables
	List of Figures
	Introduction
	Background
	Blockchain
	How does a blockchain work?
	Digital signatures

	Bitcoin
	Hash
	Proof of Work

	Ethereum
	Proof of Stake
	Ethereum Virtual Machine and smart contracts
	Solidity
	MetaMask

	MaaS

	Rationale for blockchain use in MaaS
	Current challenges in MaaS
	Advantages of blockchain
	Disadvantages of blockchain
	Comparison between public and private networks

	Design and implementation
	Problem description
	Design
	Actors
	Functional Requirements

	Implementation
	Blockchain
	Mps Backend
	App Backend
	App

	Conclusion and future improvements
	Bibliography

