

Politecnico di Torino

Master’s Degree in MECHATRONIC ENGINEERING

(INGEGNERIA MECCATRONICA)

A.a. 2022/2023

Sessione di Laurea Dicembre 2023

Development of an open, customizable

communication box for vehicular

applications

Relatori: Candidato:

Prof. Claudio CASETTI

Prof. Francesco RAVIGLIONE

Prof. Marco RAPELLI

Marta DUTTO

Summary

The objective of this master thesis was to integrate and conĄgure a special Linux-
based operating system for vehicular communications, namely OpenWrt-V2X
21.02.1, on customizable embedded boards (PC Engines APU2), equipped with
Sierra Wireless MC7455 mPCIe LTE modules and dedicated Wi-Fi modules for
IEEE 802.11p communication. The main objective was to integrate into OpenWrt-
V2X the Vanetza framework, an open-source framework for vehicular communica-
tions, based on the ETSI European Standards. The main aim of the project was
to conĄgure the APU boards to act as vehicular On-Board Units (OBUs), able to
send both CAMs (Cooperative Awareness Messages) and DENMs (Decentralized
Environmental Messages), integrating data from a precise GNSS.

The thesis starts by analyzing the accident rate in Italy in 2022 and what could be
the beneĄt given by the autonomous driving. An Intelligent Transportation System
(ITS) is deĄned by ETSI as a Şsystem that adds information and communications
technology to transport infrastructures and vehicles in an effort to improve their
safety, reliability, efficiency and qualityŤ.

This means that the actual beneĄt of deploying such technology is not only
aiming to reduce accidents but it can also be useful to keep a low carbon footprint.
Nowadays the management of emission has become a critical issue for most of the
companies due to the climate change. The idea of using this kind of technology
to fully exploit the resources and at the same time reduce the impact on the
environment is a challenge and a duty to preserve the planet. It is also presented a
description of road users and how they can interact with each other in order to
ensure an efficient management of the traffic and a safer road. In order to have
a complete and exhaustive understanding of the environment is possible to con-
sider the communication between vehicles (V2V) and with the infrastructure (V2X).

The thesis also analyzes the European standard ETSI and the American standard
IEEE, highlighting their strengths and history. The most important result is that
the development by different institutions of vehicular communication technology
has been done in the name of compatibility.

ii

Indeed, the development of the ETSI standard is based on the IEEE guidelines
to ensure that the research in this Ąeld could be consistent and that the evolution
of the technologies could be useful all over the world. The thesis presents a brief
description of the IEEE WAVE standards, and then focuses on the ETSI ITS-G5
standard, i.e., the one implemented by Vanetza. It is highlighted how the use of
the messages CAM and DENM has been introduced and the security protocols
that are already available to ensure truthful communication.

The main features of the OpenWrt operating system (on which OpenWrt-V2X
is based), and the ones of Vanetza, are showcased.

OpenWrt is a Linux operating system targeting embedded devices. It relies on a
fully writable Ąlesystem with package management instead of using a single static
Ąrmware. This choice was made to allow full customization of the system allowing
the installation of desired applications through packages that can be both found
already compiled in a library or can be compiled by the user. This Ćexibility allows
the user to Ąnd the perfect Ąt for each particular application.

This operating system has the characteristic of being package-based. This means
that all of the applications can be installed only if they are correctly compiled and
built in compatible packages.

The other main software used in this thesis is Vanetza, an open-source imple-
mentation of the ETSI C-ITS protocol suite designed to send vehicular messages
such as CAM and DENM in order to enable a standardized communication be-
tween vehicles. This project was designed to operate on ITS-G5 channels using
IEEE 802.11p, a vehicular version of "Wi-Fi". The thesis also presents the project
NAP-Vanetza as an enhancement of the Vanetza main project.

In the fourth chapter I described the methodology followed to develop the thesis
work. I started with the installation of the OpenWrt operating system inside the
OBU taking into account all its hardware characteristics in order to correctly
conĄgure all of the needed packages.

Then I proceeded by Ćashing the OS image on the OBU. In addition, the LTE
module has been conĄgured to enable cellular connectivity from the OBU. This step
was not straightforward, as it required the integration and conĄguration of proper
packages into the OpenWrt-V2X OS image, to enable seamless and automatically
managed connectivity.

The next step was to link the OBU public key to allow remote access connection.
Once the OBU was ready and functioning I proceeded with the study of the

dependencies of Vanetza. This project depends on three main external libraries:
Boost, Crypto++ and GeographicLib.

iii

At this point I cross compiled all of the libraries with the appropriate toolchain
to ensure compatibility with the OBU hardware characteristics. I then proceeded
with the cross compilation of Vanetza libraries and applications, specifying the
appropriate compiled Ąles for the dependencies.

As stated in the third chapter, OpenWrt is a system based on packages. Thus,
a dedicated Vanetza package, that can be easily installed, was created.

The creation of a Vanetza package faces several challenges, as its core libraries
and dependencies do not depend only from each other but also on other external
libraries. I created a manifest Ąle for the Vanetza package where I speciĄed the
characteristics such as name and version of the package. I also wrote a suitable
MakeĄle in order to successfully compile and build a complete and working package
of the Vanetza application.

Once the package was successfully compiled and build I proceeded to the
installation of the package inside the OBU. The package with the Vanetza framework
has been initially tested by means of the "socktap" example.

The SOCKTAP tests showed that CAMs were correctly sent every second and
read by a second On-Board Unit, connected to the Ąrst via IEEE 802.11p.

The main result of this thesis is given by the successful creation of the vanetza
pacakge that was correctly implemented on the OBU. SpeciĄcally, the OBU was
able to properly send and receive CAM messages thanks to the Vanetza package.

The future development of this project will be the development of an integrated
application sending and receiving both CAMs and DENMs (over LTE and IEEE
802.11p), interfacing with a GNSS receiver, thanks to Vanetza. This thesis thus
provides an important starting point for the development of complex Vehicle-to-
Everything (V2X) applications on customizable OBUs with the OpenWrt-V2X
operating system.

iv

Acknowledgements

Ringrazio di cuore i miei genitori per avermi sostenuto e supportato, soprattutto
nei momenti più difficili, durante tutto il percorso di laurea e mia sorella Giorgia
per il sostegno che mi ha offerto durante i momenti più belli e quelli più tristi di
questi anni.

Ringrazio Nonna Lucia e Romina per tutto lŠaffetto e il sostegno che mi hanno
dato in questi anni, per tutte le loro preghiere durante i miei esami e per tutto
lŠorgoglio che traspare dalle loro parole quando parliamo di questo importante
traguardo. Ringrazio i nonni, le zie, gli zii e i cugini per il loro affetto e sostegno.

Ringrazio tutti i miei amici, in particolare i miei compagni di corso con cui
ho condiviso buona parte delle sĄde e degli esami in questi ultimi due anni. Un
ringraziamento particolare va a Massimo ed Angelo che sono stati per me non solo
amici ma anche conĄdenti nei momenti migliori e peggiori di questi due anni e che
sono sempre stati presenti e dŠaiuto in ogni situazione.

Ringrazio la community di OpenWrt, in particolare Henrik Ginstmark aka
mrhaav e Raphael Riebl, che sono stati così gentili da darmi dei consigli per pros-
eguire nei momenti più impegnativi della tesi.

Ringrazio il relatore e i correlatori.

“ Ed ora dentista Croazia che fine avrai fatto
"Luci a San Siro" adesso te la canta qualcun altro

Ci hai insegnato che si vive solo di momenti
E che qualsiasi cosa passa se stringiamo i denti”

Dentista Croazia Ű Pinguini Tattici Nucleari

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Exploring the pattern of road accidents 1
1.2 Intelligent Transportation system 3
1.3 Communication among vehicles . 7

2 Vehicular communication Standards 9

2.1 A Focus on IEEE and ETSI . 9
2.2 VANETs . 10
2.3 The 802.11p protocol . 12
2.4 WAVE standard . 13
2.5 ETSI ITS G5 . 15

3 Developing Tools 20

3.1 Motivations . 20
3.2 OpenWrt . 21

3.2.1 OpenWrt history . 21
3.2.2 OpenWrt structure and features 22

3.3 Vanetza . 23
3.3.1 Vanetza history . 24
3.3.2 VanetzaŠs structure and features 25
3.3.3 NAP-Vanetza . 27

4 Methodology 30

4.1 Installation of OpenWrt on the OBU 30
4.2 LTE Connection . 32
4.3 Enabling remote access to the OBU 34
4.4 Cross compilation . 35

vii

4.4.1 Cross compilation of dependencies 36
4.4.2 Cross compilation of Vanetza 37

4.5 Creation of an OpenWrt package 38
4.6 Integration of the package . 39
4.7 Test with Socktap . 39
4.8 Integration of GNSS module . 40

5 Results 44

5.1 Results and conclusions . 44
5.2 Future development . 44

Bibliography 46

viii

List of Tables

2.1 ETSI ITS security standards. 19

3.1 Table of dependencies of Vanetza [19] 26

ix

List of Figures

1.1 Victim distribution in fatal accidents among road users in 2022 (blue)
and 2021 (red). 2

1.2 Communication among all possible vehicles and road side units [2]. 4
1.3 Visual chart provided by SAE for J3016 standard [3]. 5
1.4 High level illustration of V2X communication [5]. 8

2.1 Visual representation of a VANET provied by CAR 2 CAR [6]. . . 10
2.2 Official WAVE reference model provided by IEEE [12]. 13
2.3 Visual comparison between WAVE and ITS-G5 protocols [13]. . . . 16
2.4 General structure of the CAM messages provided by the article “

Experimental evaluation of CAM and DENM messaging services in
vehicular communications" [14]. 17

2.5 General structure of the DENM messages provided by the article “

Experimental evaluation of CAM and DENM messaging services in
vehicular communications" [14]. 18

3.1 Official image representing the communication through MQTT topic
subscription [29]. 29

4.1 In this picture is shown all of the hardware used for the development
of the project. 31

4.2 TerminalŠs output once connected to the board. 33
4.3 Screenshot of the terminal showing the state of the two internet

interfaces. 34
4.4 The wwan0 interface shown on the terminal through the issue of

ifconĄg command. 34
4.5 Screenshot of the terminal when issuing of the command on the

OBU to send CAM messages through the SOCKTAP function. . . . 40
4.6 Screenshot of the terminal successfully receiving packets. 41
4.7 Terminal showing GPS data read from the GNSS module. 43

x

Chapter 1

Introduction

1.1 Exploring the pattern of road accidents

In the news, almost everyday, we hear and read about fatal accidents involving
vehicles that are caused mainly from driverŠs distraction or reckless driving style.
An ISTAT (National Institute of Statistics of Italy) official document [1] that reports
the 2022 Road accidents in Italy, shows that there were 165,889 road accidents
in which are registered 3,159 deaths and 223,475 injured people. Sadly accident
statistics for all of the road users, show an increase every year with the previous,
2022 it is not an exception with respect to 2021.
There are various group of users of the road and must be kept in mind that they
are exposed differently to this dangerous situation. Road users are divided in:

• Occupants of cars: People that are inside the cars, both drivers and passengers.

• Truck occupants: People inside of trucks, drivers or passengers.

• Motorcyclist: People using any vehicle equipped with less than four wheels
with a speed over 45km/h and a displacement of over 50 cc, drivers and
passengers.

• Moped riders: people using a vehicle equipped with two wheels with a maxi-
mum speed of 45 km/h and with a displacement of less than 50 cc, drivers
and passengers.

• Cyclist: People using electric bike (e-bike) or a bike without an electrical
motor to give assistance, drivers and passengers.

• Pedestrians: People that are walking on the side of the road, on a sidewalk or
using crosswalks.

1

Introduction

People that are in cars have some sort of protection already integrated in the
vehicle, such as airbags, while already motorcyclist do not have this kind of protec-
tion. The category at most risk is the pedestrian one, that have not any protection
from the vehicle or any protecting devices such as a motorcycle helmet.

From ISTATŠs data, it is possible to see all of the sanctioned behaviours and in
particular, the most sanctioned behaviour in Italy is speeding. There are also high
percentages of penalties imposed due to improper use of devices while driving and
for driving under drugs and alcohol inĆuence.
In the Figure 1.1 it is reported a bar graph that uses ISTATŠs data to show the
division of 2022 fatalities among road users. In particular, it is possible to compare
2022 data in blue with the respective data divided by users of the 2021 in red. It is
possible to see a clear increase in all of the categories but the most signiĄcant one
is the vehicleŠs occupants.

Figure 1.1: Victim distribution in fatal accidents among road users in 2022 (blue)
and 2021 (red).

Considering the large implementation of vehicular automation successfully
reached inside the factories, it comes almost natural to think about implementing
some kind of automation in vehicles to limit or avoid accidents.
A big level of automation has already been deployed for our comfort in transporta-
tion such as for the metro system. In Turin, for example, the subway is completely
autonomous. This system is anyway very simple and has huge limitations since
it moves only on a predeĄned route with no interference such as pedestrians and
traffic jam.

2

Introduction

Another example of autonomous transportation in factories can be given by
Autonomous Mobile Robot (AMR). In this case sophisticated automated guided
vehicles are deployed in order to transport material around the factory to speed up
the whole production chain.
There are many ways of indicating the route, for example the AMR can follow
an electromagnetic signal emitted by wires embedded in the Ćoor. Once again
is possible to see that the huge limitation is due to the fact that they have no
understanding of the environment around them and that many embedded wires
inside the factory Ćoor must be installed.
These solution are not feasible with autonomous vehicle moving along roads all
over the world. In order to implement autonomous vehicles in our everyday life, it
is important to understand the limitations given by these models and reĆect on
achievable solution to get around the problems.
The main challenges to face in order to be able in implementing autonomous
driving are given by the appropriate estimation of the location of the vehicle in
every instant, the perception and elaboration of the vehicle surroundings in order
to make decision in real time. Additionally we must consider that there is not
a predeĄned path to the destination and that the best path depends heavily on
the environment. This is due to the fact that once the car is moving along the
desired path, it is not alone in the road. It must be able to catch interference on
the path such as unexpected obstacles, people crossing the road and other vehicles
performing manoeuvres. In order to have a complete and exhaustive understanding
of the environment is possible to consider the communication between vehicles
(V2V) and with the infrastructure (V2X). This communication have been developed
in order to successfully implement autonomous vehicles that can to avoid accidents.
The use of this technology will have a very signiĄcant impact in many Ąelds. For
example, the time optimization in the highway through the platoon system can
be used not only to ensure the fastest and the most secure path but can also lead
to an important fuel consumption optimization. Many vehicles using this system
can use a constant velocity and avoid to brake and accelerate ensuring a lower fuel
consumption. This is a nice innovation for both the consumer and the environment
reducing the carbon footprint.

1.2 Intelligent Transportation system

As deĄned by ETSI [2], the term Intelligent Transportation System (ITS) identiĄes
all of the vehicles that are able to exchange additional information in the trans-
portation infrastructure. The communication among vehicle is aimed to improve
vehicleŠs safety, reliability, efficiency and quality. This deĄnition highlight all of the
advantages of ITS, accentuating that these functions can be exploited not only by

3

Introduction

vehicles on the road, but by all means of transportation such as railways, aviation
and nautical sector.
ETSIŠs Technical Committee for ITS is the European institution in charge of
creating and maintaining a standard to integrate communication among vehicles.
To guarantee global interoperability in the development of the technology, ETSI is
cooperating with standardization bodies around the world such as International
Standards Organisation (ISO), Institute of Electrical and Electronics Engineers
(IEEE) and all of the major standardization institutions.
In Figure 1.2 it is proposed an ETSI representation of a connected world where are
present all of means of transportation that can support this kind of communication
and the road infrastructures to improve transportation efficiency and safety.

Figure 1.2: Communication among all possible vehicles and road side units [2].

The key to an efficient use of ITS rely on a great quantity of data that must
be exchange. To ensure the correct and efficient level of communication, a wide
use of wireless networks is needed. In particular the most popular ones are called
Vehicular ad hoc networks (VANETs) and their characteristics will be fully analyzed
in the second chapter.

As previously anticipated, vehicleŠs automation takes in consideration the most
challenging scenario where the location must be estimated accurately and there

4

Introduction

are not predeĄned paths to reach a destination. What makes it even more difficult
is the heavy presence of interference due to the environment.
The autonomy of the ITS is addressed by considering different levels of automation
in the vehicle. In particular for what concerns the deĄnition of the different levels
of automation, the SAE, Society of Automotive Engineers [3], established a new
standard called J3016.
In Figure 1.3 it is shown the most updated J3016 standard visual chart related to
April 2021.

Figure 1.3: Visual chart provided by SAE for J3016 standard [3].

It is possible to see that the Ąrst three levels require the full attention and
presence of the driver. They are considered to improve the driverŠs experience with
some level of automation. Only from the SAE Level 3 it is possible to consider
automated driving features, where the driverŠs responsibility is limited. In fact, the
responsibility of the vehicle increases with the level of the automation peaking in
the SAE Level 5, the complete automated vehicle. Here the vehicle is completely
hands-off, so it is fully capable of moving autonomously in every environment and

5

Introduction

under every circumstances.
The development of this technology is still a work in progress and at the moment,
the highest level of automation reached is the SAE Level 3 automation. This
automation level includes a Dynamic Driving Task (DDT) fallback of the driver in
certain situations. The DDT fallback is a necessary implementation that consist in
a warning to the driver that is again in charge of the whole vehicle. This happens
when the road traffic or situation can not be managed autonomously by the vehicle.
The relevance of this characteristic has been misinterpreted by many drivers that
were using this kind of automation as a complete hands-off implementation of
autonomous driving. The faith in technology and this misjudgment lead to many
accidents due to the missed DDT fallback due to the fact that the drivers were
asleep or completely distracted, ending up in not paying enough attention to the
warning sent by the vehicle. Due to these events this level of automation has not
been implemented anymore in vehicles.
In order to apply this kind of automation and grant an efficient level of communi-
cation, OBUs must be implemented inside of all the means of transport present on
the road.
Another important aspect of the use of ITS is given by the possibility of optimizing
the vehicleŠs fuel consumption. This can be reached by the use of the platooning
technique, and allows the transportation to be more environmentally friendly. This
will help to reduce emission that contributes to the global warming and for this
reason many studies has been done about this topic.
In particular, in the article “ Truck platooning reshapes greenhouse gas emissions of
the integrated vehicle-road infrastructure system", a study regarding the reduction
of greenhouse gas emission has been analyzed [4]. This study shows how truck pla-
tooning is a good strategy to lower the emissions from vehicle roads, decreasing the
greenhouse gas emission and mitigate climate change. The overall truck platooning
results in a 5.1% emission reduction of the integrated vehicle-road system. This
practice, in contrast with the emission reduction, leads to an additional Ąnancial
burden to car users and transportation agencies that must be took in consideration.
In order to implement such a solution, it will be necessary to evaluate a trade-off
between emissions and costs.
The platooning is a method applied to allow a group of vehicles to move in the
same direction, especially on the highway, maintaining a short distance between
them. This is meant to increase the capacity of the road via an automated highway
system. The constant distance can be maintained through a continuous exchange
of messages among vehicles in the entire platoon. It has been demonstrated that
the shorter is the distance between vehicles, the better the result can be. In order
to make it possible, the frequency of messages exchange vehicles increases. There
are many methods and the efficiency increase with the decrease of the distance
between vehicles.

6

Introduction

1.3 Communication among vehicles

In order to support and improve a network in which the main focus is on vehicu-
lar safety and traffic efficiency applications, it is needed continuous information
about the vehicles and the environment. In particular, in order to exchange this
kind of information two types of messages have been standardized by the Euro-
pean Telecommunications Standards Institute (ETSI): the Cooperative Awareness
Message (CAM) and Decentralized Environmental NotiĄcation Message (DENM).
These standards speciĄcation contain both the packet format and dissemination
rules.
The use of CAM and DENM messages can improve road safety in order to optimize
the environment knowledge of the vehicle and take into account other vehicles.
The use of these messages is a huge step for vehicular communication and it bring
us closer to the realization of full autonomous vehicles capable of managing every
situation on their own.
To ensure a reliable and efficient communication to implement autonomous driving,
it is crucial to take in consideration that all of the road users should be able
to communicate with each other. As shown in the article “ Securing Vehicle-to-
Everything (V2X) Communication Platforms" [5], this particular necessity raised
the concept of vehicle-to-everything (V2X) communication that includes the most
recent generation of networking technology. Communications among road users
can be divided in:

• Vehicle-to-vehicle (V2V) communication

• Vehicle-to-infrastructure (V2I) communication

• Vehicle-to-pedestrian (V2P) communication

• Vehicle-to-cloud (V2C) communication

This will ensure a continuous exchange of information among all of the road users
to improve traffic efficiency, road safety and road pollution.
In Figure 1.4 provided in the article “ Securing Vehicle-to-Everything (V2X)
Communication Platforms" [5], it is shown a high level illustration of vehicle-to-
everything communication.

It is possible to immediately notice in this illustration that the V2X-enabled
vehicle is able to communicate with other vehicles and infrastructures called road
side units (RSU). The vehicle communication unit is called on board unit (OBU)
and is in charge of messages exchange. This OBU is part of the vehicular control
system and act as an external communication interface with other road users.
It must be took in consideration also the fact that communication among the whole
environment should be truthful and safe. For this reason potential vulnerabilities

7

Introduction

Figure 1.4: High level illustration of V2X communication [5].

that can be exploited for future attacks are already been studied and corrected.
An example of these kind of attacks could be given by considering that a malicious
vehicle can send false information about the road status, reporting an accident or
traffic jam, and bias other vehicles forcing them to reroute and follow another path
or by slowing them down. Attack detection and mitigation is essential to deploy a
safe V2X system considering that the attack can be done through physical access
to a subset of the system. This kind of attacks are dangerous since it can cause
data loss, component failure and damage infrastructures.
For these reasons the development of the V2X communication technology must be
done taking into account the security issues. The study of these vulnerabilities will
not only avoid many possible attacks, but will also increase the userŠs degree of
trust, a fundamental parameter for the inclusion of this technology in our everyday
life.

8

Chapter 2

Vehicular communication

Standards

In order to ensure a correct development of inter-vehicular communication, both
the Institute of Electrical and Electronics Engineer (IEEE) and European Telecom-
munications Standards Institute (ETSI) have developed vehicular communication
standard based on the IEEE 802.11 standard.

2.1 A Focus on IEEE and ETSI

The Institute of Electrical and Electronics Engineer known as IEEE is an American
based international organization dedicated to technological development of facilities
that can beneĄt the humanity. It is designed to standardize the most basic aspects
of electrical, electronic, computer and telecommunication Ąelds in order to guaran-
tee a common ground for the developing of all of the projects around the world.
The IEEE was born as the fusion of two previous institution: the Institute of Radio
Engineers (IRE) and the American Institute of Electric Engineers (AIEE). The
IEEE institution is responsible for almost the thirty per cent of worldŠs literature
in electrical, electronics and computer engineering Ąelds. The development of a set
of rules in order to approach and standardize a new technology happens way before
the technology itself. In fact, already in November 2004 a task group was formed
to develop the protocol 802.11p for vehicular communication. The drafts has been
developed between 2005 and 2009, by April 2010 the amendment was approved
and by July 2010 published with the title “ Amendment 6: Wireless Access in
Vehicular Environments".

The European Telecommunications Standards Institute (ETSI) is the European
institution to rule standards about electronic communication networks and services

9

Vehicular communication Standards

among which there are telecommunications. The ETSI developed a standard
based on the IEEE 1609.x IEEE 802.11p called ITS-G5, to ensure compatibility
with the American standard. The IEEE 802.11 operates at 5.9GHz on a band
that is uniquely used for inter-vehicle and infrastructure. This standard supports
communication with data rate between 3 and 27 Mbps over a 10 MHz channel
bandwidth and between 6 and 54 Mbps in a 20MHz channel bandwidth. The
ITS-G5 can be exploited in a range up to 1000 m in many environments such as
rural, urban, suburban and highways with a limit on the maximum relative speed
set at 110 km/h. The bandwidth can be selected according to the need of the
VANET.

2.2 VANETs

VANETs were Ąrst introduced in 2001 as “ car-to-car ad hoc mobile communication
and networking" applications to have a reliable network on which was possible
for vehicles to communicate. In Figure 2.1 a visual representation of a VANET
provided by the CAR 2 CAR communication consortium [6].

Figure 2.1: Visual representation of a VANET provied by CAR 2 CAR [6].

Even if at the beginning it was more oriented to a one-to-one communication, by
2015 the use of VANET was synonym to the communication among vehicles. The

10

Vehicular communication Standards

strength of VANETs networks is given by many fundamental aspects, in particular
the ability of provide an effective wireless communication among moving vehicles
equipped with GPS that, for this reason, represent a highly dynamic topology.
Vehicular ad hoc networks (VANETs) are based on IEEE 802.11p. In order to
support different cooperative ITS applications, other wireless carriers such as the
3G or LTE can be used.

The main difference between VANETs and cellular technology is the presence
of the central controller in the former. The cellular technology relies on a central
controller with full knowledge of the net. This characteristic ensures reliability of the
network and allows the optimization of the resources to exploit all of the nodes at
their best [7]. In cellular connection the presence of the central controller under the
form of a base station is mandatory to make possible the communication between
nodes. VANETs do not need the base station to ensure effective communication.
In this style the communication is allowed directly between the two nodes in each
otherŠs range. The ad hoc solution though can arise the problem of scalability. The
lack of a central control mechanism managing the communication could bring, in
the worst case scenario, to all of the vehicles transmitting at the same time on the
same channel, not allowing anyone to receive a meaningful message. The use of
a common channel is mandatory in order to allow the vehicles to communicate
since there isnŠt any central control that can direct communication on different
channels. This frequency channel is called control channel is known a priori by all
nodes. The control channel is the core of a VANET and allows to manage the road
traffic safety application since on this channel the most important data will be
transmitted. There are also more available channels that can be used to facilitate
cooperative ITS application when there are higher bandwidth requirements.
The main building blocks of VANETs are:

• On Board Unit (OBU): communication facility on the vehicle equipped with
a satellite positioning system such as GPS.

• Road Side Unit (RSU): Ąxed access point along the road side.

It is necessary to identify different priority for messages and a macro distinction
can be made between safety and non-safety related issues and their time-scales.
Time scale can vary also based on the priority of the message: there are many
periodic messages such as road traffic or parking availability and many event based
messages such as an accident notiĄcation. We need to consider also that they might
have different latency needs and message length based on the content transmitted
with the message.
Nowadays it has been demonstrated by researchers that the high density of vehicles
and frequent change of network topology characteristic of the VANETs has become

11

Vehicular communication Standards

a limit. In fact this is not supported by the traditional routing protocols [8]. New
protocols to better Ąt VANETs characteristics have been developed and the main
focus is to improve the network performances by reducing the overhead.
This is developed by allowing communication among all of the nodes that are
considered reliable due to their geographical position and availability. The inclusion
of a clustering technique in the routing process aims to reduce the unnecessary
nodes and enhance a better communication with respect to the previous approaches.

2.3 The 802.11p protocol

With 802.11 it is represented a set of IEEE standards on wireless network technology
(WLAN). This protocols sets not only the standard for the interface between a
client and an access point and vice versa but also the standard for physical layer,
Mac layer, and interconnection between devices and security. The 802.11 imposes
a set of rules for the physical layer (PHY) and medium access layer (MAC) that
belongs to the Ąrst two layers of the ISO-OSI layers, physical and data layer.
The IEEE 802.11p is a protocol for medium and access control layers of vehicular
networks that includes an approved amendment to the 802.11 standard to regu-
late the wireless vehicular communication. The wireless communication among
vehicles is usually referred to as WAVE that stands for wireless access in vehicular
environments. This protocol deĄnes the support required by ITS applications via
802.11 wireless protocol marketed as WiFi, including high speed exchange of data
between vehicles and road side units [9].
Thanks to the VANETs, it is possible to ensure operation of many applications
such as traffic safety, drivers assistance and entertainment for passengers. The
motion of the vehicles at various speeds in various directions makes the topology
of the network very difficult to predict and very volatile. What makes this situ-
ation even more tricky to manage is that the information about the vehicles has
a limited duration in time. Since the vehicles are moving at a certain speed, the
positioning information inside the message may expire very quickly based on the
vehicle velocity. It is necessary to also implement protocols that take into account
these characteristic to allow an efficient and meaningful message exchange between
vehicles and infrastructures.

IEEE presented standards for vehicular network communications (WAVE):
802.11p for physical and mac layers and IEEE 1609 for security and network
management of the VANETs. WAVE, by covering both the physical (PHY) and
the MAC layers, deĄnes an architecture and a complementary set of services and
interfaces that enable secure vehicle-to-vehicle and vehicle-to-infrastructure wireless
communications.

12

Vehicular communication Standards

The main difference between the 802.11p and 802.11 is given by the fact that the
second one uses frequencies that are not appropriate to the vehicular communica-
tion since they have a long association time and the high rate of data loss makes
the communication unstable. In the academic paper “ Performance comparison
between 802.11 and 802.11p for high speed vehicle in VANET" [10], it is shown
how 802.11p has efficiently enhanced the network performances. In particular the
network throughput is increased, delay is decreased, and packet delivery ratio is
increased as well.

2.4 WAVE standard

As previously anticipated, the IEEE 1609 Family of Standard for Wireless Access in
Vehicular Environments (WAVE) provides a sufficient foundation for what concerns
the management functions and modes of operation of the devices [11].

The WAVE provides a communication protocol stack optimized for the vehic-
ular environment [12]. This objective is reached by employing both customized
and general-purpose elements as shown in the Figure 2.2, provided by the IEEE
official document “ IEEE Standard for Wireless Access in Vehicular Environ-
mentsŮSecurity Services for Applications and Management Messages".

Figure 2.2: Official WAVE reference model provided by IEEE [12].

The IEEE 1609 family of standards deĄne the architecture, communication

13

Vehicular communication Standards

model and management structure for high speed (up to 27 MB/s) short range
(up to 1000 m) low latency communication in vehicular environment. It does also
regulate the security mechanisms and the physical access of all the devices. The
basic architecture component of these standards are the on board units (OBU),
road side units (RSU) and the WAVE interface. Moreover, it must be considered
that the standard includes all of the needed speciĄcations that should be added
to the IEEE 802.11 to provide an efficient wireless communication in a vehicular
environment.

In particular, the protocols that are part of the WAVE stack are

• IEEE 802.11-2016, IEEE Std 802.11p: Wireless Access in Vehicular Environ-
ments (Amendment 6).

• IEEE 1609.0: IEEE Guide for Wireless Access in Vehicular Environments
(WAVE) Architectur

• IEEE 1609.2: IEEE Standard for Wireless Access in Vehicular Environments -
Security Services for Applications and Management Messages

• IEEE 1609.3: IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) - Networking Services

• 1609.4-2016 - IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) Ű Multi-Channel Operation

• IEEE 1609.11: IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) - Over-the-Air Electronic Payment Data, Exchange Protocol for
Intelligent Transportation Systems (ITS)

• IEEE 1609.12: IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) - IdentiĄer Allocations

WAVE supports IP and non-IP based data transfers to allow the use of a single
networking stack, adapting to the individual characteristics of the device that is
communicating. The IP based data transfer uses the IPv6 model while, the non-IP
based data transfer are supported through the use of WAVE Short Message Protocol
(WSPM) deĄne in the IEEE Standard 1609.3.
There is also a collection of WAVE Security Services available, but not limited, to
the WAVE devices to ensure a truthful and safe communication among devices.
The WAVE Security services are formed by WAVE Internal Security Services and
WAVE Higher Layer Security Services. The WAVE Internal Security Services are:

14

Vehicular communication Standards

• Secure data service (SDS): manages the transformation of unsecured protocol
data units into secured protocol data units during the communication and
processing the incoming secured protocol data units. An entity using the
secure data services is referred to as a secure data exchange entity.

• Security management: manages the information about certiĄcates

The WAVE Higher Layer Security Services are:

• CertiĄcate revocation list (CRL) veriĄcation entity (CRLVE): validate the
incoming certiĄcate revocation lists and provides the necessary information
for storage.

• Peer-to-peer certiĄcate distribution (P2PCD) entity (P2PCDE): enables the
peer-to-peer certiĄcates distribution.

2.5 ETSI ITS G5

The ETSI ITS G5 protocol has been developed by the ETSI institute, based on
the IEEE WAVE [13]. This protocol introduces some changes in the Network
and Transport layers. This protocol also uses the Facilities level to minimize
the probability of radio channel congestion. In Figure 2.3 it is shown a visual
representation of WAVE and ITS-G5 protocols.

ETSI ITS-G5 standard adds a few interesting characteristics compared to the
WAVE protocol. The ETSI ITS-G5 standard uses the Decentralized Congestion
Control (DCC) protocol for the network load control. This protocol dynamically
changes the channel access rules by means of transmitting power parametrization,
modifying the minimum time interval transmission of periodic messages, changing
the transfer rate and radio sensitivity. The real innovation in the ETSI ITS-G5
protocol is given by the introduction of new messages in the facility level, in
particular:

• CAM: Cooperative Awareness Message

• DENM: Decentralized Environmental Message

These messages can be transmitted more than once and contribute to the load
of the channel. There are many techniques to implement an efficient radio channel
loading and efficient re-trasnmission of the packet.
The CAM messages are periodical messages exchanged in the ITS network to
create and maintain awareness of the environment and each other and support
cooperative performances of vehicles using the road network. In particular, CAMs
are generated and broadcast by the Vehicle through the IEEE 802.11p wireless

15

Vehicular communication Standards

Figure 2.3: Visual comparison between WAVE and ITS-G5 protocols [13].

interface. Roadside units and vehicles within the coverage area will receive the
CAM containing all of the status information about the vehicle.
CAMs are periodic messages that update the status data of the vehicle to the
neighbouring nodes. The CAM message is structured as shown in Figure 2.4. The
structure of CAM messages in Figure 2.4 does not contain extra optional Ąelds for
the sake of clarity. In the header is contained the protocol version, the message
identiĄer or the generation time. The body and the reference position contain the
data about the actual position.

The DENM messages are implemented to support the facility providing a
notiĄcation service about the road status. The main characteristic of the DENM is
that the message is sent when triggered, for example by traffic events or relevant
modiĄcation in the vehicleŠs speed. This is due to the fact that using this kind
of messages, all of the neighbour vehicles can be warned in real time about the
sudden changes.

The DENM message is structured as shown in Figure 2.5. In the DENM
structure it is possible to acknowledge that the header is identical to the CAM but
the body does contain more Ąelds. In particular there are three main categories:

• Decentralized Situation Management Group that include general information

16

Vehicular communication Standards

Figure 2.4: General structure of the CAM messages provided by the article
“ Experimental evaluation of CAM and DENM messaging services in vehicular
communications" [14].

about the event

• Decentralized Situation that collect speciĄc details about the event

• Decentralized Situation Location that speciĄes the event location

The CAM and DENM messages can be transmitted more than once and bring
additional channel load. There are many techniques to implement both efficient
radio channel loading and packet re-transmission, through the implementation of
complementary protocols.
The Geo-Networking protocol manages the packet routing based on the geographic
position of the node. The Contention Based Forwarding (CBF) is a multi-hop
packet forwarding algorithm that is used in ad hoc networks. According to this
algorithm, a node forwards a packet to all of its neighbor nodes. The receiving
nodes compete to choose the only one that forwards the packet farther. This
algorithm uses the geographic positioning information to select the node which
has the grater distance from the sender node, to allow him to transmit the packet
even farther. The Basic Transport Protocol (BTP) manages the point-to-point

17

Vehicular communication Standards

Figure 2.5: General structure of the DENM messages provided by the article
“ Experimental evaluation of CAM and DENM messaging services in vehicular
communications" [14].

connection less transport service inside the network. Its main goal is to multiplex
and de-multiplex the messages in Facility level in order to be transmitted and
received through the Geo-Networking protocol.
In the article “ Cooperative ITS security framework: Standards and implementa-
tions progress in Europe" [15] it is analyzed the actual security situation about
the security in the Cooperative Intelligent Transportation System (C-ITS). The
ETSI group that deals with the privacy, data protection and all of the security
aspects of the ITS is called ETSI TC ITS WG5. Three steps compose the security
process of this group, the Ąrst is to identify and catalogue ITS security risks.
The second step is the deĄnition of security requirements and deĄnition of a list
containing the potential countermeasures to these attacks. The third and last step
is to specify an architecture and a standardized set of services and interfaces that
enable secure V2X communications. In particular ETSI ITS Release 1 is a major
achievement that has been the design of C-ITS security frame, including Public
Key Infrastructure (PKI) implementation plans for digital certiĄcate management.
In table 2.1 are reported ETSI ITS security standards.

18

Vehicular communication Standards

Standard reference Title Status

TR 102 893
Threat, Vulnerability and
Risk Analysis (TVRA)
technical report

v1.1.1 Published

TS 102 731
Security services and ar-
chitecture

v1.1.1 Published

TS 103 097
Security header and cer-
tiĄcate formats

v1.2.1 Published

TS 102 940
ITS communications se-
curity architecture and se-
curity management

v1.2.1 Under approval

TS 102 941
Trust and privacy man-
agement

v1.1.1 Published under re-
vision

TS 102 942 Access Control v1.1.1 Published
TS 102 943 ConĄdentiality services v1.1.1 Published

Table 2.1: ETSI ITS security standards.

19

Chapter 3

Developing Tools

In order to develop this thesis project I exploit the functionalities of two already
available software: OpenWrt and Vanetza. In the following chapter I will brieĆy
illustrate the main characteristics of the two and how their features were exploited.

3.1 Motivations

The choice of using OpenWrt software on the APU board was based on the
careful analysis of the software characteristics. The Ąrst advantage of using a
Linux based operating system is the interoperability offered among devices. The
OxfordŠs Dictionary deĄne interoperability as “ the ability of computer systems
or programs to exchange information." This means that using a Linux-based
distribution the devices are always able to communicate between each other and
exchange information. This is a crucial requirement for the vehicular communication
technology that is based on the exchange of messages. Due to the fact that Linux
is an open source operating system, there are not costs due to the proprietary code
such as in Windows based systems or iOS systems. The most important aspect is
that developing a solution based on Linux it is possible a continuous development
and update of the system maintaining backwards compatibility with the previous
versions. For an expanding technology such as the inter vehicular communication
based on the exchange of positioning and movement messages rather than cameras,
it is crucial that all of the versions can effectively communicate together to have a
complete understanding of the environment.

The choice of the software Vanetza has been made in order to exploit an already
developed and working tool able to integrate all of the standard requirements to
be used for vehicular communication. This software offers some examples such as
socktap, benchmark and certify to showcase the functions already integrated. This
could be considered a game changer when developing an on board unit since the

20

Developing Tools

parameters of the standard are already available and always updated to the most
recent standard. This project in fact, as for OpenWrt, is constantly updated to
offer the best solution on the market.

3.2 OpenWrt

The OpenWrt project is deĄned as a Linux operating system targeting embedded
devices. It relies on a fully writable Ąlesystem with package management instead
of using a single static Ąrmware. This choice was made to allow full customization
of the system allowing the installation of desired applications through packages
that can be both found already compiled in a library or can be compiled by
the developer. This Ćexibility allows the user to Ąnd the perfect Ąt for each
particular application [16]. The use of OpenWrt offers a lot of features, among
which the extensibility that allows to replicate the same setup, including more
than three-thousand standardized applications, on any supported device. It does
also support security since the softwareŠs components are kept up-to-date by
closing vulnerabilities shortly after they are discovered. The standardization of the
ĄrmwareŠs modules used in all the supported device allow the continuous improve
and bug Ąxing ensuring the best performances and stability of the entire operating
system.
The name OpenWrt showcases the intention of this project of being part of the open
wireless router movement, starting with the Ąrst White Russian release for WRT54G
router. This marked the beginning of the wireless router Ąrmware development.

3.2.1 OpenWrt history

The OpenWrt project has been developed since 2004 by a team of volunteers
that actively improve and maintain the whole project. The team of volunteers
manage to maintain open source and updated the whole system, making it the
best choice for developers. The Ąrst OpenWrt version was based on Linksys GPL
sources for WRT54G and a buildroot from uClibc project. This was the Ąrst stable
version of OpenWrt and became of wide use. In 2005 new developers joined the
team and developed the Ąrst experimental version of OpenWrt. This version was
depending on a heavily customized build system based on buildroot2 from the
uClibc project. OpenWrt uses official GNU/Linux kernel sources and is able to
manage system on chip and drivers for network interfaces through the addition of
patches. The developer team has an active role in re-implement most of proprietary
code inside the GPL tarballs of the different vendors. In 2016 a the LEDE (Linux
Embedded Development Environment) project was founded and shared many goals
with the OpenWrt project. This project aimed to build and embedded Linux
distribution supporting developers to build and customize software for embedded

21

Developing Tools

devices, especially wireless routers. Many members of the OpenWrt project worked
also on the LEDE project and in January 2018 the OpenWrt and LEDE project
agreed to merge under the name OpenWrt, working towards the shared goals. One
of these goals was to offer a stable release of the system. This was achieved keeping
in mind LEDEŠs code quality requirements for the repository.
The official stable releases of OpenWrt are the following:

• White Russian (2007)

• Kamikaze (2008)

• BackĄre (2010-2011)

• Attitude Adjustment (2013)

• Barrier Breaker (2014)

• Chaos Calmer (2015 - 2016)

• LEDE 17.01 (2017 - 2018)

• OpenWrt 18.06 (2018 - 2020)

• OpenWrt 19.07 (2020 - 2022)

• OpenWrt 21.02 (2021 - 2023)

• OpenWrt 22.03 (2022)

• OpenWrt 23.05 (2023)

3.2.2 OpenWrt structure and features

As previously anticipated, OpenWrt hosts a writable root Ąle system, as opposed to
many other Ąrmware that are based on read-only Ąle systems, to allow changes and
addition of installed software without the problem of rebuilding and Ćashing the
complete Ąrmware image. The main Ąle present in OpenWrt is a heavily customized
Buildroot system, a set of MakeĄles and patches to allow the automation of building
a complete Linux-based operating system for an embedded device through the
use of appropriate cross-compilation toolchain. In order to allow consistency with
the Ąle compiled on the computer and the one on the embedded device. it is
required a cross-compilation through the correct toolchain. For each device there is
a speciĄc toolchain to employ, in order to take into account the processor model and
the characteristics of the device. The compilation through the speciĄc toolchain
generates compatible code for the speciĄc device and ist processorŠs instruction set

22

Developing Tools

(ISA).
Once the main options are implemented on the OpenWrt system through the issue
of the command makemenuconfig, many other packages can be installed to fully
customize the device. OpenWrt offers several thousands of packages to extend the
functionality of the device that can be installed trough the issue of the opkg package
manager. The package list is available on the official OpenWrt website contains a
browsable list with more than 27000 packages ready to be installed. Additionally
there is also the possibility of compiling and deploying speciĄc applications needed
that are not ready to be installed. This operation bring the customization of the
speciĄc board on the highest level possible.
The installed packages can be manage from a command line interface on the terminal
or through a web interface called LuCI [17], an open and independent project. The
LuCI WebUI is a graphic interface that can make many administration tasks easier.
In the most recent releases, it does not need installation since it has been integrated
by default on the OpenWrt image itself. The LuCI interface includes security
features and encryption in order to allow a reliable communication between the
developer and the board. LuCI was founded in March 2008 as Freifunk-Firmware
LuCI named “ FFLuCI" to support OpenWrt from the Whiterussian release to
Kamikaze. This project was born due to the need of a free, clean, extensible and
easily maintainable web user interface for embedded devices. Unlike other interfaces
that make a heavy use of shell-scripting language, LuCI uses Lua [18] programming
language to ensure higher performances, lightweight installation size, faster run
time and, most importantly, better maintainability.
The main characteristic of Lua is that combines simple procedural syntax with
powerful data description construct with extensible semantics. Lua implements
a lot of functions among which automation in memory management that makes
it the ideal language for conĄguration. Lua supports procedural programming,
object-oriented programming, functional programming, data-driven programming
and data description.

3.3 Vanetza

Vanetza is an open-source implementation of the ETSI C-ITS protocol suite designed
to send inter-vehicular messages such as CAM and DENM in order to allow the
inter vehicular communication. This project was designed to operate on ITS-G5
channels and ad hoc Network called VANET using IEEE 802.11p, wireless access
in vehicular environment [19].

23

Developing Tools

3.3.1 Vanetza history

Vanetza is a project developed by the CARISSIMA Automotive safety research
in Technische Hochschule Ingolstadt University. CARISSIMA [20] is a Center of
automotive research inside the Technische Hochschule Ingolstadt University. Its im-
portant structure host eight different laboratories to allow vehicle safety researches.
CARISSIMAŠs core area is the vehicle safety research and it develops different
projects that allow an interdisciplinary approach. This is a very complex topic
since it that takes into account not only technology development but also traffic
psychology, traffic pedagogy and traffic economy. The use of this interdisciplinary
approach allows the analysis of the situation from different angles in order to reach
the optimal solution [21]. The technical objective of this test center, as stated
on their official web page, is Ś the realization of a ĎGlobal Safety System Şthat
reproduces the human senses: to see, to hear, to taste, and to communicate using
the bionic principles.Š. CARISSIMAŠs interdisciplinary approach is not based
primarily on the commercial aspect but aims to the general safety of the road user
that is the main focus for the research. This is an innovative approach compared
to the actual methods in the Ąeld of vehicle safety research.
Inside the CARISSIMA center, the Car2X Laboratory is the laboratory in which
the Vanetza project has been developed [22]. The Car2X Laboratory provided the
facilities to develop the research related to the communication among their own
vehicles, both cars and motorcycles, and with their own traffic infrastructure such
as traffic lights and intelligent road signs. This communication among the road
users is also taking into account the presence of the whole environment and all of
road users, including pedestrians and cyclist.
In this laboratory the Car2X protocols and applications are developed from the
initial idea to the actual implementation inside the vehicle, ending with the test
and evaluation of the whole application. In this projects many sensors are involved
to have the most accurate perception of the environment possible. In particular,
the vehicles are equipped with on board units (OBUs) that can communicate with
the road side units (RSUs) present in the infrastructures.
In order to study the possible outcome of the application, simulations are used, in
particular the Car2X Laboratory deploys Artery [23] to implement Vanetza.

The team that developed the project Vanetza is in charge of the continuous
development and research about VanetzaŠs project. The team is composed by:

• Prof. Dr. rer. nat. Christian Facchi - Head of the Graduate Center

• Prof. Dr.-Ing. Andreas Festag - Business Start-Up Mentor of the Faculty

• Anupama Hegde - Research Assistant CARISSMA

24

Developing Tools

• Silas Correia Lobo, M. Sc. - Laboratory Engineer and Research Assistant

• Daniel Maksimovski, M.Eng.

• Christina Obermaier, M.Sc. - Research assistant CARISSMA

VanetzaŠs GitHub repository can be found in as a Raphael Riebl pinned project.
He is also the responsible for the manage of the issues on this repository.

3.3.2 Vanetza’s structure and features

As previously stated Vanetza is an open-source implementation do the ETSI C-ITS
protocol suite. Vanetza is a set of C++ libraries, some of which have dependencies
on external libraries. Vanetza comprise also the following protocols and features:

• GeoNetworking (GN)

• Basic Transport Protocol (BTP)

• Decentralized Congestion Control (DCC)

• Security

• Support for ASN.1 messages (Facilities) such as CAM and DENM

Even if it was originally intended to be used on ITS-G5 channels in VANETs
using IEEE 802.11p, Vanetza can also be combined with other communication
technologies such as GeoNetworking over IP multicast.

In order to correctly use Vanetza is necessary to take into account all of its
dependencies and check the installation of these application before the integration
of this application. In the table 3.1, took by the official Vanetza documentation,
there is a short representation of the VanetzaŠs component dependencies on external
libraries.

The Ąrst step to fully exploit Vanetza is to install all of these dependencies on
the board. After that it is possible to compile and build the application. In Vanetza
are available also many unit tests that can be enabled through the activation
of BUILD_TESTS CMake option. Additional tools can be enabled through the
enable of the corresponding CMake option. The tool benchmark can be enabled
by the issue of BUILD_BENCHMARK CMake option. Benchmark is a tool with
security features, able to sign and validate packets.
Another additional tool is certify, it can be enabled through the issue of the
BUILD_CERTIFY CMake option. This tool is created to set up a test PKI for
secured V2X communication. It is also responsible to manage and handle security

25

Developing Tools

Component Depends on Feature

access net
Access layer, helpers for
IEEE 802.11 PHY and
MAC

asn1 -

Generated code and wrap-
pers for ASN.1 based mes-
sages, e.g. CAM and
DENM

btp geonet
Headers and interfaces for
BTP transport layer

common -

General purpose classes
used across Vanetza com-
ponents, including serial-
ization and timing

dcc access, net
Algorithms for DCC
cross-layer

facilities asn1, geonet, security
Helpers to generate and
evaluate ITS messages

geonet dcc, net, security
GeoNetworking layer fea-
turing geographical rout-
ing

gnss -
Satellite navigation inte-
gration for positioning

net common
Utilities for socket API
and packet handling

security common, net
Security entity to sign
and verify packets

Table 3.1: Table of dependencies of Vanetza [19] .

certiĄcates and authorization tickets.
The tool socktap can be enabled by the issue of the BUILD_SOCKTAP CMake
option. This is an example application to showcase VanetzaŠs functions. This
application demonstrates the API usage of VanetzaŠs libraries and it is thought to
be the starting point for a custom application. SOCKTAP is thought for Cohda
LLC sockets and I adapted it to the use on the developing hardware.

In order to exploit the full potential of this application on the hardware is
necessary to take into account Vanetza dependencies. In particular it is necessary
integrate the libraries Boost, Crypto++ and GeographicLib. Boost [24] is a free

26

Developing Tools

peer-reviewed set of C++ libraries that are intended to be widely useful in manag-
ing tasks and structures for all the applications. The Boost license encourages the
use of these libraries for all users with minimal restrictions.
Crypto++ [25] is a C++ security library intended to resist side channel attacks.
It exploit constant-time, cache-aware algorithms and access patterns to minimize
leakage.
GeographicLib [26] is a C++ library that offers interfaces to a set of geographic
transformations. It was developed in order to improve the geotrans package
transformation between geographic and MGRS (Military Grid Reference System)
coordinates. It can now provide UTM, UPS, MGRS, geocentric, and local Cartesian
projections, and classes for geodesic calculations.

At the moment Vanetza has been developed for network simulations and testing
on embedded devices at Technische Hochschule Ingolstadt. It has also been used
in other projects such as in Artery, where Vanetza is a network simulation of
ITS-G5 protocols for a V2X simulation framework based on OMNeT++. It has
been implemented also in motorcycles operated by the Connected Motorcycle
Consortium [27] for the evaluation of new ITS application to increase the rider
safety on the road. The last important project including Vanetza is the cube
developed by nĄniity [28], one of the worldŠs smallest V2X module that supports
LTE-V2X/C-V2X and DSRC/ITS-G5 communication in one module.

3.3.3 NAP-Vanetza

NAP-Vanetza [29] is an extension of the Vanetza project that aims to the integration
of the MQTT and JSON capabilities and additional types of ETSI C-ITS messages.
NAP-Vanetza does support a larger number of messages compared to Vanetza, in
particular it supports:

• Cooperative Awareness Messages (CAM)

• Decentralized Environmental NotiĄcation Message (DENM)

• Collective Perception Message (CPM)

• Vulnerable Road User Awareness Message (VAM)

• Signal Phase And Timing Extended Message (SPATEM)

• MAP (topology) Extended Message (MAPEM)

• Maneuver Coordination Message (MCM)

• Signal Status Extended Message (SSEM)

27

Developing Tools

• Signal Request Extended Message (SREM)

• RTCM Extended Message (RTCMEM)

• Infrastructure to Vehicle Information Message (IVIM)

• Electric Vehicle Charging Spot NotiĄcation (EVCSN)

• Electric Vehicle Recharging Spot Reservation (EVRSR)

• Interference Management Zone Message (IMZM)

• Tyre Information System and Tyre Pressure Gauge (TISTPG)

• GeoNetworking Beacons

NAP-VanetzaŠs purpose is Śto manage the encoding, decoding, sending, and
receiving of ETSI C-ITS messages, thus abstracting those layers from VANET
application developersŠ as declared on their official documentation. The main differ-
ence between Vanetza and NAP-Vanetza is that in the lastes one, the applications
send ETSI C-ITS messages to the service by building a JSON representation of
the message. This is then published in a speciĄc MQTT topic, to which Vanetza is
subscribed.
In the same way, applications that wants to receive incoming messages published
by Vanetza must subscribe to the MQTT to receive the JSON.
In Figure 3.1, provided by the official NAP-VanetzaŠs documentation, is repre-
sented the communication between the OBU and RSU through the MQTT topic
subscription.

The development of NAP-Vanetza is part of an ongoing research work at Insti-
tuto de Telecomunicações, Network Architectures and Protocols Group (NAP) in
Aveiro (Portugal) [30].
This group was launched in January 2011 to target proposal, analysis, evaluation
and testing of new network architectures and protocols for the Future Internet. As
stated on their official page, the main activity of the group are Śmainly concentrated
in new architectures for mobility of users in inter-technology environments (inte-
grating security), vehicular-to-vehicular communications, context-aware networks,
self-control and self-management of networks, network and resources virtualization,
and novel addressing paradigms for the Internet.Š

28

Developing Tools

Figure 3.1: Official image representing the communication through MQTT topic
subscription [29].

29

Chapter 4

Methodology

In the following chapter there will be a description of the steps that I took in order
to install Vanetza libraries on the On Board Unit. For the sake of readability in
this part no code will be shown.
I started by installing on the computer I worked on for the whole thesis, a virtual
machine of the Ubuntu 22.04 operating system. For what concerns the hardware, I
developed my thesis by conĄguring a Sierra Wireless MC7455 mPCIe module to
work with OpenWrt 21.02.1 on a PC Engines x86_64 APU2 board (equipped with
two mPCIe slot and one SIM slot, connected to one of the mPCIe slots). In the
Figure 4.1 it is shown the APU board with all of the antennas connected and the
GNSS module ArduSimple con U-blox ZED-F9R to integrate the GPS data as well
in the CAM messages sent with SOCKTAP.

4.1 Installation of OpenWrt on the OBU

The Ąrst step to take in order to fully exploit the On Board Unit is given by
the installation of an operating system on the board. There are many available
operating systems and, to maintain the openness of the project, I decided to
install on the OBU the Linux-based operating system developed by OpenWrt. The
OpenWrt Project allows the installation of a Linux-based operating system in
embedded devices. OpenWrt provides a fully writable Ąle-system with package
management, and allows the developers to exploit the framework to build an
application without the commitment of building a complete Ąrmware around it. It
is also advantageous for the Ąnal user since it allows the full customization of the
device.
I started by checking that all of the prerequisites needed by the OpenWrt system
were satisĄed and also that all of the dependencies packages were installed. After
that, I proceeded with downloading a copy of the repository of OpenWrt version

30

Methodology

Figure 4.1: In this picture is shown all of the hardware used for the development
of the project.

OpenWrt-V2X-21.02.1 on my developing virtual machine. I moved on with the
installation, update and patch of the feeds and by selecting the tested conĄguration
compatible with the APU. In the predeĄned conĄguration there are many useful
packages already included such as CAN bus and GNSS support.
I opened the menu conĄguration and selected the target consistent with the board,
in this case x86/x86_64 and set the previously downloaded default conĄguration
Ąle. Once everything was set I downloaded the dependency source Ąles and build
it. After the process was successfully completed I found the compiled image in the
predeĄned folder. Then, I downloaded the system, thanks to the image just built,
inside the board using TinyCore.
TinyCore Linux is a Linux distribution quickly bootable that easily allow the
Ćashing process of an image inside an SSD through the use of an empty USB stick
of maximum capacity of 8GB. The procedure with TinyCore on Windows based
system is really quick and requires only one step while for Linux based systems,
there are more operations to do. In order to exploit the simplicity and speed of
TinyCore for Windows based systems, I downloaded a copy of the image built
in the Linux based virtual machine in the Windows based PC. I downloaded the

31

Methodology

appropriate Ąle from TinyCore website, opened it and copied the image on the
USB stick in the main directory. The OpenWrt system demands the copy of the
gzipped Ąle, in my case the name of the image was openwrt-x86-64-generic-ext4-
combined.img.gz.
I moved on by inserting the USB stick in the board and connecting it via a serial
cable to the developing computer. After that I connected the board to a 12V power
supply I was able to Ąnd from the terminal the APU using the command screen and
to interact with TinyCore. After imposing the value of the baud rate to 115200, I
rebooted the board in order to use the connection SSH and safely remove the USB
stick from the hardware. After the reboot, I connected the board to a modem by
mean of Ethernet port 0. In this way the board was connected to the Ethernet
of the laboratory. To fully exploit this connection, I edited the conĄguration
network Ąle commenting out the Ethernet bridge section and I selected in the
LAN section the option device as eth1 and the static protocol, imposing the IP
address as 10.0.2.118. In the LAN1 section, where option device is set as eth2, i
set an interface with the same characteristics of the previous conĄguration with IP
address 10.0.1.118.
These are the address that are used to issue the SSH command while sharing
between the developing PC and the board the same Ethernet connection. By
setting the SSH connection, the serial cable connected previously was not needed
anymore and could be detached from both PC and board. I proceeded with
enabling the WiFi and adding some DNS servers in order to let the board resolve IP
addresses when connected to the Internet. In particular I added the DNS servers of
Google with IP address 8.8.8.8 and 8.8.4.4. I updated the iw_startup Ąle by setting
the setting the Wi-Fi IP address as 10.10.6.118 and the netmask 255.255.0.0 for
the wlan0. I then automated the initial setup by adding the execution of the
iw_startup in the rc.local Ąle and a sound to know when the board was ready to be
used. Once the board was ready, it could be accessed by the use of the password
and the terminal appeared to be the one shown in Figure 4.2.

Now the board is all set with an operating system and connected to the Internet
via Ethernet, it is possible to proceed with the LTE conĄguration in order to allow
a wireless Internet connection via a SIM card.

4.2 LTE Connection

In order to setup an LTE connection on the APU2 board I proceeded with the
following steps. The Ąrst thing to do was to update all of the already installed
packages inside the board and check if all of the mandatory packages are present
and up to date. To ensure that all of the updates were installed it is best to proceed
with a reboot of the board.

32

Methodology

Figure 4.2: TerminalŠs output once connected to the board.

I proceeded with the deĄnition of the LTE interface inside the conĄguration network
Ąle of the APU. In the conĄguration I speciĄed the QMI Cellular protocol to be
used and that the authentication should not be required since the SIMŠs pin is
deactivated. I also deĄned the packet data protocol (PDP) consistently with the
service offered by the TIM operator at the moment that is IPv4 only.When IPv6
will be available, this option could be modiĄed to ipv4v6 to allow the use of both
the PDP. Since I used a TIM SIM card to connect the board to the Internet, I
set the apn as wap.tim.it. The apn must be chosen accordingly to the the SIMŠs
operator indication.
To verify that the SIM card was working and correctly read by the board, I issued
some AT commands at the appropriate port and asked for the IMSI (International
Mobile Subscriber Identity) of the SIM card. The SIM card, when read correctly
prints on the monitor the IMSI number followed by OK, otherwise the output is
ERROR. After that I opened the graphic interface of the board by using as address
the APU IP, in my case 10.0.1.118, logged in and edited the LTE interface.
I added the LTE to the same Ąrewall zone as wan and wan6 to allow the connection
to the Internet and proceeded with a power reboot. On the APU2 board there
are two cdc-wdm interfaces: cdc-wdm0 and cdc-wdm1. After running many tests
I noticed that the connection was randomly given between the two. Therefore,
I decided to change the conĄguration to one active interface only (RMNET0) in
order to have a stable and predictable outcome about the working interface.
This will ensure the correct initialization of the interface and the actual connection
to the network. The most important part is that if any error occurs it is real and

33

Methodology

correctable, not given by the randomness in the initial choice of the interface. I
proceeded then with the issue of the command to activate the Internet connection
on the interface cdc-wdm0 and the deactivation of cdc-wdm1, as shown in the
screenshot 4.3.

Figure 4.3: Screenshot of the terminal showing the state of the two internet
interfaces.

I veriĄed the the connection through the issue of the command ifconfig. This
command will show every connection, among these there is one called wwan0
representing the LTE interface. As shown in the following Figure the connection
is active since in the last row the amount of received and transmitted packets is
different from zero.

Figure 4.4: The wwan0 interface shown on the terminal through the issue of
ifconĄg command.

Then I checked that the connection was effectively working through the issue of
a ping to a Google DNS that was successful.

4.3 Enabling remote access to the OBU

Once the APU was connected to the Internet through a stable wireless connection,
I enabled the remote access to work on the APU also outside of the laboratory.
Once the APU was connected to internet, I had the permission from the authorized
people, to exploit the FULL server to implement this feature.
The remote access is the combination of software, hardware and network con-
nectivity. The network connectivity is crucial to communicate with the facility

34

Methodology

and the Internet. The software is needed to connect in a secure way the users to
the facility for example trough a Virtual Private Network (VPN). The software
encrypts the traffic before transmitting it over the Internet and is also responsible
to decrypt the data sent to the VPN. The hardware is the set of all the hard-wired
network interfaces and WiFi network interfaced to connect hosts and allow the
communication.
The remote access to facilities had a strong development during the last pandemic.
This was due to allow people to work from home, avoiding the complete paralysis
of many systems without spreading the virus. This new work from home modality
has become part of our life and unlocked a new standard. Many companies are in
fact considering about keeping this possibility for their employees also after the
pandemic in order to be able to hire the most qualiĄed person with no limitation
about the location. This massive development has been also beneĄcial to the
research about the Internet of Things (IoT) that requires a constant exchange of
data among all sort of devices. In these few years of pandemic, the remote access
to a device has become a basic feature in the popular culture.
In order to be able to work remotely on the APU, even when I couldnŠt reach the
laboratory, I used the following procedure. I enabled the APU communication to
the server at a speciĄc port, that was possible by using the serverŠs password to
authenticate. After using the password, I could communicate with the server and I
added the APU to the list of known connection. I added the OBU public key to
the list of the known devices already saved inside the FULL server, so that for all
future connection attempts the device is immediately recognized. Now it is possible
to remotely connect to the APU through the server by a double authentication.
First of all it is required a password to access the server, once inside the server it
is possible to issue the SSH command to connect to the APU. After the issue of
the command a wireless connection from the server to the APU is created and the
APUŠs password is required to access to the Ąles. After inserting the password it
is possible to work on the APU remotely. To enhance security and avoid pending
connections, the APU connection is automatically closed after Ąve minutes of
inactivity.

4.4 Cross compilation

The cross compilation represented the most challenging part of my thesis. The cross
compilation is a fundamental step in order to fully exploit libraries and application
in many different possible platform. It must be done when the project is developed
on a machine different from the host. This situation happens for the majority of
the devices since the compilation on the host system is most of the time infeasible.
This is due to the fact that the computing power required for the compilation

35

Methodology

would not be satisĄed by the limited hardware sources.
The cross compilation can be done by the use of a tool called compiler, able to

translate the code form the language compatible with the developing machine into
the target source language. The compiler creates binary executable Ąles compatible
with the target system that allow the use of libraries and application on the target
device.

One of the free source tools that can be used for the cross compilation is the
GNU Compiler Collection (GCC). This tool supports many programming languages,
hardware architectures and operating systems. This compiler has been adopted as
the standard compiler for many Unix-like computer operating system and most of
the Linux distributions.

The OpenWrt operation system has a deĄned set of packages already compiled
and ready to use. Many packages that were needed as prerequisite for Vanetza and
Vanetza itself were not already available. I cross compiled them and added them
on the on board unit. Two items of the prerequisite did not need cross compilation:
the GCC compiler and cmake of version 3.12 or higher, already available and
installed in the APU.

4.4.1 Cross compilation of dependencies

I started by cross compiling the libraries on which Vanetza depend: boost, crypto++
and Geographic library.

Boost is a set of libraries for C++ that support different task and structures.
In particular it is responsible for handling large numbers, linear algebra, regular
expression, unit testing and pseudo random number generation.

The Boost library is required to be at version 1.58 or higher. To be consistent
with the requirements I decided to download and use the latest update available,
version 1.82.0 released on 14th April 2023. I downloaded and extracted the boost
library in the download folder. I wrote a conĄguration Ąle in the home folder
and here I speciĄed the architecture of the APU and the toolchain to be used to
compile the executable Ąle. As speciĄed in OpenWrt documentation, to ensure
compatibility, I used the musl compiler. As suggested in Vanetza documentation I
edited some lines to override a bug in the installation of the library. After this small
modiĄcation I installed the Ąles inside the Vanetza_deps folder, the one containing
all the dependencies Ąles already cross compiled.

I moved on to the Crypto++ library, a free C++ library used for cryptographic
schemes and able to create and handle cipphers, message authentication codes,
one way hash functions and many other functions. The main reason for which

36

Methodology

this library is included is to guarantee security by crypting the messages and also
support all the security functions for the authentication.

The Crypto++ library is required to be at version 5.6.1 or higher. In order to
provide the compatibility with the most recent update of cryptography algorithms,
I decided to implement the latest available update of this library, version 8.8.0
released on the 25th of June 2023. After downloading the library, I extracted the
Ąles to work on them and then move inside the directory. To cross compile the
library is possible to use the GNUmakeĄle specifying which cross compiler to use
and the path to follow to save the binary Ąles. Once the cross compilation has
successfully ended the compiled Ąles appeared in the folder Vanetza_deps.

Finally I worked on with the Geographic library, a set of C++ libraries respon-
sible for geographic transformation. Its main function is to improve the geotrans
packages transforming between geographic and MGRS coordinates. The main
characteristic of this set of libraries is the accuracy, with largest approximation
error equal to 1 cm, with the willingness of reducing this error even more.

The Geographic library is required to be at version 1.37 or higher. In order
to take full advantage of the library I decided to install the most recent available
version, version 2.2 released on 7th March 2023. To cross-compile the library I
extracted the Ąles in the download folder and moved inside the directory to work
on them. I wrote a suitable cmake Ąle to specify the cross compiler to be used
and the characteristics of the system for which I was cross compiling the library. I
speciĄed the path to follow in order to reach the folder and made the compilation
begin. Once it successfully ended, the Ąles were saved once again in the folder
Vanetza_deps as speciĄed.

4.4.2 Cross compilation of Vanetza

Now that all the external libraries on which Vanetza relies are cross-compiled, it
is possible to move to the cross compilation of Vanetza. The Ąrst step for the
compilation of Vanetza is to download a copy of the GitHub repository on the
developing PC. I copied the repository in my home directory.
Once the repository was successfully cloned on my device, I moved in Vanetza
directory and enable all of the available tools. The main tools are:

• Benchmark: a tool to benchmark some components of Vanetza, at the moment
is used for signing and validating packets exist.

• Socktap: an experimental application to showcase VanetzaŠs basic feature.

• Certify: a tool to create and view certiĄcates that can be used to set up tests
for secured V2X communication.

37

Methodology

Then I compiled Vanetza on the developing PC through the issue of a make
command. Now a complete and compiled version is available on the device. To
cross compile Vanetza and make it compatible with the operating system on the
OBU, I created the folder Vanetza_build that will contain all of the necessary cross
compiled Ąles. I used the same musl compiler used to cross compile the dependencies
and I speciĄed, in the issuing of the command, to look for dependencies inside the
Vanetza_deps folder.

After the completion of the compilation, a set of binary Ąles are inside the
Vanetza_build folder. These are all the compiled binary Ąles needed to successfully
install Vanetza library on the OBU. As previously stated, in order to use the cross
compiled Ąles it is requested to create a package containing the compiled binary
Ąles of the application or library.

4.5 Creation of an OpenWrt package

The OpenWrt operating system is based on the use of packages to integrate ap-
plications and libraries. Some packages has already been created and can be
downloaded compiled to be easily installed on the board. Vanetza was not among
the pre-compiled packages so I created a package for this library.
To be sure about the basic procedure to create compatible packages, I studied
the guide “ Hello World!" for OpenWrt, where a single executable Ąle is created,
compiled and put into a package. The situation I had to manage was quite different
from the one described in this guide since I had libraries and Ąles not only dependent
form each other but also depending on external libraries. The Ąrst step in order
to create a package was to create a package feed for the developed application.
As explained in the guide, I decided to develop my package and save the folder
Vanetza inside the the mypackages folder. This folder is assumed to be the one
containing all of the developed packages.
For each package is necessary to create a package manifest Ąle that describes the
package and its functionalities. In this Ąle it is possible to Ąnd speciĄcations about
the name, version and release number of the package, source settings, package
deĄnition and all of the install instructions. In the package manifest Ąle I had the
opportunity to choose these information and I decided to call this package Vanetza,
release 1 and version 1.0. The OpenWrt build system uses a Ąle called feeds.conf
containing all of the packages available during the conĄguration stage.
This Ąle is not created by default so, if new packages are created, this Ąle has to
be created as well in the OpenWrt main folder. Once the Ąle is created, there must
be included the path to follow in order to reach the folder mypackages, containing
all of the customized packages. This will allow the system to know which packages
are available to be implemented. Once the feed is deĄned, it is necessary to update

38

Methodology

its package index so that all of the information index can be available in the
conĄguration menu.
By opening the make menuconfig and opening the customized packages menu it is
possible to chose which package include by typing “ y" for yes or “ n" for no. Once
a package is choose it appears a “ *" symbol next to it. In this way it is always
possible to control the number of packages considering the available memory of
the device in order to optimize the performances. If the last step is completed
successfully, it will appear on the terminal a success message saying that all of the
packages have been installed from the folder mypackages.

Once the package has been successfully installed from the feed, it is possible to
proceed with the building of the package. This operation can be done by calling a
make command specifying the name of the package and followed by the command
compile. This operation will compile and create a brand new package in a .ipk Ąle.
This Ąle will be situated in the folder containing all of the binary Ąles, inside the
folder mypackages. This Ąle will report the name of the application followed by the
version number and the toolchain name used to compiled it. In my case the full
name of the package was Vanetza_1.0-1_x86_64.ipk.

4.6 Integration of the package

Once the package is compiled and available in the binary folder, it is possible to
integrate the package on the OBU. Once the available version of the application is a
package it is possible to transfer it on the board using WinSCP. Since this application
is available on Windows based operating systems I proceeded in transferring the
Ąle from the Linux based virtual machine to the Windows based PC. I proceeded
then connecting remotely to the server and then to the on board unit copying the
package on the OBU.
Once the copy was available on the hardware it was possible to simply install it by
issuing the opkg command. After the installation was successfully done, I copied
also the compiled binary Ąles for the test applications and made them executable
in the OBU modifying their permission using chmod 777 followed by the name of
the Ąle. Once the binary Ąles could be executable I launched them and veriĄed the
correct functioning of the Ąles.

4.7 Test with Socktap

The SOCKTAP function in particular was able to correctly send CAM messages
respecting all of the requisites, one every second since the OBU was on a table.
The messages were correctly received by the other OBUs inside the laboratory as

39

Methodology

shown in the following images. In the image 4.5 it is shown the terminal sending
CAMs through the issue of the command ./socktap -i wlan0 where the messages
are sent through the wlan0 interface of the OBU.

Figure 4.5: Screenshot of the terminal when issuing of the command on the OBU
to send CAM messages through the SOCKTAP function.

In the image 4.6 it is shown the terminal of another OBU inside the laboratory
successfully receiving the CAM messages sent by the OBU on which the entire
thesis project was developed.

4.8 Integration of GNSS module

In order to send consistent data about the position of the OBU, it is necessary to
integrate a GNSS module [31]. GNSS stands for Global Navigation Satellite Systems
and has been developed for the aerospace domain. With the due changes this
positioning model can be applied also to the land positioning. The main difference
between the aerospace domain and the urban domain is high data redundancy,
under the hypothesis that only one failure can occur at a time. The main data
transmitted by the GNSS module are

• Latitude: it measures the distance north or south of the equator which is 0°.

• Longitude: it measures distance east or west of the prime meridian which is
0°.

40

Methodology

Figure 4.6: Screenshot of the terminal successfully receiving packets.

• Elevation: it measures distance in height from the level of the sea that is
considered 0.

The time is also a fundamental variable contained in GPS data since it states how
long does it take for the signal to travel from the GPS satellite to the GPS receiver
on Earth.
The precision of the GPS data is given by the exploitation of different satellites
through the technique called trilateration. This technique determines the position
by knowing the distance of the GPS receiver from at least three known points. The
three known points are the satellites themselves.

In my thesis project, I connected the module to the board and installed the gpsd
[32] and gpsd-clients [33] packages.
The gpsd package installed on the OBU is version 3.23-1, the latest available version
up to this moment. As described in the official documentation about the packages
on OpenWrt website, the gpsd package is Śa userland daemon acting as a translator
between GPS and AIS receivers and their clientsŠ. This means that the the gpsd

41

Methodology

is in charge of translating GPS data using some pre-deĄned protocols to allow
the clients to understand it and use it. The gpsd listen on port 2947 for client
requesting positioning, time and velocity information. The receivers must generate
information according to the format: NMEA-0183 sentences, SiRF binary, Rockwell
binary, Garmin binary format or other vendor binary protocols.
The gpsd-clients package installed on the OBU is version 3.23.1, the latest available
version up to this moment. The gpsd-clients package contains auxiliary tools to
be used in combination with the package gpsd in order to make the use of the
positioning data even more simple for the clients.

The application SOCKTAP, developed by the Vanetza project, exploit the
information that are translated by the daemon of gpsd package. In order to work
on this application, even in absence of the GNSS module, SOCKTAP allows the
use of a Ąctitious position. This data are Ąxed and correspond to latitude: 48° 46Š
57,34Ť N and longitude: 11° 25Š 55,44Ť E which corresponds to Nordost, 85055
Ingolstadt, Germany. The application SOCKTAP has a special variable called
SOCKTAP_WITH_GPSD that is automatically activated to use real positioning
data when the GNSS module is detected. To integrate the use of GPS data given by
the GNSS module, I started by connecting the module to the OBU and positioning
the antenna to be visible to the satellites. I proceeded searching on which port
GPS data was present, in my case the port is /dev/ttyACM0 and set the port for
the gpsd services. After this I proceeded with the check the correct visibility of
data using the command gpsmon -n localhost. The data was correctly shown on
the terminal as in Figure 4.7.

In order to activate the daemon and use this data with SOCKTAP I proceeded
by editing the gpsd conĄguration Ąle to add the serial port device to which the
GPS is connected. This operation enabled the daemon and ideally managed the
integration of the correct GPS data in the CAM message sent by the SOCKTAP
application. From the testing I acknowledged that the data was not integrated. I
proceeded to contact the responsible of VanetzaŠs code to ask more information
about the connection between the application and the GNSS module. Unfortunately
due to a bug discovered in VanetzaŠs code, the implementation of the data was not
possible, but it will be Ąxed soon.

42

Methodology

Figure 4.7: Terminal showing GPS data read from the GNSS module.

43

Chapter 5

Results

5.1 Results and conclusions

For this thesis project the objective was to implement the Linux based operating
system OpenWrt 21.02.1 on a Sierra Wireless MC7455 mPCIe module working
on a PC Engines x86_64 APU2 board and install the application Vanetza. The
project was meant to send CAMs with consistent and real GPS data detected by
the antenna.

The Ąrst part of the project has been successfully implemented since the board
is now running on OpenWrtŠs operating system and exploits an LTE connection to
access the internet, making the board wireless. This is a fundamental requisite to
implement it in a vehicle. The package Vanetza, which was the most challenging
part of the thesis, was created through the creation of MakeĄles, cmake Ąles and
appropriate cross compilation of the dependencies and all of the libraries contained
in Vanetza. The board contains the package Vanetza in its fullness and it is working
correctly. However, due to problems in communication between VanetzaŠs code
and the gpsd daemon, it was not possible to implement real GPS data.

5.2 Future development

This is only a small Ąrst step towards a future that aims to integrate autonomous
driving in our everyday life. There will be room for investigate better this solution
and compare this application with other applications available on the market.

Due to the nature of the Vanetza project, there is a constant innovation about
the application and these upgrades must be actively integrated in all of the already
existing projects.

An important future development is to Ąnd a solution about VanetzaŠs code
to correctly integrate the GPS data inside CAMs messages exploiting the gpsd

44

Results

daemon. Moreover it could be possible to activate the DENMs messages, already
supported in Vanetza, in the SOCKTAP application. Eventually, the integration
of the on board unit inside a vehicle will be the last step before proceeding with
real on-road tests to evaluate the communication performances with other vehicles.

45

Bibliography

[1] ISTAT. ńRoad Accidents. Year 2022ż. In: Road accidents. Year 2022 - Istat.it
(2023) (cit. on p. 1).

[2] DeĄnition of the ITS by ETSI https://www.etsi.org/images/files/ETS

ITechnologyLeaflets/IntelligentTransportSystems.pdf Last accessed
on October 2023 (cit. on pp. 3, 4).

[3] SAE offcial website https://www.sae.org/ (cit. on p. 5).

[4] Huailei Cheng, Yuhong Wang, Dan Chong, Chao Xia, Lijun Sun, Jenny
Liu, Kun Gao, Ruikang Yang, and Tian Jin. ńTruck platooning reshapes
greenhouse gas emissions of the integrated vehicle-road infrastructure systemż.
In: Nature Communications 14.1 (2023), p. 4495 (cit. on p. 6).

[5] Monowar Hasan, Sibin Mohan, Takayuki Shimizu, and Hongsheng Lu. ńSe-
curing Vehicle-to-Everything (V2X) Communication Platformsż. In: IEEE
Transactions on Intelligent Vehicles 5.4 (2020), pp. 693Ű713. doi: 10.1109/

TIV.2020.2987430 (cit. on pp. 7, 8).

[6] CAR 2 CAR offcial website https://www.car-2-car.org/ (cit. on p. 10).

[7] European Telecommunications Standards Institute. ńIntelligent Transport
Systems (ITS); Performance Evaluation of Self-Organizing TDMA as Medium
Access Control Method Applied to ITS; Access Layer Partż. In: (2011 - 2012)
(cit. on p. 11).

[8] Abdul Karim Kazi, Shariq Mahmood Khan, and Najmi Ghani Haider. ńRe-
liable Group of Vehicles (RGoV) in VANETż. In: IEEE Access 9 (2021),
pp. 111407Ű111416. doi: 10.1109/ACCESS.2021.3102216 (cit. on p. 12).

[9] Fernando A. Teixeira, Vinicius F. e Silva, Jesse L. Leoni, Daniel F. Macedo,
and José M.S. Nogueira. ńVehicular networks using the IEEE 802.11p stan-
dard: An experimental analysisż. In: Vehicular Communications 1.2 (2014),
pp. 91Ű96. issn: 2214-2096. doi: https://doi.org/10.1016/j.vehcom.

2014.04.001. url: https://www.sciencedirect.com/science/article/

pii/S2214209614000151 (cit. on p. 12).

46

BIBLIOGRAPHY

[10] Mohammed Hasan Alwan, Khairun N Ramli, Yasir Amer Al-Jawher, Aws
Zuhair Sameen, and Hussain Falih Mahdi. ńPerformance comparison between
802.11 and 802.11 p for high speed vehicle in VANETż. In: International
Journal of Electrical and Computer Engineering 9.5 (2019), p. 3687 (cit. on
p. 13).

[11] ńIEEE 1609 - Family of Standards for Wireless Access in Vehicular Envi-
ronments (WAVE) https://www.standards.its.dot.gov/factsheets/

factsheet/80ż. In: (2009) (cit. on p. 13).

[12] ńIEEE Standard for Wireless Access in Vehicular EnvironmentsŰSecurity
Services for Applications and Management Messagesż. In: IEEE Std 1609.2-
2016 (Revision of IEEE Std 1609.2-2013) (2016), pp. 1Ű240. doi: 10.1109/

IEEESTD.2016.7426684 (cit. on p. 13).

[13] Adrian Abunei, Ciprian-Romeo Comşa, and Ion Bogdan. ńImplementation of
ETSI ITS-G5 based inter-vehicle communication embedded systemż. In: 2017
International Symposium on Signals, Circuits and Systems (ISSCS). 2017,
pp. 1Ű4. doi: 10.1109/ISSCS.2017.8034921 (cit. on pp. 15, 16).

[14] José Santa, Fernando Pereniguez-Garcia, Antonio Moragón, and Antonio
Skarmeta. ńExperimental evaluation of CAM and DENM messaging services
in vehicular communicationsż. In: Transportation Research Part C: Emerging
Technologies 46 (Sept. 2014), pp. 98Ű120. doi: 10.1016/j.trc.2014.05.006

(cit. on pp. 17, 18).

[15] Brigitte Lonc and Pierpaolo Cincilla. ńCooperative ITS security framework:
Standards and implementations progress in Europeż. In: 2016 IEEE 17th
International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM). 2016, pp. 1Ű6. doi: 10.1109/WoWMoM.2016.7523576

(cit. on p. 18).

[16] OpenWrt offcial website https://openwrt.org/ Last accessed September
2023 (cit. on p. 21).

[17] OpenWrt official website - LuCI essentials https://openwrt.org/docs/

guide-user/luci/luci.essentials Last accessed October 2023 (cit. on
p. 23).

[18] Lua official webpage https://www.lua.org/home.html Last accessed on
November 2023 (cit. on p. 23).

[19] Vanetza official website https://www.vanetza.org/ Last accessed November
2023 (cit. on pp. 23, 26).

[20] CARISSIMA official webpage https://www.thi.de/en/research/carissm

a/ (cit. on p. 24).

47

BIBLIOGRAPHY

[21] CARISSIMA philosophy statement https://www.thi.de/en/research/

carissma/philosophy/ Last accessed November 2023 (cit. on p. 24).

[22] Car2X Laboratory official webpage https://www.thi.de/en/research/

carissma/laboratories/car2x-laboratory/ (cit. on p. 24).

[23] Artery GitHub repository https://github.com/riebl/artery (cit. on
p. 24).

[24] Official Boost website https://www.boost.org/ Last accessed July 2023
(cit. on p. 26).

[25] Official Crypto ++ website https://www.cryptopp.com/ Last acessed July
2023 (cit. on p. 27).

[26] Official GeographicLib website https://geographiclib.sourceforge.io/#

Last accessed July 2023 (cit. on p. 27).

[27] Official Connected Motorcycle Consortium website https://www.cmc-info.

net/ Last accessed November 2023 (cit. on p. 27).

[28] cube by nĄniity offcial webpage https://www.nfiniity.com/ Last Accessed
November 2023 (cit. on p. 27).

[29] Official NAP-Vanetza GitLab webpage https://code.nap.av.it.pt/

mobility-networks/vanetza Last accessed November 2023 (cit. on pp. 27,
29).

[30] Network Architectures and Protocols (NAP) group official webpage https:

//www.it.pt/Groups/Index/36?groupLetter=NAP- Av Last accessed
November 2023 (cit. on p. 28).

[31] Ni Zhu, Juliette Marais, David Bétaille, and Marion Berbineau. ńGNSS
Position Integrity in Urban Environments: A Review of Literatureż. In: IEEE
Transactions on Intelligent Transportation Systems 19.9 (2018), pp. 2762Ű2778.
doi: 10.1109/TITS.2017.2766768 (cit. on p. 40).

[32] Official documentation on OpenWrt package gpsd https://openwrt.org/

packages/pkgdata/gpsd (cit. on p. 41).

[33] Official documentation on OpenWrt package gpsd-clients https://openwrt.

org/packages/pkgdata/gpsd-clients (cit. on p. 41).

48

	List of Tables
	List of Figures
	Introduction
	Exploring the pattern of road accidents
	Intelligent Transportation system
	Communication among vehicles

	Vehicular communication Standards
	A Focus on IEEE and ETSI
	VANETs
	The 802.11p protocol
	WAVE standard
	ETSI ITS G5

	Developing Tools
	Motivations
	OpenWrt
	OpenWrt history
	OpenWrt structure and features

	Vanetza
	Vanetza history
	Vanetza's structure and features
	NAP-Vanetza

	Methodology
	Installation of OpenWrt on the OBU
	LTE Connection
	Enabling remote access to the OBU
	Cross compilation
	Cross compilation of dependencies
	Cross compilation of Vanetza

	Creation of an OpenWrt package
	Integration of the package
	Test with Socktap
	Integration of GNSS module

	Results
	Results and conclusions
	Future development

	Bibliography

