POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Protection of Private Keys with
TPM 2.0

Supervisor
prof. Antonio Lioy

Candidate
Damiano TURRIZIANI

ACADEMIC YEAR 2022-2023

To my famaly, whose
love and support made
this journey possible.

Summary

In today’s digital era, web servers play a critical role in ensuring data security, user
trust, and compliance with regulations. They are the gatekeepers of web content,
enabling encrypted communication, data integrity, and reliable content delivery.
Among the leading web servers, Nginx, Apache, and Cloudflare Server top the list.
Web servers are essential in the face of increasing cyber threats, providing safe-
guards through access control, availability, and data confidentiality and integrity.
Access control is facilitated by authentication and authorisation, while availability
is achieved through mechanisms like fault tolerance and scaling. Data confidential-
ity is upheld via encryption and Transport Layer Security for secure connections,
while data integrity is preserved with the help of public key infrastructure (PKI)
and digital certificates. Implementing TLS with OpenSSL in Nginx and Apache is
crucial for secure, encrypted communication. This security layer ensures data pro-
tection, user trust, and regulatory compliance. It enhances website credibility and
overall security, defending against cyber threats and future-proofing web services.
Safeguarding cryptographic keys, a complex challenge due to the need for data
decryption, can be addressed by using secure storage mechanisms, such as Hard-
ware Security Modules (HSMs), Trusted Platform Modules (TPMs), Key vaults, or
Trusted Key Management Systems (KMS). TPMs are tamper-resistant cryptopro-
cessors adhering to international standards, designed to enhance hardware security.
They store aggregated measurements in Platform Configuration Registers (PCRs)
and offer cryptographic records of the software state. Sealing/Unsealing operations
ensure secure key storage and retrieval, and the solution based on Sealing objects
enhances private key security. The proposed solution employs the Sealing operation
to protect private keys in an Apache server, ensuring they can only be retrieved
using the TPM while adhering to the conditions imposed by the PCRs. The solu-
tion, developed through source code modifications, offers a strong balance between
security and resource efficiency, achieving a robust defence against cyber threats
like brute force and dictionary attacks. The ability to use TPM 2.0 for private key
protection can also be extended to web servers like Nginx, making this approach
highly versatile. In conclusion, the presented solution leverages TPM 2.0 to enhance
the security of private keys in Apache servers, using PCRs for system attestation.
This solution, adaptable for Nginx and any OpenSSL-based web server, offers a
robust security mechanism for safeguarding critical cryptographic assets.

Acknowledgements

This thesis is the result of many contributions, not just from me. First and foremost,
I would like to thank my parents who gave me the opportunity many years ago
to begin this journey, which is now concluding in the best way possible. They
supported me during difficult times and never lost faith in me. I would like to
express my gratitude to my family, who, despite the geographical distance, have
always shown their love and encouraged me to continue and not give up.

I want to thank my lifelong friends, without whom these years would have been
impossible. It is only thanks to you that I am who I am today, thanks to those
moments where the only concern was to have fun and be together. I also want to
express my gratitude for the new friendships formed during this long journey. With
you I have suffered and laughed and that helped us to overcome all those difficulties
that seemed insurmountable.

Finally, I would like to thank Prof. Lioy for giving me the opportunity to carry
out this thesis, allowing me to enrich my professional knowledge. A special thanks
goes to the doctoral students and fellow thesis students in Lab 7 who assisted me
in completing this challenging work.

Contents

1 Introduction

2 Trusted Computing and TPM 2.0

2.1

2.2

2.3

24

3.1

3.2

3.3

Trusted Computing
21.1 TCG . . .
Trusted Platform
221 Rootsof Trust.
2.2.2 Attestation and Authentication
Trusted Platform Module
2.3.1 TPM 2.0 Architecture
2.3.2 Implementations,
233 TPM20vsTPM 1.2.
TPM Software Stack 2.0

ESAPI

Overview
3.1.1 ESAPI Key features
3.1.2 Top-Level usage L.
Structures
3.2.1 ESYS.CONTEXT
322 ESYSTR
3.23 ESYSSESSION
Functions
3.3.1 ESAPI Exclusive Command
3.3.2 ESAPI Command Template
6

11
11
12
13
13
17
18
19
24
25
28

4 Sealing and possible usages
4.1 Overview
4.2 Analysis
421 LTRACE
4.2.2 Analysis conclusions Lo
4.3 Use Cases Implementation
4.3.1 Initialise TCTI.TABRMD Context
4.3.2 Initialise ESYS Context
4.3.3 Create HMAC Session
4.3.4 Create Primary Key
4.3.5 Create Session Policy and Extract Policy Digest
4.3.6 Create RSAKey,
437 Load RSAKey,
4.3.8 Encrypt Data Blob 0L,
4.3.9 Decrypt Data Blob
4.3.10 Sign Data Blob
4.3.11 Verify Signature
4.4 TPM2-OpenSSL Changes

5 Implementation
5.1 Motivationso
5.2 Creation of the Sealed Key
5.3 Unsealing integration in Apache
5.3.1 Apache configurationo
5.3.2 Unsealing process
5.3.3 Private key recoveryo
5.4 Reseults achieved oo

6 Testing
6.1 Testbed
6.2 Functional tests oo
6.2.1 Compromised machine
6.2.2 No compromised machine

6.3 Performance tests

7 Conclusions and future work

53
53
95
58
66
67
70
70
70
71
72
72
73
73
73
74
74
74

7
77
78
79
80
81
81
82

84
84
84
85
85
86

88

Bibliography

A User’s manual

Al

A2
A3
A4

Requirements
ATl tpm2-tss
A1.2 tpm2-abrmd
A13 tpm2-tools
A.14 tpm2-openssl
ALDS nginx. L

Use cases o o vt
Tpm2-OpenSSL solution
Apache Solutiono

B Developer’s manual

B.1

B.2

Use Cases and Tpm2-OpenSSL solutions
B.1.1 Structures
B.1.2 Code
B.1.3 TPM2-OpenSSL code changes
Apache solution
B.2.1 Sealing procedureo
B.22 modsslcode

90

92
92
93
94
95
96
97
97
98
99
100

Chapter 1

Introduction

In today’s digital landscape, Web Servers have assumed crucial importance. They
serve as the keystone of online operations, ensuring data security, user trust, and
compliance with regulatory standards. Web servers are the gatekeepers of web
content, facilitating encrypted communication, data integrity, and reliable deliv-
ery. Their role extends beyond mere content distribution; they are the bedrock for
dynamic applications, high-traffic scalability, and redundancy through load balanc-
ing. According to W3Techs’ data for September 2023, the three leading web servers
are Nginx, Apache, and Cloudflare Server. Also, Netcraft’s statistics for August
2023, corroborate this, ranking Nginx, Apache, and OpenResty as the most widely
employed web servers.

In an era of heightened Cyber threats and user expectations, web servers are
indispensable for safeguarding sensitive information, maintaining website credibil-
ity, and securing the seamless flow of online data. Cyber threats can be mitigated
by ensuring: access control, which involves authentication and authorisation; avail-
ability is vital for uninterrupted service and it is achieved through mechanisms like
fault tolerance, recovery, high availability, and server scaling; and last but not least
in importance confidentiality and integrity, which are crucial for data protection.
Confidentiality restricts unauthorised access with mechanisms like access controls,
encryption and Transport Layer Security (TLS) for secure connections. While
integrity ensures data accuracy and reliability requiring security mechanisms like
Public Key Infrastructure (PKI) and digital certificates.

Enabling TLS through OpenSSL for both Nginx and Apache is essential to
establish secure, encrypted connections between servers and clients. This security
layer is fundamental for data protection, user trust, and regulatory compliance.
By implementing TLS, both web servers can provide secure communication, safe-
guarding sensitive data and ensuring the integrity of information transferred. Ad-
ditionally, TLS enhances the credibility of websites and applications. Beyond these
aspects, TLS support in Nginx and Apache is pivotal for defence against cyber
threats, future-proofing, and overall web security in an increasingly interconnected
digital landscape.

When using TLS with OpenSSL, it is critical to store the private key securely
and protect it from being cracked or accessed by unauthorised individuals. Safe-
guarding cryptographic keys is a complex challenge, mainly because applications

9

Introduction

require a certain level of access to these keys for data decryption. While it may be
challenging to completely shield keys from attackers who have fully compromised
the application, there are steps that can be taken to increase the difficulty of their
attempts to obtain the keys. The first and fastest way is to protect the private
key with a strong password. Unfortunately, this is still subject to brute force or
dictionary attacks. On this subject, the NIST states that whenever possible, it is
advisable to utilise one of the following secure storage mechanism: a physical or
virtual Hardware Security Module (HSM), a Trusted Platform Module (TPM),
a Key vault or a Trusted Key Management System (KMS).

The Trusted Platform Module (TPM) adheres to an international standard
and serves as a secure cryptoprocessor with tamper-resistant features. It is specif-
ically designed to enhance the security of hardware by implementing fundamental
cryptographic functions, which serve as the foundation for more complex security
features. One of its primary functions is to store aggregated measurements, which
play a significant role in the process of the Sealing/Unsealing operation. These
measurements are stored in specialised registers known as Platform Configura-
tion Registers (PCRs). These registers primarily serve as cryptographic records
of the software state. This is possible due to their update mechanism that ensures
that the registers cannot be tampered with or forged. PCRs can be accessed to pro-
vide information about the machine’s state and can also be used to create Sealed
Data Blobs which can only be accessed if the value of the current PCRs values
match those at the time of their creation.

During the thesis work, different solutions were found and studied to solve the
issue related to the security of private keys. In this context, various functions offered
by the TPM have been analysed, and among them, two potential candidates have
been identified: Binding and Sealing. Initially, the Binding function appeared to
be the simpler one to use and implement, but unfortunately, it did not provide any
control over the platform’s state. For this reason, the Sealing operation has been
chosen as our solution to implement a secure storage mechanism for the server’s
private key.

The solution sought should in no way change the behaviour of the Web Server
used but instead should enhance security without the server having any knowledge
of the integrated functions. Additionally, the solution should be as simple as pos-
sible to enable any user to integrate it into their server solutions. It should also be
as portable as possible, meaning that it could run on any machine with hardware
specs similar to those of the machine used for testing.

The thesis is divided into two main sections. The first part delves into the
concept of Trusted Computing and introduces the TPM 2.0, providing insights
into its architecture, functionalities, and how it differs from earlier versions. This
section also includes an introduction to the TSS, followed by a specific presentation
of the ESAPI module, which is crucial for developing the proposed solution.

Moving on to the second part, it explores and implements two solutions, offering
a broad overview of the functions used and the resulting operations. Following this,
there is a detailed examination of the testing phase carried out on the final solution.

10

Chapter 2

Trusted Computing and TPM 2.0

2.1 Trusted Computing

Trusted computing is a general term used to refer to computing systems that use
software and hardware that aims to make personal computers and computing de-
vices more secure through the creation of systems with predictable behaviours [1].
Predictable systems are obtained using Trusted components that are defined by
the Trusted Computing Group (TCG) as predictable components. The term pre-
dictable is used consciously in this context for two main reasons: the first one is
that something that is predictable is simple to evaluate in fact if I can predict a
component's behaviour given some stimuli as input, I can evaluate its performances;
the second reason is that if something is predictable this does not change, whatever
the situation. The technologies which fall under the trusted computing term are

[1]:

e Trusted Platform Module (TPM) is a chip, usually attached to the mother-
board of commercial PCs and servers, which provides cryptographic functions.

e Self-Encrypting Driver is a fast hardware-based solution for data protection,
built into a hard drive.

e Secure CPU Mode is provided by both Intel and AMD and offers software
measurement, secure execution and code signature checking.

o Trusted Network-Connect is a collection of networking protocols that integrate
platform-level trusted computing into network access decision

o Multilevel Computing is the combination of both hardware and software to
create a trustworthy system capable of securely handling information at mul-
tiple levels.

The principle of Trusted Computing was first stated in the Trusted Computer
System FEvaluation Criteria (TCSEC) also known as Orange Book, published by
the Department of Defence (DoD) in 1985. This document asserts that the core
of trusted computer systems is the Trusted Computing Base (TCB) which includes

11

Trusted Computing and TPM 2.0

hardware, firmware and software containing all the elements of the system needed
to support the security policy and the isolation of objects which establish the base
protection [2]. This collection of system resources must be designed and imple-
mented to be as simple as possible and consistent with the functionalities it has
to perform [3]. In addition, an important characteristic of the TCB is that it can
not be compromised by any hardware or software that is not inside the security
perimeter, defined as the set of all the elements of the TCB [4]. Unfortunately, the
concept defined by the Orange Book was proposed in the era of mainframe systems,
so it did not take hold.

In the 1990s, the computer industry understood that there was a need for in-
creased security in Personal Computers (PCs). This was mainly caused by the
widespread of PCs, which were first designed without any attention to security
[5]. The possibility to connect PCs through the Internet increased the concern of
IT vendors, which tried to use software solutions to increase security but soon it
became clear that software-only security mechanisms are not sufficient. For this
reason, a new approach was introduced for protecting systems from compromise,
the use of a hardware-based embedded security solution [6].

This approach was first suggested by the Trusted Computing Platform Alliance
(TCPA) in 1999. The TCPA started releasing specifications for the Trusted Plat-
form Module until February 2002 when TPM version 1.1b was published. In 2003,
TCPA became the Trusted Computing Group (TCG).

2.1.1 TCG

The TCG inherited the starting goal of the TCPA but they extended it to mobile
devices, servers, peripherals, the network and any device which is connected to
the network. The TCG's main concern is about the security of communication,
transactions and exposure of data on systems. The purpose of TCG is to define
and develop specifications for trusted computing that are open and vendor-neutral.
The specifications provide a guideline for hardware building blocks and software in-
terfaces for different platforms and operating environments. In addition, the TCG
specifications provide a higher trusted relationship for machine authentication, at-
testation and user authentication. The specifications currently created are for the
Trusted Platform Module and for the Trusted Computing Software Stack, which
is used as a foundation for writing applications that interact with the TPM. The
benefits promoted by the TCG are:

e Personally identifiable information and digital secrets and more secure storage
of files. In this way data and identity are protected against external software
attacks or physical theft.

e Enhance the security of remote access by protecting the keys used in the
authentication process such as VPNs, S-MIME e-mail and 802.1x.

e Multi-factor user authentication achieved with low-cost and strong trusted
computing components that can be integrated with other types of authenti-
cation such as smart cards, finger-print readers, pass phrases, etc.

12

Trusted Computing and TPM 2.0

e Protection of networks through network access control and endpoint integrity
using TCG specifications.

2.2 Trusted Platform

Trusted platforms are designed to provide a secure foundation for the operation of
critical systems and the protection of sensitive data. This is achieved through a
combination of hardware and software security measures [1], such as:

e Secure Boot;
o Hardware-assisted Memory Isolation;

o Trusted Platform Modules (TPMs).

Secure boot is a process that verifies the authenticity of the system’s boot-loader
and any subsequent software that is loaded during the boot process. This helps to
ensure that the system is running only trusted software, and not malware or other
unauthorised software.

Hardware-assisted memory isolation is a security measure that uses the hard-
ware features of the processor to protect the memory of the system from unau-
thorised access. This can help to prevent malware or other threats from accessing
sensitive data stored in memory.

Trusted platform modules (TPMs) are specialised chips that can be used to
store keys, passwords, and other sensitive data in a secure manner. TPMs use
cryptographic techniques to protect the data stored on them, and they can be used
to verify the integrity of the system and its components.

An important aspect of trusted platforms is that they should be predictable,
this means that it is necessary to determine their identity. The TCG specification
establishes that trust in a platform is based on identifying its software and hard-
ware components [4]. The TPM is the component chosen by the TCG to provide
methods for collecting and reporting on the hardware and software.

The starting point of the TCG specification to build a trusted platform is the
Trusted Building Block (TBB) which is a component or a collection of components
that are required to instantiate a Root of Trust. Typically, the TBB is a component
of the Root of Trust and it is expected to not compromise the system. Another
important concept is the TCB, which is the collection of system resources that
maintain the security policy of the system. The TPM is not a TCB component, in-
deed it allows an independent entity to determine if the TCB has been compromised
and in this case, the TPM may help to prevent the system from starting.

2.2.1 Roots of Trust

The Root of Trust (RoT) is a set of components on which the trustworthiness of
the system is based. An important characteristic of RoT is that it is unverifiable

13

Trusted Computing and TPM 2.0

because if I use a second component to verify it, the second component became
the root of trust [1]. For this reason, trust in the RoT should be based on out-
of-band assumptions. This is possible using certificates that assure that the RoT
has been implemented in a trustworthy way. For example, a certificate can provide
the Evaluated Assurance Level (EAL) and the identity of the manufacturer. In
addition, a certificate may provide information about the state of the installation
of the TPM and if the machine is compliant with the TCG specifications. In PC
clients, according to the TCG specification, are required three RoT that are:

e Root of trust for Measurement (RTM);
e Root of trust for Storage (RTS);
e Root of Trust for Reporting (RTR).

Instead, in other non-PC scenarios such as phones and cars, the trusted computing
system may contain different RoT's, for example:

e The Root of Trust for Verification consists in verifying an integrity measure-
ment against a policy and it is used in some embedded devices in which the
manufacturer defines some approved software;

e The Root of Trust for Update is mostly used for firmware updates in which
the update is verified by checking an authorised signature.

Root of Trust for Measurement (RTM)

The RTM provides integrity measurements and it records them in the RTS using
the Extend operations. An Integrity measurement is any value that represents a
possible change in the trust state of the system. The measured objects are often
data values, hashes of data or code, and an indication of the signer of some data
or code. The digest computed on an integrity measurement is statistically unique.
The RTM is outside the TPM scope, and it corresponds to the Core Root of Trust
for Measurements (CRTM). In case the RTM code is stored inside the BIOS, it is
possible to implement the CRTM inside it. The first solution is to integrate the
CRTM as a boot block and the second one is to make the BIOS a TBB.

The CRTM makes the initial measurements of the platform and then stores the
result inside the PCRs. For measurements to be meaningful, the platform should
be in a trust state, and this can be done in two ways[4][1].

e The first method that can be used is a power-on reset which brings the plat-
form to a known initial state. Starting from these measurements, a chain of
trust is created only once and no changes to the initial trust state are possible,
for this reason, is called a Static RTM (SRTM). Specifically, SRTM refers to
the boot block and which parts of the BIOS are measured depends on the im-
plementation. It may happen, that critical pieces of code are not included and
in some systems, this makes SRTM measurements extremely unpredictable.
One of the biggest downsides is the fact that SRTM is typically implemented
by BIOS vendors. Instead, SRTM's advantages consist of usability.

14

Trusted Computing and TPM 2.0

e The second method requires the CPU to act as the CRTM and apply pro-
tections to portions of memory it measures. This creates a chain of trust
without rebooting the platform and it allows the RTM to be re-established
dynamically, for this reason is called Dynamic RTM (DRTM). The DRTM
avoids trust in the BIOS vendors as for the SRTM and it is very different
from it. Indeed, it does not launch automatically, but a special trusted CPU
mode is initiated and a region of memory is passed to be executed. The CPU
secure mode pauses all running processes and enters single-tread mode. After
the DRTM code is checked and executed. The DRTM code hashes the region
of memory and stores it in the TPM. Thanks to the fact that the memory
region is chosen by the user this provides extreme flexibility, predictability,
and greater precision.

In the 2.1 is possible to see a possible scenario of SRTM in comparison with 2.2
which shows a DRTM's possible usage.

BIOS boot block (SRTM)

Launch

Measurement firmware
BIOS

; Measure | Launch
Measure | @Launch e

Measure

Boot loader stage 1

CPU manufacturer code (DRTM)

Measure i Launch

Measure

Launch

Boot loader stage 2

Trusted OS

Measure

: Launch Measure | : Launch

OS Kernel Trusted applications
Measure“”::‘i. Launch Measure Launch
Applications

Measure

@Launch

Figure 2.2. Trusted OS launch se-
quence using DRTM [1]

(@)
(@)
(@)

Figure 2.1. SRTM boot chain rooted in the
BIOS boot block [1]

The Chain of Trust allows us to bootstrap from the low-level root of trust to a
higher-level, by using the RoT to trust in other objects, and use the trust obtained
to trust in other objects above them. In this way using the concept of Transitive
Trust, defined by the TCG, the trustworthiness of the platform is incremented.
This is shown in the 2.3

Root of Trust for Storage (RTS)

The RTS is a component responsible for maintaining both the secrecy and the
integrity of secrets. Because the TPM memory is shielded from access by any

15

Trusted Computing and TPM 2.0

Root of trust for measurement

Measure Launch

Trusted component A

Measure Launch

Trusted component B

Measure | Launch

®)
O
O

Figure 2.3. Chain of trust [1]

external entity, the TPM can act as an RTS. Typically the content of a Shielded
Location is needed to get access to another Shielded Location and in some other
cases, the content of a Shielded Location is conditioned on PCRs having specific
values. TPM memory can contain :

e non-sensitive data which is not protected from disclosure for example the
content of the PCRs;

e sensitive data which is protected and the TPM does not allow access to it
without proper authorisation for example the private part of an asymmetric
key stored in a Shielded Location.

Root of Trust for Reporting (RTR)

The RTR is a component that provides accurate reporting on the contents of the
RTS. The RTR can be implemented by the TPM because as in the case of RTS,
it has the cryptographic capabilities to create an RTR report. The RTR report
is a digitally signed digest on some selected values within the TPM. The typically
selected values are:

e evidence of the platform status using the content of PCRs;
e audit logs;

e key properties.

Since the interaction between the RTS and RTR is critical, the design and the
implementation of both should mitigate tampering to prevent errors in reporting.
In addition, a Platform Certificate is needed to assure the binding between the
platform (the RTM) and the RTR. This is essential to assure that the PCR values,
which are quoted during the creation of the RTR report, reflect the state of the
platform.

16

Trusted Computing and TPM 2.0

2.2.2 Attestation and Authentication

In general, attestation hierarchies are used to provide a way to establish trust in
a system and to ensure that only trusted entities can access certain resources or
perform certain actions. This is shown in the 2.4[4].

Platform Attestation

AL

measurements software

A

|

Attestation Key
(certified by
Attestation CA)

platform

|

TPM

HEH R

Figure 2.4. Attestation Hierarchy [4]

1. An external entity attests that the TPM is genuine and it is compliant with
the TCG specifications. This attestation is defined as an asymmetric key com-
monly called Endorsement Certificate that asserts the EK to be trustworthy
and could be used to identify the TPM.

2. An external entity attests that the platform contains a Root of Trust for
Measurements, that the TPM installed is genuine, and that the path between
the TPM and the RTM can be trusted. The attestation is commonly called
Platform Certificate.

3. An Attestation CA attests that the Attestation Key (AK) was produced by a
genuine but unidentified TPM. The AK can not be migrated and it may be
used only to sign a digest created by the TPM.

17

Trusted Computing and TPM 2.0

4.

A trusted platform certifies other key pairs creating a signature over the in-
formation that describes the key pair and its properties using the AK certified
by the Attestation CA. The certification produced attests that the key pair
was created by an authentic TPM and it has some properties.

. A trusted platform generates Quotes, which are signed data structures com-

puted over the hash of selected PCRs and a user-provided nonce, to attest a
particular software/firmware state.

An external entity attests to the measurements computed by a trusted plat-
form to vouch for the software/firmware state. The attestation is commonly
called Third-party Certification.

2.3 Trusted Platform Module

The TPM is a specialised hardware component that is used to create and man-
age digital keys, certificates, and other secure data. It is designed to be tamper-
resistant, but not tamper-proof. Tamper-proof means that it can not be attacked
instead tamper-resistant means that it is supposed to resist various kinds of tam-
pering attacks. Even though the TPM includes cryptographic modules, it is a
rather slow cryptographic engine. An important aspect is that is certified Common
Criteria FAL4+. The main features offered by the TPM are:

Hardware-based generation of random number;,
Secure generation of cryptographic keys for limited uses;

Remote attestation is used to verify if the system has not been compromised
by a third party;

Binding is used to encrypt data with a binding key and it makes it impossible
to decrypt it outside the platform;

Sealing is another feature, in which data is encrypted with a key internal to
the TPM and to decrypt it the TPM state must be in the same state as when
the data was encrypted;

Authentication of hardware devices using the unique Endorsement Key (EK).

The two most important versions of TPM are TPM 1.2 and TPM 2.0. The
TPM 1.2 was the TCG’s first attempt to solve the following major issues [5]:

Identification of devices was a major problem because device identification
was mainly performed using MAC or IP addresses, which could have been
changed. Instead, the TPM introduced asymmetric keys, which can not be
migrated to identify devices;

Secure generation of keys was possible by integrating a Random Number
Generator (RNG) inside the TPM, allowing the creation of more secure keys;

18

Trusted Computing and TPM 2.0

e Secure Storage of keys was achieved by the TPM in two different ways. The
first one is to use Shielded Locations in which only a limited number of keys
can be stored and these keys can be used only after granting the authorisation.
The second technique is storing encrypted keys in Protected Locations inside
the hard disk of the platform, this allows having a huge amount of keys that
could not be possible if using the first technique because the storage inside the
TPM is limited. The two techniques ensure that the keys are not disclosed
but only those stored inside the TPM are also tamper-resistant;

o NVRAM storage was introduced in the TPM to store the EK because the
hard disk of the platform was not the solution. Since, IT organisations when
acquiring a new device, typically wipe the content of the hard disk and rewrite
it.

e Deuvice health attestation was achieved using the TPM to report on the state
of the platform that attests if the system has been compromised instead,
software solutions used before the introduction of the TPM might report the
system to be healthy even though it was compromised.

The TPM 1.2 standard was used in billions of PCs, servers, network gear, em-
bedded systems and other devices but the evolving of the Internet of Things and
the huge demand for non-PC environment security led TCG to develop a new TPM
specification to expand the TPM 1.2 legacy. The TCG developed TPM 2.0 using a
library approach, which in 2015 become an international standard. This approach
allows users to choose the features and the level of security or assurance required
for their platform [7].

In the next sections, we are going to discuss the newest specification of TPM,
exploring the architecture, the implementation, the difference between version 2.0
and version 1.2, and the possible use cases.

2.3.1 TPM 2.0 Architecture

The internal architecture of the TPM 2.0 is shown in 2.5.

The Input/Output buffer is the area in which the communication between the
TPM and the host system takes place. The buffer is divided into the Input area
which receives command data from the host system and the Output area which con-
tains the response data produced by the TPM. There is no restriction that forces
the I/O buffer to be physically isolated from other parts of the system. However,
the only requirement that the specification imposes is that when the process of ex-
ecuting command data begins, the TPM must ensure it is using the correct value.
This requires data to be in a Shielded Location before it is validated and modified.

The Cryptography Subsystem is the module that implements the TPM's cryp-
tographic functions. It is composed of the Asymmetric Engine, Symmetric Engine,
Hash Engine, RNG module and Key Generation Module. Furthermore, it is typi-
cally called by the Authorisation Subsystem, the Command Parsing module or the
Command Execution module. The conventional cryptographic operations imple-
mented are:

19

Trusted Computing and TPM 2.0

(o]

Data communication path

y

Asymmetric Engine

~

Key Generation

y

Hash Engine

~

RNG

y

Symmetric Engine

~

Power Detection

y

Management

~

Execution Engine

y

Authorization

~

Volatile Memory

Non-Volatile Memory

Figure 2.5. TPM 2.0 Architecture

Hash Functions;

Symmetric and Asymmetric Encryption and Decryption;

Symmetric and Asymmetric Signing (HMAC) and Signature Verification;

Key Generation.

Starting from the Hash functions , this can be used intrinsically by the TPM when
performing other operations such as PCR Extend or directly by external applica-
tions that require the TPM to process some data. The TPM uses hash functions
to implement Key Derivation Functions (KDF), to provide integrity checking and
authentication. The hash function is denoted by Hggorithm () in which the subscript
refers to the hash algorithm name or identifier if missing is determined by context.

The TPM implements the Hash Message Authentication Code (HMAC) , which is
a form of symmetric signature, it assures data to not be modified and identifies an
entity with a shared key value. Attestation, identification and secret sharing are
implemented using asymmetric algorithms. The algorithm used must be selected
from the list of algorithms recognised by the TCG.

Signature operations can be implemented using either symmetric or asymmetric
algorithms. For symmetric signatures, the TCG specifications defined the HMAC

20

Trusted Computing and TPM 2.0

signing schema to be the only method instead for the asymmetric algorithm, it de-
pends on the algorithm (RSA or ECC). In addition, the key used to sign data may
also have restrictions on the content that can be signed. It is possible to distin-
guish between restricted signing keys which must have a signing schema specified
in the key definition and unrestricted keys which may have a signing scheme, or the
signing schema is defined when the key is used. The signature verification requires
a handle of a public key, a digest and the block that contains the signature. The
TPM checks if the signing schema is compatible with the key selected and if the
signature is valid, it produces a ticket that is an HMAC signature.

To encrypt Protected Objects stored outside the TPM and command parameters
the TPM uses Symmetric Encryption. Every symmetric block cipher recognised
by the TCG may be used for parameter encryption. In addition, XOR obfuscation
should be supported because it can be used for confidential parameter passing.

The FExtend operation is one of the most important and is used to make incre-
mental updates to a digest value. Furthermore, it is used to update PCR, audit,
and construct policies. The operation consists of using a hash function to combine
new data with an existing digest. The notation is:

digestnew = Hpashaig(digestoal|dataney)

Where:

Hpgshaig is the hash function associated with a specific bank of PCR
digest e, is the new value of the digest after the Extend operation
digest g is the value of the previous digest

datane, is the data to be hashed with the digest,q value

Key generation is another important operation, which is used to produce two dif-
ferent types of keys. The first type is a key produced using the RNG to seed the
computation (the seed is persistently stored on the TPM), the secret key obtained
is then stored in the Shielded Location. The second type of key is a Primary Key,
which is derived from a specific seed value based on the usage of an approved KDF.
The TPM implements the KDF using two different schemes: ECDH KDF and the
Counter mode KDF.

The Random Number Generator (RNG) is the source of randomness in the TPM
and it is used for nonces, for randomness in signatures, and in key generation. The
RNG is constituted of an entropy source, that is internal and should be at least
more than one such as noise, clock variation, or other types of events. The en-
tropy collector is the process that collects the entropy from the entropy source and
removes bias. The result of the process is used to update the state register and
it is later handled by the mixing function to produce random values. The mixing
function is typically an approved hash function.

21

Trusted Computing and TPM 2.0

The Authorisation Subsystem is called by the Command Dispatch when a com-
mand is executed to check if the authorisations to use Shielded Locations have
been provided. Depending on the command access to Shielded Locations may re-
quire no authorisation, single-factor authorisation or complex authorisation policy.

The Random Access Memory (RAM) is the area in which transient data is kept in
the TPM, this means that data is lost when the power state changes to the TPM
OFF state. There are three types of data stored inside the RAM:

o Authorisation Session
e Objects such as Keys and Data blob

e Data about the state of the system stored in the PCRs

Most of the values are stored in Shielded Locations except for a portion of memory
reserved to the I/O buffer.

The Platform Configuration Registers (PCRs) are a set of registers that are au-
tomatically zeroed on reboot and contain measurements computed during the boot
phase or the platform execution. The contents of the PCRs are set to know values
on reboot and data can be added only using a specific command. This permits to
have hash chains of measurements that make it impossible for a malicious client to
forge good measurements. It is possible to store every measurement log inside a
single PCR, but this is discouraged because it makes evaluating the different stages
of platform evolution difficult.

The two main PCR operations are Ertend and Reset. The Extend operation was
extensively discussed previously. Instead, the Reset operation takes in input a PCR
index, erases all previous contents of the register at that index, and sets it to the
default value depending on the register implementation. The reset operation is
automatically executed on boot for all registers, and for registers 17-22 when the
DRTM is launched [1].

The TPM contains multiple PCRs and the number of registers available depends
on the type of platform. The PC client platform requires 24 PCRs and each register
is expected to store specific content, this is shown in the table 2.1 [1].

However, TPM 2.0 allows the creation inside the Non-Volatile Memory user-
defined extend indexes which are essentially PCRs [5]. They can have distinct
access policies and their own authorisation values. Moreover, TPMs 2.0 introduce
PCR banks, which are a group of PCRs supporting a single hash algorithm.

Typically, with the term Objects, we refer to keys and data that are loaded into
the TPM. The key data structure can be generalised for data blobs and the same
can be done with the access properties. A data blob, which requires some PCRs to
have defined values or an authorisation value for access is called Sealed Data Object
and it is managed in the same way as keys are managed. The TPM2_Create is the
command used to create the object, which is not automatically loaded but it must
be done explicitly with TPM2_Load, to load both the private and public portions

22

Trusted Computing and TPM 2.0

Table 2.1. PC client expectation of PCR contents

PCR TCG defined usage Other uses
0 SRTM, BIOS,
Host Platform Extensions
1 Host Platform Configuration
2 Option ROM Code
3 Option ROM Configuration
and Data
4 IPL Code and Boot Attempts Master Boot Record

and Trusted GRUB

) IPL Code Configuration and Data

6 State Transitions and Wake Events

7 Host Platform Manufacturer Specific

8 Static Operating System Trusted GRUB

9 Static Operating System Trusted GRUB

10 Static Operating System Application measurement

register (Linux IMA)
11 Static Operating System

12 Static Operating System Command Line arguments
for boot loader

13 Static Operating System Measurements of user files

14 Static Operating System Loaded files, kernel,

modules, etc
15 Static Operating System

16 Debug
17 DRTM component measurements
18 Measurements of signing authorities

19 Measurements of DLME,

or measurements of signing authorities
20-22 Reserved for use of DLME
23 Application Support

otherwise TPM2_LoadExternal to load the public portion.

Sessions are used to control a sequence of operations such as audit actions, provide
authorisations for actions or encrypt command parameters. A session is created
using specific TPM commands and a handle is assigned when available. It is pos-
sible to create a session inside the same RAM shared with the object store or if
isolation is needed they can be stored separately in dedicated memory areas.

The Non-Volatile Memory (NV) stores TPM persistent state and it contains Shielded
Locations that can be accessed only with Protected Capabilities. The NV memory
can be used for allocation and used by the platform and authorised entities, in
detail it is used to hold:

e NV Index Values;
23

Trusted Computing and TPM 2.0

e Objects made persistent by the TPM2_EvictControl command;
e TPM power states saved by TPM2_Shutdown;

o Persistent NV data

The NV Index is a special NV data structure that may be defined by the OS or
the platform in order to store persistent data values.

The Power Detection Module manages the TPM power states, which are only ON
and OFF, and it is related to the platform states. The specification of the binding
between the TPM and the platform establishes that the TPM must be notified of
all power state changes, such that:

e Any power transition requiring the RTM reset also causes the TPM to reset

e Any power transition requiring the TPM reset also causes the RTM to reset

2.3.2 Implementations

Nowadays, the most popular types of TPM are five. These offer different trade-offs
between security, features, and cost, this is shown in the 2.6. The TPM implemen-
tations in order of security, according to the TCG are [7]:

1. The Discrete TPM is a dedicated chip attached directly to the motherboard
using a low-performance interface. The chip integrates a cryptographic pro-
cessor, RAM, ROM and Flash Memory. The discrete TPM provides the
highest level of security and it is used for the most critical scenarios. To
obtain this level of security, it is designed, built, and evaluated to resist to
tampering attacks and other sophisticated attacks.

2. The Integrated TPM is still a hardware TPM but it is embedded in another
chip. In this case, it is not required to resist tampering instead, since it is
still hardware base it is resistant to software bugs. The security level is one
step down to the Discrete TPM.

3. The Firmware TPM is the first t software-based TPM type. It is implemented
in protected software and because there is no dedicated chip the code runs on
the main CPU. The code is executed and protected by the Trusted Execution
Environment which is an execution environment that is separated from the
rest of the programs running on the CPU. Since it is software-based it is not
tamper-resistant and it is dependent on the TEE operating system, bugs in
the code that runs in the TEE, etc. The security level offered is lower that
the previous implementation.

4. The Virtual TPM, or Hypervisor TPM, is a software implementation of the
TPM. The TPM functionalities are provided by the hypervisor to be used in
isolated execution environments such as Virtual Machines. The security level
is comparable to the Firmware TPM.

24

Trusted Computing and TPM 2.0

5. The Software TPM is typically implemented as a software emulator of the
TPM. However, it has many vulnerabilities, not only tampering but because
it is executed in user space it depends on the bugs in the operating system
and in the running applications. For this reason, it is useful for development
purposes.

HIGHEST A o 555

HIGHER HARDWARE $$ GATEWAYS

HIGH TEE $ ENTERTAINMENT SYSTEMS
NA NA ¢¢ TESTING & PROTOTYPING
HIGH HYPERVISOR © CLOUD ENVIRONMENT

Figure 2.6. TPM implementations [7]

CRITICAL SYSTEMS

2.3.3 TPM 2.0 vs TPM 1.2

The TPM 2.0 was designed by the TCG to extend the specifications of TPM 1.2 and
to overcome some of its limitations. The most important was the SHA-1 algorithm,
on which 1.2 version was mainly based and which was subject to cryptographic
attacks. The new TPM 2.0 capabilities are [5]:

o Algorithm Agility;

Enhanced authorisation;

Quick key loading;

Non-brittle PCRs;

Flexible management;

Identifying resources by name.

25

Trusted Computing and TPM 2.0

Algorithm agility

The TPM 1.2 specification supported only SHA-1 for hashing and RSA as an asym-
metric algorithm. The TPM 2.0 specification, introduces flexibility by allowing new
algorithms. Instead of having SHA-1 which was deprecated by NIST and was not
accepted after 2014, SHA-256 and any algorithm recognised by the TCG can be
used. Symmetric algorithms were introduced allowing keys to be stored off the chip
encrypted with symmetric encryption like Advanced Encryption Standard (AES).
In addition to RSA, new asymmetric algorithms were introduced such as Elliptic
Curve Cryptography (ECC). The new specification was thought to be upgradable
this means that algorithms can be removed or added.

Enhanced authorisation

The TPM 1.2 had a very complicated specification regarding the authentication
mechanism. The TPM could be managed using the owner authorisation or the
physical presence instead, the EK could be used only by gating the owner autho-
risation. Keys had two authorisations: one to make duplicates of the key and one
to use the key. The same happens for PCRs and particular localities which had
two different authorisations, one for reading and one for writing. Some owner-
authorised commands and keys made things even more complicated. The TPM
2.0 instead, has only one unified authorisation model called Enhanced Authorisa-
tion (EA), used for keys, data blobs, NV indexes, and other objects. It is based
on the same specification as TPM 1.2 but it adds new methods of authorisation
and simplifies the overall schema. Some of the following kinds of authorisation are
extended from TPM 1.2, others are introduced:

e Password in the clear: is used mainly for the BIOS, where there is no need
to use the HMAC key;

o HMAC key: is preferred when the OS is not trusted but the software talking
with the TPM is trusted;

e Signature and Signature with additional data: the first one can be used to
implement a smart card while the second one can be used for fingerprinting
where additional data is needed;

e PCR walues: can be used to prevent access to data stored in the TPM if the
system has been compromised;

e Locality: can be used to indicate where a particular command comes from;
e Time: is used to define policies to limit access to a key to certain times;

o Internal Counter: is used to limit access to objects when the internal counter
has certain values;

o Value in an NV index: is useful for revoking access to a key;

e Physical presence: requires that the TPM is physically accessed by the user.
26

Trusted Computing and TPM 2.0

Additionally, it is possible to create more complicated policies by combining
some of the previous with logical AND or OR operations.

Quick key loading

In version 1.2, when a key was loaded it had to be decrypted using the parent’s
private key. This process was time-consuming and for this reason, if this operation
was done multiple times in a session, to make the process faster, the key was
encrypted with a symmetric key and loaded in the cache. The problem was that
after TPM was turned off, the cache was erased, and the process had to start from
the beginning. The TPM 2.0 solves this problem using symmetric encryption for
keys stored on external memory.

Non-brittle PCRs

The fragility of PCRs was one of the many problems of TPM 1.2. An example of
PCR fragility can be found in the BIOS upgrade scenario, in which before the BIOS
upgrade the TPM 1.2 had to unseal all the secrets locked to PCR 0, representing
the BIOS, and then resealed after the upgrade. Instead in TPM 2.0, it is possible
to seal things to a PCR value that was approved by a particular authority, this
means that a secret can be released only if the PCR is in the state approved by a
particular signer.

Flexible management

In TPM 1.2 specification, only two authentications existed: the Storage Root Key
(SRK) and the owner authorisation. The owner authorisation was used for many
purposes and giving the same authorisation to so many roles made it very difficult
to manage these roles independently. For these reasons and many others in the
TPM 2.0 family, the roles are separated in the specification itself. This is possible
by assigning different authorisations and policies to each role, and by defining four
different hierarchies, which are:

e Storage hierarchy: replicates the TPM 1.0 and TPM 1.2 family specification
for SRK;

e Platform hierarchy: is mainly used by the BIOS and not by the end user;

e Endorsement hierarchy: prevents the TPM to be used for attestation without
any approval;

e Null hierarchy: differs from the previous one because it does not require any
password or authorisation policy. The TPM is used as a simple cryptographic
CO-ProCessor.

27

Trusted Computing and TPM 2.0

Identifying resources by name

In version 1.2, resources were identified by the handle. This means that if two
resources, A and B, had the same authorisation, the software can trick the user into
authorising a different action on resource B instead of performing it on resource
A. Version 2.0, resolve this possible attack by identifying resources by their name,
which is cryptographically bound to them. In addition, the name can be signed
using a TPM key to provide evidence that the name is correct.

2.4 TPM Software Stack 2.0

The TPM Software Stack 2.0 (TSS 2.0) is a software specification designed by the
TCG to provide a standard API to programmers for accessing the functions of the
TPM 2.0 [8]. This is possible thanks to the abstraction of the hardware provided by
the TSS, which permits isolating application developers from the low-level details
of interfacing with the TPM. In addition hardware abstraction permits to write
applications that will work independently of the hardware, OS or environment used.
The TSS consists of multiple software layers, that allow TSS implementations to
scale from resource-constrained low-end systems to high-end systems. Each layer is
intended to use resources and functionalities from the layer below and provide its
functionalities to the layer above. The higher the layer, the lower the knowledge of
the low-level details. The overall architecture is shown in Figure 2.7

TPM Device Driver

The TPM Device Driver is the first layer that sits on top of the TPM interface. Its
role is to manage the communications with the TPM by receiving a buffer stream
of bytes and performing the operations needed before sending it to the TPM and
by returning the response up to the stack.

Resource Manager (RM)

Similar to a virtual memory manager, the Resource Manager (RM) manages the
TPM context. It efficiently swaps objects, sessions, and sequences in and out of the
TPM memory, which is limited in capacity, as required. This functionality remains
mostly concealed from the upper layers of the T'SS and is not mandatory. Nonethe-
less, if the RM is not implemented, the upper layers will assume responsibility for
managing the TPM context.

The RM intercepts the command byte stream, checks which resources need to be
loaded, determines how many resources need to be swapped out to load the newest
and finally loads the resources needed. In case the resources to load are objects
and sequences, the RM needs to create virtual handles for these resources before
returning them.

Typically the RM is combined with the TAB into one component per TPM. They
both are transparent to the upper layers of the stack and this means that it is not

28

Trusted Computing and TPM 2.0

| Application |

i

| Feature API (FAPI) |

| Enhanced Systé_'m API (ESAPI) |

System API (SAPI)

g

TCTI

K

TPM Access Broker

R

—| TPM Access Broker - — —|

il

FPM Access Broker

}

i

{

| Resource Mgr]_ _‘ ResnurmMgr]— ~|— Ilesuun:eMgr }

TPM Access
Broker

Local TPM driver - — Sim TPM driver)— + Virt TPM drluer
t Resource Mgr ‘
TPM =
Local TPM Virtual TPM Local TPM driver |
Slmulator ¢

Remate TPM

Figure 2.7. TSS Architecture [8]

mandatory to implement them. However, if they are not implemented the upper
layers need to include those functionalities, especially for applications running in a
multi-threaded environment.

Application transparency is accomplished by enabling applications to seamlessly
operate with a Resource Manager (RM) without necessitating any modifications or
recompilation. Applications that originally operate without an RM can smoothly
transition to using an RM without any code changes. However, it is crucial for
these applications to be aware of and support the supplementary error codes that
arise when an RM is present [9].

TPM Access Broker (TAB)

The TAB has two responsibilities. The first one is to control and synchronise
access to the TPM. Since the TAB is one per TPM, it is typically shared between
multiple processes. The TAB ensures that a process accessing the TPM can carry
out a TPM command without any disruptions caused by other concurrent processes.
The second responsibility is to prevent processes from accessing resources they don’t
own such as objects, sequences, or TPM sessions[9].

To provide a more detailed explanation, the TAB layer offers multi-user support
for a single TPM device. Scheduling occurs on a per-command basis, where a

29

Trusted Computing and TPM 2.0

single caller command may correspond to multiple TPM commands. The TAB
ensures that the TPM executes all commands associated with a caller command
before moving on to serve the next user in its scheduler. The TAB maintains a
wait queue of caller commands awaiting scheduling. The TAB is authorised to
optimise a command cancellation request received from the caller. If a command
has not yet been transmitted to the TPM, the TAB can promptly respond with a
TPM_RC_CANCELED status and remove the command from the queue.

The expected implementation of the TAB/RM functional properties is through a
daemon, which can potentially incorporate additional features like access control
restrictions. The specific internal interfaces between this daemon and the TAB/RM
module are determined by the implementation. A vendor offering such a daemon
is anticipated to provide a complementary set comprising the daemon itself and a
TCTI Client-Provider. The interface between the TCTI and the RM is not specified
by TCG.

TPM Access Broker and Resource Manager

As previously mentioned the TAB and RM are typically combined together. The
most relevant example is the tpm2-abrmd, which is a user-space daemon, developed
according to the TCG specifications, that works in conjunction with the kernel’s
TPM Device Driver to provide resource management and access control for TPM
operations [10].

During the boot process of the operating system, the tpm2-abrmd daemon should
be initiated. Communication between the daemon and clients that interact with
the TPM occurs through a combination of DBus and Unix pipes. DBus facilitates
tasks such as discovery, session management, and certain API calls. On the other
hand, pipes are utilised to transmit TPM commands and receive corresponding
responses between the client and server components.

Another solution to the tpm2-abrmd, in Linux, is the in-kernel RM, which was
introduced starting from kernel version 4.12 . It is a kernel-space daemon and it
offers the same functionalities as the tpm2-abrmd. However, the biggest problem
is that there are TPM 2.0 users who are still running older kernel versions, for this
reason it is recommended that developers utilise the tpm2-abrmd as the default
option to ensure the broadest support and stability. It is possible by organising the
code properly to switch between different TPM Command Transmission Interface
(TCTI) modules, making the migration to the in-kernel RM a smooth process.

TPM Command Transmission Interface (TCTI)

The TCTTI is the layer in charge of handling the communication to and from the
lower layers of the stack using two interfaces to communicate with the TPM: the
legacy TIS interface and the Command/Response buffer (CRB). Depending on
the TPM implementation, different interfaces are needed (e.g. for local hardware
TPMs, firmware TPMs, virtual TPMs, remote TPMs and software TPM simula-
tors) [11]. The TCTI API is intended for utilisation across a wide spectrum of
computing devices, spanning from deeply embedded systems to server operating
systems. To utilise the TCTI, one must possess knowledge of standard device

30

Trusted Computing and TPM 2.0

driver interfaces. The purpose of the TCTI is to transmit marshalled commands
to the TPM and receive marshalled responses in return. It is built to enable the
switching of modules during run-time. The TCTI incorporates conventions and
aids that facilitate run-time loading, while still permitting compile-time linking
without conflicts in namespaces. The initialisation process of the TCTI interface
is carried out in a manner specific to each driver. The TCTI context structure is
the component that is created when an upper layer wants to communicate with the
TPM. In addition, the TCTI context structure is created as one per-process and
per-TPM structure.

Marshalling/Unmarshalling (MUAPT)

The MUAPI is required by both SAPI and ESAPI. It has two functionalities: mar-
shalling is the operation of building the TPM command byte stream; the unmar-
shalling is the operation of decomposing the TPM response byte streams.

System API (SAPI)

The SAPI is the layer that provides access to all the functionality of a TPM 2.0
implementation. It is mainly used wherever low-level calls to the TPM are made,
such as firmware, BIOS, OS, etc. The goals of the SAPI specifications are:

e provide access to all functionality;

e be usable independently from memory-constrained environments to multipro-
CESSOr Servers;

e make programmer's job easier;
e support synchronous and asynchronous calls to TPM,;

e SAPI implementations do not need to allocate any memory

Enhanced System API (ESAPI)

The ESAPI is an interface designed to sit above the System API. The goals of
the ESAPI are similar to the previous ones listed for the SAPI but there are some
differences [12]:

e provide cryptographic operations on data passed to or received from the TPM;

e provide enhanced session management functionality on top of SAPI function-
ality;

e provide 100% TPM functionality.
Even though ESAPI is less complex than SAPI, it still requires a good knowledge
of the interface of TPM 2.0. In addition, SAPI provides a better implementation

for those memory-constrained environments than ESAPI because it uses less RAM
and it doesn’t include some cryptographic operations.

31

Trusted Computing and TPM 2.0

Feature API (FAPI)

The FAPI is the highest layer of the TSS architecture and it sits above the ESAPI

[13]. The main goal are:

e provide the most-used functionalities of TPM 2.0 to programmers. There-
fore, the Feature API does not encompass all the corner cases and advanced
functionalities that the TPM 2.0 is capable of supporting;

e reduce the number of calls that have to be done and the number of parameters
that have to be defined;

e introduce profile files to create default selections of keys attributes (e.g., al-
gorithm, key size, signing schema and crypto mode) written in JSON;

e provide wherever applicable salted HMAC sessions and parameter encryption
for all communications with the TPM;

A comparison of code sizes between TSS interfaces is shown in Figure 2.8:

When considering code size, the Feature API tends to have a smaller footprint,
making it more lightweight compared to other interfaces. It focuses on providing a
simplified set of functionalities, which contributes to its reduced code size.

On the other hand, the Extended System API (ESAPI) and System API (SAPI)
typically have larger code sizes compared to the Feature API. This is because ESAPI
and SAPI encompass a broader range of functionalities, offering more comprehen-

sive coverage of the TPM's capabilities.

The additional features and flexibility

provided by these interfaces contribute to their larger code size.

FAPI [2 lines of code] SAPI [33 lines of code]
Fapi_Sign_async (fctx, Application_EncryptSalt (session.salt, Application_CalculateRpHash (cc, keyName,
"name/of/my/key", &encryptedSalt); rpBuffer, &rpHash);
. Tss2_Sys_StartAuthSessionKey (sctx, Application_VerifyHmac (session.key, myNonce,
payload) ;
Fapi_Sign_finisth (fctx srkHar_1dIe, encryptedSalt cc, rpHagsr}, rspAuth, &pmNonce);
— — . ’ &sessionHandle, &tpmNonce); Tss2_Sys_Load_Finish (sctx, &keyHandle);
&signature); Application_CalculateSessionKey (Tss2_Sys_RSA_Sign_Prepare (sctx, keyHandle,
session.salt, &session.key); parameter);
ESAPI [9 lines of code] TssZ_Sys_II::;:IEE)r;epare (sctx, srkHandle, Tss2_Sys_GetCommandCode (sctx, &cc);

Esys_TR_SetAuthValue (ectx,
srkTR, authValue);
Esys StartAuthSession (ectx,
srkTR, &sessionTR;
Esys_Load_async (ectx, srkTR,
sessionTR, keyblob);
Esys_Load_finish (ectx, &keyTR);
Esys_TR_SetAuthValue (ectx,
keyTR, authValue);
Esys_RSA_Sign_async (ectx,
srkTR, sessionTR,
parameters);
Esys_RSA_Sign_finish (ectx,
¶meters);
Esys_FlushContext (ectx,
sessionTR);
Esys_FlushContext (ectx, keyTR);

Application_GetMetadata (session.key,
session.nonceTPM, srkName,
keyName);

Tss2_Sys_GetCommandCode (sctx, &cc);

Tss2_Sys_GetCpBuffer (sctx, &buffer);

Tss2_Sys_GetDecryptParam ();

Application_EncryptParameter ();

Tss2_Sys_SetDecryptParam ();

Application_CalculateHmac (cc, srkName,
keyName, buffer, &cpHash);

Application_CalculateHmac (session.key,
session.nonceTPM, myNonce,
cpHash, authValue, &hmac);

Tss2_Sys_SetCmdAuths (sctx,
sessionHandle, hmac);

Tss2_Sys_Execute (sctx);

Tss2_Sys_GetRspAuths (sctx, &rspAuths);

Tss2_Sys_GetRpBuffer (sctx, &buffer);

Tss2_Sys_GetCpBuffer (sctx, &buffer);
Application_Cal CpHash (cc, keyName,
buffer, &cpHash);
Application_CalculateHmac (session.key,
session.nonceTPM, myNonce, cpHash,
authValue, &hmac);
Tss2_Sys_SetCmdAuths (sctx, sessionHandle,
hmac);
Tss2_Sys_Execute (sctx);
Tss2_Sys_GetRspAuths (sctx, &rspAuths);
Tss2_Sys_GetRpBuffer (sctx, &buffer);
Application_CalculateRpHash (cc, keyName,
rpBuffer, &rpHash);
Application_VerifyHmac (session.key, myNonce,
cc, rpHash, rspAuth, &pmNonce);
Tss2_Sys_RSA_Sign_Finish (sctx, ¶meter);
Tss2_Sys_FlushContext (sctx, sessionHandle);
Tss2_Sys_FlushContext (sctx, keyHandle);

PP

Figure 2.8.

Code size comparison between TSS Interfaces [14]

32

Chapter 3

ESAPI

In order to cover all the functionalities provided by the TPM 2.0, the ESAPI
interface was chosen for the scope of this thesis, despite the FAPI offering a simpler
approach for application development based on TPM 2.0. The decision was made
because the ESAPI interface provides more comprehensive coverage of the TPM's
capabilities.

3.1 Overview

The Enhanced System API (ESAPI) is designed to function as an intermediate
layer between the System API and applications utilising TPM functionalities [12].
Its main purpose is to simplify the programming complexity for applications that
require both system-level TPM calls and cryptographic operations on the data
exchanged with the TPM.

ESAPI is particularly beneficial for applications that need to utilise secure ses-
sions for operations such as HMAC (Hash-based Message Authentication Code),
parameter encryption, parameter decryption, TPM command auditing, TPM pol-
icy operations, and context/object management.

While the ESAPT offers a less complex alternative to the System API for cryp-
tographic interactions with the TPM, it still requires a deep understanding of the
TPM 2.0 interface. Therefore, it is expected that only experts developing applica-
tions will make use of the ESAPI, while typical applications may prefer higher-level
interfaces like the Feature API.

The distinctions between ESAPI and SAPI are [15]:

e ESAPI provides simpler handling, from the application's perspective, of cer-
tain functions compared to SAPI. These functions include starting and salting
sessions, calculating HMACs, and encrypting/decrypting sessions;

e Implementing an application using the SAPI interface offers advantages for
the following reasons: SAPI implementations have a smaller footprint pri-
marily because they exclude cryptographic functions. SAPI is suitable for
use in environments with limited heap space. Additionally, SAPI allows sav-
ing RAM by allocating less memory for data structures.

33

ESAPI

3.1.1 ESAPI Key features

The ESAPT APT exhibits the following key characteristics [12]:

1. Written in C99: The ESAPI is implemented in C99 to ensure compatibility
across a wide range of operating systems and simplify the creation of language
bindings for other programming languages (such as Java, Python, etc.);

2. Fine-grained Control over Input Parameters: Applications using the
ESAPI have control over all input parameters and data elements included in
TPM commands, except for HMAC session calculation;

3. Simplified TPM Command Handling: The ESAPI is designed to enable
applications to send commands to the TPM with a single or minimal number
of function calls, particularly when utilising sessions. This streamlines the
process compared to the SAPI,;

4. Abstraction of Formatting and Crypto Handling: The ESAPI ab-
stracts the application from the problems related to formatting and crypto-
graphic operations, performing these tasks within the ESAPI layer or lower
layers;

5. Session Management: The ESAPI handles various aspects of session man-
agement, including session key calculation, session salt creation and encryp-
tion, HMAC calculation, resource name tracking, and session binding;

6. Additional Functionality: The ESAPI provides additional capabilities,
such as HMAC calculation/verification with an authValue input, encryp-
tion/decryption of the first parameter with a key input, support for audit
sessions, and cryptographic flexibility /agility;

7. State Management and Contexts: ESAPI implementations do not re-
quire maintaining state in global variables between function calls. Instead,
state information is stored in contexts provided to the application. Multi-
ple ESAPI contexts can be accessed simultaneously, but two threads can not
access the same ESAPI context simultaneously;

8. Synchronous and Asynchronous Call Support: The ESAPI supports
both synchronous and asynchronous call models, accommodating different
application requirements;

9. Alignment with TPM 2.0 Specification: The ESAPI closely follows the
command schematics outlined in the TPM 2.0 Command Specification de-
fined by the TCG. This design choice aids programmers in understanding the
code and facilitates correlation with the specification. Function input and
output parameters are ordered to match this specification, and names are
kept as similar as possible. Additionally, the ESAPI includes functionality to
automatically set up and tear down sessions as part of larger operations;

34

ESAPI

10. Memory Handling: The ESAPI implementation provides memory for ESAPI
output parameters, whereas memory for ESAPI input parameters is provided
by the caller;

11. Simplification for the Caller: The ESAPI implementation handles tasks
that System API implementations typically require but with improved ease
of use;

12. Cryptographic Operations and Data Management: The Enhanced
System API implementation handles a significant portion of the cryptographic
operations and data management associated with TPM 2.0 sessions;

13. Handling of Object: For objects with a nameAlg digest, the Enhanced
System API implementation performs hashing of TPM2B_AUTH values with
the nameAlg of the object when the length of the TPM2B_AUTH value ex-
ceeds the length of the nameAlg digest size. This approach ensures that
authentication values larger than the nameAlg hash length do not trigger a
TPM2 RC_AUTH FAIL error during object creation.

3.1.2 Top-Level usage

The application follows a series of steps, alongside the ESAPI, to establish contexts
and sessions:

1. Initialisation of ESAPI Context:

(a) The application initialises an ESAPI context;
(b) The ESAPI dynamically allocates memory on the heap to track the
necessary metadata for each TPM resource;
2. Invocation of TPM Commands and Resource Handling:
(a) The application calls TPM commands, with resource handling partially
automated by the ESAPI;

(b) If a command creates a new resource, the ESAPI generates a new ESYS_TR
object to track the resource and its metadata;

(c) For static TPM resources such as NV and persistent keys, ESYS_TR ob-
jects can be serialised /deserialised from disk or directly created from the
TPM;

3. Flushing or Closing ESYS_TR Objects:
(a) The application flushes or closes ESYS_TR objects through ESAPT calls,

allowing the ESAPI to free allocated memory;

(b) If a command destroys a TPM resource, the ESAPI automatically re-
leases the memory used by the object metadata and marks the ESYS_TR
object as invalid;

35

ESAPI

(c) The application may close the ESYS_TR to release the memory utilised
by the ESAPI without affecting the resource within the TPM;

4. Closing of ESAPI Context: The application closes the ESAPI context when
it has finished its operations.

Throughout these steps, the application and ESAPI collaborate to initialise
contexts, start sessions, create/load objects, and manage memory allocation. The
ESAPI's role includes dynamically allocating memory for metadata, automating re-
source handling, managing session metadata and calculations, and freeing memory
as needed.

3.2 Structures

3.2.1 ESYS CONTEXT

The ESYS_CONTEXT, which serves as the ESAPI context, is a concealed structure
that encapsulates all the necessary information for the ESAPI module to store
between calls, eliminating the need for global state variables. It comprises the
following components:

e Information for TPM communication, including the System API command
context and the TPM Command Transmission Interface (TCTI) context;

e Metadata associated with each ESYS_TR object;

e State information for internally used libraries, such as cryptographic libraries,
and cached TPM capabilities.

Memory allocation for the ESYS_CONTEXT is handled by the ESAPI. The life
cycle of an ESYS_CONTEXT can be summarised as follows:

e Create an ESYS_CONTEXT by utilising the Esys_Initialize() function;

e Create or deserialise metadata from disk storage for the session and resource
information structures;

e Utilise sessions and resources in TPM commands;
e Serialise resource information structures back to disk;

e Conclude the usage of the ESYS_CONTEXT by invoking Esys_Finalize() to
close it.

In this way, the ESYS_CONTEXT provides a centralised storage mechanism for
essential information, allowing the ESAPI module to operate without relying on
global state variables.

36

ESAPI

3.2.2 ESYS. TR

The metadata associated with TPM resources is stored in an opaque structure that
is linked to an ESYS_CONTEXT and referenced by an ESYS_TR handle. An ESYS_TR
object created within a specific ESYS_CONTEXT can only be utilised within that
particular ESYS_CONTEXT.

The metadata for an ESYS_TR object encompasses various information, includ-
ing:

e The TPM handle for the resource, such as PCR, NV area, TPM objects (keys,
data), or hierarchies;

e The authValue of the resource, if applicable;
e The public area of the resource represented by TPM2B_PUBLIC or TPM2B _NV_PUBLIC;

e The resource name, which can be computed from the aforementioned details.
The life cycle of an ESAPI resource can be summarised as follows:

1. Create an ESYS_TR object:

(a) For transient TPM objects, the appropriate load function (e.g., Esys_Load (),
Esys_LoadExternal ()) is called, and the ESAPI module generates a new
ESYS_TR object;

(b) For persistent resources (e.g., evict keys, NV areas):

e Create an ESYS_TR object using Esys_TR_FromTPMPublic();

e Alternatively, deserialise metadata from disk using Esys_TR Deserialize();

(c) For TPM meta-objects (e.g., hierarchies and PCRs), each ESYS_CONTEXT
contains a preexisting singleton ESYS_TR object that can be directly used;

(d) Set the authValue for the resource using the Esys_TR_SetAuth() func-
tion;
2. Perform TPM calls that reference the resource within the handle area using
the Esys_commandName () template;
3. Serialise metadata to disk using the Esys_TR_Serialise() function;

4. Destroy an ESYS_TR object:

(a) Flush or remove the resource from the TPM when no longer needed, util-
ising functions like Esys_FlushContext (), Esys_NV_UndefineSpace(),
Esys_NV_UndefineSpaceSpecial(), Esys_EvictControl();

(b) Close the object using Esys_TR_Close () to release the associated meta-
data while keeping the resource intact within the TPM.

37

ESAPI

In this way, the ESYS_TR objects serve as handles to TPM resources, allowing
for the creation, utilisation, serialisation, and destruction of resources within the
context of an ESYS_CONTEXT.

TPM resource data is used by the ESAPI module to associate a TPM resource
handle with relevant information maintained by the ESAPI. This resource data
typically includes the public information associated with the resource, as well as
the corresponding authorisation value, the authValue, that grants authorisation
for the resource's usage.

3.2.3 ESYS SESSION

ESAPI session data is stored within an opaque session information structure in
an ESYS_CONTEXT and referenced by an ESYS_TR. The session information structure
encompasses various types of data, including:

e TPM handle for the session;

e Information regarding session attributes to be used in the subsequent com-
mand;

e Details related to the bound state and encrypted salt of the session;
e Information associated with the generation and storage of the session key;
e Session nonce;

e Policy session-specific information.

The life cycle of an ESAPI session can be summarised as follows:

1. Start the session using the Esys_StartAuthSession() function;

2. Perform TPM calls that reference the session using the Esys_commandName ()
function template;

3. Close the session using the Esys FlushContext() function to immediately
evict the session, or set the continueSession bit to false using Esys_TRSess_
SetAttributes() to evict the session the next time it is utilised.

By following this life cycle, the ESAPI manages the session data within the
opaque session information structure, allowing for the initiation, utilisation, and
closure of sessions within the ESYS_CONTEXT.

TPM session data is essential for the ESAPI module to manage the state of
a specific TPM session and facilitate secure communication with the TPM. This
data includes crucial information such as the session key, session attributes, and
session defaults. Some of this information, like the session key, is also stored within
the TPM itself. However, certain details, such as session default attributes, are

specifically designed to simplify application requirements and are not shared with
the TPM.

38

ESAPI

3.3 Functions

Previously, during the definition of the ESAPI key features, we have said that the
ESAPI tries to mimic the TCG specification for the TPM 2.0 commands to help
programmers easily develop and understand the code.

In the following paragraphs, we are going to discuss and provide a general
overview of the ESAPI functions used during the development of this thesis. This
will provide a comprehensive understanding of the input and output parameters
involved in these functions where possible, without repeating the one already dis-
cussed.

3.3.1 ESAPI Exclusive Command
Initialise

The Esys_Initialize() function initialises an ESYS_CONTEXT context which will
be used for subsequent ESAPI functions that require an open ESAPI context.
Definition:

TSS2_RC_Esys_Initialize (ESYS_CONTEXT #**esysContext,
TSS2_TCTI_CONTEXT *tcti, TSS2_ABI_VERSION *abiVersion);

The esysContert is a pointer to the opaque ESYS_CONTEXT blob, it is allocated
by the ESAPI and by definition it must not be null. The tcti is a reference pointer
to a TCTI_CONTEXT used by the ESAPI to communicate with the TPM. If TCTI is
NULL it will open a connection to the local TPM. The abiVersion is a reference
to a pointer to the ABI_VERSION that the application requests and this must match
the ESAPI's ABI_VERSION otherwise an error is returned.

Finalise

The Esys_Finalize() function closes an ESAPI_CONTEXT that was previously cre-
ated with Esys_Initialize(). The ESAPI_CONTEXT is cleared but it is best practice
to flush all ESYS_TR objects before invoking it otherwise the TPM becomes crowded
with objects that are supposed to be flushed. Definition:

void Esys_Finalize(ESYS_CONTEXT **esysContext);

Free

Many ESAPI functions allocate memory for output parameters and the Esys_Free ()
function is used to free the allocated memory. This function has a similar role of
free() for malloc/calloc() in C or delete() for new() in C++. Definition:

void Esys_Free(void *ptr);

The ptr is a pointer to memory to be freed.

39

ESAPI

Set Authentication

This function set the authentication value associated with an ESYS_TR object. The
authentication value is used if the ESYS_TR object is used in a command that re-
quires authValue based authentication, such as password-authentication, HMAC-
authentication, PolicySecret or PolicyPassword-enabled policy sessions. This value
is stored in the ESYS_CONTEXT and if we want to delete the value we need to over-
write it with NULL. This can be done by passing NULL inside the function for the
authValue field. Because the authValue is not part of the serialisation blob for
the ESYS_TR object, it needs to be set after any serialisation/deserialisation.

Definition:

TSS2_RC Esys_TR_SetAuth(ESYS_CONTEXT *esysContext, ESYS_TR
handle, TPM2B_AUTH const *authValue);

The esysContext is a pointer to the opaque context blob used and must not
be null.
The handle is the identifier of the ESYS_TR object for which the authValue is set.
The authValue is a pointer to the TPM2B_AUTH structure containing the password.
The ESAPI module will copy this value into its internal state. It is possible to
reset the authorisation value associated with the object by passing NULL, or an
authValue of length zero.
The TPM2B_AUTH is a structure used for an authorisation value and limits an au-
thValue to being no larger than the largest digest produced by a TPM. In case
the authValue is greater than the length of the nameAlg digest associated with
the object, the ESAPI shall hash the contents of the authValue buffer using that
object's nameAlg algorithm and set the size field to the length of the digest in bytes
in the ESYS_CONTEXT state.

Set Authentication Parameters

This function is used to set or clear session attributes, such as continueSession,
encrypt or decrypt. The new session attributes are computed in the following
way:

attributes = (attributes A —mask) | (flags A mask)

If the function is never called the default values for the session flags are: continueSession
bit is set and all other bits are clear. If the continueSession value is CLEAR(O)
the ESYS_TR object for the session is invalidated after the next successful TPM re-
sponse. After which, the ESAPI must set the internal type/status of the ESYS_TR
sequenceHandle to invalid so that it cannot be used. In this case, the ESYS_TR does
not need to be flushed with Esys_FlushContext () or closed with Esys_TR_Close().
Definition:

TSS2_RC Esys_TRSess_SetAttributes(ESYS_CONTEXT x*esysContext,
ESYS_TR session, TPMA_SESSION flags, TPMA_SESSION mask);

40

ESAPI

The esysContext is a pointer to the opaque context blob on which we are op-
erating. The session parameter refers to the session, for which we are setting the
session attributes. The flags parameter indicates which bits are modified, any bits
that are clear in the mask will not be modified. If we want to set all bits simulta-
neously we can use OxFF otherwise. The mask parameter of type TPMA_SESSION, is
an octet used to identify the session type. In the following Table 3.1 is possible to
check the parameters and the possible usages [8].

3.3.2 ESAPI Command Template

The ESAPI specification outlines a collection of functions that follow a template
format. For each command defined in the TCG specification for the TPM 2.0 com-
mands [16], the ESAPI includes three corresponding functions: Esys_commandName (),
Esys_commandName Async (), and Esys_commandName Finish(). These functions
offer both synchronous and asynchronous invocation of TPM commands.

When using the synchronous approach, the Esys_commandName () function is
called directly. It causes the ESAPI to execute the TPM command and blocks until
the execution is complete. Within the function's scope, Esys_commandName _Async ()
is invoked, setting the timeout to indefinite. Subsequently, the
Esys_commandName Finish() function is called, and the Esys_commandName () func-
tion remains blocked until the return code is TSS2_BASE_RC_TRY_AGAIN.

On the other hand, the Esys_commandName Async () function is used for asyn-
chronous execution of TPM commands. It does not block while the TPM executes
the command. To retrieve the TPM's response parameters, the
Esys_commandName Finish() function must be called.

The Esys_commandName Finish() function is responsible for obtaining the re-
sults of an asynchronous TPM command. Its blocking behaviour is determined by
the timeout set using Esys_SetTimeout (), which is non-blocking by default. When
the TPM returns an object name, the ESAPI records these parameters within the
associated ESYS_TR object instead of returning them to the caller. Therefore, the
output parameter's name is not present in certain functions such as Esys_Load(),
Esys_CreatePrimary(), Esys_LoadExternal (), and Esys_CreateLoaded (). How-
ever, this rule does not apply to Esys_ReadPublic (), which can be used to retrieve
the output parameter's name, as well as Esys_NV_ReadPublic().

Create

The TPM2_Create() command is utilised to generate an object that can be sub-
sequently loaded into a TPM using the Esys_Load() function. Upon successful
completion of the command, the TPM will create the new object and provide the
caller with its creation data (creationData), public area (outPublic), and en-
crypted sensitive area (outPrivate). The responsibility of preserving the returned
data lays with the caller. Prior to usage, the object needs to be loaded. The sole
distinction between the inPublic and outPublic lays in the unique field.

41

ESAPI

Table 3.1. TPMA_SESSION Parameters

Bit

Parameter name

Description

continueSession

SET(1): session remain active after successful completion of the
command.

CLEAR(0): TPM should close the session and flush any related
context when the command completes successfully.

auditExclusive

SET(1): this setting is only allowed if the audit attribute is SET.
In a command this setting indicates that the command should
only be executed if the session is exclusive. In a response, it
indicates that the session is exclusive.

CLEAR(0): the opposite of the SET. In addition, if the audit
bit is CLEAR also the auditExclusive must be CLEAR both in the
command and the response.

auditReset

SET(1): allowed only if the audit attribute is SET. In a command,
this setting indicates that the audit digest of the session should
be initialised and the exclusive status of the session SET.
CLEAR(O): indicate that the audit digest should not be ini-
tialised. This bit is always set to CLEAR in a response. If the
audit bit is CLEAR also the auditReset must be CLEAR in both
command and response.

reserved

shall be CLEAR.

decrypt

SET(1): in a command indicates that the first parameter in the
command is symmetrically encrypted. The TPM will decrypt
the parameter after performing any HMAC computation and
before unmarshalling the parameter. This attribute may only
be SET in one session per command.

CLEAR(0): session not used for encryption. For password auth
this attribute will be CLEAR in both command and response.

encrypt

SET(1): in a command this setting indicates that the TPM
should use this session to encrypt the first parameter in the re-
sponse.
CLEAR(0): session not used for encryption. For password auth,
this attribute will be CLEAR in both the command and the re-
sponse.

audit

SET(1): both in a command and in a response it indicates that
the session is for audit and that the auditExclusive and auditRe-
set have meaning. The decrypt and encrypt fields can be SET or
CLEAR.

CLEAR(O): session is not used for audit.

The TPM2B_PUBLIC (inPublic) encompasses all the necessary fields to define
the properties of the newly created object. The parentHandle parameter must
reference a loaded decryption key that has both the public and sensitive area loaded.

During the object definition, the caller supplies a structure for the object within
a TPM2B_PUBLIC structure (inPublic), an initial value for the authValue field

42

ESAPI

(inSensitive.userAuth), and, if the object is symmetric, an optional initial data
value (inSensitive.data). The TPM validates this parameter based on the Cre-
ation rules in TPMA_OBJECT as specified.

The inSensitive parameter can be encrypted using parameter encryption.
When a value is indicated as being TPM-generated, it is populated with bits from
the Random Number Generator for TPM2 Create() or with values from the Key
Derivation Function for TPM2_CreatePrimary ().

The TPM performs specific operations based on the type of object being created.
Lets examine the three cases:

e Symmetric key:

— If the input data, inSensitive.sensitive.data, is an EmptyBuffer, a

TPM-generated key value is generated and stored in the new object's
TPM_SENSITIVE.sensitive.sym field. The size of the key is determined
by the parameters specified in inPublic.publicArea .

If the input data, inSensitive.sensitive.data, is not an EmptyBuffer,
the TPM validates that its size does not exceed the key size specified in
the inPublic template. If the condition is met, the input data is copied
to TPMT_SENSITIVE.sensitive.sym of the new object.

A TPM-generated obfuscation value, TPMT_SENSITIVE.sensitive.
seedValue, is generated. Its size is determined by the digest computed
by the nameAlg specified in inPublic. This value prevents leakage of
sensitive information through the public unique value.

The TPMT_PUBLIC.unique.sym value for the new object is computed
by hashing the key and obfuscation values in TPMT_SENSITIVE with the
nameAlg of the object, this can be seen in the following equation 3.1.

e Asymmetric key:

— If inSensitive.sensitive.data is not an EmptyBuffer, the TPM re-

turns TPM_RC_VALUE, indicating that a parameter does not have one of
its allowed values.

A TPM-generated private key value is created with a size determined by
the parameters in inPublic.publicArea.

If the key is a Storage Key, a TPM-generated TPM_SENSITIVE. seedValue
is created; otherwise, TPMT_SENSITIVE.seedValue.size is set to zero.
An object that is not a storage key does not require a symmetric key as
it has no child object to encrypt.

The public unique value is computed from the private key according to
the methods specific to the key type.

If the key is an ECC key and the required scheme defined by curveId
differs from the scheme in the public area of the template, the TPM
returns TPM_RC_SCHEME.

43

ESAPI

— If the key is an ECC key and the required KDF defined by curvelId
differs from the KDF in the public area of the template, the TPM re-
turns TPM_RC_KDF. The caller cannot specify the KDF to be used with
an ECC decryption key in the current implementation. Hence, the KDF
parameter in the template must be set to TPM_ALG_NULL.

e Keyed hash:

— If inSensitive.sensitive.data is an EmptyBuffer and both the sign
and decrypt attributes in inPublic are CLEAR, the TPM returns
TPM_RC_ATTRIBUTES. This indicates a data object with no actual data.

— If both sign and decrypt are either CLEAR or SET, and the scheme in
the public area of the template is not TPM_ALG_NULL, the TPM returns
TPM_RC_SCHEME.

— If inSensitive.sensitive.data is not an EmptyBuffer, it is copied to
TPMT _SENSITIVE.sensitive.bits of the new object.

— If inSensitive.sensitive.data is an EmptyBuffer, a TPM-generated
key value, with a size equal to the digest produced by the nameAlg
specified in inPublic, is stored in
TPMT_SENSITIVE.sensitive.bits .

— A TPM-generated obfuscation value, with a size equal to the digest
produced by the nameAlg specified in inPublic, is stored in
TPMT_SENSITIVE.seedValue .

— The TPMT_PUBLIC.unique.keyedHash value for the new object is gener-
ated using the same equation as mentioned before.

unique 1=

Hyamenig(key (T PM—generated or provided by the caller) || obfuscation.values)
(3.1)

For TPM2 Load(), the TPM applies standard symmetric protections to the
TPMT_SENSITIVE to create outPublic. The encryption key is derived from the
symmetric seed in the sensitive area of the parent.

The ESAPI implementation of TPM2 Create () provides three functions:
Esys_Create(), Esys_Create_Async(), and Esys _Create Finish(), following the
general template.

CreatePrimary

The TPM2_CreatePrimary () command is utilised to create a Primary Object under
one of the Primary Seeds or a Temporary Object under TPM_RH_NULL. This command
takes a TPM2B_PUBLIC as a template for the object being created. The size of the
unique field is not validated for consistency with other object parameters. The

44

ESAPI

command creates and loads a Primary Object, but the sensitive area is not returned.
As a result, the key cannot be reloaded and must either be made persistent or
recreated.

For interoperability purposes, it is recommended that the unique field does not
exceed the size allowed by the object parameters. This ensures that unmarshalling
does not fail. An empty buffer can be used as the value for the unique field.

The TPM2 CreatePrimary() command can create any type of object with any
combination of attributes allowed by TPM2_Create (). The constraints on templates
and parameters are the same, except that a Primary Storage Key and a Temporary
Storage Key are not required to use the algorithms of their parents.

When setting the attributes of the created object, fixedParent, fixedTPM,
decrypt, and restricted are implied to be set in the parent (a Permanent Handle).
The remaining attributes are implied to be CLEAR.

The TPM derives the object from the Primary Seed indicated in primaryHandle
using an approved Key Derivation Function (KDF).

If this command is called multiple times with the same inPublic parameter,
inSensitive.data, and Primary Seed, the TPM will produce the same Primary
Object. However, if the Primary Seed is changed, the generated Primary Objects
with the new seed will be statistically unique, even if the call parameters remain
the same.

Authorisation is required for this command. For a Primary Object attached
to the Platform Primary Seed, authorisation can be provided by platformAuth or
platformPolicy. For a Primary Key attached to the Endorsement Primary Seed,
authorisation can be provided by endorsementAuth or endorsementPolicy.

In the ESAPI implementation, these actions are performed using the functions
Esys_CreatePrimary(), Esys_CreatePrimary_Async(), and
Esys_CreatePrimary Finish() .

Generation Primary Object

During the key generation, two types of keys are produced. The first type is an
ordinary key, which is generated by using the Random Number Generator to seed
the computation. The resulting secret key value is stored in a secure location. The
second type is a Primary Key, which is derived from a seed value rather than directly
from the RNG. Typically, the seed is generated by the RNG and persistently stored
on the TPM. The generation of a Primary Key from a seed is based on the use of
an approved Key Derivation Function, with the specification widely employing the
KDF defined in SP800-108.

The TPM utilises two different schemes for the Key Derivation Function, de-
pending on whether it is used for Elliptic Curve Diffie-Hellman (ECDH) or for
other purposes. The ECDH KDF follows the specifications outlined in SP800-56A.
On the other hand, the Counter mode KDF, referred to as KDFa, is used for all
other instances and employs HMAC as the pseudo-random function, as described
in SP800-108.

45

ESAPI

CreateLoaded

The TPM2_CreateLoaded() command performs two actions: it creates an object

and then loads it into the TPM. The type of object created (Primary, Ordinary, or
Derived) depends on the type of parentHandle specified. If parentHandle is asso-
ciated with a Primary Seed, a Primary Object is created. If the parentHandle is
linked to a Storage Parent, an Ordinary Object is created. And if the parentHandle

is connected to a Derivation parent, a Derived Object is generated. The input val-
idation process is the same as TPM2_Create () and TPM2_CreatePrimary (), except

when parentHandle references a DerivationParent. In that case, sensitiveDataOrigin
in inPublic must be set to CLEAR.

When the parentHandle refers to a DerivationParent or a Primary Seed, the
outPrivate will be an EmptyBuffer. Unlike TPM2_Create () and TPM2_CreatePrimary(),
this command does not provide creation data as a return value. If creation data is
required, the previous commands should be used.

In the ESAPI implementation, these actions are performed using the functions
Esys_CreateLoaded(), Esys_CreateLoaded _Async(), and Esys_CreateLoaded Finish().

Load

The TPM2_Load () command is utilised to load objects into the TPM. This command
is specifically used when both the TPM2B PUBLIC and the TPM2B PRIVATE compo-
nents need to be loaded. If only the TPM2B_PUBLIC component is to be loaded,
the TPM2_LoadExternal () command is used instead. It is important to note that
loading an object is different from restoring a saved object context.

When using the TPM2_Load () command, the TPMA_OBJECT attributes of the ob-
jects are checked based on the specifications'rules. If the object is not a keyedHash
object and both the sign and encrypt attributes are not set, the TPM will return
TPM_RC_ATTRIBUTES.

Objects that are loaded using this command will have a Name, which is de-
termined by concatenating the nameAlg and the digest of the public area. The
nameAlg is a parameter found in the public area of the inPublic structure.

If the inPrivate.size is zero, the load operation will fail. Following that, the
inPrivate.buffer is decrypted using the parent's symmetric key. The integrity
value is checked before the sensitive area is used or unmarshalled. Checking the
integrity before utilising the data helps prevent attacks on the sensitive area by
analysing response code differences caused by fuzzing the data.

The command returns a handle for the loaded object and the Name that the
TPM computed for inPublic.public. The returned handle is associated with the
object until it is flushed.

In the ESAPI implementation, the TPM2 Load () command provides three func-
tions following a general template: Esys_Load(), Esys_Load_Async(), and
Esys_Load Finish().

46

ESAPI

PCR Operations

PCR Initialisation

When a TPM is reset or restarted, the PCRs (Platform Configuration Registers)
are set back to their default initial state. However, certain PCRs may be designated
to preserve certain values during a TPM resume operation. These preserved PCRs
are restored to the state they had at the last TPM2 _Shutdown(state) operation.
Any PCRs that are not designated as preserved are restored to their default initial
state when the TPM2_Startup() operation successfully concludes.

In addition to TPM resets and restarts, a PCR can also be reset using
TPM2 PCR Reset () or by a Dynamic Root of Trust, if allowed by its attributes.
The attributes of PCRs are specified in the platform-specific specification. These
attributes determine the reset value of a PCR and the localities required to perform
the reset. For all PCRs except for PCR[0], the default initial condition is either all
bits cleared or all bits set.

PCR Integrity Collection

In TPM 1.2, an Event was hashed using the SHA1 algorithm, and the resulting
digest was extended to a PCR using the TPM_Extend () function. However, TPM
2.0 introduced some enhancements. It allows the use of multiple PCRs at a specific
Index, with each PCR able to use a different hash algorithm. Furthermore, instead
of requiring external software to generate multiple hashes of the Event, TPM 2.0
enables the Event data to be sent directly to the TPM for hashing. This ensures
that the chosen hash algorithms for the PCRs are accurately reflected, even if the
calling software cannot implement the hash algorithm itself.

Changing the value of a PCR requires authorisation, which can be in the form of
an authorisation value or an authorisation policy. The determination of which PCRs
can be controlled by a policy is specified in the platform-specific specifications. All
other PCRs are controlled by authorisation using an authorisation value.

If a PCR is associated with a policy, the algorithm ID of that policy determines
whether the policy should be applied. If the algorithm ID is not TPM_ALG_NULL,
then the policy digest associated with the PCR must match the policyDigest in
a policy session. However, if the algorithm ID is TPM_ALG_NULL, it means that no
policy is present, and authorisation can be granted with an EmptyAuth.

If a platform-specific specification indicates that PCRs are grouped, it means
that all the PCRs in that group share the same authorisation policy or authorisation
value.

PCR Extend

The TPM2_PCR_Extend() command is utilised to update a specific PCR. The
digests parameter contains one or more tagged digest values, each identified by an
algorithm ID. Each digest value is then extended into the PCR associated with the
pcrHandle, in the corresponding bank specified by the tag hashAlg such as SHA-1
or SHA-256.

47

ESAPI

For each entry in the list, the TPM checks if the pcrNum is implemented for
that algorithm. If it is, the following operation is performed 3.2:

PCR.digest| pcrNum |[hashAlg | :=

Hypasnaig(PCR.digestyq] perNum || hashAlg | || data] hashAlg |.buf fer)
(3.2)

Here, Hpqsnaig represents the hash function using the hash algorithm asso-
ciated with the PCR instance, PCR.digest refers to the digest value in a PCR,
pcrNum is the numeric selector for the PCR (pcrHandle), hashAlg is the algorithm
selector for the digest, and datalalg] .buffer represents the bank-specific data to
be extended.

If no digest value is specified for a particular bank, the corresponding PCR
in that bank remains unchanged. If a digest value is specified but the selected
bank is not implemented, the digest value is not utilised. For instance, if the caller
includes digests for algorithms that are not implemented, the TPM will fail the
call, resulting in a TPM_RC_HASH error.

The pcrHandle parameter is allowed to reference TPM_RH_NULL. In such cases,
the input parameters are processed, but the TPM does not take any action. The
result of the command in this case is the same as TPM2_GetCapability().

PCR Event

The TPM2_PCR_Event () command is used to update a specified PCR. The eventData
is hashed using the hash algorithm associated with each bank where the indicated
PCR has been allocated. After hashing the data, the resulting digests list is re-
turned. If the pcrHandle references an implemented PCR (not TPM_RH_NULL), the
digests list is processed similarly to TPM2_PCR_Extend ().

A TPM must support an Event . size ranging from zero to 1024. An Event.size
of zero indicates that there is no actual data, but the indicated operations will still
take place.

Upon successful completion of the command, the digests list will contain the
tagged digests of the eventData that were computed to prepare for extending the
data into the PCR. The list may include a digest for each bank, or it may only
contain a digest for each bank where the pcrHandle exists. If the pcrHandle is
TPM_RH NULL, the TPM may return either an empty list or a digest for each bank.

PCR Read

The TPM2_PCR_Read () command is used to retrieve the current values of the speci-
fied PCR. The TPM processes the list of TPMS_PCR_SELECTION in pcrSelectionIn
sequentially. Within each TPMS_PCR_SELECTION, the TPM examines the bits in the
pcrSelect array, following the ascending order of the PCR numbers. If a bit is SET
and the corresponding PCR is present, the TPM includes the digest of that PCR in
the list of values returned in pcrValues. The TPM continues processing bits until
all of them have been processed or until adding additional values to pcrValues

48

ESAPI

would exceed the capacity of the output buffer. If none of the selected PCR are
implemented, the returned list may be empty. Reading a PCR does not require
any authorisation, and any implemented PCR can be read from any locality.

TPM2_PCR_Read () enables the selection of multiple PCR across different banks.
Other commands that allow the caller to choose PCR from multiple banks are
TPM2_Quote () and TPM2 PolicyPCR(). When a command supports the selection of
multiple PCR, a list of selectors is used. Each entry in the list includes an algorithm
ID followed by a bit array. Each bit in the array corresponds to a specific PCR. If a
bit is SET, it indicates that the corresponding PCR in the bank associated with the
algorithm ID is selected. The correspondence between the bits and PCR is such
that the bit corresponding to PCR[n] is the (n mod 8) bit in the [n/8] octet
of the array.

PCR Reset

The TPM2_PCR_Reset() command is used to reset the current value of a PCR,
provided that proper authorisation is provided and the PCR's attributes, as defined
in the platform-specific specification, allow for the reset operation. The attributes
of the PCR may impose restrictions on the locality from which the reset operation
can be performed. If the pcrHandle references a PCR that is not allowed to be
reset, the TPM will return TPM_RC_LOCALITY.

PCR Policy

The TPM2 PolicyPCR() command is utilised to apply a policy conditionally based
on the state of PCR. Together with TPM2_PolicyOR(), this command allows for
different sets of authorisations to be applied depending on the state of the PCR.
The TPM will modify the PCRs parameter by clearing the bits that correspond
to unimplemented PCR. If the policySession is not a trial policy session, the
TPM will use the modified PCRs value to select PCR values for hashing. The
hash algorithm of the policy session is used to compute a digest (digestTPM) of the
selected PCR. If pcrDigest has a non-zero length, it is compared to digestTPM. If
the values do not match, the TPM will return TPM_RC_VALUE without making any
changes to policySession.policyDigest. If the values match or if pcrDigest
has a length of zero, policySession.policyDigest is extended as follows 3.3:

policyDigest e =
Hopoticyaig(policyDigestoq || TPM_CC_PolicyPCR || pers || digestT'PM)
(3.3)

The pcrs parameter corresponds to a bit representation of the PCRs imple-
mented, using the 0 to mark those PCRs not implemented. The digestTPM cor-
responds to the hash of the selected PCRs using the hash algorithm of the policy
session.

If the caller provides the expected PCR value, the policy evaluation will stop
at that point if the PCR values do not match. If the caller does not provide the

49

ESAPI

expected PCR value, the validity of the settings will not be determined until an
attempt is made to use the policy for authorisation. If the policy session is used for
authorisation and the PCR values are known to be incorrect, the TPM will return
TPM_RC_PCR_CHANGED.

The TPM utilises the pcrUpdateCounter parameter, which is incremented each
time PCR are updated unless the PCR being changed is specified not to cause a
change to this parameter. The value of this counter is stored in the policy session
context when this command is executed. When the policy is used for authorisation,
the current value of the counter is compared to the value in the policy session
context, and the authorisation will fail if the values are different.

Since the pcrUpdateCounter is updated whenever any PCR is extended (except
for those ignored), this means that the command will fail even if a PCR not specified
in the policy is updated.

If this command is used for a trial policy session, the policyDigest will be
updated using the values provided in the command rather than the values from a
digest of the TPM PCR. If the caller does not provide PCR settings (pcrDigest
has a digest of zero length), the TPM may use the current TPM PCR settings
(digestTPM) in the calculation for the new policyDigest.

Quote

The TPM2_Quote() command is employed to obtain a quote of PCR values. The
TPM will generate a hash of the selected PCR values, based on the hash algorithm
specified in the chosen signing scheme. If the selected signing scheme or the scheme's
hash algorithm is TPM_ALG NULL, the TPM will return TPM_RC_SCHEME. The digest
is computed as the hash of the combined digest values of the selected PCR.

Start Authorisation Session

The command to start an authorisation session is made of 3 functions according
to the general function template previously described. Those are used to start
an authorisation session using alternative methods of establishing the session key
(sessionKey).

The sesssionKey is then used to derive values used for authorisation and for en-
cryption parameters. This command allows to inject a secret into the TPM using
either asymmetric or symmetric encryption.

The type of tpmKey determines how the value in encryptedSalt is encrypted.
The decrypted secret value is used to compute the sessionKey. If tpmKey is
TPM_RH_NULL, then encryptedSalt is required to be an EmptyBuffer. The TPM
generates the sessionKey from the recovered secret value.

No authorisation is required for tpmKey or bind. This is possible because the re-
sult of using the key is not available to the caller, except indirectly through the
sessionKey. This does not represent a point of attack because if the caller at-
tempts to use the session without knowing the sessionKey value, the effect is an
authorisation failure and it will trigger the dictionary attack logic.

The entity referenced with the bind parameter contributes an authorisation value

50

ESAPI

to the sessionKey generation process. If both tpmKey and bind are TPM_RH_NULL,
the sessionKey is set to the EmptyBuffer. If tpmKey is not TPM_RH NULL then the
ecnryptedSalt is used in the computation of the session key. Instead if the bind is
not TPM_RH_NULL the authValue of bind is used in the sessionKey computation. If
symmetric is specified the TPM_ALG_CFB is the only allowed value for the mode field
in the symmetric parameter (TPM_RC_MODE).

Depending on the value of the tpmKey, two situations can happen:

e NULL: no special action needs to be performed, since no salt value is transferred
to the TPM;

e non-NULL:

— ESAPI checks if the tpmKey is suitable for encrypting salts. If not it
returns TSS2_ESYS_RC_BAD_TR;

— ESAPI generates a salt value using the internal RNG implementation,
which is then encrypted using the tpmKey public key. The encrypted
salt is transferred to the TPM and the plain salt value is used for session
key calculation during.

On completion of this function the result is different:

e Successful TPM response:

—_

. creation of an Esys_TR object for sessionHandle of type session;

2. setting sessionType in Esys_TR sessionHandle to the esysContext
sessionType;

3. setting authHash in Esys_TR sessionHandle to the esysContext authHash,
unencryptedtSalt, the bindAuthValue, the nonceTPM and nonceCaller;

4. storing the sessionKey in the Esys_TR sessionHandle;
5. storing the response parameter tpmNonce in Esys_TR sessionHandle;
6. setting bindName in Esys_TR sessionHandle to the esysContext bindName

if provided during Esys_StartAuthSession Async();

e Unsuccessful TPM response: deletion of values saved to esysContext (e.g.,
unencryptedSalt, sessionType, symmetric, authHash, bindName, bindAuth,
nonceCaller).

ESAPI implementation includes functions such as Esys_StartAuthSession(),
Esys_StartAuthSession Async(), and Esys_StartAuthSession Finish().

Unseal

The TPM2 Unseal() command retrieves the data stored within a loaded Sealed
Data Object. A Sealed Data Object, generated by the TPM using TPM2_Create ()
or TPM2_CreatePrimary (), can be randomly created based on a template. In TPM

51

ESAPI

1.2, PCR authorisation is hard coded, while in TPM 2.0, PCR authorisation re-
quires a policy to be implemented. The returned value may be encrypted using
encryption provided by an authorisation session. ESAPI implementation includes
functions such as Esys_Unseal (), Esys_Unseal Async(), and Esys_Unseal Finish().

ReadPublic

The TPM2 ReadPublic() command provides access to the public area of a loaded
object. Authorisation is not required to use the objectHandle parameter. As the
caller may not be aware of the public area associated with the objectHandle, it is
not feasible to include the Name associated with objectHandle in the hash com-
putation. ESAPI implementation includes functions such as Esys_ReadPublic(),
Esys_ReadPublic_Async(), and Esys_ReadPublic Finish().

52

Chapter 4

Sealing and possible usages

In the context of Trusted Platform Module (TPM) technology, Sealing refers to a
cryptographic process of binding sensitive data to a specific state of the platform
and enforcing a set of conditions under which the data can be accessed. The process
ensures the confidentiality, integrity, and controlled access to sensitive data.

During the thesis work, two potential solutions were identified. The first solution
involved creating an RSA key using the TPM and then using it in an Nginx server
by appropriately modifying the tpm2-openssl library. On the other hand, the
second solution fully utilised the concept of Sealing, particularly the commands
provided by the tss2-esys library. The last solution will be extensively discussed
in the next chapter as it is the official solution.

To implement the first solution, we first explored various uses of a Sealed RSA
key and in this chapter, we are going to analyse these useful scenarios on how to
Encrypt/Decrypt and Sign some data using a Sealed key created using the TPM.

4.1 Overview

Sealing involves using the TPM to bind a specific piece of data, often referred to
as Sealed Data, to the current state of the TPM and the platform it resides on.
While the specifics might vary slightly based on the TPM manufacturer and the
software environment, here's a general overview of how sealing can be performed:

1. Data Preparation: In this stage, the data that needs to be protected is
identified and prepared for sealing. This data could be a cryptographic key,
password, or sensitive information requiring secure storage. The data is usu-
ally in plain text form at this point and it is ready to be bound to the TPM's
state.

2. TPM Initialisation: Ensure that the TPM is properly initialised and acti-
vated on the platform. This involves:

(a) Power-On Self-Test (POST): When a computer system is powered on
or reset, the TPM goes through a POST phase. During this phase, the

53

Sealing and possible usages

TPM checks its internal components and functionality to ensure that it
is operational.

Clearing and Enabling: The TPM might need to be cleared of any pre-
vious data, settings, or keys from its memory to ensure a clean slate.

Initialisation of Key Hierarchies: The TPM supports various key hier-
archies that are used to create and manage cryptographic keys. During
initialisation, the primary root keys for these hierarchies are created.

Configuration and Seeding: The TPM's internal settings and parameters
are configured during this phase. This might include setting security
policies, enabling specific features, and configuring cryptographic algo-
rithms. Additionally, the TPM's random number generator might be
seeded with additional entropy to enhance the randomness of its gener-
ated keys.

3. Policy Definition: The policy essentially dictates the requirements that
must be met to allow unsealing of the data. The policy is a set of rules
or conditions that the owner of the sealed data defines. These rules are
established at the time of sealing the data. The policy could involve various
aspects of the system's state, the presence of certain measurements, or even
the time that has passed since the sealing occurred.

4. TPM Binding: The binding process involves the following steps:

(a)

State Measurement: The TPM measures the current state of the plat-
form, which includes various hardware and software components. These
measurements create a unique representation of the platform's configu-
ration, which can be thought of as a digital fingerprint of the system's
current status. The state measurement captures information like the
BIOS version, hardware components, firmware details, and more.

Creating Sealed Object: The TPM generates a sealed object by combin-
ing the following:

e the measured state of the platform;

e the sensitive data that needs to be protected (the data prepared in
the first stage);

e a set of policy settings that define when the sealed data can be
unsealed.

Sealing Process: The sealed object is created by applying cryptographic
operations that incorporate the measured state, the sensitive data, and
the policy settings. This process essentially binds the sensitive data to
the measured state of the platform and the specified policies. As a result,
the sealed data becomes inaccessible unless the platform is in the exact
same state as the one it was in when the data was sealed.

5. Store Sealed Object: Store the sealed object within the TPM's secure
storage area. This storage is isolated from the rest of the system and is
protected from unauthorised access.

54

Sealing and possible usages

6. Unsealing: When the sealed data needs to be accessed, the unsealing process
occurs:

(a) State Verification: Before attempting to unseal the data, the TPM mea-
sures the current state of the platform again. This new measurement is
compared to the state that was recorded during the sealing process. If
the states match, it indicates that the platform is in a legitimate and
trusted state.

(b) Unsealing Process: If the state verification is successful, the TPM uses
its internal cryptographic functions to verify the integrity of the sealed
object. If the integrity is confirmed, the TPM decrypts the sealed data,
making it available for use by authorised applications or processes.

(c) Policy Enforcement: During the unsealing process, the TPM enforces the
defined policy settings (if defined during the Sealing process). This might
involve additional authentication checks, validation of system compo-
nents, or other conditions specified in the policies.

Overall, the sealing process combines cryptographic principles, hardware-based
measurements, and policy enforcement to create a secure environment for sensitive
data. This process ensures that the data remains confidential, its integrity is main-
tained, and its access is controlled based on the platform's state. Sealed data can
only be accessed in a trusted environment, preventing unauthorised access even if
an attacker has physical access to the storage medium. The process enhances the
overall security posture of systems and applications that rely on TPM technology.

4.2 Analysis

The implementation was carried out starting from the tpm2-tools library, proceed-
ing to analyse the code related to terminal commands, and subsequently consulting
the manuals for their proper usage. The study was initiated by selecting the nec-
essary commands and examining them individually.

The first aspect to focus on was Unsealing, which allowed us to follow a reverse
path, starting from the end result and progressing back to the starting point through
reverse engineering. This command allows for the extraction of a data blob from an
object stored in the TPM. The analysis of this function was crucial to understand
which further actions were required and in what sequence to execute them. These
included creating a primary key, initialising a session, and creating a policy based
on Platform Configuration Registers.

In particular, by examining the PolicyPCR command, a detailed guide was ob-
tained on how to use a Session Policy to create a sealed data blob. The following
Figure represents a modified sequence of commands taken from the tpm2-tools
manual 4.1.

In this example 4.1, it is necessary to make the appropriate changes because
in our case, it is not required to create a data blob by passing data but rather to
create a Sealed key that depends on the state of the PCRs. This can be done by

51)

Sealing and possible usages

tpm2_createprimary -C e -g sha2566 -G rsa —-c primary.ctx

tpm2_startauthsession -S session.dat

tpm2_policypcr -S session.dat -1 "sha2b56:23" -L policy.dat

tpm2_flushcontext session.dat

tpm2_create -u key.pub -r key.priv -C primary.ctx -L

policy.dat -i- <<< "data blob"

$ tpm2_load -C primary.ctx -u key.pub -r key.priv -n
unseal.key.name -c unseal.key.ctx

$ tpm2_startauthsession --policy-session -S session.dat

$ tpm2_policypcr -S session.dat -1 "sha256:23" -L policy.dat

$ tpm2_unseal -p session:session.dat -c unseal.key.ctx -o
unsealed.dat

$ tpm2_flushcontext session.dat

€ P fH H L

Figure 4.1. Creation of a Sealed Object

changing the previous tpm2_create command in the following way represented in
the Figure 4.2.

$ tpm2_create -Q -u key.pub -r key.priv -C primary.ctx -L
policy.dat

Figure 4.2. tpm2_create command changed

By modifying the command in this way, it is possible to create a key that
depends on the values of the PCRs. To test its proper functionality, which means
it should only be used when the state of the PCRs matches the state defined during
its creation, two implementations were made: one regarding the Encryption and
Decryption operation 4.3 and the other one regarding the Signing operation.

To better understand the commands in the previous Figures 4.1 4.3, here is a
small description of what each command does and the options used:

e tpm2 createprimary: this command is used to create and load inside the
TPM a primary key under one of the hierarchies: Owner, Platform, Endorse-
ment, NULL. Options:

— C: the hierarchy under which the object is created;
— g: the hash algorithm to use for generating the object name;
— G: the algorithm type for the generated primary key;
— c: file path to save the object context of the generated primary key.
e tpm2_startauthsession: starts a session with the TPM and saves the policy

session data to a file, so it can then be used for authorisation or policy events.
Options:

— S: the name of the policy session file, required;

56

Sealing and possible usages

hH H P fH P L

&hH H P P

tpm2_createprimary -C e -g sha256 -G rsa -c primary.ctx $
tpm2_startauthsession -S session.dat
tpm2_policypcr -S session.dat -1 "sha2b56:23" -L policy.dat
tpm2_flushcontext session.dat
tpm2_create -u key.pub -r key.priv -C primary.ctx -L policy.dat
tpm2_load -C primary.ctx -u key.pub -r key.priv -n
unseal .key.name -c unseal.key.ctx
tpm2_rsaencrypt -c¢ key.ctx -o msg.enc msg.dat
tpm2_startauthsession --policy-session -S session.dat
tpm2_policypcr -S session.dat -1 "sha256:23" -L policy.dat
tpm2_rsadecrypt -c key.ctx -p session:session.dat -o msg.ptext
msg.enc
tpm2_flushcontext session.dat

Figure 4.3. Encryption and Decryption using a Sealed RSA Key

— policy-session: to start a policy session of type TPM_SE POLICY.

tpm2_policypcr: creates a PCR policy event using the TPM, establishing a
policy linked to specific PCR, values.

— S: policy session file generated by tpm2_startauthsession;

— 1: the list of selected PCRs;

— L: file to save the policy digest.

tpm2_flushcontext: remove a designated handle or all contexts linked to a
transient object, loaded session, or saved session from the TPM.

tpm2_create: create a child object that can either be a key or a sealing object.
A sealing object allows sealing user data to the TPM, with a maximum size
of 128 bytes. Options:

— u: the output file which contains the public portion of the object;

— r: the output file which contains the sensitive portion of the object;

— C: the parent handle of the object to be created;

— L: the input policy file or a hex string, optional;

— 1i: the data file to be sealed.

e tpm2 load: load both the private and public portions of an object into the

TPM and returns the object context. Options:

— C: the handle of the parent key;

— w: the file containing the public portion of the object;

— r: the file containing the sensitive portion of the object;

— n: the output file to store the name structure of the object;

— c: the file name of the saved object context, required.

o7

Sealing and possible usages

e tpm2_rsaencrypt: executes RSA encryption on the input data. Options:

— c: the context to the key to be used;
— o: the output file containing the encrypted data.
e tpm2 rsadecrypt: performes RSA decryption on the encrypted data received
in input. Options:
— c: the context to the key to be used;
— p: the file containing the session to use for authorisation;

— o: the output file containing the decrypted data.
e tpm2_unseal:

— p: the file containing the session to use for authorisation;
— c: the context to the key to be used;

— o: the output file containing the sensitive data unsealed.

The initial issues arose when attempting Encryption and Decryption opera-
tions. This was because when calling the Esys_RSAEncrypt () function, it returned
the error Esys error 0x00090006, which using the integrated decoder for errors
it returned mu: A buffer isn't large enough. Since the error seemed to be
related to marshalling and unmarshalling due to incorrect data being passed, to
better understand the problem and try to solve it LTRACE was used.

4.2.1 LTRACE

LTRACE is a debugging and diagnostic tool for Linux-based operating systems.
It is used to intercept and trace the library calls made by a running process. This
tool is particularly useful for understanding how a program interacts with shared
libraries, as well as for diagnosing and debugging issues in software.

Here are the ltrace key points:

e Interception: When ltrace is executed followed by a command or the name
of a program, ltrace attaches to the specified process or program and monitors
its library calls.

e Output: ltrace then logs the library calls made by the process, along with the
arguments passed to those calls, to the standard output or a file, depending
on how it was configured.

e Analysis: This output can be analysed to understand how the program
is using the libraries, which can be helpful in diagnosing issues, profiling
performance, or gaining insights into the program’s behaviour.

58

Sealing and possible usages

$ ltrace -x ’Esys*’ -L <<command to execute>>

Figure 4.4. General LTRACE command executed for tests

$ ltrace -x ’Esysx*’ -L tpm2 create -C primary.ctx -u key.pub -r
key.priv -L policy.dat

Figure 4.5. Test tpm2_create command with authentication

For example, if a program is misbehaving or it is crashing, ltrace can be used to
identify which library calls it is making just before the problem occurs, which might
lead to the root cause of the issue. It is a valuable tool in a developer's toolkit for
troubleshooting and understanding program behaviour at the library call level.

In our case, it was used to analyse each command starting from the creation of
the primary key up to the decryption of the input data.

In the command represented in the Figure 4.4, the -x option is used to define
the filter, which in this case includes every function that starts with Esys. This
is because the command-line TOOL relies entirely on function calls using ESAPI.
In addition, the -L option allows us to trace all library calls made not only by the
main process but also by child processes.

Two different scenarios were considered to observe the behaviour of the com-
mands and functions called, in order to identify the cause of the error. In both
cases, we took the example of the Encryption and Decryption of a file through the
creation of an RSA key, as previously shown in the Figure 4.3. The two test cases
are:

e First case: the RSA key is sealed, meaning it is dependent on the values of
the PCRs and requires the definition of a session policy;

e Second case: the RSA key is not dependent on sessions or permissions.

In particular, the following commands were analysed: tpm2_create, tpm2_load,
tpm2_rsaencrypt and tpm2_rsadecrypt. Additionally, for the first case, the tpm2_policypcr
command was also examined.

Create

The command to test the creation of a key with authentication is represented in
the following Figure 4.5.

The command to test the creation of a key without authentication is represented
in the following Figure 4.6.

The first command we will analyse and compare the results is the tpm2_create
command. In both situations, the same function calls were obtained, with the only

59

Sealing and possible usages

$ ltrace -x ’Esys*x’ -L tpm2 create -C primary.ctx -u key.pub
-r key.priv

Figure 4.6. Test tpm2_create command without authentication

Esys_Initialize@libtss2-esys.so.0(0x7fffb1£308c8,
0x565134213e90, 0, 59) = 0

<...>

Esys_StartAuthSession@libtss2-esys.so.0(0x5651342145e0, 4095,
4095, 4095 <unfinished ...>

Esys_StartAuthSession_Async@libtss2-esys.so.0(0x5651342145e0,
4095, 4095, 4095) = 0

Esys_StartAuthSession_Finish@libtss2-esys.so.0(0x5651342145e0,
0x565134217078, 0x7601, 0x3b0000000180) = 0O

<... Esys_StartAuthSession resumed>) = 0

<L

Esys_TRSess_GetAttributes@libtss2-esys.so.0(0x5651342145€0,
0x40418487, 0x7fffb1£30807, 0) = O

Esys_TR_SetAuth@libtss2-esys.so.0(0x5651342145e0, 0x40418488,
0x565134216bc6, 0x7fffb1£30510) = 0

Esys_Create@libtss2-esys.so.0(0x5651342145e0, 0x40418488,
0x40418487, 4095 <unfinished ...>

Esys_Create_Async@libtss2-esys.so.0(0x5651342145e0, 0x40418488,
0x40418487, 4095) = 0

Esys_Create_Finish@libtss2-esys.so.0(0x5651342145e0,
0x565133¢c233a0, 0x565133¢c23388, 0x565133¢c233b0) = 0

<... Esys_Create resumed>) = 0

<o002

Esys_Finalize@libtss2-esys.so.0(0x565133c41bb0, 0x7fffb1£30810,
1, 4) =0

+++ exited (status 0) +++

Figure 4.7. Ltrace output for tpm2_create command with authentication

differences being the session identifiers and other parameters whose meaning in
this context is meaningless. The result of the ltrace command is represented in the
following Figure 4.7.

The only real difference was found when analysing the code in the tpm2-tools

library. In the tpm2_create.c file, which defines how the creation of a sealed key
or data blob occurs. During the input data initialisation phase, there is a call to
the tpm2_auth util from optarg() function, shown in the following Figure 4.8.
This function is responsible for managing the session restore if it has been passed
as input; otherwise, it creates a new session without authorisation, setting the
required password for authorisation to an Empty string.

In the first case, the session in which we had defined the policy will be restored,

60

Sealing and possible usages

and this is the moment when the key created will be dependent on the PCR values.
It is important to note that this function allows managing authorisation to create
or use an object in four possible ways:

e sesston: in the case of using a policy session to authorise the creation or
usage of an object. In this case, the file obtained from the previous call to
tpm2_startauthsession is passed as input;

file: in this case, the file contains the password that needs to be read;
e pcr: used to satisfy a policy based on PCRs values;

password: authorisation password, by default interpreted as strings, but it is
possible to also use a hex-string based password.

On the other hand, in the case of creating the child object without authorisation,
a new session with an empty password will be created to allow the key's creation.

Load

The command executed to test both cases (with and without authorisation) is
represented in the following Figure 4.9.

The Load function also yields the same result in both cases, as in the previous
case of the Create function, this can be seen in the following Figure 4.10. This
is because, once again, the differentiating factor is the Session Restore present in
the authorisation scenario, while the creation of a new session occurs in the second
case.

In this case as well, it is possible to verify what was stated by analysing the
tpm2_load.c file, where, during the call to the function that manages the input
data, it is possible to observe that in the tpm2_util_object_load2.c function 4.11,
we find several calls to the previously illustrated function 4.8, which handles the
Session restoration.

RSAEncrypt

The command executed to test both cases (with and without authorisation) is
represented in the following Figure 4.12.

The other command analysed is the RSAEncrypt, and as for the results obtained
for the two scenarios, they overlap. In fact, since no authorisation is required to
encrypt data, there is no discrepancy between the first and the second case. The
result of ltrace command can be seen in the following Figure 4.13.

61

Sealing and possible usages

1 tool_rc tpm2_auth_util_from_optarg(ESYS_CONTEXT *ectx, const char
*password,

2 tpm2_session **session, bool is_restricted) {

3 password = password 7?7 password : "'";

1 /* starts with session: */
bool is_session = !strncmp(password, SESSION_PREFIX,
SESSION_PREFIX_LEN) ;

6 if (is_session) {

7 if (is_restricted) {

8 LOG_ERR("Cannot specify password type \"session:\"");

9 return tool_rc_general_error;

10 }

11 return handle_session(ectx, password, session);

12 }

13 /* starts with "file:" */

14 bool is_file = !strncmp(password, FILE_PREFIX,
FILE_PREFIX_LEN);

15 if (is_file) {

16 return handle_file(ectx, password, session);

17 }

18 /* starts with pcr: */

19 bool is_pcr = !strncmp(password, PCR_PREFIX, PCR_PREFIX_LEN);

20 if (is_pcr) {

21 if (is_restricted) {

22 LOG_ERR("Cannot specify password type \"pcr:\"");

23 return tool_rc_general_error;

24 }

25 return handle_pcr(ectx, password, session);

26 }

27 /* must be a password */

28 return handle_password_session(ectx, password, session);
29 }

Figure 4.8. tpm2_auth util_from optarg function

$ ltrace -x ’Esys*’ -L tpm2 load -C primary.ctx -u key.pub -r
key.priv -c key.ctx

Figure 4.9. Test tpm2_load command

RSADecrypt

The command to test the decryption with the RSA key with authentication is
represented in the following Figure 4.14.

62

Sealing and possible usages

Esys_Initialize@libtss2-esys.so.0(0x7ffc45708b58,
0x555f76£6ae00, 0, 29) = O

<...>

Esys_StartAuthSession@libtss2-esys.so.0(0x555f76£6b550, 4095,
4095, 4095 <unfinished ...>

Esys_StartAuthSession_Async@libtss2-esys.so.0(0x555f76f6b550,
4095, 4095, 4095) = 0

Esys_StartAuthSession_Finish@libtss2-esys.so.0(0x555f76£6b550,
0x555£76£69858, 0x7601, 0x3b0000000180) = 0

<... Esys_StartAuthSession resumed>) = 0

<..0>

Esys_TRSess_GetAttributes@libtss2-esys.so.0(0x555f76f6b550,
0x40418487, 0x7ffc45708a77, 0) = 0

Esys_TR_SetAuth@libtss2-esys.so.0(0x555f76f6b550, 0x40418488,
0x555f76£63f96, 0x7ffc45708ab4) = 0O

Esys_Load@libtss2-esys.so.0(0x555f76f6b550, 0x40418488,
0x40418487, 4095 <unfinished ...>

Esys_Load_Async@libtss2-esys.so.0(0x555f76£6b550, 0x40418488,
0x40418487, 4095) = 0

Esys_Load_Finish@libtss2-esys.so.0(0x555£76£6b550,
0x555f76bdaed0, 0x555f76bda650, 0x555f76bda630) = O

<... Esys_Load resumed>) = 0

Esys_TR_GetName@libtss2-esys.so.0(0x555f76f6b550, 0x40418489,
0x7£fc45708ad8, 0x555f76bda650) = 0

name: 000b359aled7507£59adfb014c28f3e0cc44495a99c0b5d14

30324ea90e4ddd3d10b
<...>
Esys_Finalize@libtss2-esys.so.0(0x555f76bd8bb0, 0x7ffc45708aal,
1, 4) =0

+++ exited (status 0) +++

Figure 4.10. Ltrace output for tpm2_load command

Instead, the command to test the decryption with the RSA key without authen-
tication is represented in the following Figure 4.15.

On the contrary, a command that invokes different functions and, therefore,
does not provide the same comparable behaviour as seen in the previous cases is
the RSADecrypt command.

Regarding the first case in which we used a Sealed key, thus protected by a Ses-
sion Policy dependent on PCR values, the call to the Esys_TR_SetAuth() function
is made to restore the previous session passed as a parameter. The following Figure
4.16 shows the results of the ltrace command executed for the first case.

Conversely, in the case where a non-Sealed key is used, the authorisation to
access the TPM is required to decrypt the data by creating a new session with
null parameters, through an empty password. This can be observed from the use of

63

Sealing and possible usages

1 static tool_rc tpm2_util_object_load2(ESYS_CONTEXT *ctx, const

N

char *objectstr,

const char *auth, bool do_auth, tpm2_loaded_object *
outobject,

bool is_restricted_pswd_session, tpm2_handle_flags flags)

{

tool_rc rc = tool_rc_success;
if (do_auth) {

ESYS_CONTEXT *tmp_ctx = is_restricted_pswd_session 7 NULL
: ctx;

tpm2_session *s = NULL;

rc = tpm2_auth_util_from_optarg(tmp_ctx, auth, &s,

is_restricted_pswd_session);
if (rc != tool_rc_success) {
return rc;

b

outobject->session = s;
}
[*...%/
return rc;

Figure 4.11. tpm2_util _object_load2 function

$ ltrace -x ’Esysx’ -L tpm2 rsaencrypt -c key.ctx -o
file.enc file.txt

Figure 4.12. Test tpm2_rsaencrypt command

Esys_StartAuthSession and the subsequent call to the Esys_TR_SetAuth function,
as depicted in the following Figure 4.17.

Policy PCR

The command to test the creation of a policy session depending to the values to
the selected PCRs is represented in the following Figure 4.18.

Finally, the PolicyPCR command was analyzed, which generates a PCR policy
event with the TPM 4.19. A PCR policy event establishes a policy that is associated
with particular PCR values and can be employed within more extensive policies
created using policyor and policyauthorize events. It is possible to define the PCR
data used in the policy in one of three ways:

64

Sealing and possible usages

Esys_Initialize@libtss2-esys.so.0(0x7ffc3c849728,
0x564863cfaeal, 0, 23) = 0

<...>

Esys_ReadPublic@libtss2-esys.so.0(0x564863cfb5f0, 0x40418487,
4095, 4095 <unfinished ...>

Esys_ReadPublic_Async@libtss2-esys.so.0(0x564863cfb5f0,
0x40418487, 4095, 4095) = 0

Esys_ReadPublic_Finish@libtss2-esys.so.0(0x564863cfb5f0,
0x7££c3c8496¢c0, 0, 0) =0

<... Esys_ReadPublic resumed>) = 0
Esys_Free@libtss2-esys.so.0(0x564863cfdb80, 0x564863cfdb80, 3,
0) =0

Esys_RSA_Encrypt@libtss2-esys.so.0(0x564863cfb5f0, 0x40418487,
4095, 4095 <unfinished ...>

Esys_RSA_Encrypt_Async@libtss2-esys.so.0(0x564863cfb5f0,
0x40418487, 4095, 4095) = 0

Esys_RSA_Encrypt_Finish@libtss2-esys.so.0(0x564863cfb5f0,
0x7£fc3c8496c0, 0x56486285c878, 0x56486285c888) = 0

<... Esys_RSA_Encrypt resumed>) = 0

<L

Esys_Finalize@libtss2-esys.so.0(0x56486285ebb0, 0x7ffc3c849670,
1, 4) =0

+++ exited (status 0) +++

Figure 4.13. Ltrace output for tpm2_rsaencrypt command

$ ltrace -x ’Esysx’ -L tpm2 rsadecrypt -c key.ctx -o
file.dec file.enc -p session:session.dat

Figure 4.14. Test tpm2_rsadecrypt command with authentication

e using a file that contains a concatenated list of PCR values, similar to the
output from tpm2_pcrread;

e requiring the TPM to read the PCR values without specifying a PCR file
input;

e specifying the digest of all the PCR values directly as an argument.

In our case, it was specified that we wanted to use only PCR number 23
to create the session policy. As we can verify from the results obtained from
LTRACE and through a careful analysis of the tpm2 policypcr.c file 4.20, it
is possible to observe that a restoration of the previously created session occurs
through the tpm2_session restore() function, which takes the previous session
in input. Subsequently, the selected PCRs provided as input are chosen, and fi-
nally, the Policy Digest is calculated, defining the Session Policy by calling the
tpm2_policy_build pcr() function.

65

Sealing and possible usages

$ ltrace -x ’Esys_’ -L tpm2_rsadecrypt -c dup.ctx -o
data.ptext data.encrypted

Figure 4.15. Test tpm2_rsadecrypt command without authentication

Esys_Initialize@libtss2-esys.so.0(0x7ffc4e851268,
0x556£f7ef0a3e0, 0, 27) = 0

<o002

Esys_TR_SetAuth@libtss2-esys.so.0(0x556f7ef0c410, 0x40418488,
0x556f7ef0aa36, 0x7ffc4e851174) = 0

Esys_RSA_Decrypt@libtss2-esys.so.0(0x556f7ef0c410, 0x40418488,
0x40418487, 4095 <unfinished ...>

Esys_RSA_Decrypt_Async@libtss2-esys.so.0(0x556f7ef0c410,
0x40418488, 0x40418487, 4095) = 0

Esys_RSA_Decrypt_Finish@libtss2-esys.so.0(0x556f7ef0c410,
0x556f7d41e5d0, 0x556f7d41e5b8, 0x556f7d41e368) = 0

<... Esys_RSA_Decrypt resumed>) = 0

<.L2>

Esys_Finalize@libtss2-esys.so.0(0x556£7d420bb0, 0x7ffc4e8511b0,
1, 4) =0

+++ exited (status 0) +++

Figure 4.16. Ltrace output for tpm2_rsadecrypt with authentication

4.2.2 Analysis conclusions

Thanks to the exhaustive analysis conducted using the LTRACE tool and a thor-
ough study of the tpm2-tools library, we were able to successfully implement the
encryption and decryption examples and the signing one.

The primary issue identified was the improper usage of sessions, particularly
when HMAC sessions were required in contrast to policy sessions. Initially, in
the early implementation attempts, a new HMAC session was created each time
authorisation was needed, without proper consideration. This led to difficulties in
tracking all the sessions created, and if they were not flushed, they resulted in the
‘maximum sessions error’.

Upon rectifying this misuse of HMAC sessions, we streamlined the process by
creating a single HMAC session at the beginning of the code, following TPM ini-
tialisation, and reusing it as needed. Another challenge we encountered was deter-
mining the precise moments and locations to employ HMAC and policy sessions.
Only after several attempts and careful analysis of the LTRACE results, we were
able to identify the optimal placement and timing for their usage. Further details
on this are provided in the next section.

66

Sealing and possible usages

Esys_Initialize@libtss2-esys.so.0(0x7fffbfe57428,
0x55f1£5a443b0, 0, 27) = 0

<...>

Esys_StartAuthSession@libtss2-esys.so.0(0x55f1f5a44ac0, 4095,
4095, 4095 <unfinished ...>

Esys_StartAuthSession_Async@libtss2-esys.so.0(0x55f1f5a44ac0,
4095, 4095, 4095) = 0

Esys_StartAuthSession_Finish@libtss2-esys.so.0(0x55f1f5a44ac0,
0x55f1£5a42f08, 0x7601, 0x3b0000000180) = 0O

<... Esys_StartAuthSession resumed>) = 0

<..0>

Esys_TRSess_GetAttributes@libtss2-esys.so.0(0x55f1f5a44ac0,
0x40418487, 0x7fffbfeb7357, 0) = 0

Esys_Free@libtss2-esys.so.0(0x55f1f5a61980, 0x40418487, 0, 0) = O

Esys_TR_SetAuth@libtss2-esys.so.0(0x55f1fbad44acO, 0x40418488,
0x55f1£5a470a6, 0x7fffbfeb7334) = 0

Esys_RSA_Decrypt@libtss2-esys.so.0(0x55f1f5a44ac0O, 0x40418488,
0x40418487, 4095 <unfinished ...>

Esys_RSA_Decrypt_Async@libtss2-esys.so.0(0x55f1f5a44ac0,
0x40418488, 0x40418487, 4095) = 0

Esys_RSA_Decrypt_Finish@libtss2-esys.so.0(0x55f1f5a44ac0,
0x55f1£55785d0, 0x55f1f55785b8, 0x55f1£5578368) = 0

<... Esys_RSA_Decrypt resumed>) = 0

<...>

Esys_Finalize@libtss2-esys.so.0(0x55f1£557abb0, 0x7fffbfeb57370,
1, 4) =0

+++ exited (status 0) +++

Figure 4.17. Ltrace output for tpm2_rsadecrypt without authentication

$ ltrace -x ’Esysx’ -L $ tpm2_policypcr -S session.dat -1
"sha256:23" -L policy.dat

Figure 4.18. Test tpm2_policypcr command

4.3 Use Cases Implementation

To implement the few use cases previously introduced, we used the tests provided
within the tpm2-tss library, which tests the basic functionalities. In addition to
these tests, we also used the tpm2-js project, which implements some functionali-
ties of the TPM through the browser. While in the first case, most of the examples
were written using ESAPI, in the second case, it used function calls present in
SAPI. Therefore, it primarily served as a foundation for understanding the overall
functioning.

Unfortunately, in the various tests encountered and analysed, none of them used

67

Sealing and possible usages

Esys_Initialize@libtss2-esys.so.0(0x7ffff412ba08,
0x559f30bf5eal, 0, 23) = 0

<...>

Esys_TRSess_GetAttributes@libtss2-esys.so.0(0x559f30bf65£0,
0x40418487, 0x7ffff412b955, 0x559f30bf4720) = 0

Esys_PCR_Read@libtss2-esys.so.0(0x559f30bf65f0, 4095, 4095, 4095
<unfinished ...>

Esys_PCR_Read_Async@libtss2-esys.so.0(0x559f30bf65f0, 4095,
4095, 4095) = 0

Esys_PCR_Read_Finish@libtss2-esys.so.0(0x559f30bf6550,
Ox7fff£412b6f4, 0, Ox7ffff412b6£8) = 0

<... Esys_PCR_Read resumed>) = 0

Esys_PolicyPCR@libtss2-esys.so.0(0x559f30bf65f0, 0x40418487,
4095, 4095 <unfinished ...>

Esys_PolicyPCR_Async@libtss2-esys.so.0(0x559f30bf6510,
0x40418487, 4095, 4095) = 0

Esys_PolicyPCR_Finish@libtss2-esys.so.0(0x5659f30bf65f0,
0x559f30ba9010, 0x559f305e9ab0, 0x7ffff412b700) = O

<... Esys_PolicyPCR resumed>) = 0

Esys_PolicyGetDigest@libtss2-esys.so.0(0x559f30bf6510,
0x40418487, 4095, 4095 <unfinished ...>

Esys_PolicyGetDigest_Async@libtss2-esys.so.0(0x559f30bf65f0,
0x40418487, 4095, 4095) = 0

Esys_PolicyGetDigest_Finish@libtss2-esys.so.0(0x559f30bf65£0,
Ox7£££f£412b9b0, 0x8901, 0xe0000000180) = 0

<... Esys_PolicyGetDigest resumed>) = 0

<...>

Esys_Finalize@libtss2-esys.so.0(0x559f305e2bb0, 0x7ffff412b950,
1, 4) =0

+++ exited (status 0) +++

Figure 4.19. Ltrace output for tpm2_policypcr command

a key that was dependent on PCRs. Consequently, there is no example of how to
proceed with Sealing a key. On the contrary, there is an example of creating sealed
data, but this is not our case. For this reason, we proceeded by analysing the
functioning of various functions, as previously extensively demonstrated, as there
is no definitive guide on how to proceed.

The fundamental steps to implement encryption/decryption and signing can be
summarised in the following seven stages, followed by another four stages, two for
encryption/decryption and two for signing.

These are the steps in common for both scenarios:
1. initialise TCTI_TABRMD context;

2. initialise ESYS context;
68

Sealing and possible usages

1

N

19

static tool_rc tpm2_tool_onrun(ESYS_CONTEXT *ectx,
tpm2_option_flags flags) {

[x. . 0%/

tool_rc rc = tpm2_session_restore(ectx, ctx.session_path,
false,
&ctx.session);
if (rc !'= tool_rc_success) {
return rc;

rc = tpm2_policy_build_pcr(ectx, ctx.session, ctx.
raw_pcrs_file,
&ctx.pcr_selection, ctx.raw_pcr_digest, &ctx.forwards

);

if (rc !'= tool_rc_success) {
LOG_ERR("Could not build pcr policy");
return rc;

+

return tpm2_policy_tool_finish(ectx, ctx.session, ctx.
policy_out_path);

Figure 4.20. tpm2_tool_onrun function

3. create a temporary HMAC session;

4. create a primary key;

5. create a session policy and extract the policy digest;
6. create the RSA key;

7. load the RSA key in the TPM.

These are the steps needed for the encryption and decryption scenario:

8. encrypt a file with the RSA key;

9. decrypt the data blob previously obtained with the RSA key.
These are the steps needed for the signing scenario:

8. signing a data blob with the RSA key;

9. verify the signature;

69

Sealing and possible usages

In the following paragraphs, we will analyse the functions created, explaining
their operation, the parameters they receive in input, and their return values. Some
of these functions will be of great importance as they will be extensively used for
the solution proposed in the next chapter, and for this reason, they will not be
discussed again and will be considered as given.

4.3.1 Initialise TCTI_ TABRMD Context

The function Init_Tcti_Tabrmd_Context () is used to initialise a TCTI context, en-
abling communication with the tpm2-abrmd. The tpm2-abrmd serves as a daemon
responsible for implementing the TPM access broker and resource management.
This daemon employs the DBus system bus and various pipes for client communi-
cation.

Function definition:
void Init_Tcti_Tabrmd_Context();

The implemented function takes no input parameters and attempts to initialise
the tcti_context with a size equal to the defined configuration. Since the caller
must allocate the tcti_context, it is possible to determine the context size by
calling the allocation function once with a NULL context, allowing the caller to
retrieve the required size. By calling the initialisation function again and passing a

non-NULL context of the obtained size, it is possible to initialise the tcti_context
with the default parameters defined for the tpm2-abrmd.

The function has no return parameters because the tcti_context is globally
allocated if created.

4.3.2 Initialise ESYS Context

Initialize an ESYS_CONTEXT that holds the metadata and the state information dur-
ing an interaction with the TPM.

Function definition:
void Init_Esys_Context();
The function takes no input parameters because it directly accesses the tcti_

context variable that was just created and uses the currently used ABI version
extracted from the globally defined variable TSS2_ABI_VERSION_CURRENT.

It has no return parameters because once the esys_context is created, it is
globally allocated.

4.3.3 Create HMAC Session

The first function that needs to be called to create the primary key and for all the fol-
lowing operations in which the HMAC Session is required is the StartAuthSession().

70

Sealing and possible usages

For our purposes, a general function was created in order to create a specific session
based on the parameters passed.

Function definition:

StartAuthSessionResult StartAuthSession(int session_type,
bool is_symmetric, uint32_t handle);

The function accepts three input parameters: the type of the session; a flag to
set the algorithm and key size for parameter encryption; and the session handle.
The function enables the creation of three possible session types: HMAC, Policy
and Trial.

Within the function, other parameters are defined to create the desired session,
primarily concerning the session's attributes. By default, there are three attributes:
TPMA_SESSION_DECRYPT, TPMA_SESSION_ENCRYPT and TPMA_SESSION_CONTINUESESSION.
Another critically important parameter is the definition of the hash algorithm to
be used.

Once the session is created, the defined attributes for the newly created session
are set.

If the session creation is successful, what is returned is a data structure called
StartAuthSessionResult, which consists of: the return code; the session handle
for use in subsequent operations, and the nonce_tpm. By default, the nonce_tpm is
passed empty at the time of session creation and is subsequently modified.

4.3.4 Create Primary Key

The function CreatePrimary() is responsible for creating the Primary Key. In
practice, it involves creating the primary key from the seed within the specified
hierarchy: OWNER, PLATFORM, ENDORSEMENT and NULL). The Primary Key is of ex-
treme importance because it is necessary to create the child key we are interested
in.

Function definition:

CreatePrimaryResult CreatePrimary(int hierarchy, int type,
int restricted, int decrypt, int sign, const std::string
&unique, const std::string &user_auth, const std::string
&sensitive_data, const std::vector<uint8_t> &auth_policy,
int session_handle);

The function accepts ten input parameters: the primary key hierarchy; the
primary key type (RSA, ECC, SYMCIPHER and KEYEDHASH); three flags (restricted,
decryption and signature); the unique field; the user authentication passphrase;
the sensitive data; the policy digest, and the session handle.

The defined function was created to allow the passing of various parameters for
maximum flexibility. In fact, for each desired key type, there is a corresponding
function through which it is possible to define the key's public parameters.

If the creation is successful, a data structure called CreatePrimaryResult is
generated, which includes various parameters. The most important ones are: the

71

Sealing and possible usages

return code; the primary key handle and depending on the type of the key created
some fields to keep this information.

4.3.5 Create Session Policy and Extract Policy Digest

The function PolicyPCR() is necessary for creating the policy digest by specifying
which PCR you want to use. This function requires the creation of a policy session
before being called.

Function definition:

TPM2B_DIGEST* PolicyPCR(ESYS_TR pcrHandle, ESYS_TR
sessionHandle, const std::vector<uint8_t> &digest);

The defined function accepts three input parameters: the identifier of the PCR
(usually, up to 5 different PCRs can be defined); the policy session handle and a
buffer which by default is empty but it can be used to extend the value of the PCR
selected.

Within the function, the desired PCR is selected by both its numerical identifier
and its PCR group (the group corresponding to SHA256 is selected by default). The
return value is of type TPM2B_DIGEST and contains the policy digest.

4.3.6 Create RSA Key

The function Create() allows the creation of the RSA key that underlies our use
cases. This function is similar to the function for creating the primary key, except
for the fact that it accepts other parameters.

Function definition:

CreateResult Create(uint32_t parent_handle, int type, int
restricted, int decrypt, int sign, const std::string
&user_auth, const std::string &sensitive_data, const
std: :vector<uint8_t> &auth_policy, int session_handle);

The function takes nine input parameters, which correspond to those already
present in CreatePrimary, except for the unique field. Unlike the previous func-
tion, what changes here is that we pass the handle of the primary key, and the
auth policy field, in this case, is not empty but instead contains the previously
extracted policy digest.

The operation is the same as CreatePrimary, but in this case, the policy digest
is provided during the definition of the public parameters. In this way, we ensure
that the key can only be used if the selected PCR is still in the key's creation state.

The return value in this case is the data structure CreateResult. This has two
essential fields to use the key just created, namely tpm2b_private and tpm2b_public.
In contrast, the other parameters are the same as CreatePrimaryResult, except

for the handle field.
72

Sealing and possible usages

4.3.7 Load RSA Key

The function Load () is necessary to use the newly created key because, unlike the
primary key that is already inside the TPM after creation, the child key must be
loaded explicitly for use. This is because the creation function does not return the
key handle. There is the option to use CreateLoad function, which allows for the
direct creation and loading of the key, but in our case, this function is not supported
by the TPM 2.0 used.

Function definition:

LoadResult Load(ESYS_TR parent_handle, const
std::vector<uint8_t> &tpm2b_private, const
std: :vector<uint8_t> &tpm2b_public, int session_handle);

The function takes four parameters as input: the handle of the primary key;
the private part of the key; the public part of the key and the handle of the HMAC
session created at the beginning.

If the key has been successfully loaded, the return parameter is a data structure
called LoadResult, which contains: the return code; the child key handle and the
primary key’s name.

4.3.8 Encrypt Data Blob

The function Load () is responsible for encrypting a data blob of appropriate size
to be encrypted using an RSA key. This function has been extensively studied and
tested, as explained in the analysis phase because, depending on the session passed
among the parameters, this function either returns successfully or returns an error
related to incorrect handling of the necessary permissions.

Function definition:

std: :vector<uint8_t> Load(uint32_t key_handle,
const std::vector<uint8_t> &message, uint32_t
session_handle);

The function takes three fields as input: the handle of the previously loaded
key; the data blob to be encrypted and the session handle of the HMAC session
created in the initial phase.

The function returns the encrypted data blob in the case of successful encryp-
tion.

4.3.9 Decrypt Data Blob

The function DecryptRSAWithSession is responsible for decrypting the encrypted
data blob. In this case, as well, this function has been extensively studied and
analysed, and it requires an input session policy that depends on the previously
selected PCR to perform decryption.

Function definition:

73

Sealing and possible usages

std: :vector<uint8_t> DecryptRSAWithSession(uint32_t
key_handle, const std::vector<uint8_t> &message,
uint32_t session_handle);

The function receives three parameters as input: the handle of the loaded key;
the encrypted data blob and the policy session.

The function returns the decrypted data blob in case of success.

4.3.10 Sign Data Blob

The function Sign() is responsible for signing a data blob using the created key.
The difficulties encountered in this case are the same as those encountered for the
decrypt function.

Function definition:
SignResult Sign(uint32_t key_handle, int type, const

std::string &str, uint32_t session_handle);

The function takes four parameters as input: the handle of the loaded key; the
type of key used for the signing operation; the data blob to be signed and the policy
session handle.

The function returns the SignResult data structure, which contains, in case of
success: the return code; the algorithm used for signing and the signature.

4.3.11 Verify Signature

The function VerifySignature () is responsible for verifying the signature created
through the Sign function. Like the encrypt function, this one requires an HMAC
session and not a Policy session.

Function definition:

TPM2_RC VerifySignature(uint32 t key_handle, const
std::string &str, const SignResult &in_signature,
uint32_t session_handle);

The function takes four parameters as input: the handle of the loaded key; the
original data blob used to compute the signature; the generated signature and the
HMAC session handle.

The function returns the return code of the verification function, returning
TPM2_RC_SUCCESS only if the verification was successful.

4.4 TPM2-OpenSSL Changes

The tpm2-openssl is an open-source project which implements a provider to inte-
grate the TPM operations to OpenSSL 3.x. It relies entirely on ESAPI and uses

74

Sealing and possible usages

the tpm2-tss software stack implementation. The provider allows the usage of
some TPM 2.0 features via the command line using openssl or via the libcrypto
APT.

By analysing the code and studying the various examples provided by the library
itself, it was possible to see how to create a TLS server using the commands provided
by OpenSSL and utilising the provider. The first fundamental step was to create
an RSA key using these commands, and upon examining the code, it was observed
that this occurred in two distinct steps. The first step involved creating a primary
key, while the second step referred to the creation of the key we desired, using the
previously created primary key.

(1) Create private key sealed / Xz) Forwarded [)

— 3) Primary Key Creation
(default OWNER
hierarchy)
(4) Primary Key
Handle
(5)Create private
key sealed

(6) Public & Private part

|

‘

\

‘

(7) Load private
key sealed TPM 20

(8) Handle private
key sealed

|

- OpenSSL

user

I8pinoid INdL

W

(10) Private key sealed

A—
written on file/stdout (9) Create

IASN1 object
and return
handle

- J U

Figure 4.21. Sealed private key creation

Based on this knowledge, the key creation process was modified to force the
creation of a private key dependent on the values of the PCRs. The changes made
primarily affected these two phases. The first modification involved creating an
HMAC Session to ensure that it was unique for both the primary key and the child
key creation. The second modification involved creating the child key to ensure its
dependency on the PCR values. This was achieved by creating a Policy Session
to extract the policy digest created by selecting specific PCRs. The final code
modification pertained to the PCR state check, which was included in the code
section responsible for loading the private part of the newly created RSA key. The
execution flow can be seen in the following Figure 4.21.

The overall process is depicted in the following Figure 4.22, emphasising the
steps required for a Web Server implemented either through Nginx or created using
OpenSSL to leverage a previously generated Sealed private key. In summary, the
Web Servers seek access to the key through OpenSSL, which, in turn, knows it must
request it from the TPM provider. Following the initialisation of essential data
structures, the provider loads the sealed key into the TPM. Upon receiving key
information from the TPM, the provider generates an ASN1 object, subsequently
handed over to OpenSSL. OpenSSL then retrieves the private key from this object.

Unfortunately, this solution was discarded due to the following problems that
arose during the testing phase:

75

Sealing and possible usages

(1a) access the private (2) Deserialization of the

key sealed / \ Private key ()
—_—

(8a) Private key unsealed

(3) Primary Key
Creation

S ——————————————
! (4) Primary Key
Handle
.Iprivate_seale —
(5) Load private

Nginx.conf key

OpenSSL TPM 2.0

(6) Handle
private key

19pIN0Id WdL

W

(1b) access the Private Key

—
OpenSSL
P (8b) Private key unsealed
Server (7) Create
—_— IASN1 object

and return
handle

- 7

Figure 4.22. 'Web server initialisation

e the private key needs to be created using the tpm2 provider and can not be
imported;

e the list of algorithms supported by the tpm2 provider may not contain the
algorithm needed;

e problem found when the client tried to connect to the server without the tpm2
provider. This issue was identified long before modifying the source code by
running tests provided by the library itself using the hardware TPM instead
of the software TPM, as specified in the library.

e PCR state check should be automatically managed by the TPM during key
usage, but this did not occur;

e the global configuration of OpenSSL needs to be modified to integrate the
new provider.

For this reason, an alternative solution and implementation were pursued, which
will be discussed in the next chapter.

76

Chapter 5

Implementation

In this chapter, we will analyse the final and official solution of this thesis. Special
attention will be given to explaining the motivations that led to choosing this
solution and how it was implemented.

The proposed solution is divided into two phases: in the first phase, the user
needs to create the Sealed key, while in the second phase, the key is Unsealed to be
used by Apache. In particular, the solution is based on Apache, and specifically,
the mod-ssl module, which is responsible for creating Transport Layer Security to
protect the data.

The purpose of this chapter is to provide a high-level description of the oper-
ations carried out, while the practical and implementation-level analysis will be
discussed in the User’s developer chapter.

5.1 Motivations

The implemented solution involves the usage of the Apache server. Apache was
chosen among the various possible web servers because it already provides some
functionalities essential for the sought-after solution. The main functionalities that
Apache provides are:

e Popularity: Apache popularity means that there is a large community of
users, extensive documentation making it a reliable choice for many projects;

e Module Ecosystem: Apache’s modular architecture allows the addition of
various modules to extend its functionality. The mod-ssl module specifically
adds support for TLS encryption. If TLS support is a critical requirement for
a project, mod-ssl provides a well-established and widely used solution;

e Configuration Flexibility: Apache provides extensive configuration options,
allowing fine-grained control over server behaviour. The mod-ssl module in-
tegrates seamlessly into Apache’s configuration system, making it easier to
manage TLS settings.

7

Implementation

Once the web server was chosen, efforts were made to integrate the necessary
functionalities for using the TPM in the easiest and most efficient way possible.
In this context, two possible solutions were identified: creating a new module to
handle TPM initialisation and the related functions for implementing Unsealing; or
extending the mod-ssl module to ensure it supports the desired new functionalities.
Between these two options, the chosen solution was to extend the mod-ssl module
for the following reasons:

e Efficiency and Optimisation: the modifications needed were relatively minor
and aligned with the existing module’s functionality, so it was more efficient
to enhance the existing code rather than create an entirely new module. This
approach helped avoid code duplication and reduced the complexity of man-
aging multiple interdependent modules;

e Integration with Existing Features: modifying an existing module allowed for
seamless integration with the features and functionalities already present in
that module. This was beneficial because the modifications were intended to
enhance the behaviour of the existing module in a way that it maintained the
compatibility with its original design.

e Code simplicity: extending the module source code was easier than creating
a new module from scratch and this led to faster development.

5.2 Creation of the Sealed Key

The first phase of the implementation involves the creation of the Sealed key, this
is shown in the following Figure 5.1. This process differs from what was seen in
the previously presented solution. In fact, while in the previous solution, we saw
how to create a private key that depended on the values of PCR, in this case,
the private key is not created by the TPM but is imported and processed later.
The Sealing process is carried out in full compliance with the TCG specification,
using the Create function to create Sealed Objects and the Unseal function for data
retrieval.

In particular, the function used to create Sealed objects does not allow using
data larger than 128 bytes. Initially, this posed a problem as it prevented the
creation of a single Sealed object containing the private key. It was decided to
circumvent the issue by breaking down the private key into many data chunks,
each with a maximum size of 128 bytes, enabling the creation of multiple Sealed
objects. Each Sealed object created in this manner is dependent on the value of
the PCR at that moment.

To retrieve the sealed data, it is necessary to load these into the TPM. There-
fore, during the creation of Sealed objects, information was stored in two separate
files. This information, in the form of data buffers, corresponds to the public and
private parts created for each Sealed object. The public part contains the neces-
sary information about how the object was created, while the private part contains
details about the sensitive data that has been sealed. While the public part can

78

Implementation

516 bytes
T Public Part #0
Sealed Object #0 Public Part #1
Public Part #2
Sealed Object #1 -
128 bytes Public Part #3
Block #0 Sealed Object #2
Block #1
Block #2
Primary Ke
Block #3 v Rey
. l Public Part #N
split ’
. 1552 bytes

. Private Part #0
Private Key T Private Part #1
: Private Part #2
< B Private Part #3
Block #N
Sealed Object #N
Private Part #N

Figure 5.1. Sealing process overview

be read using commands provided by tpm2-tools, the private part is encrypted
and unreadable without using the primary key used during the creation phase.
Additionally, the policy on the PCR state must be adhered to.

In the proposed solution, PCR 23 of the sha256 group was used for two reasons:
it was not used beforehand by other processes, and it was easy to use for testing.
In a real-world scenario, other PCRs should be chosen based on what needs to be
monitored.

These two files containing this information can be saved on the disk without
posing any security risk because, to the eyes of a generic user or an attacker, they
appear as encrypted files. Furthermore, as a result of concatenating byte buffers, it
is impossible to extract and use the Sealed Objects without knowledge of the exact
size of each data chunk.

The success of this operation is primarily based on the fact that the public and
private parts have different but fixed sizes, independent of the current sealed data.
The sizes are 516 bytes for the public part and 1552 bytes for the private part. This
facilitated an easy implementation for the Unsealing phase, where no other data
structure was associated to maintain information regarding the actual dimensions
of each private/public buffer.

5.3 Unsealing integration in Apache

The following Figure 5.2 details the various phases related to the configuration
of Apache when using a Sealed private key, as previously depicted in the Figure

79

Implementation

5.1. We can group the various operations into 3 phases: Apache configuration, the
unsealing process, and the private key recovery.

APACHE [OS Module)
(MD Module J

(1) configure (N
CORE _— / \ I
(8) TPM Initialisation

(9) TPM Context

11) Primary Key Creation

[SSLContext [+ 2% o
(12) Primary Key handle
[Koy properts 222 SSL Module P

(10) save U i
| TPM Context (16) free (13) Unsealing

(14) Unsealed Data

- | (19) save
Prlvateg K (15) Flush TPM Context

- i -
@ |®ssL (6) 7 (17) (18)
ssL | Context Load Load | Create | Load Key
Engine |Creation| Certifi Privat EVP inside
Sga cate e Key Key SSL
SSLSealed ON s Tonte
SSLPrivatePartFile
./..Iprivate
SSLPublicPartFile OpenSSL
../..Ipublic
&

Figure 5.2. Apache configuration

5.3.1 Apache configuration

The added directives allow Apache, during the initial configuration phase, to use
the TPM only when necessary. This is because every effort has been made to
integrate code that minimally alters the standard operation of Apache in case the
user wants to use the standard version. By doing so, the user can decide whether or
not to use the TPM, depending on whether they want to use Sealed keys or regular
keys saved in a file on the PC.

During the configuration phase with the modified version, what happens is
analogous to what would occur in the standard case, except for the configuration of
the parameters related to the three new directives introduced. The new directives
introduced are:

e SSLSealed: used as a selector to inform the server that a sealed key is being
used, requiring appropriate precautions and functions;

e SSLSealedPublicFile, corresponding to the path of the file containing the
public part;

e SSLSealedPrivateFile (corresponding to the path of the file containing the
private part.

80

Implementation

Once the various necessary data structures have been initialised, the module
requests the associated certificate and private key.

5.3.2 Unsealing process

In the second phase, the Unsealing process takes place to recover the private key 5.3.
After reading data from the two files corresponding to the two previous directives,
the public and private parts for each sealed object are retrieved. This allows us,
after initialising the necessary resources for TPM usage, to proceed with loading the
public part and private part data into the TPM to perform the Unsealing function
on them. The result of this process is a byte buffer containing the unsealed private
key.

516 bytes — J— —_
Public Part #0 Public#0| Private #0

PublcPart#1| Public#1| Private #1 Unsealed Object #0
Public Part #2 Jii— :
Public Part #3 Public #2| Private #2 Unsealed Object #1

Unsealed Object #2

Primary

| Public Part #N |

concatenate f
S——

Private
Key

1552 bytes
Private Part #0
Private Part #1
Private Part #2
Private Part #3

ﬁé_eg

Private Part #N Public#N| Private #N Unsealed Object #N

— —

_

Figure 5.3. Unsealing process overview

5.3.3 Private key recovery

The final phase involves using the functionalities provided by OpenSSL to recover
the private key from a byte buffer. This way, the private key is loaded into the
SSL context created during the module configuration and can be used to perform
all the necessary operations during the execution of TLS.

81

Implementation

5.4 Reseults achieved

The solution developed offers the following benefits:

No additional modules or external providers are needed. Indeed, the only
external elements needed are the library to use the TPM.

Better flexibility with respect to key creation. Keys can be created externally
using any algorithm that may not be implemented by the TPM and supported
by the web server. In addition, it offers the possibility to integrate new key
types for future specifications.

Possibility to use existing Private keys. No need to create a private key if one
already exists because the Sealing operation can be done on any file containing
any key or data blob.

No need to drastically change the functioning of the SSL module. The func-
tionalities of the module were not changed but instead were enhanced, per-
mitting the usage of the TPM for the Unsealing operation. This is a huge
accomplishment with respect to the solution developed for the tpm2-openssl
library, in which the operation was disrupted, forcing the creation of private
keys depending on PCRs. Instead, with this solution, the user itself can
decide to use a Sealed key if available.

Private keys are protected from being exploited or stolen. Once the Sealed
private key is created, the original private key can be safely deleted, forcing
anyone who wants to access it to use the TPM.

From a functional perspective, the TPM has added a new layer of protection
to safeguard the private keys used by Apache. Specifically, being a hardware com-
ponent, the TPM ensures that the Primary key used to create our Sealed key is
tamper-resistant because the seed from which it was created is stored in a Shielded
location inaccessible to the user without authorisation. This means it is resistant
to various physical attacks and resilient against attacks that target solutions im-
plemented through software.

Unfortunately, the Sealed key is not tamper-resistant but possesses the following
characteristics:

the Sealed private key cannot be directly accessed because there is no file
containing the actual data, but it can only be recovered by loading the private
part inside the TPM after being authorised;

even though the private part is stolen from the machine and it is given in
input to another machine equipped with a TPM 2.0, the loading operation
will fail because the parent key will be different;

in the event of multiple unsuccessful authorisation attempts during the Un-
sealing operation, triggered by a compromised platform, a preventive measure
similar to a dictionary attack prevention mechanism is enacted. This mech-
anism imposes a time delay, compelling the attacker to wait before making
additional attempts to access the resource;

82

Implementation

e the public and private files containing the public and private parts appear
as encrypted files. In case an attacker has no knowledge about the Sealing
operation and how it is performed, there is no way he can decrypt and use
this information to retrieve the private key.

The level of protection can be enhanced by combining various types of autho-
risation with the existing one based on the system’s state. Some possible imple-
mentations include the use of passwords or external tools such as smart cards, USB
drives, or other hardware components to implement multi-factor authentication.

Moreover, through the utilisation of highly specialised techniques that demand
a pre-existing understanding of TPM, knowledge typically lacking in a standard
attacker, we’ve effectively minimised the potential threats. In essence, besides a
grasp of the TPM’s general functionality, an attacker must possess comprehensive
knowledge of the data structures and functions employed in the Sealing operation.

83

Chapter 6

Testing

The chapter presents the results of the tests performed on the final solution using
the Apache version patched with the implemented solution. In particular, perfor-
mance tests were performed to evaluate both latency times and resources consump-
tion. In addition, functional tests were performed to check if the solution behaved
correctly.

6.1 Testbed

The evaluation tests were performed using the following testbed: a machine having
an Intel i7-7600U, 32GB of RAM, running Ubuntu 22.10 with kernel version 5.19
and a discrete Infineon SLB9670 TPM 2.0. The installation and configuration of
the testbed can be found in the Appendix A.

6.2 Functional tests

Functional tests developed are designed to assess the operation of the proposed
solution. Specifically, two cases were analyzed: in the first case, the machine’s
state was compromised, while in the second case, the machine was in a predefined
state.

During the development of these tests, an issue related to the TABRM Daemon
was identified. The error retrieved from the Apache logs is this one:

Error number : 0xa0008: failed to allocate dbus proxy object:
Timeout was reached.

After some research, it was found that this issue was already known in some imple-
mentations of Apache with the TPM. Analysing the execution flow it was seen that
Apache spawns child processes using the fork command and each child calls the
C_Initialize API, which initialises the TABRM daemon and the DBus connection.
The problem is with the C_Finalize function, which does not clear all the resources
allocated for the DBus connection. So the problem appears to be related to the glib

84

Testing

library that should clear everything about DBus connection when finalise functions
are executed. To solve this problem one solution is to remove glib from the client
library. That’s a pretty heavy lift which has limited long-term value given that the
goal is to have the kernel take over this role anyway. The other solution found and
implemented involves using the resource manager integrated within the kernel. By
deactivating the TABRM and specifying in the TCTI module initialisation phase
that the tpmrmO should be used, which corresponds to the in-kernel resource man-
ager, the problem encountered with DBus allocation no longer persists. In case,
the in-kernel RM is not available and the TABRM daemon is the only component
accessible, it is still possible to use this solution, but Apache must be launched in
debug mode, or the maximum number of clients must be specified as 1.

The PCR value during the creation of the sealed key is represented in the
following Figure 6.1:

23:0x00

Figure 6.1. Initial value of PCR 23

6.2.1 Compromised machine

The first step is to modify the PCR 23 to a different value than the one used during
the creation of the sealed key. This can be done using the prcextend command
provided by the tpm2-tools.

23:0x44F12027AB81DFB6E096018F5A9F19645F988D45529CDED3427159DC0032D921

Figure 6.2. Value of PCR 23 after the extend operation

After changing the value of PCR 23 to a new value, shown in the Figure 6.2,
the next step is to launch Apache. The server configuration will occur, and the
data structures necessary for the Unsealing process will be created and initialised.
However, during the first Unsealing operation, the automatic check by the TPM
on the state of PCR 23 will fail, resulting in the failure of the Unsealing process
and the server’s startup. The following errors can be read in the error_log file, an
example is shown in the following Figure 6.3.

6.2.2 No compromised machine

After confirming that the value of PCR 23 is in the same state as when the sealed
key was created Figure 6.1, Apache is started. During this time frame, the necessary
data structures to save the unsealed private key will be created, and the TPM will
be initialised. If PCR 23 remains in the same state throughout the Unsealing phase,

85

Testing

Error: Unsealing process failed.

WARNING:esys:src/tss2-esys/api/Esys_Unseal.c:295:
Esys_Unseal_Finish() Received TPM Error

ERROR:esys:src/tss2-esys/api/Esys_Unseal.c:98:Esys_Unseal ()
Esys Finish ErrorCode (0x0000099d)

Figure 6.3. Errors from the log file

it will conclude successfully, and the private key will be formatted to be loaded into
the SSL context. If the process concludes successfully no errors will be written in
the error_log file but only messages containing meaningful information about the
correct execution of the TPM functions. This can be seen in the following Figure
6.4:

Initialization of the TCTI context successfull
Initialization of the ESYS context successfull
HMAC Session Created
Primary Key Created

Policy Session Created

Policy Digest Created
Unmarshalling of the Private Part
Unmarshalling of the Public Part
Loading sealed object successful
Unsealed object successful
Loaded Data Blob Flushed

Policy Session Flushed

Primary Key Flushed
HMAC Session Flushed

Figure 6.4. Messages from the Unsealing execution process

6.3 Performance tests

Performance evaluation is based on measuring the time required to configure the
Apache server using the proposed solution. Specifically, the time needed to con-
figure an Apache server providing a standard private key was measured first, and
then the time was compared with the proposed solution. Observations revealed
that the configuration time in the standard case averages 0.06 seconds, while the
configuration time using a sealed key averages 76.50 seconds.

The significant time difference is primarily due to the execution of certain op-
erations by the TPM, which inherently is a slow component in performing crypto-
graphic actions.

86

Testing

To better understand which functions were responsible for the execution slow-
ness, the timings of some functions fundamental to the Unsealing process were
measured.

The measured functions are as follows: CreatePrimary, Load, Unseal, and the
set of functions necessary to proceed with the Unsealing operation, iterated for the
number of sealed objects.

As seen in the Figure 6.3, the block of functions needed to retrieve the private
key takes the longest time to complete. This is because it requires executing the
following functions for the number of sealed objects, which in the test corresponds
to 14 times: StartAuthSession, Load, Unseal, and Flush of temporary variables

allocated in the TPM.

Configuration Time (s)
90
80
70
60
50
40
30
20
‘ =
0 [77e]
Total Primary key Load sealed data Unseal command Unseal process
creation

Next is the CreatePrimary function used to recreate the primary key from the
Seed stored in a Shielded Location.

Then follow, in order, the Load functions to load the current sealed data into
the TPM to then call the Unseal function.

Unfortunately, performance improvement is not possible because the bottleneck
is the TPM itself, which takes a long time to execute these operations.

Tests were also conducted to measure the resources used regarding CPU usage
and RAM consumption, but the obtained data is comparable to the standard ones
since all functions are executed by the TPM, and the CPU is responsible for format-
ting the private key from the received buffer, as would happen in the standard case
where the key is read from a file and loaded. RAM consumption is also comparable
to the standard case.

Finally, tests were conducted to check the correct functioning of the server by
making multiple requests, but the resources used in this case are also comparable
to the standard case. This is because once the Unsealed key is loaded into the SSL
context, it is treated as if it were a normal key read from a file.

87

Chapter 7

Conclusions and future work

The objectives of this thesis were to test various TPM functionalities and leverage
some of them to protect the private keys used by web servers for secure client-server
connections. These goals were achieved by exploring the basic functionalities of the
TPM and using some of them to provide an implementation that offers a trade-off
between security and performance.

Initially, efforts were made to develop examples demonstrating the use of vari-
ous TPM functionalities. This allowed me to understand how the TPM functions
based on the commands used and the input values provided. Using the developed
examples and acquired knowledge, it was possible to extend the tpm2-openssl li-
brary. This library allows users to utilise some TPM functionalities by invoking
commands provided by OpenSSL or liberypto. The primary goal behind the mod-
ifications made to the tpm2 provider’s operation was to enable users to create and
use private keys that depended on the state of the machine. The creation of these
keys involved retrieving the machine’s state through the use of PCR and creating
a security policy that governed access to the key. In this way, a web server wanting
to use a key created in this manner had to use the tpm2-provider to request it
from the TPM. This solution allowed any web server to use the private key created
and protected by the TPM, with the only requirement being support for OpenSSL
3.x. Unfortunately, this solution was discarded after careful analysis because, in
addition to not fully complying with the TCG specification, it was not user-friendly
and flexible for those who did not have access to a TPM. For these reasons, a new
solution was developed, this time selecting Apache as the starting web server.

The proposed solution involves using the mod-ssl module already included among
the various modules offered by Apache. This module is responsible for creating a
secure connection between the client and server using TLS. Since this module al-
ready provides all the basic functionalities needed to create an SSL context, it was
decided to extend it to support Unsealing functionality. The Sealing and Unseal-
ing operation, managed by the TPM, allows the creation of data protected by a
primary key internal to the TPM and dependent on the state of the PCR, provid-
ing a measure of the machine’s state. The Sealing operation is handled through
code designed to receive the private key as input, which can be either created on
the spot by the user or imported if already exists. The changes made to Apache
involve the introduction of new directives for configuring the mod-ssl module and

88

Conclusions and future work

the integration of some functions necessary to implement the Unsealing function.
The general operation of Apache and the module remains unchanged since the goal
was to achieve an implementation that was as non-invasive and flexible as possible.

The developed solution allows the use of sealed private keys, achieving a high
level of security at the expense of performance. Indeed, the sealed keys created are
resistant to attacks based on having access to the private key for brute force, long-
exponent, or dictionary attacks, among others. However, this comes at the cost
of increased latency for Apache configuration, as the standard version requires less
than 1 second, while the modified version needs about 76 seconds. Unfortunately,
it is not possible to reduce this time since the TPM itself is the bottleneck. It is
recognised that the TPM takes a significant amount of time to perform the required
cryptographic operations. Fortunately, tests have shown that the only negative
measurement is related to latency, while CPU usage and RAM consumption remain
unchanged both during the configuration phase and in the server usage phase, as
once the key is retrieved, it is treated like a standard private key.

The proposed solution is a good starting point for integrating TPM function-
alities into Apache and beyond. In fact, by making similar modifications to other
web servers that use OpenSSL for secure connection creation, it is possible to en-
hance the security of the private keys used. Considering the solution suggested for
Apache, it can be further improved by expanding the supported types of private
keys and allowing the use of passphrase-protected keys. If the Unsealing operation
in the tpm2-tss library is enhanced to support the creation of Sealed objects of
various sizes, this would significantly reduce the time required for server configu-
ration, estimated at around 30%. Moreover, since the proposed solution for the
tpm2 provider heavily relies on the current version and considering it is a very
active project, it is possible that in the near future, the Unsealing operation will
be natively implemented, overcoming the encountered issues. The work carried out
in this thesis aims to address challenges related to the use of web servers by pro-
viding a hardware solution to problems typically managed through software. This
approach seeks to mitigate threats targeting software, offering a more robust and
secure perspective.

89

Bibliography

1]

2]

[10]

[11]

[12]

[13]

A. Segall, “Trusted Platform Modules - Why, When and How to Use Them”,
The Institution of Engineering and Technology, December 2016, ISBN: 978-1-
84919-893-6

P. S. Tasker, “Trusted computer systems”, 1981 IEEE Symposium on Secu-
rity and Privacy, Oakland (California), April 27-29, 1981, pp. 99-99, DOI
10.1109/SP.1981.10020

J. Teo, “Features and Benefits of Trusted Computing”, 2009 Information Se-
curity Curriculum Development Conference, Kennesaw (Georgia), September
25, 2009, pp. 67-71, DOI 10.1145/1940976.1940990

T. C. Group, “Trusted Platform Module Library. Part 1: Architec-
ture”, September 2016, https://trustedcomputinggroup.org/wp-content/
uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf

K. G. Will Arthur, David Challener, “Practical Guide to TPM 2.0: Using the
New Trusted Platform Module in the New Age of Security”, Springer Nature,
January 2015, ISBN: 978-1-4302-6583-2

B. Berger, “Trusted computing group history”, Information Security Technical
Report, vol. 10, August 2005, pp. 59-62, DOI 10.1016/j.istr.2005.05.007

T. C. Group, “Trusted Platform Module 2.0: A Brief Introduction”, August
2015, https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.
O0-A-Brief-Introduction.pdf

T. C. Group, “TCG TSS 2.0 Overview and Common Structures Specifica-
tion”, September 2021, https://trustedcomputinggroup.org/wp-content/
uploads/TSS_Overview_Common_v1_r10_pub09232021.pdf

T. C. Group, “TCG TSS 2.0 TAB and Resource Manager Specification”,
April 2019, https://trustedcomputinggroup.org/wp-content/uploads/
TSS_2p0_TAB_ResourceManager_v1pO_r18_04082019_pub.pdf

T. tpm2-software project, https://github.com/tpm2-software/
tpm2-abrmd

T. C. Group, “TCG TSS 2.0 TPM Command Transmission Interface (TCTI)
API Specification”, January 2020, https://trustedcomputinggroup.org/
wp-content/uploads/TCG_TSS_TCTI_v1ipO_r18_pub.pdf

T. C. Group, “TCG TSS 2.0 Enhanced System API (ESAPI) Specifica-
tion”, September 2021, https://trustedcomputinggroup.org/wp-content/
uploads/TSS_Overview_Common_v1_r10_pub09232021.pdf

T. C. Group, “TCG TSS 2.0 Feature API (FAPI) Specification”, September
2019, https://trustedcomputinggroup.org/wp-content/uploads/TSS_
FAPI_v0.94_r04_pubrev.pdf

90

https://doi.org/10.1109/SP.1981.10020
https://doi.org/10.1145/1940976.1940990
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://doi.org/10.1016/j.istr.2005.05.007
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_Overview_Common_v1_r10_pub09232021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_Overview_Common_v1_r10_pub09232021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://github.com/tpm2-software/tpm2-abrmd
https://github.com/tpm2-software/tpm2-abrmd
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_TCTI_v1p0_r18_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_TCTI_v1p0_r18_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_Overview_Common_v1_r10_pub09232021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_Overview_Common_v1_r10_pub09232021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_FAPI_v0.94_r04_pubrev.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_FAPI_v0.94_r04_pubrev.pdf

Bibliography

[14]

A. Fuchs, “Enabling the TPM2.0 Ecosystem in Linux”, Presentation at Open
Source Summit + Embedded Linux Conference Europe, Lyon (France), Oc-
tober 25, 2018. https://static.sched.com/hosted_files/osseul9/35/
0SSEU2019.pdf

T. C. Group, “TCG TSS 2.0 System Level API (SAPI) Specification”,
August 2019, https://trustedcomputinggroup.org/wp-content/uploads/
TSS_SAPI_v1pl_r29_pub_20190806.pdf

T. C. Group, “Trusted Platform Module Library Part 3: Commands”, Novem-
ber 2019, https://trustedcomputinggroup.org/wp-content/uploads/
TCG_TPM2_r1p59_Part3_Commands_pub.pdf

91

https://static.sched.com/hosted_files/osseu19/35/OSSEU2019.pdf
https://static.sched.com/hosted_files/osseu19/35/OSSEU2019.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_v1p1_r29_pub_20190806.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_v1p1_r29_pub_20190806.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf

Appendix A

User’s manual

In this appendix, we will describe the necessary steps to replicate the solutions
developed during the thesis. In particular, all information about the device on
which the solutions were developed will be provided, including the libraries required
for proper functionality.

A.1 Requirements

The solutions were developed on a machine equipped with TPM 2.0. The operating
system used is Ubuntu 22.10, which can be downloaded from https://ubuntu.
com/download/desktop.

The following information regarding the TPM 2.0 used was retrieved using the
command provided by tpm2-tools

$ tpm2 getcap properties-fixed

Listing A.1. TPM 2.0 Information

TPM2_PT_FAMILY_INDICATOR:

raw: 0x322E3000

value: "2.0"
TPM2_PT_LEVEL:

raw: O
TPM2_PT_REVISION:

raw: 0x74

value: 1.16
TPM2_PT_DAY_OF_YEAR:

raw: OxF
TPM2_PT_YEAR:

raw: Ox7EO
TPM2_PT_MANUFACTURER:

raw: 0x49465800

value: "IFX"
TPM2_PT_VENDOR_STRING_1:

raw: 0x534C4239

92

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop

User’s manual

value: "SLB9"

TPM2_PT_VENDOR_STRING_2:
raw: 0x36373000
value: "670"

This command allows you to obtain all the necessary information for the correct
use of the integrated TPM in the machine being used. In addition to providing
important information such as the TPM manufacturer. For readability purposes,
only a limited set of information were displayed; additional details can be found in
the main folder under the name of tpm2_information.txt.

As mentioned earlier, the following libraries are required for the proper use of
TPM:

tpm2-tss;

tpm2-tools;

tpm2-abrmd;

tpm2-openssl.

In addition to the previously listed libraries, two Web servers were used for the
proposed solutions:

e Nginx;

e Apache2.

A.1.1 tpm2-tss

This repository contains the source code that implements the TPM2 Software Stack
as defined by the Trusted Computing Group (TCG). In order to build and install
the tpm2-tss software, specific software packages are needed. Often, these depen-
dencies are tailored to the platform in use, for GNU/Linux:

e GNU Autoconf;

e GNU Autoconf Archive, version > 2019.01.06;

GNU Automake;

GNU Libtool;

C compiler;

C library development libraries and header files;

pkg-config;
93

User’s manual

e doxygen;

OpenSSL development libraries and header files, version > 1.1.0;

libcurl development libraries;

Access Control List utility;

JSON C Development library;

Package libusb-1.0-0-dev.

Once all the dependencies are installed to set up the tpm2-tss source code for
configuration and install it, the following code can be used:

$ git clone https://github.com/tpm2-software/tpm2-tss.git
$ cd tpm2-tss

$./bootstrap

$./configure --prefix=/usr

$ make -j5

$ sudo make install

A.1.2 tpm2-abrmd

The tpm2-abrmd repository implements a system daemon following the specifica-
tions for the TPM2 Access Broker (TAB) and Resource Manager (RM) from the
Trusted Computing Group (TCG). The daemon, is developed using Glib and the
GObject system. The dependencies for GNU/Linux are:

e GNU Autoconf;

e GNU Autoconf archive;

e GNU Automake;

e GNU Libtool;

e C compiler;

e C Library Development Libraries and Header Files (for pthreads headers);

e pkg-config;

e glib and gio 2.0 libraries and development files;

e libtss2-sys, libtss2-mu and TCTI libraries from https://github.com/tpm2-

software/tpm2-tss dbus;

To build the source code and install it from the repository the following code
can be used:

94

User’s manual

$ git clone https://github.com/tpm2-software/tpm2-abrmd.git
$ cd tpm2-abrmd

$./bootstrap

$./configure --with-dbuspolicydir=/etc/dbus-1/system.d
--with-udevrulesdir=/usr/lib/udev/rules.d
--with-systemdsystemunitdir=/usr/lib/systemd/system
--libdir=/usr/1ib64 --prefix=/usr

$ make -j5

$ sudo make install

A.1.3 tpm2-tools

The tpm2-tools project offers a comprehensive set of commands, both at a low-
level and aggregate level, to access the functionalities provided by the TPM 2.0
device. The primary purpose of this project was to gain an understanding of and
analyse the commands required for implementing the developed solutions. The
dependencies needed for GNU /Linux are:

e GNU Autoconf (version > 2019.01.06);

GNU Automake;

GNU Libtool;

pkg-config;

C compiler;

C Library Development Libraries and Header Files (for pthreads headers);

ESAPI - TPM2.0 TSS ESAPI library (tss2-esys) and header files;

OpenSSL liberypto library and header files (version > 1.1.0);

Curl library and header files.

The following code is needed to build and install the tpm2-tools project:

$ git clone https://github.com/tpm2-software/tpm2-tools.git
$ cd tpm2-tools

$./bootstrap

$./configure --prefix=/usr

$ make -3jb

$ sudo make install

95

User’s manual

A.1.4 tpm2-openssl

The tpm2-openssl library enables accessibility to TPM 2.0 through the standard
OpenSSL API and command-line tools, making it possible to incorporate TPM sup-
port into nearly any OpenSSL 3.x based application. Adheres to the new OpenSSL
provider API and strictly avoids using any legacy API. As a result, this implemen-
tation:

e Maintains compatibility with OpenSSL 3.x and, ideally, future OpenSSL ver-
sions;

e [s not compatible with any previous versions, including the current OpenSSL
1.1.

e Involves a substantial restructuring of the tpm2-tss-engine, with the code
still present but extensively reorganised to align with the new OpenSSL API.
Consequently, this implementation:

— Retains nearly all functions of the tpm2-tss-engine, despite changes in
the command-line interface and the API.

— Preserves the format of the TSS2 PRIVATE KEY file, ensuring that
keys created by the previous version remain functional.

For more complex scenarios such as SSL or X.509 operations, the in-kernel
resource manager is insufficient. Instead, the tpm2-abrmd must be employed.

The dependencies for GNU/Linux are:

pkg-config;

GNU Autotools (Autoconf, Automake, Libtool);

GNU Autoconf Archive, version > 2017.03.21;

C compiler and C library;

TPM2.0 TSS ESAPI library (libtss2-esys) > 3.2.0 with header files;

OpenSSL > 3.0.0 with header files;

The following code is needed to build and install the tpm2-openssl project:

$ git clone https://github.com/tpm2-software/tpm2-openssl.git
$ cd tpm2-openssl

$./bootstrap

$./configure --prefix=/usr

$ make

$ sudo make install

96

User’s manual

A.1.5 nginx

Nginx is a popular open-source web server and reverse proxy server software that is
known for its high performance, efficiency, and scalability. It is designed to handle
a wide range of web-serving tasks, including serving static and dynamic content,
load balancing, and acting as a reverse proxy for other web servers.

Nginx is known for its event-driven, non-blocking architecture, which allows it
to efficiently handle a large number of concurrent connections without consuming
excessive system resources. It’s often used in scenarios where high concurrency and
low latency are essential, making it a popular choice for serving web applications
and content in high-traffic environments.

This server software supports various features and modules that enable users
to customise and extend its functionality. It is highly configurable through its
configuration files, allowing administrators to define server behaviour, set up virtual
hosts, and configure security settings.

The following code can be used to download, install Nginx and enable the
ssl.module which is responsible for creating the SSL/TLS session.

wget https://nginx.org/download/nginx-1.25.1.tar.gz
tar zxf nginx-1.25.1.tar.gz

cd nginx-1.25.1

./configure
--sbin-path=/usr/local/nginx/nginx
--conf-path=/usr/local/nginx/nginx.conf
--pid-path=/usr/local/nginx/nginx.pid
-—-with-http_ssl_module

--with-stream
—--with-pcre=../pcre2-10.42
--with-zlib=../z1lib-1.2.13
--without-http_empty_gif_module

make

sudo make install

A.1.6 apache2

Apache?2 is a widely used open-source web server software that is renowned for its
flexibility, reliability, and scalability. It is designed to serve web pages, applications,
and content to clients, typically over the HT'TP or HT'TPS protocols. Apache2 is
an integral component of the LAMP (Linux, Apache, MySQL, PHP /Perl /Python)
stack and is compatible with various operating systems, making it a versatile choice
for hosting websites and web applications.

This server software is highly configurable and extensible, allowing administra-
tors to customise its behaviour to suit their specific needs. Apache2 employs a
modular architecture, with each module responsible for a specific aspect of server
functionality, such as authentication, security, and performance optimisation.

97

User’s manual

The following code can be used to download and install the Apache Server using
the default configuration.

wget https://dlcdn.apache.org/httpd/httpd-2.4.58.tar.gz
tar zxf httpd-2.4.58.tar.gz

cd httpd-2.4.58.tar.gz

$./configure

$ make

$ make install

SSL/TLS can be enabled in two different ways:

e executing the following command during the build of the source code:

./configure --enable-ssl

e modifying the configuration file found in the default directory in which Apache
was installed, /usr/local/apache2/conf/httpd.conf, and removing the com-
ments for the following lines:

LoadModule ssl_module modules/mod_ssl.so
Include "conf/extra/httpd-ssl.conf"

<IfModule ssl_module>
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
</IfModule>

It is possible to debug Apache using gdb. Prior to using gdb, ensure that
the server has been compiled with the -g option in CFLAGS to include symbol
information in the object files. This can be done in the following way:

.configure CFLAGS="-g"

The only somewhat challenging aspect of running gdb with Apache is ensuring
that the server operates in a single-process mode so that the parent process, which
handles requests, becomes the target for debugging rather than spawning child
processes. To address this, the -X option needs to be used. However, certain
modules may not cooperate with the -X option but can operate smoothly if you
restrict the server to a single child process using MaxClients 1.

A.2 Use cases

The source code to test the use cases previously defined can be found in the main
directory use_cases. Inside it can be found six files:

e main.cpp

98

use_cases

User’s manual

e tpm.cpp

test.cpp

tpm.h

structures.h

e test.h

The language used to implement the use cases is C++ instead of C. The main
reason for using C++ is due to the tpm2-openssl software which is entirely written
in the same language.

The following code can be used to execute the functionality to test by selecting
the corresponding use case. The possible use cases are Encryption/Decryption and
Signing.

The code options are:

e -v or —verbose: to print on standard output information about the execution;
e -in or —input: to pass the file containing the data to encrypt/sign;

e -out or —output: to write the returned data of the encryption/signing;

e -enc or —encryption: to test the encryption operation;

e -sig or —signing: to test the signing operation;

cmake
.\test [-enc/-sig] -v <enable_printing> [-in <input_file>]
[-out <output_file>]

A.3 Tpm2-OpenSSL solution

The following section defines the changes made to the tpm2-openssl library in order
to enable the creation of an RSA key protected with PCRs values.

The code can be found in the main directory tpm2-openssl. The file changed
are:

e src/tpm2-provider-keymgmt-rsa.c

e src/tpm2-provider-decoder-tss2.c
and the new file created are:

e src/tpm2-provider-sessionmgmt.c

e src/tpm2-provider-sessionmgmt.h

99

tpm2-openssl

User’s manual

The following code can be used to build the code:

cd tpm2-openssl
./bootstrap

./configure --enable-debug
make

make install

The following code represented in the following Figure A.1 can be used to test
it by creating a Server with OpenSSL:

1 # create the primary key

2 tpm2_createprimary -C o -G rsa -c primary.ctx

3 # create the session

4 tpm2_startauthsession -S session.dat

O # extend the session selecting the PCR 23

6 tpm2_policypcr -S session.dat -1 "sha256:23" -L policy.dat

7 # flush the session created

8 tpm2_flushcontext session.dat

9 # create the private key

10 tpm2_create -u key.pub -r key.priv -C primary.ctx -L policy.dat

11 # load the private key

12 tpm2_load -C primary.ctx -u key.pub -r key.priv -n
unseal.key.name -c unseal.key.ctx

13 # load the private key to persistent handle

14 HANDLE=$(tpm2_evictcontrol -c unseal.key.ctx | cut -d ’’ -f 2 |
head -n 1)

15 # use the private key to gemerate a self-signed certificate

16 openssl req -provider tpm2 -provider default -propquery
>?provider=tpm2’ -x509 -config testcert.conf -key
handle:${HANDLE} -out testcert.pem

17 # start SSL server with RSA-PSS-PSS signing, port 4432

18 openssl s_server -provider tpm2 -provider default -propquery
>?provider=tpm2’ -accept 4432 -www -key handle:${HANDLE}
-cert testcert.pem &

Figure A.1. Server creation using OpenSSL and the TPM2 provider

To enable Nginx to use the private key created using the TPM 2.0 a new entry
in the openssl.cnf file is needed A.2 in this way we force the usage of the tpm
when it is needed. This can be done by including these lines:

A.4 Apache Solution

In the following section, we are going to discuss how to use the solution created
with Apache. The code can be found in the httpd-2.4.57 directory, but all the
changes made can be found in httpd-2.4.57/modules/ssl directory.

100

httpd-2.4.57
httpd-2.4.57/modules/ssl

User’s manual

[provider_sect]
default = default_sect
+ tpm2 = tpm2_sect
[default_sect]
activate = 1

+ [tpm2_sect]

+ activate = 1

~N O T W N

Figure A.2. Global configuration of the TPM2 provider

The following code Figure A.3 can be used to build the solution, in particular
to install the module mod-ssl with the patch.

cd httpd-2.4.57

CFLAGS="-g" ./configure --enable-ssl

make

make install

make clean

apxs -¢ -i -I modules/md -1ltss2-esys -ltss2-mu
-1ltss2-tcti-tabrmd -1ltss2-tcti-device -1ssl modules/ssl/*.c

SO W N~

Figure A.3. Build of Apache with the patched module

The first step to proceed with the test of the main solution is to create the
Sealed Key. This can be done by firstly creating an RSA key using the commands
provided by Openssl Figure A .4.

Once the RSA Key has been created or if already been created, the next step
consists on passing it to the actual piece of code responsible for creating the Sealed
Key by accepting in input the key and providing in output the two files needed
for the Unsealing process. The actual code can be found in the main directory
sealing.

The code options are:
e -in or —input: path to the private key to be sealed;

e -prv or —private: path to the file that will contain the private part of the
sealed key;

e -pub or —public: path to the file that will contain the public part of the sealed
key;

e -v or —verbose: print on standard output information about the execution.

The following code is an example of an actual scenario:

101

sealing

User’s manual

1 openssl genrsa -out private_key.pem 2048

2 openssl req -key private_key.pem -new -out
certificate_request.csr

3 openssl x509 -signkey private_key.pem -in
certificate_request.csr -req -days 365 -out certificate.crt

Figure A.4. Build of Apache with the patched module

.\sealing -in private_rsa.key -prv
\etc\ssl\private_sealed_key.dat -pub
\etc\ssl\public_sealed_key.dat -v

The RSA key can be safely destroyed after this operation, by executing:

rm private_rsa.key

The second step is to change the configuration file of the ssl module httpd-
ssl.conf found in usr/local/apache2/conf/extra by adding the following Direc-
tives:

e SSLSealed ON
e SSLSealedPrivateFile /etc/ssl/private_sealed key.dat

e SSLSealedPublicFile /etc/ssl/public_sealed key.dat

Apache can be executed using the default command: sudo apachectl start.
If we want to launch it in debugging mode this command can be used:
sudo apachectl -X.

102

usr/local/apache2/conf/extra

Appendix B

Developer’s manual

B.1 Use Cases and Tpm2-OpenSSL solutions

In this section, we are going to present and explain the code developed for both the
use cases and tpm2-openssl library. Because they were both written in C++ and
used some common functions and structures, for readability purposes they were
merged.

B.1.1 Structures

The following Figures B.1, B.2, B.3, B.4, B.5 represent the structures defined for
both the implementations of the use cases and the changes made to the tpm2-openssl
project. For each field, a comment is inserted.

B.1.2 Code

The following functions are used both in the use cases and TPM2-OpenSSL sce-
narios but also in the final solution developed with Apache. For this reason they

| struct StartAuthSessionResult {

2 // Returning code to check if different from

3 // TPM2_RC_SUCCESS

| int rc;

) // Session handle

6 ESYS_TR handle;

7 // Nonce created after the creation of the Session
8 std::vector<uint8_t> nonce_tpm;

Figure B.1. Structure to store meaningful information of Sessions

103

Developer’s manual

1 struct LoadResult {

10 };

11

// Returning code to check if different from

// TPM2_RC_SUCCESS

int rc;

// Loaded object handle

uint32_t handle;

// Hash corresponding to the object name extracted
// with the Esys_ReadPublic() function

std: :vector<uint8_t> name;

Figure B.2. Structure to store meaningful information of Keys/Sealed Objects

| struct CreatePrimaryResult {

// Returning code to check if different from
// TPM2_RC_SUCCESS

int rc;

// Primary Key handle

uint32_t handle;

// RSA public key material
std::vector<uint8_t> rsa_public_n;

// ECC public key material
std::vector<uint8_t> ecc_public_x;
std::vector<uint8_t> ecc_public_y;

int ecc_curve_id;

// Symmetric key information

std: :vector<uint8_t> sym_cipher_buffer;

// Hash corresponding to the name of the Primary Key
std: :vector<uint8_t> name;

// Parent information

std::vector<uint8_t> parent_name;
std::vector<uint8_t> parent_qualified_name;

will not be further discussed in the final section of this chapter. The only difference
with the Apache functions is that they are written in C and not in C++ but the

Figure B.3. Structure to store meaningful information of Primary Keys

structure and execution are equal

The first pair of function that we are going to discuss are the TCTT Initialisation
function Figure B.6 and the ESYS Initialisation function Figure B.7. Both of them

104

Developer’s manual

1

struct CreateResult {

// Returning code to check if different from
// TPM2_RC_SUCCESS

int rc;

// Private part of Key/Sealed Object to be
// used with Load() function
std::vector<uint8_t> tpm2b_private;

// Public part of Key/Sealed Object to be
// used with Load() function
std::vector<uint8_t> tpm2b_public;

// RSA public key material
std::vector<uint8_t> rsa_public_n;

// ECC public key material
std::vector<uint8_t> ecc_public_x;
std::vector<uint8_t> ecc_public_y;

// Curve identifier

int ecc_curve_id;

// Parent information

std::vector<uint8_t> parent_name;
std::vector<uint8_t> parent_qualified_name;

Figure B.4. Structure to store meaningful information of Child Keys/Sealed Objects

. struct SignResult {

2

3

4

// Returning code to check if different from
// TPM2_RC_SUCCESS

int rc;

// Signing algorithm used

int sign_algo;

// Hash algorithm used

int hash_algo;

// RSA signature
std::vector<uint8_t> rsa_ssa_sig;
// ECDSA signature

std: :vector<uint8_t> ecdsa_r;
std: :vector<uint8_t> ecdsa_s;

Figure B.5. Structure to store meaningful information of Signing Data

105

Developer’s manual

are used to initialise the context needed to send commands to the TPM and to use
its functionalities. The contexts will be flushed once the program ends using the
Finalisation functions Figures B.8 and B.9.

1 void TPM::Init_Tcti_Device_Context() {

2

3

1

/* Variable configuration */

/* Function call need to obtain the right size for the
tcti_context */

rc = Tss2_Tcti_Device_Init(nullptr, &context_size, NULL);
/* Check returned value */

/* Memory allocation for the tcti_context */
tcti_context = (TSS2_TCTI_CONTEXT *) calloc(l,context_size);
/* Check returned value */

/* Initialisation of the tcti using the default configuration
*/

rc = Tss2_Tcti_Device_Init(tcti_context,&context_size, NULL);
/* Check returned value */

Figure B.6. TCTI initialisation using the in-kernel Resource Manager

void TPM::Finalize_Tcti_Device_Context() {

/* Clear the tcti_context */
Tss2_Tcti_Finalize(tcti_context);

Figure B.7. TCTI finalisation

The next function that has a key role in the solutions developed is the function
responsible for the Session creation Figure B.10. This function initialise all the data
structures and the properties needed to create a Session. It supports the creation
of the three types of sessions: HMAC, Policy and trial.

The next two functions are used to create the Primary key. They were developed
to be as flexible as possible, allowing the user to select different properties for the
primary key. For this reason the first function Figure B.11 is used to create the

data structures needed and to set the properties of the private key, while the second

function Figure B.12 creates the Primary key.

The following function Figure B.13 is used to extract the policy digest from the

Policy Session. This value is later used to create Sealed Data/Keys protected with

106

Developer’s manual

1 void TPM::Init_Esys_Context() {
/* Initialization of the ESYS context */
3 rc = Esys_Initialize(&esys_context,tcti_context,&abi_version)

| /* Check returned value */

Figure B.8. ESYS Context initialisation

1 void TPM::Finalize_Esys_Context() {
> Esys_Finalize(&esys_context);
s}

4

Figure B.9. ESYS Context Finalisation

the PCRs.

The creation of the Sealed Data/Key is done using the following function Figure
B.14. From the functional point of view, it is similar to the pair of functions for
the primary key creation. The only difference with them is that some of the input
parameters are different. The key point of this function is the usage of the policy
digest to create an Object which is protected by the PCRs.

The next function Figure B.15 is needed to load inside the TPM the Objects cre-
ated with the Create function. It accepts in input both the public and private data
created during the creation of the Object. Then the operation of Unmarshalling is
carried out on those data and then the Load operation is done. An handle to the
object loaded inside the TPM is returned.

The following four functions are only used inside the Use cases. The first func-
tion Figure B.16 is used to encrypt a data blob received in input using a RSA
private key protected with the PCRs. The second function Figure B.17 instead, is
used to decrypt the encrypted data from the previous one using a Policy Session for
the authorisation. The policy session is used to check if the machine is in the cor-
rect state. The next two functions implement the Sign Figure B.18 and Signature
verification Figure B.19. The key point is that the Sign function as the Decrypt
function must use a Policy session to be authorised to use the private key.

The final function is the one used for the Unsealing process and it is used only
in the Apache solution. It receives in input an handle to the Sealed data loaded
inside the TPM. The Unsealing operation consist on retrieving the sensitive data
stored inside the sealed data only if the platform is in the correct state. In our case
the check is done on the value of the PCR selected.

107

Developer’s manual

. StartAuthSessionResult TPM::StartAuthSession(int session_type,
bool is_symmetric, uint32_t handle) {

N

3 /* TPM resources allocation and Session parameter
defininition */

6 /* Function that implements the Session creation */

7 result.rc = Esys_StartAuthSession(esys_context, handle,
ESYS_TR_NONE,

8 ESYS_TR_NONE, ESYS_TR_NONE,
ESYS_TR_NONE, &nonce_caller,

9 sessionType, &symmetric,
authHash, &session);

11 /* Check Session Creation */

14 /* Function to set up the attributes the Session must have */

15 result.rc = Esys_TRSess_SetAttributes(esys_context, session,
sessionAttributes, Oxff);

16 return result;

Figure B.10. Session creation

B.1.3 TPM2-OpenSSL code changes

The main changes to the tpm2-openssl code were made in the tpm2-provider-
keymgmt-rsa.c file. The first step Figure B.21 is to define the variables needed for
the creation of the Private Key which will be dependent on the 23rd PCR value.
Those variables are mainly used to save the current handlers of the sessions created.
The second step is to modify the function responsible for the Primary Key creation
that in our case will contain also a reference to the HMAC session handler in this
way we can later pass it to the function responsible for creating the Private Key.

Once the Primary Key is created, the next step Figure B.22 is to start the Policy
Session responsible for creating the policy digest. After the extraction of the policy
digest, we need to modify the sensible data that will be encrypted during the key
creation passing the value just computed. In this way, the Private Key created will
be dependent on the current value of the PCR 23.

108

Developer’s manual

i CreatePrimaryResult TPM::CreatePrimary(int hierarchy, int type,
int restricted, int decrypt,

N

int sign, const std::
string &unique,
3 const std::string &
user_auth,
const std::string &
sensitive_data,
const std::vector<uint8_t>
&auth_policy,
6 int session_handle) {
7 /* Check on the key hierarchy selected */

9 /* Check if the type of key selected is supported */
11 /* Creation of the public data containing key properties */

13 /* Creation of the sensitive data containing authorisation
properties */

15 return CreatePrimaryFromTemplate(hierarchy, in_sensitive,
in_public, session_handle);

Figure B.11. Creation of the data structures for the Primary key creation

B.2 Apache solution

The solution developed for the Apache web server mainly consists of using the
mod_ssl module, which is already provided by Apache, to integrate the operations
needed to use TPM 2.0. An external procedure has been developed for the Sealing
operation.

B.2.1 Sealing procedure
Structures

The data structures defined are already described in the first section of this chapter
so no other analyses will be made, except the following one Figure B.23. The
SealedData structure has been introduced to store information about the data
read from file and the Sealed Private key just created.

The code developed to handle the Sealing of the Private Key is symmetrical
to what will be analysed in the next section. As previously explained in the User
manual, this procedure takes as input parameters the paths to the following files:
private key, public part, and private part.

109

Developer’s manual

1 CreatePrimaryResult
> TPM: :CreatePrimaryFromTemplate (ESYS_TR hierarchy,
3 const TPM2B_SENSITIVE_CREATE &
in_sensitive,
1 const TPM2B_PUBLIC &in_public,
int session_handle) {

8 /* Creation fo the primary key */

9 result.rc = Esys_CreatePrimary(esys_context, hierarchy,
session_handle, ESYS_TR_NONE, ESYS_TR_NONE, &in_sensitive, &
in_public, &outside_info,

10 &creation_pcr, &result.handle,

&out_public, &creation_data, &creation_hash, &creation_ticket

):

12 /* Store the primary key information inside the
CreatePrimaryResult data structure */

15 return result;

Figure B.12. Creation of the Primary key

The first phase involves reading the private key from a file and dividing it into
blocks of data of 128 bytes each Figure B.24. This process is strictly necessary
because the library used allows the creation of Sealed Objects with a maximum
size of 128 bytes.Subsequently, the necessary variables are initialised to manage
this process.

Sealing code

The first operation consists on creating an HMAC Session Figure B.25 to be
used to generate the primary key. Another session, of type Policy, is then created
to extract the policy digest that need to be associated to the Sealed Key, which is
dependent to the PCR value defined.

In the process of creating a Sealed Object, the primary key’s role is to protect
the object by encrypting the sensitive information that needs to be saved in the file
containing the private part Figure B.26.

The following block of code Figure B.27 manages the creation of N-different
Sealed Objects, using the primary key handle, the policy digest previously com-
puted and the HMAC session.

Once the Sealing process is finished Figure B.28, for each Sealed object we
110

Developer’s manual

. TPM2B_DIGEST* TPM: :PolicyPCR(ESYS_TR pcr_handle, ESYS_TR
session_handle, const std::vector<uint8_t> &digest){
2 /* Selection of the right PCR */

1 /* Function to extend the session policy and bind it to the
PCR selected */

5 TSS2_RC rc = Esys_PolicyPCR(esys_context, session_handle,
ESYS_TR_NONE, ESYS_TR_NONE, ESYS_TR_NONE,

6 &pcr_digest_zero, &pcrSelection)

7 /* Check returned value */

9 /* Extraction of the policy digest */

10 r = Esys_PolicyGetDigest (esys_context,

11 session_handle,

12 ESYS_TR_NONE,

13 ESYS_TR_NONE, ESYS_TR_NONE, &
policyDigest);

14 /* Check returned value */

16 return policyDigest;

Figure B.13. Creation of the policy digest

extract the values of tpm2b_public and tpm2b_private and concatenate these
values to create two files containing the public and private parts.

In the last phase Figure B.29, the values are written to the file that has been
provided in input and the flush of both sessions happens.

B.2.2 mod_ssl code
Structures

The first changes made to the code involved defining new variables and data struc-
tures in the ssl private.h file. The most important one is related to the enum
variable, ssl sealed_t Figure B.30, which distinguishes whether the server will use
a Sealed key or a key independent of the TPM context. In addition, some global
variables were defined for the Unsealing process Figure B.31.

This was made possible by defining a new data structure called tpm2_context_t
Figure B.31, containing the necessary fields to manage instances of both the TCTI
context and the ESYS context. This structure was added to the SSLSrvConfigRec
Figure B.33structure already defined, which contains all the meaningful information
on the current server’s configuration.

111

Developer’s manual

i CreateResult TPM::Create(uint32_t parent_handle, int type, int
restricted,

N

int decrypt, int sign, const std::string
&user_auth,
3 const std::string &sensitive_data,
1 const std::vector<uint8_t> &auth_policy,
5 int session_handle) {
6 /* Creation of the data structures needed to create the
Sealed Data/Key */

5 /* Sealed Data/Key creation dependent to the PCR value */

9 result.rc = Esys_Create(esys_context, parent_handle,
session_handle,

10 ESYS_TR_NONE, ESYS_TR_NONE, &
in_sensitive,

11 &in_public, &outside_info, &
creation_pcr,

12 &out_private, &out_public, &
creation_data,

13 &creation_hash, &creation_ticket);

14 /* Store meaningful information about the key inside the

CreateResult data structure */

16 return result;

Figure B.14. Creation of the Sealed Data/Key

Lastly, three new Directives were defined in the mod_ssl.c file. These new en-
tries defined in the command_rec structure Figure B.34, containing all the directives
defined by mod _ssl, contain the callback to the function for that precise Directive.

Functions

The first step is to allocate the necessary memory for the previously defined data
structures. In this context, the default method apr_palloc() defined by Apache was
used Figure B.35 and the variables were initiated to their default values.

In addition, the merge function used to copy the configuration of the current
server instance to the new one was extended to support the new structure defined
for TPM purposes Figure B.36.

As previously mentioned, three new functions were defined to correctly manage
the directives created. The first function Figure B.37 manages the SSLSealed
directive, it receives in input two possible values On or 0ff and based on the value
received the Sealed process is enabled.

112

Developer’s manual

1

LoadResult TPM::Load(ESYS_TR parent_handle, const std::vector<

uint8_t> &tpm2b_private, const std::vector<uint8_t> &
tpm2b_public, int session_handle) {

/* Unmarshalling of the public and private part of Sealed
Data/Key */

/* Load the Sealed Data/Key inside the TPM */

result.rc = Esys_Load(esys_context, parent_handle,
session_handle, ESYS_TR_NONE, ESYS_TR_NONE, &in_private, &
in_public, &result.handle);

/*Check returned value */

return result;

Figure B.15. Load the Sealed Data/Key inside the TPM

std: :vector<uint8_t> TPM: :EncryptRSAWithSession(uint32_t

key_handle,

const std::vector

<uint8_t> &message,

uint32_t
session_handle) {
/* Data structure initialisation */

/* Encryption of the data received using the private key */
rc = Esys_RSA_Encrypt(esys_context, key_handle,
session_handle, ESYS_TR_NONE,

ESYS_TR_NONE, &inData, &scheme, &
outsidelInfo, &data_out);
/* Check returned value */

return std::vector<uint8_t>(data_out->buffer, data_out—>
buffer + data_out->size);

Figure B.16. Encryption of the data blob with the Private key

The second function Figure B.38 manages the SSLSealedPublicFile directive,
it receives in input the path to the file containing the public parts of the Sealed

Private Key.

The third function Figure B.39 manages the SSLSealedPrivateFile directive,
it receives in input the path to the file containing the private parts of the Sealed

113

Developer’s manual

1 std::vector<uint8_t> TPM: :DecryptRSAWithSession(uint32_t

N

key_handle,

const std::vector

<uint8_t> &message,

uint32_t
session_handle) {
/* Initialisation of the data structure needed to store the
decrypted data */

/* Decryption of the encrypted data using the policy session
for authentication */
rc = Esys_RSA_Decrypt(esys_context, key_handle,
session_handle, ESYS_TR_NONE,

ESYS_TR_NONE, &inData, &scheme, &
outsideInfo, &data_out);
/* Check returned code */

return std::vector<uint8_t>(data_out->buffer, data_out—>
buffer + data_out->size);

Figure B.17. Decryption of the encrypted data

SignResult TPM::Sign(uint32_t key_handle, int type, const std::

string &str, uint32_t session_handle) {
/* Check if the algorithm selected is supported and
initialisation of the data structures */

/* Signing of the data received */
result.rc = Esys_Sign(esys_context, key_handle,
session_handle,

ESYS_TR_NONE, ESYS_TR_NONE, &message, &

scheme, &validation, &signature);
/* Check returned value and store the signature */
return result;

Figure B.18. Signing the data blob

Private Key.

The following function Figure B.40 manages the initialisation of the SSL Con-
text for the current server. It retrieves the Certificate from the file defined in the
configuration, extracts the Private Key associated to the certificate and checks it

114

Developer’s manual

. TPM2_RC TPM: :VerifySignature(uint32_t key_handle, const std::
string &str, const SignResult &in_signature, uint32_t
session_handle) {

/* Check if the algorithm selected is supported and
initialisation of the data structures */

1 /* Verification of the signature */

5 return Esys_VerifySignature(esys_context, key_handle,
ESYS_TR_NONE, ESYS_TR_NONE, ESYS_TR_NONE, &message, &signature
, &validation);

Figure B.19. Verification of the signature

. std::vector<char> TPM::Unseal (uint32_t keyHandle, uint32_t
sessionHandle){

2 /* Unsealing of the Sealed data */

3 TSS2_RC r = Esys_Unseal(esys_context, keyHandle,
sessionHandle,

ESYS_TR_NONE, ESYS_TR_NONE, &outData)
/* Store the unsealed data into a buffer of bytes */
6 return sensitive_data;

Figure B.20. Unsealing sealed data

authenticity against the key. The main changes are made during in the extraction
stage in which, based on the sealed flag previously set, the Unsealing operation is
executed instead of the extraction from file.

The function that manages all the operation to Unseal the private key starting
from initialisation to the finalisation of the TPM is the ssl_unsealing tpm2().
For readability purposes the function code has been divided in many parts and the
code responsible for error checking has been removed. The functions in these code
snippets have already been addressed in the first section of this chapter and so they
will not be further analysed. The only difference is that to be compliant with the
Apache source code, the code has been converted from C++ to C.

The first block of code Figure B.41 represent the definition and initialisation of
the variables used in the function. As it can be seen, the majority of the defined
variables are specified in the tss2 library, to adhere to the standard as much as
possible without creating new data structures.

The next code snippet Figure B.42 represent the process of retrieving the public
and private part of the Sealed Key. This two values are later used to Unseal the

115

Developer’s manual

| static void *tpm2_rsa_keymgmt_gen(void *ctx, OSSL_CALLBACK *cb,
> void *cbarg){

| ESYS_TR hmac_handle;
5 ESYS_TR policy_handle;

7 if (gen->parentHandle && gen->parentHandle != TPM2_RH_OWNER)

{
9 } else {
10 DBG("RSA GEN parent: primary Ox%x\n", TPM2_RH_OWNER) ;
1 if (!'tpm2_build_primary(pkey->core, pkey->esys_ctx,
12 pkey—>capability.algorithms, ESYS_TR_RH_OWNER,
13 &gen->parentAuth, &parent, &hmac_handle))
14 goto error;
15 }

Figure B.21. Caption

Private Key. The first call to readFileToVectorUnseal () extract the public part
by reading blocks of 616 bytes. The second call extract the private part by reading
blocks of 1552 bytes.

The next phase is to initialise the TPM Figure B.43. In this stage both the
TCTI and Esys context are initialised.

In the following stage Figure B.44, the HMAC session is created and it is kept
until the Unsealing process is finished, because it is used for both the Primary
Key creation and later on for the Load operation. As mentioned, the Primary Key
creation is one of the steps needed to Load and Unseal the Private key.

The core of this function is the following code snippet Figure B.45. As it is
possible to see, the process of Unsealing consist on iterating on the actual number
of sealed chucks.

The operations can be divided in four phases:

1. First phase: we have to start a Policy Session in order to be able to retrieve
the current policy digest which will be checked against the one computed
during the Sealing process.

2. Second phase: consists on Loading the public chuck and the private chuck of
the sealed object. This is necessary to be able to Unseal the current sealed
object.

3. Third phase: the Unsealing function is called passing the handle to the loaded
object and the handle to the policy session, if the PCR value is different from

116

Developer’s manual

/* Start a new session of type POLICY this time */
r = tpm2_start_auth_session(2, gen->esys_ctx, 1,

&policy_handle);
/* Check on Policy Session Creation */

/* Create the policy session depending on the value of the

PCR-23 */
8 TPM2B_DIGEST policy_digest = {
9 .size = 0,
.buffer = {}

}s

r = tpm2_create_policy_digest(23, gen->esys_ctx,
policy_handle, &policy_digest);

/* Change the inSensitive field, in order to set the value of
the authentication policy equal to the policy digest */

gen->inPublic.publicArea.authPolicy.size

policy_digest.size;

memcpy (gen->inPublic.publicArea.authPolicy.buffer,
policy_digest.buffer, policy_digest.size);

Figure B.22.

Caption

1

struct SealedData{

2 // Used to store the Private Key read from file

3 map<int, vector<uint8_t>> data_blobs;

4 // Used to store informations about the Sealed Objects

5 // It contains both information about public and private
6 CreateResult *sealed_objects;

7 // Number of Sealed blobs created

8 int blobs;

Figure B.23. Caption

117

Developer’s manual

void Sealing(TPM *tpm, string inputPath, string privateKeyPath,
string publicKeyPath, bool verbose) {

SealedData sealed_data;
vector<uint8_t> public_part;
vector<uint8_t> private_part;
int current_chunk= O;

/* Read the file and store the content in a vector */
readFileToVectorKey(inputPath, &sealed_data);

Figure B.24. Caption

/* Start HMAC Session */

StartAuthSessionResult temporarySession =
tpm->StartAuthSession(3, true, ESYS_TR_NONE);

/* Check HMAC Session Creation */

/* Start Policy Session */

StartAuthSessionResult policySession =

tpm->StartAuthSession(2, true, ESYS_TR_NONE);

/* Check Policy Session Creation */

/* Policy Digest extraction */

, TPM2B_DIGEST *policyDigest = tpm->PolicyPCR(23,

policySession.handle, vector<uint8_t>());
vector<uint8_t> digest = vector<uint8_t>(

policyDigest—->buffer,

policyDigest->buffer+policyDigest->size);

Figure B.25. Caption

the one during the Sealing operation an error is returned in this stage and
the Unsealing operation is aborted.

4. Last phase: it is mandatory to Flush the loaded object temporary stored in
the TPM and the current policy session. This is needed to be able to continue

118

Developer’s manual

1 /* Create Primary Key */

> CreatePrimaryResult pk = tpm->CreatePrimary(ESYS_TR_RH_OWNER,
3 TPM2_ALG_RSA, 1, 1, O, "", "","", vector<uint8_t>(),

1 temporarySession.handle) ;

6 /* Check Primary Key Creation */
o /* Allocate the memory to store the Sealed data objects */

0 sealed_data.sealed_objects = (CreateResult *) calloc(
11 sealed_data.blobs, sizeof (CreateResult));

Figure B.26. Caption

1 while (current_chunk < sealed_data.blobs){
2 /* Sealed Object Creation */
3 CreateResult sealed_object = tpm->Create(pk.handle,
4 TPM2_ALG_KEYEDHASH, 0, 0, O, "",
string(sealed_data.data_blobs[current_chunk] .begin(),
sealed_data.data_blobs[current_chunk] .end()), digest,
6 temporarySession.handle);

8 /* Check Sealed Object Creation */
11 sealed_data.sealed_objects[current_chunk++] =

sealed_object;

12 }

Figure B.27. Caption

with the Unsealing process. In practice if we use the same policy session what
happens is that the policy digest is computed each. This causes the Unsealing
process to fail after the first iteration.

The following code Figure B.46 is used to align the unsealed data size to its
actual size in this way we avoid problems when serialising the Private Key from the
buffer to the EVP_PKEY data structure. It follows the flush process for both the
Primary Key and the HMAC session and finally the finalisation of both the ESYS
and TCTI context.

119

Developer’s manual

1 current_chunk = 0;

2 /* Fill the public_part and private_part with the
informations needed */

3 while(current_chunk < sealed_data.blobs){

4 public_part.insert(public_part.begin(),

5 sealed_data.sealed_objects[current_chunk] .
tpm2b_public.begin(), sealed_data.sealed_objects[current_chunk
] .tpm2b_public.end());

7 private_part.insert(private_part.begin(),

8 sealed_data.sealed_objects[current_chunk] .
tpm2b_private.begin(), sealed_data.sealed_objects[
current_chunk] . tpm2b_private.end());

9 current_chunk++;

10 }

Figure B.28. Caption

1 /* Write the Public and Private part of the Sealed Private
Key to file x/

2 writeFileInBinary(publicKeyPath, public_part);

3 writeFileInBinary(privateKeyPath, private_part);

5 /* Flush both the HMAC Session and the Policy Session
6 tpm->FlushContext (temporarySession.handle) ;
7 tpm->FlushContext (policySession.handle) ;

Figure B.29. Caption

The last phase Figure B.47 is to actually create the key from the buffer con-
taining the Unsealed Private Key. This process is done using the OpenSSL library,
using the BIO data type that is an Input/Output abstraction to hide I/O details
from the application. Once the BIO memory buffer is created it is possible to
proceed to create the EVP_PKEY, which will be later associated to the current
SSL_CTX of the server instance.

120

Developer’s manual

1

2

3

VETS

* Define the Sealed enabled state

- UNSET = Default value if not defined in the
configuration file

-0 = Private Key Not-Sealed

-1 = Private Key Sealed

typedef enum{

SSL_SEALED_UNSET
SSL_SEALED_FALSE

UNSET,
0,

SSL_SEALED_TRUE = 1

} ssl_sealed_t;

Figure B.30. Directives Variables

9

10

11

=

3

4

.

5

16

/**

* TPM2 Global Variables

PUB_SIZE =

PRI_SIZE

BLOB_SIZE

DEBUG_TPM2=

*/

Default value of the public part of the
Sealed Object

Default value of the private part of
the Sealed Object

Default value of the MAX size of a
Sealed Object

Used to print meaningful informations

> #define TPM2_PUB_SIZE 616

#define TPM2_PRI_SIZE 1552

#define BLOB_SIZE

#define DEBUG_TPM2

128

Figure B.31. Global Variables

121

Developer’s manual

typedef struct{

\\ Used to save the current TCTI context, once the
\\ TPM is Initiated

TSS2_TCTI_CONTEXT *tcti_context;

\\ Used to save the current ESYS context
ESYS_CONTEXT *esys_context;

\\ Used to the save the current path to the file

\\ containing the public parts of the Sealed Object
const char *public_path;

\\ Used to the save the current path to the file

\\ containing the private parts of the Sealed Object
const char *private_path;

} tpm2_context_t;

Figure B.32. tpm2_context_t structure

struct SSLSrvConfigRec {

tpm2_context_t *tpm2;
ssl_sealed_t sealed;

Figure B.33. SSLSrvConfigRec structure

static const command_rec ssl_config_cmds[] = {

SSL_CMD_SRV(Sealed, TAKE1,

"Enable Sealed mode (’on’, ’off’)")
SSL_CMD_SRV(SealedPublicFile, TAKE1,

"TPM2 Public Part Sealed Private Key ")
SSL_CMD_SRV(SealedPrivateFile, TAKE1,

"TPM2 Private Part Sealed Private Key ")

Figure B.34. Definition of the functions corresponding to the directives created

122

Developer’s manual

1 static void modssl_ctx_init_tpm2(SSLSrvConfigRec *sc,

:3{

apr_pool_t *p)

tpm2_context_t *tpm2ctx;
tpm2ctx = sc->tpm2 = apr_palloc(p,

sizeof (*sc->tpm2)) ;
tpm2ctx->tcti_context = NULL;
tpm2ctx->esys_context = NULL;
tpm2ctx->public_path = NULL;
tpm2ctx->private_path = NULL;

Figure B.35. Initialisation of the data structure created

1 static void modssl_ctx_cfg_merge_tpm2(apr_pool_t *p,

tpm2_context_t *base, tpm2_context_t *add,
tpm2_context_t *mrg){
cfgMerge(tcti_context, NULL);
cfgMerge (esys_context, NULL);
cfgMergeString (public_path) ;
cfgMergeString(private_path);

Figure B.36. Merge of the data structures from the previous configu-
ration to the new one

123

Developer’s manual

1 const char *ssl_cmd_SSLSealed(cmd_parms *cmd, void *dcfg,

2

3

1

const char *arg){

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);
if (!strcasecmp(arg, "On")){
sc->sealed = SSL_SEALED_TRUE;
return NULL;
}
else if(!strcasecmp(arg, "0ff")){
sc->sealed = SSL_SEALED_FALSE;
return NULL;
}

return "Argument must be On or O0ff";

Figure B.37. Selector for enabling the Unsealing process

const char *ssl_cmd_SSLSealedPublicFile(cmd_parms *cmd,

void *dcfg,
const char *arg)

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);
const char *err;

if (arg!=NULL){
sc—->tpm2->public_path = arg;

Yelseq{
return apr_pstrcat(cmd->pool, cmd->cmd->name,
": file ", *arg,
"’ does not exist or is empty",
+

return NULL;

NULL) ;

Figure B.38. Store the path to the public part of the sealed key

124

Developer’s manual

. const char x*ssl_cmd_SSLSealedPrivateFile(cmd_parms *cmd,

void *dcfg,
const char *arg)

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);
const char *err;

if (arg!=NULL){
sc->tpm2->private_path = arg;

Yelse{
return apr_pstrcat(cmd->pool, cmd->cmd->name,
": file ", *arg,
"’ does not exist or is empty", NULL);
}

return NULL;

Figure B.39. Store the path to the private part of the sealed key

125

Developer’s manual

N

static apr_status_t ssl_init_server_certs(server_rec *s,
apr_pool_t *p, apr_pool_t *ptemp, modssl_ctx_t *mctx,
apr_array_header_t *pphrases, tpm2_context_t *tpm2ctx,
ssl_sealed_t sealed)

else if ((sealed == SSL_SEALED_FALSE &&
SSL_CTX_use_PrivateKey_file(mctx->ssl_ctx,
keyfile, SSL_FILETYPE_PEM) < 1) &&
CHECK_PRIVKEY_ERROR(ERR_peek_last_error())) {

}
else if ((sealed == SSL_SEALED_TRUE
&& tpm2ctx->public_path != NULL
&& tpm2ctx->private_path != NULL)){

pkey = ssl_unsealing_tpm2(tpm2ctx);

if (SSL_CTX_use_PrivateKey(mctx->ssl_ctx,
pkey) != 1){
fprintf (stderr, "Couldn’t use the Private
Key\n");
return APR_EGENERAL;
Yelseq{
fprintf (stdout, "Everything fine\n");

Figure B.40. Loading the key inside the SSL_CTX using the TPM

126

Developer’s manual

1

26

EVP_PKEY * ssl_unsealing_tpm2(tpm2_context_t *tpm2ctx){

// Used to save temporarly the TCTI Context
TSS2_TCTI_CONTEXT *tcti_context;

// Used to save temporarly the ESYS Context
ESYS_CONTEXT *esys_context;

// By default is Empty but can be used as an entropy value
TPM2B_DIGEST unique = {};

// Used to set a password for key usage

TPM2B_DIGEST user_auth = {};

// Used to define the data to protect as in the Sealing
// process

TPM2B_SENSITIVE_DATA sensitive_data = {};

// Used to save the authentication policy if defined
TPM2B_DIGEST auth_policy = {3};

// Used as an empty policy digest

TPM2B_DIGEST empty_digest = {};

TPM2B_DIGEST *policy_digest;

// Store the Public Part of the Sealed Object

struct SealedData public_part;

// Store the Private Part of the Sealed Object
struct SealedData private_part;

int current_chunk = 0;

int current_buffer_position = 0;

uint8_t *unsealed_data = (uint8_t *) calloc(private_part.
blobs, BLOB_SIZE);

Figure B.41. Variables definition

. /* Read Public Part */

3

> public_part = readFileToVectorUnseal (tpm2ctx->public_path, TRUE);

1 /* Read Private Part */
s private_part = readFileToVectorUnseal (tpm2ctx->private_path,

FALSE) ;

/* Check on file read */

current_chunk = private_part.blobs-1;

Figure B.42. Read of the files containing the public and private part

127

Developer’s manual

| tpm2ctx->tcti_context = Init_Tcti_Tabrmd_Context();

; tpm2ctx->esys_context = Init_Esys_Context();

1

Figure B.43. Initialisation of the TCTI and ESYS context

1 /* Start HMAC Session */

2 struct StartAuthSessionResult hmac_session = StartAuthSession(3,
TRUE, ESYS_TR_NONE, tpm2ctx->esys_context);

3

. /* Check Session Creation */

6

7 /* Create Primary Key */

s struct CreatePrimaryResult primaryKey = CreatePrimary(
ESYS_TR_RH_OWNER, TPM2_ALG_RSA, TRUE, TRUE, FALSE, "",
user_auth, sensitive_data, auth_policy, hmac_session.handle,
tpm2ctx->esys_context) ;

9

10 /* Check Primary Key Creation */

11T e oW

12

Figure B.44. Creation of the HMAC session and Primary key

128

Developer’s manual

1 /* Unsealing process */

> while(current_chunk >= 0){

3 /* Start Policy Session */

4 struct StartAuthSessionResult policy_session_temp =
5 StartAuthSession(2, TRUE, ESYS_TR_NONE,

tpm2ctx->esys_context) ;

/* Check Policy Session Creation */

/* Policy Digest Creation */

policy_digest = PolicyPCR(23, policy_session_temp.handle,
empty_digest, tpm2ctx->esys_context);

/* Check Policy Digest Creation */

/* Load current Sealed Object */
struct LoadResult loaded = Load(primaryKey.handle,

private_part.tpm2b_part [current_chunk],

public_part.tpm2b_part [current_chunk],
hmac_session.handle, tpm2ctx->esys_context);

/* Unseal current Loaded Object */

struct UnsealedDatalmp tmp_unsealed_data
loaded.handle, policy_session_temp.handle,
tpm2ctx->esys_context) ;

Unseal(

for (int i=0; i<tmp_unsealed_data.size; i++){
unsealed_datal[current_buffer_position++] =
tmp_unsealed_data.unsealed_data_tmp[i];

current_chunk--;

/* Flush both the Loaded Object and the current Policy

Session */

Figure B.45.

Unsealing process

129

Developer’s manual

1 /* Fix the Unsealed data to the right size */
> uint8_t *final_unsealed_data = (uint8_t *) realloc(unsealed_data,
current_buffer_position);

4 /* Flush both the primary key and the HMAC session */

7 /* Finalise both the TCTI and the ESYS contexts */

Figure B.46. Flush of the TPM resources

1 /* Creation of the EVP_PKEY */
2 BIO *bio;
; EVP_PKEY *pkey = NULL;

bio = BIO_new_mem_buf (final_unsealed_data,
6 current_buffer_position);

8 /* Check on BIO Creation */

11 pkey = PEM_read_bio_PrivateKey(bio, &pkey, NULL, NULL);
13 /* Check on EVP_PKEY Creation */
16 BIO_free(bio);

17 free(final_unsealed_data);
18 return pkey;

Figure B.47. Creation of the EVP_PKEY from the unsealed data buffer

130

	Introduction
	Trusted Computing and TPM 2.0
	Trusted Computing
	TCG

	Trusted Platform
	Roots of Trust
	Attestation and Authentication

	Trusted Platform Module
	TPM 2.0 Architecture
	Implementations
	TPM 2.0 vs TPM 1.2

	TPM Software Stack 2.0

	ESAPI
	Overview
	ESAPI Key features
	Top-Level usage

	Structures
	ESYS_CONTEXT
	ESYS_TR
	ESYS_SESSION

	Functions
	ESAPI Exclusive Command
	ESAPI Command Template

	Sealing and possible usages
	Overview
	Analysis
	LTRACE
	Analysis conclusions

	Use Cases Implementation
	Initialise TCTI_TABRMD Context
	Initialise ESYS Context
	Create HMAC Session
	Create Primary Key
	Create Session Policy and Extract Policy Digest
	Create RSA Key
	Load RSA Key
	Encrypt Data Blob
	Decrypt Data Blob
	Sign Data Blob
	Verify Signature

	TPM2-OpenSSL Changes

	Implementation
	Motivations
	Creation of the Sealed Key
	Unsealing integration in Apache
	Apache configuration
	Unsealing process
	Private key recovery

	Reseults achieved

	Testing
	Testbed
	Functional tests
	Compromised machine
	No compromised machine

	Performance tests

	Conclusions and future work
	Bibliography
	User's manual
	Requirements
	tpm2-tss
	tpm2-abrmd
	tpm2-tools
	tpm2-openssl
	nginx
	apache2

	Use cases
	Tpm2-OpenSSL solution
	Apache Solution

	Developer's manual
	Use Cases and Tpm2-OpenSSL solutions
	Structures
	Code
	TPM2-OpenSSL code changes

	Apache solution
	Sealing procedure
	mod_ssl code

