
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Quantum Key Distribution post
processing

Resource-efficient application of post-processing protocols

Supervisor
prof. Antonio Lioy
dott. Ignazio Pedone

Candidato

Marco Giulio Lorenzo Pappalardo

Anno accademico 2022-2023

Summary

In the following work, after conducting a thorough analysis of the main Error Correction and
Privacy Amplification protocols, I selected those that, based on key performance metrics, were
more efficient in terms of performance relative to the resources used. Specifically, I selected
the Cascade protocol as the Error Correction protocol and Cellular Automata as the Privacy
Amplification algorithm.

The Cascade protocol is an iterative Error Correction scheme that allows Error Correction at
different levels of the QKD system, thereby improving the overall system efficiency. The Cascade
protocol has been shown to be more efficient than single-pass Error Correction protocols and
is particularly effective in correcting errors caused by fluctuations in the quantum channel. In
conclusion, the preference for Error Correction protocols goes to the Cascade protocol. This
preference is attributed to Cascade’s efficiency, not only in terms of resource utilization but also
in terms of superior performance compared to Winnow, especially in scenarios with realistic
Quantum Bit Error Rate (QBER).

Cellular Automata are mathematical models that can be used to extract a secure key by ana-
lyzing the statistical properties of raw QKD data. In Privacy Amplification, the goal is to extract
a shorter and secure key from the raw key by eliminating any correlations that may have been
introduced by the eavesdropper. Cellular Automata can be used to generate a random sequence
that can be combined with the raw key to create a shorter and secure key. In established exper-
imental conditions, the CA algorithm consistently demonstrates significantly reduced execution
times compared to algorithms based on LFSR and FFT. This observation highlights the superior-
ity of the CA algorithm in terms of key generation speed and overall algorithm execution speed.
In summary, the Privacy Amplification scheme based on Cellular Automata emerges as a robust
and versatile solution. Its adaptability, combined with its efficiency, makes it a powerful tool in
the field of modern cryptography, capable of improving both the speed and security of Privacy
Amplification.

Most of the work done involved developing software capable of simulating the QKD post-
processing. The proposed solution creates a QKD post-processing module, composed of two
enclosed sub-modules, the Error Correction and Privacy Amplification modules. The system is
designed to be used both independently and integrated into a QKD simulator in a softwarized
network environment.

3

Contents

1 Quantum computing and communication 7

1.1 Dirac notation . 8

1.2 Qubits . 8

1.2.1 Superposition . 9

1.2.2 Entanglement . 10

1.3 Quantum gates . 10

1.3.1 Pauli Gates . 11

1.3.2 Hadamar Gate . 11

1.3.3 CNOT Gate . 12

1.3.4 SWAP Gate . 12

1.3.5 T-Gate . 13

1.4 Measurements . 13

1.5 Quantum circuits . 14

2 Quantum Key Distribution 16

2.1 Quantum Key Distribution . 16

2.2 BB84 . 17

2.3 E91 . 20

2.4 QKD Post-Processing . 21

2.4.1 Quantum Bit Error Rate (QBER) and Error Correction 22

2.4.2 Key Distillation and Privacy Enhancement 24

3 Analysis of Error Correction protocols 25

3.1 QKD Error Correction . 25

3.1.1 EC metrics . 26

3.2 Winnow . 29

3.2.1 Hamming Error Detection and Correction 29

3.2.2 Winnowing . 32

3.3 Low Density Parity Check . 34

3.3.1 Error correction and control coding . 34

3.3.2 Optimization Work . 36

3.4 Cascade protocol . 37

3.4.1 Cascade Preliminaries . 37

3.4.2 Cascade protocol . 38

3.4.3 Cascade Implementations . 40

4

4 Analysis of Privacy Amplification protocols 46

4.1 QKD Privacy amplification . 46

4.1.1 PA metrics . 47

4.2 FFT . 47

4.2.1 HiLS Scheme . 49

4.3 LFSR . 50

4.3.1 Finite-size Effect on Privacy Amplification 51

4.3.2 Costruction of Toepliz Matrix Based on LFSR 52

4.3.3 Privacy Amplification with LFSR-Based Toeplitz Matrix 54

4.4 Cellular Automata . 56

4.4.1 Elementary Cellular Automata . 56

4.4.2 Pseudorandom Sequence . 57

4.4.3 Proposed Algorithm . 58

5 Resource-efficient implementation of QKD post-processing 61

5.1 Efficiency Evaluation of Error Correction Protocols 61

5.1.1 Winnow Protocol . 62

5.1.2 LDPC Protocol . 62

5.1.3 Cascade . 63

5.1.4 Conclusions on EC algorithm choice . 64

5.2 Privacy amplification protocols resource-efficiency comparison 65

5.2.1 FFT . 65

5.2.2 LSFR . 66

5.2.3 CA . 66

5.2.4 Conclusions on PA algorithm choice . 67

5.3 QKD post-processing application . 67

5.3.1 Design and Architecture . 68

5.3.2 Error Correction . 70

5.3.3 Privacy amplification . 72

6 Testing and results 75

6.1 Post-processing simulation . 75

6.2 Post-processing parameters tests . 77

7 Conclusions and future work 80

Bibliography 81

A User manual 85

A.1 QKD Post-processing simulator . 85

A.1.1 Running the simulation in a dockerized environment 85

A.1.2 Running the simulation on a Linux host . 87

5

B Developer manual 90

B.1 Rabbitmq . 90

B.1.1 The AMQP-CPP library . 90

B.1.2 Connection check and sync . 92

B.1.3 Running instances of Rabbitmq . 92

B.2 Error Correction submodule . 93

B.2.1 Key handling . 93

B.2.2 Message format . 93

B.3 Privacy amplification submodule . 95

B.3.1 Message format . 95

6

Chapter 1

Quantum computing and
communication

In 2019 Google claimed to have achieved quantum supremacy ≪Quantum processors have thus
reached the regime of quantum supremacy. We expect that their computational power will con-
tinue to grow at a double-exponential rate: the classical cost of simulating a quantum circuit
increases exponentially with computational volume, and hardware improvements will probably fol-
low a quantum-processor equivalent of Moore’s law doubling this computational volume every few
years.≫ [1]

In recent years, quantum key distribution (QKD) has emerged as a promising technology for
secure communication. Unlike classical cryptography, QKD relies on the principles of quantum
mechanics to ensure that any eavesdropping attempt is detectable, thereby providing uncondi-
tional security. However, the practical implementation of QKD is subject to several limitations,
including the presence of noise and errors in the quantum channel.

To overcome these challenges, post-processing protocols have been developed to extract a
secure key from the noisy data obtained through QKD. In particular, the cascade protocol for
error correction and the use of cellular automata for privacy amplification have shown great
potential in improving the security and efficiency of QKD systems.

The cascade protocol is a multi-step error correction scheme that allows the correction of errors
at different levels of the QKD system, thereby improving the overall efficiency of the system. The
protocol involves dividing the raw key into several blocks and correcting errors in each block
independently. In the first step of the cascade protocol, an error correction code is applied to
the raw data to detect and correct errors. If errors remain after the first step, they are corrected
in subsequent steps using progressively more sophisticated error correction codes. The cascade
protocol has been shown to be more efficient than single-step error correction protocols and is
particularly effective in correcting errors that occur due to fluctuation in the quantum channel.

Cellular automata, on the other hand, are mathematical models that can be used to extract a
secure key by analyzing the statistical properties of the raw QKD data. In privacy amplification,
the goal is to distill a shorter and more secure key from the raw key by eliminating any correlations
that might have been introduced by the eavesdropper. Cellular automata can be used to generate
a random sequence that can be combined with the raw key to create a shorter and more secure
key.

In this master thesis, we will explore the cascade protocol and cellular automata-based post-
processing protocols for QKD systems in greater detail. We will begin by discussing the theoretical
foundations of QKD, including the principles of quantum mechanics and the basic components
of a QKD system. Next, we will review some of the existing post-processing protocols for QKD
systems.

We will then focus on the cascade protocol and discuss its implementation and performance
in real-world scenarios. We will evaluate the effectiveness of the protocol in correcting errors and

7

Quantum computing and communication

compare it to other error correction protocols. We will also discuss the impact of the cascade
protocol on the overall efficiency of the QKD system.

In the second part of the thesis, we will focus on the use of cellular automata for privacy
amplification. We will discuss the basic principles of cellular automata and how they can be
applied to QKD systems. We will explore the performance of cellular automata-based privacy
amplification protocols and compare them to other privacy amplification protocols. In the final
part of the thesis, we will compare the performance of the cascade protocol and cellular automata-
based protocols to other existing post-processing protocols. We will evaluate their effectiveness
in enhancing the security and efficiency of QKD systems and discuss their potential for future
developments. Overall, this thesis aims to provide a comprehensive analysis of the cascade protocol
and cellular automata-based post-processing protocols for QKD systems and their potential to
improve the security and efficiency of QKD systems in practical applications.

1.1 Dirac notation

In order to attain a deeper comprehension of quantum computing, it is essential to establish a
mathematical groundwork.

From a mathematical perspective a qubit state can be described as a unit vector in two-
dimensional Hilbert space [2]

Also classical bits can be represented as a vector in Hilbert space

[
1
0

]
in which the index of

the vector is the possible value e.g 1 or 0 and the value in that index is the probability. In our
example the probability of the bit having 0 value is 100 % while the probability of it having the
1 value is 0%. Clearly classical bits can only have one possible state, so the probability vector for

one bit will always be either

[
1
0

]
or

[
0
1

]
. To simplify the way they are handled, a more compact

notation has been introduced: the bra-ket notation. This notation was introduced in 1939 by
Paul Dirac [3], hence it is known as Dirac notation or bra-ket notation.

When referring to the probability vector of two bits the resulting vector will be the tensor
product of the two bits

|01⟩ =
[
1
0

]
⊗
[
0
1

]
=


1
0
0
0


In Dirac notation the latter is represented as |00⟩ in which each zero is the value of the single

bit. More generally the tensor product of two vector is represented as

|ab⟩ =
[
a0
a1

]
⊗
[
b0
b1

]
=

a0
[
b0
b1

]
a1

[
b0
b1

]
 =


a0b0
a0b1
a1b0
a1b1



1.2 Qubits

A qubit, short for quantum bit, is the fundamental unit of quantum information in quantum
computing. It serves as the quantum counterpart to the classical bit, which is the basic unit of
information in classical computing. They can be realized using various physical systems, such as
superconducting circuits, trapped ions, or quantum dots. The physical implementation of qubits
involves manipulating quantum properties, such as the spin of an electron or the polarization of a
photon, to create and control quantum states. These physical systems require careful engineering

8

Quantum computing and communication

Figure 1.1. Qubit representation on a bloch sphere (source: [4]).

to maintain the fragile quantum coherence and protect the qubit from environmental disturbances
that can lead to decoherence and loss of information.

In quantum mechanics, a qubit is typically represented as a linear combination of two ortonor-
mal basis states in Hilbert space, commonly denoted as

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
These basis vectors correspond to the classical states of 0 and 1, respectively. However, unlike

classical bits, qubits can be in a state that is a linear combination of |0⟩ and|1⟩.

Mathematically, a qubit’s state can be expressed as α|0⟩ + β|1⟩, where α and β are complex
probability amplitudes. The coefficients α and β determine the probability of measuring the qubit
in the state |0⟩ or|1⟩ upon measurement.

It is important to note that the qubit state can be represented using various orthonormal
bases, not limited to just |0⟩ and |1⟩. Any pair of orthonormal vectors can be linearly combined
to represent the qubit state. However, when measured with the basis |0⟩ and |1⟩ , the qubit state
collapses to the canonical values of 0 or 1.

Due to the flexibility in choosing the basis, there exists a potentially infinite number of bases
to represent qubit states. In addition to the common basis of |0⟩ and |1⟩, other frequently used
bases include the Hadamar ones:

|+⟩ =

 1√
2

1√
2

 |−⟩ =
 1√

2

− 1√
2



1.2.1 Superposition

Superposition, as previously described , represents a linear combination of two quantum states.
However, beyond its mathematical definition, superposition has a physical interpretation as the
addition of two quantum states, resulting in a new quantum state. This concept can be likened
to the addition of waves in classical physics, where two waves combine to generate a third wave.
Mathematically a qubit its defined in a superposition of states when it’s state

|ψ⟩ = α|0⟩+ β|1⟩

differs from the orthonormal vector basis

|0⟩ = 1|0⟩+ 0|1⟩

9

Quantum computing and communication

and

|1⟩ = 0|0⟩+ 1|1⟩

In the context of superposition, each quantum state possesses its own amplitude. When
two quantum states are superposed, they interfere with each other in either a constructive or
destructive manner. Analogously, in wave terms, constructive interference occurs when two waves
with the same phase are added, resulting in the doubling of energy in the resulting wave. On
the other hand, destructive interference occurs when two waves completely out of phase are
superposed, resulting in the cancellation of energy in the resulting wave.

Quantum interference forms the basis of quantum computing. By leveraging the interference
of two particles, it becomes possible to bias the measurement of a qubit towards a desired state. In
other words, when a quantum system tackles a problem, it must navigate a pattern of interference
where paths leading to incorrect solutions destructively interfere and cancel out, while paths
leading to the correct solution constructively interfere, maximizing the energy of the corresponding
state representing the correct solution.

It is essential to differentiate quantum interference from decoherence. While interference is an
induced phenomenon that produces the desired effect on the qubit state, decoherence pertains to
the collapse of the quantum state due to interference with the external environment. Decoherence
represents an undesired disturbance on the quantum state, resulting in the loss of superposition
properties.

1.2.2 Entanglement

Entanglement is a remarkable phenomenon in quantum computing that arises when multiple
qubits become intrinsically correlated, regardless of the physical distance between them. It is
a fundamental property that sets quantum systems apart from classical ones. When qubits are
entangled, the state of one qubit becomes entwined with the states of the other qubits in the
system, resulting in a collective, inseparable quantum state. Mathematically, the entangled state
of two qubits can be represented using the tensor product (⊗) notation:

|ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩

where |00⟩, |01⟩, |10⟩,and |11⟩ are tensor product states representing the basis states of the two
qubits. The coefficients α, β, γ, and δ are complex probability amplitudes that satisfy the nor-
malization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1. These coefficients determine the probabilities of
measuring the qubits in the corresponding basis states upon measurement. Entanglement is not
limited to just two qubits, but can occur among any number of qubits. For example, for three
qubits, the entangled state can be expressed as:

|ψ⟩ = α|000⟩+ β|001⟩+ γ|010⟩+ δ|011⟩+ ϵ|100⟩+ ζ|101⟩+ η|110⟩+ θ|111⟩

where |000⟩, |001⟩, |010⟩, . . . , |111⟩ represent the tensor product states of the three qubits. The en-
tangled state cannot be factorized into a simple combination of individual qubit states, indicating
the presence of intricate correlations. Entanglement enables highly correlated and interconnected
information processing, offering the potential for quantum computers to perform parallel compu-
tations and potentially achieve exponential speedup in certain algorithms.

1.3 Quantum gates

Quantum gates can be expressed as matrices and the operation on the qubit is the vector product.
Similarly to classical computing, quantum gates are used in quantum circuit to operate on qubits.

Each of them can be represented as a matrix in Hilbert space. We will further discuss the
main ones in the following sections

10

Quantum computing and communication

1.3.1 Pauli Gates

The Pauli gates are significant operators that hold a prominent position in our examination of
quantum systems. They act on a two-dimensional Hilbert space and can thus be expressed as
2×2 matrices. These matrices play a crucial role in various quantum computations and analyses.

X-Gate

This gate is equivalent to the classical NOT gate and flips the state of a qubit from |0⟩ to |1⟩ or
vice versa;

X =

[
0 1
1 0

]

X|0⟩ =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
X|1⟩ =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
In quantum circuits the X-Gate is represented as

X

Y-Gate

This gate is similar to the X-Gate but introduces a phase change as well, rotating the qubit state
around the Y-axis in the Bloch sphere;

Y =

[
0 −i
i 0

]

Y |0⟩ =
[
0 −i
i 0

] [
1
0

]
=

[
0
i

]
X|1⟩ =

[
0 −i
i 0

] [
0
1

]
=

[
−i
0

]
In quantum circuits the Y-Gate is represented as

Y

Z-Gate

This gate applies a phase flip to the qubit state, changing the sign of the |1⟩ state while leaving
the |0⟩ state unchanged;

Z =

[
1 0
0 −1

]

Z|0⟩ =
[
1 0
0 −1

] [
1
0

]
=

[
1
0

]
Z|1⟩ =

[
1 0
0 −1

] [
0
1

]
=

[
0
−1

]
In quantum circuits the Z-Gate is represented as

Z

1.3.2 Hadamar Gate

The Hadamard gate creates superposition by transforming the |0⟩ state to an equal superposition
of |0⟩ and |1⟩ , and the |1⟩ state to an equal superposition of |0⟩ and −|1⟩ allowing the exploration
of multiple computational paths simultaneously. It is a fundamental quantum gate that plays a

11

Quantum computing and communication

crucial role in quantum computing and information processing. Mathematically, the Hadamard
gate can be represented as a 2× 2 matrix:

H =

[
1√
2

1√
2

1√
2

−1√
2

]

Geometrically, the Hadamard gate corresponds to a rotation on the Bloch sphere by 180 degrees
around the axis defined by the linear combination of the |0⟩ and |1⟩ states. This transformation
leads to an equal probability distribution of the qubit being measured in either the |0⟩ or |1⟩ basis
state.

H|0⟩ =

[
1√
2

1√
2

1√
2

−1√
2

] [
1
0

]
=

[
1√
2
1√
2

]
H|1⟩ =

[
1√
2

1√
2

1√
2

−1√
2

] [
0
1

]
=

[
1√
2

−1√
2

]
In quantum circuits the Hadamar gate is represented as

H

1.3.3 CNOT Gate

This two-qubit gate performs a NOT operation on the target qubit (flips the state) only if the
control qubit is in the |1⟩ state; otherwise, it leaves the target qubit unchanged;

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


In the following example the control bit (i.e. hte first qubit) qubit is set to |1⟩, meaning that the
target qubit will be flipped by the CNOT gate

C|10⟩ = C

([
0
1

]
⊗
[
1
0

])
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
1
0

 =


0
0
0
1

 =

[
0
1

]
⊗
[
0
1

]
= |11⟩

We can also observe that when the control qubit is set to |0⟩, the state of both the qubits is
preserved

C|00⟩ = C

([
1
0

]
⊗
[
1
0

])
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



1
0
0
0

 =


1
0
0
0

 =

[
1
0

]
⊗
[
1
0

]
= |00⟩

In quantum circuits the CNOT gate is represented as

1.3.4 SWAP Gate

The SWAP gate exchanges the quantum states of two qubits, allowing for the exchange of infor-
mation or entanglement between qubits;

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


12

Quantum computing and communication

SWAP |10⟩ = C

([
0
1

]
⊗
[
1
0

])
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



0
0
1
0

 =


0
1
0
0

 =

[
1
0

]
⊗
[
0
1

]
= |01⟩

In quantum circuits the SWAP gate is represented as

1.3.5 T-Gate

The T-Gate applies a π/4 phase shift to the |1⟩ state, enabling more complex quantum operations.

T =

[
1 0

0 e
iπ
4

]

T |0⟩ =
[
1 0

0 e
iπ
4

] [
1
0

]
=

[
1
0

]
T |1⟩ =

[
1 0

0 e
iπ
4

] [
0
1

]
=

[
0

e
iπ
4

]
In quantum circuits the T-Gate is represented as

T

1.4 Measurements

In the realm of quantum mechanics, measurement involves manipulating a quantum system to
extract a numerical value corresponding to one of its properties. However, this process comes at
the cost of forfeiting the original state of the qubit, as it collapses into the measured state.

Practically, measurements are guided by the principles of Born’s rule [5], which enables the
calculation of the probability that a particular quantum state, represented by |ψ⟩, collapses into
a specific state denoted as |x⟩:

P (x) = |⟨x|ψ⟩|2

According to Born’s rule, the probability of measuring a quantum system in a particular state
is given by the squared magnitude of the corresponding coefficient in the state’s superposition.

Consider a qubit with the state |ψ⟩ = α|0⟩ + β|1⟩, where α and β are complex amplitudes.
The probability P (0) of measuring the qubit in the state |0⟩ is given by:

P (0) = |α|2

Similarly, the probability P (1) of measuring the qubit in the state |1⟩ is given by:

P (1) = |β|2

Since |α|2 and |β|2 represent the squared magnitudes of the amplitudes, they provide the
probabilities of measuring the qubit in the respective states.

To determine the specific values of P (0) and P (1), we need to know the values of α and β
from the given qubit state. If we assume that the qubit is in an equal superposition state, where
α = 1√

2
and β = 1√

2
, such as after the operation of an Hadamar gate, we have:

P (0) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

13

Quantum computing and communication

P (1) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

Thus, when the qubit is in an equal superposition state, the probabilities of measuring it in
the states |0⟩ and |1⟩ are both 50%.

It is worth to note that the state of the qubit can be different from the one described, and
α and β can assume any value as long as |α|2 + |β|2 = 1. This principle gives a hint on the
potential of quantum computing, that allows to perform parallel computation at the same time
and then set the qubits in a state where the probability of collapsing to a base is higher than the
other. It is also important to mention that a when a qubit is measured on a determined basis,
any subsequent measurement with that same basis will result in the same outcome independently
by the chosen basis.

A different consideration must be made when measuring the same qubit multiple times using
different bases. As mentioned, each measurement collapses the qubit state (unless the same basis
is used in subsequent measurements). Therefore, if a qubit is measured in one basis and yields a
specific outcome with a 50% probability, a new measurement in an orthogonal basis will result in
one of the two basis states with a 50% probability once again.

Moreover, the qubit’s memory is limited to the most recent measurements performed. For
instance, if a qubit is found to be in the |0⟩ state after a measurement, any subsequent measure-
ment in a different basis will nullify that information. Consequently, when the qubit is measured
again in the |0⟩ and |1⟩ basis, the measurement outcome will once again be uncertain, with a 50%
probability of being either |0⟩ or |1⟩.

Measurement of qubits is done at the end of every computation and to be done, the measure-
ment gate has to be inserted in quantum circuits and it’s represented by the following symbol:

1.5 Quantum circuits

Now that we have seen the main components of quantum circuits, we can further discuss how to
build and use them. To build a quantum circuit we will be following these steps

Define the number of qubits Determine the number of qubits required for the computation
or experiment.

Initialize the qubits Start with the qubits in a well-defined initial state, typically the |0⟩ state.
This is done by applying the X gate or any other gate that transforms the initial state to
the desired state.

Apply quantum gates Apply a series of quantum gates to the qubits to perform specific op-
erations. These gates can include Pauli gates (X, Y, Z), Hadamard gate (H), CNOT gate,
and other single-qubit or multi-qubit gates. These gates manipulate the quantum state and
enable quantum computation.

Perform measurements At the end of the circuit, perform measurements on the qubits to
extract information. Measurements collapse the quantum state into classical bits, providing
the final outcome of the computation.

Like in classical computing, the algorithm we are designing is based on the quantum gates
that we apply to the qubits. The following is an example of a circuit that swap two qubits after
flipping one

|0⟩ X |1⟩

|1⟩ |1⟩

14

Quantum computing and communication

The following example entangles two bits

|0⟩ H

|0⟩

This circuit can be also represented as

CH

([
1
0

]
⊗
[
1
0

])
= C

([
1√
2
1√
2

]
⊗
[
1
0

])
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
1√
2

0

 =


1√
2

0
0
1√
2



15

Chapter 2

Quantum Key Distribution

2.1 Quantum Key Distribution

The aim of quantum key distribution is for two individuals, denoted as ”Alice” and ”Bob,” who
possess no initial shared confidential data, to arrive at a consensus on a random key that remains
undisclosed from an adversary named ”Eve,” who attempts to intercept their communication.
In typical cryptography and information theory, it is assumed that digital communications are
susceptible to passive surveillance, allowing an eavesdropper to comprehend the entire message,
concealed to the sender and receiver. However, when digital data is encoded in basic quantum
systems like single photons, it becomes feasible to establish a communication channel in which
the transmissions cannot be reliably decoded or duplicated by an eavesdropper lacking specific
information utilized in creating the transmission. The eavesdropper cannot even obtain partial
information about such a transmission without causing random and unmanageable disturbances
likely to be noticed by the channel’s legitimate users.

The fundamental quantum aspect involved, a demonstration of Heisenberg’s uncertainty prin-
ciple, is the presence of pairs of properties that are mutually exclusive, meaning that measuring
one property inherently randomizes the value of the other. For instance, measuring a single pho-
ton’s linear polarization will randomize its circular polarization, and vice versa. In a broader
sense, any pair of polarization states will be termed a basis if they correspond to a consistently
measurable property of a single photon. Two bases will be termed conjugate if quantum me-
chanics dictates that measuring one property entirely randomizes the other. BB84 quantum key
distribution protocol utilizes two conjugate bases, which we denote as the rectilinear basis (hori-
zontal versus vertical polarization) and the circular basis (left-circular versus right-circular). We
shall refer to these as the standard bases. Likewise, a standard polarization can be either hori-
zontal, vertical, left-circular, or right-circular. A third basis, comprising of 45° and 135° diagonal
polarizations, also exists, and it is conjugate to both the other two bases. However, we won’t need
to consider it, except in the context of potential eavesdropping strategies.

The BB84 protocol delineate later remains secure even against an adversary possessing im-
mense computational capabilities (even if P = NP !), facing any attack where she is constrained to
measure photons (or in the subsequent extension, light pulses) one at a time, and amalgamate the
classical outcomes of these measurements with information later overheard during the public dis-
cussion (described below). The formalism of quantum mechanics allows a more extensive type of
measurement, presently infeasible and foreseeable in the near future. Such a measurement would
treat the entire sequence of n photons dispatched during a key-distribution session as a single 2n-
state quantum system, engender it to interact coherently with an intermediate quantum system
of similar complexity, sustain the phase coherence of the intermediate system for an arbitrarily
extended period, and then eventually measure the intermediate system in a manner contingent on
the information overheard during the public discussion. It remains unknown whether the protocol
is secure against such an attack, but recent research suggests that it might be [6].

16

Quantum Key Distribution

2.2 BB84

The fundamental quantum key distribution protocol (see Table 2.1) commences with Alice trans-
mitting a random sequence of the four standard types of polarized photons to Bob. Bob then
independently and randomly selects, for each photon (without knowledge of Alice’s choices at this
point), whether to measure the photon’s rectilinear or circular polarization. Bob subsequently
publicly announces the type of measurement he conducted (excluding the measurement outcome),
and Alice, again publicly, informs him whether he made the accurate measurement (i.e., recti-
linear or circular). Alice and Bob then publicly agree to discard all bit positions for which Bob
conducted the incorrect measurement. Correspondingly, they agree to discard bit positions where
Bob’s detectors failed to detect the photon altogether, a relatively common occurrence with cur-
rent detectors at optical wavelengths. The polarizations of the remaining photons are interpreted
as bit 0 for horizontal or left-circular and bit 1 for vertical and right-circular. The resultant bi-
nary string should be confidentially shared information between Alice and Bob, provided that no
eavesdropping on the quantum channel has occurred. The outcome of the aforementioned steps is
denoted as the quantum transmission (or sometimes the raw quantum transmission to emphasize
that it was obtained early in the process).

Alice’s random key 0 1 1 0 1 0 0 1
Alice’s random basis + X + X X + X +
Alice’s polarization ↑ ↘ → ↗ ↘ ↑ ↗ →
Bob’s random basis + X X X + X + +
Bob’s measurements ↑ ↘ ↘ ↗ → ↗ ↑ →
Shared key 0 1 - 0 - - - 1

Table 2.1. BB84 protocol.

In the fundamental protocol, Alice and Bob proceed to examine for eavesdropping by openly
comparing the polarizations of a randomly selected subset of the photons on which they should
agree. Any measurement that the eavesdropper can perform on a photon while it travels from
Alice to Bob cannot provide more than 1

2 expected bits of information about its polarization.
Furthermore, any measurement yielding s ≤ 1

2 expected bits has a probability of at least s
2 of

causing a discrepancy when Bob’s and Alice’s data are compared, assuming that Bob detects this
photon in the correct basis (otherwise, this photon is lost to all parties). If Alice and Bob find
no discrepancies, and if it is reasonable to assume that Eve cannot tamper with the content of
the public messages exchanged between them, then Alice and Bob can reasonably conclude that
there are few or no errors in the remaining non-compared data, and that little or none of it is
known to any eavesdropper.

The assumption that the public messages cannot be tampered with by Eve is crucial because
otherwise, Eve could position herself between Alice and Bob and impersonate each of them to
the other. Consequently, Eve would end up with a string shared with Alice and another one
shared with Bob, while Alice and Bob would remain unaware. This critical attribute of the public
channel can be implemented in practice either by utilizing an inherently unjammable public
channel or by employing an information-theoretically secure authentication scheme [7] to verify
that the public messages have not been altered in transit. In the latter case, Alice and Bob need
to possess a modest amount of shared secret information in advance to act as an authentication
key, and a few bits of this key are made unusable for each instance the key distribution protocol
is carried out. However, each successful instance of the protocol provides Alice and Bob with a
substantially larger volume of fresh key information, some of which can be utilized to replace the
lost authentication bits. Therefore, in this case, the protocol implements key expansion rather
than key distribution. It’s important to note that in the case of a jammable public channel,

a determined opponent, through repeated interference with either the quantum or public
transmissions, could force Alice and Bob to deplete their entire supply of authentication key.

The basic ”quality-control” in the basic quantum key distribution protocol, which follows the
quantum transmission as described above, is insufficient in practice for two reasons:

17

Quantum Key Distribution

1. Realistic detectors have some level of noise; hence, Alice’s and Bob’s data will differ even
in the absence of eavesdropping. Consequently, they must be capable of recovering from a
reasonably low error frequency.

2. Producing a light pulse containing precisely one photon is technically challenging. It is far
easier to generate a coherent pulse, which can be regarded as a superposition of quantum
states with 0, 1, 2... photons; or an incoherent pulse, which can be seen as a statistical
mixture of coherent states. In either case, let λ be the expected number of photons per
pulse. If λ is small (i.e., significantly less than 1), there is approximately a 2/2 probability
that an eavesdropper could split a pulse into two or more photons, reading one and allowing
the other(s) to go to Bob. This enables the eavesdropper to acquire knowledge of a constant
fraction of the bits shared between Alice and Bob without inducing errors.

A satisfactory protocol must be able to recover from both noise and partial leakage. Below, we
outline a practical protocol that addresses these deficiencies, enabling Alice and Bob to reconcile
the discrepancies between the sent and received versions of the quantum transmission. They
can then distill from the reconciled data (about which the eavesdropper may possess significant
partial information) a smaller set of data that is almost perfectly secret. The protocol we outline
is simple but not optimal; other protocols that are currently under development have a higher
yield of shared secret key at similar levels of noise and leakage.

Once the quantum transmission, Alice and Bob’s first task is to exchange public messages to
enable them to reconcile the discrepancies in their data. Since we assume that Eve listens to
all public messages between Bob and Alice, this exchange must be conducted in a manner that
reveals as little information as possible about this data. However, it’s essential to remember that
Eve cannot tamper with the content of these public messages.

A practical way for Alice and Bob to perform reconciliation is to initially agree on a random
permutation of the bit positions in their strings (to randomize the error locations). They then
partition the permuted strings into blocks of size k, with the belief that single blocks are unlikely
to contain more than one error. (The optimal block size, which should be a function of the
expected error rate, is yet to be theoretically determined. Instead, in Section 5, we use block sizes
that have been empirically found to be effective.) For each such block, Alice and Bob compare
the block’s parity. Blocks with matching parity are provisionally accepted as correct, while those
with discordant parity undergo a bisective search, revealing log(k) further parities of subblocks,
until the error is identified and corrected. If the initial block size was significantly too large or too
small due to an inaccurate a priori estimation of the error rate, this will become evident, and the
procedure can be repeated with a more appropriate block size. To preserve privacy and prevent
information leakage to Eve during the reconciliation process, Alice and Bob agree to discard the
last bit of each block or subblock for which they have revealed the parity.

Of course, even with an appropriate block size, some errors will typically go undetected,
occurring in blocks or subblocks with an even number of errors. To eliminate additional errors,
the random permutation and block parity disclosure is repeated several more times, with increasing
block sizes, until Alice and Bob estimate that at most a few errors remain in the data as a whole.
At this point, the block parity disclosure approach becomes less efficient because it forces Alice
and Bob to sacrifice at least one bit in each block for the sake of privacy. Consider, for example,
a very common scenario where exactly two errors remain. If the block size is chosen such that
there are I blocks, the probability of not detecting the remaining errors is 1/I, and the cost for
this strategy is I bits when unsuccessful. Due to this, a different strategy is adopted to eliminate
any errors that may remain and to verify, with high probability, that they have indeed been
eliminated. The probability of undetected errors with this new strategy is 2−I for the same cost
of I bits sacrificed to privacy. Importantly, this probability is entirely independent of the number
and location of the remaining errors.

In each iteration of this strategy, Alice and Bob compare the parities of a publicly chosen
random subset of the bit positions in their entire respective data strings. If the data strings are
not identical, then the parities of the randomly chosen subsets will disagree with a probability of
exactly 1

2 . If a disagreement is detected,

18

Quantum Key Distribution

Alice and Bob initiate a bisective search, akin to the one mentioned earlier, to identify and
remove the error. As in the preceding block-parity stage of reconciliation, the last bit of each

compared subset is discarded to prevent any information leakage to Eve. Each subsequent
random subset parity is computed using a new independent random subset of bit positions in the
remaining string.

At a certain point, all errors will have been removed, but Alice and Bob will not yet be certain
of their success. When this occurs, subsequent random subset parities will consistently agree.
Following the last detected error, Alice and Bob continue comparing random subset parities until
they find a sufficient number of consecutive agreements (say 20) to be confident that their strings
are indeed identical, with a negligible probability of not detecting any remaining errors.

Alice and Bob now possess a string that is almost certainly shared, albeit only partially secret.
As outlined in Section 4, they can derive a conservative estimate of Eve’s partial information on
their string from the detected error frequency and the optical pulse intensity. More precisely,
they can estimate an integer l such that Eve’s information about Alice’s string resulting from the
raw quantum transmission is worth no more than the knowledge of l physical bits of that string.
Remember that the reconciliation process entails Alice disclosing the parity of numerous subsets
of her bits, but with each disclosure, one bit from that subset is discarded from the reconciled
string. As a result, Eve’s knowledge about physical bits could transition into knowledge about
parities. Let’s say that Eve knows a parity bit about Alice’s string if she is aware of the parity
of a nonempty subset of the bits in that string (knowledge of physical bits is a special case of
knowledge of parity bits, representing single elements of subsets). It’s easy to observe that if Eve
knows no more than l parity bits about a string y, and if she is given an additional parity bit
about y, and z is formed by discarding from y one of the bits involved in that parity, then Eve
still knows no more than l parity bits about z. Consequently, if Eve knew no more than l physical
bits of Alice’s string before reconciliation, she knows no more than l parity bits about the string
shared between Alice and Bob that results from the reconciliation.

Figure 2.1. BB84 schema (source: [8]).

At this stage, Alice and Bob can proceed with privacy amplification. Let x represent the
reconciled string, and n denote its length. We define a deterministic bit of information about
x as the value e(x) of an arbitrary function e: {0, 1}n → {0, 1}. For example, physical and
parity bits are deterministic bits, but bits of information in the sense of Shannon’s information
theory need not be. It’s demonstrated in [9] that if Eve’s knowledge about x is no more than
l deterministic bits, a hash function h randomly and publicly chosen from an appropriate class

19

Quantum Key Distribution

of functions {0, 1}n → {0, 1}(n−t−s) will map x into a value h(x) about which Eve’s expected
information is less than 2−s/ ln 2 bit, where s > 0 is an arbitrary security parameter. This
technique applies for Alice and Bob because parity bits are a special case of deterministic bits.
An adequate hash function for this purpose can be obtained by continuing to compute n− l − s
additional publicly chosen independent random subset parities, but now keeping their values secret
instead of comparing them. The class of hash functions thus realized is essentially the strongly-
universal class H3 discussed by Wegman and Carter [7]. It’s interesting to note that if even a
single discrepancy is left between Alice’s and Bob’s data after reconciliation, the final strings
computed by Alice and Bob will be completely uncorrelated, a fact likely to be noticed rapidly.
Moreover, it’s clear that this hash function has the property that if Eve’s knowledge of x before
privacy amplification was strictly in the form of parity bits, then such is also the case about her
knowledge of h(x). Therefore, Eve cannot have nonzero information about h(x) without having
at least one bit of information about it. Consequently, the privacy amplification theorem implies
that Eve knows nothing at all about the final string h(x) shared between Alice and Bob, except
with a probability at most 2−s/ ln 2, in which case she knows at least one deterministic bit.

2.3 E91

E91 is a quantum key distribution protocol based on entanglement. The name of the protocol,
E91, is a combination of the name of its inventor and the year of publication since it was proposed
by Artur Ekert in 1991 [10]. The protocol is relatively simple, involving the following steps:

1. Prepare Entangled Qubit Pairs Qubit pairs are prepared in an entangled state.

2. Send Qubits to Parties Each qubit of the pairs is sent to the two parties involved in the
communication.

3. Measure Received Qubits Both parties randomly choose bases for the measurements
and measure the received qubits. Due to entanglement, if qubits are measured in the same
basis, the results will be the same.

4. Verify Entanglement The parties engage in a public discussion to identify the qubits they
measured with the same basis. For these qubits, they know the measurement outcomes are
the same, which they keep to construct the key, discarding all other measurements.

The final step involves checking that the received qubits are genuinely entangled. This is done by
calculating the correlation value of the received qubits and comparing it with the CHSH inequality.
To ensure that the received qubits are in an entangled state, the correlation value (C) must satisfy
the requirement:

√
C ≈ 2

√
2 (Tsirelson’s bound). This bound represents the maximal correlation

value between two particles [11]. A correlation value approximately equal to this value provides
proof that no interference occurred. If interference by an eavesdropper is detected, the correlation
value will be in the range: −2 ≤ C ≤ 2, indicating interference.

20

Quantum Key Distribution

Figure 2.2. E91 schema (source: [12]).

A potential eavesdropper, Eve, can intercept both of the entangled qubits and measure them to
obtain the results. However, since measurements destroy the qubit state, she will need to prepare
two new qubits for Alice and Bob. She can encode in these qubits the measurement results she
obtained. If Alice and Bob chose the same basis, all the parties will get the same results. However,
the qubits sent by the eavesdropper are no longer entangled. The check on the correlation value
will allow Alice and Bob to realize that someone interfered with the communication, leading them
to discard the key.

Importantly, thanks to the properties of entanglement, it doesn’t matter who prepares the
entangled qubits. The source of qubits can even be an untrusted party or the eavesdropper itself
without affecting the security of this protocol. This feature is known as Device Independent QKD
(DI-QKD), where the security of the protocol is guaranteed even when untrusted QKD devices
are employed [13].

2.4 QKD Post-Processing

Postprocessing involves a procedure where Alice and Bob refine the raw data obtained from
quantum transmission into a secure key through public discussions. The process flow for QKD
postprocessing is illustrated in Figure 2.3.

The concepts elucidated so far confirm that QKD has the potential to facilitate theoretically
secure communication, aligning with the prerequisites of Shannon’s theory. In an ideal scenario,
QKD represents an optimal solution for the key exchange problem. However, in practical appli-
cations, errors and challenges must be taken into account.

Figure 2.3. QKD schema (source: [14]’).

21

Quantum Key Distribution

Apart from errors that could be induced by the presence of a third party, actual devices used
in transmission may introduce errors, similar to what happens in classical communication. Given
that real devices are not flawless, polarization errors, detection inefficiencies, transmission losses,
and external interferences (if the system is not adequately isolated) can modify the state of a
quantum bit. It’s imperative to consider these potential issues and devise appropriate mechanisms
to detect and potentially rectify these errors.

To monitor any type of error that could arise during communication over a quantum channel,
the Quantum Bit Error Rate (QBER) has been introduced. This parameter reflects the per-
centage of errors occurring during communication, encompassing both channel errors and those
due to eavesdropping attempts. As every error on the channel potentially stems from a third
party attempting to intercept the communication, efficiently estimating QBER becomes crucial
to understand the extent of information leakage. Considering various error sources, QBER can
be estimated as follows [15]:

QBER = pf +
pdnqΣfrtl

2
µ

Where:

� pf : Probability of detector faults.

� pd: Probability of a wrong photon signal.

� n: Number of detections.

� q: Phase = 12; polarization = 1.

� Σ: Detector efficiency.

� fr: Pulse repeat frequency.

� tl: Transmission rate (for large distances, small).

� µ: Attenuation for light pulses (single photons = 1).

If the resulting QBER is too high, the communication is deemed insecure, and the exchanged
data should be discarded. QBER thus serves as an indicator of security for quantum communica-
tion. It’s vital in this scenario to correctly identify the threshold for QBER: since channel errors
are also included in QBER calculation, discarding communications surpassing a low threshold
could result in discarding almost all communication. Conversely, selecting a high threshold could
be risky, considering that potentially all errors could be attributed to information leaks.

2.4.1 Quantum Bit Error Rate (QBER) and Error Correction

In 2000, Shor and Preskill conducted a security analysis, determining the optimal QBER threshold
for secure quantum communication [16]. They established that with a QBER of 11%, any potential
eavesdropper cannot reconstruct the exchanged information, even when all errors are attributable
to them. Consequently, it is a common practice in quantum communication to label information
exchanged with a QBER above 11% as insecure.

The objective of information reconciliation is to ensure that Alice and Bob possess the same
(raw) key [17]. Typically, this is achieved by considering Alice’s bit string X as the key and letting
Bob deduce this key from the information Y he possesses. In this process, Alice transmits partial
information about X to Bob over the classical channel. The protocol, outlined in Figure 2.4,
utilizes a raw key R and an authentic classical communication channel A. The goal is to generate
a weak key resource R′, which not only guarantees the secrecy of the key but also ensures that
Alice and Bob’s values, X and X ′, are identical.

22

Quantum Key Distribution

protocol error correction (X,Y)

parameters enc, dec [coding scheme]

Alice sends C = enc(X) over the classical channel

Bob computes X’ = dec(C, Y)

return (X,X’)

Figure 2.4. Example Error Correction Protocol (source: [17])

It’s important to note that information reconciliation is a purely classical subprotocol and is
largely independent of other parts of the QKD protocol. The choice of the coding scheme, i.e.,
the functions enc and dec invoked by the protocol, depends on the noise model, describing how
Alice and Bob’s inputs X and Y are correlated. The noise model is typically specified by a joint
probability distribution of X and Y . The coding scheme must be chosen to satisfy the condition:

p[dec(enc(X,Y)) = X] ≥ 1− ϵ

where ϵ > 0 bounds the failure probability of the subprotocol and contributes to the total
failure probability of the QKD protocol. Moreover, to maintain maximum secrecy for X, the
function enc should be designed such that C = enc(X) does not reveal substantial information
about X. This can be achieved by minimizing the size of C. Classical techniques from information
theory demonstrate that any coding scheme satisfying eq.(2.1) requires a communication C of:

k ≥ Hϵ
max(X|Y)

bits, where Hϵ
max denotes the smooth max-entropy [18]. Specifically, for an i.i.d. noise model,

when QBER = η0, we have:

k ≈ nh(η0) +O(
√
n)

Considering E as the initial information that Eve possesses about the raw key X before
information reconciliation, the secrecy after information reconciliation with communication C
consisting of k bits is given by:

Hϵ
min(X|EC) ⪆ Hϵ

min(X|E)−Hmax(X|X ′)−O(
√
n)

For the BB84 protocol, this leads to:

Hϵ
min(X|EC) ≥ n(1− 2h(η0))−O(

√
n)

The amount of secrecy preserved after information reconciliation, as indicated by eq.(2.4),
depends on the amount of communication k required. Designing coding schemes (enc, dec) that
optimize this parameter is a key focus of classical information theory. While the bound in eq.(2.2)
can be saturated with randomly constructed encoding functions, a primary challenge is to develop
schemes for which the encoding and decoding functions are efficiently computable. While the
information reconciliation protocol of Figure 2.4 involves one-way communication from Alice to
Bob, two-way schemes are also considered. The cascade protocol is an example of a two-way
scheme. In Chapter 3, we delve into the analysis of major error correction protocols.

23

Quantum Key Distribution

2.4.2 Key Distillation and Privacy Enhancement

The purpose of privacy amplification is to transform the initially weakly secret key X [17], which,
after information reconciliation, is known to both Alice and Bob, into a robust secret key K.
This key K is a bit string that is nearly uniform and independent of any information that might
be possessed by an adversary [19]. A typical protocol for this process is depicted in Fig. 2.5.
Along with the weak key resource R (which meets a specified secrecy criterion and produces
the identical string X for Alice and Bob), the protocol requires an authentic communication
channel A. Utilizing these resources, the protocol constructs a secret key resource. It employs a
randomness extractor [20], which is a family of functions exts parameterized by a seed s ∈ S.
These functions take a bit string like X as input and generate a bit string of a fixed length l. In
classical terms, a strong (k, ϵ)− extractor is defined such that for any input X with min-entropy
satisfyingHmin(X) ≥ k, the output exts(X) is ϵ-close to being uniform. Formally, the expectation
over a randomly chosen seed s ∈ S of the variational distance between the distribution of the
output ext(X) and a uniform string U of l bits must be upper bounded by ϵ:

Exps[D(Pexts(X), PU)] ≤ ϵ

However, this definition does not account for the quantum nature of information that an
adversary may possess regarding X. Therefore, for application in quantum key distribution,
especially when considering general security, it is imperative to demand that the randomness
extractor {exts}s∈S be quantum-proof for parameters k and ϵ. This demands that, for any X
and any quantum system E such that Hmin(X|E) ≥ k, the following holds:

Exps[D(ρexts(X)E , ρU ⊗ ρE)] ≤ ϵ

This criterion refers to min-entropy with a smoothness parameter ϵ = 0. However, a straight-
forward application of the triangle inequality for the distance between states implies that a similar
criterion holds for the smooth min-entropy [18].

The most widely used extractors in the context of QKD are based on universal hashing [9].
These extractors can achieve an output length of l = k−2 log2(1/ϵ) while still being quantum-proof
(k, ϵ) extractors. Employing them within the protocol of Fig. 2.5 generates a key of length:

l = Hϵ
min(X|EC)−O(1)

with a failure probability of the order ϵ. Combining this with the results of the previous sec-
tions, given optimal information reconciliation and privacy amplification, it’s possible to generate
a key of length:

l = Hϵ
min(X|E)−Hmax(X|Y)−O(1)

In particular, for the BB84 protocol, this yields:

l = n(1− 2h(η0))−O(
√
n)

where η0 is the QBER. The asymptotic key rate is therefore 1− 2h(η0). In Chapter 4, we will
delve into the analysis of major privacy amplification protocols.

24

Chapter 3

Analysis of Error Correction
protocols

3.1 QKD Error Correction

In the domain of quantum key distribution[21], errors within the initial keys exchanged between
the communicating parties (Alice and Bob) can arise due to system noise or eavesdropping at-
tempts.

Figure 3.1. The key received by Bob contains some random errors (source: [22]).

These errors necessitate the reconciliation of keys by sharing additional information over a
verified public channel. However, the information transmitted over this channel is also susceptible
to eavesdropping by an external party (Eve), thereby compromising key privacy. Hence, the degree
of information exposed serves as a yardstick for assessing the effectiveness of different reconciliation
protocols.

The earliest protocol, known as BBBSS [23], was introduced by Bennett et al. in 1992. In
this method, Alice and Bob segment their key strings into blocks and exchange the parity of each
block. When they identify a block with varying parity, they employ binary search within the
block to rectify an error. This process involves multiple iterations, and between these iterations,
the key strings are randomly rearranged.

25

Analysis of Error Correction protocols

The subsequent Cascade protocol [24], presented in 1993, builds upon BBBSS. Cascade retains
records of the blocks during each iteration. When a new error surfaces, it’s possible to trace back
to historical records to identify corresponding errors. This adaptation reduces the volume of
disclosed information, thereby enhancing protocol efficiency. Both BBBSS and Cascade, however,
demand frequent communication between Alice and Bob, which could impede the process in
practical applications.

Another class of protocols requires notably less communication. In these scenarios, key strings
are again divided into blocks, but rather than performing binary search, a syndrome is transmitted.
This syndrome is computed based on a specific error-correcting code.

An exemplar of this kind is the Winnow protocol [25]. In Winnow, a syndrome based on a
Hamming code is utilized. When Alice and Bob detect a block with differing parity, Alice sends
Bob the syndrome of the block. Bob then endeavors to rectify his own block using the syndrome,
but this process might introduce new errors. Consequently, Winnow offers higher speed but
demands the exchange of more information.

In terrestrial links, time, computation, and communication complexity are typically less re-
strictive for Alice and Bob. However, satellite links introduce challenges due to significant channel
losses, limited windows for key establishment due to periodic satellite passages, and the additional
constraints posed by computation and communication complexities.

In [26] during recent years, researchers have turned to Gallager’s Low Density Parity Check
(LDPC)[27] codes, which have exhibited superior error reconciliation rates compared to Cascade
and Winnow[28]. LDPC codes present low communication overhead and inherent computation
power asymmetry between the communicating sides.

LDPC linear codes rely on a parity check matrix H and a generator matrix, defining a code’s
decoding limit through its minimum distance. The predefined code rate determines its correction
power and efficiency

Decoding LDPC codes entails larger computational and memory demands than Cascade or
Winnow algorithms. Yet, it offers a notable advantage in terms of reduced communication re-
sources, requiring only one information exchange. In scenarios with restricted resources (such as
bandwidth and latency), this trade-off can yield significant improvements in overall runtime and
confidentiality. Within the realm of QKD, LDPC was initially adopted as the foundation for the
BBN Niagara protocol in the DARPA QKD network [29].

In this chapter we will present some of the evaluation metrics for error correction protocols
and we will analyze the main ones.

3.1.1 EC metrics

Preliminaries

In [24] the reconciliation efficiency metric was proposed as follows.

Consider a probability distribution {P (x)}x∈X over a finite set X. The entropy of this distri-
bution applied to X, denoted as H(X), is mathematically defined as

H(X) = −
∑
x∈X

p(x) log p(x)

(assuming all logarithms are base 2)[24]. Essentially, H(X) represents the average number of
bits needed to describe a specific event in X. It’s worth noting that H(X) has an upper bound of
log |X|:

H(X) ≤ log |X|

Equality is only achieved when every element x in X has a probability p(x) equal to 1/|X|.
When dealing with a Bernoulli trial having a parameter p, H(X) is denoted as h(p). Consider

26

Analysis of Error Correction protocols

two sets, X and Y , with a joint probability distribution {p(x, y)}x∈X,y∈Y . In this context, the
conditional entropy H(X|Y) is defined as

H(X|Y) = −
∑
y∈Y

∑
x∈X

p(y)p(x|y) log p(x|y).

A binary symmetric channel (BSC) facilitates the transmission of a sequence of bits, each
independently exposed to noise with a probability of p. Assume A as the sequence transmitted
by Alice and B as the sequence received by Bob. When each bit in the sequence A is randomly
and independently selected, it’s evident that

H(A) = |A|

The conditional entropy of A given B is given by

H(A|B) = H(A⊕B) = nh(p)

where n = |A| = |B|. From now on, a binary symmetric channel having the parameter p is
referred to as BSC(p). The quantum channel serves as an instance of a concealed binary symmet-
ric channel, even when an eavesdropper introduces noise asymmetrically. Prior to aligning their
sequences, Alice and Bob sample the transmitted bits to estimate the error rate in the quantum
communication. If this estimate is sufficiently close to the expected error rate of the channel,
they openly and randomly shuffle their respective sequences and then apply reconciliation. Sub-
sequently, Bob’s sequence can be treated as the outcome of a transmission over a BSC. However,
if the estimate doesn’t closely match the anticipated error rate, they discard the communication
attempt and try again later. For values 0 ≤ λ ≤ 1

2 , the tail inequality is given by

[λn]∑
k=0

(
n

k

)
≤ 2nh(λ)

When dealing with a random variable X having a finite variance V (X) and an expected value
E(X), along with a positive value a, the Chebyshev inequality can be expressed as

prob(|X − E(X)| ≥ a) ≤ V ar(X)

a2

The Hamming distance [30] dist(A,B) between sequences A and B is defined as the count of
positions where A and B differ. Additionally, the weight w(A) of sequence A is the number of its
non-zero positions.

Reconciliation Efficiency

In [31] the reconciliation efficiency is formalized as follows using the same format that will be used
for this discussion. Consider two correlated discrete random variables, denoted as X and Y , both
having a binary alphabet A = {0, 1}. Their joint probability is given by pXY (x, y) = Pr(X =
x, Y = y). For clarity, we will omit the random variables when it doesn’t cause confusion. The
probability p(x, y) can also be represented as p(y|x)p(x). Here, y can be seen as the result of a
memoryless channel characterized by the transition probability p(y|x) with input x. In the context
of discrete-variable Quantum Key Distribution (QKD), the discrepancies between variables x and
y from two distant parties, Alice and Bob, respectively, are assumed to occur due to transmission
over a binary symmetric channel with crossover probability ϵ, denoted as BSC(ϵ). This parameter
ϵ is often referred to as the Quantum Bit Error Rate (QBER).

Let x ∈ An and y ∈ An be the outcomes of n independent and identically distributed (i.i.d.)
instances ofX and Y , respectively. For clarity moving forward, we’ll call these sequences ”frames”.

27

Analysis of Error Correction protocols

The reconciliation problem can be viewed as a specific case of source coding with side information,
which is also known as Slepian-Wolf coding [32]. When a source X is paired with a decoder having
access to side information Y , no encoding of X shorter than H(X|Y) guarantees reliable decoding
by the receiver [32]. Therefore, the minimum information needed is represented by the conditional
entropy H(X|Y). Let m be the length of the exchanged message to reconcile the disparities
between x and y. In this context, the efficiency of an information reconciliation procedure can be
quantified by the formula:

fEC =
m

nH(X|Y)
.

Since nH(X|Y) represents the minimum required message length to reconcile the frames x
and y, it follows that fEC ≥ 1, and fEC = 1 indicates perfect reconciliation.

In the case of a BSC(ϵ), the reconciliation efficiency can be expressed as:

fEC =
1−R
h(ϵ)

where the binary Shannon entropy h(ϵ) = −ϵ log2 ϵ− (1− ϵ) log2(1− ϵ), and R represents the
ratio of transmitted information, specifically R = 1 − m/n. The difference 1 − R signifies the
proportion of redundant information disclosed to reconcile errors.

It’s important to note that the reconciliation efficiency is often interpreted differently in various
literature. While we’ve defined it as a measure of the additional information disclosed beyond the
Shannon limit, other works define it as the ratio of achieved capacity for a given communication
channel. In this alternative interpretation, the efficiency β is given by:

β =
R

1− h(ϵ)

resulting in the relationship:

1− fECh(ϵ) = β(1− h(ϵ))

Throughout this discussion, we exclusively adopt the initial definition.

Execution time

When it comes to assessing the performance of error correction algorithms, the metric of execution
time assumes a crucial role. This holds true even within the realm of quantum communication,
where intricate processes like privacy amplification are employed. Despite the fact that privacy
amplification, a process critical to refining partially secure raw keys into robust secret keys, can be
computationally demanding, the evaluation of error correction techniques still factors in execution
time.

In quantum communication, especially Quantum Key Distribution (QKD), the focus on execu-
tion time underscores the practicality and feasibility of error correction algorithms. While privacy
amplification may present computational bottlenecks in the post-processing stages of QKD, eval-
uating error correction algorithms using execution time remains pertinent. This is because the
efficiency and effectiveness of these algorithms can directly impact the overall reliability and se-
curity of the communication process.

While privacy amplification itself may involve intricate computations, the consideration of
execution time is not diminished. It’s an essential facet in the larger landscape of error correction,
ensuring that algorithms not only deliver accurate corrections but do so within time frames that
align with the operational requirements of the communication system.

28

Analysis of Error Correction protocols

In essence, the evaluation of error correction algorithms goes beyond their theoretical capabil-
ities. It extends into the realm of real-world applicability, where execution time plays a pivotal
role in determining their practical utility. In the dynamic context of quantum communication,
this evaluation balance becomes even more important, ensuring that both correction accuracy
and operational speed are harmonized for effective and efficient data transmission.

3.2 Winnow

In [25] the Winnow protocol was presented as follows, we now report it in order to compare it to
the other main EC protocols.

3.2.1 Hamming Error Detection and Correction

Let’s elucidate the practical application of the Hamming hash function in the realm of error
correction [30]. The process is as follows:

1. To begin, following the exchange of qubits between A and B via the quantum channel, A
and B proceed to partition their random bits into distinct blocks. These blocks are characterized
by a length denoted as Nh = 2m − 1. Given the inherent one-to-one correspondence within this
dataset, these blocks are henceforth referred to as individual data units or bit-blocks. It’s essential
to highlight that the value of m must meet or exceed 3.

2. Subsequently, A and B independently embark on computing m-bit syndromes, labeled as
Sa and Sb respectively. These syndromes are contingent solely upon the bits within a particular
block, whether from A or B.

3. The next step involves B transmitting his syndrome to A. It’s imperative to note that
errors come to light only when a syndrome difference, denoted as Sd, is evident. This syndrome
difference is computed as the result of an exclusive OR operation between Sa and Sb:

Sd = Sa ⊕ Sb /= {0}m.

4. Finally, to mitigate the risk of privacy breaches, which may arise due to the classical
communication of B’s syndromes to an entity represented as E, m bits are systematically removed
from each bit block. This action results in the revelation of m bits of information in each block
where Sb is exposed. Consequently, this leads to a reduction in the channel’s capacity per symbol,
a factor of m/Nh [10].

The preservation of data privacy is achieved by eliminating specific bits from each block,
targeting positions corresponding to {2j}, where j ∈ {0, ...,m − 1}. These excised bits maintain
independence during subsequent syndrome calculations, as evidenced by the matrix h(m):

h(3) =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


In this specific instance, m is denoted as 3. The process of removing bits in this fashion is

referred to as privacy maintenance [4].

As a concluding remark regarding the aforementioned matrix, it’s noteworthy that the trans-
pose of h(3), represented as [h(3)]T , corresponds to binary equivalent numbers ranging from 1 to
7. This generalizes to the statement that [h(m))]T ≡ 1, ..., (2m− 1), Nh binary numbers.

This matrix holds a distinct position as a specialized form of a hash function [11] and is
represented as:

h
(m)
i = [

j

2i−1
](mod2)

29

Analysis of Error Correction protocols

Within this equation, i ∈ 1, ...,m, and j ∈ 1, ..., Nh, and the arithmetic operations are per-
formed modulo 2.

Looking ahead, it’s important to note that the Hamming algorithm excels in rectifying any
single error within a Nh-bit block. Nevertheless, the extent of its efficacy, particularly concerning
syndromes and privacy maintenance, becomes less evident when confronted with scenarios involv-
ing multiple errors within a single bit block. These specific considerations will be meticulously
examined as we delve into the complexities surrounding syndromes.

The syndromes Sa and Sb are formed by contraction of the Nh-bit blocks with the matrix
h(m):

Si =

Nh∑
j=1

Xjh
(m)
i,j

 (mod2) ∈ {0,1}m

where subscript i represents syndrome bit i in the m-bit binary syndrome, Xj represents bit
j inA’s orB’s block, and S = Si is the binary syndrome value of either B’s or A’s block. To
comprehend the Impact of Syndromes on Error Identification and Correction it is imperative to
grasp how syndromes play a pivotal role in the localization and rectification of errors. This com-
prehension forms the bedrock for evaluating the efficacy of the Hamming code and, by extension,
the Winnow algorithm.

The concept of a ”syndrome difference” delineates a binary value that specifies the position of
a single bit within the code word of either A or B. This particular bit, when toggled from 0 to 1
or vice versa, exerts an influence on the syndrome difference denoted as Sd. Subsequently, upon
recalculating the syndrome difference, it converges to a binary value S′

d ≡ 0.

For instance, when Sd /= 0, it signifies that Sd is a binary value consisting of m bits. The value
of this binary representation indicates the precise location of a single bit within the code word
of either A or B. This bit is then subjected to an exclusive OR operation with its original value.
After this modification, a fresh syndrome for that specific code word is computed, denoted as S′

A.
This newly computed syndrome is again subjected to an exclusive OR operation, this time with
the original syndrome of the other code word, represented as SB in this example.

The outcome of this intricate process is the alteration of the single bit indicated by the non-
zero syndrome difference within the code word. This can lead to one of two scenarios: either
the error is corrected, or a new error is introduced within that code word. This process is not
shrouded in mystery but rather is a direct consequence of the fact that Hamming codes belong
to the class of n-k codes.

In this context, where n = 2m − 1, n relates to the number of bits within each code word
(denoted as Nh), while k = n −m pertains to the channel’s capacity. The relationship between
k and n signifies the channel capacity per bit, expressed as k/n ⇐⇒ k/Nh. This relationship is
intrinsic to the specific code under consideration, which, in this discussion, is a Hamming code.

Within an n-k Hamming code, there exist 2(2
m) distinct code words, each distinguished by

2m unique syndromes. Furthermore, within this code, there are also 2k code words that share
identical syndromes. Due to the code’s capability to rectify a solitary error, it exhibits a minimum
Hamming distance of d = 3. This characteristic also implies its ability to detect a minimum of
two errors. Indeed, the Hamming distance, denoted as d, for the Hamming code is invariantly
equal to 3.

By definition, a code word hosting a solitary error exhibits a syndrome difference denoted as
Sd /= {0}m - a clear indication of its capability to detect a single error, aligning with its error
correction capacity. Furthermore, for a code word harboring precisely two errors, it follows by
definition that Sd /= {0}m. Thus, a code word can discern a minimum of two errors if it can
rectify a single error. Consequently, when a code word with exactly two errors undergoes the
Hamming algorithm, and the bit specified by Sd is altered, it ultimately concludes with precisely
three errors.

30

Analysis of Error Correction protocols

The proof of this assertion is rooted in contradiction: if a code word with two errors concluded
with only one error (signifying an error correction), the new syndrome difference would be non-
zero - a contradiction. This line of reasoning also firmly establishes that one error is corrected
when there is precisely one error. If an error were introduced, the syndrome difference would once
again be non-zero.

Hence, when scrutinizing Hamming codes, it becomes evident that a code word initially
plagued by one error eventually reaches a state of error-free, while a code word initially bearing
precisely two errors ultimately acquires three errors. In both cases, the new syndrome difference
metamorphoses to S′

d = {0}m.

Expanding this understanding, by symmetry, if an Nh-bit code word contains precisely h errors
(with all bits except one being erroneous), the application of Hamming ensures that all bits in
the code word will be in error. Conversely, a code word initially burdened with Nh - 2 errors will
conclude with Nh - 3 errors, implying the correction of one of the errors.

These deductions bring to light a crucial aspect of Hamming codes: their efficiency depends
on the probability of encountering two or more errors compared to the likelihood of single or zero
errors. In either of the latter cases, the Hamming code is inefficient since it divulges m-bits within
the syndrome. We will delve deeper into this aspect later.

The complexity arises when attempting to analyze how Hamming behaves in scenarios involv-
ing more than two but fewer than 2m−1 errors within code words. It’s not immediately evident
how the number of code words with three errors and Sd ≡ {0}m correlates with the number of ways
two-error code words transform into code words with three errors, accompanied by Sd = {0}m.
In essence, it suggests that there must exist a method to arrange three errors within a code word
while maintaining Sd = {0}m. Failure to identify this mechanism would imply that the code
could unfailingly detect more than two errors, which would contradict the fundamental Hamming
distance of d = 3.

To comprehensively evaluate Hamming’s efficiency, we must scrutinize the behavior of code
words afflicted with three or more errors following the application of Hamming. Let’s start with
the case of three errors, which is now evidently clear: there must exist a minimum of 2m−1

approaches to begin with three errors in an Nh-bit code word and ultimately maintain three
errors.

In scenarios where three errors exist within a code word, and Sd /= {0}m, introducing an error
into the Nh-bit code word is inevitable. This stems from the fact that if the code word were to
conclude with two errors, Sd would not equate to {0}m, which contradicts our assumptions.

To illustrate this, let’s consider a specific example with m = 3. There are
(
7
3

)
= 35 ways to

arrange three errors in seven bits. As there are precisely seven non-zero syndrome differences for
m = 3, with ni = 2, there must be a minimum of seven methods to arrange three errors within
seven bits and have Sd ≡ {0} . In this specific case, this is indeed the result. This statistical
analysis implies that, among 35 code words with three errors, approximately 7 out of 35 will
remain with three errors, while the remaining 28 out of 35 words will transform into code words
with four errors. Consequently, code words initially plagued by three errors will conclude with
19/5 errors per 7-bit block, assuming an infinite number of 7-bit blocks each initially containing
exactly three errors.

Applying symmetry, it becomes evident that in a scenario featuring an infinite number of 7-bit
blocks each initially possessing four errors, the final error rate per block would be lower at 16/5.

Hence, what becomes essential is a methodology to calculate, for any given value of m rep-
resenting parity checks in Hamming, the number of ways to arrange the initial error count per
block while ensuring the final syndrome results in S = {0}m, or with Sd /= {0} . The following
equations permit that calculation for any initial number of errors per block, ni, given any initial
block size, Nh:

31

Analysis of Error Correction protocols

NSd/=0
+NSd=0

=

(
Nh

ni

)
−NSd/=0

+Nh ·NSd=0
= (−1)q ·Nh ·

(Nh−1
2

p

)
⇐⇒

⇐⇒
[
NSd /=0

NSd=0

]
=

[
Nh 1
−1 1

]−1
[(

Nh

ni

)
(−1)q

(Nh−1

2
p

)]
where q =

⌊
ni

2

⌋
, p =

⌊
ni

2

⌋
, and ni signifies the initial error count per Hamming block consisting

of Nh = 2m− 1 bits, two crucial metrics come into play. These are NSd=0
, representing the count

of syndrome differences yielding Sd = 0m, and NSd/=0
, denoting the count of syndrome differences

with Sd /= 0m.

The subsequent equations provide a broader perspective by normalizing both sides with the
total number of ways to arrange ni errors among the Nh bits. This leads us to more useful
quantities:

∏
Sd=0

=
NSd=0(

Nh

ni

) , and
∏
Sd/=0

=
NSd/=0(

Nh

ni

)
This result will prove valuable in subsequent discussions. While these arguments might not

directly apply to cases wherem > 3, they provide insights into the general problem. The challenge
with the specific scenario ofm = 3 and ni = 3 is that the next case, where ni = 4, is symmetric and
complementary to ni = 3, as previously mentioned. Moreover, as noted earlier, there’s no pathway
to transform 3 errors into 2 errors since Sd /= 0m when exactly 2 errors exist. Nevertheless, the
aforementioned equation serves as a general technique to calculate these quantities. It essentially
provides the number of ways to transform ni errors into Sd = 0m or not, considering Nh = 2m−1
bits in a block.

Now, turning our attention to scenarios where m ≥ 4 and 4 ≤ ni < 2(m−1), the key question
centers on how errors evolve. Here, let’s denote by n(+) the number of ways to increase the error
count from ni to ni+1 within a bit-block, and ni the number of ways to decrease the error count
from ni to ni−1. Naturally, these considerations apply when m ≥ 4. The outcomes are as follows:

n
(+)
i = NSd=0

(Nh|ni) + (ni + 1) ·NSd=0
(Nh|ni + 1)

n
(−)
i =

(
Nh

ni

)
− n(+)

i

In this context, NSd = 0(Nh|ni+1) represents the count of ways to distribute ni+1 errors among
Nh bits and yield Sd = {0}m. As mentioned earlier, it’s worth noting that the count of ways to
achieve Sd = {0}m for ni + 1 errors is directly linked to the count of ways to transition from ni
errors to ni + 1 errors. Naturally, NSd=0

(Nh|ni) corresponds to the count of ways to distribute
ni errors among Nh bits to obtain Sd = {0}m. Consequently, the generalized probability of
increasing or decreasing the error count, denoted as ni, can be expressed as follows:

(+)∏
=

n
(+)
i

n
(+)
i + n

(−)
i

, and

(−)∏
= 1−

(+)∏
.

3.2.2 Winnowing

In the quest for an ideal error correction protocol, the goal is to rectify all bit errors within each
data block, refrain from introducing additional bit errors, and disclose as little crucial informa-
tion as possible during public communication to safeguard against eavesdropping. However, the
Hamming protocol, as outlined, falls short of this ideal in several aspects.

32

Analysis of Error Correction protocols

Firstly, the syndrome difference Sd fails to distinguish between single-bit errors and multiple-
bit errors. Consequently, treating instances of Sd /= 0m as single errors may inadvertently intro-
duce more errors into the system.

Secondly, during each exchange, up to m bits of information are swapped for every data block.
This exchange diminishes the channel’s capacity per symbol and is vulnerable to eavesdropping,
posing a security risk.

One potential solution involves eliminating all bits within data blocks where Sd /= 0m. While
this approach eliminates the risk of introducing additional bit errors into the key, it is not highly
efficient. It results in the loss of either m bits per block due to privacy maintenance or, in the
worst-case scenario, all bits if Sd /= 0m. The drawback here is that most of the discarded bits or
blocks with Sd /= 0m are likely not erroneous.

An alternative and more robust solution is to introduce an initial parity comparison on a block
comprising N = 2m bits. This comparison allows for an assessment of the syndromes Sa and Sb

based on the outcome of the parity comparison, thus offering a more nuanced approach to error
correction.

If the block parities do not align, it signifies an odd number of errors in the N-bit block.
Furthermore, when the bit errors are randomly distributed throughout the data and their count
is relatively small, an odd number of errors in a block likely indicates a single error. This single
error can be corrected by subsequently applying the Hamming algorithm.

For instance, consider a scenario where a block contains one bit error. If Sd = 0m, it implies
that the first bit is in error. It’s worth noting that by symmetry, if there are precisely N−1 errors
in the block, the first bit wouldn’t be in error. This approach, therefore, consistently enables the
correction of a single error among the N bits, assuming the bits are to be retained.

However, in the protocol described here, one bit is routinely discarded for privacy maintenance
(pertaining to the exchanged parity bit). The Hamming algorithm is then applied to the remaining
Nh bits, as discussed earlier. Following this, an additional [log2(Nh)] bits are discarded to finalize
privacy maintenance. This results in a channel capacity of (2m−m− 1)/N per symbol for blocks
containing an initial parity error. While it might seem like an additional loss of channel capacity,
the absence of syndrome exchange and comparison when the block parities align actually increases
the channel capacity over the basic Hamming algorithm. For blocks that don’t exhibit a parity
error, one bit is still discarded for privacy maintenance.

This error reconciliation protocol is referred to as Winnow. In the event that the parities on
the N bits don’t agree, Winnow discloses log2(N) + 1 bits through two classical communications:
m bits for the syndrome and 1 bit for parity. Conversely, when the parities align, Winnow reveals
1 bit of information in a single classical communication. Therefore, the amount of key data that
gets discarded is:

Nodd
dis. = log2 (N) + 1 = m+ 1

bits for blocks with odd numbers of errors such that the fraction of the bits remaining after privacy
maintenance is

µodd
pm = 1− Nodd

dis.

N

For N ∈ 8, 16, 32, 64, 128µodd
pm ∈ {0.5, 0.69, 0.88, 0.89, 0.94}, respectively. Also,

µeven
pm = 1− 1

N

For the same values of N , µeven
pm takes on values within the set 0.88, 0.94, 0.97, 0.98, 0.99. In

either scenario, the appropriate overhead for classical communications is immediately subtracted
from the data. This ensures that the privacy of the bits is at least maintained, if not improved.

After a single pass of Winnow (a Winnowing), all single bit errors in an N-block are guaranteed
to be either eliminated or corrected. What remains to be examined is how blocks with multiple
errors impact the overall efficiency of Winnow.

33

Analysis of Error Correction protocols

3.3 Low Density Parity Check

LDPC codes implementation for QKD was presented first in [29] and present a different paradigm
of QKD error correction which focuses on pre-computation of LDPC codes instead of using iter-
atively a classical channel to achieve error correction. In [33] has been revisited as follows

3.3.1 Error correction and control coding

Low-Density Parity-Check (LDPC) codes, possessing a sparse parity-check matrix, are linear
error-correcting codes pivotal in approaching the Shannon capacity limit for performance. The
defining characteristic of an LDPC code lies in its parity-check matrix denoted byH. Furthermore,
LDPC codes can be accurately portrayed using bipartite graphs closely associated with their
parity-check matrices H. These graphs encompass check nodes representing vertices for parity-
check equations, and variable nodes (or bit nodes) embodying vertices for the codeword bits. The
interconnection of variable nodes and check nodes by edges forms the basis of the bipartite graph
and is fundamental to the message-passing decoding algorithm. LDPC codes can be categorized
into two main types: regular LDPC codes, where all variable nodes and check nodes possess
identical degrees, and irregular LDPC codes, where degrees can vary. The degree distribution of
irregular LDPC codes can be characterized using degree distribution polynomials λ(x) and ρ(x):

λ(x) :=

dv∑
i=2

λix
i−1

ρ(x) :=

dc∑
i=2

ρix
i−1

Here, λi represents the fraction of edges in the bipartite graph connected to variable nodes
of degree i, and ρi represents the fraction of edges connected to check nodes of degree i. More-
over,

∑
i λi =

∑
i ρi = 1, while dv and dc denote the maximum degree for variable nodes and

check nodes, respectively. The degree distribution pair is instrumental in predicting the decoding
threshold for LDPC codes [34].

For a given binary sequence X = (x1x2 . . . xn) of length n, the syndrome bits S are computed
as an encoder output by performing a modulo-2 operation on the product of the source bits X
and the parity-check matrix H, as expressed by

S = mod{H ∗XT ,2}

The syndrome S = (s1s2 . . . sn−k), with sj ∈ {0,1}, represents the value of the jth syndrome
component. Equivalently, in the bipartite graph, this operation can be seen as binary addition of
all the variable node values connected to the same check node. The matrix H is an (n − k) × n
LDPC parity-check matrix. Due to the sparse nature of H, the encoding complexity of LDPC
codes for traditional error correction applications is proportional to the square of the length
of the codeword. The encoded version of X is the syndrome S, which serves as the input to
the authenticated classical channel. The source Y is available at the decoder as side information.
Utilizing a linear (n, k) binary block code, it becomes possible to generate 2n−k distinct syndromes,
each indexing a set of 2k binary words of length n [35]. This encoding process maps a sequence
of n input symbols into (n− k) syndrome symbols.

Given the side information Y and the received syndrome S, the objective of the decoder
is to reconstruct the best estimate X of the source n-sequence X. The fundamental LDPC
decoding algorithm encompasses the bit-flipping algorithm and the sum-product algorithm. The
bit-flipping algorithm is grounded on the principle that a code word bit involved in a substantial
number of incorrect check equations is likely to be incorrect itself. Thus, if the majority of the
messages received by a bit node differ from its received value, the bit node changes (flips) its
current value. Iterative decoding of binary LDPC codes using the sum-product algorithm (SPA)

34

Analysis of Error Correction protocols

represents a soft decision message-passing algorithm. The input bit probabilities are denoted
as a priori probabilities for the received bits, and the bit probabilities returned by the decoder
are termed a posteriori probabilities. In the case of sum-product decoding, these probabilities
are expressed as log-likelihood ratios (LLR). The steps involved in information reconciliation for
Quantum Key Distribution (QKD) are akin to the classical belief-propagation algorithm, with a
modification introduced at step 2. The LLR of a binary random variable x is defined as:

L(x) = loge
p(x = 0)

p(x = 1)

where p(x = 1) denotes the probability that the random variable x takes the value 1, and

p(x = 1) =

p(x=1)
p(x=0)

1 + p(x=0)
p(x=1)

=
e−L(x)

1 + e−L(x)

For a binary variable x, it is straightforward to find p(x = 0) given p(x = 1), since p(x = 1) =
1− p(x = 0). The LLR-SPA can be summarized as follows:

Step 1: Initialization: Set the log-likelihood ratios p to appropriate initial values based on
the knowledge of the mean source correlation, i.e.,

Mj,i = ri

where Mj , i is the messages sent from the bit nodes to the check modes, i = 1,2, ..., n,
j = 1,2, ..., n− k, ri is the log likelihood ratios for the priori message probabilities in BSC, and

ri =

{
loge

p
1−p , if yi = 1

loge
1−p
p , if yi = 0

Step 2: Calculate Ej,i: the extrinsic message from check node j to bit node i, defined as the
LLR of the probability that bit i causes parity-check j to be satisfied.

Ej,i = loge(
1 + (1− 2sj)

∏
i′∈Bj ,i′ /=i tanh(Mj,i′/2)

1− (1− 2sj)
∏

i′∈Bj ,i′ /=i tanh(Mj,i′/2)
)

where Bj is the set of bits in the jth parity-check equation of the code. sj is the jth syn-
drome component sent from Alice. This equation represents the only modification to the classical
belief-propagation algorithm, where information is propagated between variable and check nodes
connected by edges.

Step 3: Calculate the total LLR of the ith bit: given by the sum of these LLRs:

Li =
∑
j∈Ai

Ej,i + ri, i = 1,2, ..., n

where Ai is the parity-check equations that check the ith bit of the code.

Step 4: Hard decision on the received bits: given by the sign of the LLRs.

zi =

{
1, ifLi ≤ 0

0, ifLi > 0

Step 5: Check if Z = (z1, z2..., zn) is a valid codeword:

S′ = mod{H ∗ ZT ,2}

35

Analysis of Error Correction protocols

Then Bob compares the syndrome S′ with the syndrome S sent from Alice. If S′ /= S, then
there are errors in Y , and the process goes back to step 2; the belief propagation of LDPC decoding
is iteratively computed until S′ = S, or the maximum allowed iteration number of decoding is
reached. The result S′ = S signifies that the sifted key is identical in Alice’s and Bob’s after
information reconciliation; otherwise, there are still some erroneous bits between Alice’s and Bob’s
sifted keys. These erroneous bits can no longer be corrected in one-way reconciliation protocols.

3.3.2 Optimization Work

In [36] further work on LDPC for QKD was carried, improving performance exploiting Differential
Evolution.

Low-Density Parity-Check (LDPC) codes, also known as Gallager codes, represent linear codes
characterized by a sparse parity check matrix with relatively few non-zero values. Their significant
advantage lies in their ability to perform very close to the Shannon limit, even with suboptimal
yet fast, iterative decoding schemes. In the context of reconciliation of binary strings, particu-
larly for application to discrete-variable Quantum Key Distribution (QKD), LDPC codes need to
be specially optimized for the Binary Symmetric Channel (BSC). The optimization problem of
LDPC code design can be effectively addressed using a genetic algorithm, specifically Differential
Evolution (DE) [37]. This solution has been successfully applied to the Binary Erasure Channel
(BEC) [38] and the Binary Input Additive White Gaussian Noise (BIAWGN) channel [39].

Differential Evolution (DE) is an Evolutionary Optimization Algorithm that maintains a pop-
ulation of N D-dimensional vectors (code candidates) of real parameters, adhering to certain
constraints. The population evolves for a fixed number of generations or until a vector is found
that meets a stopping criterion. The population is initialized to cover as much of the parame-
ter space as possible. For each generation, DE mutates and recombines the current population
to produce a trial population. Mutation is performed by adding the weighted difference of two
population vectors to a third one. Recombination is used to increase the diversity of the trial
population, where trial vectors are modified incorporating a small set of parameter values from
a current population vector. A trial vector is incorporated into the current population if a cost
function assigns to it a lower cost value than the cost value of the preceding vector; otherwise, it
is discarded.

LDPC codes can be represented as bipartite graphs, where one set of nodes, the check nodes,
represents the set of parity-check equations defining the code, and the other, the variable nodes,
represents the elements of the codewords. A check (variable) node in the graph is referred to
as degree i if it is connected to i variable (check) nodes. The fraction of edges connected to bit
(check) nodes of degree i is denoted by λi(ρi). Let L be the maximum variable degree and R
the maximum check degree; we define an ensemble of LDPC codes using the generating functions
λ(x) and ρ(x).

λ(x) :=

L∑
i=2

λix
i1 , 0 ≤ λi ≤ 1

ρ(x) :=

R∑
i=2

pix
i−1, 0 ≤ ρi ≤ 1

We can express the code rate as a function of the coefficients of λ(x) and ρ(x):

Rate = 1−
∑R

i=2 ρi/i∑L
i=2 λi/i

The functions λ(x) and ρ(x) have L + R − 2 non-zero coefficients. However, not all these
coefficients are independent: λ(x) and ρ(x) define degree distributions and must therefore be
normalized, aiming for all codes to have the same rate for the purpose of comparing their thresh-
olds. Specifically, to ensure that λ(x) and ρ(x) define a degree distribution, we fix the coefficients
corresponding to variable and check nodes of degree 2:

36

Analysis of Error Correction protocols

λ2 = 1−
L∑

i=3

λi, ρ2 = 1−
R∑
i=3

ρi

The code rate can be set using a third coefficient, denoted as λL. From the expressions
provided, one can derive:

λL =
1−β
R +

∑2
i=3 ρi(

1
i −

1
2)− β

∑L−1
i=3 λi(

1
i −

1
2)

β(1
L −

1
2)

where β = 1−Rate. These constraints result in a final number of D = L+R− 5 parameters,
each associated with one of the non-fixed coefficients of λ(x) and ρ(x). Additionally, the codes
need to be stable for crossover probabilities p below their threshold, with the stability condition
for the BSC channel given by [39]:

λ2 ≤
1

2
∑

i(i− 1)ρi
√
p(1− p)

To evaluate the candidate codes, a discretized density evolution algorithm has been utilized
in [36]. This algorithm calculates a threshold value for a random LDPC code with a fixed node
and degree distribution, determining the error-free region limit asymptotically as the block length
tends to infinity. Discretized density evolution ensures that the predicted threshold is a lower
bound of

the real threshold. The results obtained with this set of constraints are presented in [36]. For
all rates, the thresholds are very close to the Shannon limit. Although these thresholds are only
achievable by infinite-length codes, experimental results obtained with finite-length codes were
not significantly different. This aligns with the expectations, considering that the length of the
codes used is quite large (106), well-suited to the typical requirements of QKD, where large blocks
of data need to be processed together to minimize finite-size effects [40].

3.4 Cascade protocol

The Cascade protocol was initially introduced in [24]. In this section, we introduce the Cascade
protocol, which is easily implementable.

3.4.1 Cascade Preliminaries

Binary Approach. In cases where strings A and B contain an odd number of errors, Alice and
Bob can engage in an interactive binary search to pinpoint an error by exchanging fewer than
[log n] bits over the public channel, as follows:

1. Alice transmits to Bob the parity of the first half of the string.

2. Bob assesses whether an odd number of errors occurred in the first half.

3. This process is iteratively applied to the determined half in step 2 until an error is located
eventually.

The reconciliation protocol outlined in [23] utilizes the binary approach as the primary tech-
nique.

Confirmation Method. If Alice and Bob possess differing strings, the Confirmation
method informs them of this fact with a probability of 3. Conversely, if their strings are identical,
Confirmation confirms this with a probability of 1.

37

Analysis of Error Correction protocols

1. Alice and Bob independently select random subsets of corresponding bits from their strings.

2. Alice communicates to Bob the parity of her chosen subset.

3. Bob verifies that his subset exhibits the same parity.

This process can be repeated k times to provide assurance that their strings are identical. The
test will fail with a probability of 2k.

Binary Confirmation (BICONF). Combining the Binary and Confirmation approaches
yields another method capable of correcting multiple errors. BICONF involves running Confir-
mation s times. Whenever Confirmation reveals a subset for which Alice’s and Bob’s strings
have differing parities, they apply the Binary approach to this subset, thus correcting an er-
ror. Let ∆s(l|e) represent the probability that BICONF corrects l errors given e errors. The
expression is given by:

∆s(l|e) =

{(
s
l

)
2−s if l /= e∑s
j=e

(
j−1
e−1

)
2−j if l = e

(3.1)

3.4.2 Cascade protocol

Cascade operates through multiple passes, and the number of passes is predetermined by Alice and
Bob based on the parameter p. Let A = A1, . . . , An and B = B1, . . . , Bn (where Bi, Ai ∈ (0,1))
denote Alice’s and Bob’s strings, respectively.

In the first pass, Alice and Bob choose k1 and partition their strings into blocks of k1 bits.
Block v in pass 1 is formed by the bits whose positions lie in K1

v = {l | (v− q)k1 < l ≤ vk1}. Alice
transmits the parities of all her blocks to Bob. Using the BINARY approach, Bob corrects an
error in each block whose parity differs from that of Alice’s corresponding block. At this point, all
of Bob’s blocks have an even number of errors (possibly zero). This part of the protocol is adopted
from [23]. However, in that paper, leaked information about the secret string is eliminated during
execution by removing one bit of each subset for which the parity is known. In our protocol, all
the bits are retained. Preserving this information from pass to pass allows us to correct more
errors.

In each pass i > 1, Alice and Bob choose ki and a random function fi : [l..n]→ [1..[nk1
]]. The

bits whose positions are in Kj = {l | fi(l) = j} form block j in pass i. Alice sends Bob:

aj =
⊕
l∈Ki

j

Al

for each 1 ≤ j ≤ [nki
]. Bob computes his bj ’s in the same way and compares them with the aj ’s.

For each bj /= aj , Alice and Bob execute the BINARY approach on the block defined by Ki
j .

Bob finds l ∈ Ki
j such that Bl /= Al and corrects it. All the blocks Ku

v for 1 ≤ u < i such that
l ∈ Ku

v will then have an odd number of errors. Let K be the set of these blocks. Alice and Bob
can now choose the smallest blocks in K and use the BINARY approach to find another error.
Let l′ be the position of this error in strings A and B. After correcting Bl′ , Bob can determine the
set B formed by the blocks containing Bl′ from each pass from 1 to pass i. He can also determine
the set K ′ of blocks with an odd number of errors by computing:

K ′ = B△K

If K ′ /= ∅, then Bob finds another pair of errors in the same way. This process is repeated until
there are no more blocks with an odd number of errors, at which point pass i ends, and each block
in passes 1 through i has an even number of errors (perhaps zero).

In this section, a simple analysis utilizing one of Cascade’s properties demonstrates its practical
utility. This analysis leads to a specific choice of block size such that the probability that a block
K1

v has one or more errors decreases exponentially with respect to the number of passes. The

38

Analysis of Error Correction protocols

property used is that in passes following pass 1, correcting an error in K1
v implies that a second

error from the same block K1
v will be corrected.

For parameters k1, . . . , kw chosen in a manner depending on p, we attempt to determine δi(j),
the probability that after pass i ≥ 1, 2j errors remain in K1

v . δ1(j) is easily determined for
X ≈ Bin(k1, p):

δ1(j) = prob(X = 2j) + prob(X = 2j + 1)

Let Ei be the expected number of errors in K1
v after completion of pass i. For pass 1, we have:

E1 = 2

[
k1
2]∑

j=1

jδ1(j) = k1p−
(1− (1− 2p)k1)

2

If the functions fi with i > 1 are randomly chosen from {f | f : [1, . . . , n]→ [1, . . . , n
ki
]}, then

for n→∞, we can determine a bound on the probability γi of correcting at least 2 errors at pass
i > 1 in a block K1

v still containing errors after completion of pass i−1. Since errors are corrected
two by two in passes i > 1, we have:

γi ≥ 1−

1−
(
1− ki

n

)nEi−1
k1

2

≈ 1−
(
1− e−

kiEi−1
k1

)2

We can bound δi(j) using γi, for i > 1:

δi(j) ≤

 [
k1
2]∑

l=j+1

δi−1(l)

+ δi−1(j)(1− γi)

Suppose that ki is chosen such that:

[
k1
2]∑

l=j+1

δ1(l) ≤
1

4
δ1(j) (3.2)

and let ki = 2ki−1 for i > 1. We have:

δi(j) ≤
1

4
δi−1(j) + (1− e−2i−1Ei−1)2δi−1(j)

If, in addition, the choice of k1 is such that:

E1 ≤ −
ln 1

2

2
(3.3)

it follows that:

γi ≥ 1− (1− e−2E1)2 ≥ 3

4

When ki = 2ki−1, i > 1 and k1 satisfies 2 and 3, we have δi(j) ≤ δi−1(j)
2 ≤ δi(j)

2i−1 since Ei ≤ Ei−1

2 .

We can bound the amount of information I(w) per block of length ki (per block K1
v) leaked

after w passes, with parameters ki set as above (where w must not depend on n for the argument
to apply), as follows:

I(w) ≤ 2 +
1− (1− 2p)k1

2
[log k1] + 2

w∑
l=2

[
k1
2]∑

j=1

jδ1(j)

2l−1
[log k1]

Table 4.1 provides the values of k1 (the largest one satisfying 2 and 3) for p ∈ {0.15, 0.10, 0.05, 0.01},
and the values of I(4) are computed. Additionally, the average amount of leaked information Î(4)

39

Analysis of Error Correction protocols

for 10 empirical tests (with n = 10,000) under the same conditions is reported. For each of these
tests, all errors were corrected after pass 4.

p k1 Î(4) kh(p) I(4)
0.01 73 6.47 5.89 6.81
0.05 14 4.60 4.01 4.64
0.10 7 3.81 3.28 3.99
0.15 5 3.80 3.05 4.12

Table 3.1. Original table of k values (source: [24]).

3.4.3 Cascade Implementations

Let’s first analyze the principal steps of the most common cascade implementations.

The Cascade protocol is an iterative protocol that cycles through four steps, as mentioned
before the number of iteration (i.e. cycles) to be performed in order to achieve a good error
correction is variable depending on the implementation, this matter will be discussed later in this
section.

Step1: Key shuffle

Figure 3.2. The key received by Bob contains some random errors (source: [22]).

The first step of each cycle is to shuffle the key in order to redistribute the errors in a random way
(note that after the transmission some error can be packed together due to momentary noise).
Since the aim is not to obscure the real order of the bits, this random shuffle can be publicly
disclosed and sent to the other part.

40

Analysis of Error Correction protocols

Step2: Split the key into blocks

Figure 3.3. During every iteration the key is shuffled and then divided into blocks (source: [22]).

In order to binary search the errors in the key, it has to be divided into blocks. The size of
the blocks in most implementation is different in every iteration, in table 4.1 it is shown that in
the original design of the protocol the size of the blocks was K = 0.73/p where p is the error
probability i.e. the Quantum Bit Error Rate of the channel, this was considered for a key lenght
of n = 10′000. In the original design all the subsequent block sizes where calculated as ki = 2ki−1.

Step3: Error search

Figure 3.4. After shuffling the key, bobs computes the parity of one of the blocks (source: [22]).

Bob computes the parity bit of one of the key blocks and send it to Alice. Note that in this
protocol, the parity bit is computed on a even number of bits.

41

Analysis of Error Correction protocols

Figure 3.5. Bob then asks for the same parity bit by alice, in the figure is presented an example
of a naive message (source: [22]).

Alice will use the information provided by Bob, the shuffle, the number of the first bit of the
block and the block length, to calculate the correct parity bit of the same block and send it to
Bob.

Step4: Error correction

Figure 3.6. Bob corrects one error using BINARY(source: [22]).

If the parity bit does not match, bob initiate a binary search of the error inside the current block.
The algorithm used is the BINARY described in the previous section.

A the end the cycle is repeated from the first step, in the original design the number of total

42

Analysis of Error Correction protocols

iterations is 4, after 4 iteration the probability of having errors inside the key was observed to be
significantly low.

Figure 3.7. Cascade iterations scheme(source: [22]).

Different implementations

The cascade protocol has many parameters that can be changed to achieve different implementa-
tions. In this section we will see some of those parameters and their impact on the performance.

BICONF In some Cascade implementations after two steps, the iterativeBICONF algorithm
is initiated. The algorithm operates as follows: in each iteration, both parties agree upon a random
subset of bits from their respective frames. They then compute and exchange the parity value
of this subset. If their parities differ, two dichotomic searches are conducted, one for the chosen
subset and another for the complementary subset (i.e., the subset of bits that were not selected).
The algorithm selects new random subsets of bits in each iteration and halts when it has either
completed a fixed number of iterations [24] (e.g., s = 10) or after s successive iterations without
discovering new errors.

It’s important to note that the exact process for selecting the random subset of bits is not
specified. In our approach, we opted to choose it by performing independent Bernoulli processes
with a success probability of one half for each bit of the frame. This effectively divides the frame
into two subsets: a selected subset and its complement with respect to the frame, both of similar
size.

In a related work [31], it’s demonstrated that this modified version enhances the efficiency of
Cascade. However, extensive simulations have shown that the frame error rate is notably higher in
this protocol compared to the original Cascade. Thus, while the modification improves efficiency,
it does so at the expense of a higher frame error rate, a characteristic often observed in one-way
reconciliation with block codes. The results outlined in [31] also emphasize that a single pass of
Cascade with a block size equal to half the frame length (i.e., ki = ⌈n/2⌉) functions effectively as
one iteration of BICONF. This presents an advantage of potentially correcting additional errors
from previous passes.

Singleton blocks In an unpublished draft, the author proposes protocol optimization through
enhanced random shuffling between passes and the elimination of singleton blocks in subsequent
passes. Here, ”singleton” denotes a sub-block with a size of one, where the value is already known
either through prior exchange or deducible from other sub-blocks whose values are known.

43

Analysis of Error Correction protocols

Sub-block Reuse in [21] an optimized version of Cascade was presented, suggesting to reuse
some sub-blocks created during the various iteration, to avoid asking Alice the same parities
multiple times.

Indeed, during the Cascade process, there’s potential to capture and utilize additional data.
Currently, only the blocks initially divided at the start of each pass are documented. However,
in the BINARY process, numerous smaller sub-blocks are created. If we preserve a record of all
these smaller blocks, the traceback phase can search within smaller blocks. This approach reduces
the exchanged information and enhances the efficiency of the protocol.

Figure 3.8. Cascade implementation scheme(source: [31]).

In [31] the different cascade implementations were tested and compared, in the figures below
the results are shown to give an idea on how the different parameters impact on the efficiency

Figure 3.9. Average reconciliation efficiency (fEC) for various versions of Cascade is compared:
the original Cascade (in black), a modified protocol (in blue), a version with optimized parameters
according to [21] (in red), and the version proposed here with 16 passes (in green) (source: [31]).

44

Analysis of Error Correction protocols

Figure 3.10. The average reconciliation efficiency (fEC) for various versions of Cascade is com-
pared: (1) Original Cascade (black) (3) Version using 16 passes, as proposed and presented in the
previous figures (green) (4) Version leveraging block reuse as suggested by [21] (brown) (5) Version
replacing random shuffling between passes (magenta) (6) Version discarding singleton blocks after
each pass (sky blue) (Source: [31])

Figure 3.11. The average reconciliation efficiency (ηEC) for various versions of Cascade is
compared: (1) Original Cascade (black) (3) Version using 16 passes as proposed above and
presented in the previous figures (green) (4) Version leveraging block reuse in addition to (2)
(brown) (7) Version optimizing the first and second block sizes and using 14 passes (orange)
(8) Version optimizing the third block size and using a power of two value for the frame length
n = 214 (dark gray) (Source: [31])

45

Chapter 4

Analysis of Privacy Amplification
protocols

4.1 QKD Privacy amplification

Quantum key distribution (QKD), based on the uncertainty principle and the No-Cloning theorem,
theoretically has higher security than the existing information security schemes [41]. However, the
generated key itself has no substantive information. Only when it is encrypted by the encryption
algorithm as a key can the information required by both sides of the communication be transmitted
[42, 43, 44, 45]. The encrypted key needs to be transmitted in the public channel, which inevitably
leads to the risk of information disclosure. In order to delete the leaked information from the
negotiation key containing the leaked information, Bennet et al. proposed an important privacy
amplification step in the post-processing of quantum communication[9, 19], which realizes the
unconditional security of the quantum key distribution system by compressing the negotiation
key into an absolutely secure final key [46, 47, 48].

A common PA is to compress a string of keys through a universal hash function, and then
eliminate the information leaked to attacker Eve. In this way, the security key can be obtained.
The hash function is usually selected as the Toeplitz matrix, whose element is 0 or 1 [49]. Some
researchers use a variety of acceleration software methods provided by fast Fourier transform
(FFT) [50] to realize the privacy amplification algorithm through CPU and GPU software [51].
Its experimental efficiency is relatively good and can achieve a considerable processing rate. In
[50], the researchers propose a FFT PA scheme on commercial CPU platform. The long input
weak secure key is divided into many blocks, then PA procedures are parallel implemented for
all sub-key blocks, and afterwards the outcomes are merged as the final secure key, but FFT
also needs to consume a lot of computing resources. Moreover, for the practical quantum key
distribution system, these methods of using CPU software to realize the PA algorithm have hidden
dangers in security. There may be various unknown backdoors and vulnerabilities in this system,
which greatly affect the work of quantum key distribution system. Therefore, researchers propose
to use a field programmable gate array (FPGA) platform to implement the privacy amplification
algorithm. The algorithm implemented by FPGA is a pure hardware logic circuit with low security
risks. In [?], Lu et al. proposed a PA algorithm implemented on FPGA platform. By constructing
the required Toeplitz matrix on FPGA and using the characteristics of FPGA to calculate the
Toeplitz matrix in parallel, they succeed in improving the running speed of the algorithm and
the maximum safe coding rate of the system. In addition, the algorithm can also achieve any
number of input key bits in a certain length, which is helpful for the implementation of future
PA algorithms [52]. In [53], Toepliz matrix is divided into several sub blocks, and FPGA is used
to process the sub blocks in parallel to improve the operation speed. However, it only considers
the reconstruction of the Toepliz matrix, and does not involve the adequate processing of the
negotiated key with the Toepliz matrix. In view of the high requirements of hardware resources
and low computing speed of Toepliz matrix, researchers put forward some effective schemes to
improve it. In [54], they propose a privacy amplification algorithm based on LFSR to save storage

46

Analysis of Privacy Amplification protocols

space and speed up operation process. For the storage of elements in the Toepliz matrix, only one
register is needed, which greatly saves hardware storage resources. In [55], Bai et al. proposed a
PA algorithm based on Toeplitz matrix, which uses LFSR to save storage space and speed up the
privacy amplification process. The continuous state transformation of LFSR is constructed. The
results of each LFSR state are accumulated at the same time of LFSR state transition. Repeat
the above steps through block iteration to obtain the final key. Because the operations of different
accumulators are independent, the calculation of the final key is parallel, and the speed of the
algorithm can be improved. However, due to the characteristics of its sequential transformation to
produce the whole Toepliz matrix, the rate of generating the final key is still inevitably affected.

In [20], they propose a PA algorithm based on Cellular Automata (CA) and block structure.
CA is used to generate a pseudorandom sequence with good random characteristics. The sequence
performs a bit operation with the negotiation key and accumulates in blocks, so as to realize the
function of compressing the longer key into the final key. Unlike the algorithm of dynamically
generating Toeplitz matrix using LFSR, CA does not need to generate random sequences bit by
bit like LFSR. Due to the characteristics of CA, it can generate many new random sequences in
parallel, which improves the operation speed and can generate keys of any length. The National
Institute of Standards and Technology (NIST) randomness test [56] and avalanche test show that
the final key generated by the algorithm also has good randomness performance and a good
avalanche effect [57, 58].

In this chapter the main Privacy Amplifications algorithms will be analyzed.

4.1.1 PA metrics

The privacy amplification process involves compressing the negotiation key, acquired during the
quantum key distribution process, into a shorter final key. This aims to remove potential leaked
information in the conventional channel, ensuring unconditional security [59]. In this step, eaves-
dropper Eve finds it extremely difficult to gather any meaningful information about the key,
ensuring that the secure key used by Alice and Bob remains highly secure.

Viewed through the lens of information theory, the PA process can be seen as a technique for
extracting highly confidential shared information, the security key, from a larger pool of partially
secure shared information at risk of exposure. Suppose Alice and Bob share a random variable
W, such as a random bit string of length n. Eve, influenced by various factors, can obtain a
maximum of t bits of information aboutW , where t ≤ n. This is represented by H(W |V) ≥ n− t.
However, Alice and Bob usually don’t have detailed knowledge about the distribution of these
random variables. They aim to publicly choose a compression function g : Sn[0,1] → Sr[0,1]
where (n > r), satisfying certain constraints, to minimize Eve’s information about W based on
her knowledge of the compression function g. Through this process, the key k = g(V) is generated,
and due to its nearly uniform distribution, Eve can’t glean information about W from k [60].

I(k : g, V) ≈ 0

Therefore, the key obtained after the PA algorithm can be safely used as the encryption key.
One of the main concerns about Privacy Amplification is the running time of some algorithms
and their computational cost, this will be the main metric in comparing them.

4.2 FFT

Privacy amplification was initially introduced within quantum key distribution by [23]. It ad-
dresses a scenario where a channel has perfect authenticity but lacks privacy (a public classical
channel) and aims to rectify the deficiencies of a quantum channel, which offers imperfect privacy
but no authenticity. In [61] an implementation of Privacy amplification using Fast Fourier Trans-
form was presented as follows: Alice and Bob start by transmitting quantum signals over a noisy
and lossy quantum channel (fiber or free space). Following basis/key sifting and error correction

47

Analysis of Privacy Amplification protocols

procedures, they share a correlated yet weak secure key denoted as W through a public channel.
The min-entropy of this shared weak secure keyW is n. Let E be a random variable summarizing
Eve’s knowledge about W . Here, H(W |E) ≤ t, where t < n. Privacy amplification involves Alice
and Bob discussing an extractor function G : {0,1}n → {0,1}r publicly. This function reduces
Eve’s knowledge of the final secure keyKf from t to at most ϵ. In contemporary applications, most
practical extractors are implemented using universal hash functions, particularly the (modified)
Toeplitz matrix [62].

The Toeplitz matrix T (A) can be defined as follows:

G(A) := (Ir|T (A)) =


1 ar−1 ar ... an2

1 ar−2 ar1 ... an−3

...
1 a0 a1 ... an−r−1


where A is a random seed represented as A = (a0, a1, ..., an−1) ∈ {0,1}n−1, and T (A) is a r×(n−r)
Toeplitz matrix. Moreover, WI = (w0, w1, ..., wr−1) and WTA = (wr, wr+1, ..., wn−1). The final
secure key can be calculated as:

Kf = G(A)W = Ir × (w0, w1, ..., wr−1)⊕ T (A)× (wr, wr+1, ..., wn−1) =WI ⊕ T (A)WTA

To efficiently calculate T (A)WTA using the Fast Fourier Transform (FFT), T (A) is extended
to a special circulant Toeplitz matrix of scale (n− 1)× (n− 1), and WTA is extended to a vector
of length n− 1 by padding zeros. The optimized multiplication of a circulant matrix and a vector
is represented as:

H ·X = F−1[F (h) ∗ F (X)]

where ∗ denotes the Hadamard product operator, F represents the Fourier transform operator,
F−1 is the inverse Fourier transform operator, X is a vector, and H is a circulant Toeplitz
matrix with the first row h. The computational complexity of the optimized privacy amplification
algorithm using this approach is O(n log n) [63, 64].

In theory, quantum key distribution can generate secure keys for communicating parties, even
if the quantum channel is under Eve’s control. However, imperfect implementation and active
attacks may leak some information about W to Eve. Alice and Bob can accurately quantify the
bound of leaked information with an infinite post-processing block size. For entanglement-based
quantum key distribution, the secure key rate can be calculated as follows[65]:

R ≥ qQµνs[1−H2(e
U
p)− f(eb)H2(eb)]

where q is the basis sifting factor, Qµ is the gain of detected entangled photon pairs, νs is the
repetition rate of the entangled source, eb is the measured quantum bit error rate, eUp is the
estimated upper-bound of the phase error rate, f(x) is the error correction efficiency, and H2(x)
is the binary Shannon entropy.

In practical scenarios, eUp cannot be measured directly and accurately estimated due to statis-
tical fluctuations with finite post-processing block sizes. A simulation of the required throughput
of the privacy amplification algorithm was conducted in a 10 GHz entanglement-based quantum
key distribution with the parameters shown in Table 1. The entangled photon source was placed
in the middle of the communicating parties, considering the finite-size effect for the final secure
key Kf with a post-processing block size ranging from the order of 104 to infinite. Additionally,
a failure probability ϵph = 10−10 was used for estimating eUp . The analyzed results, indicate
that the post-processing block size should be at least on the order of 108 to achieve a secure key
rate close to the asymptotic limit. Directly implementing privacy amplification algorithms with
ultra-large-scale inputs will constrain the performance of full quantum key distribution systems.
Meanwhile, the required throughput of the privacy amplification algorithm is approximately 40
Mbps without any channel loss.

48

Analysis of Privacy Amplification protocols

4.2.1 HiLS Scheme

Figure 4.1. HiLS Algorithm scheme(source: [61]).

The diagram illustrating the high-speed and large-scale (HiLS) privacy amplification scheme for
Quantum Key Distribution (QKD) is depicted in Figure 4.1. The weak secure key W , having a
length of n, is obtained after undergoing basis/key sifting and error correction procedures based
on the measured raw key string at Alice’s (or Bob’s) end. Subsequently, Alice and Bob estimate
the final secure key length r using a meticulous statistical fluctuation analysis. Following this,
Alice and Bob engage in a public discussion regarding a random seed with a length of n− 1 bits
to construct the universal hash function. The HiLS Privacy Amplification (PA) scheme primarily
comprises three steps: splitting and shuffling, sub-PA, and secure-key merging.

Step 1: Splitting and Shuffling

In this step, W is divided into several sub-vectors, and the Toeplitz matrix T (A) is divided
into sub-matrices. Assuming the scale of the sub-matrix is m × m where m ≤ r, the Toeplitz
matrix T (A) can be divided into t blocks by rows and k blocks by columns. This results in
a total of kt sub-matrices, where t = ⌊n− r⌋, and rmk = ⌊m⌋. Initially, they construct a
vector A by padding km − r(tm − n + r) zeros to the head (tail) of the exchanged random seed
with a length of n − 1 bits. Afterward, they shuffle A into k + t − 1 sub-vectors, denoted as
Ai := [aim, aim +1, ..., a(2+i)m−1], 0 ≤ i < k+ t− 1. Consequently, the divided sub-matrix can be
constructed using Hi,j = T (Ai+j), i ∈ [0, k) and j ∈ [0, t). This yields:

T (A) =


Hk−1,0 Hk−1,1 ... Hk−1,t−1

Hk−2,0 Hk−2,1 ... Hk−2,t−1

...
...

...
...

H00 H01 ... H0,t−1

 =


T (Ak−1) T (Ak) ... T (Ak+t−2)
T (Ak−2) T (Ak−1) ... T (Ak+t−3)

...
...

...
...

T (A0) T (A1) ... T (At−1)


where Hi,j = Hi+1,j+1. For W , they initially pad tm− n+ r zeros to the tail and take the first r
bits, and the remaining bits are used to construct the sub-vector WI and WTA. They then divide
WTA into t sub-vectors, defined as Wi := [wim+r, wim+r+1, ..., w(i+1)m+r−1], where 0 ≤ i < t.

49

Analysis of Privacy Amplification protocols

Step 2: Sub-PA

In this step, the efficient implementation using Fast Fourier Transform (FFT) is performed on
the multiplication of Yi,j to the sub-vector Wj and sub-matrix Hi,j :

Yij := F−1[F (Ai+j) ∗ F (Wj)]

where, i ∈ [0, k) and j ∈ [0, t).

Step 3: Secure-Key Merging

Initially, they only consider the first m bits of Yi,j (defined as Y a
i,j). They then merge Y a

i,j into
vector Z using the formula:

Z = (

t−1∑
Y ∗
0,j |

t−1∑
Y ∗
1,j |...|

t−1∑
Y ∗
k−1,j)

By considering the first r bits of Z (defined as Z∗), they obtain the final secure key Kf :

Kf =Wi ⊕ Z∗

The detailed implementation of the HiLS PA scheme is presented in Figure 4.2. During
the execution of the proposed HiLS PA scheme, they only need to perform k + 2t − 1 Fourier
operations with a scale of 2m, kt times Hadamard product operations with a scale of m, kt times
inverse Fourier operations, and kt + 1 times exclusive OR (XOR) operations with a scale of m.
Consequently, the computational complexity of the proposed HiLS PA scheme is O(ktm logm),
simplified to approximately O(n logm).

Figure 4.2. HiLS Algorithm pseudo-code (source: [61]).

4.3 LFSR

In [66], they present two illustrative examples to introduce the universal class of hash functions
briefly. It’s important to note that regardless of whether it’s CVQKD or DVQKD, every character
in the reconciled key string is either a 0 or a 1. This makes it unnecessary to differentiate between
privacy amplification in CVQKD and DVQKD. In essence, the process of privacy amplification
remains consistent across both, even though CVQKD and DVQKD differ significantly before this
step. In the privacy amplification process, the binary key string is compressed using a hash

50

Analysis of Privacy Amplification protocols

function to eliminate information leakage to Eve. Given the primary focus on CVQKD in this
work, they will primarily delve into privacy amplification within this context.

Let’s consider a simple scenario: Alice randomly selects a pair of bits and calculates their
exclusive-or value. It’s crucial to emphasize that Alice does not disclose this exclusive-or result
over the common channel. Instead, she only announces which bits she has chosen, for example,
the 100th bit and the 105th bit, and then substitutes these bits with the exclusive-or result. This
approach not only compresses the key sequence but also ensures consistency between the keys at
both ends. Additionally, if the eavesdropper Eve has obtained partial information about the bit
pair, the leaked exclusive-or information to Eve is minimized. For instance, if Eve knows only
one bit of the bit pair and not the other, she cannot deduce the exclusive-or value. In another
scenario, if the probability of Eve knowing both of the two bits is 60%, then the probability she
guesses it correctly is 60%2 + 40%2 = 52%. The information leaked to Eve decreases as this
process is repeated continuously. These examples demonstrate that the universal class of hash
functions effectively reduce the information leaked to Eve while compressing the key sequence.

In essence, a universal class of hash functions refers to a set of functions that map larger
ranges to smaller ones. A desirable characteristic of such hash functions is that when the hash
values of two entities are equal, the two entities themselves are considered equal. In simple terms,
since universal class of hash functions can compress the length of a set, two sets are regarded
as the same if their abbreviations match. Universal class of hash functions find extensive use
in achieving efficient average performance across various applications, especially in associated
memory systems like compiler symbol tables or databases. One crucial application of universal
class of hash functions is secure information authentication within a system, allowing the message
recipient to verify the authenticity of the message, ensuring it hasn’t been altered or forged by an
unauthorized entity [67].

As a specific type within the universal class of hash functions, the Toeplitz matrix has found
widespread adoption by many research groups [53, 51, 68, 69] new to implement privacy am-
plification. Considering that the input for privacy amplification is the reconciled key and the
output is the final secret key, they can obtain the final secret key by multiplying the reconciled
key with the Toeplitz matrix. This process transforms the reconciled key, with a length equal
to the column count of the Toeplitz matrix, into the final secret key, with a length equal to the
row count of the Toeplitz matrix. Generally, the column count of the Toeplitz matrix exceeds the
row count, resulting in a shortened key sequence and reduced information leakage to Eve. The
Toeplitz matrix is advantageous due to its simple and parallel computing features, making it easy
to implement in hardware. Moreover, techniques like number theoretic transform and fast Fourier
transform (FFT) offer various approaches to accelerate its software implementation [51, 70]

4.3.1 Finite-size Effect on Privacy Amplification

To ensure the security of the final secret key, they must consider the finite-size effect. Let’s briefly
analyze this effect and its impact on the final secret key rate. Assuming x and y represent the
classical variables of Alice and Bob after measurement, and E represents the quantum states of
the eavesdropper Eve. The final secret key rate in CVQKD can be expressed using the formula:

k = βI(x : y)− S(y : E)−∆(n) (4.1)

Here, β represents the reconciliation efficiency, I(x : y) is the mutual entropy between the
data of Alice and Bob, S(y : E) is the von Neumann entropy of Bob and Eve, n is the length
of the reconciled key, and ∆(n) represents the influence of the finite-size effect on the security of
privacy amplification. The value of ∆(n) can be calculated using the following formula:

∆(n) = (2dimHx + 3)

√
log

2/ϵ̂
2

n
+

2

n
log

(1
ϵPA)

2 (4.2)

In this context, they introduce the use of Hilbert space Hx corresponding to variable x, where
n represents the length of the reconciled key, ϵ̂ is a smoothing parameter, and ϵPA denotes

51

Analysis of Privacy Amplification protocols

the failure probability of the privacy amplification process. It’s important to note that both
ϵ and ϵPA are intermediary parameters that can be optimized to meet security requirements.
As shown in equation (4.2), the length of the reconciled key (n) significantly influences ∆(n)
under fixed conditions for other parameters. Furthermore, ∆(n) decreases with an increase in
n. Similarly, as per equation (4.1), the secret key rate K increases with a decrease in ∆(n).
Combining these points, when the reconciled key length (n) is sufficiently large, the secret key
rate is minimally affected. Conversely, a short reconciled key greatly reduces the secret key rate.
Privacy amplification effectively eliminates almost all the information leaked to Eve. Therefore,
reducing the finite-size effect (∆(n)) is crucial to enhance the actual secret key rate. However, as
the length of the reconciled key increases, the Toeplitz matrix also expands. This expansion poses
challenges regarding storage for Toeplitz matrix elements and the speed of privacy amplification.

4.3.2 Costruction of Toepliz Matrix Based on LFSR

Let A = GF (2)l, B = GF (2)k. Let M be a k × l matrix and x be a vector. The product of M
and x can be expressed as hM (x) = Mx. ThenR = {hM : M ∈ GF (2)k×l} is universal class
of hash functions. Particularly, they select Toeplitz matrix as M . As one of the universal hash
functions, Toeplitz matrix is easy to be constructed. Since the elements belonging to the same
diagonal line are equal, Toeplitz matrix is also called diagonal-constant matrix. More concretely,
in a Toeplitz matrix Mk×l(l > k),if for ∀i, j, δ ∈ N and 1 ≤ i, i + δ ≤ k, 1 ≤ j, j + δ ≤ l, it has
Mi,j = Mi+δ,j+δ.Considering the above properties, they can obtain the Toeplitz matrix which
they can recall is as follows:

1 ar−1 ar ... an2

1 ar−2 ar1 ... an−3

...
1 a0 a1 ... an−r−1


It can be seen from the above matrix that the Toeplitz matrix can be uniquely determined by
initializing the first line and the first column of a matrix, so they only need to store k + l − 1
elements. In CVQKD, they should guarantee the length of the key sequence is long enough to
reduce the finite-size effect, so they still need prodigious computer resources to store elements of
the Teoplitz matrix.

Figure 4.3. The relationship between LFSR states and the columns of the Toeplitz
matrix is such that consecutive LFSR states correspond to consecutive columns of
the Toeplitz matrix. (source: [66]).

52

Analysis of Privacy Amplification protocols

The Linear Feedback Shift Register (LFSR) is a technique for creating Toeplitz matrices.
Historically, this method found use in authentication due to its notably lower implementation
complexity, key size, and randomness [71]. The number of bits in the register corresponds to the
row count of the Toeplitz matrix, forming an LFSR state with its current value. Notably, within
the Toeplitz matrix Mk×l, the successive columns represent consecutive LFSR states of length k,
resulting in a total of l LFSR states. Since each column (except the first) in the Toeplitz matrix
can be derived by shifting the previous column downwards and adding a new element at the top,
employing LFSR presents an approach to construct the Toeplitz matrix. The subsequent LFSR
state is obtained by shifting one unit down and updating the value of the first bit in the register.
Figure 4.3 elucidates the relationship between Toeplitz matrix and LFSR states. Unlike the usual
k× l matrix, a Toeplitz matrix defined by only k+ l− 1 elements remarkably saves storage space.
Nevertheless, the cost remains substantial when the input length significantly exceeds the output.
The Toeplitz matrix based on LFSR is determined by continuous LFSR states with length k and
requires only a k-bit register. The LFSR-based method involves the following steps:

1. Initialization of the first column of the matrix (1st LFSR state).

2. Shifting down by one unit of the first LFSR state.

3. Addition of an element to the top position of the second LFSR state.

4. Repetition of the above process until the last LFSR state (last column of Toeplitz matrix)
is determined.

The initialization involves randomly selecting binary strings of length k. Indeed, an irreducible
polynomial can be set to control the feedback [72]. For the selection of irreducible polynomials,
Ref. [71] offers a practical scheme to find a set of irreducible polynomials of degree n. Random
selection of one of them suffices.

Theorem 2: For Zp = ⟨{0, 1, ..., p− 1},+, ·⟩, with operations limited to addition and multipli-
cation mod p, let g(x) = xn + an−1x

n−1 + ...+ a0. Consider e1, ..., ek as all the prime divisors of
degree n and mi = n/ei for 1 ≤ i ≤ k. The polynomial g(x) is irreducible if and only if:

g(x)|(xp
n

− x), (g(x), xp
mj − x) = 1,1 ≤ i ≤ k

Where (A,B) denotes the greatest common divisor of A and B. By applying this scheme and
leveraging the robust computational capacity of computers, it becomes convenient to identify a
set of irreducible polynomials of degree n.

Assuming p(x) is an irreducible polynomial with length k and coefficients pk−1, pk−2, ..., p0
over GF (2) domain, and the initialization state of LFSR is s0,0, s1,0, ..., sk−1,0. Following the
steps mentioned earlier, the top element of the (j + 1)-th LFSR state is given by:

s0,j =

k−1⊕
i=0

si,j−1 · p

The preceding description elucidates the transition between consecutive LFSR states and the
construction process of the Toeplitz matrix using the LFSR method. Figure 4.4 details the
transition. By utilizing the transition of LFSR states, all columns of the Toeplitz matrix can
be obtained, facilitating matrix determination. Consequently, only a k-bit register is necessary
instead of k + l − 1 storage units. Here, they present a simple example to illustrate the process.
Let’s assume the length of the reconciled key is 6 and the final secret key is 4. Choosing the
irreducible polynomial p(x) as x3 + x+ 1 and its corresponding vector as xp = (1, 1, 0, 1)T . They
randomly select binary strings 1, 0, 0, 1 of length 4 as the first LFSR state. Subsequently, the
elements of the first column (from top to bottom) of the Toeplitz matrix H4x6 are 1,0,0,1 and the
corresponding vector of the first LFSR state is u0 = (1, 0, 0, 1).

53

Analysis of Privacy Amplification protocols

Figure 4.4. The transition between two adjacent LFSR states (source: [66]).

By shifting down, they derive that the second to fourth elements of the second LFSR state are
1,0,0. Furthermore, the first element of the second LFSR state is uT0 · xp = 0. Consequently, the
second LFSR state is 0,1,0,0, and they designate it as the second column of the Toeplitz matrix.
Similarly, the second to fourth elements of the third LFSR state can be obtained by shifting down
the second LFSR state, resulting in 0,1,0. The vector corresponding to the second LFSR state
is u1 = (0, 1, 0, 0)T , and the product value uT1 · xp = 1 serves as the first element of the third
LFSR state. Thus, the third LFSR state is 1,0,1,0, representing the third column of the Toeplitz
matrix. This process is repeated to obtain the remaining 3 LFSR states, ultimately determining
the complete Toeplitz matrix, as presented below:


1 0 1 1 1 1 0
0 1 0 1 1 1
0 0 1 0 0 1 1
1 0 0 1 1 0 1


In a typical Toeplitz matrix, security hinges on the randomness of the elements in the first

column and the first row. Conversely, the method initializes solely the first column of the Toeplitz
matrix. However, the randomness in this approach extends not only to the random initialization
of the first column but also to the process of randomly selecting the irreducible polynomial p(x)
from the irreducible polynomials set of degree n. Given the comprehensiveness of the irreducible
polynomials set, the Toeplitz matrices constructed using this set encompass all hash functions
facilitating the establishment of the equality hp(M) = c. Therefore, the randomness of the
Toeplitz matrix is assured. For a more detailed security proof, refer to [72].

4.3.3 Privacy Amplification with LFSR-Based Toeplitz Matrix

Since the LFSR method enables equivalent hashing with lower costs in implementation, key
size, and randomness, it was previously utilized in information authentication [72]. Similarly,
as a method for constructing hash functions, LFSR can be employed in privacy amplification
for CVQKD to enhance efficiency. This method it’s proven advantageous, especially when the
Toeplitz matrix is large, as it only necessitates one column for constructing the matrix.

In the privacy amplification algorithm, the final key is acquired through the product of the
Toeplitz matrix and the reconciled key. Considering the properties of matrix multiplication and

54

Analysis of Privacy Amplification protocols

the relationship between LFSR states and the Toeplitz matrix, the final secret key can be com-
puted through the following linear combination:

l−1⊕
j=0

Mj · (s0,j , s1,j , ..., sk−1,j) (4.3)

In this context, s0,j , s1,j , ..., sk−1,j represent the j+1-th state of the Linear Feedback Shift Register
(LFSR),M =M0,M1, ...,Ml−1 is the binary string of the reconciled key, andMj is the j+1-th bit
of this reconciled key. Regarding equation (4.3), they can implement it using a specific approach.
Suppose M is the reconciled key with m bits, N is the final secret key with k bits, and H is
the Toeplitz matrix in use. The number of columns of H, denoted by Hkxm, corresponds to m,
and the number of rows corresponds to k. Each column of this Toeplitz matrix, apart from the
first, is determined by shifting the previous column and adding a new element calculated from
the elements of the preceding column and a chosen irreducible polynomial. When implementing
the privacy amplification algorithm, they establish k accumulators to store the final secret key,
initializing them to 0. They then set up a linear feedback shift register to generate a linear shift
sequence. Based on the input bitMj . They decide whether the elements of the j+1-th column of
the matrix should be placed into the accumulators. If Mj = 1, They include the elements of the
j + 1-th column in the accumulators. If Mj = 0, no action is taken. Essentially, the message bit
of the reconciled key serves as an enable signal, directing the operation of the accumulators. The
final secret key can be computed while transitioning through LFSR states. After m time periods,
the final result in the accumulators represents the hash function’s final result. At this point, both
parties possess a consistent key string, completing the privacy amplification.

For a Toeplitz matrix based on LFSR, if they utilize a sequential structure to calculate the
final results, the required time period is k×m. However, with parallel computing structures, the
time period is reduced to m. In Figure 4.5, they illustrate a specific parallel hardware structure
for computing the hash function value of a Toeplitz matrix based on LFSR. Since the final secret
key is derived from the multiplication of the Toeplitz matrix and the reconciled key, each bit
of the reconciled key corresponds to a column of the Toeplitz matrix in the correct order, and
each bit of the final secret key corresponds to a row of the Toeplitz matrix sequentially. Every
update of the LFSR state is treated as a loop. During each loop, Sk−1, Sk−2, ..., S1, S0 store the
current LFSR state, equivalent to the shifted column of the Toeplitz matrix. Whether the n bits
Sk−1, Sk−2, ..., S1, S0 of the LFSR state are individually added to the corresponding accumulators
h[M]k−1, h[M]k−2, ..., h[M]1, h[M]0 depends on the value of the corresponding reconciled key bit
Mj . After m loops, the final value in the accumulators constitutes the final secret key sequence.
By computing the result of equation (4.3) using this method, the final secret key can be obtained,
concluding the privacy amplification process.

Figure 4.5. Schematic diagram of LFSR-based Toeplitz matrix hash function. (source: [66]).

55

Analysis of Privacy Amplification protocols

In this setup, they continue with the example provided at the end of the previous section to
illustrate the above procedure. According to the results obtained previously, the first LFSR state
is 1,0,0,1, the second LFSR state is 0,1,0,0, the third is 1,0,1,0, the fourth is 1,1,0,1, the fifth is
1,1,1,0, and the sixth is 0,1,1,1. Let the reconciled key be 1,0,0,1,1,0. Initially, the values of the 4
accumulators h[M]0, h[M]1, h[M]2, h[M]3 are all 0. Given that the first bit of the reconciled key is
1, its corresponding LFSR state (the first LFSR state) is added to the accumulators. Consequently,
the values of the accumulators become h[M]0 = 0+1 = 1, h[M]1 = 0+0 = 0, h[M]2 = 0+0 = 0,
h[M]3 = 0+1 = 1. The second and third bits of the reconciled key are 0, so the second and third
LFSR states are not added to the accumulators and thus do not contribute to the calculation
of the final secret key. The fourth bit of the reconciled key is 1, causing the fourth LFSR state
to be added to the accumulators, updating them to h[M]0 = 1 + 1 = 0, h[M]1 = 0 + 1 = 1,
h[M]2 = 0+ 0 = 0, h[M]3 = 1+ 1 = 0. Similarly, the fifth bit of the reconciled key is 1, resulting
in the fifth LFSR state being included in the accumulators. Thus, they obtain h[M]0 = 0+1 = 1,
h[M]1 = 1+ 1 = 0, h[M]2 = 0+ 1 = 1, h[M]3 = 0+ 0 = 0. Finally, the sixth bit of the reconciled
key is 0, so the sixth LFSR state is not included in the accumulators. Following this process, the
final values of the accumulators are h[M]0 = 1, h[M]1 = 0, h[M]2 = 1, h[M]3 = 0, resulting in a
final secret key of 1,0,1,0.

4.4 Cellular Automata

In [20] they present a promising PA protocol based on Cellular Automata. Cellular Automata
(CA) represents a distinct grid-based dynamic model characterized by discrete attributes in time,
space, and state. The state alterations are governed by local rules in either time or space dimen-
sions. CA serves as a general term encompassing a particular model or framework [73, 74]. It is
defined as a dynamic system that undergoes discontinuous changes in the time dimension within
a unit space comprised of finite, discontinuous elements, all under specific rules. In detail, CA
comprises four fundamental components: cell space, state, neighborhood, and rule, denoted as
A = (Ld, S,N, f) [75]. Here, A signifies CA, Ld represents cell space, d is the spatial dimension,
S represents the finite discrete state set of CA, N is the neighborhood vector, and f is the local
conversion function.

4.4.1 Elementary Cellular Automata

Elementary Cellular Automata (ECA) represents the most basic form of CA [76]. It has a state
number of k = 2, a neighborhood radius of r = 1, and the local transformation function f is
expressed as

st+1
i = f(sti−1s

t
is

t
i+1)

The local conversion function takes three state quantities as input, and each state quantity can as-
sume two values, 0 or 1, resulting in eight possible state combination modes: 000, 001, 010, 011, 100, 101, 110,
and 111. Each input state combination corresponds to two output states, either 0 or 1. Deter-
mining the corresponding output for each input state combination yields the truth table of CA,
which aligns with the rules of an ECA. Given there are 8 state combinations in ECA, each corre-
sponding to two outputs, there are a total of 28 = 256 truth tables and 256 rules. The rule space
is an aggregation of these 256 rules. Serial numbers are assigned to these 256 combinations, and
the 8-bit binary number in the right column of each combination table is recorded as a decimal
number to obtain the rule number, which is any integer between 0 and 255. The eight possible
combination modes are arranged in binary increasing order, and the corresponding output state
is calculated simultaneously to derive the truth table of the local conversion function. Table 1
illustrates the truth table of rule No. 150 (the binary representation of 150 is 10010110).

Taking an ECA with a length of 8 bits as an illustration, if the initial value of CA is set to
10101010, and the rules adopted are akin to rule No. 150 as shown in Table 1, the CA is updated
as follows: in the first clock cycle, the initial value is assigned to the CA. In the second clock
cycle, the 8-bit CA is updated according to the prescribed rules. The neighborhood objects of
the first bit of the CA are bit 8 and bit 2, i.e., s21 = f(s18s

1
1s

1
2). The resulting status is 010 which

56

Analysis of Privacy Amplification protocols

is then updated to 0 based on the truth table. The second bit is updated similarly to get the
status 101, which is updated to 1 according to the truth table. The third bit adopts the status
010 and updates it to 0. The fourth to eighth bits adopt 101, 010, 101, 010, and 101 respectively,
and update to 1, 0, 1, 0, and 1. Ultimately, after a round of updating, the CA with 8 bits attains
a new state: 01010101.

St
i−1s

t
is

t
i+1 st+1

i

000 1
001 0
010 0
011 1
100 0
101 1
110 1
111 0

Table 4.1. Truth table of ECA (No. 150).

4.4.2 Pseudorandom Sequence

True randomness is a phenomenon devoid of ascertainable cause and effect, where we perceive
only the result without the ability to observe (i.e., within the existing human cognitive system) the
cause. It remains entirely incomprehensible. Currently, the randomness extensively utilized across
various domains is typically derived from chaotic systems, like the Duffing oscillator [77]. Chaos
represents a phenomenon governed by cause and effect, yet defies precise mathematical calculation
and prediction. This is due to the sensitivity of initial conditions and the inherent complexity of the
model, placing it within a realm of understandable but imprecise predictive control. Authentic
random sequences can only originate from natural phenomena, a challenging task to achieve
in practical applications. Consequently, pseudorandom sequences generated through artificial
methods are widely employed in the field of sequence cipher [78, 79]. The core challenge in
sequence cipher lies in producing a lengthy, unpredictable key sequence. Pseudorandom number
generation via Cellular Automata (CA) has been a vibrant area of cryptographic research. One
of the driving motivations behind this, stems from the benefits CAs offer, especially from a VLSI
(Very Large Scale Integration) perspective: CAs are simple, regular, locally interconnected, and
modular [80]. These features render them more hardware-friendly compared to other models.
Pseudorandom sequences generated by CA can be categorized into three main types.

� Stationary type: Irrespective of the initial value of CA, after a certain evolution period, it
settles into a stationary state where all cell state values are identical. The evolution of this
CA type lacks randomness.

� Periodic type: The CA adopts a periodic structure after a specific duration, where the evo-
lution removes some randomness but retains a certain amount. This type finds applications
in image processing.

� Chaotic type: The CA assumes a random or chaotic aperiodic state following a specific
evolution period. This CA type exhibits strong randomness in its evolution.

In this paper, the pseudorandom sequence generated by CA aligns with the chaotic type. For
Elementary Cellular Automata (ECA), a chaotic pseudorandom sequence can be generated based
on the truth table rule No. 150. When chaotic CA is selected, there’s an absence of discernible
regular patterns in the space-time pattern, presenting a much richer pattern compared to a single
CA. Leveraging this characteristic, a pseudorandom sequence with superior performance can be
generated. The pseudorandom sequence generator using CA necessitates assigning an initial value
to the CA before commencing its operation. The initial value of the first CA of length N can
either be randomly generated or fixed according to specific applications. For instance, in hash
function applications, selecting the first N bits of irrational numbers like e and π, or the first N
bits of

√
2 and

√
3 could be employed.

57

Analysis of Privacy Amplification protocols

4.4.3 Proposed Algorithm

Regardless of the designer’s optimizations, Privacy Amplification (PA) based on the Toeplitz ma-
trix must find a delicate balance between resource usage and time consumption. This balance is
significantly influenced by the Toeplitz matrix required by the compression function. Hence, the
designers utilize Cellular Automata (CA), a tool known for generating pseudorandom sequences
with strong randomness, to replace the Toeplitz matrix. This replacement facilitates the com-
pression process from the negotiation key to the final key, thereby enhancing the speed of the PA
algorithm. Building upon this concept, they introduce a high-speed PA algorithm with memory
efficiency utilizing CA.

Notation Definition
T Negotiation key
n Length of negotiation key
TMi The i-th group negotiation key
M Group length of negotiation key
K Number of groups negotiating key
Nj The j-th block negotiation key
N Length of Cellular Automata
C Reciprocal of key compression rate and number of blocks
Hi Final key obtained by group i
H Final key
m Length of zero complement in negotiation key T

Table 4.2. Notations.

Figure 4.6. Schematic diagram of PA algorithm. (source: [20]).

As depicted in Figure 4.6, the n-bit negotiation key T is initially divided into K groups

58

Analysis of Privacy Amplification protocols

denoted as [TM1, TM2, ..., TMK], each having a length of M . Once the negotiation key is divided,
each group is sequentially processed. For instance, considering the group negotiation key TM1

with a length of M , it is further divided into C blocks, each having a length of N . To ensure
that M aligns with M = C × N , it is essential to append a zero sequence of m = M × K − n
bits after the original negotiation key T . At the core of this algorithm lies the utilization of
Cellular Automata (CA) to concurrently generate multiple pseudorandom sequences possessing
strong randomness. These sequences are then effectively compressed from the group negotiation
key of lengthM into the final key H1 of length N through a specific operation. Once the final key
result is obtained, the algorithm employs an iterative approach, considering the current N bits
final key H1 as part of the process. As the initial value of CA for the subsequent group, the same
algorithm is employed to obtain the next N bits of the final key. These steps are repeated until
all the negotiation key groups are processed, resulting in the final required K×N bits of the final
key denoted as H. Figure 4.7 illustrates the processing flow of the algorithm. The algorithm’s
specific steps are detailed below.

Figure 4.7. Flow chart of PA algorithm. (source: [20]).

Step 1: Set the Parameters According to the Requirements Set parameters such as
the length N of CA and the reciprocal C of the compression rate of the final key. Divide the

59

Analysis of Privacy Amplification protocols

received n-bit negotiation key T into smaller groups of length M . The last group TMk might not
meet the length requirement. If it doesn’t, a sufficient number of zeros, denoted as m, are added
to the last group to meet the length requirement.

Step 2: Initialize CA and Set its Running Rules To ensure the pseudorandom sequence
generated by CA exhibits strong randomness, appropriate rules need to be chosen. Rule 150, as
shown in Table 1 among the 256 rules of ECA, is selected. Under this rule, the CA-generated
sequence’s space-time map demonstrates evident chaotic characteristics. Regarding the choice of
CA’s initial value, the fixed first N bits of e, π,

√
2, or

√
3 are chosen.

Step 3: Further Divide the Group Negotiation Key TM1 Divide the group negotiation
key TM1 with length M into blocks of length N . Combine these blocks with the N -bit sequence
generated by CA through a bitwise AND operation. Specifically, the first N length block TM11 is
combined with the initial value of the CA denoted as s1i , i = 1,2, ..., N , and the result is placed into
the N -bit accumulator. After the first block operation, utilizing CA’s characteristics, they can
simultaneously update the N -bit data of the CA. The updated result, denoted as s2i , i = 1, 2, ..., N ,
is subject to a bitwise AND operation with the negotiation key of the next N length block TM12.
The result is also placed into the N -bit accumulator and undergoes modulo-2 addition with
the previous result. These steps are repeated until the C blocks of M length negotiation key
are calculated, using the value of the accumulator as the final key H1. Embracing the idea of
iteration, the result of the final key H1 is taken as the N -bit initial value of the next CA. The
above process is reiterated, completing the calculation of the last group to obtain the final key
HK .

Step 4: Obtain the Final Key with K Blocks After calculating all the negotiation keys,
the final key with K blocks of length N is obtained and combined into a final security key H.
Exploiting the fact that the final key is obtained in blocks, the algorithm can output the final
result of the privacy amplification process in real time, enhancing the data throughput of the
hardware implementation.

In summary, the proposed PA algorithm follows these steps.

n+m = K ×M

H0 ← IV

Hj = g(TMJ , Hj−1) =

C⊕
l=1

TMjl&al, j = 1,2, ...,K

a1 = (s11, s
1
2, ..., s

1
N), l = 1,2,3, ..., C

sli = f(sl−1
i−1, s

l−1
i , sl−1

i+1), s
l−1
0 = sl−1

N , sl−1
N+1 = sl−1

1 , l /= 1, i = 1.., N

H = {H1, H2, ...,Hk}

Definition A family of hash functions is called ϵ− balanced if ∀T /= 0, c, Prh(h(T) = c) ≤ ϵ.

Theorem For any values ofNand M the above defined family of hash functions is ϵ−balanced
for ϵ ≤ 1

2N
. Proof To show that the family is ϵ−balanced, notice that any non-zero message TMj

of length M and any string c of length N,h(TMj) = c iff
⊕C

l=1 TMjl&al = c. Since al generated
by ECA under rule 150 has random characteristics, the vector TMj assumes this value c with
probability of 1

2N
, and therefore Pr(h(TMj) = c) happens with at most this probability.

60

Chapter 5

Resource-efficient implementation
of QKD post-processing

In this chapter we will analyze the presented EC protocols and PA algorithms, form a resource-
efficient perspective, excluding the possibility of hardware acceleration, but focusing instead on a
more low-resources hardware. In the following section we will

5.1 Efficiency Evaluation of Error Correction Protocols

Imagine a covert communication channel between two individuals, Alice and Bob. In this setup,
Alice transmits an n-bit string A to Bob. Now, let’s introduce some technical elements into this
scenario. We model this clandestine channel using what’s known as a Binary Symmetric Channel
(BSC(p)), where p represents the probability of an error occurring during transmission. After
traversing this potentially error-prone path, Bob receives the transmitted data as an n-bit string,
which we denote as B.

Within this context, both Alice and Bob have a common objective: they want to create a
shared n-bit secret string, which we’ll refer to as S. The source of S is the n-bit strings A and
B that have been transmitted. It’s essential to highlight that this process takes place over a
public channel, and notably, this public channel is free from interference, a critical assumption.
Importantly, no other security assumptions are being made at this stage.

Now, why is this process significant? The primary goal here is to design protocols that minimize
the information leakage about the secret string S. This is crucial because there’s a possibility of
an eavesdropper, a highly computationally capable one, who may be eavesdropping on the public
channel. The lesser information they can extract about S, the more secure the communication.

In the realm of Error Correction (EC) protocols, it’s paramount to define what these protocols
are. An Error Correction protocol, denoted as EC, is essentially a product of the algorithms
employed by Alice and Bob. When these algorithms operate on the strings A and B, their
collective objective is to generate the string S. This generation process involves the exchange of
certain information, which we represent as Q, over the public channel. In simpler terms, this
whole operation is encapsulated by the notation EC = [S,Q] or EC(A,B) = [S,Q], which is
context-dependent.

Nevertheless, not all EC protocols must aim for the utmost level of optimality. Prior to
executing the protocol, Alice and Bob can mutually decide to reveal a slight surplus of information
concerning the theoretical limit. This additional information becomes negotiable. What’s crucial
here is the practicality of the protocol. The ultimate aim is an efficient protocol that aligns
with the operational needs. A real-world example would be in cases where the bits exchanged
over the secret channel are particularly precious. In such scenarios, it might be more prudent
to allocate additional computational resources during the correction process, thereby preserving
these valuable bits.

61

Resource-efficient implementation of QKD post-processing

5.1.1 Winnow Protocol

In the year 2003, a novel protocol called Winnow, which hinged on the principles of Hamming
codes, made its debut in the field of secure communication [25]. The primary objective behind
this introduction was to boost data throughput while simultaneously reducing the interaction
requirements of a previously established protocol known as Cascade. The key innovation here
was the elimination of a complex binary search step from the process.

In a Winnow-based exchange, the two principal parties, Alice and Bob, embark on a rather
organized data division. They break down their respective random keys, labeled as Ma and Mb,
into manageable blocks of equal length. It’s advisable to start with a recommended block size
of k = 8 for efficient operation. Now, the magic happens when they conjure what are known as
syndrome values, Sa and Sb. These are computed through a process involving two vital matrices:
a Generator matrix, G, and a parity check Matrix, H, in which the equation H ·GT = 0 plays a
pivotal role.

Let’s dive into the details of how the Winnow protocol unfolds. At its core, this method
operates on blocks of data, each of size k. Bob leverages his share of the key, Mb, to generate
and transmit a syndrome, denoted as Sb = H ·Mb, to Alice. Once this syndrome arrives, Alice
conducts an intricate analysis, focusing on the syndrome differences, Sd. If these differences
are non-zero, it indicates the presence of errors. In response, Alice undertakes error correction,
striving to minimize alterations to the data. Her primary aim is to ensure that the syndrome
values ultimately converge to zero.

However, it’s worth noting a significant limitation of the Winnow protocol, primarily stemming
from its reliance on Hamming codes. This protocol, although innovative, can sometimes introduce
errors during its operation. This issue marks one of its principal shortcomings. In practice, its
efficiency tends to be lower when compared to Cascade, especially when dealing with Quantum
Bit Error Rate (QBER) values below 10%. These lower QBER values are particularly relevant
for practical Quantum Key Distribution (QKD) scenarios.

To address this limitation and maintain information-theoretical secrecy, an approach was sug-
gested by Buttler. It involves the intentional omission of an extra bit from each block of size k
during the privacy maintenance phase. This strategic adjustment contributes to reinforcing the
security of the Winnow protocol, despite its occasional error introduction.

5.1.2 LDPC Protocol

When dealing with terrestrial communication links, Alice and Bob typically enjoy the luxury
of time, flexibility in computation, and minimal constraints regarding communication complex-
ity. However, the scenario shifts dramatically when satellite links come into play. Here, various
challenges arise, such as substantial channel losses, time limitations imposed by periodic satellite
passages, and heightened demands on both computational and communication resources.

In response to these challenges, recent years have witnessed a growing interest in the appli-
cation of Gallager’s Low Density Parity Check (LDPC) codes. These codes have demonstrated
remarkable error correction capabilities at rates surpassing those of the Cascade and Winnow
protocols.

One of the key advantages of LDPC lies in its efficiency regarding communication overhead.
Moreover, it naturally accommodates the asymmetric distribution of computational power re-
quired at each end of the communication channel. These properties make LDPC a favorable
choice for satellite-based quantum communication, where resource constraints loom large.

LDPC codes revolve around two essential matrices: the parity check matrix, denoted as H,
and the generator matrix, referred to as G. The effectiveness of an LDPC code is characterized
by its minimum distance, which is used to define the decoding limit of the code.

The dimensions of these matrices are defined as m × n, with m given by the formula m =
n · (1 − r), where r represents the code rate and falls within the range of [0, 1]. The code rate,
typically predetermined, governs the code’s error correction capabilities and efficiency.

The reconciliation process in the LDPC protocol unfolds as follows:

62

Resource-efficient implementation of QKD post-processing

1. QBER Estimation: The first step involves estimating the Quantum Bit Error Rate (QBER)
of the communication channel.

2. Matrix Selection: Based on the estimated QBER, Alice and Bob collaboratively select
identical m× n generator matrix G and parity check matrix H configurations.

3. Syndrome Calculation: For every sifted key, Bob calculates a syndrome, Sb, and transmits
it to Alice.

4. Error Correction: With the syndrome in hand, Alice endeavors to reconcile the sifted key.
Her primary objective is to reconstruct Bob’s key vector, labeled as x. To achieve this, she
leverages her own key vector, y, the received syndrome Sb, the parity-check matrix H, and
the estimated QBER value. Alice can employ various decoding techniques for LDPC, such
as the belief propagation decoding algorithm (also known as the Sum-Product algorithm)
or Log-Likelihood Ratios. These techniques significantly reduce computational complexity.

However, it’s essential to acknowledge that decoding LDPC codes typically demands more
extensive computational resources and memory compared to the Cascade or Winnow protocols.
Despite this drawback, LDPC offers a compelling advantage by minimizing the demand for com-
munication resources. This becomes particularly valuable in networks constrained by limited
bandwidth and latency.

In the realm of Quantum Key Distribution (QKD), LDPC found its initial application as the
foundation for the BBN Niagara protocol within the DARPA QKD network [29].

5.1.3 Cascade

The Cascade protocol operates on the principle of employing a binary search mechanism to pin-
point and rectify erroneous bits. This binary search process entails further subdividing the data
block into two smaller subblocks, comparing the results of parity checks until the erroneous bit
is identified. In situations where a block contains an erroneous bit, a total of 1 + [log2 ki] parity
values are exchanged. Here, 1 + [log2 ki] represents the maximum number of times that a block,
denoted as ki, can be partitioned. In cases where the blocks are error-free, only a single parity
value is exchanged.

As an additional security measure, it is recommended to eliminate specific bits. These bits
include a portion of the sample used to estimate the Quantum Bit Error Rate (QBER) and,
crucially, the last bit of each block and subblock where the parity bit was exchanged. This
practice significantly reduces the volume of information that could be acquired by a potential
eavesdropper, often referred to as Eve.

The protocol introduces the concept of the maximum number of discarded bits, denoted as
Di, which can be calculated based on the value of ki in the ith iteration. This value depends on
the QBER and the initial block size. The total number of discarded bits, represented as D, can
be computed as follows:

D =
∑

Di =
∑
i

(
n

ki
+

∑
errors corrected

[log2 ki]

)

Where ki = 2 · ki−1 and ki <
n
2 , with n denoting the total number of measured values in the

sifting phase.

It’s important to note that the quantity of discarded bits is contingent upon the QBER value
and the initial block size. Over the years, numerous reviews and enhancements have been proposed
for Cascade protocols, making the Cascade approach highly adaptable and customizable to cater
to various application scenarios.

63

Resource-efficient implementation of QKD post-processing

5.1.4 Conclusions on EC algorithm choice

In [26], the primary Error Correction (EC) protocols introduced in chapter 3 are subjected to a
comparative analysis based on the metrics elucidated within the same chapter. It’s imperative to
remember that protocol efficiency exhibits an inverse relationship with the number of leaked bits,
as emphasized in the context of the Cascade protocol [24].

Number of Leaked Bits

The total number of leaked bits is quantified as follows for the considered EC protocols:

� Cascade: With each exchange of parity values, one bit is discarded.

� Winnow: For each block denoted as k, one bit is discarded.

� LDPC: The total length of the syndrome Sb exchanged.

The number of leaked bits represents the foremost factor to contemplate when assessing an
EC protocol. As discussed in chapter 3, the number of leaked bits plays a pivotal role in...

Figure 5.1. Comparison of EC protocols number of bits leaked (source: [26]).

Figure 5.1 visually demonstrates that for lower Quantum Bit Error Rate (QBER) values (up to
0.05%), the Cascade protocol adeptly identifies and rectifies errors, resulting in a limited number
of iterations. However, as the QBER value escalates (up to 0.10%), the LDPC protocol emerges
as more efficient in terms of overhead and exchanged information. Nonetheless, it’s worth noting
that the disparity in efficiency is relatively marginal and primarily applicable to a specific range
of QBER values (9-15%) that scarcely intersects with the acceptable range (0-11%).

64

Resource-efficient implementation of QKD post-processing

Execution Time

Figure 5.2. Comparison of EC protocols execution time (source: [26]).

Figure 5.2 illustrates that efficiency in terms of overhead exacts a price in execution time. Owing
to the simplicity of their algorithms, both Cascade and Winnow protocols boast nearly constant
execution times. In contrast, the execution time of LDPC varies, gradually increasing with an
escalation in QBER. It’s important to note that LDPC utilizes the belief propagation algorithm
for decoding.

In conclusion, the preference for EC protocols leans toward Cascade. This preference is at-
tributed to Cascade’s efficiency, not only in terms of resource utilization but also concerning better
performance compared to Winnow, especially in scenarios featuring realistic QBER values.

5.2 Privacy amplification protocols resource-efficiency com-
parison

5.2.1 FFT

Within this section, the evaluation of the High-Speed and Large-Scale (HiLS) Privacy Amplifi-
cation (PA) scheme is analyzed with a primary focus on resource efficiency. It is of paramount
importance to emphasize that the precision of Fast Fourier Transform (FFT) operations may be
constrained due to finite-precision floating-point arithmetic. To ensure the highest efficiency and
address synchronization and thread safety concerns, shared memory multi-processes are employed
for carrying out various calculations, including Fourier transforms and Hadamard products.

The throughput of the HiLS PA scheme is meticulously scrutinised through a comprehensive
evaluation involving different input scales (n) and sub-block sizes (m). What becomes evident is
the HiLS PA scheme consistently attains the highest throughput performance when the splitting
factor mn assumes a value of 0.125. However, it is notable that when mn falls below 0.0625 or
exceeds 0.25, the scheme experiences reduced performance, resulting in suboptimal throughput.
For instance, with an input scale of 512 Megabits per second (Mbps), the HiLS PA scheme’s
optimized throughput is recorded at 59.06 Mbps, 50.48 Mbps, and 30.49 Mbps for compression
ratios of 0.125, 0.25, and 0.50, respectively.

65

Resource-efficient implementation of QKD post-processing

A critical observation emerges from the simulation results: for 10 Gigahertz (GHz) entanglement-
based Quantum Key Distribution (QKD) systems, the maximum compression ratio required for
PA schemes is 0.297. These results are pivotal as they inform the performance evaluation of the
HiLS PA scheme against various implementations on different platforms, such as FPGA and CPU
platforms. Strikingly, the HiLS PA scheme’s throughput outpaces several prior works. However,
it is crucial to underline that for extremely large inputs, the implementation’s computational
resources play a significant role in the achieved throughput. With limited resources, HiLS PA
scheme’s throughput can drop to 0.44 Mbps for an input scale of 128 Gigabits per second (Gbps).

This critical analysis underscores that the HiLS PA scheme is an efficient and adaptable
solution, especially when applied to high-speed QKD systems with larger input scales. The study
emphasizes that even with limited computational resources, the scheme performs remarkably
well. Furthermore, the paper points out that potential acceleration avenues could be explored,
especially through the integration of hardware acceleration methods like FPGA and GPU, further
enhancing the scheme’s performance. Of course this kind of hardware enhancing is outside the
scope of this work and thus not analyzed.

5.2.2 LSFR

This subsection offers an in-depth examination of the implementation of a Linear Feedback Shift
Register (LFSR) in a privacy amplification algorithm, a crucial step in the realm of Quantum
Key Distribution (QKD). LFSR is introduced as a groundbreaking solution designed to conserve
storage space, optimize the speed of privacy amplification, and uphold the stability of Continuous
Variable Quantum Key Distribution (CVQKD) systems. The innovative use of LFSR enables the
efficient construction of Toeplitz matrices for privacy amplification, revolutionizing the field.

The paper delves into the intricacies of the LFSR-based algorithm and subjects it to rigorous
simulations. The findings are nothing short of remarkable; under identical hardware conditions,
the LFSR algorithm significantly outperforms its non-LFSR-based counterpart, reducing time
consumption to nearly half. This revelation underscores the immense efficiency gains of the LFSR
algorithm, particularly when privacy amplification is applied to scenarios requiring high-speed
data processing. Additionally, the results highlight that the LFSR algorithm not only conserves
valuable memory space but also accelerates the privacy amplification process substantially.

Furthermore, the paper posits that when LFSR is synergistically integrated with other hard-
ware acceleration methods, such as Field-Programmable Gate Arrays (FPGA) and Graphics Pro-
cessing Units (GPU), the speed of privacy amplification could be further augmented. This inte-
gration is expected to be particularly advantageous when dealing with large data packets, opening
new frontiers in high-speed privacy amplification.

5.2.3 CA

In the pursuit of advancing privacy amplification techniques, the paper presents a compelling
exploration of the Cellular Automata (CA) privacy amplification scheme. A rigorous performance
comparison is undertaken, allowing us to gain a deeper understanding of its merits, especially when
juxtaposed with other methods under various experimental conditions. This approach aims to
bolster the security and efficiency of privacy amplification processes, which is of critical importance
in the context of modern cryptography.

First and foremost, the paper carefully sets the stage by configuring different negotiation key
lengths ranging from 0.64 million bits to 5.12 million bits. The intent is to scrutinize the per-
formance of the CA algorithm in various scenarios. The outcomes are unequivocal, as under
the stipulated experimental conditions, the CA algorithm consistently exhibits significantly re-
duced time consumption compared to the block LFSR and FFT algorithms. This observation
underscores the CA algorithm’s superiority in terms of key generation rates and overall algorithm
execution speed.

Notably, the research explores the impact of different compression ratios on these algorithms,
revealing that the compression rate, while influential, has a relatively minor effect on execution

66

Resource-efficient implementation of QKD post-processing

time. This discovery underscores the robustness of these algorithms, especially the CA-based
approach, which proves to be less sensitive to alterations in compression ratios.

In summary, the CA-based privacy amplification scheme emerges as a robust and versatile
solution. Its adaptable nature, combined with its efficiency, renders it a powerful tool in the
realm of modern cryptography, capable of enhancing both the speed and security of privacy
amplification. The paper concludes by underscoring the potential for combining the CA approach
with other hardware acceleration methods, while maintaining the same security standard of the
other proposed algorithms.

5.2.4 Conclusions on PA algorithm choice

Figure 5.3. Comparison of PA protocols execution times (source: [20])

In figure 5.3 the presented PA algorithms are compared following the metric proposed in chapter
4, the running time. The graph [20] shows that the Cellular Automata algorithm has better
performance, compared to the other two. It is fair to notice that both the LSFR [66] and FFT
[50] propose some hardware acceleration methods that could speed up their algorithms to better
performances, but as mentioned above, the argument of hardware acceleration is beyond the scope
of this work. In the following section we’ll present some implementation choices based on Cellular
Automata.

5.3 QKD post-processing application

The proposed solution creates a QKD-post processing module, composed of two sub-modules
wrapped together, the Error Correction and Privacy Amplification modules. The software is
designed to be used as a stand-alone application or inside a QKD simulator, in both cases it
required a softwarized network.

67

Resource-efficient implementation of QKD post-processing

Figure 5.4. Application scheme and exchanges.

5.3.1 Design and Architecture

The general structure consists of a Python wrapper that executes two sub-modules for post-
processing in series and extracts efficiency and running time data at the end. The purpose
of the post-processing software is twofold: first, to implement a resource-efficient solution for
Quantum Key Distribution (QKD) post-processing that can be integrated into QKD solutions
within software-defined networks, and second, to provide a tool for testing the performance and
efficiency of various Error Correction (EC) and Privacy Amplification (PA) protocols.

The software relies on RabbitMQ for message exchange between Alice and Bob. For use in
software-defined QKD networks, an active instance of RabbitMQ is necessary as a message broker.

For testing EC and PA protocols, the software automatically builds a RabbitMQ container
that it uses during simulations.

The software can be used in various forms. For individual post-processing demos, you can
use the HTML interface exposed on localhost by running the DEMO script. For broader testing
and implementations in QKD distribution designs, you can utilize the APIs or the RUN TESTS
script.

Rabbitmq

RabbitMQ serves as a message broker, handling the acceptance and forwarding of messages. To
understand its function, you can liken it to a post office. When you drop your mail into a postbox,
you trust that the letter carrier will eventually deliver it to the intended recipient. In this analogy,
RabbitMQ plays the roles of both the postbox and the letter carrier.

However, RabbitMQ differs significantly from a traditional post office in that it deals with
digital data in the form of binary messages. It accepts, stores, and forwards these data blobs.

In the context of RabbitMQ and messaging systems in general, some specific terms are used:

- Producing: This term is equivalent to sending, where a program that sends messages is
called a producer. A producer sends messages to a queue. - Queue: In RabbitMQ, a queue

68

Resource-efficient implementation of QKD post-processing

is akin to the postbox mentioned earlier. Messages pass through RabbitMQ, but they can only
be stored within a queue. A queue’s size is constrained by the host’s memory and disk limits,
effectively acting as a message buffer. Multiple producers can send messages to a single queue,
and multiple consumers can attempt to receive data from that same queue.

It’s essential to note that producers, consumers, and brokers do not need to reside on the same
host, and in many applications, they won’t. An application can even act as both a producer and
a consumer.

The producer (labeled ”P”) sends messages to a queue, which acts as a message buffer managed
by RabbitMQ on behalf of the consumer (labeled ”C”). The overall design is as follows:

Figure 5.5. Rabbitmq overall design

Producer -¿ Queue -¿ Consumer: Sending and receiving messages from a named queue.

The producer sends messages to the ”hello” queue, and the consumer receives messages from
that same queue.

To implement RabbitMQ in the proposed solution, the open-source AMQP-CPP library by
Copernica Marketing Software [81] has been utilized.

Memory management for key storing

In order to effectively implement a practical application of Elliptic Curve (EC) and Pairing-Based
(PA) cryptography, the secure storage of cryptographic keys in memory plays a critical role.
Achieving a resource-efficient implementation requires that the key remains unaltered during its
storage in memory. In other words, the bits comprising the key must be stored in memory exactly
as they are represented in the original key. For this purpose, the solution proposed in this work
adopts a key storage system initially introduced by [22], as follows:

Figure 5.6. Memory managing of key.

The key is stored in memory using vectors of uint64 t, which represent the complete address
of a word in memory in 64-bit architectures. It is evident that this approach requires a more

69

Resource-efficient implementation of QKD post-processing

complex management of the key, which is now divided into 64-bit words. For example, when
manipulating individual bits, it is necessary to use masks that isolate the specific bit within the
word to manipulate it. The same principle applies to groups of bits.

This method allows the key to be manipulated without relying on high-level structures, directly
operating on the bits themselves. Achieving the same result would not have been possible using
strings or the bitset structures proposed in C++23, which use more complex structures to manage
individual entries.1

5.3.2 Error Correction

To develop the EC sub-module i started from [22] as a skeleton. The software implements several
variations to the original cascade protocol, the most studied combination of them are available to
test or use in the proposed solution. The EC sub-module was developed using C++23 and can
used also a stand-alone application to perform tests on Error correction by itself, in the proposed
solution is run by the wrapper and all the data is collected from the JSON file that is produced.
The implemented parameters are similar to the one presented in chapter 3 with the difference of
the possibility to use singleton block or deterministic shuffling of the key. The software by default
doe not implement the use of singleton blocks and the key shuffle is always random.

� N° of cascade and BICONF iterations

� Initial Block size

� Block size function (for following iterations)

� Key shuffle caching (block reuse)

Table 5.1. Table of implemented parameters. α = log2(1/QBER)− 1
2

Algorithm Initial Block size k1 Block size function Cascade Passes BICONF passes Shuffle caching (Block Reuse)
Original 0.73/QBER 2ki−1 4 0 Yes
BICONF 0.92/QBER 3ki−1 2 10 Yes
Yanetal 0.80/QBER n/2 10 0 No
Option3 QBER n/2 16 0 No
Option4 QBER n/2 16 0 Yes
Option7 2log2 1/QBER n/2 14 0 Yes
Option8 2α n/2 14 0 Yes

Workflow

The process start when the MyCascade software is called and is provided with the number of
bits of the key, the endpoint, the QBER estimation, the key if provided (only for the server) and
all the data necessary to connect to the running Rabbitmq instance (IP address, port, user and
password)

70

Resource-efficient implementation of QKD post-processing

Figure 5.7. Error correction Exchanges.

1. To begin Bob sends a empty body message to serve as an exchange initialization.

2. Alice (Server) replies to bob sending the noisy key (of course this practice is done only for
testing purpose). The real purpose of this message is to initiate the exchange, it in fact
serves as an exchange initialization.

3. Bob then proceeds by sending to Alice the first shuffle seed, thus starting the iteration. This
process will be performed at the start of every iteration.

4. Right after bob sends Alice the first message containing the set of bits block he’s checking
at the moment.

5. Alice responds with the parity bits of the selected blocks. This exchange takes the form of
a Remote Procedure Call in which Bob prompts ALice with some bits indexes (start and
end of a block) and Alice responds with the corresponding parities.

6. Bob then proceed by binary searching error in blocks with wrong parity, thus generating
sub-blocks and requesting again the parity repeating step 4 and 5

7. Steps 3-5 are repeated until all the iteration are done

8. At the end of all iterations Bobs sends Alice an exchange closing message, which Alice
responds by sending the correct key, this, of course is done to evaluate remaining errors.

Bob then calculates the EC performance data and produces a JSON file.

71

Resource-efficient implementation of QKD post-processing

Execution results

The Error Correction module at the end produces a JSON file with all the relevant data from the
protocol execution in particular:

� EC running time

� Number of channel uses (round trip)

� EC efficiency

� Exchanged key

� Corrected key

� Remaining errors in the key

� Chosen protocol parameters

In the test implementation, the server will send the correct key via classical channel at the
end, clearly this practice is not part of any EC protocol, but in this implementation it is done to
check for remaining errors in the key in order to collect data on EC protocols behavior.

Criticalities

This implementation suffers of some issues that will now be discussed.

The first critical issue is related to the use of RabbitMQ, specifically the way data is formatted
in RabbitMQ messages. The message formatting requires transmitting key bits in UTF-8 format,
converting them from uint64 t. This continuous conversion can sometimes lead to errors. Addi-
tionally, the AMQP-CPP protocol lacks fault tolerance, which means that if the messages are not
well synchronized, both parties are at risk of encountering network errors that may even result
in crashes. Lastly, the absence of authentication during the EC phase is certainly a concern and
needs to be addressed before it can be considered suitable for real-world solutions.

5.3.3 Privacy amplification

The PA sub-module was developed using C++23 and can used also a stand-alone application to
perform tests on Error correction by itself, in the proposed solution is run by the wrapper and all
the data is collected from the JSON file that is produced. The Cellular Automata PA parameters
implemented are the same presented in chapter 4:

� K blocks in which the key is divided

� M bits of which each block Ti, i ∈ (0,K) is composed, note that M ·K must be greater of
equal to the number of bits of the key

� N bits of the CA

It is important to mention that the user cannot provide all the parameters to the wrapper,
when launching a simulation, the user will be able to insert the number k of initial block and the
compression ration for PA, the wrapper will then calculate M and N accordingly.

72

Resource-efficient implementation of QKD post-processing

Worlflow

The process start when the PrivacyAmplificationCPP software is called and is provided with the
key and it’s size, the endpoint, the parameters for Cellular Automata reported below, the key
if provided (only for the server) and all the data necessary to connect to the running Rabbitmq
instance (IP address, port, user and password). Please note that all the rabbitmq messages acks
are automatically delivered when the receiver downloads the message.

Figure 5.8. Privacy Amplification exchanges.

1. Bob sends Alice the parameters to perform PA , K,M,N and the inital value of the CA, for
this implementation the inital value is randomly determined, while in the original design,
they suggested to use the first N digits of π or

√
2, but for a simple hardware with large key

sizes the calculation could result in a bottleneck for the running time.

2. The key is divided into K blocks of size M to do this the uint64 t vector data is divided in
K uint64 t vectors

3. Every K block is divided in C block of size N , creating other uint64 t vector of size N/64
rounded up.

4. An and operation is performed for each block with the CA and the CA is updated every
time

5. All the resulting blocks are accumulated via a xor operation

6. the result is store as the N th part of the final key

7. the final key is then compressed, eliminating memory gaps between uint64 t words

8. Alice send bob a confimation message to communicate the succesful PA

Execution results

The Privacy Amplification sub-module at the end produces a JSON file with all the relevant data
from the protocol execution in particular:

� PA running time

73

Resource-efficient implementation of QKD post-processing

� Exchanged key

� Amplified key

� Chosen protocol parameters

Criticalities

This implementation suffers of some issues that will now be discussed. The first critical issue
involves dividing the key, which is stored in a vector of uint64 t, into additional vectors of uint64 t.
The total size of these vectors may not necessarily be a multiple of 64 bits. Additionally, using
RabbitMQ for parameter transfer can introduce potential synchronization errors between the
server and client.

74

Chapter 6

Testing and results

The proposed solution has undergone extensive testing to gain insights into its limitations and
to pinpoint potential enhancements. To replicate a distributed environment, each participating
instance in the communication process needed to run on a separate machine. Docker containers
were employed to evaluate this setup, and container orchestration was managed via Docker Com-
pose, streamlining management through a single configuration file. All the testing procedures
were executed on a virtual machine equipped with Ubuntu 22.04 LTS, boasting 16GB of RAM, a
1TB Solid State Drive, and an Intel Core i5-5300U CPU. The software components used were of
the following versions:

� Docker version 23.0.5.

� Docker-compose version 1.29.2.

� Cmake version 3.27.7.

� Python version 3.10.6 with the following modules:

– Flask version 2.3.2.

– matplotlib==3.7.1

– pika==1.3.1

– progressbar==2.5

– docker 5.0.3

– docker-compose 1.29.2

– jsonschema 3.2.0

6.1 Post-processing simulation

Running the DEMO.py file creates a running flask instance that is reachable through http://localhost:5000

75

Testing and results

Figure 6.1. Demo web interface and setup.

After inserting all the parameter it is possible to click on the start simulation button, which
will automatically create the following containers using docker Python APIs, note that for this
step is important to have a docker instance running

� client docker container

� server docker container

� rabbitmq docker container

The containers will then run the simulation and output the final amplified key, as well as the
corrected key.

Figure 6.2. Demo web interface results.

it is also possible to retrieve the performance data from the ResultsDEMO folder, here is the
resulting JSON file from the previous simulation

76

Testing and results

{"elapsed_real_time": 0.718586, "ask_parity_messages": 396.0, "efficiency":

1.073335, "PA_time": 0.0247812, "Client received key":

"01011000111...0111", "Client correct key": "010110001111...100000111",

"Client amplified key": " 0101001111...100000100", "Remaining errors": 0}

Figure 6.3. JSON structure and results.

6.2 Post-processing parameters tests

The RUN TEST.py file is used to run tests on different parameters of the EC and PA protocols.
The script automatically runs the given amount of tries for a selected independent variable, keysize
or QBER. The modifiable parameters are:

� QBER (when selected as independent variable it can be inserted as a range)

� keysize (when selected as independent variable it can be inserted as a range)

� number of total runs to cover the independent variable range

� PA blocks

� PA compression

� Cascade variant

The following graphs have been generated by running with QBER as the independent variable,
and the followiing parameters:

� QBER form 0.0 to 0.1

� keysize= 10000

� number of total runs=100

� PA compression=0.1

� Cascade variant=all

when running tests in this way, the software will automatically generate the required containers
in series with each different parameters combination exploiting the docker-compose environment
file to pass parameters for the simulation to the containers.

77

Testing and results

Figure 6.4. Efficiency of different Cascade version over 100 rounds.

A total of 800 different keys were processed, all the results are stored in a Results folder as
JSONs. The graph above shows that the system is responsive to the change of parameters for
post-processing and also that the results are consistent with those of other studies.

Figure 6.5. Efficiency study from [31]

78

Testing and results

Figure 6.6. Run time of different Cascade version over 100 rounds.

of course with a greater number of runs, one can obtain a smoother curve. For instance in
this test where run 10000 key siftings.

Figure 6.7. Efficiency of Cascade original over different QBERs for 10000 runs.

79

Chapter 7

Conclusions and future work

The aim of this work was to offer a fresh perspective on Quantum Key Distribution (QKD) post-
processing. While ongoing research is dedicated to finding ways to enhance QKD post-processing
with new technologies and protocols, few studies explore how to integrate these systems into
everyday environments like distributed networks. Developing a comprehensive post-processing
module for a QKD system is a pivotal step in QKD development. However, this work identified
some challenges and proposed improvements to the overall system. The proposed implementation
was developed in a lower-level language for straightforward implementation on basic hardware.
Despite encountering some issues in the implementation, the outcome is a robust architecture
that can be easily adopted and modified as needed.

The necessity to manage memory and performance at a lower level became critical when aiming
to improve the efficiency and reliability of the system. The use of low-level programming became
apparent during development and resulted in the implementation proposed in chapter 5. This
specific aspect proved to be beneficial not only for the key server implementation but also for
other research related to QKD post-processing. This is noteworthy as current implementations of
QKD post-processing simulators often focus on exchanges within the same machine, with limited
consideration for the overall system concerning individual protocols.

Tests conducted on the QKD simulator reveal a flexible architecture with some challenges in
integration with softwarized networks. Optimizations in QKD post-processing protocol imple-
mentations can enhance required timings, and using TCP sockets instead of message brokers may
improve overall performance. Other potential developments for this module could involve the
incorporation of hardware acceleration techniques, which were not explored in this stage.

Concerning the overall architecture, the performed tests indicate that, with a tailored choice
of protocol, the post-processing phase can be efficiently executed without creating a bottleneck
for the entire QKD process. The proposed architecture is versatile, serving as both a testing plat-
form and a post-processing module in QKD applications. The results demonstrate the system’s
adaptability to different parameters and key sifting requirements.

Future work in this area may involve employing real QKD devices to assess the flexibility of
the proposed implementation when devices from different producers are used.

80

Bibliography

[1] F.Arute, K. Arya, and R.Babbush, “Quantum supremacy using a programmable supercon-
ducting processor”, Nature, vol. 574, 2019, pp. 505–510, DOI 10.1038/s41586-019-1666-5

[2] A. G. White, D. F. V. James, W. J. Munro, and P. G. Kwiat, “Exploring hilbert space:
Accurate characterization of quantum information”, Physical review. A, Atomic, molecular,
and optical physics, vol. 65, no. 1, 2002, DOI 10.1103/PhysRevA.65.012301

[3] P. A. M. Dirac, “A new notation for quantum mechanics”, Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 35, no. 3, 1939, pp. 416–418, DOI
10.1017/S0305004100021162

[4] M. Benslama, “Quantum communications in new telecommunications systems”, ISTE Lt-
d/John Wiley and Sons Inc, 2008, ISBN: 1-119-33251-6

[5] M. Born, “Quantum mechanics of collision processes”, Zeit. Physik, vol. 37, Jun 1926,
pp. 863–867, DOI 10.1007/BF01397477

[6] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s
theorem”, Phys. Rev. Lett., vol. 68, Feb 1992, pp. 557–559, DOI 10.1103/PhysRevLett.68.557

[7] M. N. Wegman and J. Carter, “New hash functions and their use in authentication and set
equality”, Journal of computer and system sciences, vol. 22, Nov 1981, pp. 265–279, DOI
https://doi.org/10.1016/0022-0000(81)90033-7

[8] A. Carrasco-Casado, V. Fernández, and N. Denisenko, “Free-Space Quantum Key Distribu-
tion”, Optical Wireless Communications (M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucou-
valas, and E. Udvary, eds.), pp. 589–607, Springer International Publishing, 2016, DOI
10.1007/978-3-319-30201-0 27

[9] C. H. Bennett, D. Zekrifa, and J. Robert, “Privacy amplification by public discussion”, SIAM
J. Comput., vol. 17, 2012, pp. 210–229, DOI 10.1137/S0097539792241371

[10] A. K. Ekert, “Quantum cryptography based on bell’s theorem”, Phys. Rev. Lett., vol. 67,
Aug 1991, pp. 661–663, DOI 10.1103/PhysRevLett.67.661

[11] M. Epping, H. Kampermann, and D. Bruss, “Designing bell inequalities from a tsirelson
bound”, Phys. Rev. Lett., vol. 111, Dec 2013, DOI 10.1103/PhysRevLett.111.240404

[12] N. Alshaer, A. Moawad, and A. Ismail, “Reliability and security analysis of an entanglement-
based qkd protocol in a dynamic ground-to-uav fso communications system”, IEEE Access,
vol. PP, Dec 2021, pp. 1–1, DOI 10.1109/ACCESS.2021.3137357

[13] U. Vazirani and T. Vidick, “Fully device independent quantum key distribution”, Commun.
ACM, vol. 62, Mar 2019, p. 133, DOI 10.1145/3310974

[14] H. P. Yuen, “Security of Quantum Key Distribution”, IEEE Access, vol. 4, Feb 2016, pp. 724–
749, DOI 10.1109/ACCESS.2016.2528227

[15] Quantiki, https://www.quantiki.org/wiki/bb84-and-ekert91-protocols
[16] P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribu-

tion Protocol”, Physical Review Letters, vol. 85, Jul 2000, pp. 441–444, DOI 10.1103/Phys-
RevLett.85.441

[17] C. Portmann and R. Renner, “Security in Quantum Cryptography”, Reviews of Modern
Physics, vol. 94, Jun 2022, p. 025008, DOI 10.1103/RevModPhys.94.025008

[18] R. Renner and S. Wolf, “Simple and Tight Bounds for Information Reconciliation and Pri-
vacy Amplification”, Advances in Cryptology - ASIACRYPT 2005 (D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Ran-
gan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, and B. Roy,
eds.), pp. 199–216, Springer Berlin Heidelberg, 2005, DOI 10.1007/11593447 11

81

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.65.012301
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1007/BF01397477
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1007/978-3-319-30201-0_27
https://doi.org/10.1137/S0097539792241371
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.111.240404
https://doi.org/10.1109/ACCESS.2021.3137357
https://doi.org/10.1145/3310974
https://doi.org/10.1109/ACCESS.2016.2528227
https://www.quantiki.org/wiki/bb84-and-ekert91-protocols
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/RevModPhys.94.025008
https://doi.org/10.1007/11593447_11

Bibliography

[19] C. Bennett, G. Brassard, C. Crepeau, and U. Maurer, “Generalized privacy amplification”,
IEEE Trans. Inf. Theory, vol. 41, 1995, pp. 1915–1923, DOI 10.1109/18.476316

[20] Y. Lu, E. Bai, X. qin Jiang, and Y. Wu, “High-Speed Privacy Amplification Algorithm
Using Cellular Automate in Quantum Key Distribution”, Electronics, vol. 11, Aug 2022,
DOI 10.3390/electronics11152426

[21] H. Yan, T. Ren, X. Peng, X. Lin, W. Jiang, T. Liu, and H. Guo, “Information Rec-
onciliation Protocol in Quantum Key Distribution System”, 2008 Fourth International
Conference on Natural Computation, Jinan, Shandong, China, 2008, pp. 637–641, DOI
10.1109/ICNC.2008.755

[22] B. Rijsman, https://github.com/brunorijsman/cascade-python

[23] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimen-
tal quantum cryptography”, Journal of Cryptology, vol. 5, pp. 3–28, DOI https://doi-
org.ezproxy.biblio.polito.it/10.1007/BF00191318

[24] B. Gilles and S. Louis, “Secret-Key Reconciliation by Public Discussion”, Advances in Cryp-
tology, vol. 765, 1994, pp. 410–423, DOI 10.1007/3-540-48285-7 35

[25] W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel, C. H. Donahue, and C. G.
Peterson, “Fast, efficient error reconciliation for quantum cryptography”, Physical Review
A, vol. 67, May 2003, DOI 10.1103/PhysRevA.67.052303

[26] I. Ulidowski, I. Lanese, U. P. Schultz, and C. Ferreira, “Reversible Computation: Extending
Horizons of Computing: Selected Results of the COST Action IC1405”, Springer Interna-
tional Publishing, 2020, ISBN: 978-3-030-47360-0 978-3-030-47361-7

[27] R. Gallager, “Low-density parity-check codes”, IEEE Transactions on Information Theory,
vol. 8, Jan 1962, pp. 21–28, DOI 10.1109/TIT.1962.1057683

[28] D. Elkouss, J. Martinez-Mateo, and V. Martin, “Information reconciliation for quantum key
distribution.” arXiv:1007.1616, 2011, DOI 10.48550/arXiv.1007.1616

[29] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of
the darpa quantum network.” arXiv:quant-ph/0503058, 2005, DOI 10.48550/arXiv.quant-
ph/0503058

[30] R. W. Hamming, “Error detecting and error correcting codes”, The Bell System Technical
Journal, vol. 29, Apr 1950, pp. 147–160, DOI 10.1002/j.1538-7305.1950.tb00463.x

[31] J. Martinez-Mateo, C. Pacher, M. Peev, A. Ciurana, and V. Martin, “Demystifying
the Information Reconciliation Protocol Cascade.” arXiv:1407.3257, December 2014, DOI
https://doi.org/10.48550/arXiv.1407.3257

[32] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources”, IEEE Transac-
tions on Information Theory, vol. 19, Jul 1973, pp. 471–480, DOI 10.1109/TIT.1973.1055037

[33] G. Limei, R. Qi, and J. D. andHuang Duan, “QKD Iterative Information Reconciliation
Based on LDPC Codes”, International Journal of Theoretical Physics, vol. 59, Jun 2020,
pp. 1717–1729, DOI 10.1007/s10773-020-04438-9

[34] A. Shokrollahi, “An Introduction to Low-Density Parity-Check Codes”, Theoretical As-
pects of Computer Science: Advanced Lectures (G. B. Khosrovshahi, A. Shokoufandeh, and
A. Shokrollahi, eds.), pp. 175–197, Springer, 2002, DOI 10.1007/3-540-45878-6 6

[35] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary sources with side infor-
mation at the decoder using LDPC codes”, IEEE Communications Letters, vol. 6, Oct 2002,
pp. 440–442, DOI 10.1109/LCOMM.2002.804244

[36] D. Elkouss, A. Leverrier, R. Alléaume, and J. Boutros, “Efficient reconciliation protocol for
discrete-variable quantum key distribution”, 2009 IEEE International Symposium on Infor-
mation Theory, Paris (France), June, 2009, pp. 1879–1883, DOI 10.1109/ISIT.2009.5205475

[37] R. Storn and K. Price, “Minimizing the real functions of the ICEC’96 contest by differential
evolution”, Proceedings of IEEE International Conference on Evolutionary Computation,
Nagoya (Japan), May, 1996, pp. 842–844, DOI 10.1109/ICEC.1996.542711

[38] A. Shokrollahi and R. Storn, “Design of efficient erasure codes with differential evolution”,
2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060), Sorrento
(Italy), Jun 25-30, 2000, pp. 5–, DOI 10.1109/ISIT.2000.866295

[39] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular
low-density parity-check codes”, IEEE Transactions on Information Theory, vol. 47, Feb
2001, pp. 619–637, DOI 10.1109/18.910578

82

https://doi.org/10.1109/18.476316
https://doi.org/10.3390/electronics11152426
https://doi.org/10.1109/ICNC.2008.755
https://github.com/brunorijsman/cascade-python
https://doi.org/https://doi-org.ezproxy.biblio.polito.it/10.1007/BF00191318
https://doi.org/https://doi-org.ezproxy.biblio.polito.it/10.1007/BF00191318
https://doi.org/10.1007/3-540-48285-7_35
https://doi.org/10.1103/PhysRevA.67.052303
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.48550/arXiv.1007.1616
https://doi.org/10.48550/arXiv.quant-ph/0503058
https://doi.org/10.48550/arXiv.quant-ph/0503058
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/https://doi.org/10.48550/arXiv.1407.3257
https://doi.org/10.1109/TIT.1973.1055037
https://doi.org/10.1007/s10773-020-04438-9
https://doi.org/10.1007/3-540-45878-6_6
https://doi.org/10.1109/LCOMM.2002.804244
https://doi.org/10.1109/ISIT.2009.5205475
https://doi.org/10.1109/ICEC.1996.542711
https://doi.org/10.1109/ISIT.2000.866295
https://doi.org/10.1109/18.910578

Bibliography

[40] V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional
security bound for discrete-variable protocols with one-way post-processing”, Physical Review
Letters, vol. 100, May 2008, DOI 10.1103/PhysRevLett.100.200501

[41] R. Wolf, “Quantum key distribution: An introduction with exercises”, Springer, 2021, ISBN:
978-3-030-73991-1

[42] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography”, Rev. Mod.
Phys., vol. 74, Mar 2002, pp. 145–195, DOI 10.1103/RevModPhys.74.145

[43] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N. Cerf, T. Ralph, J. Shapiro, and S. Lloyd,
“Gaussian quantum information”, Rev. Mod. Phys., vol. 84, no. 2, 2012, pp. 621–669, DOI
10.1103/RevModPhys.84.621

[44] F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent
states”, Phys. Rev. Lett., vol. 88, no. 5, 2002, DOI 10.1103/PhysRevLett.88.057902

[45] G. Gilbert and M. Hamrick, “Secrecy, computational loads and rates in practical quantum
cryptography”, Algorithmica, vol. 34, 2002, pp. 314–339, DOI 10.1007/s00453-002-0983-y

[46] R. Melki, H. Noura, M. Mansour, and A. Chehab, “A survey on ofdm physical layer security”,
Phys. Commun., vol. 32, 2019, pp. 1–30, DOI 10.1016/j.phycom.2018.10.006

[47] M. Bottarelli, G. Epiphaniou, D. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical
characteristics of wireless communication channels for secret key establishment: A survey of
the research”, Comput. Secur., vol. 78, 2018, pp. 454–476, DOI 10.1016/j.cose.2018.07.005

[48] J. Zhang, T. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: A
review”, IEEE Access, vol. 4, 2017, pp. 614–626, DOI 10.1109/ACCESS.2016.2637003

[49] J. Carter and M. Wegman, “Universal classes of hash functions”, J. Comput. Syst. Sci.,
vol. 18, 1979, pp. 143–154, DOI 10.1016/0022-0000(79)90044-8

[50] B. Tang, B. Liu, Y. Zhai, C. Wu, and W. Yu, “High-speed and large-scale privacy amplifica-
tion scheme for quantum key distribution”, Sci. Rep., vol. 9, 2019, DOI 10.1038/s41598-019-
51926-0

[51] X. Wang, Y. Zhang, S. Yu, and H. Guo, “High-speed implementation of length-compatible
privacy amplification in continuous-variable quantum key distribution”, IEEE Photonics J.,
vol. 10, 2018, DOI 10.1109/JPHOT.2018.2865305

[52] M. Zidan, S. Aldulaimi, and H. Eleuch, “Analysis of the quantum algorithm based on en-
tanglement measure for classifying boolean multivariate function into novel hidden classes:
Revisited”, Appl. Math. Inf. Sci., vol. 15, 2021, pp. 643–647, DOI 10.18576/amis/150149

[53] S.-S. Yang, Z.-L. Bai, X.-Y. Wang, and Y.-M. Li, “Fpga-based implementation of size-
adaptive privacy amplification in quantum key distribution”, IEEE Photonics J., vol. 9,
2017, DOI 10.1109/JPHOT.2017.2760659

[54] D.-W. Li, P. Huang, Y.-M. Zhou, Y. Li, and G.-H. Zeng, “Memory-saving implementation
of high-speed privacy amplification algorithm for continuous-variable quantum key distribu-
tion”, IEEE Photonics J., vol. 10, 2018, DOI 10.1109/JPHOT.2018.2869859

[55] E.-J. Bai, X.-Q. Jiang, and Y. Wu, “Memory-saving and high-speed privacy amplification
algorithm using lfsr-based hash function for key generation”, Electronics, vol. 11, 2022, p. 377,
DOI 10.3390/electronics11030377

[56] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, S. Leigh, M. Levenson, M. Vangel,
N. Heckert, and D. Banks, “A statistical test suite for random and pseudorandom number
generators for cryptographic applications.” NIST SP800-22, 2001

[57] A. Obada, D. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational
speed of a single cooper pair box”, Phys. E Low-Dimens. Syst. Nanostruct., vol. 43, 2011,
pp. 1792–1797, DOI 10.1016/j.physe.2011.05.009

[58] M. Zidan, A. Abdel-Aty, A. Khalil, M. Abdel-Aty, and H. Eleuch, “A novel efficient quantum
random access memory”, IEEE Access, vol. 9, 2021, pp. 151775–151780, DOI 10.1109/AC-
CESS.2021.3084556

[59] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin
tossing”, Theor. Comput. Sci., vol. 560, 2014, pp. 7–11, DOI 10.1016/j.tcs.2014.09.004

[60] E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous vari-
ables: Principle, security and implementations”, Entropy, vol. 17, 2015, pp. 6072–6092, DOI
10.3390/e17096072

[61] B.-Y. Tang, B. Liu, Y.-P. Zhai, C.-Q. Wu, and W.-R. Yu, “High-speed and Large-scale
Privacy Amplification Scheme for Quantum Key Distribution”, Scientific Reports, vol. 9,

83

https://doi.org/10.1103/PhysRevLett.100.200501
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1007/s00453-002-0983-y
https://doi.org/10.1016/j.phycom.2018.10.006
https://doi.org/10.1016/j.cose.2018.07.005
https://doi.org/10.1109/ACCESS.2016.2637003
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1038/s41598-019-51926-0
https://doi.org/10.1038/s41598-019-51926-0
https://doi.org/10.1109/JPHOT.2018.2865305
https://doi.org/10.18576/amis/150149
https://doi.org/10.1109/JPHOT.2017.2760659
https://doi.org/10.1109/JPHOT.2018.2869859
https://doi.org/10.3390/electronics11030377
https://doi.org/10.1016/j.physe.2011.05.009
https://doi.org/10.1109/ACCESS.2021.3084556
https://doi.org/10.1109/ACCESS.2021.3084556
https://doi.org/10.1016/j.tcs.2014.09.004
https://doi.org/10.3390/e17096072

Bibliography

Oct 2019, DOI 10.1038/s41598-019-50290-1
[62] M. Hayashi and T. Tsurumaru, “More efficient privacy amplification with less random seeds

via dual universal hash function”, IEEE Transactions on Information Theory, vol. 62, 2016,
pp. 2213–2232, DOI 10.1109/TIT.2016.2526018

[63] B. Liu, B.-K. Zhao, W.-R. Yu, and C.-Q. Wu, “Fit-pa: Fixed scale fft-based privacy am-
plification algorithm for quantum key distribution”, Journal of Internet Technology, vol. 17,
2016, pp. 309–320, DOI 10.6138/JIT.2016.17.2.20150703e

[64] M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy
amplification”, IEEE Transactions on Information Theory, vol. 57, no. 6, 2011, pp. 3989–
4001, DOI 10.1109/TIT.2011.2110950

[65] X. Ma, C.-H. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon
sources”, Physical Review A, vol. 76, Jul 2007, DOI 10.48550/arXiv.quant-ph/0703122

[66] D. Li, P. Huang, Y. Zhou, Y. Li, and G. Zeng, “Memory-Saving Implementation of High-
Speed Privacy Amplification Algorithm for Continuous-Variable Quantum Key Distribution”,
IEEE Photonics Journal, vol. 10, Oct 2018, pp. 1–12, DOI 10.1109/JPHOT.2018.2865486

[67] M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and
set equality”, Journal of computer and system sciences, vol. 22, no. 3, 1981, pp. 265–279,
DOI https://doi.org/10.1016/0022-0000(81)90033-7

[68] N. W. et al., “A fast and versatile qkd system with hardware key distillation and
wavelength multiplexing”, New Journal of Physics, vol. 16, Jan 2013, p. 013047, DOI
https://doi.org/10.1088/1367-2630/16/1/013047

[69] G. van Assche, “Quantum cryptography and secret-key distillation”, Cambridge University
Press, 2006, ISBN: 9780511617744

[70] Z. C. et al., “Fast implementation of length-adaptive privacy amplification in quantum key
distribution”, Chinese Physics B, vol. 23, Sep 2014, DOI 10.1088/1674-1056/23/9/090310

[71] M. Ben-Or, “Probabilistic algorithms in finite fields”, SIAM Journal on Computing, vol. 9,
no. 2, 1980, pp. 273–280, DOI 10.1137/0209024

[72] H. Krawczyk, “Lfsr-based hashing and authentication”, Advances in Cryptology, Berlin (Ger-
many), 1994, pp. 129–139, DOI 10.1007/3-540-48658-5 15

[73] S. Wolfram, “Statistical mechanics of cellular automata”, Rev. Mod. Phys., vol. 55, Jul-Seè
1983, pp. 601–644, DOI 10.1103/RevModPhys.55.601

[74] S. Wolfram, “Universality and complexity in cellular automata”, Phys. D Nonlinear Phenom.,
vol. 10, no. 1, 1984, pp. 1–35, DOI 10.1016/0167-2789(84)90245-8

[75] S. E.Yacoubi, “A mathematical method for control problems on cellular automata models”,
Int. J. Syst. Sci., vol. 39, May 2008, pp. 529–538, DOI 10.1080/00207720802191339

[76] D. A. Rosenblueth and C. Gershenson, “A model of city traffic based on elementary cellu-
lar automata”, Complex Syst., vol. 19, Jan 2011, pp. 305–322, DOI 10.25088/ComplexSys-
tems.19.4.305

[77] B. Teklu, A. Ferraro, M. Paternostro, and M. G. A. Paris, “Nonlinearity and nonclas-
sicality in a nanomechanical resonator”, EPJ Quantum Technol., vol. 2, Jan 2015, DOI
10.1140/epjqt/s40507-015-0027-1

[78] A. Menezes, P. C. Oorschot, and S. Vanstone, “Handbook of applied cryptography”, CRC
Press, Oct 1997, ISBN: 0-8493-8523-7

[79] M. Luby, “Pseudorandomness and cryptographic applications”, Princeton University Press,
Jan 1996, ISBN: 978-0-691-02546-9

[80] M. Tomassini, M. Sipper, and M. Perrenoud, “On the generation of high-quality random
numbers by two-dimensional cellular automata”, IEEE Trans. Comput., vol. 49, Nov 2000,
pp. 1146–1151, DOI 10.1109/12.868675

[81] C. M. Software, hhttps://github.com/CopernicaMarketingSoftware/AMQP-CPP

84

https://doi.org/10.1038/s41598-019-50290-1
https://doi.org/10.1109/TIT.2016.2526018
https://doi.org/10.6138/JIT.2016.17.2.20150703e
https://doi.org/10.1109/TIT.2011.2110950
https://doi.org/10.48550/arXiv.quant-ph/0703122
https://doi.org/10.1109/JPHOT.2018.2865486
https://doi.org/https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/https://doi.org/10.1088/1367-2630/16/1/013047
https://doi.org/10.1088/1674-1056/23/9/090310
https://doi.org/10.1137/0209024
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1080/00207720802191339
https://doi.org/10.25088/ComplexSystems.19.4.305
https://doi.org/10.25088/ComplexSystems.19.4.305
https://doi.org/10.1140/epjqt/s40507-015-0027-1
https://doi.org/10.1109/12.868675
hhttps://github.com/CopernicaMarketingSoftware/AMQP-CPP

Appendix A

User manual

This chapter breaks down the steps to get the proposed project up and running, digging into
the main choices made for how it works. The Error Correction sub module and the Privacy
Amplification one are built into a single container through a Docker Compose file.

A.1 QKD Post-processing simulator

The simulator can be used in two main modes, creating a dockerized environment or running it
inside a Linux host machine (virtual or physical), on the local network.

A.1.1 Running the simulation in a dockerized environment

The simulator is composed of three containers, a client, a server one and a Rabbitmq one. They
can be run by executing a docker compose file with:
docker-compose build

Docker compose used is version 3.8. The configuration file will build the client, server and
Rabbitmq images.

Once the images are built, they can be used to run experiments on post-processing. The
experiments can be run in different ways that will be now explained

Running the RUN TESTS script

The RUN TEST can be automatically run using the provided python API, the interface is the
python method runMultipleTests() and takes the following arguments:

1. independent variable that can be either the QBER or the key size and is passed as a
string value

2. variant that can be a list of those present in table 5.1, the argument is passed as a string
value with the names of the variants separated by commas, the string ’all’ will execute the
experiment for all variants (i.e. the total number of runs will be runs×#variants

3. compression float value of PA compression ratio, possible values are 0.1, 0.2, 0.4 and 0.5

4. qber float value of QBER, up to 6 digits of precision, if the QBER is also the independent
variable, this argument must be a length-two list where the first element is the starting
QBER and the last the final one

5. keysize integer value of key size, if the key size is also the independent variable, this
argument must be a length-two list where the first element is the starting QBER and the
last the final one

85

User manual

6. runs number of key sifting to execute while proceeding from the starting value of the
independent variable to the final one

Example: runMultipleExperimets(’qber’, ’all’, 0.5, [0.01, 0.05], 10000, 100) Run-
ning this python code would make the script run 700 (runs × nvariants = 100 × 7) tests of key
post-processing

With this python method one can implement multiple simulation patterns and test different
conditions.

The RUN TESTS script can also be run by command line just by using python3
python3 RUN_TESTS.py [independent variable] [variant] [compression] [qber/keysize]

[keysize/qber] [paBlocks] [port] [man_port] [runs]

Running the DEMO script

The DEMO script is intended to provide an easy method to perform customized single-run tests.
When running the DEMO script a web app is avaiable on http://localhost:5000 and provides a
easy interface to set the privacy amplification parameters and run a simulation.

Figure A.1. Demo web interface and setup.

When running a simulation in this way, the docker containers are automatically built and start
running the simulation. The simulation result is then showed in the web interface and a more
detailed description is saved in a json file inside the ResultsDEMO directory. The DEMO script
can be run from command line just by inserting
python3 DEMO.py

Running via docker compose

One can also run a simulation just by inserting docker-compose up. In this case the containers
will be built and will start the simulation by finding the parameters inside the environment(.env)
file and the file must contain the following variables

� TAG: the environment version used.

86

User manual

� PORT: the TCP port used by Rabbitmq message service.

� MAN PORT: the TCP port used to connect to Rabbitmq management service.

� USR: username used to connect to Rabbitmq.

� PW: password used to connect to Rabbitmq.

� QBER: test QBER to run an experiment.

� NBITS: test key length to run an experiment.

� ER VARIANT: cascade configuration to run an experiment.

� COMPRESSION: privacy amplification compression ratioto run an experiment.

� NBLOCKS: number of cellular automata T blocks to run an experiment.

� RUNS: number of key to post-process to run the experiments.

� HOST: name of rabbitmq host name.

� SEQ: each experiments has a sequential number.

� RANDOM KEY: option to run the experiment using random key, if set to false, the
following variable must be KEY.

Please note that when running a simulation in this way, no real result is provided to the user,
this method is intended only to test if the system can be built and run correctly.

A.1.2 Running the simulation on a Linux host

To run the simulation between two Linux hosts is necessary to install the required components
first and it can be done by running the install.sh script. Note that when running the simulation
in this way, the system will still need a running Rabbitmq instance, this can be in either host or
in a third one.

87

User manual

#!/bin/bash

Update package list

sudo apt-get update

Install necessary dependencies

sudo apt-get install -y build-essential wget libboost-dev libboost-system-dev

libboost-thread-dev libevent-dev librabbitmq-dev git python3 python3-pip

libssl-dev snapd

sudo snap install cmake --classic

Clone AMQP-CPP repository and build

git clone https://github.com/CopernicaMarketingSoftware/AMQP-CPP.git

cd AMQP-CPP

mkdir build

cd build

cmake .. -DAMQP-CPP_BUILD_SHARED=ON -DAMQP-CPP_LINUX_TCP=ON

cmake --build . --target install

Install Python dependencies

pip3 install --no-cache-dir -r requirements.txt

Run ldconfig

sudo ldconfig

Build error_correction and privacy_amplification

cd ErrorCorrection/Build

cmake ..

make

cd ..

cd ..

cd PrivacyAmplification/build

cmake ..

make

Figure A.2. install script.

Once the install.sh script was run on all hosts, the simulation can be run using the provided
python API, the interface is the python method runPostProcessing() and takes the following
arguments:

1. endpoint to set this host as either server or client, string value ’client’ or ’server’

2. keysize integer value of key size

3. variant string value containing the name of one of the EC variants proposed in table 5.1

4. qber float value of QBER, up to 6 digits of precision

5. host string value of host name or address

6. port int value, TCP port on which Rabbitmq messaging interface is running

7. user Rabbimtq user

8. password Rabbitmq password

88

User manual

9. seq sequential number for experiment

10. compression float value of PA compression ratio, possible values are 0.1, 0.2, 0.4 and 0.5

11. pa blocks int value, number of cellular automata T blocks

12. runs number of key sifting to execute

13. randomKey boolean value option to run the experiment using random key

14. key provided key if the randomKey argument is set to False

15. ER path which is the path in where the Error Correction submodule was built, by default
it will be ./error correction/Mycascade

16. PA path which is the path in where the Privacy Amplification submodule was built, by
default it will be ./privacy amplification/PrivacyAmplificationCPP

Example runPostProcessing(’client’, 1000, ’original’, 0.05,’localhost’,5672,’QKD’,

’QKD’, 0, 0.5, 100, 1, True, ’./error_correction/Mycascade’, ’./privacy_amplification/PrivacyAmplificationCPP’,

)

The simulation script can also be run by command line just by using python3
python3 wrapper.py [ER_path], [PA_path], [endpoint], [keysize], [variant], [qber],

[host], [port], [user], [pw], [seq], [compression], [pa_blocks], [runs], [randomKey],

[key]

89

Appendix B

Developer manual

In this chapter the main implementation choices will be discussed, outlining the main libraries
that led to the proposed implementation.

B.1 Rabbitmq

The use of RabbitMQ entails a series of considerations essential in the development of clients and
servers. It’s important to note that there isn’t an official RabbitMQ library for C++; rather,
there are only open-source solutions supported by the community. Consequently, in the software
development, two main libraries were primarily used: Pika for the Python part and AMQP-CPP
for the C++ part.

B.1.1 The AMQP-CPP library

The AMQP-CPP library offers a layered architecture that grants users the choice to handle
the network layer themselves. If desired, users can manage network connections independently,
creating socket connections and defining an interface for AMQP-CPP to utilize for IO operations.
However, this interception of the network layer is optional. AMQP-CPP provides predefined
TCP and TLS modules for those who prefer the library to manage network and TLS handling.
Its flexible architecture ensures portability, independence from OS-specific IO calls, and seamless
integration into various event loops. While adaptable to unconventional communication layers,
it effortlessly sets up with standard TCP connections. This fully asynchronous library, ideal for
high-performance applications, avoids blocking system calls and operates without the need for
threads. AMQP-CPP’s reliance on C++17 features mandates an up-to-date compiler supporting
C++17 for usage. AMQP-CPP operates in a network-agnostic fashion. It does not do IO by itself.
An object must be provided that defines the IO operations. This object is the connectionHandler
and in this implementation i wrote one that could also be compatible with the software running
on docker containers. By using the event library every interaction with the channel is done inside
an event loop and broken upon needs. The connectionHandler header is present both in the Error
Correction and Privacy Amplification submodules, it is in some sense a defining part of all the
implementation.

90

Developer manual

#ifndef MYCASCADE_CONN_HANDLER_H

#define MYCASCADE_CONN_HANDLER_H

#include <functional>

#include <unistd.h>

#include <event2/event.h>

#include <amqpcpp/libevent.h>

#include <iostream>

#include <memory>

class MyLibEventHandler : public AMQP::LibEventHandler {

public:

MyLibEventHandler(struct event_base *evbase) : LibEventHandler(evbase){}

uint16_t onNegotiate(AMQP::TcpConnection *connection, uint16_t interval)

override {

//we don’t want to use heartbeats, so we return 0

if (interval != 0) interval = 0;

return interval;

}

};

class ConnHandler {

public:

ConnHandler() {

evbase_ = event_base_new_with_config(cfg);

evhandler_ = new MyLibEventHandler(evbase_);

}

~ConnHandler() {

event_base_free(evbase_);

delete evhandler_;

}

void Start() {

event_base_dispatch(evbase_);

}

void Stop() {

event_base_loopbreak(evbase_);

}

operator AMQP::TcpHandler* () {

return evhandler_;

}

private:

struct event_config *cfg = event_config_new();

event_base* evbase_;

MyLibEventHandler *evhandler_;

};

#endif //MYCASCADE_CONN_HANDLER_H

Figure B.1. Connection handler header.

91

Developer manual

B.1.2 Connection check and sync

Since the simulator heavily relies on a running Rabbitmq instance, it is crucial to check for a
running one upon starting the simulation. This is done at the start of every simulation by the
wrapper script, in this moment, the server message queue is created to permit the client to initiate
the key sifting. Generally speaking the client is the one requesting the error correction and also
the privacy amplification from later on.

After the client publishes the first message it waits for a server response, this of course could
lead in an unlimited wait in case the server doesn’t respond, but it also syncs the two peers
exchanges.

B.1.3 Running instances of Rabbitmq

To run the simulator on a network where there is a running instance of Rabbitmq it is necessary
to remove the Rabbitmq docker , or to run the second instance on a different port, to stop the
simulator from running a new instance of rabbitmq, the docker image must be remove from the
docker compose file. Note that also the depends_on: rabbitmq: line must be remove borh from
the server and the client

version: "3.8"

services:

rabbitmq:

image: rabbitmq:3-management

environment:

RABBITMQ_DEFAULT_USER: ${USR}

RABBITMQ_DEFAULT_PASS: ${PW}

ports:

- "${PORT}:${PORT}"

- "${MAN_PORT}:${MAN_PORT}"

server:

build:

context: .

dockerfile: server_dockerfile

depends_on:

rabbitmq:

condition: service_started

command: ["python3","-u", "wrapper.py", "server"

,"${NBITS}","${ER_VARIANT}","${QBER}","${PORT}","${USR}","${PW}",

"${COMPRESSION}","${NBLOCKS}","${RUNS}", "${SEQ}",

"${HOST}","${RANDOM_KEY}", "${KEY}"]

client:

build:

context: .

dockerfile: client_dockerfile

depends_on:

rabbitmq:

condition: service_started

command: ["python3","-u", "wrapper.py", "client"

,"${NBITS}","${ER_VARIANT}","${QBER}","${PORT}","${USR}","${PW}","${COMPRESSION}","${NBLOCKS}","${RUNS}",

"${SEQ}", "${HOST}","${RANDOM_KEY}", "${KEY}"]

Figure B.2. Simulator docker compose file.

92

Developer manual

The alternative is to run the simulator instance on a different port, this can be done by
changing it in the environment file or providing it a different port to the APIs

A last note on Rabbitmq settings is about the reserved space for queue buffers, some ex-
periments may required hundred of thousands if not millions of messages and queues, so it is
important to reserve the adequate amount of memory to it.

B.2 Error Correction submodule

The error correction submodule was developed starting from [22] and it implements a complex
structure for key shuffles handling and parity requests.

B.2.1 Key handling

As explained in chapter 5, the memory management is a crucial part of the implementation. The
key is saved in a list of uint64 t words and the shuffles are saved as an array of indexes. Key
shuffles are also saved in cache to be reused in sequent iterations, to compute known parities and
reduce channel uses

B.2.2 Message format

In this section we will explain how the message exchanged are formatted.

Initialization

This is the first exchange between the two peers and it sent by the client to start the connection.
The server responds by sending the noisy key.

Header Content Description
messageType ‘initialization‘ client connects to server sending an empty initialization message

replyTo init queue name message queue to submit the response
Body Empty Empty body

Table B.1. Initialization message request

Header Content Description
messageType ‘initializationReponse‘ empty initialization message

nrBits number of bits of key number of bits inside the body of the message i.e.noisy key bits
nrWords number of words of key number of 64 bit words of the noisy key
Body Noisy key Server sends the noisy key

Table B.2. Initialization message response

Start iteration

In the start iteration message, the client send a message containing the key shuffle

93

Developer manual

Header Content Description
messageType ‘startIteration‘ client starting a new cascade iteration

seed key shuffle the order of bits to use in this iteration
nIteration sequential integer the number of the current iteration
Body Empty Empty body

Table B.3. Start iteration message

there is no start iteration response, the message is ackee by the server upon delivery.

Parities request

In order to reduce the number of classical channel uses, the parity bits request are sent in blocks,
meaning that a single message is sent for all the required parities at each round. The request
message is formatted as follows

Header Content Description
messageType ‘cascade rpc‘ Remote Procedure Call for parities

numberOfBlocks integer number number of key blocks to calculate
replyTo client queue name message queue to submit the response
Body List of block indexes comma separated values of start and end indexes

Table B.4. Parities request

Header Content Description
messageType ‘cascade rpc‘ Remote Procedure Call for parities

numberOfBlocks integer number number of key blocks to calculate
replyTo client queue name message queue to submit the response
Body List of block indexes comma separated values of start and end indexes

Table B.5. Parities response

Close channel

Ate the end of the cascade protocol iterations, the client communicate to the server to end the
connection and the server replies with the correct key, with it, the client can compute the efficiency,
the frame error rate and the remaining errors.

Header Content Description
messageType ‘closing‘ client closing the channel

Body Empty Empty body

Table B.6. Close channel request

Header Content Description
messageType ‘closingConfirm‘ empty initialization message

nrBits number of bits of key number of bits inside the body of the message i.e. correct key bits
nrWords number of words of key number of 64 bit words of the correct key
Body Correct key Server sends the correct key

Table B.7. Close chanel response

94

Developer manual

B.3 Privacy amplification submodule

B.3.1 Message format

In this section we will explain how the message exchanged are formatted.

Initialization

This is the first exchange between the two peers and it sent by the client to start the connection.
The client sends the Privacy Amplification parameters to the server. The server does not respond
directly, the message is acked automatically by Rabbitmq upon delivery.

Header Content Description
messageType ‘PaNegotiaion‘ initialization message

K integer number of k number of k blocks to use in the cellular automata algorithm
M integer number of m number M of bits of each k block
N integer number of n number N of bits of cellular automata

Body CA initial value Client sends the CA seed

Table B.8. Initialization message from client

Close channel

At the end of the privacy amplification phase, the server sends a message to confirm the correct
completion of the key sifting process.

Header Content Description
messageType ’closingConfirm’ server signal the end of the procedure

Table B.9. Post-process close

95

	Quantum computing and communication
	Dirac notation
	Qubits
	Superposition
	Entanglement

	Quantum gates
	Pauli Gates
	Hadamar Gate
	CNOT Gate
	SWAP Gate
	T-Gate

	Measurements
	Quantum circuits

	Quantum Key Distribution
	Quantum Key Distribution
	BB84
	E91
	QKD Post-Processing
	Quantum Bit Error Rate (QBER) and Error Correction
	Key Distillation and Privacy Enhancement

	Analysis of Error Correction protocols
	QKD Error Correction
	EC metrics

	Winnow
	Hamming Error Detection and Correction
	Winnowing

	Low Density Parity Check
	Error correction and control coding
	Optimization Work

	Cascade protocol
	Cascade Preliminaries
	Cascade protocol
	Cascade Implementations

	Analysis of Privacy Amplification protocols
	QKD Privacy amplification
	PA metrics

	FFT
	HiLS Scheme

	LFSR
	 Finite-size Effect on Privacy Amplification
	Costruction of Toepliz Matrix Based on LFSR
	Privacy Amplification with LFSR-Based Toeplitz Matrix

	Cellular Automata
	Elementary Cellular Automata
	 Pseudorandom Sequence
	Proposed Algorithm

	Resource-efficient implementation of QKD post-processing
	Efficiency Evaluation of Error Correction Protocols
	Winnow Protocol
	LDPC Protocol
	Cascade
	Conclusions on EC algorithm choice

	Privacy amplification protocols resource-efficiency comparison
	FFT
	LSFR
	CA
	Conclusions on PA algorithm choice

	QKD post-processing application
	Design and Architecture
	Error Correction
	Privacy amplification

	Testing and results
	Post-processing simulation
	Post-processing parameters tests

	Conclusions and future work
	Bibliography
	User manual
	QKD Post-processing simulator
	Running the simulation in a dockerized environment
	Running the simulation on a Linux host

	Developer manual
	Rabbitmq
	The AMQP-CPP library
	Connection check and sync
	Running instances of Rabbitmq

	Error Correction submodule
	Key handling
	Message format

	Privacy amplification submodule
	Message format

