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Abstract

Autonomous driving represents a pivotal and extensively researched technology, char-
acterized by features that are progressively finding their way into commercial vehicles.
This technology relies on a combination of sensors, actuators, and sophisticated software,
seeking to improve the safety and reliability of vehicles, aiming at the replacement of
human drivers.
This work targets the path tracking problem i.e. the automatic steering of the vehicle
in order to follow a specific path with no human action; this task is undertaken in both
simulated and real experimental environments. The employed control algorithm is the
Enhanced Model Reference Adaptive Control (EMRAC), it is an adaptive control design
method that allows the controlled variables of a plant to track a given reference model.
In this project, two types of EMRAC control systems were developed to guide a real,
scaled, and fully autonomous vehicle prototype along a predetermined path: a standard
EMRAC and an EMRAC enhanced with a Neural Network.
The controllers have been designed for a wide range of velocities showing notable im-
provements with respect to benchmark controllers as well as the benefits of the Neural
Network based augmentation. This research project contributes to reducing the gap in
experimentally validated Enhanced Model Reference Adaptive Control algorithms present
in the existing literature.
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Chapter 1

Introduction & State of the Art

1.1 Introduction

"Likewise, cars may be made so that without a draught animal they may be moved cum
impetu inaestimabili, as we deem the scythed chariots to have been from which antiquity
fought. And flying machines are possible, so that a man may sit in the middle turning
some device by which artificial wings may beat the air in the manner of a flying bird."
- Roger Bacon, XIII

The sentence above, attributed to the medieval English philosopher Roger Bacon [1],
discusses an enduring human fascination with vehicles that stands since medieval ages.
Whether vehicles are appealing solely for their practical utility or possess an inherent
value for humanity in granting the ability to move, unfortunately, falls beyond the scope
of this project.

Nevertheless, it is clear that the need of having sophistication in vehicles existed before
the vehicle itself. This project in particular contributes to one of the main technology
interesting vehicles, automation; according to experts by 2030 the share of autonomous
driving in overall traffic may rise to as much as 40%, mileage-wise [2].
This work will deal with the path tracking problem i.e. the automatic steering of the
vehicle in order to follow a specific path with no human action. The control algorithm
that will be researched is the Enhanced Model Reference Adaptive Control that will be
further augmented with Neural Networks. The control algorithm is the set of instruction-
s/strategy that the controller employs in order to actuate the steering angle; in control
engineering control algorithms are designed to operate within specified constraints and
provide control control actions in response to inputs [3]

1.2 Sate of the art

In order understand the relevance and contributions of this project it is important evaluate
the state of the art of both the Model Reference adaptive Control and its improvements
through Artificial Intelligence Methods.
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Introduction & State of the Art

1.2.1 MRAC and EMRAC in Automotive and Robitcs Appliactions

The baseline of this work is given by recent research conducted by Dr. Umberto Monta-
naro in [4] and [5] in the field of Enhanced Model Reference Adaptive Control applied to
automotive as well as robotics.

In [4] an EMRAC algorithm is used to design a generic lateral tracking for a ve-
hicle, employing a σ-modification approach to bind the adaptive gain of the switching
action. The controller is evaluated in a co-simulation environment based on IPG Car-
maker/MATLAB, highlighting its path tracking performance in the presence of external
disturbances, road surface changes, modelling errors and parameter mismatches. The sim-
ulations shown that the adaptive algorithm successfully tracked the path even in presence
of large external disturbance, modelling errors, etc. In [5] this algorithm is extended to
multi-input systems covering the gap with respect to previous algorithm limited to sin-
gle input systems. Several EMRAC solutions are designed for the problem of trajectory
tracking for space space robotic arms in the presence of unknown and noncooperative
targets. The simulation analysis confirmed that the closed-loop tracking performance of
the EMRAC are superior with respect to benchmark controllers.

The research mentioned above is the results of an extensive analysis developed during
previous researches such as in [6], [7], and [8]. In [7] the MRAC algorithm with Minimal
Control Synthesis (MCS) is considered; MRAC with MCS is an effective control algo-
rithms that guarantees asymptotic convergence of the tracking error to zero not only for
disturbance-free uncertain linear systems but also for highly nonlinear perturbed plants
that show unmodeled behaviour. In this work the drift in adaptive gains is addressed
trough the parameter projection algorithm. After providing the proof of stability of all
the closed-loop signals the authors validate numerically the algorithm through a discrete
time LTI system subjected to parameter variations and disturbances; finally, the adaptive
strategy is employed on the control of a highly nonlinear electromechanical actuator is
considered. Similarly, in [6] the continous time case is considered taking into account also
and integral action that embeds the σ-modification; in this case the control strategy is
validate on continuos systems subjected to different types of disturbances. To show the
deployment to engineering problems an electrical power circuit is considered.
Finally, in [8] the development of a hyperstable, discrete-time MCS algorithm with a for-
mal proof of asymptotic stability for generic n-dimensional plants is shown. The authors
implemented and analyzed the performance on controlling an electronic throttle body in
automotive engineering.

1.2.2 AI-based augmented MRAC

Since one of the objective of this work is to improve the Enhanced Model Reference
Adaptive Control through the use of Artificial Intelligence, it is important to evaluate
the main finding in this field.

In [9] the authors show Model Reference Controller (MRC) for robot arm trajectory

8



Introduction & State of the Art

tracking using two Neural Networks (NN). The first neural network is used for the ref-
erence model, trained in such a way that it follows any desired reference trajectory; the
second neural network instead is used as a controller, trained to provide the desired torque
in order to minimize the error between the outputs of the actual plant and the reference
model until it reaches approximately zero. Through simulations the authors validate the
proposed method assuring that the NN-based MRC is capable of following the desired
trajectory with approximately zero tracking error.
Another interesting research is conducted in [10] where a supervised neural dynamic
programming (SNDP) approach is developed yo solve the MRAC problem for unknown
nonlinear discrete-time systems. The SNDP operates with 2 modes learning and control:
in the learning mode a database-based adaptive critic learning algorithm is employed to
make sure that the controlled system can adaptively follow the reference model behavior;
afterwards, the algorithm smoothly transitions to the control mode where the robustness
of the closed-loop control systems is further enhanced. Through simulations the authors
show that the developed SNDP approach ensures the adaptation to the variable reference
input while guaranteeing better performance and robustness with respect to traditional
MRAC methods.

In [11] a Deep Neural Network based Model Reference Adaptive Control (DMRAC) is
presented. In this work the authors utilize deep neural networks (DNN) as the adaptive
element and propose an algorithm for the online update of the weights of DNN utilizing
a dual time adaptation scheme; demonstrating through simulations the improvements
with respect to the traditional MRAC. Referring to Figure 1.1 the DNN is divided in
the faster learning outer adaptive network and slower deep feature network: between
successive updates of the inner layer weights, the feature provided by the inner layers
of the deep network is used as the fixed feature vector for outer layer adaptive network
update and evaluation. A simpler version of this architecture is proposed in [12].

Figure 1.1: DNN architecture

9



Introduction & State of the Art

1.3 Considerations
After a careful analysis of the state of the art proposed in the previous section it emerges
that the Model Reference Adaptive Control is not extensively researched and has a lot
of potentialities and future developments. In particular, it is clear that there is a lack
related with the experimental validation of this control algorithm; with the majority of
the research proving the validation only through simulations.
These premises allow to understand the novelty and relevance of this work in providing
experimental validation and an AI-based augmentation to a sophisticated and innovative
control algorithm.

10



Chapter 2

Vehicle Dynamics

In order to proficiently develop path tracking solutions it is crucial to grasp key concepts
related with vehicle dynamics. This chapter will discuss this topics highlighting the
aspects that will be relevant for controller design.

2.1 Vehicle Kinematics

In order to analyze the kinematics of a vehicle it is particularly important to consider
a body-fixed reference system as shown in Figure 2.1a; characterized as (x,y,z;G). The
center of mass of the vehicle is denoted as G and it is the center of the fixed reference
system; the x-axis indicates the forward direction, the y-axis the lateral direction and
finally the z-axis perpendicular to the road and positive when pointing upward. The
corresponding unit vectors are (i,j,k)

(a) Vehicle scheme (b) Yaw angle

Figure 2.1: Kinematics of a vehicle in planar motion

11
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2.1.1 Velocities

Assuming a planar trajectory, the motion of the vehicle body can be described by its
angular speed Ω and the velocity Vp of any point, such as the center of mass G. Referring
to Figure 2.1a velocities Vp and Ω can be written as:

VG = ui + vj (2.1.1a)

Ω = rk = ψ̇k (2.1.1b)

VP = VG + Ω ×GP (2.1.1c)

Where r = ψ̇ is the yaw rate, the derivative of the yaw angle ψ shown in Figure 2.1b; the
above equations allow to describe completely the kinematics of the vehicle body through
u(t), v(t) and ψ̇(t)

2.1.2 Yaw angle and trajectory

Considering the scheme shown in Figure 2.1b and defining a grownd-fixed reference system
S0 = (x0, y0, z0;O0) having unit vectors (i0, j0, k0), it is possible to write:

VG = ẋ0i0 + ẏ0j0 = ui + vj (2.1.2)

In particular, writing ẋ0 and ẏ0 in function of the forward velocity v and lateral velocity
u:

ẋ0 = u cos (ψ) − v sin (ψ) (2.1.3a)

ẏ0 = u cos (ψ) + v sin (ψ) (2.1.3b)

with i0 · i = cos (ψ) and j0 · i = − sin (ψ).
Integrating Equation 2.1.3 it is possible to obtain the functions xG0 (t) and yG0 (t) which
describe the trajectory of the center of mass G in the coordinates of the fixed reference
frame S0.

xG0

(︂
t̂
)︂

= xG0 (0) +
∫︂ t̂

0
ẋ0dt =xG0 (0) +

∫︂ t̂

0
[u (t) cosψ (t) − v (t) sinψ (t)] dt (2.1.4a)

yG0

(︂
t̂
)︂

= yG0 (0) +
∫︂ t̂

0
ẏ0dt = yG0 (0) +

∫︂ t̂

0
[u (t) sinψ (t) + v (t) cosψ (t)] dt (2.1.4b)

With the yaw angle ψ at a time instant t̂ defined as:

ψ
(︂
t̂
)︂

= ψ (0) +
∫︂ t̂

0
r (t) dt (2.1.5)
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Planar Kinematics of a Rigid Body

(Cap. 5 Guiggiani) Rigid bodies are not subjected to deformations due to applied forces,
therefore the velocity of any couple of points A and B are linked as in Equation 2.1.6; with
the angular speed Ω being the angular velocity of the vehicle, the same far all of its points.

VB = VA + Ω ×AB = VA + VBA (2.1.6)

Considering the particular case of a planar motion, it is known that at any time in-
stant there exists a point C of the extended rigid body named instantaneous center of
velocity that has null velocity. Since the velocity field of a rigid behaves as a pure rotation
around C [13], it is possible to write the velocities of any point P as in Equation 2.1.7;
the scheme is shown in Figure 2.2 for two points A and B.

VP = Ω × CP = rk × CP (2.1.7)

Figure 2.2: Instantaneous center of velocity and velocity of two points

Referring to the scheme in Figure 2.1a it is possible to define the ratio v
u which is

related with the vehicle slip angle β

β = arctan
(︃
v

u

)︃
(2.1.8)

Acceleration and Radius of Curvature

Also in analysing the acceleration it is important to distinguish between angular acceler-
ation Ω̇ and absolute acceleration aG of the center of mass; expressed as follows:

Ω̇ = ṙk = ψ̈k (2.1.9a)

aG = dVG
dt

= u̇i + urj + v̇j − vri = axi + ayj (2.1.9b)
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considering that, since the reference system is integral with the body, di
dt = rj and

dj
dt = −ri. The expression of aG shown in Equation 2.1.9b can be rewritten in terms
of components tangent or normal with respect to the trajectory followed by the vehicle
as shown in Equation 2.1.11. The unit vectors tangent and normal with respect to the
trajectory, t and n respectively, are expressed as in Equation 2.1.10.

t = VG
|VG|

= cos (β) i + sin (β) j (2.1.10a)

n = k × t = − sin (β) i + cos (β) j (2.1.10b)

aG = att + ann (2.1.11a)

at = aG · t = ax cos (β) + ay sin (β) = u̇u+ v̇v√
u2 + v2

(2.1.11b)

an = aG · n = −ax sin (β) + ay cos (β) = r
(︁
u2 + v2)︁+ v̇u− u̇v√

u2 + v2
(2.1.11c)

Writing the acceleration of the center of mass with respect to the trajectory is particulary
important since it allows to define the radius of curvature RG and the curvature κ, that
will be particularly important in the application considered in this thesis.

RG = V 2
G

an
=

(︁
u2 + v2)︁ 3

2

r (u2 + v2) + v̇u− u̇v
= VG

r + v̇u−u̇v
V 2

G

(2.1.12a)

κ = 1
RG

(2.1.12b)

2.2 Bicycle model

The scheme shown in Figure 2.1a represents the double track model characterized by a
four-wheel dynamical model of the vehicle. Although the double track model is more
accurate, a simplified model named single track model (often named bicycle model) is
more popular [14]. It assumes that the left and right gear ratio of the steering system are
almost equal; the scheme of this model is shown in Figure 2.3a [15]
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(a) Single track model

(b) Lateral vehicle dynamics

Figure 2.3: Turning Vehicle

2.2.1 Lateral dynamics

In Figure 2.3b the vehicle is considered to have two degrees of freedom:

• the lateral position y, measured from the center of rotation of the vehicle

• the yaw angle ψ measured with respect to the global axis X

applying Newton’s second law along the y-axis, the moment balance about the z-axis,
and considering Equation 2.2.2 it follows that:

may = m
(︂
ÿ + vxψ̇

)︂
= Fyf + Fyr (2.2.1a)

Izψ̈ = lfFyf − lrFyr (2.2.1b)
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ay =
(︄
d2y

dt2

)︄
inertial

(2.2.2a)

ay = ÿ + vxψ̇ (2.2.2b)

In particular Fyf and Fyr are the lateral tyre forces that act on the vehicle and expressed
through Equation 2.2.3. The constants Cαf and Cαr are the cornering stiffness of each
front and rear tyre respectively; θV f and θV r are the front and rear tyre velocity angle
shown in Figure 2.4 and expressed through Equation 2.2.4; if the small angle approx-
imation i.e. Vy = ẏ is considered, it is possible to approximate the tyre angles as in
Equation 2.2.5:

Fyf = 2Cαf (δ − θvf ) (2.2.3a)

Fyr = 2Cαr (−θvr) (2.2.3b)

tan (θvf ) = vy + lf ψ̇

vx
(2.2.4a)

tan (θvr) = vy − lrψ̇

vx
(2.2.4b)

θvf = ẏ + lf ψ̇

vx
(2.2.5a)

θvr = ẏ − lrψ̇

vx
(2.2.5b)

Figure 2.4: Tyre velocity angle

Substituting in Equation 2.2.1 the lateral tyre forces and the tyre velocity angles
introduced in Equation 2.2.3 and Equation 2.2.4 respectively, the state space model of
the lateral vehicle dynamics can be written as follows:

d

dt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y
ẏ
ψ

ψ̇

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 −Cαf +Cαr

mvx
0 −vx − Cαf lf −Cαrlr

mvx

0 0 0 1
0 − lfCαf −lrCαr

Izvx
0 − l2fCαf +l2rCαr

Izvx

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y
ẏ
ψ

ψ̇

⎤⎥⎥⎥⎦+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
Cαf

m
0

lfCαf

Iz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ δ (2.2.6)

Recalling that the main target of the thesis is to develop a control algorithm aimed
at path tracking it is essential to define the dynamic model in Equation 2.2.6 in terms
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of the position and orientation error with respect to the path. The key variables to take
into account the errors with respect to the path are:

• e1 the distance of the center of gravity of the vehicle from the center line of the
road

• e2 the orientation error of the vehicle with respect to the road

Recalling Figure 2.3a it is clear that if the vehicle travels with a constant longitudinal
velocity vx on a road with constant radius of curvature R, it is possible to define the rate
of change of the desired orientation of the vehicle as:

ψ̇des = vx
R

(2.2.7)

Clearly, Equation 3.1.6 is valid if the radius R is large enough to consider the small angle
assumptions considered previously. Defining ë1 and e2 as:

ë1 =
(︂
ÿ + vxψ̇

)︂
− v2

x

R2 = ÿ + vx
(︂
ψ̇ − ψ̇des

)︂
(2.2.8a)

e2 = ψ − ψdes (2.2.8b)

Integrating Equation 2.2.8a:
ė1 = ẏ +

∫︂
vxe2

if vx is constant it follows that

ė1 = ẏ + vx (ψ − ψdes) (2.2.9)

Consequently the lateral dynamic state space model shown in Equation 2.2.6 can be
rewritten in function of the errors with respect to the path, obtaining the systems shown
in [4]:

ẋ = Ax+B1δ +B2κ (2.2.10)

A =

⎡⎢⎢⎢⎢⎣
−Cαf +Cαr

mvx
−vx − Cαf lf −Cαrlr

mvx
0 0

− lfCαf −lrCαr

Izvx
− l2fCαf +l2rCαr

Izvx
0 0

1 0 0 vx
0 1 0 0

⎤⎥⎥⎥⎥⎦ (2.2.11a)

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cαf

m

Cαlf
Iz

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2.11b)
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B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−vx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2.11c)

The system shown in Equation 2.2.10 describes the lateral dynamics of the bicycle model
in terms of the errors with respect to the road. In particular, the state vector is x =[︂
ẏ ψ̇ e1 e2

]︂
; κ is the curvature and δ is the steering angle
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Chapter 3

Path tracking and Experimental
Setup

3.1 Path tracking

When dealing with autonomous driving vehicles, path tracking control is a common
approach to realize automatic steering of the vehicle. The reference trajectory can be
computed by a motion planning algorithm in order to avoid obstacles detected by envi-
ronmental perception (through lidars, radars etc.) [16]. In this work several trajectories
are generated and the performance of the control algorithm is evaluated taking into con-
sideration Key Performance Indicators (KPIs).

3.1.1 KPIs definition

The definition of KPIs allow to evaluate the performance of the control algorithm as well
as the improvements with respect to benchmark alternatives. For this reason it is crucial
to take into consideration indicators that are related with the path tracking as well as
control action.

Lateral Error

The first important aspect when considering path tracking is the deviation with respect
to the path tracking is the deviation from the center-line. In particular, the maximum
lateral displacement and the root mean square error is taken into account.

⎧⎪⎪⎨⎪⎪⎩
e1max = max (e1)

RMSE (e1) =

√︄
N∑︁

i=1
e2

1

N

(3.1.1)
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Heading angle

The same KPIs considered for the lateral error are computed also for the heading angle,
constituting the other two KPIs.⎧⎪⎪⎨⎪⎪⎩

e2max = max (e2)

RMSE (e2) =

√︄
N∑︁

i=1
e2

2

N

(3.1.2)

Control action

In order to evaluate the quality of the control action two KPIs were defined. The IACA
shown in Equation 3.1.3 is the positive area under the control action [17], it is considered
in order to account for the intensity of the control action, a good control action guarantees
good tracking performance as well as a low IACA.
The Oscillation KPI expressed in Equation 3.1.4 evaluates the noise and smoothness of
the control action. A high value of this KPI means that the steering angle changes with
high frequency and/or with high amplitude. The formulation is the same as the one for
the IACA but in this case the approximate derivatives are considered [18].

IACAδ =
tf∑︂
t=ti

|δt−1 + δt|
2 ∆t (3.1.3)

OscillationKPI =
tf∑︂
t=ti

⃓⃓⃓
δ̇t−1 + δ̇t

⃓⃓⃓
2 ∆t (3.1.4)

3.1.2 Trajectories Generation

As mentioned previously the trajectories can be generated in different ways: they can
be computed by a motion planning algorithm or alternatively can be generated offline
and than fed to the controller without taking into consideration potential obstacles. The
reason why in this work only the latter alternative is considered is because the aim of
the thesis is to design and validate a particular control algorithm; feeding directly the
trajectory to the control action allows to focus only on the performance of the EMRAC
algorithm rather than the motion planner.
Particular emphasis is put on closed trajectories, this is due to the fact that the control
algorithm shown in this work is an adaptive one. Initially, the control algorithm requires
some time to learn the system before steering the dynamics towards the reference one; for
this reason, closed trajectories allow to repeat the tracking multiple times, showing the
improvements of the EMRAC. The employed trajectories are: eight trajectory, obstacle
avoidance, and circular trajectory

Methodology

The methodology employed to generate the reference trajectory to be tracked can be
summarized in the following steps:
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• definition of the trajectory in terms of the coordinates x and y contained in vectors

• parametrization of the vectors x and y in terms of the vehicle distance [19], [20]

• computation of the first and second derivatives [18]

• computation of the curvature taking into account concepts in the study of curves
in differential geometry and calculus, as shown in Equation 3.1.5

κ = (dx/ds)
(︁
ddy/ds2)︁−

(︁
ddx/ds2)︁ (dx/ds)

(ddx/ds2 + ddy/ds2)3/2 (3.1.5)

Trajectories

As previously mention the trajectories considered in this work are the eight trajectory,
circular trajectory and obstacle avoidance.
The eight trajectory shown in Figure 3.1 is defined considering an initial straight section
and then two circular adjacent trajectories repeated three times. This trajectory will be
widely employed in the experimental validation of the EMRAC algorithm for two reasons:
at each lap it is possible to evaluate the change in the KPIs, highlighting the capabilities
of the control algorithm; with respect to the circular trajectory, the reference curvature
changes continuously and therefore is more demanding.

-3 -2 -1 0 1 2 3

X position [m]

-1

0

1

2

3

4

Y
 p

o
s
it
io

n
 [

m
]

Road & position of the QCar
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Figure 3.1: Eight trajectory
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The obstacle avoidance trajectory, shown in Figure 3.2, is realized through the first
two laps of the eight trajectory while the last lap is substituted with a semicircular trajec-
tory and an obstacle avoidance; this is done in order to properly evaluate the performance
of the adaptive algorithm, allowing the adaption in the first two laps.
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Figure 3.2: Abstacle avoidance trajectory

Finally, the circular trajectory in Figure 3.3 is composed of an initial straight segment
and a circular trajectory repeated three times.

3.1.3 Errors and travelled distance computation

The trajectory generation considered in the previous section provides the reference path
that the vehicle is supposed to follow; as said the reference path is provided in terms of
the distance travelled by the vehicle as shown in Figure 3.4 where look-up tables are used
to provide xref , yref , and κ. Regarding the reference yaw angle ψref it can be either
stored in a look-up table or computed during the simulations integrating Equation 3.1.6
recalled below.

ψ̇des = vx
R

The mentioned look-up tables for different trajectories are shown in Figure 3.5, Fig-
ure 3.6, and Figure 3.7.

With those considerations it becomes important to define a method to compute the
distance travelled by the vehicle. The most straight-forward strategy is to use to compute
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Figure 3.3: Circular Trajectory

Figure 3.4: Look-up tables

the velocity of the vehicle as in Equation 3.1.6 and than integrate. This procedure,
although being correct can lead to complications during the experimental phase of the
project; this is due to the fact that this method relies on the vehicle lateral velocity which
is not directly measurable and needs to be estimated.

ṡ =
√︂
v2
x + v2

y (3.1.6)
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Another strategy for computing the travelled distance is to consider the sum of distances
travelled between two consequent time instants. Lets consider two time instants t and
t− 1, the distance dst travelled by the vehicle in this period is shown in Equation 3.1.7b

ds∗
t =

√︂
(xt − xt−1)2 + (yt − yt−1)2 (3.1.7a)

dst = ds∗
t

1 − e1
κ

(3.1.7b)

Consequently the distance travelled by the vehicle at a specific time instant tf is

stf =
tf∑︂
t=t0

dst (3.1.8)

The considerations related with the vehicle lateral velocity also influence the compu-
tation of the lateral displacement error. In the previous section this error, named e1, was
subjected to the following law:

ė1 = vy + vx (ψ − ψdes)

Since experimentally vy is not known the lateral displacement error will be computed
as in [21]. This formula presented in Equation 3.1.9 can be applied in scenarios where
the vehicle exhibits either solely a lateral mismatch or both a lateral and longitudinal
mismatch.

ey = (y − yref ) cos (ψref ) − (x− xref ) sin (ψref ) (3.1.9)

The considerations related with the heading angle error instead are still valid, and it can
be simply computed as in Equation 2.2.8b, reported below.

e2 = ψ − ψdes
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(a) eight trajectory: xref
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(b) eight trajectory: yref
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(c) eight trajectory: curvature
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(d) eight trajectory: ψref

Figure 3.5: Eight trajectory: look-up tables
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(a) Circular trajectory: xref
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(b) Circular trajectory: yref
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(c) Circular trajectory: curvature
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(d) Circular trajectory: ψref

Figure 3.6: Circular trajectory: look-up tables
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(a) Obstacle avoidance: xref
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(b) Obstacle avoidance: yref
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(c) Obstacle avoidance: curvature
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(d) Obstacle avoidance: ψref

Figure 3.7: Obstacle avoidance trajectory: look-up tables
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3.2 QCar and Lab equipement

The vehicle used in this work, shown in Figure 6.1, is a scaled autonomous vehicle designed
by the Canadian company Quanser [22]. It is equipped with a wide range of sensors such
as lidar, camera for 360° vision, proximity sensor, IMU, encoder, and I/O port. The
QCar, while showing great manufacturing quality, has a wide range of software features
like: Simulink and Python Libraries with the possibility of creating new ROS nodes as
well as a complete virtual environment. This technology allows a direct interface between
the usher and the scaled vehicle via the setup shown in Figure 3.10.

Figure 3.8: QCar vehicle

The vehicle moves within the area considered in Figure 3.9. As previously said,
the QCar follows the imposed trajectory given through a look-up table in terms of the
distance; therefore, even if the yellow line is not followed by the vehicle the rubber carpet
shown in this figure allows a good grip with the QCar’s tyre.

Figure 3.9: Experiments area
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Figure 3.10: Laboratory setup

3.2.1 QCar Hardware

The complex hardware shown in Figure 6.1 is managed by the onboard computer NVIDIA
Jetson TX2 with CPU: 2GHz quad-core ARM Cortex-A57 64-bit and GPU:256 CUDA
core NVIDIA Pascal; as well as the following sensors and actuators [23].

To guarantee a 360° vision the QCar has 4 Camera Serial Interface (CSI); those are 2D
cameras mounted on each side of the vehicle, having quadrangular lens with 160° vertical
Field of View (FOV) and 120° horizontal Field of View. In Figure 3.11a one of this
cameras is shown, it is important to acknowledge that those cameras are 8MP and have
dimensions comparable with the ones present on a modern smartphone; in Figure 3.11b
the coverage (in pink) and the blind-spots (in white) are shown.

(a) Camera (b) Coverage and blind-spots

Figure 3.11: Camera Serial Interface (CSI)

The QCar is equipped with an Intel RealSense D435 RGBD shown in Figure 3.12a.
RGBD stands for Red, Green, Blue, and Depth; in particular the depth image is grayscale
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and can detect the distance with respect to objects framed by the camera allowing the
avoidance of obstacles and/or providing information related with the position.

(a) Camera RGBD (b) Axis

Figure 3.12: QCar axis and camer

Another important hardware component is the Intertial Measurement Unit (IMU)
with 9 axis. Three of them are used to measure the acceleration with respect to the axis
x,y,z of the vehicle as shown in Figure 3.12b; other three are relevant for the gyroscope
that measures the angular velocity around the three axis of the reference system solidal
with the vehicle; finally, the last three axis are used by the magnetometer in order to
measure the magnetic field along the three axis. The magnetometer is used to get an
absolute angular direction. [24]

Furthermore, the QCar has a CC motor for the actuation of the four wheels and a
servomotor for the steering. The CC motor chosen by Quanser is the Titan 12T 550 [24]
while the servomotor has a rotor that is physically constrained to steer between 0.5rad
and -0.5rad.

Figure 3.13: RPLidar A2M8

Finally, a crucial component is the Light Detection and Ranging sensor, the Lidar
shown in Figure 3.13; this device emits laser, receives signals and elaborates data. The
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laser emitter sends impulses towards a specific direction; this signal is reflected by the
object and received by the device; elaborating the time needed by the signal to come back
to the receiver this sensor is able to find the distance of the object.
In this work the main use of thee Lidar is for the Simultaneous Localization and Mapping
(SLAM), i.e. to get information related to the environment and the position of the Vehicle.
Quanser developed an algorithm aimed at the localization of the QCar as follows:

• initially a scan of the environment is performed while the vehicle is stopped, saving
this data on the local memory. This initial position constitutes the origin of the
reference system.

• once the vehicle starts moving the Lidar will capture information that are confronted
with the data obtained during the initial scan, this allows the computation of the
position and the orientation.

This algorithm shows two main vulnerabilities that can affect the precision of the position
and orientation: first of all, the initial scan saves information related with one specific
point, requiring the need of reference objects withing the environment; secondly, since
the maximum frequency is 15 Hz the control algorithm will be constrained to operate at
this frequency that may be too low. In order to improve the estimation of the position a
Kalman filter will be employed.

3.2.2 Vehicle State Variables Estimation

To estimate the vehicle’s state variables a Kalman Filter is used, whose algorithm is
composed of two steps: prediction and update. Through the plant model and prior
estimate the filter predicts the state variables as well as a covariance matrix (Q) that
reflects the prediction’s level of confidence; during the update phase the filter uses the
measurements provided by the sensor in order to correct the prediction of the previous
stage. Through a weighted average the Kalman filter is able to provide a better estimation
with respect tot the one provided by the model only; the mentioned weights are based on
the uncertainties present in the measurements (covariance matrix R) and in the predicted
state variables.
The Kalman filter that will be employed is the one developed in [25]; it is a non-linear
Extended Kalman Filter that employs the single track model described in subsection 2.2.1,
as well as a longitudinal model defined in terms of the dynamics of the electrical motor.
The Kalman filter scheme is shown in Figure 3.14 and it estimates the variables vector
x̂a relying on the measurements: vehicle pose X,Y , the heading angle ψ, the velocity vx;
and the input to the system: the front steering angle δf and the armature voltageVa.
The complete model’s equations are shown in Equation 3.2.4, this model is derived by
combining:

• equations related with the lateral dynamics model in the case of small front steering
angle, shown in Equation 3.2.1

β̇ = −ψ̇ + Cαf
mv

(︄
δ − β − lf ψ̇

v

)︄
+ Cαr
mv

(︄
−β + lrψ̇

v

)︄
(3.2.1a)
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ψ̈ = lfCαf
Iz

(︄
δ − β − lf ψ̇

v

)︄
− lrCαr

Iz

(︄
−β + lrψ̇

v

)︄
(3.2.1b)

• velocities expressed in the global reference frame, Equation 3.2.2

Ẋ = v cos (β + ψ) (3.2.2a)

Ẏ = v sin (β + ψ) (3.2.2b)

ψ̇ = r = v cos (β)
lf + lr

(tan (δf )) (3.2.2c)

• the differential equation that describes the electric motor dynamic, and conse-
quently, considering the transmission ratio τ , the longitudinal velocity [?]

ω̇ = P1Va − P2ω − P (3.2.3a)

vx = ωτrω (3.2.3b)

v̇x = τrω

(︃
P1Va − P2

πrω
vx − P3

)︃
(3.2.3c)

Figure 3.14: Dynamic Extended Kalman Filter

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X (k + 1) = X (k) + (v (k) cos (β (k) + ψ (k)))Ts
Y (k + 1) = Y (k) + (v (k) sin (β (k) + ψ (k)))T
ψ (k + 1) = ψ (k) + ψ̇ (k)T
v (k + 1) = v (k) +

(︂
τrω

(︂
P1Va (k) − P2

τrω
v (k) − P3

)︂)︂
Ts

β (k + 1) = β (k) +
(︃

−ψ̇ (k) + Cαf

mv(k)

(︃
δ (k) − β (k) − lf ψ̇(k)

v(k)

)︃
+ Cαr

mv(k)

(︂
−β (k) + lrψ̇(k)

v(k)

)︂)︃
Ts

ψ̇ (k + 1) = ψ̇ (k) +
(︃
lfCαf

Iz

(︃
δ (k) − β (k) − lf ψ̇(k)

v(k)

)︃
− lrCαr

Iz

(︂
−β (k) + lrψ̇(k)

v(k)

)︂)︃
Ts

(3.2.4)
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Chapter 4

Enhanced Model Reference
Adaptive Control (EMRAC)

In this chapter the Enhanced Model Reference Adaptive control will be discussed starting
from the peculiarity of the Model Reference Adaptive Control (MRAC) and deepening
the characteristics of its enhanced version considered in [5].

4.1 Model Reference Adaptive Control (MRAC)

The Model Reference Adaptive Control is an adaptive control design method that allows
the controlled variable of a plant to track a given reference model. Even though this
method imposes a required reference dynamics with a limited knowledge of the plant
parameters, it is sensitive to external disturbances that may lead to a drift of the adaptive
gains and consequently a reduced tracking performance [4].

Figure 4.1: Model Reference Adaptive Control Scheme

In Figure 4.1 the composition of the MRAC is shown, in particular [12]:
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• The plant can contain structured uncertainty (i.e. parametric variation in the plant
dynamics) or unstructured uncertainty (i.e. frequency dependant uncertainty)

• The reference model is used in order to specify a desired behaviour and is typically
formulated as an LTI system

• The controller is designed to provide overall system performance and stability for
a nominal plant

• The adaptive law specifies the mathematical relationship that relates the adaptive
parameters with the tracking error

4.2 EMRAC Algorithm

The implemented EMRAC augments the MRAC algorithm through the presence of an
adaptive integral and adaptive switching control actions; in particular, in this case a single
input version of the one shown in [5] is considered; the scheme of this control system is
shown in Figure 4.2

u(t) = uMRAC(t) + uD(t) + uI(t) + uN (t) (4.2.1)

uMRAC(t) = KX(t)x(t) +KR(t)r(t) (4.2.1a)

uD(t) = KD(t)d(t) (4.2.1b)

uI(t) = KI(t)xI(t) (4.2.1c)

ẋI = xe − σI (∥xI∥) ρexI and xe = xm − x (4.2.1d)

The adaptive integral control action uI(t) aims at improving the tracking of the reference
model with respect to unmodoeled biases in the plant, the σ-modification strategy used
is shown in 4.2.3; the adaptive switching control action uN (t) increases the robustness of
the closed-loop tracking performance with respect to varying bounded disturbances.
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Figure 4.2: EMRAC control scheme

4.2.1 Reference System & Plant

Taking into consideration the control objective of the EMRAC algorithm, it is essential
to define a reference system that describes the behaviour expected from the original sys-
tem. In this section it is shown the original formulation present in [5] that considers the
reference system as linear and time invariant (LTI), Equation 4.2.2; in further sections
the reference system will be function of a dynamic parameter of the plant.

ẋm = Amxm +Bmr + Emd (4.2.2)

being:

• xm ∈ Rnx the reference model state, with nx the dimensions of the state space

• r ∈ Rnu the reference input assumed bounded, with nu the dimension of the control
input

• d ∈ Rnd the measurable disturbance and nd the dimension of its space

• Am ∈ Rnx×nx , Bm ∈ Rnx×nu , Em ∈ Rnx×nd are the dynamics matrix, the input
matrix and the disturbance matrix of the reference model, with Am a Hurwitz
matrix.

The plant instead has the form shown in Equation 4.2.3

ẋ = Ax+Bu+ Ed+G, x (t0) ∈ Rnx (4.2.3)

with:

• x ∈ Rnx the state vector of the plant and t0 ∈ R the initial time istant

• u ∈ Rnu is the plant input vector as defined in Equation 5.2.1
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• G ∈ Rnx is the nonmeasurable disturbance while E ∈ Rnx×nd is the disturbance
matrix of the plant

Both the the measurable and the non measurable disturbance are considered to be
bounded, meaning that there exists G∞ > 0 and d∞ > 0 such that

∥G∥ ≤ G∞, ∥d∥ ≤ d∞ ∀t ≥ t0 (4.2.4)

The reference system is derived from the plant assuming that there exist ideal gainsˆ︁ΦR ∈ Rnu×nu , ˆ︁ΦX ∈ Rnu×nx , ˆ︁ΦD ∈ Rnu×nd and S ∈ Rnu×nu that satisfy:

Bm = B ˆ︁ΦR (4.2.5a)

Am = A+B ˆ︁ΦX = A+Bm ˆ︁Φ−1
R
ˆ︁ΦX (4.2.5b)

Em = E +B ˆ︁ΦD = A+Bm ˆ︁Φ−1
R
ˆ︁ΦD (4.2.5c)

Pϕ = ˆ︁ΦRS = ST ˆ︁ΦT
R > 0 (4.2.5d)

furthermore, the ideal gains ˆ︁ΦX , ˆ︁ΦR, ˆ︁ΦD can be collected in the matrix ˆ︁Φ ∈ Rnu×nw

with nw = 2nx + nu + nd:

ˆ︁Φ =
[︂ˆ︁ΦX

ˆ︁ΦR
ˆ︁ΦD

ˆ︁ΦI

]︂
=
[︂ˆ︁ϕ1 ˆ︁ϕ2 · · · ˆ︁ϕnw−1 ˆ︁ϕnw

]︂
(4.2.6a)

ˆ︁ΦI = Onu,nx (4.2.6b)

ˆ︁ϕ =
[︂
ϕT1 ϕT2 · · · ϕTnw−1 ϕ

T
nw

]︂T
, and

⃦⃦⃦ ˆ︁ϕ⃦⃦⃦ ≤ Mϕ (4.2.6c)

4.2.2 Adaptive gains computation

The adaptive gains present in Equation 5.2.1 are computed as follows:

KX = ΦX + ST yex
TβX and Φ̇X = ST yex

TαX + FX (4.2.7a)

KR = ΦR + ST yer
TβR and Φ̇R = ST yer

TαR + FR (4.2.7b)

KD = ΦD + ST yed
TβD and Φ̇D = ST yed

TαD + FD (4.2.7c)

KI = ΦI + ST yex
T
I βI and Φ̇I = ST yex

T
I αI + FI (4.2.7d)
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FX , FI ∈ Rnu×nx , FR ∈ Rnu×nu , FDRnu×nd are the locking strategies that prevent an
unbounded evolution of the gains due to disturbances or unmodeled behaviour :

FX = −σϕ(∥ϕ∥)ΦXρX (4.2.8a)

FI = −σϕ(∥ϕ∥)ΦIρI (4.2.8b)

FR = −σϕ(∥ϕ∥)ΦRρR (4.2.8c)

FD = −σϕ(∥ϕ∥)ΦDρD (4.2.8d)

Collecting the integral parts of the adaptive gains present in Equation 4.2.7 into the
matrix Φ ∈ Rnu×nw it is possible to define the vector ϕ employed in Equation 4.2.8

Φ = [ΦX ΦR ΦD ΦI ] = [ϕ1 ϕ2 · · · ϕnw−1 ϕnw ] (4.2.9a)

ϕ =
[︂
ϕT1 ϕT2 · · · ϕTnw−1 ϕ

T
nw

]︂T
(4.2.9b)

Additionally the following strictly positive diagonal matrices will have to be tuned:

αX , βX , βI ∈ Rnx×nx , αR, βR ∈ Rnu×nu , αD, βD ∈ Rnd×nd

Finally ye ∈ Rnu is computed as:

ye = BTPexe with PeAm +ATm = −Q (4.2.10)

4.2.3 σ-modification

The sigma modification strategy is employed to guarantee the ultimate boundess of the
closed-loop tracking error dynamics also in the presence of unmatched disturbances and
unmodeled dynamics, in this case in particular the σ-modification is used.
It is used to prevent the drift of the integral tracking error in Equation 4.2.1d, in fact:

σI(∥xI∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∥xI∥ ≤ ˆ︂MI

ηI

(︃
∥xI∥ˆ︁MI

− 1
)︃

if ˆ︂MI ≤ ∥xI∥ ≤ 2ˆ︂MI

ηI if ∥xI∥ ≥ 2ˆ︂MI

(4.2.11)
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where ηI and ˆ︂MI are strictly positive constants.
In Equation 4.2.8 the σ-mnodification strategy σϕ(∥ϕ∥) for the adaptive gains of the
smooth control action is computed as:

σϕ(∥ϕ∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∥ϕ∥ ≤ ˆ︂Mϕ

ηϕ

(︃
∥ϕ∥ˆ︁Mϕ

− 1
)︃

if ˆ︂Mϕ ≤ ∥ϕ∥ ≤ 2ˆ︂Mϕ

ηϕ if ∥ϕ∥ ≥ 2ˆ︂Mϕ

(4.2.12)

in particular, the constants ˆ︂Mϕ and ηϕ must satisfy the following conditions

⌒

Mϕ ≥

⌜⃓⃓⎷λmax(ΓρΓ−1
a ⊗ P−1

ϕ )
λmin(ΓρΓ−1

a ⊗ P−1
ϕ )

Mϕ, and ηϕλmin
(︂
ΓρΓ−1

a ⊗ P−1
ϕ

)︂
>

3
4λmin(Q) (4.2.13)

with ⊗ being the Kronecker product and the strictly positive matrices Γρ, Γa ∈ Rnw×nw

defined considering the constant parameters defined in Equation 4.2.7 and Equation 4.2.8:

Γa = ∆(αX , αR, αD, αI) = diag(α1, α2, ..., αnw) (4.2.14a)

Γρ = ∆(ρX , ρR, ρD, ρI) = diag(ρ1, ρ2, ..., ρnw) (4.2.14b)

Adaptive switching control action

The adaptive switching control action uN (t) can be set using two different formulations
u

(uv)
N (t) and u

(ew)
N (t):

u
(uv)
N (t) = K

(uv)
N (t) ye

∥ye∥
, K

(uv)
N = STΦN0 (4.2.15a)

Φ̇N0 = αN0h0 (∥ye∥Ω) − σN0 (∥ΦN0∥) ρN0ΦN0 (4.2.15b)

u
(ew)
N (t) = K

(ew)
N (t)ψ(ye), K

(ew)
N = STΦN (4.2.16a)

ψ(ye) = [sgn(ye1) sgn(ye2) · · · sgn(yenu)]T (4.2.16b)

Φ̇Nj = αNjhj (|ye|) − σNj (∥ΦNj∥) ρNjΦNj , j = 1, . . . , nu (4.2.16c)

being ΦN0 ∈ R, ΦN = diag (ΦN1, ΦN2, . . . , ΦNnu) ∈ Rnu and the σ-modification defined

38



Enhanced Model Reference Adaptive Control (EMRAC)

as following:

σNj (∥ΦNj∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∥ΦNj∥ ≤ ˆ︂MNj

ηNj

(︃
∥ΦNj∥ˆ︁MNj

− 1
)︃

if ˆ︂MNj ≤ ∥ΦNj∥ ≤ 2ˆ︂MNj

ηNj if ∥ΦNj∥ ≥ 2ˆ︂MNj

(4.2.17)

where ∥ye∥Ω with Ω ∈ Rnu×nu is a strictly positive matrix and similarly αNj , ρNj , ηNj ,
⌒

MNj , j =
1, . . . , nu strictly positive constants; in particular

⌒

MNj and ηNj must satisfy:

⌒

MN0 >
δ∞

λmin (SP−1ST ) , and
⌒

MNj >
δj∞˜︁cj , j = 1, . . . , nu (4.2.18)

Finally, h-functions are defined as following

h0 = (∥ye∥Ω) = ∥ye∥
ς0
Ω

ξ0 + γ0 ∥ye∥
ς0
Ω

(4.2.19a)

hj =
(︁
∥yej∥Ω

)︁
= |ye|ςj

ξj + γj |ye|ςj
, j = 1, . . . , nu (4.2.19b)

considering ξj , ςj , γj with j = 0, . . . , nu strictly positive constants.

4.3 EMRAC with parameter projection
Recalling subsection 4.2.2,

KX = ΦX + ST yex
TβX and Φ̇X = ST yex

TαX + FX

KR = ΦR + ST yer
TβR and Φ̇R = ST yer

TαR + FR

KD = ΦD + ST yed
TβD and Φ̇D = ST yed

TαD + FD

KI = ΦI + ST yex
T
I βI and Φ̇I = ST yex

T
I αI + FI

the locking strategies FX , FI ∈ Rnu×nx , FR ∈ Rnu×nu , FDRnu×nd used to prevent an
unbounded evolution of the gains due to disturbances or unmodeled behaviour, were
designed through the σ-modification. An alternative locking strategy is the parameter
projection, as shown in [6] and [7].
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In [6] the parameter projection is used to preserve the convergence to zero of the tracking
error when the disturbance is bounded and L2; the σ-modification instead guarantees
global uniform ultimate boundedness under continuous L∞ disturbances.

FXj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ϕXj ∈
(︂
ϕlXj

, ϕuXj

)︂
, or ϕXj = ϕlXj

and hXj ≥ 0

or ϕXj = ϕuXj
and hXj ≤ 0

−hXj (t) otherwise

(4.3.2a)

FR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ϕR ∈
(︂
ϕlR, ϕ

u
R

)︂
, or ϕR = ϕlR and hR ≥ 0

or ϕR = ϕuR and hR ≤ 0

−hR (t) otherwise

(4.3.2b)

FIj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ϕIj ∈
(︂
ϕlIj

, ϕuIj

)︂
, or ϕIj = ϕlIj

and hIj ≥ 0

or ϕIj = ϕuIj
and hIj ≤ 0

−hIj (t) otherwise

(4.3.2c)

As shown in Equation 4.3.2 the parameter projection proposes a design for the locking
strategy that keeps the evolution of ϕ within Λϕ in a componentwise manner. In fact:

• when a component of ϕ exits the corresponding boundary the gain adaptation is
stopped and its value remains constant

• when a component of ϕ is contained within the boundary, the locking strategy is
not active and the adaptation proceeds

• finally, if the component reaches the upper bound and has the tendency to de-
crease its value (derivative hj ≤ 0) the adaptation proceeds; vice-versa if the the
component reaches the lower bound

hX =
[︁
hX1 . . . hXnx

]︁T = ST yex
TαX (4.3.3a)

hR =
[︁
hR1 . . . hRnu

]︁T = ST yer
TαR (4.3.3b)

hI =
[︁
hI1 . . . hXnx

]︁T = ST yex
T
I αI (4.3.3c)
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ΦX =
[︁
ϕX1 . . . ϕXnx

]︁T (4.3.4a)

ΦR =
[︁
ϕR1 . . . ϕRnu

]︁T (4.3.4b)

ΦI =
[︁
ϕI1 . . . ϕInx

]︁T (4.3.4c)

FX =
[︁
FX1 . . . FXnx

]︁T (4.3.5a)

FR =
[︁
FR1 . . . FRnu

]︁T (4.3.5b)

FI =
[︁
FI1 . . . FInx

]︁T (4.3.5c)
In this work the Enhanced Model Reference Adaptive Control will be analyzed both with
the σ-modification and the parameter projection and the best otpion will be choosen for
further analysis.

4.4 EMRAC-NN
The Neural Network based augmentation considered in this work is inspired from the
architecture considered in [12] and shown in Figure 4.3. The control action is therefore
augmented with a contribution named uNN as in Equation 4.4.1.

uEMRAC−NN = uEMRAC + uNN = uEMRAC + g
(︂
ΘTΦ

(︂
W T x̄

)︂)︂
(4.4.1)

The network weights are updated considering the law shown in Equation 4.4.2 con-
sidering that: V ∈ Rm × Rn, Wx ∈ Rn × Rm, W0 ∈ Rm, V0 ∈ Rn, and Wj ∈ Rn+1 j =
1, . . . , m column vectors of W ; in particular m is the number of neurons, while n is the
number of states.

Θ̇ = ΓΘΦ
(︂
W T x̄

)︂
eTPB = ΓΘΦ

(︂
W T x̄

)︂
ye (4.4.2a)

Ẇ = ΓW x̄eTPBV T = ΓW x̄yeV T f ′
(︂
W T x̄

)︂
(4.4.2b)

The matrices are build as follows in Equation 4.4.3, with f being the activation
function of the neurons and f ′ its derivative.

ΘT =
[︂
V0 V T

]︂
∈ Rn × Rm+1 (4.4.3a)

W T =
[︂
W0 W T

x

]︂
∈ Rm × Rn+1 (4.4.3b)

Φ
(︂
W T x̄

)︂
=
[︂
1 fT

(︂
W T x̄

)︂]︂T
∈ Rm+1 (4.4.3c)

f
(︂
W T x̄

)︂
=
[︂
f
(︂
W T

1 x̄
)︂

f
(︂
W T

2 x̄
)︂

. . . f
(︂
W T
mx̄
)︂]︂T

∈ Rm (4.4.3d)

The adaptation laws can be corrected in order to include a locking strategy as well as
an integral contribution as shown in Equation 4.4.4.

Θ∗ = Θ + βΘΦ ye and Θ̇ = ΓΘΦ
(︂
W T x̄

)︂
ye − ρΘΘ (4.4.4a)
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W ∗ = W + βΘf
′
(︂
W T x̄

)︂
ye and Ẇ = ΓW x̄yeV T f ′

(︂
W T x̄

)︂
− ρWW (4.4.4b)

Figure 4.3: Neural Network scheme
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Chapter 5

Controller Design & Simulations
Results

5.1 Reference Model

The first step of the design of MRAC controller is the choice of the reference model that
can be represented as in Equation 5.1.1; in order to do so, following the reasoning present
in [4], a closed loop version of the system proposed in subsection 2.2.1 and recalled in
Equation 5.1.2 will be considered.

ẋm = Amxm +Bmκ (5.1.1)

ẋ = Ax1 +B1u+B2κ (5.1.2)

With A,B1, and B2 being:

A =

⎡⎢⎢⎢⎢⎣
−Cαf +Cαr

mvx
−vx − Cαf lf −Cαrlr

mvx
0 0

− lfCαf −lrCαr

Izvx
− l2fCαf +l2rCαr

Izvx
0 0

1 0 0 vx
0 1 0 0

⎤⎥⎥⎥⎥⎦

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cαf

m

Cαlf
Iz

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−vx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Meaning Symbol Value

front cornering stiffness [N/deg] Cαf 11.798

rear cornering stiffness [N/deg] Cαr 8.680

mass m 2.720

front distance [m] lf 0.107

rear distance [m] lr 0.149

inertia moment [kgm2] Iz 0.042

Table 5.1: Vehicle Parameters

The reference system in Equation 5.1.1 is linear time invariant (LTI) and asymptoti-
cally stable, designed assuming that there exist two constant matrices K∗

X and K∗
R such

that the following equations are verified.

Am = A+B1K
∗
X (5.1.3a)

Bm = B1K
∗
R +B2 (5.1.3b)

It is clear that the reference system is designed through the use of nominal controllers, in
particular the control law is the one shown in Equation 5.1.4; i.e. a feedback controller
K∗
X and a feed forward controller K∗

R designed following the results present in [26].

u∗ (t) = K∗
Xx (t) +K∗

Rκ (t) (5.1.4)
The feedback controller is designed through a discrete infinite-horizon Linear Quadratic

Regulator (LQR) from optimal control theory. Considering Ad and Bd the discrete-time
version of A and B1 respectively; an optimization algorithm places the eigenvalues of the
closed-loop matrix Am = A+B1K

∗
X .

In particular, K∗
X is computed as in Equation 5.1.5 with the objective function to be min-

imized shown in Equation 5.1.6; additionally, the matrix P satisfies the matrix difference
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Riccati equation in Equation 5.1.7.

K∗
X =

(︂
R∗ +BT

d P
∗Bd

)︂−1
BT
d P

∗Ad (5.1.5)

J =
∞∑︂
k=0

x (k)Q∗x (k) + u (k)R∗ u (k) (5.1.6)

P ∗ = ATd P
∗Ad −ATd P

∗Bd
(︂
R∗ +BT

b P
∗Bd

)︂−1
BT
d P

∗Ad +Q∗ (5.1.7)

The matrix Q∗ is a diagonal weighting matrix with an entry for each state, while R∗ is a
weighting factor corresponding to the control effort.

Q∗ =

⎡⎢⎢⎢⎣
q∗

1 0 0 0
0 q∗

2 0 0
0 0 q∗

3 0
0 0 0 q∗

4

⎤⎥⎥⎥⎦
R∗ = 1

q∗
2 = q∗

3 = q∗
4 = 0

The feed forward term is present to ensure that the steady state lateral position error
will be zero. This contribution is necessary since, due to the presence of the term B2κ,
while travelling on a curve the error states will not converge to zero otherwise. The gains
that will be considered are scheduled in function of the velocity and obtained in [25]; Q∗

was selected through a trial and error procedure, choosing the values that guaranteed the
best experimental results.

Velocity [m/s] K∗
X Q∗

0.5 [-0.845 -0.071 -14.142 -1.8741] 200

0.6 [-0.921 -0.081 -13.229 -2.029] 175

0.7 [-0.968 -0.089 -12.247 -2.176] 150

0.8 [-0.897 -0.097 -10.000 -2.190] 100

0.9 [-0.864 -0.103 -8.660 -2.239] 75

1.0 [-0.783 -0.110 -7.071 -2.204] 50

1.2 [-0.531 -0.116 -3.873 -1.864] 15

Table 5.2: K∗
X gain scheduling
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5.2 Design

Following the theory of the Enhanced Model Reference Adaptive Control defined in the
chapter 4 in this section the design of the controller is shown, starting from the standard
MRAC untill the NN-augmented EMRAC.

5.2.1 MRAC

If the standard MRAC is considered, as previously said, the steering command is only
influenced by the feedback and the feed forward contribution. The adaptation laws pre-
sented in Equation 4.2.7 and reported below show that the gains that need to be tuned
are αX , βX , αR, and βR. The constants αX and αR represents the pace of the gain adap-
tation; the constants βR and βX relate with the intensity of the integral contribution.

KX = ΦX + ST yex
TβX and Φ̇X = ST yex

TαX + FX

KR = ΦR + ST yer
TβR and Φ̇R = ST yer

TαR + FR

In Figure 5.1 it is shown the tracking of the errors at velocity 0.6 m/s, using the following
constants:

αX =

⎡⎢⎢⎢⎣
0.001 0 0 0

0 0.0001 0 0
0 0 1 0
0 0 0 0.1

⎤⎥⎥⎥⎦ βX =

⎡⎢⎢⎢⎣
1e− 05 0 0 0

0 1e− 06 0 0
0 0 0.01 0
0 0 0 0.001

⎤⎥⎥⎥⎦

αX =
[︂
0.0001

]︂
βR =

[︂
0.0001

]︂

It appears clear that the states that requires priority with respect to the other is the
third state i.e. the lateral displacement error. Intuitively, it is reasonable to have this
type of dynamic since in path tracking the lateral displacement is crucial. Figure 5.1 also
highlights the adaptive nature of this type of control algorithm; initially the gains are
adapted starting from zero, leading to drifts with respect to the reference system.

In Figure 5.2 more detailed are shown regarding the lateral displacement error adapta-
tion, during most of the first lap the controller is not able to steer the dynamics properly
Figure 5.2a; while starting from half of the first lap the tracking is optimal as shown in
Figure 5.2b.
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Figure 5.1: MRAC: states tracking
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Figure 5.2: Lateral displacement error adaptation

The high error present at the beginning of the path is better highlighted in Figure 5.3,
showing the bigger error at the beginning of the curve. This initial behaviour of the
MRAC algorithm is inherently related with its adaptive nature.
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(a) Path tracking during the first lap
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Figure 5.3: Deviation with respect to the reference trajectory during the first lap

In Figure 5.4 and Figure 5.5 is shown that at the beginning of the simulation the gain
are rapidly adapted in order to reach a configuration in which the vehicle is controlled by
the algorithm. It can be seen that the components of αX and αR reach stability within 20
seconds. The constants α and β are not the only one that require tuning, in fact recalling
the Equation 4.2.10 reported below it becomes clear that properly tuning the matrix Q
is crucial since it impacts on ye.

ye = BTPexe with PeAm +ATm = −Q

In section B.1 the sensitivity towards the tuning of α, and Q is reported; the results
reported in this section rely on the following tuning Q matrix:

Q =

⎡⎢⎢⎢⎣
q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.01 0 0 0

0 0.01 0 0
0 0 1e4 0
0 0 0 1

⎤⎥⎥⎥⎦
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Figure 5.4: MRAC KX adaptation
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Finally, the control input for the MRAC algorithm presented in Equation 5.2.1 (re-
called below), is shwon in Figure 5.6

uMRAC(t) = KX(t)x(t) +KR(t)κ(t)
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Figure 5.6: MRAC control input
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5.2.2 EMRAC

The enhanced version of the MRAC considered previously in section 4.2 relies on the
presence of the integral action uI as well as an adaptive switching control action uN ;
while the first one aims at improving the tracking of the reference model in the case of
unmodeled biasis in the plant, the second one increases the robustness of the closed-loop
tracking performance in case of varying bounded disturbances. The control action is
therefore the one presented in Equation 5.2.1 recalled below.

u(t) = uMRAC(t) + uD(t) + uI(t) + uN (t)

With the gain adaptation laws recalled from Equation 4.2.7 and Equation 4.2.15 reported
below:

KI = ΦI + ST yex
T
I βI and Φ̇I = ST yex

T
I αI + FI

K
(uv)
N = STΦN0

Φ̇N0 = αN0h0 (∥ye∥Ω) − σN0 (∥ΦN0∥) ρN0ΦN0

In the simulation environment, the plant is the single track model of the vehicle developed
in [24], this implies that the reference model accurately represents the actual plant. For
this reason, as seen in previous section, the standard MRAC is already capable to steer
the dynamics of the plant towards the reference model, making contributes like uI and
uN unnecessary; however, being able to test the EMRAC in a simulation environment
allows to understand wether the control architecture is correct or not.
For this reason, considering the same configuration as in the EMRAC, the following tuning
parameters are considered for the integral action and the adaptive switching control
action:

αI =

⎡⎢⎢⎢⎣
1e− 4 0 0 0

0 1e− 4 0 0
0 0 1e− 3 0
0 0 0 1e− 3

⎤⎥⎥⎥⎦ βI =

⎡⎢⎢⎢⎣
1e-06 0 0 0

0 1e-6 0 0
0 0 1e-5 0
0 0 0 1e-5

⎤⎥⎥⎥⎦
αN = [0.005]

The contribution of the enhancing terms are shown in Figure 5.7a and Figure 5.7b, clearly
they have negligible values with respect to uX and uR. The adaptive gains converge
pretty rapidly as shown in Figure 5.8 where steady state is reached within 10 seconds.
The treshold selected for ˆ︂MN0 is coherent with the dynamics as shown in Figure 5.9;
therefore, the σ-modification is able to properly control the norm of the switching control
action.
In section B.2 more details are shown regarding the key aspects of the EMRAC tuning:
showing the impact of different αN and αI as well as the discharge factor ρN0.
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Figure 5.7: uI and uN control input
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Figure 5.9: ΦN norm control
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5.2.3 EMRAC-NN

The neural network based augmentation has been introduced previously in section 4.4,
where a two-layer NN is employed in order to deal with systems characterized by un-
structured uncertainty; the structure is recalled in Figure 5.10, with the corresponding
simulink block shown in Figure 5.11. The control action of this EMRAC-NN version was
presented in Equation 4.4.1 and recalled below.

uEMRAC−NN = uEMRAC + uNN = uEMRAC + g
(︂
ΘTΦ

(︂
W T x̄

)︂)︂

Figure 5.10: NN structure

Figure 5.11: NN-augmentation, simulink block

In this work the definitive version of the Neural Network utilizes the RELU as acti-
vation function f , shown in Equation 5.2.2a; therefore f ′, being the derivative, is shown
in Equation 5.2.2b; finally, the output activation function g is shown in Equation 5.2.2c

f (c) = max (0, c) (5.2.2a)
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f ′ (c) =
{︄

0 if c < 0
1 if c ≥ 0 (5.2.2b)

g (c) = 0.3 tanh (c) (5.2.2c)

Recalling Equation 4.4.2 reported below, it becomes clear that the initialization of the
neurons weights and the learning rates ΓΘ and ΓW are parameters to be tuned.

Θ̇ = ΓΘΦ
(︂
W T x̄

)︂
ye

Ẇ = ΓW x̄yeV T f ′
(︂
W T x̄

)︂
Considering the number of Neurons m = 4 and setting ΓΘ and ΓW as:

ΓΘ = ΓW =

⎡⎢⎢⎢⎢⎢⎣
0.07 0 0 0 0

0 0.07 0 0 0
0 0 0.07 0 0
0 0 0 0.07 0
0 0 0 0 0.07

⎤⎥⎥⎥⎥⎥⎦
the following results are obtained. In Figure 5.13 the tracking of the reference states
is shown, together with a detail regarding the lateral error in the third lap shown in
Figure 5.13. It is important to recall that in the simulation environment the plant is well
represented by the reference system, and therefore the errors are still very small and there
is no actual need for for this NN contribution. However, it is crucial to assess the the
control architecture works well before proceeding with the deployment in an experimental
setting.
Nevertheless it appears that the lateral displacement error has improved with respect to
previous EMRAC and MRAC controllers.
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Figure 5.12: x3 third lap
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Figure 5.13: EMRAC-NN: states tracking

Furthermore, in Figure 5.14 the contribution uNN of the Neural Network is shown;
clearly, since the output function is g (c) = 0.3 tanh (c), the output is limited between
-0.3 rad an +0.3 rad. This saturation avoids a potential divergence due to the initial
adaptation of the NN; this adaptation is shown in Figure 5.15.
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Figure 5.14: Neural Network contributionuNN

In section C.2 the impact of the learning rate is presented in Figure B.10; it is evident that
a higher learning rate allows to capture better the dynamic of the plant. Nevertheless,
if the learning rate is too high it leads to divergence as shown in Figure B.10f, where a
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learning rate equal to 1 stops the simulation earlier due to divergence. This issue will be
particularly important in the experimental setup; were it will be important to have a fast
enough adaptation while guaranteeing stability.
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Figure 5.15: Neural Network contribution uNN

5.3 Results
The results reported so far regard the path tracking on the eight trajectory at a veloc-
ity of 0.6 m/s. In section B.4 the results for other trajectories at 0.6 m/s are shown,
however when other velocities are employed the tuning of the Enhanced Model Reference
Adaptive Control needs to be updated. The first strategy in order to tune this controller
was the scaling of the constants α and β; while this is a valid choice, it is definitely a
tedious procedure since it requires a trial and error procedure that, even if automated, is
computationally expensive (due to the high number of constants).
Recalling the adaptive gains computation in subsection 4.2.2, it is possible to indirectly
tune ye by tuning the the matrix Q, i.e. the solution of Equation 4.2.10. To better high-
light this issue consider section B.6,it is reported the impact of the Q matrix on KPIs
related with the lateral displacement error as well as the heading angle error at a velocity
equal to 0.5 m/s; with respect to the Q matrix at 0.6 m/s a scaled version in the form of
Q0.5 = 1.5Q0.6 guarantees lower errors and better tracking of the reference system.
Furthermore, in section B.5 the simulations are performed at different velocities.
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Chapter 6

Experimental Design

Through the results obtained during the design and validation of the controller in a
simulation environment, the next stage of this thesis is the validation of the controller
in an experimental environment. As stated in previous sections the vehicle employed is
the QCar, a scaled fully automated vehicle recalled in Figure 6.1. As for the simulations
environment, the analysis is conducted at a velocity equal to 0.6 m/s and subsequently
the to other velocities, comparing the performance of the EMRAC and EMRAC-NN with
respect to the benchmark controller.

Figure 6.1: QCar vehicle

6.1 EMRAC

Starting from the tuning done in the simulation environment, a scaling and some adjust-
ments were required in order to guarantee stability of the control algorithm; coherently
with the sampling time of 10 ms of the lidar employed for the localisation. With the
tuning reported in subsection C.1.1 the experimental simulation lead to the tracking of
the reference system shown in Figure 6.2 with the corresponding KPIs presented in Ta-
ble D.4; finally, the vehicle localisation is shown in subsection C.1.2.
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It is clear that reference system is extremely simplified with respect to the actual plant.
In fact, the lateral displacement error of the reference system in the third lap, consis-
tently with what seen in the previous section, has values up to 2.5mm much different
with respect to the 2.5cm recorded during this experimental simulation.
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(b) Lateral displacement error x3
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Figure 6.2: EMRAC: states tracking, experimental results

Likewise the simulation environment, in the experimental environment the adaptive be-
haviour of this algorithm is even more evident. In Figure 6.3, Figure 6.4, and Figure 6.5
the path followed during the different laps is shown. It is clear that the EMRAC al-
gorithm improves continuously its tracking performance as it proceeds during the path
tracking.
Furthermore, the control action is shown in Figure 6.6 and the different contributions
are shown in Figure 6.7. After careful experimental analysis results suggested to notably
decrease the contribution of the integral action uI in order to avoid instability; as shown
in Figure 6.13d. The contribution of the feed-forward action uR seems to get more and
more significant during the experiment suggesting that it may lead to instability; this
consideration would be wrong since the evolution of the feed-forward gain is limited by
the locking strategy. In fact, as shown in Figure C.2e ϕR has not reached the upper
bound, therefore its evlution is under control, guaranteeing stability. Finally the gains
evolution is reported in Figure 6.8.
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Figure 6.7: EMRAC control contributions
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Figure 6.3: Path tracking during the first lap
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Figure 6.4: Path tracking during the second lap
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Figure 6.5: Path tracking during the third lap
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Figure 6.8: EMRAC: gains evolution, experimental results
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6.2 EMRAC-NN
The experiments carried for the EMRAC-NN follow the same procedure as for the stan-
dard EMRAC, with the additional contribution due to the neural network. The exper-
imental tuning is carried at a velocity equal to 0.6 m/s and consequently the design
constants are scaled for different velocities.
In Figure 6.9 the tracking of the reference states is shown; it is already possible to see
a notable improvement with respect to the EMRAC shown in previous section, however
this will be discussed in the following. As per the EMRAC, in Figure 6.10, Figure 6.11,
and Figure 6.12 the lateral displacement error and the tracking for different laps is re-
ported; furthermore, in Figure 6.13a the control input is shown with its contributions
in Figure 6.13. Regarding the Neural Network, the adaptation interests the neuron’s
weights, reported in Figure 6.14; with the corresponding control action in Figure 6.13f.
Finally, the experimental figures are reported in section C.2.
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Figure 6.9: EMRA-NN: states tracking, experimental results
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Figure 6.10: Path tracking during the first lap
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Figure 6.11: Path tracking during the second lap
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Figure 6.12: Path tracking during the third lap
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Figure 6.14: Neural Network weights

6.3 Results Analysis
After a collecting the experimental results in the form of KPIs reported in Appendix D
it is now possible to evaluate objectively the performance of the designed EMRAC and
EMRAC-NN with respect to the benchmark controller. By considering the following
figures, regarding the third lap, it emerges that the EMRAC augmented with the Neural
Network is capable of beating the Pole Placement at every velocity, improving also the
performance with respect to the standard EMRAC, both in terms of path tracking and
control.
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Figure 6.15: Maximum lateral displacement error, 3rd lap

Figure 6.16: RMSE lateral displacement error, 3rd lap

Figure 6.17: Maximum heading angle error, 3rd lap
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Figure 6.18: RMSE heading angle error, 3rd lap

Figure 6.19: Control action oscillation KPI, 3rd lap
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Chapter 7

Conclusion & future work

7.1 Conclusion
The research activity successfully achieved the predetermined objectives, culminating in
a proficient experimental validation of the Enhanced Model Reference Adaptive Control
algorithm developed in [5]. This project also outlined an additional augmentation through
the use of a Neural Network.
The EMRAC demonstrated superior outcomes in lateral displacement error and heading
angle error compared to the benchmark controller across nearly all velocities. As depicted
in Figure C.19 the upgraded path tracking performance of the EMRAC was reached at
the expense of a more aggressive control action; the Neural Network augmentation solved
this problem while concurrently achieving superior path-tracking.
To better visualize the improvements to the EMRAC provided by the neural network,
Figure 7.1 and Figure 7.2 are particularly useful. Those figures show how the NN-based
augmentation is able to improve the tracking of the reference system. Furthermore, the
Neural Network is capable of of mitigating the problems related with the adaptation, in
fact in the first lap the controller is capable of guaranteeing better tracking capabilities
with respect to the standard EMRAC.

7.2 Future work
Starting from the results of this research project it is possible to continue in several ways.
First of all, the development of a more accurate plant model will lead to a faster design
of the controller; in fact, in simulation environment the plant was the bicycle model that
clearly has some limitations that required to re-do the tuning in the experimental setting.
Secondly, the Neural Network augmentation can be substituted with more sophisticated
architectures that surely can lead to improvements. In this case the attention should shift
on the communication between the QCar and laboratory computer in order to assure that
more complex architectures are possible and how to make them less demanding from the
computation point of view.
Finally, vehicle platooning technologies may be developed in order to test the EMRAC
on scenarios that resemble real traffic conditions.
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Figure 7.1: Lateral displacement error at 0.6 m/s, comparison between EMRAC and
EMRAC-NN
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Figure 7.2: Heading angle error at 0.6 m/s, comparison between EMRAC and EMRAC-
NN
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Appendix A

Code

A.1 Initialization script

%% LAUNCH the version without optimization
%load (" QCar_param .mat ")
cd('C:\ Users \user\ Documents \Qcar\ PAOLO \ emrac0409 \ scripts and simulink ')
load('gains ') % gains of the reference system for different velocities
run('Init_QCar .m'); % initialization of the QCar parameters ( velocity also)
run('vehicle_parameters .m') % Used for the reference system for the EMRAC
run (" system_parameters_PAPER .m"); % gain computation and reference system

load('MAF.mat ');
run('init_EKF_D_vy_lab .m');
% initialization of the EMRAC parameters
run (" SI_EMRAC2_bicycle22v2Discrete_newRef_withPP .m")
run (" initNeuralNetwork .m") % neural networks
% discrete time integral sampling time , I suggest to not change this value
TsIntegral = 10/1000;

%%
run('Init_circular_trajectory .m');
traj_name = 'C';
%%
run('Init_eight_trajectory .m');
traj_name = 'E';

%%
run('Init_eight_trajectory .m');

traj_name = 'E';

%%
run('Init_obstEMRAC .m');
traj_name = 'E';

QCar Initialization

load('QCar_param .mat ');

step_time_voltage = 5;

QCar. long_speed = 0.6;
QCar. Lidar_Ts = 0.1;
QCar.Ts = 0.01;
QCar. MaxSteerAngle = 0.5;
%QCar.Gr*QCar.r_w; % v = w*tau*R (This value represents tau*R)
QCar. tau_R = 0.0031;
QCar.P1 = QCar.K_t /( QCar.J*QCar.R);
QCar.P2 = QCar.K_t*QCar.K_v /( QCar.J*QCar.R)+QCar.B/QCar.J;
QCar.P3 = QCar.C/QCar.J;
QCar. v_threshold = 0.1;

A.2 System parameters
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%% Define QCAR system parameters
%load (" QCar_param .mat ")
% [N/rad] Front tire cornering stiffness
Ca_F = SI_EMRAC . Vehicle . Ca_lin ;
% [N/rad] Rear tire cornering stiffness
Ca_R = SI_EMRAC . Vehicle . Cp_lin ;
% [kg] Vehicle mass
m = SI_EMRAC . Vehicle .m;
% [m/s] Longitudinal speed
Vx = QCar. long_speed ;
% [kg*m^2] Vehicle inertia
I_z = SI_EMRAC . Vehicle .Iz;
% [m] CoG - front tire distance
l_f = SI_EMRAC . Vehicle . Wb_half_a ;
% [m] CoG - rear tire distance
l_r = SI_EMRAC . Vehicle . Wb_half_b ;
% [m] Wheelbase
L = SI_EMRAC . Vehicle . Wb_half_a + SI_EMRAC . Vehicle . Wb_half_b ;
la_dist = 0.5;

%% PAPER MODEL MODIFIED WITH RIGHT CONVENTION

A = [ -(Ca_F+Ca_R)/(m*Vx) ...
-(( l_f*Ca_F - l_r*Ca_R)/(m*Vx))-Vx 0 0;

-(( l_f*Ca_F - l_r*Ca_R)/( Vx*I_z)) ...
-(( l_f ^2* Ca_F + l_r ^2* Ca_R)/( Vx*I_z)) 0 0;

1 0 0 Vx;
0 1 0 0];

B1 = [Ca_F/m (l_f*Ca_F)/( I_z) 0 0] ';

B2 = [0 0 0 -Vx]';

%% Feedback term calculation ( PAPER MODEL MODIFIED )

% reference system : gains computed through gain scheduling
index = find( gains (: ,1) == QCar. long_speed )
K = gains (index ,2: end -1)

Acl = A+B1*K;
Am = Acl;
sysclosed = ss(Acl , B1 , eye (4) , []);
Pcl = pole( sysclosed );

k1 = K(1);
k2 = K(2);
k3 = K(3);
k4 = K(4);

%% Feedforward term calculation ( PAPER MODEL MODIFIED )
Kr_star = (Ca_F*Ca_R*l_f ^2 + Ca_F*Ca_R*l_r ^2 + Ca_F*Ca_R*k4*l_r ^2 - ...

Ca_F*Vx ^2* l_f*m + Ca_R*Vx ^2* l_r*m + ...
2* Ca_F*Ca_R*l_f*l_r - Ca_F*Ca_R*Vx*k2*l_f - Ca_F*Ca_R*...
Vx*k2*l_r + Ca_F*Ca_R*k4*l_f*l_r - ...
Ca_F*Ca_R*Vx*k1*l_r ^2 + Ca_F*Vx ^3* k1*l_f*m - ...
Ca_F*Vx ^2* k4*l_f*m - Ca_F*Ca_R*Vx*k1*l_f*l_r)/...
(Ca_F*Ca_R *( l_f + l_r))

Bm = B1* Kr_star + B2;
%% Q must be diagonal and positive ( must be tuned )
Q = 2* diag ([1 1 500 1])

A.3 Controller Design Parameters

% the gains saved in " gains .mat" are stored in SI_EMRAC . gainsKx and SI_EMRAC . gainsKr
% because needed in a look -up table
SI_EMRAC . gainsKx = gains (1: end ,2: end -1);
SI_EMRAC . gainsKr = [0.1242 0.1557 0.1933 0.2398...

0.2895 0.3436 0.4485 0.4531] ';

% if needed it is possible to initialize the gains of the emrac so the
% integral wont start from zero. Those gains should be stored in the
% " gainInitialization " folder as " gainInit_velocity .mat" as row vectors
initializeGainsToZero = 1;
if initializeGainsToZero ==0

gainsToInitialize = ['gainInit_ ',num2str (QCar. long_speed ),'.mat '];
load( strcat (" gainInitialization \", gainsToInitialize ))
SI_EMRAC . initKx = gainInit .Kx;
SI_EMRAC . initKr = gainInit .Kr;
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SI_EMRAC . initKi = gainInit .Ki;
SI_EMRAC . initPhiN = gainInit .PhiN;
clear (" gainInit "," gainsToInitialize ")

else
SI_EMRAC . initKx = zeros (1 ,4);
SI_EMRAC . initKr = 0;
SI_EMRAC . initKi = zeros (1 ,4);
SI_EMRAC . initPhiN = 0;

end

%%
%
% how much in advance the curvature is passed at the controller
SI_EMRAC . preview = 0.05;
%low pass filter for smooth reading from the look up table
SI_EMRAC . filter_den = [0.3 1];
SI_EMRAC . filter_num = [1];
SI_EMRAC . gain_yeN = 1; % correction on the third component of ye
%%

SI_EMRAC .n_x = 4; % state dimension
SI_EMRAC .n_u = 1; % input dimention

SI_EMRAC .S = 1;
SI_EMRAC . P_phi_vet = Phi_R_hat * SI_EMRAC .S; % vector set of P_phi

%% gains
uu = 10/100; % coefficient used to scale everything on alpha
SI_EMRAC . alpha_X = uu*diag ([1e -2 1e1 5e1 5e1 ]);%100* diag ([ ones( MI_EMRAC .n_x ,1) ]); %nx*nx dimension positive

diagonal
SI_EMRAC . alpha_R = uu *1e -0; %nu*nu dimension positive diagonal
SI_EMRAC . alpha_N = 5e -1; % positive constant
SI_EMRAC . alpha_I = 1e -4* SI_EMRAC . alpha_X ;%1e -7* uu*diag ([1e -2 1e -2 1e -1 1e -2]); % 100* diag ([ ones( MI_EMRAC .

n_x ,1) ]); %nx*nx dimension positive diagonal
% SI_EMRAC . alpha_I (3 ,3) = 10* SI_EMRAC . alpha_I (3 ,3);

%%
tt =1/2; % coefficient to scale beta wrt to alfa
SI_EMRAC . beta_X = tt *1* SI_EMRAC . alpha_X ; % positive
SI_EMRAC . beta_R = tt* SI_EMRAC . alpha_R ; % positive
SI_EMRAC . beta_I = tt* SI_EMRAC . alpha_I ; % positive

%% Parameter Projection upper and lower bounds
SI_EMRAC . PP_active = 1;
SI_EMRAC . Kx_Lb = 1*K;
SI_EMRAC . Kx_Ub = -1*K;

SI_EMRAC . Kr_Lb = -1.5* Kr_star ;
SI_EMRAC . Kr_Ub = 1.5* Kr_star ;

SI_EMRAC . Ki_Lb = 10*K;
SI_EMRAC . Ki_Ub = -10*K;

%% Normalization
SI_EMRAC .Rx = 10* diag ([1 1 1 1]);
SI_EMRAC .Rr = 10;
SI_EMRAC . normalization = 1;

%% e1 treshold
% when the lateral error is smaller than this treshold the adaptation is
% blocked
SI_EMRAC . e1_treshold = 5e -2;
SI_EMRAC . e1_treshold = 9e -2;

%% SI - EMRAC sigma modification parameters
SI_EMRAC . sigma_active = 0; % not used (it was a previous version were all
% sigma - modification were turned on and off all at the same time). Before
% activating this MAKE SURE to turn OFF the Parameter projection

SI_EMRAC . sigmaN_active = 1;
SI_EMRAC . sigmaI_active = 0;
if SI_EMRAC . sigma_active == 0

disp('Sigma Modification ON ')
else

disp('Sigma mModification OFF ')
end
% discharge factors
c = 1e -3;
%nx*nx dimension positive diagonal
SI_EMRAC . rho_e = diag ([ ones( SI_EMRAC .n_x ,1) ]);

%nx*nx dimension positive diagonal

72



Code

SI_EMRAC . rho_X = c*diag ([ ones( SI_EMRAC .n_x ,1) ]);

%nu*nu dimension positive diagonal
SI_EMRAC . rho_R = c*diag ([ ones( SI_EMRAC .n_u ,1) ]);

%nx*nx dimension positive diagonal
SI_EMRAC . rho_I = 50*c*diag ([ ones( SI_EMRAC .n_x ,1) ]);
SI_EMRAC . rho_N = 1e -1; % positive constant
SI_EMRAC . rho_N1 = 5e -2;
SI_EMRAC . rho_N2 = 5;

SI_EMRAC . GAMMA_alpha = diag ([ diag( SI_EMRAC . alpha_X );...
diag( SI_EMRAC . alpha_R ); ...
diag( SI_EMRAC . alpha_I )])

SI_EMRAC . GAMMA_rho = diag ([ diag( SI_EMRAC . rho_X );...
diag( SI_EMRAC . rho_R ); ...
diag( SI_EMRAC . rho_I )])

SI_EMRAC . M_sigma = 2*1e -3;

%%
% memory for M_phi_hat vector
SI_EMRAC . M_phi_hat_vet = [];

for index = 1: length ( SI_EMRAC . P_phi_vet )

SI_EMRAC . P_phi = SI_EMRAC . P_phi_vet ( index );
% save each SI_EMRAC . M_phi_hat_temp into SI_EMRAC . M_phi_hat_vet
SI_EMRAC . M_phi_hat_temp = sqrt(max(eig(kron( SI_EMRAC . GAMMA_rho...

*inv( SI_EMRAC . GAMMA_alpha ),inv( SI_EMRAC . P_phi ))))...
/min(eig(kron( SI_EMRAC . GAMMA_rho...
*inv( SI_EMRAC . GAMMA_alpha ),...
inv( SI_EMRAC . P_phi )))))* SI_EMRAC . M_sigma ;

SI_EMRAC . M_phi_hat_vet = [ SI_EMRAC . M_phi_hat_vet ...
SI_EMRAC . M_phi_hat_temp ];

end

% take max value of SI_EMRAC . M_phi_hat_vet as SI_EMRAC . M_phi_hat
SI_EMRAC . M_phi_hat = 1.1* max( SI_EMRAC . M_phi_hat_vet );
SI_EMRAC . M_phi_hat = 2;
clear index

% SI_EMRAC . M_I_hat = 10000; % positive constant
% SI_EMRAC . M_I_hat = 1e -1
SI_EMRAC . M_I_hat = 0.5; % MODIFICA PAOLO
% SI_EMRAC . M_N_hat = 10000; % positive constant
SI_EMRAC . M_N_hat = 8;
SI_EMRAC . eta_I = 2; % positive constant
SI_EMRAC . eta_phi = 12;
% SI_EMRAC . eta_phi = 2*1e -4;

disp('condition to be verified ')
[ SI_EMRAC . eta_phi *min(eig(kron( SI_EMRAC . GAMMA_rho *...

inv( SI_EMRAC . GAMMA_alpha ),inv( SI_EMRAC . P_phi ))))...
3/4* min(eig(Q))]

[ SI_EMRAC . M_phi_hat sqrt(max(eig(kron( SI_EMRAC . GAMMA_rho...
*inv( SI_EMRAC . GAMMA_alpha ),inv( SI_EMRAC . P_phi ))))/...
min(eig(kron( SI_EMRAC . GAMMA_rho *inv( SI_EMRAC . GAMMA_alpha ),...
inv( SI_EMRAC . P_phi )))))* SI_EMRAC . M_sigma ]

min(eig(kron( SI_EMRAC . GAMMA_rho *inv( SI_EMRAC . GAMMA_alpha ),...
inv( SI_EMRAC . P_phi ))))

min(eig(inv( SI_EMRAC . GAMMA_alpha )* SI_EMRAC . GAMMA_rho ))
SI_EMRAC . eta_N = 1; % positive constant

% h(y_e) calculation
SI_EMRAC . sigma_0 = 1;
SI_EMRAC . gamma_0 = 2;
SI_EMRAC .xi_0 = 1;

%sign y_e calculation
SI_EMRAC . epsilon = 70;
SI_EMRAC . epsilon = 200;

return
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Tuning in simulation environment

B.1 MRAC

Tuning αX and αR
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Figure B.1: Lateral displacement error x3 in the 3rd lap, tuning αX1
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Figure B.2: Lateral displacement error x3 in the 3rd lap, tuning αR
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Figure B.3: Lateral displacement error x3 in the 3rd lap, tuning q3
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B.2 EMRAC
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Figure B.4: EMRAC: states tracking
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Figure B.5: EMRAC: parameter projection on ΦR
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Figure B.6: EMRAC: parameter projection on ΦX
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Figure B.7: Lateral displacement error x3 in the 3rd lap, tuning αN
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Figure B.8: Lateral displacement error x3 in the 3rd lap, scaling αI
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Figure B.9: Effect of the discharge factor ρN0 on ΦN
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B.3 EMRAC-NN
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Figure B.10: Effect of the learning rate on the NN weights adaptation
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B.4 EMRAC, trajectories
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(b) EMRAC, S trajectory

-3 -2 -1 0 1 2 3

X position [m]

0

1

2

3

Y
 p

o
s
it
io

n
 [
m

]

Road & position of the QCar

Your results

Lane line to follow

(c) EMRAC, O trajectory

-3 -2 -1 0 1 2 3

X position [m]

0

1

2

3

Y
 p

o
s
it
io

n
 [
m

]

Road & position of the QCar

Your results

Lane line to follow

(d) EMRAC, Obstacle Avoidance trajectory

Figure B.11: Path tracking for differnt trajectories, EMRAC algorithm
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B.5 KPIs at different velocities

Figure B.12: Maximum lateral displacement error, 3rd lap

Figure B.13: RMSE lateral displacement error, 3rd lap

Figure B.14: Maximum heading angle error, 3rd lap
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Figure B.15: RMSE heading angle error, 3rd lap

Figure B.16: Control action oscillation KPI, 3rd lap

B.6 Q matrix and performance

(a) (b)

(c) (d)

Figure B.17: Tuning based on the Q matrix
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Appendix C

EMRAC Experimental figures

C.1 EMRAC

C.1.1 Tuning Parameters

αX =

⎡⎢⎢⎢⎣
0.01 0 0 0

0 5 0 0
0 0 5 0
0 0 0 1

⎤⎥⎥⎥⎦ , βX =

⎡⎢⎢⎢⎣
0.005 0 0 0

0 2.50 0 0
0 0 2.50 0
0 0 0 0.5

⎤⎥⎥⎥⎦
αR =

[︂
0.1
]︂
, βR =

[︂
0.05

]︂

αI =

⎡⎢⎢⎢⎣
1e-05 0 0 0

0 0.01 0 0
0 0 0.06 0
0 0 0 0.01

⎤⎥⎥⎥⎦ , βI =

⎡⎢⎢⎢⎣
5e-06 0 0 0

0 0.005 0 0
0 0 0.03 0
0 0 0 0.005

⎤⎥⎥⎥⎦

Q =

⎡⎢⎢⎢⎣
1.1 0 0 0
0 1.1 0 0
0 0 825 0
0 0 0 1.1

⎤⎥⎥⎥⎦
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C.1.2 Vehicle Localization
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Figure C.1: Vehicle localization, EMRAC
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C.1.3 Parameter Projection
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Figure C.2: Parameter Projection, EMRAC
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C.1.4 States tracking for all velocities
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Figure C.3: Lateral speed tracking
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Figure C.4: Yaw rate tracking
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Figure C.5: Lateral displacement error evolution at different velocities
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Figure C.6: Heading angle error
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C.1.5 Trajectory at different velocities
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Figure C.7: Trajectory at different velocities
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C.2 EMRAC-NN

C.2.1 Vehicle Localization
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Figure C.8: Vechicle Localization, EMRAC-NN
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C.2.2 Parameter Projection
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Figure C.9: Parameter Porjection, EMRAC-NN
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C.2.3 States tracking for all velocities
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Figure C.10: Lateral speed tracking
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Figure C.11: Yaw rate tracking
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Figure C.12: Lateral displacement error evolution at different velocities
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Figure C.13: Heading angle error
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C.2.4 Trajectory at different velocities
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Figure C.14: Trajectory at different velocities
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C.3 KPIs graphs, 2nd lap

Figure C.15: Maximum lateral displacement error, 2nd lap

Figure C.16: RMSE lateral displacement error, 2nd lap
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Figure C.17: Maximum heading angle error, 2nd lap

Figure C.18: RMSE heading angle error, 2nd lap

Figure C.19: Control action oscillation KPI, 2nd lap
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Appendix D

Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.021 0.085 0.033

RMSE lat.err [m] 0.006 0.020 0.007

Max head.angle err [deg] 12.442 19.287 13.281

RMSE head. angle err [deg] 7.000 10.203 4.091

IACA control input [deg] 11.104 12.259 9.668

Oscillation KPI 0.638 0.468 0.294

Table D.1: KPIs for Lap 1 at velocity 0.5 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.019 0.025 0.018

RMSE lat.err [m] 0.008 0.009 0.008

Max head.angle err [deg] 12.806 12.637 11.897

RMSE head. angle err [deg] 8.792 9.142 8.384

IACA control input [deg] 11.940 12.194 12.200

Oscillation KPI 0.671 0.291 0.445

Table D.2: KPIs for Lap 2 at velocity 0.5 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.023 0.023 0.019

RMSE lat.err [m] 0.009 0.011 0.009

Max head.angle err [deg] 13.948 15.176 12.886

RMSE head. angle err [deg] 8.636 9.703 9.076

IACA control input [deg] 11.850 12.283 12.131

Oscillation KPI 0.719 0.334 0.414

Table D.3: KPIs for Lap 3 at velocity 0.5 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.027 0.171 0.042

RMSE lat.err [m] 0.008 0.035 0.010

Max head.angle err [deg] 13.569 27.103 15.283

RMSE head. angle err [deg] 6.594 11.050 5.321

IACA control input [deg] 11.339 14.092 9.540

Oscillation KPI 0.723 0.653 0.561

Table D.4: KPIs for Lap 1 at velocity 0.6 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.023 0.038 0.024

RMSE lat.err [m] 0.008 0.011 0.007

Max head.angle err [deg] 12.387 11.575 10.656

RMSE head. angle err [deg] 7.376 7.279 6.711

IACA control input [deg] 12.156 12.632 12.561

Oscillation KPI 0.669 0.416 0.397

Table D.5: KPIs for Lap 2 at velocity 0.6 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.026 0.024 0.024

RMSE lat.err [m] 0.009 0.009 0.005

Max head.angle err [deg] 14.385 11.520 8.106

RMSE head. angle err [deg] 7.685 6.894 5.466

IACA control input [deg] 12.060 12.541 12.634

Oscillation KPI 0.759 0.415 0.364

Table D.6: KPIs for Lap 3 at velocity 0.6 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.030 0.142 0.061

RMSE lat.err [m] 0.011 0.047 0.017

Max head.angle err [deg] 13.036 28.735 18.654

RMSE head. angle err [deg] 7.316 12.860 6.158

IACA control input [deg] 11.479 16.941 11.234

Oscillation KPI 0.881 1.372 0.767

Table D.7: KPIs for Lap 1 at velocity 0.7 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.039 0.038 0.035

RMSE lat.err [m] 0.014 0.018 0.011

Max head.angle err [deg] 16.109 16.731 16.362

RMSE head. angle err [deg] 8.209 10.407 7.463

IACA control input [deg] 12.265 13.467 13.506

Oscillation KPI 0.843 0.945 0.970

Table D.8: KPIs for Lap 2 at velocity 0.7 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.039 0.028 0.024

RMSE lat.err [m] 0.015 0.014 0.010

Max head.angle err [deg] 13.142 13.425 11.726

RMSE head. angle err [deg] 8.498 8.771 7.297

IACA control input [deg] 12.117 13.133 13.101

Oscillation KPI 0.854 0.807 0.769

Table D.9: KPIs for Lap 3 at velocity 0.7 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.056 0.151 0.113

RMSE lat.err [m] 0.019 0.038 0.032

Max head.angle err [deg] 17.703 25.096 18.306

RMSE head. angle err [deg] 7.083 9.684 6.122

IACA control input [deg] 11.696 13.823 15.398

Oscillation KPI 1.060 1.173 0.898

Table D.10: KPIs for Lap 1 at velocity 0.8 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.061 0.084 0.081

RMSE lat.err [m] 0.020 0.029 0.025

Max head.angle err [deg] 16.464 29.828 22.789

RMSE head. angle err [deg] 7.713 11.279 10.338

IACA control input [deg] 12.368 16.636 14.712

Oscillation KPI 0.874 1.351 1.277

Table D.11: KPIs for Lap 2 at velocity 0.8 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.052 0.046 0.040

RMSE lat.err [m] 0.021 0.016 0.012

Max head.angle err [deg] 17.638 16.656 14.092

RMSE head. angle err [deg] 7.953 7.434 6.324

IACA control input [deg] 12.383 13.490 14.084

Oscillation KPI 1.024 1.068 0.847

Table D.12: KPIs for Lap 3 at velocity 0.8 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.087 0.240 0.193

RMSE lat.err [m] 0.032 0.064 0.070

Max head.angle err [deg] 23.235 30.358 43.255

RMSE head. angle err [deg] 8.678 11.927 14.928

IACA control input [deg] 11.859 15.383 16.995

Oscillation KPI 1.114 0.832 0.932

Table D.13: KPIs for Lap 1 at velocity 0.9 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.083 0.087 0.086

RMSE lat.err [m] 0.033 0.032 0.037

Max head.angle err [deg] 24.065 22.841 22.621

RMSE head. angle err [deg] 9.227 10.475 12.301

IACA control input [deg] 12.709 14.625 14.911

Oscillation KPI 0.936 1.165 1.193

Table D.14: KPIs for Lap 2 at velocity 0.9 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.073 0.066 0.060

RMSE lat.err [m] 0.026 0.034 0.019

Max head.angle err [deg] 17.425 23.768 20.344

RMSE head. angle err [deg] 7.610 10.253 7.079

IACA control input [deg] 12.846 14.489 14.050

Oscillation KPI 0.886 1.021 0.714

Table D.15: KPIs for Lap 3 at velocity 0.9 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.109 0.202 0.297

RMSE lat.err [m] 0.039 0.066 0.067

Max head.angle err [deg] 23.917 21.697 22.461

RMSE head. angle err [deg] 8.803 10.155 9.077

IACA control input [deg] 12.058 13.379 13.118

Oscillation KPI 0.945 0.319 0.300

Table D.16: KPIs for Lap 1 at velocity 1 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.102 0.109 0.098

RMSE lat.err [m] 0.048 0.038 0.035

Max head.angle err [deg] 22.121 21.818 23.588

RMSE head. angle err [deg] 10.254 8.866 9.105

IACA control input [deg] 12.882 14.251 14.128

Oscillation KPI 0.943 0.420 0.407

Table D.17: KPIs for Lap 2 at velocity 1 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.088 0.075 0.079

RMSE lat.err [m] 0.039 0.026 0.025

Max head.angle err [deg] 24.573 21.184 20.075

RMSE head. angle err [deg] 9.132 8.739 8.791

IACA control input [deg] 13.358 13.412 13.516

Oscillation KPI 0.876 0.342 0.363

Table D.18: KPIs for Lap 3 at velocity 1 m/s, eight trajectory
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Experimental KPIs

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.229 0.320 0.291

RMSE lat.err [m] 0.074 0.102 0.098

Max head.angle err [deg] 28.661 34.034 30.174

RMSE head. angle err [deg] 9.972 14.083 12.453

IACA control input [deg] 12.594 14.475 12.709

Oscillation KPI 0.962 0.351 0.291

Table D.19: KPIs for Lap 1 at velocity 1.2 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.236 0.116 0.179

RMSE lat.err [m] 0.115 0.047 0.056

Max head.angle err [deg] 32.317 28.034 34.791

RMSE head. angle err [deg] 14.999 12.119 14.495

IACA control input [deg] 14.455 14.890 15.851

Oscillation KPI 0.949 0.557 0.709

Table D.20: KPIs for Lap 2 at velocity 1.2 m/s, eight trajectory

KPI PP with LQR EMRAC EMRAC-NN

Max lat.err [m] 0.203 0.139 0.145

RMSE lat.err [m] 0.091 0.051 0.051

Max head.angle err [deg] 31.582 23.641 24.384

RMSE head. angle err [deg] 12.627 10.422 11.477

IACA control input [deg] 14.401 14.555 14.614

Oscillation KPI 0.958 0.540 0.566

Table D.21: KPIs for Lap 3 at velocity 1.2 m/s, eight trajectory
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