POLITECNICO DI TORINO

Master’s Degree in Computer Engineering - Embedded
systems

Master’s Degree Thesis

An Efficient Hardware Accelerator for
Class Incremental Deep Neural Networks

Supervisors Candidat €
Prof. Guido MASERA

Eugenio RESSA

Dott. Alberto MARCHISIO

December 2023

Abstract

Machine learning (ML) and neural networks (NN) have great potential in many
fields, including the classification of images, sounds, signals, etc. Some recognition
and classification tasks, such as speech and image recognition, would not be
possible with classical algorithms, but only through ML algorithms. However, ML
algorithms are very heavy from a computational, memory and energy consumption
point of view, which therefore makes them unsuitable for embedded systems, which
are equipped with processors in the order of MHz and a few MB of memory. .
For this reason, many HW accelerators have been developed, which manage to
maintain low power consumption and reduce computation times by hundreds of
times. Nonetheless, these accelerators are static in the tasks they can perform,
in the sense that they cannot be trained further to learn and therefore increase
the number of executable tasks, without forgetting the previously learned tasks.
This is where studies on Continual Learning (CL) arise, i.e. the ability to increase
the quantity of accelerator tasks that can be performed, such as, for example,
the number of images that can be recognized and classified in image recognition.
Studies on CL have proposed various algorithms that allow the NN to continue
training with new tasks, preventing it from forgetting previously learned tasks.
One of these, GDumb, managed to obtain among the best results on datasets
such as CIFAR 10,100 and MNIST, saving the training images in a homogeneous
number: in the memory designed to save a part of the training data, each class must
have the same number of images, so that after a training cycle, the network will
learn the various tasks equally. The objective of this thesis is therefore to develop
a general accelerator for image recognition capable of increasing the number of
recognizable classes, using the GDumb algorithm. Image classification occurs using
weighted convolutional algorithms, whose weights are optimized and trained to
achieve the best possible accuracy. In the case of a class increase request to be
acknowledged, an optimization loop will be executed to re-train the weights. The
accelerator integrates a series of multiply and accumulate, memories designed to
store weights and images for training, a control unit that coordinates the inference
and training phases. The implementation of the proposed accelerator, synthesized
using a 65nm CMOS technology node using the ASIC design flow, achieves 6x
reduction of training and inference time, compared to the original software-level

algorithm running on a NVIDIA Tesla P100 GPU

Acknowledgements

Giungendo alla fine di questo viaggio, di questa trasformazione, non posso che
essere contento di come sia stato.

Felice perche pieno di bei ricordi, di sfide e di momenti indimenticabili.

Ognuno di questi ricordi ¢ associato a persone a me care, che voglio qui ringraziare,
per esser stati compagni di viaggio.

Ai miei genitori e nonni, fonte inesauribile di forza e sostegno, amore e consiglio,
sempre presenti, e per questo, insostituibili.

Alla mia meta, che ha diradato le nubi e indicato la via, portando gioia anche nei
momenti piu duri.

Agli amici, vecchi e nuovi che siano, che han portato risate e spensieratezza, auguro
che il tempo non rompa alcun legame.

E per concludere, un ringraziamento va a chi mi ha seguito in questi ultim mesi,
portando a conclusione questo percorso.

A tutti voi,
Grazie.

11

Summary

Introduction

In recent years, Deep Neural Networks (DNNs) have been deployed in several
applications, like computer vision, finance, healthcare, and robotics. A common
practice is to train a DNN on the desired task using the training set, and then deploy
the trained model on the target for inference. In this way, it is possible to conduct
DNN training on large data centers (e.g., using high-end GPUs), and then conduct
resource-constrained optimizations (e.g., compression) to deploy DNN inference
on autonomous systems. However, this practice limits the dynamic capabilities
of DNNs that cannot adapt to new tasks or a distribution variation of the input
data within the same task. In this regard, the Continual Learning (CL) paradigm
enables the dynamic change of DNN parameters to evolve and learn new tasks
(or new classes). The main goal of CL-based algorithms is to avoid Catastrophic
Forgetting (CF), i.e., the DNN should maintain the knowledge of how to perform
the previous tasks while learning new tasks. Since they require the execution of the
backpropagation and parameters update, CL algorithms impose more demanding
computation and memory resources than traditional systems that conduct only
inference. Hence, it is extremely important to execute CL algorithms in an efficient
manner to be able to deploy them onto resource-constrained autonomous systems.
Most of the existing architectures and optimizations for DNNs focus only on
optimizing the inference process. Therefore, they cannot execute the backward
operations required by CL algorithms. Some architectures that have been proposed
to accelerate the training can be adopted to conduct backpropagation computations,
but they do not support the execution of CF-avoiding policies.

Proposed Solution

To overcome these limitations, I propose TinyCL, a hardware architecture that can
efficiently execute CL operations on autonomous systems. The system is composed
of a Convolutional Neural Network (CNN) able to execute image classification, and
a memory, used to retain old training samples to be used for further training, in
case new tasks have to be learned.

Figure 1 shows an overview of the system, where a Processing Unit (PU) is
connected to 4 different memories. A Training Data Memory containing a subset
of the original training memory and implementing the GDumb CL method. The
GDumb expects that in the memory the number of training samples is homogeneous
among all classes. The Kernel Data Memory contains the parameters of the CNN
and the training process will tune them. In the Gradient Memory, the Gradient
Propagation is saved during the Stochastic Gradient Descendent (SGD) algorithm

II1

Control Unit Gradient Manager
Multi-
i Kernel Manager —>| Operand

— Partial Feature Adder
), Memory Feature Manager
Gradient Gradient Address|
Memory

Manlager
Figure 1: Overview of the TinyCL ar- Figure 2: Overview of Processing Unit
chitecture architecture

Kernel Data
Memory

FWBW

Training Data | FW
Memory

Feature Address
Manager

Kernel Address
Manager

Datal

PEEPEEHEE ™
TPPTTT

[CRTL]

] Hl Muiti-Adder Mode)
=n] i | Partial
ﬁiﬁﬁm BRI
Multi-Operand Made |}

|
+
Multi-Op Out Partial Sum Out

Figure 3: Overview of MAC architecture.

execution used to train my CNN. The Partial Feature Memory is used to temporarily
save the output of each layer operation, in order to be used again during SGD
operation. The CU manages the data transfer between the PU and the memories.
It is also in charge of dynamically adapting the PU to accept different feature
sizes, necessary to execute more convolution in series. The PU is composed of
nine Multiply and Accumulate, a multi-operand adder, the managers that prepare
the Gradient, the Kernel and the Feature to be forwarded to the MACs, and the
address managers to address the Gradient, the Kernel, and the Partial Feature
memories. Each MAC is composed of 8, 16-bit fixed-point multipliers and 8, 16-
bit fixed-point adders. The adders’s connection is dynamic, depending on which
operation is executed. During Forward and Gradient Propagation computation,
the results of the multiplications need to be summed together in order to execute a
3D convolution. Instead, during Kernel Gradient computation, each multiplication
refers to a different kernel gradient executed in parallel, and so the 8 adders are
connected in parallel, in order to execute 8 different additions. During Forward
operation, the multi-channel sliding window is convoluted with a 3D kernel: 72
pixels are multiplied with 72 kernels and summed together each clock cycle, in
order to compute one pixel of the output feature. If the input feature has more
than 8 channels, the operation is repeated. Due to data reuse (6 pixels out of 9
are shared between two consecutive sliding windows) at each c.c. only 3 pixels
are read. The Gradient propagation is computed by executing a convolution with
the input gradient propagated from the previous layer and the kernel. The MACs
usage is in Multi-Operand mode and 3 pixels are read at each c.c. To compute the
Gradient of the Kernel, each MAC computes and accumulates the product between
the Input Feature and the propagation of the Gradient. Each MAC computes in

v

parallel the gradient of 1 pixel of the kernel for 8 channel. A the end of the process,
the Kernels are updated with a scaled value of the Kernel Gradient (scaled by the
learning rate).

Results

The TinyCL HW accelerator where designed in SystemVerilog and synthesized using
a 65 nm library. To validate the behavior of the SV, a Python code where developed
to test the Convolutional operations. The Python code was tested implementing 2
CNN: a Double Layer (DL) Convolutional layer + ReLLU + Convolutional Layer
+ ReLU + Dense Layer + Softmax and a Single Layer (SL) Convolutional Layer
+ ReLU + Dense Layer + Softmax. In both models, the data format was 16-bit
fixed point, as in the HW. The accuracy of the software was compared with the
same model developed using the TensorFlow library and the results are available
in Table 1.

Architecture | dataset | training epoch | Accuracy

SL (mine) | CIFARI10 10 38%
SL (TF) CIFARI10 10 40%

DL (mine) | CIFARI0 10 49%
DL (TF) CIFARI10 10 54%

Table 1: Comparision between my Python code implementing a convolutional
NN from scratch and the same NN of TF.

The TinyCL has a die size of 4.72 mm?, a power consumption of 86 mW, and
a critical path time T, of 3.87 ns. The HW acceleration is compared to the
equivalent software-level implementation on TensorFlow of the DL model, running
on an NVIDIA Tesla P100. In a CL scenario with 1000 samples Training Data
memory, a 10 epoch training was performed in 40 s by the GPU, while TinyCL
took 0.86 s, with a speed-up of 46x.

Conclusions

In this work, I show how we can speed up CNNs by accelerating and optimizing
the Convolution layer operation in a CL scenario. I show how we can reduce Data
memory access by exploiting data reuse. This can reduce data access from 9 to 3
c.c. each. The prefetching and the memories port-wide let the system run without
stalling, despite more than one data location is needed. This architecture leads to
a 46x speed-up of CNNs, thanks to convolutional layer acceleration, compared to
NVIDIA Tesla P100.

Table of Contents

SUMMATY .« . v o o e e e e e e
Introduction
Proposed Solutiono
Results
Conclusions

Introduction

1.1 Target research problems

1.2 Novel contribution

Background and Related Work

2.1 Deep Neural Network in Image Recognition
2.2 Convolutional Neural Network
2.2.1 Convolutional Layer
2.2.2 Activation Layer oL
2.2.3 Batch Normalization Layer
224 Dense Layero
2.2.5 Softmax and Loss Layer
2.3 Continual learning algorithm
2.3.1 DNN Training Accelerators

Software Level Implementation of a CNN supporting CL

Architecture Design

4.1 Early Design Decisions
4.2 Data Quantization
4.3 Top Level Architecture L.
4.3.1 Training Data Memory
4.3.2 Partial Feature Memory
4.3.3 Gradient Memory Lo
4.3.4 Kernel Memory
4.4 Processing Unit oo

441 MAC
4.5 Data Flow
4.5.1 Forward propagation of convolutional operation
4.5.2 Gradient of Kernel of Convolutional operation
4.5.3 Gradient Propagation of Convolution operation
4.5.4 Dense layer computation
4.6 Control Unit
4.7 GDumb control unit L

Simulation and Syntesis
5.1 Hardware validation
5.2 Syntesis timing resultso

6 Conclusion

Bibliography

VII

30
30
31

33

34

Chapter 1

Introduction

Machine learning is an evolving technology that in recent years has been deployed
in several applications, like finance, healthcare, and computer vision. In Machine
Learning (ML) a Deep Neural Network (DNN) is used to elaborate data and to
output an inference. The task of Machine Learning is to tune and optimize the
parameters of the DNN in order to reduce the inference error as much as possible.
This process to reduce the error is called training and one of the most used methods
to train a DNN is called Stochastic Gradient Descent (SGD), where the gradient of
the loss is propagated backward through the DNN in order to change the weights in
order to cause a reduction of the loss. A common practice is to train a DNN using
a training set of images till the DNN reaches a good value of inference accuracy
on another set of images, called Test Set Images. When the training is completed,
it will be used to infer, without further training. In this way, it is possible to
conduct DNN training on large data centers (e.g., using high-end GPUs) in order
to speed up the training, and then conduct resource-constrained optimizations (e.g.,
compression) to deploy DNN inference on autonomous systems [1].

However, this practice limits the dynamic capabilities of DNNs that cannot
adapt to new tasks or a distribution variation of the input data within the same
task. For instance, considering the previous image recognition example, if we want
to increase the number of classes identified from 10 to 20, a new training cycle
shall be executed to reach an acceptable accuracy, using both the old and the
new Training Set Images. In this regard, the Continual Learning (CL) paradigm
enables the dynamic change of DNN parameters to evolve and learn new tasks (or
new classes) [2]. The main goal of CL-based algorithms is to avoid Catastrophic
Forgetting (CF), i.e., the DNN should maintain the knowledge of how to perform
the previous tasks while learning new tasks [3].

1

Introduction

1.1 Target research problems

Since they require the execution of the backpropagation and parameters’s update,
CL algorithms impose more demanding computation and memory resources than
traditional systems that conduct only inference [4]. Hence, it is extremely important
to execute CL algorithms in an efficient manner to be able to deploy them onto
resource-constrained autonomous systems. Most of the existing architectures
and optimizations for DNNs focus only on optimizing the inference process [5].
Therefore, they cannot execute the backward operations required by CL algorithms.
Some architectures [6] that have been proposed to accelerate the training can be
adopted to conduct backpropagation computations, but they do not support the
execution of CF-avoiding policies.

1.2 Novel contribution

To overcome these limitations, we propose TinyCL, a hardware architecture that can
efficiently execute CL operations on autonomous systems. Our architecture reuses
the same processing units for computing the forward and backward computations,
and a specialized control unit dictates the data flow based on the CL policy. In a
nutshell, my contributions are :

e RTL Design of the complete TinyCL architecture, in which multiple Processing
Units execute the computation in parallel and the convolutional sliding window
is designed following a snake-like pattern.

o Synthesis of the TinyCL architecture using the conventional ASIC flow for a
65 nm CMOS technology node.

o Compared to its equivalent software-level implementation on an Nvidia Tesla
P100 GPU, the TinyCL architecture achieves 46 x speedup; compared to other
DNN training accelerators in the literature, the TinyCL architecture achieves
lower latency, power consumption, and area, thus making it suitable for being
adopted on resource-constrained autonomous systems.

e The complete RTL of the TinyCL architecture will be open-sourced for repro-
ducible research.

Chapter 2

Background and Related
Work

2.1 Deep Neural Network in Image Recognition

We can refer to image recognition as the task of classifying an image with a label.
This classification operation called inference, can be seen as a function y = f(z, W)
where y is the inference to which class the image belongs, x is the input image and
W is the set of parameters. As a class, in Image Recognition (IR), we mean what
is depicted by the image: a dog, a cat, or a car, these are classical classes of images
that we would like to identify and classify.

As previously said, we can represent a DNN as f(z, W), where x is the Input
Image, called Feature, that has to be classified, while W is a set of parameters.
Such parameters are no more than numbers (generally decimal numbers) that

Hidden

Input

Figure 2.1: Example of a classical multi-layer DNN

3

Background and Related Work

are multiplied by the pixels of the image. Figure 2.1 depicts a little DNN called
MLP: it is composed of 3 layers where the first is composed of 3 of the so-called
"neurons’, the second layer of 4 neurons, and the third layer of 2. Each of these
neurons can be described as a function f'(x;, W;). The function uses several inputs
and weights to compute an output y, that is forwarded to the next layer. What
exactly these functions are will be seen later. Therefore, by stacking several layers
that compute a function we can build a DNN that shall be able to execute an ML
task. In image recognition tasks, the DNN infer which image is depicted by the
image. As previously said, input data are images represented in RGB or Greyscale
notation, generally normalized to values between 0 and 1. The inference process
takes place by applying f(x, W) to the feature. As output, the NN gives an array
y of cardinality z, where z is the number of classes to be inferred.
y contains the response of the network in the form of an array of probabilities. The
higher probabilities is the inference of the DNN of which class the feature is.
However, to make the DNN infer correctly, the parameter of the DNN must be

@ riddenLoyer (@) Output Layer

Figure 2.2: Inference in image recognition

tuned in order to make the prediction of the DNN ¢ as much equal as possible to
the real result y. Figure 2.2 shows a classic DNN inference operation: as previously
said, the image is used as a matrix and computed by the DNN together with
weights. Suppose that this DNN was trained to recognize 10 different animals
from the images (cat, dog, cow, etc). Suppose that our DNN has to infer a cat,
as shown in Figure 2.2 The inference process of the DNN will output an array of
probabilities yéfg, while the correct answer (supposing the probability of the cat is
at position 0 of the array) is depicted in 2.1.

Yo—9 = (1707070707070707070) (21)

The difference between the inference result and the correct result is called loss and
we could define a first and easy function to compute it, as in 2.2.

9
L= Zyi —Yi (2~2)

4

Background and Related Work

2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a branch of DNNs used in image
recognition tasks. CNNs are characterized by the presence of a Convolutional Layer,
together with other layers like Dense layer, Activation layer, Batch normalization
layer and Softmax layer.

2.2.1 Convolutional Layer

In a Convolutional layer, a multi-channel input feature V' is convoluted with a 4D
kernel K to produce a multi-channel output Z (see 2.3).

Z(i,j, k) = (K, V,8)iju= > V(L (j=1)-s+m, (k=1)-s+n)-K(i,1,m,n)] (2.3)

I,m,n

Applying the Stochastic Gradient Descent (SGD), the computation to propagate
the gradient across layers is a convolution between the previous kernel K and the
gradient GG propagated from the previous layer, as shown in 2.4, while the gradient
of the kernel is computed through 2.5.

0
MK, G,8)iin=———JV,K)=
(? 9 8) 7],]6‘ a‘/l’J’k ()
(2.4)
3 (> (S Km))
Im st.(I—1)-s+m=j \n,p s.t.(n—1)-s+p=k \ ¢
0
9(G,V.8)ijki = By J(V,K) =
bk (2.5)

Z Gi,m,n : ‘/},(mfl)-s+k,(n71)-s+l

2.2.2 Activation Layer

Activation functions are functions used to cut useless information. These functions
are applied element-wise after a convolution operation. Taking inspiration from
neurons, the activations function decides if a neuron reached a value enough high
to be valuable.

Figure 2.3 shows the Relu = max(0,z) activation function, which filters all
negative values to zero, maintaining the positive as they are. This behavior is
derived from one of the neurons: when the sum of the input signals is strong enough
to overcome a barrier, the neuron will “fire”; i.e. it got activated.

5

Background and Related Work

glz) = max{0, z}

Figure 2.3: ReLU activation layer

2.2.3 Batch Normalization Layer

To increase speed and reduce the difficulty of training a DNN, [7] created the Batch
Normalization Layer. Previously we could not use a high learning rate and we
must choose carefully the initialization parameters because of internal covariance
shift, inserting a layer that normalizes the values across the mini-batch will speed
up training because it enables to increase the Learning Rate, without losing the
capability to reach a global minima. The equation 2.6 shows the computation
of the batch normalization layer, where E[z*] and Var[z*] are the mean and the
variance of the pixel ¥ over the mini batch.

o ok — Blz*] (26)
Var|z¥] '

2.2.4 Dense Layer

The Dense layer computes a matrix multiplication between a 1D row matrix [with
a 2D weight matrix W (see 2.7).

i=0
Applying SGD, we can compute the gradient propagation that is a matrix

multiplication between the input gradient dY propagated from the previous layer
and the transpose of the weight (see 2.8).

N
dX; =Y dY, - W], (2.8)
n=0
Then, the gradient of the weights is computed as in 2.9.

6

Background and Related Work

2.2.5 Softmax and Loss Layer

The Softmax Layer is used as the last layer on the DNN, after the Dense Layer, and
before the Loss computation. The DNN shall output an array of values between 0
and 1 representing the probability of the image of the corresponding class.

e
Z]K:1 e

The Softmax function takes as input an array z of K real numbers and normalizes
it into a probability distribution of K probabilities. The sum of the element is
equal to 1 and it tends to maximize the maximum input value. For example, the
Softmax output of (1,2,8) is (0.001,0.002,0.997). As you can see, it assigns most
of the weight to the greater value, increasing the difference with respect to the
other values. To compute the loss out of the Softmax probability we use the cross
entropy loss function shown here 2.11, where the Softmax output vector ¢(x) is
multiplied with the expected value p(z) of the inference.

o(z) = (2.10)

L(p,q) = =Y _ p(x)logq(x) (2.11)

2.3 Continual learning algorithm

The goal of CL, also known as incremental learning, lifelong learning, or sequential
learning, is to gradually learn from different data streams and extend the acquired
knowledge [8]. The data streams can be associated with different tasks that the CL
system can perform. Incrementally learning all the tasks is an NP-hard problem [9].
Moreover, the major issue of CL is represented by CF, i.e., the ability of the
system to perform previously learned tasks degrades over time when new tasks are
added [3]. In the literature, several CL methods have been proposed to mitigate CF.
CL algorithms can be categorized as regularization-based methods, memory-based
methods, and dynamic approaches.

Regularization-based methods apply constraints in the weight update phase to
mitigate CF. Weight regularization methods such as Elastic Weight Consolidation
(EWC) [10] impose a quadratic penalty to selectively regularize the parameters
based on their importance to perform the previous tasks, calculated through the
Fisher information matrix. Function regularization methods like the Learning
without Forgetting (LwF) [11] employ knowledge distillation to learn the training
samples of the new tasks while preserving the knowledge of the previous tasks.

Memory-based approaches, also known as replay-based methods, retrain or
finetune the NN jointly using samples from previous tasks and samples from new
tasks. The Gradient Episodic Memory (GEM) method [12] constrains the parameter
update such that the training loss of each individual previous task does not increase.

7

Background and Related Work

Its variant, called A-GEM [13], ensures that the average training loss for all previous
tasks does not increase. The Incremental Classifier and Representation Learning
(iCaRL) [14] method stores a subset of training samples for each task and jointly
minimizes the training loss for new tasks and the distillation loss for the previously
learned tasks. Experience Replay (ER) [15] combines training with samples of the
new tasks and old samples that are stored in a replay memory. The Maximally
Interfered Retrieval (MIR) method [16] selects the samples from the old tasks
that would have the largest impact on the forgetting property. The Gradient-
based Sample Selection (GSS) strategy [17] maximizes the gradient diversity of the
stored sample subset. Greedy Sampler and Dumb Learner (GDumb) approach [18]
greedily stores training samples in the memory buffer to maintain a balanced class
distribution. The replay data can also be generated at runtime by using the Deep
Generative Replay (DGR) method [19], where a generator creates synthetic samples
that contain previous tasks knowledge.

Dynamic approaches dynamically increase the DNN architecture to learn fea-
tures of new tasks. The Continual Neural Dirichlet Process Mixture (CN-DPM)
method [20] retains the knowledge of the previous tasks by building a mixture of
experts where a new model is trained for a new task, while the existing models for
the previous tasks are not modified. The Progressive Segmented Training (PST)
method [21] focuses on a single network and, when training on a new task, it divides
the parameters into two groups according to their importance to perform that task.
The group of important parameters is frozen to preserve the current knowledge,
while the other group is saved and can be updated when learning future tasks.

Our architecture supports memory-based approaches due to the simplicity of
their hardware implementation, but it can be easily extended to execute other CL
algorithms.

2.3.1 DNN Training Accelerators

Various hardware architectures implemented in ASIC or FPGA for accelerating
DNN training have been proposed in recent years. The work in [22] is composed
of heterogeneous processing tiles to efficiently execute different operations with
diverse computational characteristics. The DeepTrain architecture [23] deploys
heterogeneous programmable data flows to achieve data reuse during different
training operations. The Gist architecture [24] utilizes layer-specific encoding
schemes to exploit redundancy in DNN training by storing the feature maps
computed during the forward pass and reusing them in the backward pass. The
SIGMA accelerator [25] supports irregular sparse workload. To efficiently handle
sparsity, the Procrustes accelerator [26] employs a dense tensor dimension for
performing arithmetic operations that involve sparse tensors. The LNPU architec-
ture [27] implements fine-grained mixed precision to perform training. The HNPU

8

Background and Related Work

architecture [28] supports low-precision training by dynamically configuring the
fixed-point representation. The FlexBlock architecture [29] supports multiple block
floating-point precisions. The ETA architecture [30] performs training based on
the proposed piecewise integer format. The work in [31] trains the DNN through a
two-step process that consists of sample collection and policy update for continuous
control of the behavior.

The above-mentioned architectures allow the execution of standard training in
an efficient manner. However, the execution of CL algorithms requires additional
abstraction layers to correctly manage the workload.

Chapter 3

Software Level
Implementation of a CNN
supporting CL

Different software implementations were developed of the previous CL methods,
in order to find the one reaching the higher accuracy. [32] compared them in
accuracy, forgetting, and time metrics. The article research came out with the
results summaries in Figure 3.1 which is reported here from [32]. The GDumb
method gives the best accuracy, at the cost of a higher time. The method suggests
that, in the class incremental settings, to diminish forgetting and maintain a high
accuracy while learning new tasks, is enough to save a part of the previous training
feature in memory and train again the DNN each time new tasks have to be learned.
Thus, each time new tasks come and a training cycle starts, we train the network
with the current new training feature and the old training features. A Python
implementation of the GDumb approach where developed here by the researchers:
https://github.com/drimpossible/ GDumb.

I developed a CNN Python implementation of the layers previously seen in 2.2:
Convolutional layer, Relu, Dense Layer, Batch Normalization Layer, Softmax, and
Loss layer. The Python code implements from scratch these functions, in order to
test the HW accelerator. The Python code was also implemented to test the data
quantization to use in the HW accelerator. To avoid using a 32-bit FP arithmetic
(as used generally by classical ML library in Python), we cut the data size to 16
bits using a fixed point format with 4 bits as the integer part and 12 bits as the
fractional part.

10

Software Level Implementation of a CNN supporting CL

Metric = Accuracy(%) Metric = Forgetting(%) Metric = Time(s)
5000
20 60
50 4000
215
2 40 3000
% 30
s 1o 2000
20
5
i -l I
0 0 o M =— ——
60
20
50
N 6000
215 40
©
g 4000
15 30
= 10
c
= 20
= 5 2000
T (1]]| i
0 0 l o Mmm e —
60
30
50 8000
25
220 40 6000
& 30
8 15 4000
10 20
Nilhin -plllifel ~
o o I o mlimm
“S)q.‘xg} Q*cg\‘«@&(: & ¢®¢®Q@ Q®c9f9\‘;‘< \\‘\O \)\g&vg@ Q?Q§¥ ‘9\@2 “'&0@@
& GO b OQ
Method Method Method

EEN GDumb M iCaRL BN MR HEN ER BN CN-DPM HEE GSS W LwF B0 A-GEM [0 EWC++ M Finetune

Figure 3.1: Results of different CL methods in 3 metrics: accuracy, forgetting
and time.

11

Chapter 4

Architecture Design

A CNN could be implemented in different architectures. Hence, a little analysis
will be carried out, to analyze and motivate which architectural choice could be
made and why.

4.1 Early Design Decisions

VGG-16 CNN Architecture

Conv

Conv
Conv-4
FC-6 FC-7 FC-8
145 14 % S12 T 1x1x4096 1x1x1000

28 x 28 x 512

TxTx512

(=) convolution+ReLU

Figure 4.1: Schematic view of a VGG16 CNN

As Figure 4.1 shows, the DNN takes as input a feature x and the first layer
computes an output y = f(z), then the second layer computes y = f (y) = f (f(x))
and so on so forth. Considering that in CNN, f(x) is often a Convolution operation,
the CNN can be simplified to a series of Convolution operations executed in series.
However, this convolution operation has to support different feature sizes: as
depicted in Figure 4.1, the feature size changes while going through the CNN. To

12

Architecture Design

develop the Convolutional network, I came up with 2 types of network

o Static: each software layer corresponds to a physical hardware level. A para-
metric Convolutional module is instantiated by several times and connected
sequentially in order to create a CNN. Each instantiation receives different
parameters in order to compute correctly the different feature sizes. In such
a way a pipeline operation will be preferred to have a higher HW usage,
otherwise only one "layer" will be used, while others will be idle.

e« Dynamic: Only one Convolutional layer is physically instantiated and it
cyclically computes convolution over one feature at a time, adapting the logic
to the different sizes. This type of network is more efficient because the single
layer is always in use. However, it will involve a more complex control unit.
This is because having different sizes means different address spaces, different
numbers of iterations, and so on.

Applying the mini-batch principle, the network can be parallelized. As previously
seen, we can avoid training one sample at a time. Updating the weights of the model
after a batch of samples instead of one has been seen to improve the estimation
of the gradient. Also, due to that, we can parallelize the operation of training,
summing the derivative of each parameter of each batch and updating the weights
at the end of the process. Our processing unit can be :

o Parallel: create a copy of the HW that perform training a number of time
equal to the batch size. Running on each copy an image of the batch and then
sum all the derivatives of the weights.

o Pipelined: Using a static network, we can input a feature to the NN as soon
as the previous feature concludes the first layer computation.

Different architecture can be used:

« a parallel static architecture where each layer is statically instantiated
and the number of parallelizations is given by batch size. This is the easiest
to implement and the fastest, but it has low HW usage and high area.

Area = batchSize - Areajayer - Niayer-

,I’layer : Nlayer
batchSize

« a parallel dynamic architecture where each layer is dynamically instanti-
ated. In this architecture, only one “ layer “is instantiated and is dynamically
set for the feature size. High HW usage, the same speed as before but higher
complexity.

Time/sample :

Area = batchSize - Areaqyer.

13

Architecture Design

,I‘layer . Nlayer
batchSize

« a parallel static pipelined architecture where each layer is statically
instantiated as in parallel static architecture, but in this case, each layer
is pipelined, that is when the first feature completes the computation of the
first layer and start the computation of the second layer, a second feature is
computed in the first layer. Higher throughput, but high area and complexity.

Time/sample =

Area = batchSize - Areajqyer - Niayer-
Time/sample = layerDelay - Nigyer + layer Delay - batchSize

The best trade-off between area and speed is the parallel with dynamic instanti-
ation.

As previously said, several accelerator has been developed to execute on-chip
training but, as best as our knowledge, none of them support CL methods and
catastrophic forgetting policies. Therefore, my accelerator will be composed of 2
parts:

e A memory, which applies CL. memory-based approach: this memory, paired
with a controller, will save a part of training features, usable in the future
to re-train the CNN and avoid catastrophic forgetting on previously learned
tasks.

e A trainable CNN Our NN will implement a Convolutional NN. The RTL
system is developed in a general manner, in the sense that it can be configured
to implement several layers with different sizes, implementing both forward
and feedback computation. Between each layer, a ReLU is present. Due to
lack of time, the Dense Layer is not implemented in the RTL, but it will
described its implementation in the architecture. Despite I wasn’t able to
physically implement it, I have considered it in the design of the architecture
and I will report how the Dense Layer can be implemented using the same
HW used by Convolution. As shown here, 2.6, the Batch normalization layer
is hard to implement, and this is only the forward operation. Several studies
propose different alternatives to batch normalization:

— A mixture of normalization of weight, dropout, LR adjustment, and
gradient clipping [33].
— A less computationally expensive normalization algorithm [34].
— Initialize the NN, normalizing the weights [35].
I decided to implement gradient clipping [33], for ease of execution and also

because it suits well with the data format I chose, which will be explained in
the next section.

14

Architecture Design

4.2 Data Quantization

As tested by my Python implementation of a CNN from scratch, a high-precision
floating point is not necessary for training DNNs (the results of the tests will be
reported in Chapter 5). This is because excessive precision can be also dangerous
and slow down the learning process. Fixed point data format is preferred to
floating point due to ease in multiplication and addition algorithm: multiplication
and addition are quite similar to the integer ones. Floating point, also, will be
difficult to be used in a multi-operand adder, because we have to perform exponent
adjustment. Also, using fixed point arithmetic instead of floating point we will
speed up the critical path, allowing us to use a higher clock. For this reason, a
16-bit fixed-point (4-bit integer + 12-bit fractional data) format is used. The size
of the integer part has been chosen according to [33], which suggests using a value
clipping of 5 to avoid an Exploding Gradient caused by the lack of a normalization
layer.

4.3 Top Level Architecture

777777777777777777777 Kernel Data | - Control Unit
Memory
: le E IBW ;
Training Data | FW . . FW Partial Feature
Processing Unit
Memory FW, BW Memory
BWl IBW ‘
Gradient |
Memory

Figure 4.2: Top level architecture. We can see the 4 memories, the PU and the
CU.

Generally, a CNN to perform only forward needs to save only its parameters.
But in our case, we need to save other data.

4.3.1 Training Data Memory

The GDumb method is a memory method that saves old training samples used to
train the network, just in case new classes come to be trained and a new training
cycle has to be performed. For this reason, memory is needed to save such samples,
which can be updated by adding more samples of new classes and popping samples
of old classes so that the number of samples for each class remains equal. To
increase data memory throughput I save the 3 channels of RGB image in 3 different

15

Architecture Design

memory. In this way, in one c.c. we can read 3 channels. Also, we will use memory
with a port width equal to 128 bits: thus, at each cc, we will read 8 pixels.

4.3.2 Partial Feature Memory

During inference, each layer applies a function f(k) to the input feature, computing
an output feature. During backpropagation, the derivative of the output with
respect to weights is always a function of the feature. For this reason, for the
Convolutional layer, we have to save the input feature during inference, to be used
backward. Also in this case, to increase throughput we will use one memory for
each feature channel and each memory will have a port width of 128 bit, for the
same reason as for training data memory.

4.3.3 Gradient Memory

To save temporarily the gradient of the convolution to be used between 2 layers,
a couple of memory has to be used in order to do this. The memory shall be 2
because 1 is not enough: in a multi-channel convolution operation, the pixel we
are calculating will overwrite a pixel we will need in further calculus.

4.3.4 Kernel Memory

To save weights to be used during convolution inference and gradient propagation,
memory is allocated to kernel values. Using 4D kernel K,; ; in the Convolutional
Layer, we use memories of 256 bits where we can save the 9 kernel value. Also
here, memory is split according to the input channel and output channel, in order
to increase the throughput.

4.4 Processing Unit

Our processing unit, depicted in Figure 4.3, includes 9 parallel multiply and
accumulate (MAC) blocks, each of them executing 8 multiplication and 8 addition
in parallel. 3 data manager units (Gradient Manager, Kernel Manager, and Feature
Manager) are designed to drive the data flow coming from external memory to the
MAC:s.

3 address managers (Gradient Address Manager, Kernel Address Manager, and
Feature Address Manager) compute the address of the convolution:

o The Feature Address Manager generates the address of the output feature.
This address is used in the Forward of Convolutional operation to address
the output feature pixel to be written. It is also used as a base address to

16

Architecture Design

’Gradient Manager }— MAC||MAC||MAC
Multi-
’ Kernel Manager } » | MAC||MAC||MAC Operand
Adder
’ Feature Manager }— MAC||MAC||MAC
Gradient Address| | Kernel Address | | Feature Address
Manager Manager Manager

&

Figure 4.3: Architecture of Processing Unit

compute the address for the input feature. More detail will be given in the
subsection of Forward of convolution operation. This address is also
used in the kernel gradient computation (as explained here 2.5 to address
the output feature pixels that have to be read. More detail will be given in
the subsection of Gradient of kernel of convolutional operation. This
address is computed according to the actual size of the feature. It follows the
snake movement as explained in the subsection of Forward of convolution
operation,

The Kernel Address Manager generates the address for kernel memory and
is used in gradient propagation of convolution operation and Forward
of convolution operation. It read the 9 kernels for 8 input channels 1 time
each convolution.

The Gradient Address Manager computes the gradient address for both
feedback computations. Further information will be given in the corresponding
subchapter

Feature Manager The Feature Manager rearranges the 3 pixels coming from
the CU buffers in order to fill correctly the MAC for Forward computation
and Kernel Gradient computation. When I talk about the 3 pixels, I am
referring to 8 channels of 3 pixels. For the sake of simplicity, I talk about 3
pixels, but I'm referring to 8 channels of these 3 pixels. In both operations,
the manager operates as Figure 4.4 shows The 3 pixels (we use 9 registers of
8 - 16 = 128bits where each register contains the values of 8 channels of the
pixel) can be loaded in 3 ways: from left, from right, or from bottom. When
we are loading and computing an output feature pixel of an even row, in the
snake movement I'm proceeding to the right, the 3 pixels are loaded into the
right registers. In the case of a spare row, the pixels will be loaded into the
left. In case we are moving to the next row, the three pixels are loaded from

17

Architecture Design

r
\ J
\ J
A
Y
r
\. J

Figure 4.4: Registers manager for forward execution

the bottom registers. These registers are connected among them. When we
proceed to the right, the content of the registers is moved to the left. When
we are moving to the left, the content or registers are moving to the right.
When we move to the bottom, the content of registers moves to the top. All 9
registers are connected to the output, and the register’s values are output at
each cc.

o Kernel Manager The Kernel Registers are used during Forward and Gradient
Propagation computation. During Forward computation, the Kernel Register
is a regular register, which saves the values of the kernel received at the
beginning of a convolution operation for the computation of one channel of
the output feature.

During Gradient Propagation computation, the eq. 2.4 can be seen as the

00 | 01 | 02 22 | 21 | 20
10 | 11| 12 |::> 12 | 11 | 10
20 | 21 | 22 02 | 01 | 00

Figure 4.5: The kernel is rotated by 180°

Convolutional operation between the gradient and the kernel matrix rotated
by 180°, as Figure 4.5 shows. During this computation, the kernel saved in
the registers described before is rotated by 180°.

o Gradient Manager The Gradient Manager manages the gradient during

18

Architecture Design

Kernel Gradient computation and Gradient Propagation computation. During
Kernel Gradient computation, 8 channels of one pixel are read at each c.c.
They are saved in a structure of register, as shown in Figure 4.6. At the
beginning of Kernel Gradient computation, the registers are reset and the first
pixel is saved in the first register. At each c.c. a new pixel is saved into the
register, while the previous is moved to the right. Further description will
be given in the section dedicated to Kernel Gradient computation. During

Lo =l

[e B

QUTIO] QUT[] OUT[2]

Figure 4.6: The pixel is saved in the first register, At each c.c., a new pixel is
loaded and saved in the first register, while the previous one is saved in the next
one. Each time we are at column index zero, the 3 registers are reset

Gradient Propagation computation, the Gradient Manager is composed of
9 registers working in the same way as the Feature Register during forward
computation and which structure is depicted in Figure 4.4.

4.4.1 MAC

EELEENT

CRTL

Multi-Adder Mode
1 Partial

++++++++m

Multi-Op Out Partial Sum Out

Datal

Figure 4.7: Architecture of a MAC. The connections between the adders are
dynamics, in order to create a multi-operand adder or a multi-adder structure.

The MAC is composed of 8 adders and 8 multipliers. The 8 adders can be
organized in two modes:

19

Architecture Design

e Multi-Adder mode: Used during kernel gradient calculation, they sum the
8 multiplication results with 8 input values (PARTIAL SUM in the image).
In weight gradient calculation, we parallel compute 8 channels at a time, so
each time we have to multiply 8 channels of one input feature pixel with one
channel of the input gradient. The results of these 8 multiplications will be
summed with the previous multiplication done. More explanations will be
provided in the weight gradient part

o Multi-Operand mode: During forward and gradient propagation, we com-
pute 8 input channels at a time. In this case, the output is the sum of this 8
input channel (3d convolution) so we configure the 7 adder to operate as a
multi operand adder.

To reduce the loss of information, the results of the multiplication are not cut and
the adder are 32-bit adder. After the addition phase, the reduction is applied to
the 16-bit

4.5 Data Flow

4.5.1 Forward propagation of convolutional operation

N| FEATURE
Y] MANAGER
FEATURE MAC
IN

MAC MAC A id
KERNEL
MANAGER

FEATURE
ouT

=<

AC

B

KERNEL

H
O
=<

AC IAC

7

A

DADDA 9

Figure 4.8: Forwand computation detail

In forward operation, a multi-channel input feature has to be 3d convoluted
with a 3d kernel to create a single pixel in the new feature.

Z(i,j, k) =c(K,V,s)i,jk= > [V, —1) - s+m,(k—1)-s+n)K(i,l,m,n)]

l,m,n

To create more channels in the output feature, more 3d kernels are used. Using
the MAC earlier explained, we use 9 instances of them to parallel compute a 8x3x3

20

Architecture Design

3d convolution. To output a pixel of the output feature, 8x3x3 input pixels (a
3x3 submatrix for each channel) are convolved with an 8x3x3 matrix of weights
(kernels). Most of the input pixels, however, are part of the convolution of 9 output
pixels (for each channel out). I decided to maintain part of the previous pixel to
be used to the next pixel calculation. This because:

out __ zn in in
o PO = F ki Fly kg F Ko+ Fiy K+ F g Ko +
mn m
F;+17J+2 k1+17]+2+F’z+2] Kivog + Fito i - Kivagin + Fitg o - Kiyajio

out in in in
° Fz g+l — sz+1 ki i T Fzgﬂ k; J+1 Tt sz+3 ki 1,j+2 + Fz+1 J+1 kH—LJ + F+1 J+2°

Kivrjo+Fi s i jrot Fil - kivo + Fiy o kiva i+ FiTy s Kiva o

The above expression shows how 6 pixels are still used for the next convolution
operation.

in in n in in n
E ,J+1 Fz ,J+20 ‘Fi—l-l,j—{—h E+1,j+27 F;+2,j+17 ‘Fi+2,j+2

When we reach the final pixel of a row and move to the next row, we do not restart
from column 0. Instead, we start decreasing the column counter. In this way,
always 6 pixels are reused. In such ways, for each output pixel, we have to read 3
pixels for 8 channels (16 bits each pixel for 8 channels) and write one value. This
is shown in Figure 4.8, where 3 new pixels are loaded each cycle from the input
feature into the Feature Register, in which the 3 pixels of the previous 2 reads
are saved (at each cycle, the 6 most recent pixels out of 9 stored are saved and
3 new are loaded). These 9 -8 (9 values for each input channel) are then sent
to the 9 MAC. Each MAC takes 8 channels of one pixel and is multiplied for 8
channels of the one pixel of the kernel. The 9 values are then summed together
in a 9 operand Dadda and output the new pixel. If our Input Feature has more
than 8 channels (like 16,32, etc...), this operation is repeated and the results of the
Dadda operation are accumulated till all the input channels are processed. This is
done for the whole output feature.

The address to read the pixels and the kernels and to write out the new feature
is generated by the Feature Address Manager and the Kernel Address Manager.
This address manager uses the dynamic size given by the CU as a bound of the
counter used for column, row, and channel. When the column counter reaches
the dynamic size, it will not be zeroed due to snake movement, but it will be
maintained and increased by one-row address. This "snake movement" is shown in
Figure 4.9. When the end of the matrix is reached, the channel counter is increased.

21

Architecture Design

. /

Figure 4.9: Example of snake movement

FEATURE CERNEL
MANAGER
FEATURE GRADIENT
IN

0,0 0.1 0.2

1.0 11 12

20 21 22

GRADIENT

IN N GRADIENT
MANAGER

Figure 4.10: Detail of Kernel Gradient computation

4.5.2 Gradient of Kernel of Convolutional operation

To ease the explanations, the kernel gradient formulation is proposed again (see
4.1)

0

9(G> V75)i7]>k>l = W

J(V7 K) = Z Gi,m,n : ‘/j,(mfl)-erk,(nfl)-erl (41)

where G is the Input Gradient and V is the Input Feature. To compute the
gradient of the kernels, a 2D convolution has to be executed. The Input Gradient
is convoluted with 9 different submatrices of the Input Feature, where each one
is shifted according to the position of the Kernel Gradient it is computing. The
input feature is padded with 2 stripes of zeros on the right and bottom border,

22

Architecture Design

having a matrix with sizes increased by 2 in both dimensions. For example, to
compute the gradient of kernel 0.0, we will have the submatrix [0:16][0:16](the
original non-padded matrix); to compute kernel 1,1 we will have the submatrix
[1:17][1:17] (the feature in cutting the first row and column and using one row of
padding); and so on. The index of the kernels is also used to point which MAC will
be used to compute the gradient, so the gradient of the kernel 0,0 will be computed
in MAC 0.0, kernel 1.1 in MAC 1.1, and so on.

0

MACy, <= q(G,V, S)i,j,k:,l = m

J(V7 K) = Z Gi,m,n : ‘/},(mfl)-s+k,(nfl)-s+l
’ (4.2)

So, also in this convolution, pixels are shared between convolutions (more than
Forward Computation). The extended sum for M ACyo,MAC;; and M ACs 5 is
shown in 4.3, 4.4 and 4.5 respectively.

MACy, <= g(G,V,5s)ij00=Gioo Vioo+Gios-Vioi+

(4.3)
e+ Gi,O,? : ‘/}7077 + ...
MAC; <= g(G,V,5)ij11 = Gioo- Vi1 +Giox-Viig + ... (4.4)
+Gi,077 . V‘71,8 + ...+ Gi,l,O . ‘/}72,1 + ... ’
MAC2,2 <= Q(G7 ‘/7 5)@',]',2,2 = Gi,(),() . ‘/j,2,2 + Gi’0,1 . ‘/j72’3 + ... (4 5)

+Gi,0,7 . ‘/j,279 + + Gi,l,O ' ‘/}7372 +

I would like to recall that at each c.c. we can read 8 pixels of 8 channels of
the input Gradient Gl.i47,mnn+g and 8 pixels of 8 channels of the input Feature
Wj:j+7,m,n:n+8]

To compute 4.2 for each MAC, we need to read at each c.c. 3 pixels, as 4.6
shown. In order to do so, prefetching is executed.

Wj:j—i—?,m,n:n—&-S] Wj:j—i—?,m—i—l,n:n—&-S] Wj:j+7,m+2,n:n+8] (46)

In this way, we can compute in parallel the kernel of row indexes 0,1 and 2. The
column shift, instead, is done by delaying the pixels of the gradient. This can be
seen more clearly if we write the computation of Kernel Gradient 0.2, as shown in

4.7.

MACy, <= g(G,V,5)ijo2=0-Vioo+0-Vio1+ Gioo- Vjoo+ Gios- Vios+
ot Gi,0,6 . V}',O,S + Gi,()j . ijo,g + ...+ Gi,l,O . V‘71’2 + ...
(4.7)
The equation shows that the Input Feature is multiplied with a delayed value of
the gradient, where the delay is equal to the kernel columns. This delay is done by
the Gradient Manager described in the Processing Unit section.

23

Architecture Design

The computation is repeated in order to compute all the Kernel Gradient. The
Input Feature V', instead, does not need to be prefetched, because we have to use
only one pixel each c.c.

4.5.3 Gradient Propagation of Convolution operation

N| GRADIENT
Y] MANAGER
INPUT A MAC| MAC|
GRADIENT

OUTPUT
GRADIENT

MAC MAC MAC id
KERNEL (A

7

KERNEL
MANAGER

A

DADDA 9
OoP

Figure 4.11: Gradient Propagation computation

To compute the propagation of the gradient, we need to execute a 3D convolution
between a multichannel 3D kernel and a multichannel 3D Gradient propagated from
the previous layer, to create a single-channel gradient. To compute a multichannel
gradient, more 3D kernels are used to execute convolution with the same input
gradient. As Figure 4.11, the data flow is equal to the Forward propagation of the
Convolutional operation. The Gradient Manager receives 3 pixels each c.c. from
the CU buffers and generates the Convolution Matrix to be convoluted with the
kernel.

24

Architecture Design

4.5.4 Dense layer computation

The Dense Layer computation is done using the same HW used during convolution.

e Forward computation: The Forward is implemented as a matrix multiplica-
tion between the flatted pixels of the last convolutional layer Output Feature
and a 2D matrix. The Weight Matrix has a size (m,n) where m is the number
of pixels of Input Feature and n is the number of Output Value. The output
value is equal to the number of inference classes. This number, due to CL
configuration, is not static and changes during operation. Anyway, the output
of the Forward Computation is implemented as 4.8.

This can be re-write as 4.9 considering the input value is not flattened, so if it
is still a 3d matrix with sizes (I, J, K)

IJK

Yn= > Lijk Wijkn (4.9)

i?j?k:()

So in this way, we can use the same logic used during the Forward computation
for convolution. In this case, 8 pixels of 8 channels of the Input Feature and
8 weights of 8 channels are read each c.c and sent to 8 of 9 MAC. All 64
results are then summed together and saved into the same register used to
save partial sum during Kernel Gradient computation. This is done for the
whole feature and it is repeated n time, where n is the number of classes. In
this way, we can dynamically set the number of iterations we have to do.

« Gradient Propagation computation The Gradient Propagation is equal
to the matrix multiplication between input gradient propagation and the
transpose of the weights, as shown in 4.10

N
dX; =Y dy, W], (4.10)

n=0

In this case, the optimization is a little bit tricky. Due to the fact the
dimensionality of dY is dynamic due to CL configuration and is not a power
of 2, we cannot reach a 100 % HW utilization. We propose to execute inside a
single MAC the computation for each single pixel of the Gradient Propagation,
using the register and the partial sum logic to iterate. Using 9 MAC, we can

25

Architecture Design

compute 9 pixels in N/8 c.c., where N is the number of classes and the whole
computation in (I/9)(N/8), as shown in4.11.

7
MACyy <=dXy =) dY, - W], (4.11)
n=0
The values will be saved in the register used for partial sum and summed in
the next addition, till the end of the vector. The vectors will be padded with
0 to match.

Weight Gradient computation The derivative over the weight is the matrix
multiplication of the input feature I used during forward computation and
gradient propagation coming from loss computation dY’, as shown in 4.12

Using matrix notation, both are row matrix, so the matrix product produce a
matrix. This means the whole matrix I is multiplied with the same value dY,,.
This calculus can be executed in our MAC: a 64 parallel pixel read is executed
(8 pixels for 8 channels, as in forward) and multiplied with one pixel of dY.
In this case, neither addition inside a single MAC is executed and outside the
9 MAC. This is repeated for each pixel of dY, so also in this case, due to the
dynamic size of Gradient Propagation due to class incremental.

4.6 Control Unit

The control unit manages the sizes of the feature and the data flow between the
memories and the PU. As seen in the previous subsection, data timing is quite
important:

o Feature prefetch: At each c.c., 3 new input feature pixels have to be sent to
the feature manager, in order to build the matrix that will be sent to MACs.
To have them ready without stalling the operation, a prefetch operation is
used, where 3 blocks of 128 bits are read from the memory. The prefetch
operation starts when the sixth pixel of the block is convolved.

In Figure 4.12, the prefetching operating for even rows is shown. When the
sixth pixel is convolved, it starts to read the 3 rows of pixels. To be noticed,
that here we are talking about the pixels that are loaded into PU to be
managed by the Feature Manager. As explained in 4.5.1, when we load into
PU the pixel of index j+5, we are computing the convolution for the output
pixel j4+3. Figure 4.13 instead, shows in case of the spare row address. The
last prefetching of a row is shown in Figure 4.14 and Figure 4.15. Here, due
to snake movement, only one new read has to be performed.

26

Architecture Design

PREFETCH
V8 PREFETCH
WLHE prereTcH
142,148
1, i, I, i, 1 i, U i, | l; l l I, I l I
j j+1 j+2 j+3 j+4 j*+5 j+6 j+7 148 J#9 | J+10 | J+11 | j#12 | J+13 | J+14 | J+15
1, | i, | o | i, | e, |, |, o, || o, | o, | o, | e, | e, | o, | o, |,
j 1| 2 | 3 | 4 | j#5 | 6 | j+7 || 18 | j+9 | 3+10 | 3422 | s+22 | 3413 | j+14 | j+15
12, | i+2, | 42, | i+2, | W2, [2, | 1+2, | i+2, +2, | i+2, 142, | 1+2, | 1+2, 142, | 12, | 1+2,
j w1 2 | #3 | 4 | 45 | 6 | i+7 148 | 1+9 | s+10 | s+11 | 112 | 3413 | s+24 | 415

Figure 4.12: When the column j+5 is elaborated, the prefetching of the row i is
performed; When the column j+6 is elaborated, the row i+1 is prefetched; When
the column j+7 is elaborated, the row i4-2 is prefetched

PREFETCH
142,)-8
PREFETCH
M8 prereTcH
18
I, l, I, I, I, l, l, I, b I, I, I, I, I, I 1,

315 [324 | 513 [2 [s21 | 20 | b9 [8 || 47 | s6 | 35 | 24 | 03 | 02 | b1 J
1+1, 1+1, 1+1, 1+1, | 1+1, 1+1, | 141, 1+1, 1+1, 1+1, 141, | 1+1, 1+1, | 1+, 1+1, 1+1,
J-15 | J-14 | J-13 |)12 | J11 | J-10 J9 1-8 1+8 j+9 | J+10 | J+11 | J+12 | J+13 | j+14 | j+15
w2, | 2, | w2, | w2, | 2, | w2, |2, | 2 | 2, | 2, | w2, | 2, | o2, | w2, |2, | 2,
J-15 | J-14 | J-13 |)12 | J-11 | J-10 -9 18 1+8 J+9 | J410 | J+#11 | J+12 | J413 | J+14 | J+15

Figure 4.13: Prefetch operation during spare row address.

PREFETCH
1+3,)
I, l l | | l, l, l
J J+1 J+2 143 J+4 145 J+6 1+7
1+1, 1+1, 1+1, 1+1, 1+1, 1+1, 1+1, 1+1,
J J+1 J+2 143 J+4 145 J+6 147
1+2, 1+2, 142, 1+2, 142, 1+2, 142, 1+2,
J J+1 J+2 43 J+4 145 J+6 47
143, 1+3, 1+3, 1+3, 1+3, 1+3, 143, 1+3,
J J+1 42 J+3 J+4 J+5 J+6 +7

Figure 4.14: Prefetch operation on the last block when row address is even

o Kernel Prefetch: Each time an 8-channel feature is convoluted, the new
8 channels of 3x3 kernel have to be loaded. In this case, parallel reads are
executed over multiple channels (at each c.c., multiple channels can be read,

27

Architecture Design

PREFETCH
143,07

]

l, A 1 l |, l, l l,
17 | 16 | 35 | 4| 13 | 12 | 11 J

1+1, 1+1, 1+1, 1+1, 1+1, 1+1, 1+1, 1+1,
17 J-6 J-5 J-4)3 12 J1 j

1+2, 1+2, 1+2, 1+2, 1+2, 1+2, 1+2, 142,
17 J-6 J-5 J-4)3 12 J1 j

1+3, 1+3, 1+3, 1+3, 1+3, 1+3, 1+3, 1+3,
J-7 J-6 J-5 -4 -3 32 J-1 J

Figure 4.15: Prefetch operation on the last block when the row address is spare.
When the prefetch operation is performed on the last column, only one read is
performed of the row i4+-3, because the rows i+1 and i42 are already in the buffer

due to the memories configuration).In any case, to read 9 kernel values, 9
c.c. are needed. The kernel is used during forward computation and gradient
propagation computation. The kernel prefetching happens when the input
feature (during forward computation) or the input gradient (during gradient
propagation computation) is 9 c.c. to the end. As during feature prefetch, at
each c.c. a kernel is read and when the new feature computations start, the
kernel is loaded into PU.

o Gradient Prefetch The input gradient is read in both backward operations:
Gradient propagation and Kernel Gradient computation. In the first case,
the gradient is convolved with kernel values rotated by 180°. In this case,
prefetching is used, because the computation is similar to the forward one.
Instead, during kernel propagation, no prefetching is needed.

Finally, the CU manages the feature, kernel, and gradient write phase. Due to port
width, feature and gradient use a 128-bit buffer to temporarily save the output of
the computation. Each 8 c.c., a write operation is performed. To reduce buffer
utilization, feature and gradient reuse the same buffer during Read operation,
because we do not need to prefetch both at the same time.

4.7 GDumb control unit

The GDumb method [36] works on which training samples have to be saved inside
the training method. To avoid catastrophic forgetting and imbalanced learning,
the GDumb method proposes to save an equal number of training samples for each
class.

28

Architecture Design

' >

Figure 4.16: Gdumb method. When the number of class increase, the number of
training sample for each class decrease

As shown in Figure 4.16, when new classes have to be learned, the new training
samples are saved in memory to the detriment of training samples of old classes.
In our accelerator, a controller has been designed so that, each time new classes
are added, a rewrite cycle is performed. It is preferred a rewrite instead of just
adding the new feature into the position of a feature that shall be deleted because
it works also in case the class increment is not a doubling of class: as the image
above suggests, if we want to increase from 5 to 10 classes (but also from 10 to 20,
50 to 100, etc) we can just write the new training samples in the upper (or also
lower) half of the memory location of one class. This doesn’t work if we want to
update from 10 to 15 for example. In this case, we first rewrite the feature that
can be saved, and then a part of the new Training Feature a saved, according to
the space available for each image.

29

Chapter 5

Simulation and Syntesis

5.1 Hardware validation

The purpose of the Python software implementation of the model is to validate the
HW hardware. To validate the software model, two TensorFlow model has been
developed. The TensorFlow models and my models have the following structures:

« Single Layer (SL) A convolutional layer from 32x32x3 to 16x16x16, activated
with a ReLU,

« Double Layer (DL) Two convolutional layer from 32x32x3 to 16x16x16,
activated with ReLLU, and a convolutional layer of 16x16x16 to 8x8x32, acti-
vated with a ReLLU

Both models have a dense and softmax layer a the end. The models have been tested
on CIFAR10, with no Class Incremental settings, so the Dense and Softwamx layers
operate on a vector of cardinality equal to 10. Also, my software implementation
operates on a 16-bit fixed point data type, to simulate the HW data. Due to the
slowness of Python, I was able to run the simulation only till epoch 10, but it was
enough to make both models reach the maximum accuracy. In Table 5.1 the results
are shown. My Python model is able to learn, although it is not able to reach the
same base accuracy as TF.

The complete TinyCL architecture has been described in the RTL level using
the SystemVerilog language. We synthesize the architecture in a 65 nm CMOS
technology node with the ASIC design flow using the Synopsys Design Compiler
tool. A Python testbench environment has been developed in order to test the RTL.
The results of forward, gradient propagation, and kernel gradient computation have
been validated by comparing the results of the 3 operations(Forward, Gradient
Propagation and Gradient of the Kernel) with the results of the computation
executed in Python. In convolution forward computation, the GDumb memory and

30

Simulation and Syntesis

Architecture | dataset | training epoch | Accuracy

SL (mine) | CIFARI10 10 38%
SL (TF) CIFARI10 10 40%

DL (mine) | CIFARI0 10 49%
DL (TF) CIFARI10 10 54%

Table 5.1: Comparision between my Python code implementing a convolutional
NN from scratch and the same NN of TF.

the kernel memory are filled by the testbench with the same values used by Python
code, and the same is done with gradient during gradient and kernel gradient
computation.

5.2 Syntesis timing results

Our architecture has a critical path starting from a memory (Gdumb Memory,
Feature Memory, Kernel Memory, or Gradient Memory) and it is concluded to
another memory. At each c.c., in general :

o read: We read a value from the prefetch buffer. The prefetch operation is
done previously, in parallel with the ongoing operations.

« MAC operation : a MAC operation is executed. A MAC operation consists
of 72 multiplications (8 for each of the 9 Macs) and 72 additions (8 for each
of the 9 Macs). For FW and DX operation, also a multi-operand addition
is present. The worst case is present when FW and DX as to be computed
where the time for the critical path T, is :

Tc = Lt + 3- Tadd + Tdadda

o write The result is write. The write operation is executed in the write buffer.

Using the Synopsis design compiler and a synthesis script, the Synopsis tool reports
that my accelerator has a critical path T, equal to 3.87 ns. For this reason and
choosing a bigger and standard clock, we set the clock frequency to 250 MHz. I
test the timing speed using the DL model. The TensorFlow model is accelerated
using the NVIDIA Tesla P100 GPU. To compute the Forward computation and the
Gradient Propagation of the first Convolutional layer my accelerator takes 16*16*16
= 4096 c.c. To compute the Forward computation and the Gradient Propagation
of the second Convolutional layer my accelerator takes 2*¥8*8*32 = 4096 c.c. To
compute the Kernel Gradient propagation of the first layer my accelerator takes

31

Simulation and Syntesis

16*16*%16 = 4096 c.c., while the second layer took 32*8*8*2 = 4096 c.c. The Dense
layer has to multiply 32*8*8 = 2042 pixels with 2042 weight for the 10 classes, but
we execute 64 multiplication each cc, so the Forward operation of the Dense layer
takes (2042/64)*10 = 320 cc To compute the Gradient Propagation, we will have

10
dX; =Y dY, * W],

n=0

As previously said, the sum over n is "decomposed" inside one MAC and each MAC
computes one pixel of the Gradient propagation. So to compute one pixel each
MAC it takes 2 cc, so 9 pixels are computed each 2 cc. To compute 2042 Gradient
propagation matrix pixels it takes 2042*2/9 = 454 c.c. Finally, to compute the
Gradient of the Kernel, 2042 pixels are parallelly multiplied with 10 Gradient
propagation pixels, so it takes 2042/64*10 = 320 cc, as FW.

So the total requested time for one image training is

T = AT+ Tge 4+ Lo+ T+ Tk + T + TOK + =

conv conv dense dense dense conv conv conv

4096 + 4096 + 320 + 454 + 320 + 4096 + 4096 + 4096 = 21574cc

The Model where tested in the CL environment, using a training memory of 1000
samples To execute a 10 epoch training it takes 21574 * 1000 * 10 = 215740000
cc Considering a clock of 250 Mhz, (so a period of 4ns), our model takes 0.862
s. The TensorFlow model trained using the NVIDIA Tesla P100 GPU took on
average 4 s each epoch, taking 40s to execute the complete training, reaching a
speed up of 46x. This high speed-up is possible because we were using a batch size
of 1, and the GPU accelerate the ML training executing in parallel the images of a
batch.

32

Chapter 6

Conclusion

In this work, I show how we can speed up CNNs by accelerating and optimizing
the Convolution layer operation in a CL scenario. I show how we can reduce Data
memory access by exploiting data reuse. This can reduce data access from 9 to 3
c.c. each. This is no longer true if the convolution operation has a stride of 2: in
this case, 2 consecutive convolution has only 3 shared pixels during the Forward
operation (and this will affects also the feedback).

The prefetching and the memories port-wide let the system run without stalling,
despite more than one data location is needed. This architecture leads to a great
speed-up of CNNs, thanks to convolutional layer acceleration, compared to NVIDIA
Tesla P100.

A preliminary Architectural design, shown in Section 4.5.4 shows how the Dense
Layer fits well and can be computed using the 9 MACs. The architecture shall also
include a module that implements the last Softmax layer and the Loss computation.
A further optimization can be given by memory caching. Actually, the memories
were designed as SRAM during the various tests. But with the rising of the number
of layers, the SRAM can drastically rise, while the PU still compute data coming
from one layer at a time. A solution is to save all the Kernel, Feature, Training
Samples, and Gradient in an off-chip RAM and to cache it only when needed.

33

Bibliography

Pudi Dhilleswararao, Srinivas Boppu, M. Sabarimalai Manikandan, and Linga
Reddy Cenkeramaddi. «Efficient Hardware Architectures for Accelerating
Deep Neural Networks: Survey». In: IEEE Access (2022) (cit. on p. 1).

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. «A Comprehensive
Survey of Continual Learning: Theory, Method and Application». In: CoRR
abs/2302.00487 (2023) (cit. on p. 1).

Michael McCloskey and Neal J Cohen. «Catastrophic interference in connec-
tionist networks: The sequential learning problem». In: Psychology of learning
and motivation. 1989 (cit. on pp. 1, 7).

Yiran Chen et al. «A survey of accelerator architectures for deep neural
networksy. In: Engineering (2020) (cit. on p. 2).

Maurizio Capra et al. « An Updated Survey of Efficient Hardware Architectures
for Accelerating Deep Convolutional Neural Networks». In: Future Internet
(2020) (cit. on p. 2).

Jinsu Lee and Hoi-Jun Yoo. «An overview of energy-efficient hardware ac-
celerators for on-device deep-neural-network training». In: IEEE OJ-SSCS
(2021) (cit. on p. 2).

Sergey loffe and Christian Szegedy. «Batch normalization: Accelerating deep
network training by reducing internal covariate shift». In: International
conference on machine learning. pmlr. 2015, pp. 448-456 (cit. on p. 6).

Sebastian Thrun and Tom M. Mitchell. «Lifelong robot learning». In: RAS
(1995) (cit. on p. 7).

Jeremias Knoblauch, Hisham Husain, and Tom Diethe. «Optimal Continual
Learning has Perfect Memory and is NP-hard». In: ICML. 2020 (cit. on p. 7).

James Kirkpatrick et al. «Overcoming catastrophic forgetting in neural net-
works». In: CoRR abs/1612.00796 (2016) (cit. on p. 7).

Zhizhong Li and Derek Hoiem. «Learning without Forgetting». In: IEEE
TPAMI (2018) (cit. on p. 7).

34

BIBLIOGRAPHY

[12]

[13]

[14]

[15]
[16]

[17]

[18]

David Lopez-Paz and Marc’Aurelio Ranzato. «Gradient Episodic Memory for
Continual Learning». In: NeurIPS. 2017 (cit. on p. 7).

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed
Elhoseiny. «Efficient Lifelong Learning with A-GEM». In: ICLR. 2019 (cit. on
p. 8).

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H.

Lampert. «iCaRL: Incremental Classifier and Representation Learning». In:
CVPR. 2017 (cit. on p. 8).

Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. «Memory Efficient
Experience Replay for Streaming Learningy. In: ICRA. 2019 (cit. on p. 8).

Rahaf Aljundi et al. «Online Continual Learning with Maximal Interfered
Retrieval». In: NeurIPS. 2019 (cit. on p. 8).

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. «Gradient
based sample selection for online continual learning». In: NeurlPS. 2019
(cit. on p. 8).

Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. «GDumb: A
Simple Approach that Questions Our Progress in Continual Learning». In:
ECCYV. 2020 (cit. on p. 8).

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. «Continual
Learning with Deep Generative Replay». In: NeurIPS. 2017 (cit. on p. 8).

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. «A Neural Dirich-
let Process Mixture Model for Task-Free Continual Learning». In: ICLR. 2020
(cit. on p. 8).

Xiaocong Du, Gouranga Charan, Frank Liu, and Yu Cao. «Single-Net Contin-
ual Learning with Progressive Segmented Trainingy». In: ICMLA. 2019 (cit. on

p. 8).
Swagath Venkataramani et al. «ScaleDeep: A Scalable Compute Architecture
for Learning and Evaluating Deep Networks». In: ISCA. 2017 (cit. on p. 8).

Duckhwan Kim, Taesik Na, Sudhakar Yalamanchili, and Saibal Mukhopad-
hyay. «DeepTrain: A Programmable Embedded Platform for Training Deep
Neural Networksy. In: IEEE TCAD (2018) (cit. on p. 8).

Animesh Jain et al. «Gist: Efficient Data Encoding for Deep Neural Network
Training». In: ISCA. 2018 (cit. on p. 8).

Eric Qin et al. «SIGMA: A Sparse and Irregular GEMM Accelerator with
Flexible Interconnects for DNN Training». In: HPCA. 2020 (cit. on p. 8).

Dingqing Yang et al. «Procrustes: a Dataflow and Accelerator for Sparse Deep
Neural Network Training». In: MICRO. 2020 (cit. on p. 8).

35

BIBLIOGRAPHY

[27]

28]

[29]

[30]

[31]

32]

Jinsu Lee et al. «7.7 LNPU: A 25.3 TFLOPS/W sparse deep-neural-network
learning processor with fine-grained mixed precision of FP8-FP16». In: ISSCC.
2019 (cit. on p. 8).

Donghyeon Han et al. «tHNPU: An Adaptive DNN Training Processor Utilizing
Stochastic Dynamic Fixed-Point and Active Bit-Precision Searchingy. In:
IEEE JSSC (2021) (cit. on p. 9).

Seock-Hwan Noh et al. «FlexBlock: A Flexible DNN Training Accelerator
With Multi-Mode Block Floating Point Support». In: IEEE Trans. Computers
(2023) (cit. on p. 9).

Jinming Lu, Chao Ni, and Zhongfeng Wang. «ETA: An Efficient Training
Accelerator for DNNs Based on Hardware-Algorithm Co-Optimization». In:
IEEE TNNLS (2023) (cit. on p. 9).

Changhyeon Kim et al. «A 2.1TFLOPS/W Mobile Deep RL Accelerator
with Transposable PE Array and Experience Compressiony. In: ISSCC. 2019
(cit. on p. 9).

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and
Scott Sanner. «Online continual learning in image classification: An empirical
survey». In: Neurocomputing 469 (2022), pp. 28-51 (cit. on p. 10).

Divya Gaur, Joachim Folz, and Andreas Dengel. «Training deep neural
networks without batch normalization». In: CoRR abs/2008.07970 (2020)
(cit. on pp. 14, 15).

Shuang Wu, Guoqi Li, Lei Deng, Liu Liu, Dong Wu, Yuan Xie, and Luping
Shi. « L1 -Norm Batch Normalization for Efficient Training of Deep Neural
Networksy. In: IEEFE Transactions on Neural Networks and Learning Systems
30.7 (2019), pp. 2043-2051. DOI: 10.1109/TNNLS . 2018 . 2876179 (cit. on

p. 14).
Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. «Fixup initialization:

Residual learning without normalization». In: arXiv preprint arXiv:1901.09321
(2019) (cit. on p. 14).

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. « Gdumb: A simple
approach that questions our progress in continual learning». In: Computer
Vision-ECCV 2020: 16th Furopean Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part II 16. Springer. 2020, pp. 524-540 (cit. on p. 28).

36

https://doi.org/10.1109/TNNLS.2018.2876179

	Summary
	Introduction
	Proposed Solution
	Results
	Conclusions

	Introduction
	 Target research problems
	Novel contribution

	Background and Related Work
	Deep Neural Network in Image Recognition
	Convolutional Neural Network
	Convolutional Layer
	Activation Layer
	 Batch Normalization Layer
	Dense Layer
	Softmax and Loss Layer

	Continual learning algorithm
	DNN Training Accelerators

	Software Level Implementation of a CNN supporting CL
	Architecture Design
	Early Design Decisions
	Data Quantization
	Top Level Architecture
	 Training Data Memory
	Partial Feature Memory
	Gradient Memory
	Kernel Memory

	Processing Unit
	MAC

	Data Flow
	Forward propagation of convolutional operation
	Gradient of Kernel of Convolutional operation
	Gradient Propagation of Convolution operation
	Dense layer computation

	Control Unit
	GDumb control unit

	Simulation and Syntesis
	Hardware validation
	Syntesis timing results

	Conclusion
	Bibliography

