

POLITECNICO DI TORINO

Master's Degree in Aerospace Engineering

Degree Thesis

Development and validation physical-
guided data science models for finite

element applications

 Supervisors Candidate

Prof. Maria Chierichetti Andrea Rotondo

Prof. Alfonso Pagani Matr. 290785

Academic year 2022-2023

Acknowledgements

First and foremost, I wish to express my deep gratitude to Professor Chierichetti for this magnificent

experience. Her wise guidance and support have made the completion of this thesis possible. Her

commitment and dedication to my education have been an endless source of inspiration for my

current and future academic journey.

I feel compelled to extend these thanks to San Jose State University and the Department of

Aerospace Engineering for allowing me to live and utilize their laboratories during these months.

My gratitude also extends to my supervisor at the Politecnico di Torino, Professor Pagani. His

attentiveness and precision have been invaluable, and his trust has played a fundamental role in

shaping my educational path.

Special thanks are due to all the guys at the SJSU International House who, each day, made me feel

less alone in this American adventure.

.

Abstract

Real-time stress predictions require the continuous interaction of measurements and a complex,

refined finite element model that is updated real-time based on measured conditions. Previous work

has shown that this interaction can be based on simplified physical relationships that allow quick

changes in the model based on actual conditions. However, even when low-fidelity models are used

in conjunction with experimental measurements, the resulting computational times are still too

large to be feasible with real-time predictions. This complexity has therefore restricted the ability to

efficiently monitor the stresses in complex systems during operations without continuous

experimental monitoring.

Data science, with its ability to extract “knowledge” from large volumes of data, has the potential to

be used to predict transient stresses that a structure experiences at any given time. The objective of

this thesis is to create a novel interactive framework for combining scientific knowledge of finite

element methods (FEM) in mechanical systems with data science methods to predict the full-field

dynamic behavior of the system. The thesis will focus on developing data-driven models based on

finite element models and real-time experimental data to create mid-fidelity surrogate models that

can learn the structural behavior from rich finite element simulations and predict the dynamic

behavior of a system based on actual measurements. The data-driven model bridges the need of

accuracy given by high-fidelity finite element simulations, of low computational cost provided by

low-fidelity models and of real-time stress predictions based on actual measurements. The data-

driven model will provide quick and reliable predictions of the stresses and accelerations in the

presence of highly non-linear, transient response and in the presence of complex couplings. At the

end of this thesis, the following goals will be attained:

• development of data-driven model to determine time-varying stresses in structural

components

• definition of a database using finite elements of simple components (such as a beam) and

complex components (such as plate with hole)

• numerical validation of the approach

• experimental validation doing vibration testing of simple components and complex

components.

Summary
1 Overview .. 1

1.1 Introduction .. 1

1.2 Literature review ... 3

1.2.1 Damage Detection in the Field of Civil Structures .. 3

1.2.3 Improving Finite Element Methods through Machine Learning .. 7

1.2.4 Machine Learning Applied to Aerostructures ... 8

1.3 Organization of the Document ... 9

2 Neural Networks .. 10

2.1 introduction .. 10

2.2 Historical Overview ... 11

2.3 Neurons ... 12

2.4 Mathematical Model of Neural Networks ... 14

2.5 Keras Library .. 17

2.5.1 Learning Rate ... 18

2.5.2 Momentum .. 19

2.5.3 Decay rate... 20

2.5.4 Epoch .. 21

2.6 Performance Evaluation Metrics for Regression Models .. 22

2.6.1 R2 .. 22

2.6.2 RMSE and MAE... 23

3 Instruments .. 24

3.1 Accelerometer ... 24

3.1.1 ICP Accelerometers .. 28

3.2 Load Cell .. 29

3.3 Shaker .. 30

3.4 CompactDAQ ... 32

3.5 Sensor Signal Conditioner ... 33

3.6 Other Instruments .. 35

4 Data Acquisition ... 36

4.1 Chirp Signal ... 37

4.1.1 Comparison between Chirp Signal Input from MatLab and Output Load Cell 38

4.2 Pseudorandom Signal ... 40

4.2.1 Comparison between Pseudorandom Signal Input from MatLab and Output Load Cell 42

4.3 Harmonic Signal .. 44

4.3.1 Comparison between harmonic signal input from MatLab and output load cell 44

4.4 Number Average ... 46

4.5 Trigger .. 47

4.6 Dataset Creation ... 48

5 Experiment model beam ... 50

5.1 Experiment Preparation .. 50

5.2 Material ... 55

5.3 Damping .. 56

5.4 Comparisons of Machine Learning Simulations: Beam Case .. 57

5.4.1 Numerical-Experimental Chirp Signal Comparison ... 57

5.4.2 Pseudorandom Signal Comparison ... 63

5.4.3 Harmonic Signal Comparison .. 66

5.4.4 Comparison among Harmonic Signals with Different Amplitudes and Frequencies 71

5.4.5 Comparison of Simulations using 70% Dataset and 80% Dataset .. 74

5.4.6 Comparison of Simulations using 4 Accelerometers and 5 Accelerometers 77

5.5 Results .. 79

6 Experiment model plate with hole .. 83

6.1 Experimental Setup for Plate with Hole ... 83

6.2 Sensor Placement Decision... 85

6.2.1 Configuration Effective Independence Method (EIM) ... 85

6.2.2 Configuration Random Forest Regression (RFR) .. 86

6.2.3 Large Distributed Grid (LDG) and Small Distributed Grid (SDG) .. 89

6.3 Finite Element Method (FEM) Analysis on Ansys .. 90

6.4 Comparisons of Machine Learning Simulations: Plate Case ... 92

6.4.1 Numerical-Experimental Harmonic Signal Comparison in the Configuration with Algorithm 92

6.4.2 Numerical-Experimental Harmonic Signal Comparison in the Regular Configuration 99

6.4.3 Numerical-Experimental Pseudorandom Signal Comparison .. 106

6.4.4 Numerical-Experimental Chirp Signal Comparison ... 113

6.5 Results ... 120

7 Conclusion ... 124

8 References .. 126

1

1 Overview

1.1 Introduction

Data science models have revolutionized numerous fields, including the Finite Element Method

(FEM), which represents a fundamental tool in the analysis and solution of complex engineering

problems [1]. Applying machine learning to FEM methods offers an innovative and promising

perspective for enhancing the efficiency and accuracy of calculations and simulations in the field of

engineering.

The Finite Element Method (FEM) represents a powerful and widely used numerical technique for

solving engineering and scientific problems. [2] This method provides an approximate solution to

partial differential equations (PDEs) or integral equations by discretizing the domain of interest into

finite elements. Its flexibility and ability to handle complex geometries and variable materials make

it an essential analysis technique for many sectors, from structural component design to simulating

complex physical phenomena.

FEM is particularly suitable for modeling complex problems [3] where geometry and material

properties can vary locally. The domain is divided into a series of finite elements, which can be as

simple as triangles or quadrilaterals in two dimensions, or tetrahedra or prisms in three dimensions.

Each element is defined by a set of nodal points connected by local interpolation functions.

The approximate solution is represented as a linear combination of these local interpolation

functions, with coefficients associated with each function. The values of these coefficients are

determined by solving a system of linear equations obtained by applying boundary conditions and

partial differential equations.

One of the main advantages of the FEM is its flexibility in handling complex geometries [4] and

variable material properties. Additionally, the FEM can address various types of problems, such as

structural statics and dynamics, heat conduction, fluid dynamics, electromagnetism, and many

others. This has made the FEM a fundamental tool for engineers and scientists in designing and

analyzing a wide range of systems and components.

However, it's essential to note that the accuracy of results obtained using the FEM depends on the

proper choice of finite element type, domain discretization, and the quality of the generated mesh.

2

Furthermore, the approximate solution can be influenced by the numerical resolution used to solve

the system of linear equations.

FEM methods are widely used to model the behavior of complex structures, such as bridges,

buildings, vehicles, and industrial facilities. These methods require the division of the problem

domain into finite elements to approximate the system's behavior discretely. However, the accuracy

of the solutions obtained heavily relies on the mesh quality, i.e., the division of the domain into finite

elements. Generating an optimal mesh is a complex task and demands a substantial amount of time

and computational resources.

Applying machine learning to FEM methods provides a promising solution to this challenge. Thanks

to their ability to learn from large amounts of data and recognize complex patterns, machine learning

algorithms can be trained to predict and automatically optimize the distribution of finite elements

in the mesh. This allows for more accurate models while significantly reducing the time and effort

required for mesh generation.

In this thesis, we will delve into the methodologies, techniques, and applications of machine learning

applied to FEM methods. We will analyze the most used machine learning algorithms, such as

artificial neural networks and regression algorithms, and discuss strategies for acquiring, preparing,

and processing the data necessary for model training. Initially, we will apply these models to a small

aluminum beam and subsequently to a steel plate with a hole. Additionally, we will examine the

impacts and challenges associated with implementing machine learning in the context of

engineering, discussing aspects such as model interpretability, adequacy of input data, and the

validation of obtained solutions.

Through the study of case studies and the practical application of finite element method (FEM)

machine learning algorithms, this thesis aims to provide an in-depth overview of the capabilities and

limitations of this emerging discipline. It is hoped that this work can contribute to the development

and application of machine learning in FEM methodologies, opening new opportunities to enhance

the efficiency and accuracy of FEM methods in the field of engineering.

The state of the art in the application of machine learning to Finite Element Methods (FEM) is

continually evolving and witnessing numerous exciting developments and applications. Machine

learning has demonstrated its ability to make significant contributions in various aspects related to

FEM methods.

3

Here are some of the key points in the state of the art in applying machine learning to FEM

methods:

• Material structure learning: Machine learning can be used to model and predict the

properties of materials used in FEM simulations [5], enabling a better understanding of their

behavior and performance.

• Computational cost reduction: A highly interesting area is the reduction of computational

costs associated with FEM simulations [6]. Machine learning can be employed to expedite

calculations or develop reduced models that provide approximate results in shorter times.

• Design optimization: Machine learning can be applied to optimize the design of components

or structures [7], allowing for the discovery of superior and more efficient solutions in terms

of performance, strength, or weight reduction [8].

• Noise and vibration modeling: Machine learning can be used to model and predict the noise

and vibrations generated by a system [9], enabling better design and optimization of acoustic

performance.

• Data analysis and prediction: Machine learning can be employed to analyze large quantities

of data generated by FEM simulations, extract useful information, identify patterns, and

predict the future behavior of analyzed systems.

These are just some of the areas where machine learning is finding applications in FEM methods. It

is important to note that the state of the art is continuously evolving, and new techniques and

methodologies continue to emerge, offering new possibilities and challenges in the field of analysis

and optimization of engineering systems.

1.2 Literature review

1.2.1 Damage Detection in the Field of Civil Structures

Currently, one of the fields where machine learning algorithms have been applied to structures is

civil engineering. Some studies have focused on structural damage detection based on real-time

vibration signals and convolutional neural networks, which is an advanced approach used to assess

the structural health of buildings, bridges, industrial structures, and other infrastructure. This

method utilizes vibration data acquired from sensors placed on the structure to identify any

damages or anomalies. On the other hand, another study has concentrated on the use of artificial

4

neural networks for real-time prediction of structural stress through structural vibration tests.

Similar to the first study, this method relies on vibration data collected from sensors positioned on

the structure to estimate the stress it undergoes.

One of the objectives was to propose an alternative to visual inspection methods, which required a

significant amount of time to detect surface damages. Therefore, a solution was sought through the

adoption of an SSD method based on vibrations [10], using a three-dimensional steel beam as a

structural model. Initially, consideration was given to using natural frequencies as an indicator of

damage. However, later [11], it was deemed preferable to use modal shapes, as they could provide

better results than the previous indicator. Nevertheless, there were limitations due to the influence

of the measurement environment.

As a result, the direct use of vibration signals was considered a better option, integrated with values

obtained from finite element analyses on the structure. This integration allows for more accurate

detection of structural damage since it contains more information. However, this combination

requires more signal processing.

Several classical machine learning algorithms, such as SVM, DT, and ANN, can be utilized. Choosing

among them was challenging due to each having its own pros and cons. SVM (Support Vector

Machine) is a classification algorithm that seeks to find the best separator to distinguish different

data classes. SVM has good generalization ability and can handle nonlinear data using the kernel

trick. However, in complex situations and with large-scale samples, SVMs were found to be difficult

to implement. DT (Decision Tree), another classification and regression algorithm based on a

decision tree structure, requires minimal data preparation and can handle both categorical and

numerical data. Similarly, artificial neural networks (ANNs), as advanced tools for data analysis, can

automatically extract information about structural damages from signals and represent this

information through mapping structural damage states.

In their study, the researchers did not adopt ANNs as a resolution model due to limitations in

engineering applications, as ANNs adapt too easily and require high resolution time. Instead,

convolutional neural networks (CNNs) were chosen, not individually, as it has not been established

whether a CNN trained with only numerical data can detect damages in a real structure. The idea

was to associate CNNs with finite element analysis (FEA) methods, training them with samples

obtained from FEA experiments. This allowed obtaining vibration and acceleration data from

5

numerical simulations, resulting in four numerical datasets, each corresponding to a different

number of damages in beams and excitations at four points repeated five times.

Through numerical simulations, vibration and acceleration signals were obtained and used for

training and testing under various damage scenarios. The CNN architecture was based on a steel

frame and the positions of acceleration measurement points. Using the appropriate ANN, a

sufficiently accurate resolution was achieved, but due to the extensive data processed, model

performance was optimized by training with the maximum number of frequency steps possible.

In a similar context, CNNs were not employed using the FEA method. Instead, various ANNs were

used to predict system responses during the test. Accelerations were converted into structural

stresses, and mass operators were developed using the ANN, providing sufficiently accurate results

but requiring substantial data processing.

As in the previous cases and in the ongoing thesis, acceleration, stress, and load values were

developed using the finite element method with a MATLAB code. Two structures were analyzed:

NIRSpec's ceramic bench and the elements it supported. While a considerable amount of data was

used, only frequencies near the peaks of the direct and uncertain response were considered.

Regardless of the method used, it had to meet criteria for robustness, rapid implementation,

accuracy for interface stresses, training, and quick acquisition.

Four ANN models were compared: a frequency-dependent ANN, a pre-trained ANN, a nonlinear

autoregressive exogenous (NARX) model, and a recurrent ANN with a bidirectional long short-term

memory layer (biLSTM). After conducting the analyses, it was observed that only the biLSTM method

failed to predict adequately, unlike the other three, which were more accurate. The NARX method

was identified as the best for reducing the prediction time for structural data and for use during

vibration tests but was negatively sensitive to frequency step division.

The use of structure vibration data to monitor structural health was mainly applied in a civil

engineering study, analyzing a steel structure with one and four stories, both with bolted joints. The

hybrid combination of the previously mentioned methods aimed to monitor damages in bolted joint

locations, requiring fewer datasets than individual techniques. Statistical values and properties

useful for bolt loosening localization effectiveness were analyzed.

Like previous studies, a major issue with machine learning was the need for extensive data, leading

to longer simulations and difficulty in obtaining sufficient data for civil structures. Consequently, a

6

mix of methods was used: machine learning with vibration data for approximate localization and

model updating to identify the exact damage location.

Strain gauges provided data, divided into healthy (sensors away from joints) and loosened (sensors

near joints) sets for comparison. Unlike previous studies using ANNs, a Support Vector Machine

(SVM) algorithm was employed for machine learning. SVM's primary objective is to create a model

that can categorize a dataset into different classes by maximizing the distance between data points

belonging to different classes. After SVM model training, it achieved an accuracy of approximately

80%.

Stochastic free vibrations were also analyzed using machine learning for functionally graded (FG)

bar-type structures through the finite element method (FEM). In contrast to the SVM model used

previously, an X-SVR technique was employed to estimate the governing relationship between

uncertain system parameters and structural natural frequencies.

1.2.2 Differences between SVM and SVR algorithms and their combined approach in structural

analysis

SVM (Support Vector Machine) and SVR (Support Vector Regression) are both machine learning

algorithms based on Support Vector Machines, but they have slightly different purposes and

applications. SVM is primarily used for classification problems [16], aiming to find the optimal

hyperplane that can separate data points of different classes in the best possible way. It produces a

model that assigns data points to one of the predetermined classes. In contrast, SVR is used for

regression problems [17], seeking the optimal hyperplane to approximate data points in the best

possible way. It produces a model that can be used to estimate numerical values based on input

data. In both cases, SVM and SVR rely on the concept of support vectors, critical data points defining

the decision boundary or regression function. Both algorithms aim to maximize the distance

between support vectors to achieve generalized models that perform well with new data. SVM

focuses on classification, while SVR focuses on regression.

The X-SVR was employed, where the addition of the prefix "X" indicates that the algorithm has been

extended or modified from the standard SVR implementation [18]. In this case, the linear X-SVR uses

a linear kernel instead of a more complex kernel like the polynomial or Gaussian kernels used in

other SVR variants. The linear kernel calculates the dot product between two feature vectors

representing independent variables without applying any transformation. The linear X-SVR can be

advantageous when the relationship between independent and dependent variables is

7

approximately linear. Using a linear kernel, the X-SVR can be computationally more efficient than

other SVR variants using more complex kernels. However, if the relationship between variables is

not linear, the linear X-SVR may not accurately model the data, and a different kernel or regression

technique may be needed.

Subsequently, after using the previous regression, a Monte Carlo simulation (MCS) is applied to

estimate various statistical characteristics of structural natural frequencies with significantly reduced

times. Moreover, as in previous cases, this theoretically allows for the extension to a structural

health monitoring algorithm during the structure's operational life.

In another case [19], a CNN-based approach is adopted, but unlike case [10], it is not combined with

other algorithms. Both studies aimed to derive the localization and quantification of structural

damage. The studied systems include a structural beam and a mass-spring system. The approach

operates on images generated from raw transmissibility functions of the structures to derive

degradation process characteristics. The main advantage over previous investigations is that this

approach automates feature extraction.

Raw transmissibility functions are tools used in vibration analysis to measure and describe the

behavior of a dynamic system subjected to vibrations. Essentially, raw transmissibility is a measure

of the relationship between the output amplitude of a system and the input amplitude at a specific

frequency. This ratio is often expressed in terms of acceleration, velocity, or displacement. It proves

highly effective when damage exceeds 10%, becoming a more accurate approach.

Structural state damage was monitored through the application of deep learning and FEM methods

on an aluminum beam with an applied crack [20]. As in similar studies, after obtaining a database

through FEM methods, the training in deep learning follows. The study's goal is to provide adequate

training to ANNs, enabling the use of SHM in a real damage scenario. To achieve accurate results,

multiple experimental trials are necessary. Maximum uncertainties are simulated until the point

where RNA decreases its accuracy. Finally, the data is passed to CNNs trained by FEM to predict

possible real states of damage.

1.2.3 Improving Finite Element Methods through Machine Learning

As seen in previous studies, including the one developed in this work, the application of the Finite

Element Method (FEM) was necessary to obtain the results needed for training neural networks. To

enhance the finite element model, it is imperative to address the challenge of the extensive time

8

required to compute the problem [6]. The goal was to find solutions that could improve optimization

issues. Specifically, the objective was to reduce simulation times and enhance robustness in selecting

the updated model using a novel algorithm that incorporates a set of algorithms, including two

optimization algorithms, a machine learning one (ANN), and a statistical technique.

Finally, machine learning, particularly employing Convolutional Neural Networks (CNNs) [21], was

utilized to expedite the prediction process of results obtained through the FEM method, ultimately

achieving a prediction of mesh deformation 2,960,000 times faster than the initial case.

To reduce simulation times for the FEM model update process, the current trend focuses on the use

of collaborative or hybrid computational intelligence algorithms. These algorithms leverage the key

strengths of two or more computational intelligence algorithms, combining them into an overall new

algorithm that demonstrates improved performance compared to individual algorithms.

1.2.4 Machine Learning Applied to Aerostructures

Machine learning has found applications in the aerospace field, particularly at the structural level,

where initially maintenance intervals were predetermined based on the expected life of the system.

To address this, the introduction of random forests and artificial neural networks was proposed to

predict structural stresses [22], aiming to estimate more efficient maintenance schedules.

Specifically, a one-dimensional structure, such as a beam, was examined, where the real-time

average stress distribution was predicted after learning from data obtained through FEA simulations

on beam stresses. This approach seeks sufficiently accurate solutions in various positions. The

method is characterized by its considerable versatility, allowing for the use of a wide range of

response variables (such as displacement, velocity, acceleration, deformation, and stress) for

training and prediction purposes [23]. Although the proposed algorithm [11] primarily focuses on

accelerations, which are directly correlated with stresses.

Furthermore, for detecting acceleration data on the structure, sensors are used, and machine

learning has also been applied to determine the optimal sensor placement for monitoring a vibrating

system, thereby detecting the structural health status [24]. This methodology can be applied to any

sensor and dynamic system to enhance precision and reduce the number of redundant sensors.

9

1.3 Organization of the Document

After providing a brief introduction to the topic of this thesis, the first chapter focused on the

literature review. The second chapter will delve into machine learning algorithms and the

architecture of the utilized neural network. The third chapter will outline the tools employed for

signal acquisition and experiment execution. In the fourth chapter, the data acquisition process and

the utilized input signals will be detailed. The fifth chapter will cover the beam experiment and

various comparisons, while the same procedure will be conducted in the sixth chapter with a

different beam. Finally, the last chapter will be dedicated to conclusions and the obtained results.

10

2 Neural Networks

2.1 introduction

Artificial neural networks represent one of the most significant innovations in the fields of artificial

intelligence and machine learning. To fully grasp the concept, it is essential to begin with the history

and inspiration that led to their creation. They draw inspiration from the human brain, the most

sophisticated information processing system known.

In the realm of artificial intelligence, neural networks constitute a fascinating class of models and

algorithms inspired by the functioning of the human brain. These networks are composed of

interconnected units known as artificial neurons, which collaborate to process complex information.

A distinctive aspect of neural networks is their intrinsic nonlinearity, achieved using nonlinear

activation functions. This feature enables them to model intricate relationships between inputs and

outputs, making them powerful tools for a wide range of tasks, from image processing to natural

language recognition. Furthermore, the concept of neurons as common building blocks in neural

networks promotes the sharing of theories and learning algorithms across various application areas.

This uniformity streamlines the development and implementation of neural networks in diverse

contexts.

The process of training neural networks relies on mapping inputs to outputs through a sequence of

training data, an approach known as supervised learning. It does not make prior assumptions about

the model's parameters, allowing neural networks to adapt to the presented data.

A key feature is the adaptability of neural networks. They can adjust their weights and connections

in response to changes in the surrounding environment. It is possible to train them to operate in

different contexts or adapt to real-time variations.

Due to their structure, neural networks can be implemented at the hardware level for high-speed

computational tasks. Their intrinsic parallelism makes them suitable for applications demanding

substantial computing power.

Moreover, hardware neural networks exhibit good fault tolerance. Performance gradually degrades

in case of malfunctions, ensuring increased robustness in data processing.

Ultimately, the analogy with the human brain has motivated the design of neural networks. This

analogy demonstrates that parallel computing, fault tolerance, and efficiency are not only possible

11

but also potent, paving the way for new and exciting opportunities in the field of artificial

intelligence.

2.2 Historical Overview

Since ancient times, humans have sought to understand the functioning of the brain. In fact,

Hippocrates made early attempts to study the human brain by trying to identify the locations of

certain control areas, both motor and sensory, within the brain. However, it was only in the 20th

century that significant progress occurred.

In 1936, the British mathematician Alan Turing proposed an analogy between the human brain and

a computer. This idea alluded to the fundamental concept that a universal machine could be

programmed to emulate any other computing machine, including the human brain. This concept of

a universal machine, known as the "Turing machine," was a crucial step in the evolution of

information theory and theoretical computer science, providing the conceptual foundations for

computation and artificial intelligence. Turing's analogous proposal was a milestone in

understanding the potential symbiosis between the human mind and computing machines, paving

the way for AI and artificial neural networks.

One of the earliest significant steps toward creating neural networks was taken by Warren McCulloch

and Walter Pitts in 1943. They proposed a mathematical model of an artificial neuron called the

"McCulloch-Pitts neuron," which represented a simplification of the functioning of biological

neurons. In fact, they reproduced a simple neural network using interconnected electrical circuits

based on considerations about the operation of individual neurons and demonstrated that neural

networks are analogous to a Turing machine, meaning that any operation performed by a neural

network could also be executed by a computer.

Frank Rosenblatt developed the "perceptron" in the 1950s and 1960s, which marked another step

forward in the evolution of artificial neural networks. The perceptron was capable of learning

automatically from training data and performing binary classification, paving the way for the use of

neural networks in pattern recognition. However, it soon became evident that the perceptron had

significant limitations, as it could only handle linearly separable problems. This led to a period of

skepticism toward artificial neural networks known as the "winter of artificial intelligence" in the

1970s and 1980s.

12

Neural networks experienced a resurgence starting in the 1990s, thanks to several key developments

such as learning algorithms, increased computational power, large datasets, and advanced neural

architectures.

Today, artificial neural networks underpin many applications of artificial intelligence, including

speech recognition, automatic translation, image recognition, autonomous driving, and much more.

Their development and use continue to evolve, paving the way for new opportunities and challenges

in the field of AI.

2.3 Neurons

An artificial neural network is a machine designed to simulate the functioning of the human brain,

implemented either physically using electronic components or simulated through software on digital

computers (Haykin, 1999). Neural networks are composed of simple elements (neurons, nodes,

units) that play a crucial role in the information processing process.

Information and signals will flow among these neurons through the connections. These connections

are weighted to regulate the flow of information. It's as if each connection holds a different level of

importance in determining the outcome of the network. This concept of weighting connections is

fundamental to the adaptation of the neural network to training data and the learning process.

Information, in the form of weighted signals, accumulates within the neurons. The central body of

the neuron, known as the nucleus, sums the input signals from synapses connected to the dendrites

of other neurons. When this sum of signals reaches a threshold, the neuron generates an output

signal that is transmitted to other neurons. This process is known as "firing" of the neuron and is a

crucial step in information processing within a neural network.

Artificial neural networks draw inspiration from the functioning of biological neurons in the human

brain. They use artificial neurons, weighted connections, and activation functions to process

information in a complex manner and perform a variety of tasks, from classification to image

processing. The process of summing signals and generating output by neurons is analogous to the

"firing" in biological neurons and constitutes a key element in the ability of neural networks to learn

from data.

13

Figure 2.1 Structure of the neuron

The human brain is composed of an intricate network of interconnected neurons, which possess

dendrites to receive incoming signals. From these inputs, neurons generate electrical signals

outgoing through axons and subsequently transmit these signals via axon terminals to other

neurons.

Artificial neural networks, like neurons in the human brain, are composed of interconnected units

called nodes, which communicate with each other through connections called edges. Within a

neural network, these nodes are organized into layers, typically with an initial broad layer. The first

layer contains raw data, such as numerical values, text, images, or sounds, distributed among the

nodes. Each node then transmits information to the next layer of nodes through the network's

edges.

The human central nervous system comprises an incredible number of approximately 1011 neurons.

The neuron is the fundamental unit of the human brain, much like the transistor is the basic unit of

a CPU processor. However, neurons and transistors operate at vastly different time scales and energy

consumption levels. Neurons operate on a time scale of approximately 10−3 seconds and have a low

energy consumption of about 10−16 Joules per operation, while transistors operate on time scales

of approximately 10−9 seconds and have a higher energy consumption of about 10−6 Joules per

operation.

In the human brain, there are approximately 1010 neurons, whereas in a processor, there are

approximately 109 transistors. Furthermore, the human brain is characterized by an extraordinary

number of synaptic connections, totaling around 60 trillion.

14

Ultimately, the human brain can be considered a highly nonlinear and parallelized information

processing system that operates on a time scale and with energy consumption very different from

artificial processors.

2.4 Mathematical Model of Neural Networks

The first layer of a neural network is known as the 'input layer.' This layer serves as the entry point

for raw data into the network, including numerical values, text, images, or sounds. It is not

considered an actual processing layer since it does not contribute to data processing. During the

data processing, these inputs are divided into discrete units called 'nodes.' Each node in the input

layer represents a specific element or feature of the input data.

One of the key features of a neural network is its layered structure. Each layer consists of a set of

nodes, and information propagates from the nodes in one layer to the nodes in the next layer

through the connections called 'edges' of the network. These connections play a crucial role in data

processing as they carry information between nodes.

Each edge between nodes is associated with a 'numerical weight' or 'algorithm.' This weight

indicates the importance of the information transmitted through that specific edge. A fundamental

aspect of neural networks is their ability to learn from past experiences. These weights can be

adapted and recalibrated based on how the network processes data over time and accumulated

experience.

A typical neural network architecture can be divided into three main layers: the input layer, hidden

layers, and the output layer. This structure reflects how data flows through the network during the

processing process.

15

Figure 2.2 Neural Network Architecture

The process begins in the input layer, where initial data is received and analyzed. This layer serves

as the 'sensors' of the network, detecting the basic features of raw data. This initial information

detection phase is crucial for subsequent processing.

The input to the node is:

𝐼𝑖 = ∑ 𝑤𝑗,𝑖𝑦𝑗

𝑁

𝑗=1

After the input phase, the data is sent to the hidden layers. These intermediate layers are called

'hidden' because they work invisibly, much like the human mind processes concepts in ways that are

not immediately evident. The hidden layers perform complex analysis and calculations to process

the information received from the input layer. An important aspect is that data passes through each

hidden layer progressively. Each hidden layer performs computations based on the previous ones,

refining and optimizing the information as it moves through the network.

The result of this processing is shown in the output layer. This layer represents the desired output

or response of the network based on the input data and the processing done by the hidden layers.

It is the ultimate result of data processing and represents the expected response from the neural

network.

16

It's worth noting that the intermediate layers, the so-called hidden layers, play a crucial role. Like

human perception, where we see an object as a coherent whole rather than as a series of separate

elements, the hidden layers contribute to understanding the relationships between input data and

the final output. This process of 'breaking down' data is fundamental to the effectiveness of neural

networks.

The net input 𝐴𝑖 of neuron 𝑛𝑖 is:

𝐴𝑖 = ∑ 𝑤𝑗,𝑖𝑦𝑗 − 𝜃𝑖

𝑁

𝑗=1

• 𝑦𝑗 is the signal coming from neuron 𝑛𝑗 .

• 𝑤𝑗,𝑖 is the weight of the synapse from 𝑛𝑗 to 𝑛𝑖.

• 𝜃𝑖 is the threshold of node 𝑛𝑖.

The response of neuron 𝑛𝑖:

𝑦𝑖 = 𝜙(𝐴𝑖) = 𝜙 (∑ 𝑤𝑗,𝑖𝑦𝑗 − 𝜃𝑖

𝑁

𝑗=1

)

Where 𝜙 is the activation function.

The “activation function” plays a crucial role in the process of information transmission between

nodes. This function determines whether a neuron in the next layer will be activated or not based

on the sum of the weights of its input edges. In other words, if the sum of the weights exceeds a

predefined “threshold”, known as the “activation function”, the neuron will be activated; otherwise,

it won't. This mechanism leads to an “all-or-nothing” configuration, where a neuron is activated only

if the input meets certain criteria.

It should be emphasized that the weights assigned to each edge are unique and specific to ensure

that nodes in the network activate differentially. This means that even if two nodes receive similar

input, the unique weights along their edges make them react differently and consequently produce

different outcomes.

To effectively train the network, supervised learning is used. In this process, the model's output is

compared with the actual output, known to be correct. The discrepancy between these two results

is measured and referred to as “cost” or “cost value”. The training objective is to gradually reduce

17

this cost value until the model's prediction closely matches the correct output. [25] This is achieved

by incrementally adjusting the weights in the network until the lowest possible cost value is reached.

This training process is known as “backpropagation”.

It should be noted that, unlike the flow of data into the neural network from left to right,

backpropagation is performed in reverse, starting from the rightmost output layer and proceeding

towards the leftmost input layer. This process allows the network to learn from its mistakes and

adjust the connection weights to improve overall performance.

However, it should be emphasized that one of the limitations of neural networks is their “black box”

nature. This means that even though the network can produce accurate results, its internal structure

provides limited or no information about the specific variables that influence the outcome.

Furthermore, it is possible that two neural networks with different topologies and weights may

produce the same result, making it even more challenging to discern relationships between variables

and the output. This contrasts with approaches such as regression techniques and decision trees,

which can offer greater interpretability of variable relationships.

There are various architectures and techniques for designing neural networks, but one of the

simplest is the so-called “feed-forward network”. In a feed-forward network, data signals flow in a

single direction, from the input layer to the output layer. There are no cycles or loops in the structure,

meaning information travels unidirectionally through the network.

The most elementary form of a feed-forward network is the “perceptron”. A perceptron consists of

one or more inputs, a processor that performs computations, and a single output representing the

network's final result for a given input. [26] This simple model serves as a fundamental building block

in more complex neural network architectures, which may include numerous hidden layers and

neurons to handle more intricate problems.

2.5 Keras Library

Keras is a popular open-source library written in Python for machine learning and deep learning. It

has been developed to provide a user-friendly, modular, and intuitive interface for building and

training neural networks. Furthermore, Keras is designed to run on various deep learning backends,

18

such as TensorFlow, Theano, and Microsoft Cognitive Toolkit (CNTK). This allows Keras users to

leverage the specific features of each backend without needing to change the Keras API. [27]

The Keras library is designed with the goal of being easy to use, even for users with limited

experience in deep learning. The Keras API is intuitive and requires only a few lines of code to create

and train neural networks. This makes Keras a popular choice for developers and researchers who

want to quickly prototype their machine learning models.

The library is structured in a modular way, which means that neural networks can be created by

adding layers one after the other. Each layer is responsible for a specific step in the learning process

of the network. Keras offers a wide range of layers, including fully connected layers (Dense),

convolutional layers, recurrent layers (LSTM, GRU), normalization layers, and others.

This library supports two types of modeling:

• Sequential models: suitable for creating layered neural networks, such as feedforward or

convolutional networks.

• Functional models: offering greater flexibility, allowing the creation of more complex

computational graphs, including models with multiple inputs and outputs or with shared

layers. It provides simple methods to compile the model with a loss function and an

optimizer.

Users can customize the training by using different loss functions and optimizers, as well as

specifying evaluation metrics to monitor the model's performance during training.

The learning rate, momentum, and decay are three key hyperparameters in optimization methods

used in machine learning to train neural models. These parameters work together to determine how

the model adjusts its weights during training. The learning rate controls the size of weight updates,

momentum accelerates the training, and decay gradually reduces the learning rate during training

for more stable convergence. Finding an optimal balance among these hyperparameters is crucial to

achieve optimal model performance.

2.5.1 Learning Rate

The "learning rate" is a fundamental hyperparameter in the field of machine learning, determining

how quickly an optimization algorithm updates the weights of a model during the training process.

The learning rate controls the step or magnitude of weight updates based on the gradient of the cost

19

function with respect to the weights themselves. A learning rate that is too small may slow down

training and risk getting stuck in local minima, while a learning rate that is too large may cause the

training process to oscillate without converging to the global minimum.

In the context of the Keras library, the learning rate is one of the configurable options in the optimizer

used to train the model. The optimizer is the algorithm responsible for updating the weights during

the machine learning process. Keras offers several optimizers to choose from, such as "SGD"

(Stochastic Gradient Descent), "Adam," "RMSprop," and many others.

As mentioned earlier, an excessively low learning rate can significantly slow down the model training

process. Weight updates will be very small, and it may require many epochs to achieve adequate

convergence. Additionally, a learning rate that is too low may cause the model to get stuck in local

minima without reaching the desired global minimum. On the other hand, an excessively high

learning rate can lead to unstable training. Weight updates could be so large that they cause the

training process to oscillate, preventing the model from converging to the global minimum. In some

cases, a learning rate that is too large may even cause the training process to diverge.

For this reason, finding the optimal learning rate is a crucial part of the training process. Typically,

multiple trials are performed with different learning rate values, and the value that produces the

best result in terms of convergence and model performance is observed. Techniques such as

"learning rate scheduling" or the use of adaptive optimizers, such as "Adam," help adapt the learning

rate dynamically and automatically during training.

An optimal choice of the learning rate helps achieve faster and more stable convergence during

model training, thereby contributing to better performance on the test dataset.

2.5.2 Momentum

Momentum is a concept used in optimization methods in the field of machine learning to accelerate

the training process and reach the global minimum of the cost function more quickly. Momentum is

a mechanism that considers the directions of previous weight updates during the current weight

update. This helps increase the convergence speed of the model and overcome obstacles such as

local minima or plateaus more efficiently.

In the Keras library, momentum, like the learning rate, is a configurable hyperparameter in the

optimizers used to train the model. Optimizers that support momentum, such as "SGD" with

momentum, add this feature as an additional factor to the weight updates during training.

20

Momentum can be seen as a "velocity" that the model acquires as it moves through the weight

space. During weight updates, momentum allows accumulating information from previous iterations

and giving more weight to updates that have a consistent direction over time.

It helps avoid oscillations and "jumps" in the weight update directions. This accelerates the model

training process by enabling it to follow coherent directions towards the global minimum of the cost

function. It allows the model to overcome plateaus or flat areas in the cost function, which can be

problematic for optimization algorithms as weight updates become very slow in these regions.

Momentum enables "sliding" past these flat regions and reaching more significant regions of the

cost function.

Momentum is controlled by a hyperparameter called the "momentum coefficient." This coefficient

is a value between 0 and 1, determining the extent to which momentum influences weight updates.

Higher values of the momentum coefficient give more weight to previous updates, while lower

values make it less influential.

It can be used in conjunction with other optimization techniques, such as learning rate scheduling

or learning rate adaptation. This combination of techniques helps address issues of oscillation,

slowdown, or slow convergence during training.

2.5.3 Decay rate

Another parameter is the decay rate, which is also a hyperparameter used to gradually reduce the

value of the learning rate during the training process. The decay rate is a dynamic learning rate

adjustment mechanism aimed at improving training stability and model convergence.

In the Keras library being discussed, optimizers that support the decay rate add this functionality to

gradually reduce the learning rate over training epochs.

This reduction rate can be expressed as a fixed percentage or as a constant value subtracted from

the initial learning rate at each epoch. Oscillations and excessive variations in the learning rate can

negatively affect training stability and the achievement of effective convergence.

In the Keras library, the decay rate is configurable in optimizers to enable a more stable and optimal

convergence of the model during the machine learning process.

21

2.5.4 Epoch

In the context of machine learning, an "epoch" represents a single complete pass of the entire

training dataset through the learning algorithm. During an epoch, all training data is used to advance

the model and update the weights of its internal units. Training a model involves iterating through

multiple epochs to allow the model to learn from the data repeatedly and improve its performance.

The epochs parameter (number of epochs) is a hyperparameter that indicates how many times the

entire training dataset will be presented to the model during the learning process. After each epoch,

the model's weights are updated based on the prediction errors compared to the training data.

During the first epoch, the model sees the entire training dataset and computes predictions for each

input example. Subsequently, it calculates the prediction error (loss) relative to the expected output

values. Using the optimizer and the backpropagation algorithm, the model updates the weights of

its internal units to reduce the overall error.

After the first epoch, the model has already begun learning from the training data. In the subsequent

epochs, the model will continue to see the entire training dataset repeatedly. This process of

iterating through the epochs allows the model to gradually refine its weights and improve its

performance.

Typically, with enough epochs, the model will converge to a weight configuration that minimizes the

prediction error. However, it is important to find a balance in using epochs. Too many epochs may

lead to overfitting, while too few epochs may prevent the model from learning enough from the

data.

During training, it is common to monitor the validation error (loss) on a separate validation dataset.

This helps evaluate the model's ability to generalize well to unseen data during training and avoid

overfitting. In some cases, it may be necessary to stop training before all planned epochs are

completed if the performance on the validation dataset deteriorates.

The decay rate can help the model converge more stably and consistently towards the global

minimum of the cost function. By gradually reducing the learning rate, the model can explore the

weight space more effectively, leading to better and more stable convergence.

22

2.6 Performance Evaluation Metrics for Regression Models

2.6.1 R2

The coefficient of determination, commonly known as R2, is a statistical index that measures the

proportion of the data variability explained by the statistical model used. It is related to the fraction

of the variance that the model does not account for.

R2 is a statistical measure used to determine how well a linear regression model fits the observed

data. It indicates the proportion of variance in the dependent variable that can be explained by the

independent variables included in the model.

The coefficient R2 takes values between 0 and 1. An R2 of 0 indicates that the model cannot explain

any variance in the output data, while an R2 of 1 indicates that the model explains the entire variance

in the output data. An R2 close to 0 suggests that the model does not fit the data well, while an R2

close to 1 indicates a model that is highly fitted to the data.

The formula for calculating R2 is as follows:

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆

Where 𝑇𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 is Total Sum of Square.

It is the sum of the squares of the differences between each observed value of the dependent

variable and the mean of those values. This represents the total variance of the data.

Where 𝑅𝑆𝑆 = ∑ 𝑒𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1 is Residual Sum of Square.

It is the sum of the squares of the differences between the observed values of the dependent

variable and the values predicted by the regression model. It represents the variance not explained

by the model and is referred to as the residual error of the model.

However, it is important to note that the coefficient R2 is not an absolute measure of the accuracy

of the model and has some limitations. For instance, R2 tends to increase with the number of

independent variables even if they are not relevant to the model, leading to issues of overfitting.

Additionally, R2 may not be sufficient to fully evaluate the goodness of a regression model, especially

when dealing with non-linear models or complex relationships between variables.

23

Therefore, it is always advisable to use other performance evaluation measures, such as the root

mean squared error (RMSE) or the mean absolute error (MAE), to obtain a more comprehensive

view of the model's effectiveness.

2.6.2 RMSE and MAE

The Root Mean Square Error (RMSE) is a valuable metric for quantifying how much a model's

predictions deviate from actual data. It is widely used in the field of data analysis and machine

learning to assess the performance of predictive models and guide the choice among different

models. A lower RMSE value indicates higher model accuracy, as it represents a smaller average

deviation.

The formula for calculating RMSE is as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

Where:

• 𝑁 represents the total number of samples in the evaluation dataset.

• 𝑦𝑖 is the actual value (or target value) of the sample.

• 𝑦𝑖̂ is the value predicted by the model for the sample.

While the Mean Absolute Error (MAE) is, like RMSE, a metric used to assess the accuracy of a

prediction or regression model, it calculates the average of the absolute differences between each

model prediction and the corresponding value in the actual data.

Both MAE and RMSE express the mean value of the error made by the prediction, but the difference

between the two lies in the fact that MAE is less sensitive than RMSE to extreme differences between

the predicted and observed values. Furthermore, RMSE is decomposed into RMSEs and RMSEu to

provide an evaluation of how much the model's predictions are affected by systematic errors. For a

prediction to be considered "good”, RMSEs should approach zero, while RMSEu should get closer to

RMSE.

24

3 Instruments

3.1 Accelerometer

The accelerometer is a sensor capable of measuring the acceleration of an object or a system at a

specific point in space. Accelerometers provide crucial information about linear or gravitational

acceleration, enabling the monitoring of movements, vibrations, and orientation.

In this specific case, they have been employed to measure the acceleration relative to the structure

of the beam, converting the acceleration into an electrical signal acquired by the acquisition system.

Accelerometers can measure acceleration along one, two, or three axes. Single-axis accelerometers

measure acceleration along only one axis, while dual-axis and tri-axis accelerometers measure

acceleration along two and three orthogonal axes, respectively. This allows for the determination of

the total acceleration and orientation of the object in a three-dimensional space.

Accelerometers can be classified according to various criteria, including the operating principle, the

technology employed, and the number of measurement axes. Now, let's explore the different types

of accelerometers:

• Piezoelectric accelerometers: They exploit the principle of piezoelectricity. A piezoelectric

crystal generates a voltage proportional to the acceleration when subjected to mechanical

stress. These sensors are known for their high sensitivity, rapid response, and high sampling

frequency. However, they can be influenced by electrical noise and require proper signal

amplification.

• Capacitive accelerometers: They rely on the variation in electrical capacitance between two

plates when subjected to acceleration. A movable mass inside the sensor causes a change in

the distance between the plates, which in turn affects the sensor's capacitance. These

accelerometers offer good linearity and accuracy, as well as low noise. However, they may

require proper temperature compensation to achieve accurate measurements.

• Microstructure accelerometers: They utilize microelectromechanical systems (MEMS)

structures to measure acceleration. Microscopic structures such as springs and micro-beams

deform due to acceleration, generating a variation in electrical resistance, capacitance, or

inductance. MEMS accelerometers are widely used due to their small size, relatively low cost,

and good accuracy in everyday applications.

25

In this case, piezoelectric accelerometers were available, which are sensors that exploit the

piezoelectric properties of materials. These materials consist of a crystalline matrix that generates

an electric field when subjected to mechanical deformation. Unlike other accelerometers,

piezoresistive accelerometers allow for higher sensitivity but have the disadvantage of being

influenced by temperature variations.

Figure 3.1 Accelerometer

Piezoelectric accelerometers find wide application in impact and vibration measurements. Generally,

they do not provide any output in response to constant accelerations due to the fundamental

principles of piezoelectric displacement measurement. However, they yield significant voltage

signals, have small dimensions, and can have very high natural frequencies, a crucial characteristic

for accurate measurements of impulsive phenomena.

No intentional damping is incorporated, allowing the material's hysteresis to be the sole source of

energy dissipation. As a result, the damping ratio is very low (approximately 0.01), which is

acceptable given the high natural frequency. The transfer function is:

𝑒0

𝑥𝑖̈

(𝐷) =
[

𝐾𝑞

𝐶𝜔𝑛
2] 𝜏𝐷

(𝜏𝐷 + 1) [
𝐷2

𝜔𝑛
2 +

2𝜁𝐷
(𝜔𝑛 + 1)

]

The high-frequency response is limited by mechanical resonance, while the low-frequency response

is limited by the piezoelectric characteristic 𝐷/(𝑟𝐷 + 1). The dimensionless damping ratio 𝜁 of

26

piezoelectric accelerometers is generally not provided by manufacturers, but in most practical

applications, it can be assumed to be close to zero. The frequency band where the accelerometer

provides accurate measurements (with a 5% tolerance upward at higher frequencies and a 5%

tolerance downward at the lower end of the frequency response band) is
3

𝜏
< 𝜔 < 0.2𝜔𝑛.

For accurate low-frequency response, a wide 𝜏 (time constant) is required, which is typically

achieved by using high-impedance voltage amplifiers or charge amplifiers. Systems designed for a

response below 1.0 Hz and subjected to temperature transients can experience errors due to the

pyroelectric effect affecting most piezoelectric materials. In this case, an output charge is generated

in response to a temperature input.

For systems that exhibit negligible response at low frequencies, these temperature-induced signals

(as they are "slow" transients) result in a small output. Significant errors may occur if a high 𝜏 is

selected to measure low-frequency accelerations or if the accelerometer is not designed to minimize

thermal effects. [28]

The implementation details of piezoelectric accelerometers can be modified to emphasize specific

performance aspects required for applications. There is no single configuration that is ideal for all

situations due to the compromises inherent in any engineering design.

The basic design, known as the compression type, is the simplest and most robust, offering the best

mass/sensitivity ratio. As the housing acts as an integral part of the mass-spring system, this type is

more sensitive to spurious inputs. For piezoelectric accelerometers, these spurious inputs include

temperature, acoustic noise, base bending (surface deformations induced by the bending of the

mounting surface), cross-axis motion, and magnetic fields.

The spring is typically preloaded to make the piezoelectric material work in the most linear portion

of its load/deformation curve. This preload also allows for measurements of both positive and

negative accelerations, without ever subjecting the piezoelectric material to tensile stresses. In other

words, the initial preload results in an output voltage with a certain polarity.

However, this polarity immediately decays, and the polarity associated with the potential difference

subsequently produced by the acceleration, which is the subject of the measurement, will follow the

direction of motion. This is because the charge polarity depends on the deformation variation and

not its magnitude. The preload is chosen to be large enough to never cancel out, even in the

presence of the widest input accelerations.

27

Microcircuit electronics have enabled the development of piezoelectric accelerometers with charge

amplifiers (Integrated Circuit Piezoelectric - ICP) placed inside the instrument's enclosure. A single

two-wire cable, which simultaneously transmits both the power signal to supply the amplifier and

the measurement signal, connects the instrument to a simple constant current power supply.

A high-level output signal (a few volts) is directly provided to an oscilloscope or a signal analyzer.

This system allows for higher sensitivity with a smaller accelerometer capable of measuring at higher

frequencies while reducing the noise generated by the cable and the limitations on its maximum

length, all at lower costs.

These advantages come at the expense of a reduced temperature operating range (microcircuit

electronics have tighter temperature limitations compared to those of the accelerometer alone) and

less versatile signal conditioning (integrated amplifiers allow for limited or no adaptation). The

background noise of the accelerometer-amplifier combination might need specific attention,

especially at low frequencies, where the acceleration amplitude could be small and thus masked by

noise.

In the market, a wide variety of piezoelectric accelerometers can be found. The compromise

between sensitivity and frequency response is evident in the common specifications provided for

the instrument; an accelerometer used for impact detection may offer 0.004 pC/g and exhibit a

natural frequency of 250,000 Hz, while a unit designed for low-level seismic measurements is

characterized by 1000 pC/g and a natural frequency of 7000 Hz.

The response to spurious inputs of thermal nature and due to support bending, for shear isolated

models, is about 200 times lower compared to models not optimized for these purposes. There are

also small triaxial units, as small as a 7 mm side length cube with a mass of 1 g. Instruments that are

uncooled and capable of operating in a temperature range from -40 to 815 °C typically exhibit a

sensitivity variation of approximately 10% when transitioning from -40 to 815 °C and are designed

to withstand typical radioactive environments found in nuclear reactors.

A system of accelerometers, wiring, and signal conditioning, designed for cost-effective multi-

channel vibration testing, employs low-cost piezoelectric film transducers as plug-in modules to

provide single-axis, dual-axis, or triaxial measurement points when operating in non-particularly

harsh environments, such as a laboratory.

28

Piezoelectric accelerometers demonstrate greater cross-axis sensitivity compared to other types;

however, this is typically kept around 2-4%, and it usually does not represent a critical factor. Some

manufacturers indicate the axis of lesser cross-axis sensitivity, allowing the user to orient the

instrument during installation to minimize this effect.

Accelerometers can be mounted using threaded studs (preferred method), adhesives, or wax, or

with magnetic attachments. The primary effect of the different mounting methods is a reduction of

the natural frequency to a lower value than what the accelerometer exhibits when not yet mounted,

due to the elastic and inertial characteristics of the mounting system.

3.1.1 ICP Accelerometers

All accelerometers require an ICP (IEPE) power supply, although they can also be used with Voltage

supply.

The ICP technology, which stands for Integrated Circuit Piezoelectric, is a commonly used technology

in accelerometers to amplify and condition the signal generated by the piezoelectric sensors. It was

introduced to simplify the reading of piezoelectric signals and reduce electrical interference.

In an ICP-based accelerometer, the piezoelectric crystal is connected to an integrated circuit within

the same device. The ICP circuit amplifies the piezoelectric signal generated by the crystal. Since

piezoelectric signals are generally very weak, signal amplification is essential to obtain an accurate

measurement of acceleration. The ICP circuit amplifies the signal to make it suitable for further

processing. This circuit provides a constant current to the piezoelectric crystal.

This constant current ensures an accurate and stable response of the crystal to mechanical stresses,

as well as contributes to reducing the influence of external electrical noise and interference.

Another important function of the ICP circuit is signal conditioning. This includes converting the

piezoelectric signal into a voltage or current signal proportional to the measured acceleration. Signal

conditioning may also involve filtering to eliminate unwanted frequencies or noise present in the

signal.

This technology greatly simplifies the interfacing of the accelerometer with the data acquisition

system. In fact, an ICP interface can be directly connected to an ICP input of a measurement system

without requiring additional amplification or signal conditioning circuits.

29

In summary, the ICP technology in piezoelectric sensors of accelerometers offers efficient signal

amplification and conditioning, ensuring accurate and reliable measurements of accelerations.

Additionally, each accelerometer has its own sensitivity required to convert the Voltage value into

𝑚/𝑠2. For these experiments, accelerometers designed and manufactured by PCB Piezotronics, Inc.

were used, each with a different sensitivity.

3.2 Load Cell

The load cell is a device used to measure the force or load applied to it. In this case, it was used for

the experiments on the beam and plate to measure the tension or compression generated by the

forces applied to the structures.

Load cells are typically composed of a solid block or a flexible component that undergoes

deformation when a load is applied. This deformation generates a variation in electrical resistance,

capacitance, or voltage, which is then converted into an electrical signal proportional to the applied

load. This signal is then passed to the sensor signal to amplify it and finally to the data acquisition

system.

Load cells are often strategically placed along the beam to measure the forces acting on it. They can

be positioned on either the upper or lower part of the beam, depending on the type of measurement

desired. For example, if one wants to measure the bending or tension at the upper end of the beam,

the load cell can be positioned at that location to detect the forces acting on it.

It is important to select an appropriate load cell based on the experiment's specifications to obtain

accurate and reliable results since they are available in various load capacities, ranging from grams

to tons, and with different measurement accuracies.

In the case of the beam, a load cell model SN LW 55202 was used, while for the plate, the model

was SN LW 55552, designed and manufactured by PCB Piezotronics, Inc., a company specializing in

measurement and sensor technology. PCB's load cells are available in a wide range of load capacities,

which can vary from fractions of Newtons (or pounds) to many tons, depending on the specific

requirements of the application.

30

Figure 3.2 Load cell

PCB's load cells can be provided in various mechanical configurations to suit application needs. Some

common configurations include pancake load cells (flat), basket load cells, compression or tension

load cells, and other variants. They are designed to offer high precision and repeatability in

measurements, ensuring reliable and accurate results.

These sensors are constructed with durable and robust materials to withstand industrial

environments and harsh conditions. Additionally, many PCB load cells include overload protection

systems and safeguards against accidental damage.

For the experiments conducted, the load cell has a mass of 22.7 g. It is considered a concentrated

mass in the calculation of natural frequencies but was approximated to 23 g.

3.3 Shaker

The shaker is a mechanical exciter that generates electromagnetic vibrations by converting an

electrical signal into controlled mechanical motion.

It is a crucial component in vibration tests and seismic tests for evaluating structural performance

and primarily consists of three main components: an electromechanical actuator that converts

31

electrical energy into mechanical energy, typically composed of a permanent magnet and a movable

coil subjected to a variable magnetic field generated by an electric current. The oscillation of the

movable coil generates the vibration force.

It also includes a support and fixation system in which the shaker is mounted to withstand the forces

generated during vibrations. It is essential for the support system to be rigid and minimize external

interferences that could alter measurements or the behavior of the tested structure.

Finally, it has an electronic controller that regulates the electrical current sent to the actuator to

control the intensity and frequency of the vibrations generated by the shaker. The controller can be

programmed to generate various vibration profiles.

In this case, three different types of signals were generated by the shaker: harmonic cosine,

pseudorandom, and chirp. Each of these signals had a specific frequency, sampling rate, and

acquisition length.

For these experiments, a K2007E01 Mini SmartShaker with an integrated power amplifier was used.

It is an electrodynamic exciter designed for generic vibration tests of small components and

subassemblies up to 9 KHz. [29] It can also be used as an exciter for modal tests of small structures.

A new generation of ultra-compact precision power amplifiers integrated into its base eliminates the

need for a separate and bulky power amplifier. The compact size of the K2007E01 shaker makes it

ideal for applications such as production screening, reliability acceptance tests, and engineering

evaluations.

Figure 3.3 Shaker

32

The use of composite materials in the armature suspension and guidance system provides high

lateral and rotational containment while maintaining maximum compliance in the direction of

movement, allowing a peak-to-peak stroke of 0.5 inches (13 mm).

The body structure of the K2007E01 shaker and the pin assembly are designed to allow a variety of

operational positions. The K2007E01 is generally used in a vertical orientation and can be rotated up

to 90° for horizontal applications. The shaker comes with a variety of nylon tips from 10 to 32,

providing electrical insulation and flexible attachments for testing items.

3.4 CompactDAQ

The CompactDAQ is a data acquisition system developed by National Instruments, including a series

of measurement modules and a user-friendly programming interface.

The CompactDAQ system consists of several components. At its core, there is a compact chassis that

houses the measurement modules. The chassis can accommodate various I/O (Input/Output)

modules based on the specific needs of the application. The measurement modules may include

analog inputs, digital inputs, analog outputs, digital outputs, counters/frequency meters,

thermocouples, and more.

The CompactDAQ controller is a rugged, reliable, and high-performance integrated controller with

standard industry certifications. It is ideal for performing waveform acquisition and online software

analysis while recording data in the integrated or removable SD memory.

The controller also offers a wide range of standard connectivity and expansion options, such as USB,

Ethernet, CAN/LIN, and RS232 serial. With over 60 C Series I/O modules for almost any sensor type,

you can quickly design a custom hardware configuration optimized for size, cost, and performance.

The C Series modules are high-quality input and output modules that provide signal conditioning

and analog-to-digital conversion for the CompactDAQ system.

These hot-swappable modules connect directly to the chassis, making it easy to create a tailored

system for specific testing requirements. NI provides dedicated software called LabVIEW for the

configuration and management of the CompactDAQ system.

33

Figure 3.4 CompactDAQ National Instrument

In the current case, LabView software was not used; instead, Matlab was used as the interface to

control and acquire data through a specific library and the "daqlist" command, enabling direct

communication with NI's data acquisition devices. This usage allows for easier data acquisition and

subsequent analysis, reprocessing, and visualization using various toolboxes available in Matlab.

Eight modules were used, some as outputs and others as inputs, depending on the module model.

3.5 Sensor Signal Conditioner

The PCB Piezotronics model 282C series sensor signal conditioners were used. They are crucial

devices to ensure the accuracy and reliability of sensor measurements by amplifying and converting

the signals from the sensors into a suitable format for further processing and analysis.

In the case of the sensors used on the beam, including the load cell and accelerometers, they

produced very weak signals. Therefore, it was necessary to introduce this device to amplify the

signals and obtain more precise measurements. This adjustment can have different gain settings,

depending on how small the acquired measurement is; the correct gain is selected accordingly.

The signals from the sensors can be influenced by various environmental factors, such as electrical

noise and interference. The PCB sensor signal conditioners include conditioning circuits that filter

34

and isolate the sensor signal from such interferences. This ensures that the signal is clean and free

from disturbances, thus improving the measurement quality. Additionally, PCB signal conditioners

may include analog-to-digital conversion (ADC) circuits to convert the signal into a digital format.

Figure 3.5 PCB Piezotronics model 282C series sensor signal conditioners

Some sensors may generate non-linear signals in response to the measured physical quantity. The

sensor signal conditioners can include linearization circuits to convert the non-linear signal into a

linear relationship with the measured physical quantity. This enables more accurate and reliable

measurements. They may also incorporate protection circuits to safeguard the sensor and data

acquisition system from overvoltage, overcurrent, and short circuits. This protection is essential to

prevent device damage and ensure the safety of the measurement setup.

In the case of the beam experiment, a gain of 1x was set for the signals from the accelerometers and

load cell, so that they would be visible during data reprocessing using Matlab. They are connected

to the CompactDAQ modules through cables.

Figure 3.6 Sensor signal conditioners diagram

35

3.6 Other Instruments

Part of the experiment was conducted on a worktable with adjustable legs that allowed for changes

in height and floor contact to avoid potential oscillations during the experimental test. Additionally,

it was necessary to secure the beam and the plate to a support to prevent any undesired oscillations

due to a sluggish support. This was achieved by using blocks with holes that could be bolted to the

table using pins, along with one or more washers and nuts of various sizes.

36

4 Data Acquisition

The acquisition of experimental data in the beam and plate experiments was carried out using a

code developed in Matlab, which allowed for the acquisition of data from the load cell and

accelerometers.

In the following flowchart, an overview of the steps followed by the developed code is presented:

37

As evident from the flowchart, this code consisted of a series of steps. The initial step involved

configuring a range of parameters based on the requirements of the specific data acquisition

scenario. Notably, it was essential to set the number of active channels for each module, trigger

threshold values, parameter values, and the channel type, which could be either "IEPE" or "Voltage"

in the case of accelerometers.

The essential parameters that needed configuration included acquisition rate, scan length,

frequency, number of averages, and signal amplitude. Setting the amplitude correctly was of

paramount importance because leaving it at the default value of unity would lead to errors. This is

because, after signal acquisition, it wouldn't be able to represent the entire signal curve, potentially

exceeding the range and resulting in values that were not acquired. The amplitude needed to be set

to small values, given that the available accelerometers had a specified acquisition range within the

interval of -4.75 V to 4.75 V.

The second step involved identifying the National Instrument device through the "daqlist" command

to provide a list of devices within the chassis. Subsequently, a "DataAcquisition Object" was created,

and channels were added to it based on the previously selected channel type for each channel. After

these steps, the desired output was selected from three available options, data was acquired,

averaged, processed, and finally displayed in the requested graphs.

The developed code allowed the usage of three different output options for the signal:

• Chirp

• Pseudorandom

• Harmony

4.1 Chirp Signal

A chirp signal is a signal that varies its frequency over time according to a well-defined law. The term

"chirp" is derived from the sound of radar signals reflected from a target, which generates an

acoustic signal resembling the singing of a bird, hence the name "chirp". [30]

The chirp signal can be represented in either the time domain or the frequency domain. In the time

domain, the chirp signal is characterized by a frequency that changes linearly or nonlinearly over

time. A common example of a chirp signal is the cosine chirp, defined by the following equation:

38

𝑥(𝑡) = 𝐴 ∙ cos (2𝜋(𝑓0𝑡 + 𝑘𝑡2))

Where:

• 𝐴 is the amplitude of the signal.

• 𝑓0 is the initial frequency of the chirp at time t = 0.

• 𝑘 represents the steepness or rate of frequency change over time.

When k is positive, the frequency of the chirp signal increases over time (up-chirp). Conversely, when

k is negative, the frequency of the chirp signal decreases over time (down-chirp).

In the frequency domain, a chirp signal will appear as an expanding or contracting frequency band.

A chirp signal is best represented in its frequency spectrum form, using Fourier transform or Hilbert

transform.

Chirp signals find various applications, including radar systems for distance measurement and

target localization. In sonar applications, chirp signals are used for similar purposes as in radar, but

in underwater environments.

Chirp signals can be employed in various signal processing applications, such as modulation and

demodulation of communication signals or frequency analysis in acoustic or vibration signals.

The use of chirp signals offers significant advantages as they provide higher frequency resolution

compared to signals with constant frequency. This makes them useful in applications requiring

narrowband analysis and high precision in frequency determination.

4.1.1 Comparison between Chirp Signal Input from MatLab and Output Load Cell

The input signal sent to the shaker was generated by the following line of MATLAB code:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑚𝑝 ∗ 𝑐ℎ𝑖𝑟𝑝(𝑡, −105, 𝑙𝑒𝑛𝑔𝑡ℎ_𝑠𝑐𝑎𝑛, 𝑓𝑟𝑒)

39

Figure 4.1 Frequency comparison between input and output of the chirp signal in the beam

Figure 4.2 Low frequency comparison between input and output of the chirp signal in the plate

40

Figure 4.3 High frequency comparison between input and output of the chirp signal in the plate

The previous figures display a comparison, both for the beam and the plate, at low and high

frequencies, between the input generated by MATLAB sent to the shaker and the actual output

detected by the load cell. As evident from the graphs, there is not a strong correspondence between

the input generated by MATLAB and the actual signal read by the load cell. To mitigate this

discrepancy, a decision was made to use a signal with an initial instantaneous frequency at time zero

equal to -105 instead of 0. This choice was made to enhance the correspondence between the input

and output signals, as an initial value of 0 resulted in a less meaningful correspondence, which did

not contribute to obtaining values closer to the expected ones, consequently leading to

discrepancies between the experimental values and those obtained numerically.

4.2 Pseudorandom Signal

A pseudorandom signal, also known as a pseudo-random signal, is a signal that appears random but

is generated by a deterministic algorithm. Unlike true random signals, pseudorandom signals are

reproducible and predictable because their sequence is generated by a Pseudo-Random Number

Generator (PRNG).

PRNGs are mathematical algorithms that produce sequences of numbers that, at first glance, appear

random, but are completely determined by an initial value known as the "seed." The seed is the

starting point of the algorithm, and if the same seed is used, the generator will always produce the

41

same sequence of numbers. To obtain different sequences, one can vary the seed or use a "jump"

technique in the PRNG to move to a different position in the sequence.

In data acquisition, a pseudorandom signal is used as an input signal or "stimulus" to be sent to a

system or device for conducting tests, measurements, or calibrations.

The main characteristic of a pseudorandom signal is repeatability. If you know the seed used in the

random number generator, you can regenerate the exact same sequence of numbers every time.

This repeatability is useful in many applications, for example, in testing and troubleshooting, as it

allows reproducing the same conditions and verifying results.

A good pseudorandom number generator will attempt to produce a sequence of numbers that

approximates a random distribution. This means that, even though the numbers are generated

deterministically, their distribution should exhibit some properties like those of a truly random

number sequence.

Although PRNGs can produce long sequences, each PRNG has an upper limit to the length of the

generated sequence, known as the period. After a certain number of iterations, the generator will

return to the initial sequence. This periodicity may be acceptable for many applications, but it is

important to select a PRNG with a long enough period to ensure that the sequence does not repeat

too frequently.

Since the pseudorandom signal is determined by the seed and the PRNG algorithm, it is fully

reproducible. This repeatability is advantageous in situations where one wants to precisely

reproduce the same data acquisition conditions for testing, debugging, or comparing different

experiments.

Although the numbers generated by a PRNG are not truly random, a good generator will aim to

approximate the statistical properties of a random sequence. This is particularly important when

using pseudorandom signals in analysis and verification applications.

Pseudorandom signals produced by a PRNG have a limited duration, determined by the generator's

period. After a certain number of samples, the sequence will repeat. It is important to ensure that

the signal's duration is sufficiently long to meet the data acquisition requirements.

Pseudorandom signals can be designed to have a uniform spectral distribution or be modulated to

follow a specific distribution. This is particularly useful when performing frequency analysis or

42

testing in certain frequency bands. Since the pseudorandom signal is a known sequence, it is

important to ensure that it does not inadvertently contaminate the acquired data. If the

pseudorandom signal were to overlap with a desired signal, it could alter the measurement results.

Pseudorandom signals are widely used in data acquisition for various applications, such as:

• Testing and verification of systems and equipment.

• Calibration of sensors and measurement instruments.

• Analysis of noise and system behavior.

• Generation of test signals for functional testing and performance evaluations.

However, it is important to note that in certain scientific or industrial applications where true

randomness is required, it is necessary to use True Random Number Generators (TRNG) based on

physical processes, such as thermal or quantum noise, that produce genuinely random sequences.

4.2.1 Comparison between Pseudorandom Signal Input from MatLab and Output Load Cell

The input signal sent to the shaker was generated by the following line of MATLAB code:

𝑠𝑣 = 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝑡′))

𝑣𝑠 = 𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑠𝑣, 𝑓𝑟𝑒, 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒, ′𝐼𝑚𝑝𝑢𝑙𝑠𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒′, ′𝑖𝑖𝑟′)

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑣𝑠 ∗ 𝐴𝑚𝑝

Figure 4.4 Frequency comparison between input and output of the pseudorandom signal in the beam

43

Figure 4.5 Low frequency comparison between input and output of the pseudorandom signal in the plate

Figure 4.6 High frequency comparison between input and output of the pseudorandom signal in the plate

The preceding figures depict a comparison, both for the beam and the plate, at low and high

frequencies, between the input signal generated by MATLAB and sent to the shaker, and the actual

output registered by the load cell. As discernible from the graphs, a strong correspondence between

the MATLAB-generated input signal and the actual signal read by the load cell is notably lacking.

Consequently, this disparity results in experimental values that differ from those obtained

numerically. Furthermore, unlike the previous case, it was not feasible to generate a signal that could

closely resemble what is read by the load cell.

44

4.3 Harmonic Signal

In data acquisition, a harmonic signal is a type of periodic signal that consists of one or more

sinusoidal components with frequencies that are integer multiples of the fundamental harmonic.

Understanding and analyzing harmonic signals are fundamental in studying the behavior of linear,

electrical, and electromagnetic systems, as well as in many other areas of engineering and physics.

A harmonic signal can be described by the following general formula:

𝑥(𝑡) = 𝐴 ∙ sin (2𝜋𝑓𝑡 + 𝜙)

where:

• 𝑥(𝑡) is the value of the signal at time t.

• 𝐴 is the amplitude of the sinusoidal wave, representing the signal's excursion.

• 𝑓 is the frequency of the fundamental harmonic.

• 𝑡 is the time.

• 𝜑 is the initial phase of the signal, representing the phase shift relative to the temporal origin.

In addition to the fundamental harmonic at frequency f, the harmonic signal can also contain higher

harmonics, which are sinusoidal components with frequencies that are multiples of frequency. For

instance, if the fundamental harmonic is f, the second harmonic will be at 2f, the third at 3f, and so

on. The amplitudes and phases of these harmonics depend on the properties of the initial signal.

The harmonic signal has a discrete and regular frequency spectrum, with peaks at the frequencies

of the various harmonics. The frequency spectrum of a harmonic signal is useful for analyzing and

identifying the various components of the signal.

Harmonic signals are often used in data acquisition to perform tests, analyses, or evaluations of

equipment, systems, or components. For example, it is common to use harmonic signals to calibrate

measuring instruments, analyze the frequency response of an electrical or electronic circuit, or

characterize the behavior of a mechanical system subjected to periodic vibrations.

4.3.1 Comparison between harmonic signal input from MatLab and output load cell

The input signal sent to the shaker was generated by the following line of MATLAB code:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑚𝑝 ∗ 𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 𝑓𝑟𝑒 ∗ 𝑡′)

45

Figure 4.7 Frequency comparison between input and output of the harmonic signal in the beam

Figure 4.8 Low frequency comparison between input and output of the harmonic signal in the plate

46

Figure 4.9 High frequency comparison between input and output of the harmonic signal in the plate

The previous figures illustrate the comparison, both for the beam and the plate, at low and high

frequencies, between the input generated by MATLAB sent to the shaker and the actual output

registered by the load cell. In contrast to the previous cases, a noticeable improvement in the

correspondence between the MATLAB-generated input and the actual signal detected by the load

cell can be observed in the graphs. This results in fewer errors compared to the previous cases.

4.4 Number Average

The "Number average" parameter allows setting the number of acquisitions to be performed before

averaging the signal. The appropriate value of Number average depends on the nature of the signal

and noise, as well as the application's specifications.

In general, a larger value of Number average will provide a more stable average and further reduce

the influence of noise, but it will require more time to complete the acquisition and averaging

process. On the other hand, a value that is too small may not significantly reduce the noise or provide

a reliable estimate of the desired signal.

The choice to acquire the signal multiple times is since in most data acquisition systems, the signal

we want to measure is often contaminated by noise. Noise consists of unwanted or random signals

that can be caused by various sources, such as electronic interference, environmental instabilities,

47

or other sources of disturbance. The noise can vary randomly from acquisition to acquisition, and its

level can be much lower than the amplitude of the desired signal.

As the noise varies randomly between different acquisitions, averaging multiple acquisitions tends

to reduce the effect of noise, as noise has a stochastic nature. The component of the signal that is

coherent among acquisitions (i.e., the desired signal) tends to accumulate in the average.

The "Number average" parameter allows setting the number of acquisitions to be performed before

averaging the signal. The appropriate value of Number average depends on the nature of the signal

and noise, as well as the application's specifications.

In general, a larger value of Number average will provide a more stable average and further reduce

the influence of noise, but it will require more time to complete the acquisition and averaging

process. On the other hand, a value that is too small may not significantly reduce the noise or provide

a reliable estimate of the desired signal.

The choice to acquire the signal multiple times is since in most data acquisition systems, the signal

we want to measure is often contaminated by noise. Noise consists of unwanted or random signals

that can be caused by various sources, such as electronic interference, environmental instabilities,

or other sources of disturbance. The noise can vary randomly from acquisition to acquisition, and its

level can be much lower than the amplitude of the desired signal.

As the noise varies randomly between different acquisitions, averaging multiple acquisitions tends

to reduce the effect of noise, as noise has a stochastic nature. The component of the signal that is

coherent among acquisitions (i.e., the desired signal) tends to accumulate in the average.

All of this will subsequently allow for better signal processing.

4.5 Trigger

In data acquisition, a "trigger" is a mechanism or signal used to initiate the start of the data

acquisition in synchronization with a specific event or desired condition. The trigger is crucial to

ensure that data acquisition begins at the right moment, capturing exactly the relevant data and

reducing unwanted noise or interference.

48

The desired event or condition that must occur for data acquisition to start is specified. This event

can be a voltage change, a rising or falling edge, a specific value reached by a signal, or any other

specific condition relevant to the purpose of acquisition.

Once the trigger is activated, data acquisition is initiated in synchronization with the detected event.

This ensures that the captured data is relevant and consistent with the specific event being studied

or analyzed.

In the case of the beam experiment, an initial intensity peak was observed when the input was

initially applied. This was likely due to the beam's thickness being too thin, leading to data acquisition

starting after the first 0.15 seconds.

4.6 Dataset Creation

In the development of a surrogate model aimed at learning stress distributions from simulations

conducted using the Finite Element Method (FEM) to predict real-time stress distributions, the

neural network algorithm relies on predicting accelerations along the structure nodes. This is

achieved through accelerometers positioned along the structure, monitoring time-variable behavior.

Following machine learning, the algorithm can then predict the structure's response at various time

points and positions.

The dataset comprises approximately one million entries obtained from various FEM simulations

based on the examined signals. These data serve as input for the algorithm. At each time step, the

machine learning algorithm establishes a relationship between the desired numerical response and

the calculated reference quantities, either using FEM in the numerical case or accelerometer values

in the experimental case.

In the case of the beam modeled with the FEM, 50 nodes were used along its vertical axis, and the

finite element simulation was executed using Matlab. For algorithm training, seven factors were

employed as input: the 𝑥 coordinate positions of nodes, acceleration (𝑎𝑐𝑐), and 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5,

representing the five accelerometers positioned at different locations along the beam.

In contrast, for the plate, unlike the beam, the finite element simulation to obtain numerical values

was performed using Ansys Workbench with the "transient structural" tool. Eighty-eight nodes were

49

used, and the input parameters included the 𝑥 and 𝑦 coordinates for node positions, acceleration

(𝑎𝑐𝑐), and 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, representing the seven accelerometers used for the plate.

The generated data is divided into two sets: a training set and a test set. This division allows training

the model on the training data and subsequently evaluating its performance on the test set. Data

splitting is accomplished through a stratified sampling method. The training set comprises 80% of

the data, while the test set includes the remaining 20%. Although 70%-30% simulations will also be

conducted to observe potential differences. This approach is crucial for assessing the overall

accuracy of the final model.

50

5 Experiment model beam

5.1 Experiment Preparation

During the experiment a rectangular bar was analyzed. It was a rectangular aluminum bar measuring

175 mm in length, 19.16 mm in width, and 3.10 mm in thickness.

The first step involved ensuring the cleanliness of the bar, free from any dust or dirt. Subsequently,

a thorough examination of the aluminum bar was conducted to identify any surface defects such as

scratches, dents, or other imperfections.

Following this analysis, the next step was to subject the bar to a surface defect removal process. Two

different grades of sandpaper were selected for this purpose. During the sanding process, deliberate

and consistent movements were applied. Initially, coarse-grit sandpaper was used, gradually shifting

to finer grit as surface defects were removed.

Upon completing the finishing process, it was essential to clean the surface from any residual dust

using a solvent and a cloth while wearing gloves to prevent contamination of the bar.

At the conclusion of these procedures, a significantly improved aluminum bar with a flawless surface

was obtained.

Once the bar was prepared and cleaned, it was initially positioned vertically on a support and

secured with a clamp. Three accelerometers with varying sensitivities were placed at different

positions along the bar. Additionally, a load cell was installed and subsequently connected to the

shaker located at the same height, allowing for perpendicular force application to the beam.

Figure 5.1 Old beam configuration

51

However, this configuration proved inadequate due to the clamp's inability to secure the bar

adequately. This resulted in various errors caused by vibrations stemming from the mounting

support. Consequently, the decision was made to adopt the configuration proposed in Figure 5.2.

In this case, improving the bar's fixation became necessary, as illustrated in the following figure:

Figure 5.2 New beam configuration

To circumvent the problems encountered in the previous configuration, as evident in the figure, the

bar's fixation was facilitated by two black blocks that were securely fastened to the bar.

Onto this properly prepared beam, five accelerometers were positioned:

• Accelerometer model 352A24 SN LW 369406 with sensitivity 9.94 𝑚𝑉/𝑚/𝑠2

• Accelerometer model 352A24 SN LW 369402 with sensitivity 9.87 𝑚𝑉/𝑚/𝑠2

• Accelerometer model 352A24 SN LW 339401 with sensitivity 10.00 𝑚𝑉/𝑚/𝑠2

• Accelerometer model 352A24 SN LW 369399 with sensitivity 9.96 𝑚𝑉/𝑚/𝑠2

• Accelerometer model 352A24 SN LW 369404 with sensitivity 9.88 𝑚𝑉/𝑚/𝑠2

52

And a Load cell model 208C01 SN LW 55202 with sensitivity 500 𝑚𝑉/𝑙𝑏.

They were positioned as shown in the schematic diagram:

Figure 5.3 Configuration of accelerometer and load cell placement

53

Figure 5.4 Configuration of accelerometer placement

As shown in Figure 5.2, the load cell was connected to the shaker, which is positioned in a structure

at the same height, to apply force perpendicular to the bar.

Both the 5 accelerometers and the load cell were connected to a sensor signal conditioner. It was

necessary to introduce this device so that the sensor signals, through the conditioning circuits, could

be filtered and isolated from various environmental factors, such as noise and electrical interference.

In this way, an effort was made to improve the signal by making it clean and free from disturbances,

thus enhancing the quality of measurements.

Subsequently, the signal was passed to the CompactDAQ, connected to the computer via a USB

cable. The signal was acquired using CompactDAQ and the MatLab 2021b tool.

In the MatLab code developed, it is possible to set the acquisition frequency, signal length, number

of signal acquisitions for averaging, cut-off frequency, range, amplitude, and output type.

It was observed that it is not possible to set the acquisition frequency arbitrarily because the

CompactDAQ module operates only within specific ranges according to the formula: [20]

54

𝑓𝑠 =
𝑓𝑀 ÷ 256

𝑛

Where:

• 𝑓𝑀 frequency of a master timebase

• 𝑓𝑠 data rate (fs)

• 𝑛 is any integer from 1 to 31.

This issue may arise due to various reasons, depending on the system configuration and the use of

National Instruments (NI) driver or APIs with MATLAB. For instance, one of the issues is the inherent

hardware limitations of National Instruments, which can affect its ability to acquire or generate

signals at certain sample frequencies. Therefore, it's essential to check the hardware's technical

specifications before proceeding with data acquisition to ensure it can operate at the desired

sampling frequencies.

Another problem involves rounding errors. In some situations, there might be a rounding or

approximation error in the frequencies set through the NI driver or API, resulting in slightly different

actual frequencies. Alternatively, there may be an error in the configuration of the NI driver or APIs

with MATLAB, preventing the system from functioning correctly at specific sampling frequencies. As

a result, a decision was made to use the frequency of 8400 Hz, which was suitable for the dq.Rate.

All the signals presented in the following summary table 1 have been sampled using:

• 𝐴𝑐𝑞𝑢𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 6400 𝐻𝑧

• 𝐿𝑒𝑛𝑔ℎ𝑡 𝑠𝑐𝑎𝑛𝑒 = 4 𝑠

• 𝑁. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 2

• 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 = 0.15 𝑠

55

𝑁𝑎𝑚𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝐻𝑧] 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 [𝑉]

𝐶𝐻1 𝐶ℎ𝑖𝑟𝑝 2000 0.05

𝐶𝐻2 𝐶ℎ𝑖𝑟𝑝 600 0.05

𝐶𝐻3 𝐶ℎ𝑖𝑟𝑝 2000 0.025

𝐶𝐻4 𝐶ℎ𝑖𝑟𝑝 600 0.025

𝑃𝑆1 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 2000 0.05

𝑃𝑆2 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 600 0.05

𝑃𝑆3 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 2000 0.025

𝑃𝑆4 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 600 0.025

𝐴𝑅1 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 2000 0.05

𝐴𝑅2 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 600 0.05

𝐴𝑅3 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 2000 0.025

𝐴𝑅4 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 600 0.025

Table 1

5.2 Material

The Young's modulus of aluminum can vary slightly based on the specific composition of the

aluminum used, processing conditions, and measurement methods. Sometimes, to simplify analyses

or consider a broader range of situations, an average or approximate value, such as 60 GPa, may be

used.

In some engineering applications, it is prudent to use conservative values to ensure that the material

is sufficiently safe and reliable. Using a value slightly lower than the theoretical one (e.g., 60 GPa

instead of 72 GPa) can provide an additional safety margin in the design and evaluation of material

performance.

The material composing the beam is aluminum, and it was not possible to ascertain the exact

composition or precise alloy used. Therefore, for the purpose of analysis and data processing, it was

set to 𝐸 = 60 𝐺𝑃𝑎.

56

5.3 Damping

The differential equation that describes the behavior of a system with proportional damping is

expressed as follows:

[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝑓(𝑡)}

• [𝑀] is the mass matrix, a diagonal n x n matrix with diagonal elements representing the

masses of individual degrees of freedom.

• [𝐶] is the damping matrix.

• [𝐾] is the stiffness matrix, an n x n matrix representing the system's stiffness.

• 𝑓(𝑡) is the vector of external forces applied to the system at time t.

• 𝑢 is the vector of positions (or amplitudes) at time t, a column vector of size n x 1.

• 𝑢̇ is the vector of velocities at time t, a column vector of size n x 1 representing the derivatives

of positions with respect to time.

• 𝑢̈ is the vector of accelerations at time t, a column vector of size n x 1 representing the

derivatives of velocities with respect to time.

The proportional damping model, also known as Rayleigh damping, [31] was used, where the

damping matrix [𝐶] is a linear combination of the mass matrix [𝑀] and the stiffness matrix [𝐾]:

[𝐶] = 𝛼[𝑀] + 𝛽[𝐾]

With 𝛼 e 𝛽 being the Rayleigh damping constants.

The damping factor is equal to: 𝜉 =
𝑐

2√𝑘𝑚

While 𝜔𝑖
2 represents the square of the frequencies

The relationship that connects these three factors is:

2𝜉𝑖𝜔𝑖 = 𝛼 + 𝛽𝜔𝑖
2

The Rayleigh constants are determined experimentally by knowing the values of the damping and

frequency factors:

{
𝛼 + 𝛽𝜔1

2 = 2𝜉1𝜔1

𝛼 + 𝛽𝜔2
2 = 2𝜉2𝜔2

57

From which we derive in the case of the beam:

• 𝛼 = 7 ∙ 10−7 1/𝑠

• 𝛽 = 1 ∙ 10−6 𝑠

5.4 Comparisons of Machine Learning Simulations: Beam Case

Various signal samplings were performed through multiple experimental tests using different input

signals such as chirp, pseudorandom, and harmonic. The signals listed in Table 1 were analyzed, and

in the subsequent section, we will delve into the signals that yielded the most significant results.

5.4.1 Numerical-Experimental Chirp Signal Comparison

In this paragraph, a chirp signal with an amplitude of 0.05 V and a frequency of 2000 Hz was

analyzed, comparing numerical values with experimental ones.

Figure 5.5 Time history chirp signal – Accelerometer 3

58

Figure 5.6 Time history chirp signal – Accelerometer 5

Among the five accelerometers used, the third, positioned at the midpoint of the analyzed beam,

and the fifth, located at the tip of the same beam, were compared to provide an analysis at the most

critical points of the beam.

From the preceding figures, it is evident that the experimental values are consistently lower than

the predicted numerical values and do not entirely align with them, although the trend of the peaks

is quite consistent with the numerical values obtained. This discrepancy could be attributed to

several factors.

Firstly, the issue highlighted in the previous paragraph must be considered, where the load cell does

not capture the same signal generated as the input to the shaker for excitation. This leads to a

different acceleration value than expected because the input for numerical and experimental values

differs due to the load cell's varied readings.

Additionally, the thickness and rigidity of the beam, which have significantly reduced values, can

introduce irregularities in the data detected by the accelerometer. Another determining factor might

be vibrations from the supports that secure the beam or an unstable table.

Other factors contributing less significantly to the disparity between numerical and experimental

values include improper accelerometer calibration or incorrect installation on the beam. If the

accelerometer is not positioned correctly, or if there are issues with fixing or orientation, the

collected data will be adversely affected.

59

Other influential factors may include slight defects in the beam reducing rigidity, accelerometer

limitations due to their own range, although this was addressed by reducing the amplitude of the

function, and environmental conditions such as temperature and humidity that could have

influenced the accelerometer.

These factors collectively help explain the observed divergences between experimental

measurements and numerical predictions.

Figure 5.7 FRF chirp signal – Accelerometer 3

Figure 5.8 FRF chirp signal – Accelerometer 5

60

The trend of the peaks in the FRF of the two accelerometers is notably consistent between numerical

and experimental values.

Subsequently, the results obtained from machine learning were compared between the numerical

model of the accelerometers (on the left) and the experimental model of the accelerometer values

(on the right):

Figure 5.9 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case

Figure 5.10 Error evolution - Numerical case

61

Figure 5.11 Error evolution - Experimental case

Figure 5.12 Time=0.5 s - Beam acceleration - L) Numerical case - R) Experimental case

Figure 5.13 Time=1.0 s - Beam acceleration - L) Numerical case - R) Experimental case

62

Figure 5.14 Time=2.0 s - Beam acceleration - L) Numerical case - R) Experimental case

Figure 5.15 Time=3.0 s - Beam acceleration - L) Numerical case - R) Experimental case

In comparing the MAE and MSE graphs, it is evident that, in the case of numerical values, the line

converges to zero after only 10 epochs, unlike the experimental case where significantly more

epochs are required to reach zero. This is attributed to the fact that, in the experimental case, the

values of the train error and value error are much higher than in the numerical case; consequently,

a greater number of epochs are needed to bring the error values to convergence at approximately

zero.

From all the graphs of the numerical model, it is observed that perfect values lead to the

phenomenon of overfitting, supported by the obtained R2 value of 0.99. In fact, at each selected

time instant, the curve of the initial FEM corresponds to that predicted by machine learning.

63

Regarding the experimental part, a good R2 is achieved, and the predicted values align reasonably

well along the bisector. In the graphs at various time instants, particularly at 0.5 and 3 seconds, it is

noticeable that the predicted acceleration curve values correspond to the data recorded by the

accelerometers. This is because the experimental and numerical values at those time instants match

more closely compared to the cases at 1 second and 2 seconds. However, the curve of the initial

FEM and that of the predicted values are much closer than in the cases of 0.5 and 3 seconds.

5.4.2 Pseudorandom Signal Comparison

A pseudorandom signal with an amplitude of 0.05 V and a frequency of 2000 Hz was analyzed,

comparing the numerical values with the experimental ones.

Figure 5.16 Time history pseudorandom signal – L) Accelerometer 3 – R) Accelerometer 5

Figure 5.17 FRF pseudorandom signal – L) Accelerometer 3 – R) Accelerometer 5

The analysis of the comparison between experimentally obtained values and numerically calculated

values for a pseudorandom signal represents a fundamental step in validating and optimizing the

algorithm used. The results of this comparison provide valuable insights into the adequacy of

64

modeling and implementing the pseudorandom signal, as well as the ability of the experimental

system to measure and acquire data accurately.

One of the most interesting aspects of this analysis is the opportunity to identify any deviations

between experimental and calculated values. These discrepancies may arise from multiple sources,

such as measurement errors or limitations in the system's ability to generate the pseudorandom

signal. Identifying the cause of such differences is crucial to ensuring the reliability of the

pseudorandom signal in the specific application. It should be emphasized that the analysis of

comparison between experimental and calculated data is a standard practice in the design of

pseudorandom signals, and its accurate execution is essential to ensure the reliability and

effectiveness of systems that use them.

Similar to the chirp signal analysis, a difference between experimental and numerical values is

observed here, attributed to plausible reasons explained earlier. It is noted that experimental values

are lower than numerical values, but they fairly follow the pattern of pseudorandom peaks in both

analyzed accelerometers. In fact, the FRF trends of the experimental and numerical lines coincide

quite well, especially at low frequencies.

Figure 5.18 Predictions x Reality on dataset test - Experimental case

65

Figure 5.19 Error evolution - Experimental case

Figure 5.20 Beam acceleration - Experimental case - L) Time=0.5 s - R) Time=1.0 s

Figure 5.21 Beam acceleration - Experimental case - L) Time=2.0 s - R) Time=3.0 s

66

The Figure 5.18 should illustrate how the predicted values and the actual values are distributed

uniformly along the bisector. In this case, most values concentrate in the central part of the bisector

and less along its entire length. For this reason, as evident from Table 2, the R2 value is very low.

Particularly near the tip of the beam, the predictive models do not closely match the actual values

of the accelerometers.

From figure 5.19, it is evident that the 50 epochs used are not sufficient to achieve an error close to

zero. The MAE values are still high, and the MSE values are elevated after 50 epochs, unlike the

experimental chirp case where 50 epochs were enough to reach a value close to zero.

5.4.3 Harmonic Signal Comparison

A cosine signal with an amplitude of 0.05 and a frequency of 2000 Hz was analyzed, comparing

numerical values with experimental ones.

Figure 5.22 Time history harmonic signal – Accelerometer 3

67

Figure 5.23 Time history harmonic signal – Accelerometer 5

In the recently examined case of a harmonic sine wave signal, the analysis reveals a good agreement

between experimental and calculated data. This suggests that the employed model can accurately

represent the behavior of the examined harmonic signal. This outcome is highly positive, confirming

the robustness of the model and the reliability of experimental measurements.

Overall, a well-executed comparative analysis between experimental and calculated data for a

harmonic signal contributes to an enhanced understanding of the phenomena under examination,

strengthening the foundation for future decisions and developments based on such data.

In the case of the third examined accelerometer, experimental values are slightly lower than

numerical values, but the peaks and the curve are in phase throughout the signal's course.

Conversely, for the accelerometer at the tip, reasonably comparable values are obtained.

68

Figure 5.24 FRF harmonic signal – Accelerometer 3

Figure 5.25 FRF harmonic signal – Accelerometer 5

69

Figure 5.26 Predictions x Reality on dataset test - Experimental case

Figure 5.27 Error evolution - Experimental case

70

Figure 5.28 Beam acceleration - Experimental case - L) Time=0.5 s - R) Time=1.0 s

Figure 5.29 Beam acceleration - Experimental case - L) Time=2.0 s - R) Time=3.0 s

From the error graph, it is evident that the initial values are already quite small, and after 50 epochs,

convergence to nearly zero is easily achieved, although even 25 epochs would have sufficed. As

indicated by the preceding graphs and the R2 value in Table 2, this results in the initial FEM and

predicted values curves being almost entirely coincident, leading to a significantly high R2, exceeding

0.90 for harmonic signals. Comparing the R2 values in the table, it is apparent that the highest R2

values are associated with harmonic signals, followed by lower values for chirp signals, and finally,

pseudorandom signals.

The accuracy of the obtained results primarily stems from the near-complete coincidence between

the excitation signal input sent to the shaker by the Matlab command and the signal detected by the

load cell. Real and predicted values are consistently and uniformly distributed along the bisector,

71

enabling an accurate prediction of the acceleration curve for most values along the beam, with only

a slight deviation observed at its tip.

5.4.4 Comparison among Harmonic Signals with Different Amplitudes and Frequencies

An analysis was conducted on a cosine signal with an amplitude of 0.05 V and a frequency of 600

Hz, comparing it with a cosine signal with an amplitude of 0.025 V and a frequency of 2000 Hz.

Figure 5.30 Predictions x Reality on dataset test - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz

Figure 5.31 Error evolution - Experimental case 0.05 V and 600 Hz

72

Figure 5.32 Error evolution - Experimental case 0.025 V and 2000 Hz

Figure 5.33 Time=0.5 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz

Figure 5.34 Time=1.0 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz

73

Figure 5.35 Time=2.0 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz

Figure 5.36 Time=3.0 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz

Between the two plots along the bisector, it is evident that in the case with lower amplitude and

higher frequency, the points along the bisector are distributed quite uniformly and compactly along

its entire length. In contrast, the other case exhibits numerous scattered points in the plot, far from

the main bisector, and several real values predict an acceleration value of zero.

This leads to lower R2 values for the lower amplitude values, resulting in less pronounced bisector

curves. The prediction curves coincide more in the case of the right-side figures, which exhibit a

higher R2, especially up to about half the length of the beam, where they align completely with

those of the initial FEM.

Ultimately, at none of the examined time instances in both cases, do the lines pass through all the

experimental values of the accelerometer calculated at that specific time, due to the differences

between experimental and numerically obtained values. Although there are time instances, such as

74

the plot describing the moment at 2 seconds and 3 seconds, where the lines, in some cases, pass or

are very close to the experimental accelerometer values.

5.4.5 Comparison of Simulations using 70% Dataset and 80% Dataset

A chirp signal with an amplitude of 0.025 and a frequency of 2000 Hz was analyzed by comparing

the results obtained through machine learning processing using only 70% of the dataset values and,

in contrast, processing using 80% of the dataset values.

Figure 5.37 Predictions x Reality on dataset test - L) Experimental case 70% dataset - R) Experimental case 80% dataset

Figure 5.38 Error evolution - Experimental case 70% dataset

75

Figure 5.39 Error evolution - Experimental case 80% dataset

Figure 5.40 Time=0.5 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset

Figure 5.41 Time=1.0 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset

76

Figure 5.42 Time=2.0 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset

Figure 5.43 Time=3.0 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset

From the MAE and MSE graphs, it is observed that the error values are similar, and the convergence

trend is the same in both the 70% and 80% cases, as the two bisectors show data distributed in the

same range. Indeed, Table 2 highlights the similarity in R2 values in both cases, suggesting that

reducing the number of database entries does not significantly impact the R2 value.

Furthermore, in comparing various time instances, it is evident that the curves predicting the data,

as well as error cases and the bisector, are similar in both scenarios. However, the curves predicted

with 80% of the dataset are slightly better, closely approaching the initial FEM curves and the

experimental values of the accelerometers. Particularly noteworthy is the case at 3 seconds, where

the curve of predicted data closely aligns with the experimental values of the accelerometers in

those positions.

77

5.4.6 Comparison of Simulations using 4 Accelerometers and 5 Accelerometers

In this case, an analysis was conducted with 5 accelerometers, and another analysis was performed

with 4 accelerometers placed in the same positions. However, in the case with 4 accelerometers,

accelerometer 3, positioned at the center of the beam, was not included as input when the machine

learning algorithm analysis was conducted. The obtained values for a chirp signal with an amplitude

of 0.05 and a frequency of 2000 Hz are as follows:

• Mean Absolute Error: 9.508295589619058

• Mean Squared Error: 263.4765120767734

• Mean Root Squared Error: 16.23195958831753

• r2: 0.5821782271025184

while the R2 value for the unused accelerometer is R2 = 0.53.

Figure 5.44 Predictions x Reality on dataset test - Experimental case

78

Figure 5.45 Error evolution - Experimental case

Figure 5.46 Beam acceleration - Experimental case - L) Time=0.5 s - R) Time=1.0 s

Figure 5.47 Beam acceleration - Experimental case - L) Time=2.0 s - R) Time=3.0 s

79

In this simulation, it can be observed that the curves of MAE and MSE values are almost entirely

coincident, converging with the same trend and requiring the same number of epochs to reach

convergence. The goodness of these results is evident in the various time instances examined, where

the acceleration values completely or almost entirely coincide along the entire curve, showing no

significant differences between the input with 5 accelerations and the one with 4 accelerations. It is

noteworthy that in all four cases, the curves of the predicted accelerations with 5 and 4

accelerometers pass through the points of the calculated experimental values. Furthermore, at the

time instances of 1 second and 2 seconds, the curves of the initial FEM, the predicted accelerations

with an input of 5 accelerations, and the predicted accelerations with an input of 4 accelerations are

almost entirely coincident, providing excellent results for the analyses conducted.

5.5 Results

In the following chapter, a detailed analysis of the previous comparisons and the results obtained

will be conducted through an in-depth examination of the prediction of acceleration values along

the beam using the previously proposed machine learning algorithm. Additionally, we will evaluate

how the learning process has impacted the model's ability to understand and generalize such

heterogeneous data.

The objective of this analysis is to understand to what extent the machine learning algorithm has

been able to capture the fundamental characteristics of accelerations obtained from these different

types of signals. It aims to assess its ability to predict and adapt to new data accurately and

efficiently. The results obtained in this study will provide a clear overview of the model's

performance and help draw meaningful conclusions about its potential use in practical applications

related to acceleration analysis in variable environments.

Table 2 below summarizes the values obtained from various analyses of different signals acquired

under the conditions outlined in Table 1. The first column contains the letters 'N,' indicating

numerical analyses, while the letter 'E' indicates experimental analysis. Additionally, white cells

indicate analyses where 80% of the dataset was used, while yellow cells indicate analyses where

only 70% of the data were used to predict the remaining 30%.

80

 Evaluating Model's Performance on training
data

Evaluating Model's Performance on testing
data

Evaluating Model's Performance

 Time [s] MAE MSE MRSE R2 MAE MSE MRSE2 R2 MAE MSE MRSE2 R2

CH1N 2000 0.1782 0.1444 0.3801 0.9997 0.2332 0.21262 0.46111 0.9996 0.1877 0.1545 0.3931 0.9997

CH1E 2000 9.6653 266.9188 16.3376 0.5767 9.7914 278.6832 16.6938 0.5607 9.6849 268.7449 16.3934 0.5743

AR1N 2100 0.0089 0.0003 0.0186 0.9998 0.0142 0.0006 0.0257 0.9996 0.0092 0.0003 0.0193 0.9998

AR1E 2100 0.2104 0.0962 0.3102 0.9499 0.2123 0.0966 0.3108 0.9497 0.2107 0.0962 0.3102 0.9499

PS1N 2150 0.1206 0.0277 0.1667 0.9999 0.1536 0.0440 0.2099 0.9999 0.1225 0.0284 0.1687 0.9999

PS1E 8750 13.5888 387.420 19.6830 0.3313 13.7593 395.6257 19.8903 0.3183 13.6229 389.0574 19.7245 0.3287

CH2N 8750 0.1811 0.1323 0.3637 0.9999 0.2508 0.2075 0.4555 0.9998 0.1878 0.1386 0.3724 0.9999

CH2E 8700 20.0150 980.517 31.3132 0.4273 20.1749 994.2210 31.5312 0.4108 20.0242 980.1429 31.3072 0.4259

CH3N 2100 0.0723 0.0297 0.1724 0.9998 0.0843 0.0333 0.1825 0.9997 0.0736 0.0299 0.1729 0.9998

PS2N 2000 0.0813 0.0174 0.1321 0.9999 0.1164 0.0323 0.1798 0.9999 0.0860 0.0194 0.1394 0.9999

PS2E 7000 11.8409 333.7929 18.2700 0.2226 11.9681 339.4022 18.4228 0.2111 11.8661 334.9048 18.3004 0.2204

AR2N 2150 0.0378 0.0030 0.0548 0.9999 0.0517 0.0055 0.0744 0.9999 0.0389 0.0031 0.0564 0.9999

AR2E 2100 0.8340 2.9963 1.7310 0.9758 0.8377 3.0397 1.7434 0.9754 0.8343 3.0047 1.7334 0.9757

AR3E 2100 0.1807 0.0722 0.2687 0.8758 0.1812 0.0724 0.2691 0.8754 0.1808 0.0722 0.2688 0.8758

CH3E 2250 5.1308 73.6274 8.5806 0.5351 5.1856 76.2760 8.7336 0.5213 5.1399 74.0578 8.6056 0.5330

CH1N 9300 0.1341 0.1257 0.3546 0.9998 0.1626 0.1523 0.3903 0.9997 0.1424 0.1359 0.3686 0.9997

CH1E 8000 9.3914 252.187 15.8804 0.6000 9.4930 259.5497 16.1105 0.5909 9.4041 252.9557 15.9045 0.5993

AR1N 2150 0.0083 0.0003 0.0177 0.9998 0.0144 0.0006 0.0264 0.9996 0.0090 0.0003 0.0188 0.9998

AR1E 2150 0.2103 0.0966 0.3108 0.9497 0.2113 0.0969 0.3112 0.9495 0.2104 0.0966 0.3108 0.9497

AR2N 2250 0.0288 0.0022 0.0476 0.9999 0.0472 0.0044 0.0666 0.9999 0.0336 0.0026 0.0514 0.9999

AR2E 2250 0.8392 2.9974 1.7313 0.9758 0.8447 3.0410 1.7438 0.9754 0.8399 3.0058 1.7337 0.9757

PS1N 2350 0.1137 0.0270 0.1644 0.9999 0.1681 0.0514 0.2269 0.9999 0.1204 0.0293 0.1713 0.9999

PS1E 2400 13.4966 382.2611 19.5515 0.3402 13.687 391.6854 19.7910 0.3251 13.5346 384.145 19.5996 0.3372

CH3E 2250 5.0123 70.0446 8.3692 0.5277 5.1075 75.7657 8.7043 0.5195 5.0287 70.9968 8.4259 0.5223

Table 2

The simulations were conducted using the Google Colab platform, a cloud-based computing

platform that provides free computing resources to its users. The free version was employed, so the

GPU of the computer used to run the simulation was not utilized. Consequently, the runtime for

each simulation could vary depending on the time of day due to server load on Google Colab. Being

used by numerous users worldwide, server load can vary significantly based on the number of users

using the service at a given time. If multiple users are using the servers simultaneously, longer

runtimes may be experienced due to competition for available computing resources. This results in

a temporal variation ranging from 30 to 50 seconds per step, depending on the dataset and amount

of motion, up to 130-180 seconds per step.

81

For a variety of reasons, it is impractical to conduct a concrete analysis on the column related to the

analysis runtime, as their consistency is compromised by a phenomenon inducing significant

variations in runtimes for the same type of analysis.

If we analyze the column containing R2 values, several insights into the quality of the conducted

analyses become apparent. The R2 column and the comparative analysis conducted in paragraph

5.4 reveal that, in various analyses with numerical data, the obtained R2 value is consistently 0.99,

resulting in the phenomenon of overfitting. In a numerical analysis context, overfitting occurs when

a mathematical model is excessively tailored to the training data, including random details or noise

that do not represent true patterns in the data distribution. In other words, the model has learned

the training data so well that it loses its ability to generalize to new data, compromising its predictive

validity. Overfitting can occur when the model is too complex relative to the intrinsic complexity of

the problem and can be addressed through regularization techniques or model complexity

reduction.

As a result, it has become crucial to orient the assessments toward the validity of the analyses

conducted based on the experimental values obtained. Indeed, among the three analyzed signals,

the harmonic signal demonstrates the highest validity, with an R2 equal to or exceeding 0.90.

Subsequently, the second signal that proves highly applicable in the conducted analyses is the chirp

signal, with an R2 ranging between 0.42 and 0.57. Finally, the least favorable outcome is generated

by the analyses performed with the pseudorandom signal, yielding an R2 of approximately 0.20-

0.30. For this reason, the curves of initial FEM and predictive curves were markedly distant at all

analyzed time points, in contrast to the harmonic case with a much higher R2, where the two curves

were almost entirely coincident.

Another noteworthy observation that emerges relates to the percentage of data selected as input

for the dataset in machine learning analysis. It is evident that, whether using 70% or 80% of the data,

highly similar R2 values are obtained, and the predictive curves show a significant approximation to

those obtained through the initial FEM in the same motion. From these results, it can be inferred

that even with only 70% of the data available, valid analyses comparable to those conducted with

80% of the data could be carried out.

The same deduction can be made in the case of the analysis performed in paragraph 5.4.6, where

initially, 5 accelerometer values were used and then compared with data obtained from signals

coming from 4 accelerometers, excluding the accelerometer positioned at the center. The analysis

82

reveals that the R2 value with 4 accelerometers is slightly lower than that with 5 accelerometers and

that the predicted curves pass almost along the same points. This suggests that the omitted

accelerometer is relatively redundant, as valid results are obtained in the case with 4

accelerometers.

83

6 Experiment model plate with hole

After analyzing a beam in the previous chapter, we moved on to a slightly more complex two-

dimensional structure, namely a perforated plate. The perforated plate was constructed using

Structural Steel material with a Young's modulus equal to 2 ∙ 1011 𝑃𝑎 and a density equal to

7850 𝑘𝑚/𝑚3, its dimensions are as shown in Figure 6.1:

Figure 6.1 Diagram of plate dimensions with hole

6.1 Experimental Setup for Plate with Hole

As in the previous case, all the tools already used for the beam in Chapter 5.1 were employed. After

thoroughly cleaning the plate from possible dust or dirt, it was placed on the table with the drilled

boards, as shown in Figure 6.3. Here, the plate was carefully secured and bolted to the table using

washers, nuts, and bolts to minimize errors due to vibrations caused by inadequate plate fixation

during data acquisition.

84

Figure 6.2 Plate configuration

After securing the plate, the next step involved positioning the shaker at the correct height

corresponding to the point where it was necessary to apply the load. This was achieved using the

supports, which were also employed to secure the beam in the previous case, adequately fixed and

bolted in the same manner as the plate. On top of these supports, the shaker was placed and

connected to the load cell model 208C02 SN LW 55552 with a sensitivity of 50 𝑚𝑉/𝑙𝑏.

On this perforated plate, using the supplied adhesive, all 7 accelerometers available were positioned:

1. Accelerometer model 352A24 SN LW 369406 with sensitivity 9.94 𝑚𝑉/𝑚/𝑠2

2. Accelerometer model 352A24 SN LW 369404 with sensitivity 9.88 𝑚𝑉/𝑚/𝑠2

3. Accelerometer model 352A24 SN LW 339401 with sensitivity 10.00 𝑚𝑉/𝑚/𝑠2

4. Accelerometer model 352A24 SN LW 369399 with sensitivity 9.96 𝑚𝑉/𝑚/𝑠2

5. Accelerometer model 352A24 SN LW 369402 with sensitivity 9.87 𝑚𝑉/𝑚/𝑠2

6. Accelerometer model 352A24 SN LW 369405 with sensitivity 10.06 𝑚𝑉/𝑚/𝑠2

7. Accelerometer model 352A24 SN LW 369403 with sensitivity 10.00 𝑚𝑉/𝑚/𝑠2

The accelerometer values are acquired by the modules in the positions just listed. For simplicity, they

will be represented in the following graphs, illustrating the placements of the various accelerometers

in the proposed configurations.

85

Figure 6.3 Plate configuration with table

6.2 Sensor Placement Decision

Unlike the case of the beam where 5 accelerometers were sufficient to obtain an adequate number

of signals, in this scenario, the surface to be covered is much larger. For this reason, it was necessary

to apply the study [32] to understand where to place the accelerometers in the most appropriate

way and verify the correct method to ensure the best prediction of results. Moreover, only 7

accelerometer positions were feasible due to the experimental unavailability of additional

accelerometers in the laboratory.

Six different configurations for sensor placement were examined:

• Effective Independence Method (EIM)

• RFR selecting for avg. FRF (RFR-FRF)

• RFR selecting for ODS (RFR-ODS)

• RFR selecting for normalized ODS (RFR-nODS)

• Large distributed grid (LDG)

• Small distributed grid (SDG)

6.2.1 Configuration Effective Independence Method (EIM)

Regarding the EIM method, it was necessary to develop a script to implement the algorithm on the

analysis results produced by a modal finite element, providing it with natural frequencies and modal

shapes. The goal is to maximize the independence of each accelerometer position so that the

collected data vary from one accelerometer to another. Additionally, a strategy was adopted to

86

exclude duplicate data from the response set, allowing for obtaining the maximum amount of

information with the least number of repetitions.

Figure 6.4 Configuration 1 - Effective Independence Method (EIM)

6.2.2 Configuration Random Forest Regression (RFR)

Another potential method for sensor selection is the Random Forest Regressor (RFR). It is a widely

used machine learning algorithm for addressing regression problems. This model relies on an

ensemble concept, combining various decision trees to enhance prediction accuracy. The distinctive

feature of the RFR is the introduction of randomness during the construction of each tree, randomly

selecting features and training data used at each step. This randomness contributes to creating

diversity among the trees, thereby reducing the risk of overfitting and improving the model's ability

to generalize to new data. In practice, when making a prediction with the random forest regressor,

each tree contributes its prediction, and the final output is often obtained by averaging these

predictions.

For creating the dataset used in the RFR for this specific application, it was necessary to extract it

from the FEA models obtained from a transient analysis using the ANSYS software, where each row

represents a frequency for which the FRF of each calculated node is obtained.

87

In this dataset, each row corresponded to the operational deflection shape (ODS) of each node in

the FEA model for a given frequency. The ODS is a graphical representation of the vibration or

deflection pattern of a structure during its normal operation or functionality.

Three different results obtained from:

Raw ODS, where a distinct value is obtained for each ODS at every frequency:

𝑂𝐷𝑆𝜔
𝑇 𝑂𝐷𝑆𝜔

To obtain a different value for each ODS at every frequency.

Figure 6.5 Configuration 3 - RFR selecting for ODS

Subsequently, a normalized form was analyzed to reduce the sensitivity of the output, thus

eliminating the effect of the load magnitude:

𝑂𝐷𝑆𝜔
𝑇 𝑂𝐷𝑆𝜔

|𝑂𝐷𝑆|2

88

Figure 6.6 Configuration 4 - RFR selecting for normalized ODS (RFR-nODS)

Finally, the last output utilized was the mean FRF at each given frequency:

∑ 𝐹𝑅𝐹(𝑓)𝑛

𝑛

where n is the number of nodes.

89

Figure 6.7 Configuration 2 - RFR selecting for normalized ODS (RFR-nODS)

6.2.3 Large Distributed Grid (LDG) and Small Distributed Grid (SDG)

Finally, the last two configurations were used without the need for a positioning technique obtained

from the results of an algorithm. Accelerometers were simply placed in one half of the perforated

plate in the Large Distributed Grid (LDG) configuration, while in the case of the Small Distributed

Grid (SDG), accelerometers were positioned in one quarter of the perforated plate.

Figure 6.8 Configuration 5 - Large distributed grid (LDG)

90

Figure 6.9 Configuration 6 - Small distributed grid (SDG)

6.3 Finite Element Method (FEM) Analysis on Ansys

The generation of a mesh in ANSYS Workbench 2023 is a crucial process in the numerical analysis of

Finite Element Analysis (FEA). The mesh represents the geometric discretization of the initial model

and consists of finite elements such as triangles or quadrilaterals (in the case of two-dimensional

mesh) or tetrahedra and hexahedra (in the case of three-dimensional mesh).

The process began with importing the model geometry developed in SolidWorks into the ANSYS

work environment. Once the geometry was imported, the software automatically generated the

mesh. However, the result obtained was not entirely satisfactory, and it was necessary to refine the

mesh, especially in the vicinity of the plate hole, where the mesh was densified to properly discretize

the geometry. In total, the obtained mesh consists of 15,838 nodes and 7,506 elements.

91

Figure 6.10 Mesh Ansys

Figure 6.11 Mesh Refinement near the Hole

After mesh generation, it was essential to assign the material properties of "Structural Steel" to the

model. Subsequently, model constraints were defined, and the force values along with the

coordinates of the load vector, stored in an Excel file, were imported using the "Imported File"

feature. This step enabled the specification of loading conditions, completing the problem setup for

FEM analysis. In contrast to the beam analysis performed using MatLab, a "Transient Structural"

92

analysis was conducted at this stage. This was done to obtain accelerations and deformations at the

relevant nodes, forming the dataset required for the plate algorithm, as explained in Section 4.6.

6.4 Comparisons of Machine Learning Simulations: Plate Case

Various signal samplings were performed through multiple experimental tests using different input

signals such as chirp, pseudorandom, and harmonic. The signals listed in Table 1 were analyzed, and

in the subsequent section, we will delve into the signals that yielded the most significant results.

As in the case of the beam, three different types of signals were analyzed: chirp, pseudorandom, and

harmonic. All three signals were sampled in the configurations described earlier in Chapter 6.2, with

the following characteristics:

• 𝐴𝑐𝑞𝑢𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 6400 𝐻𝑧

• 𝐿𝑒𝑛𝑔ℎ𝑡 𝑠𝑐𝑎𝑛𝑒 = 4 𝑠

• 𝑁. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 2

6.4.1 Numerical-Experimental Harmonic Signal Comparison in the Configuration with Algorithm

In this case, a cosine signal was analyzed with accelerometers positioned as in the previously

obtained Configuration 3, comparing numerical values with experimental ones.

Figure 6.12 Time history harmonic signal – Accelerometer 1

93

Figure 6.13 Time history harmonic signal – Accelerometer 2

Figure 6.14 Time history harmonic signal – Accelerometer 3

In the recently examined case of the harmonic signal of a cosine wave, the analysis reveals good

agreement between experimental and calculated data for accelerometers in positions 1 and 2. This

suggests that the utilized model accurately represents the behavior of the examined harmonic

signal. However, this excellent correspondence found in the first two accelerometers is not observed

in the case of accelerometer 3. Unlike the first two accelerometers, which are distant from the

constraint, the third accelerometer is close to the constraint, resulting in the numerical values

approaching zero as expected. In contrast, the experimental results show significantly higher values.

This is attributed to the fact that, despite properly bolting the plate supports to the table, a perfect

constraint was not achieved, leading to movements near the connection point between the lower

part of the plate and the table.

94

Subsequently, the results obtained from machine learning were compared between the numerical

model of accelerometers (on the left) and the experimental model (on the right) of accelerometer

values.

Figure 6.15 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case

Figure 6.16 Error evolution - Numerical case

Figure 6.17 Error evolution - Experimental case

95

Figure 6.18 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.19 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.20 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

96

Figure 6.21 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.22 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.23 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

97

Figure 6.24 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.25 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.26 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

98

Figure 6.27 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.28 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.29 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

99

As in the case of the beam, 50 epochs were used for both the numerical and experimental cases. As

expected, in the numerical case, there is an initially very small value for MAE and MSE; after the first

few epochs, there is a rapid decrease in both train error and val error. In particular, the val error

reaches a certain level of convergence after only 10 epochs, while the train error, although reaching

very low values after 50 epochs, continues to decrease. In contrast, in the experimental case, the

behavior of train error and val error coincides; both undergo a sharp decrease in error after half of

the epochs but do not reach clear convergence after the 50 epochs used in the predictive analysis.

From the graphs in Figure representing the dataset of real and predicted values, it is evident that in

both the experimental and numerical cases, the data are evenly distributed along the bisector and

in the same positions in both cases. This results in a very similar R2, as observed in Table 3.

Regarding the graphs at various time points, we decided to use time instants at 0.5 sec, 1.0 sec, 2.0

sec, and 3.0 sec. The z-axis represents the calculated deformation along this axis and remains the

same in the predictive case since experimental values for deformation were not available, and the

algorithm could only predict accelerations, not deformations. Acceleration values are represented

with isocolor lines that provide this result over the entire perforated plate represented, with the

color bar on the right indicating acceleration values in 𝑚/𝑠2.

Thanks to the excellent R2 value, it is noticeable that at 0.5 seconds, both the numerical and

experimental cases show excellent prediction compared to the real case, with a slight discrepancy

in the top right and top left corners. This is due to the insufficient accelerometers in that portion of

the plate, which hindered obtaining enough data to predict and describe the upper part of the plate.

The same issue is encountered in the subsequent analyzed time instants, while in the lower part of

the plate and near the hole, a much more accurate prediction is achieved in both the numerical and

experimental cases due to the presence of more data and smaller values.

6.4.2 Numerical-Experimental Harmonic Signal Comparison in the Regular Configuration

In this case, a cosine signal was analyzed with accelerometers positioned as in configuration 5

obtained previously, comparing the numerical values with the experimental ones.

100

Figure 6.30 Time history harmonic signal – Accelerometer 4

Figure 6.31 Time history harmonic signal – Accelerometer 6

In this examined case, the accelerometers were not positioned according to the results obtained

from an algorithm but according to a regular geometry that allowed examining the central and upper

part of the plate. As an example, accelerometers positioned at 4 and 6, representing the right and

left sides of the plate, were illustrated. Both exhibit the same trend in both experimental and

numerical signals and a significant agreement between the numerical and experimental values.

These data are reflected in all the time histories of the analyzed accelerometers, presenting a

consistent pattern similar to those shown in the figure. This is because the accelerometers were

uniformly placed along the grid and away from the constraint, which could influence the discrepancy

between the numerical and experimental parts, unlike the harmonic case represented earlier where

data were obtained from accelerometers positioned according to an algorithm.

101

Figure 6.32 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case

Figure 6.33 Error evolution - Numerical case

Figure 6.34 Error evolution - Experimental case

102

Figure 6.35 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.36 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.37 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

103

Figure 6.38 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.39 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.40 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

104

Figure 6.41 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.42 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.43 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

105

Figure 6.44 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.45 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.46 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

106

Unlike the previous case in Section 6.4.1, where the values obtained after the 50 epochs of the neural

network algorithm were very similar, here some differences are noticeable. The first substantial

difference is observed in the MAE and MSE graph, where in the numerical case, after only 10 epochs,

the curves quickly converge to a value very close to zero, while in the experimental case, the curves

remain more or less constant for half of the learning and then undergo a drastic decrease after half

of the learning period but without converging after the 50 imposed epochs.

This difference between experimental and numerical values is also evident in the figures

representing the distributions of real values with predicted ones. In the numerical case, which has a

very high R2 of approximately 0.98, there is a very linear distribution along the bisector, while in the

experimental case, there is a linear distribution along the bisector, but also affecting the adjacent

part due to an R2 of approximately 0.60.

In the predicted time instants, numerically, there is excellent prediction of acceleration values along

the various analyzed time instants, as in the case at 0.5 seconds and 2.0 seconds, where there is an

excellent correspondence between Initial FEM and numerically and experimentally predicted values

despite a low R2 value. However, at 3.0 seconds, it is noticeable that along the lower edges, below

the hole in the plate, there is not a good prediction of experimental acceleration values.

These experimental results can be compared to the case of Configuration 3 presented earlier, which,

despite having a much higher R2, had prediction errors, especially in points not covered by

accelerometers. In contrast, in this case, despite having a much lower R2, the distribution of

accelerometers favored more accurate acceleration predictions.

6.4.3 Numerical-Experimental Pseudorandom Signal Comparison

In this case, a pseudorandom signal was analyzed with accelerometers positioned as in Configuration

5 obtained previously, comparing numerical values with experimental ones.

107

Figure 6.47 Time history pseudorandom signal – Accelerometer 4

Figure 6.48 Time history pseudorandom signal – Accelerometer 6

The fifth configuration was analyzed similarly to the previous harmonic case. However, unlike the

harmonic case where experimental and numerical values were very similar and exhibited a similar

trend, the same correspondence in the signal is not found here. Indeed, after the first 0.5 seconds,

the numerical values become very high, reaching unrealistic values. Due to the uniform distribution,

a uniform signal is obtained along all signals acquired by the accelerometers.

108

Figure 6.49 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case

Figure 6.50 Error evolution - Numerical case

Figure 6.51 Error evolution - Experimental case

109

Figure 6.52 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.53 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.54 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

110

Figure 6.55 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.56 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.57 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

111

Figure 6.58 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.59 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.60 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

112

Figure 6.61 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.62 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.63 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

113

As evident from Figure 6.49, the real values of the Initial FEM and the predicted values are uniformly

distributed along the bisector, forming a regular bisector. In contrast, in the experimental case, while

the values also distribute along the bisector, they form a much broader distribution cloud. This, along

with the significant difference between numerical and experimental values, results in very high MAE

and MSE errors for the pseudorandom case. In the numerical case, the curve reaches convergence

after just 10 epochs but with a value much higher than the almost zero value in the harmonic case.

However, in the experimental case, the curve consistently decreases after 10 epochs, but unlike the

numerical case, it continues to decrease without reaching convergence during the 50 epochs used.

Given the very high R2 value in the numerical case, it is evident that the predicted acceleration

results correspond to those of the Initial FEM, leading to an excellent match between the obtained

acceleration values and triggering the phenomenon of overfitting at all examined time points.

Although the results in the numerical case are overly optimal, this is not the case for experimental

data where the R2 value is relatively low compared to the examined cases, even though among all

configurations, this one has the best R2 value.

The best time point is at 0.5 seconds because experimental and numerical values are very similar at

that point, unlike the rest of the signal where numerical values are much higher. In fact, in the

remaining examined time points in the experimental case, an excellent prediction is not achieved,

especially with incorrect results in the lateral and lower areas of the plate where there are no values

acquired by the accelerometers.

6.4.4 Numerical-Experimental Chirp Signal Comparison

In this case, a chirp signal was analyzed with accelerometers positioned as in configuration 1

obtained previously, comparing numerical values with experimental ones:

114

Figure 6.64 Time history chirp signal – Accelerometer 4

Figure 6.65 Time history chirp signal – Accelerometer 5

In the following case, configuration 1 obtained with the EIM algorithm was examined, where the

position of four accelerometers is in the lower right part of the plate along its edge. Among these

four accelerometers, accelerometer 5 is positioned, where the trend of the experimentally acquired

signal is very similar up to 1 second, after which there is a deviation with numerically higher values

compared to the experimental case. For accelerometer 4, the experimental signal trend is much

more similar to the numerically obtained signal compared to the previously analyzed case. The

numerical values of accelerations are also very similar in the first two seconds, while in the

subsequent two seconds, the numerically obtained values are much higher.

115

Figure 6.66 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case

Figure 6.67 Error evolution - Numerical case

Figure 6.68 Error evolution - Experimental case

116

Figure 6.69 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.70 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.71 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

117

Figure 6.72 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.73 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.74 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

118

Figure 6.75 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.76 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.77 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

119

Figure 6.78 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s²

Figure 6.79 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s²

Figure 6.80 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s²

120

Like the two cases analyzed previously, the predictive analysis values of the dataset obtained with

the numerical acceleration values are distributed along the bisector uniformly, producing data

distributed in the same manner as the numerical case of the pseudorandom and harmonic signals.

In contrast, concerning the dataset of the distribution of real and predicted values for the

experimental case, they are consistently distributed along the bisector in a uniform and regular

manner but with a less extensive cloud of points compared to the experimental case of the

pseudorandom signal.

As mentioned in the previous cases, the same observations can be applied to the MAE and MSE

curves, where, in the case of numerical values, there is an immediate decrease in error curves

followed by convergence. However, unlike the previous cases, the experimental case exhibits a much

smoother trend than the previous cases and reaches a convergence value after 50 epochs.

As expected from the high numerical R2 value, it is evident from the colors that the acceleration

values of the Initial FEM and the predicted acceleration values are very similar, particularly this

excellent prediction is observed at 1.0 and 3.0 seconds. At the same time, in the other two analyzed

time instances, a slight difference is noted in the lower-left part of the plate, attributed to the

absence of useful data for the dataset in that part of the plate. The same holds for the experimental

case because the algorithm used to select positions in that area does not anticipate the placement

of accelerometers that would have been useful for predicting results comparable to numerical

values. Although there are not excellent results in the lower-left part, the remaining sections are

adequately represented with a suitable prediction compared to the Initial FEM data, as evidenced

by the excellent R2 value obtained, which is 0.87 in the experimental case.

6.5 Results

In this section, we will delve into a detailed analysis of the previous comparisons and the results

obtained through the in-depth examination of the acceleration value predictions along the plate

using the proposed machine learning algorithm. All six accelerometer placement configurations and

the three signals used will be scrutinized.

The following Table 3 provides a summary of the values obtained from various analyses of the

different acquired signals. The first column features the letters N, indicating numerical analyses, and

E, indicating experimental analysis. The acronyms CF denote the configuration along with its

121

corresponding number, CH represents the chirp signal, AR signifies the harmonic signal, and PS

denotes the pseudorandom signal.

 Evaluating Model's Performance on training
data

Evaluating Model's Performance on testing
data

Evaluating Model's Performance

 MAE MSE MRSE R2 MAE MSE MRSE2 R2 MAE MSE MRSE2 R2

CF1CHN 1.0453 3.5345 1.8800 0.9868 1.0954 3.9471 1.9867 0.9852 1.0546 3.6144 1.9011 0.9865

CF2CHN 0.6842 1.7555 1.3249 0.9934 0.7027 1.8966 1.3772 0.9929 0.6866 1.7811 1.3345 0.9933

CF3CHN 1.8901 17.4618 4.1787 0.9351 1.9802 20.1978 4.4942 0.9247 1.9077 18.008 4.2435 0.9330

CF4CHN 0.8824 3.4094 1.8464 0.9873 0.9345 3.9758 1.9939 0.9851 0.8920 3.5206 1.8763 0.9869

CF5CHN 0.7041 1.9075 1.3811 0.9929 0.7275 2.0441 1.4297 0.9923 0.7074 1.9322 1.3900 0.9928

CF6CHN 1.2458 5.8798 2.4248 0.9781 1.2994 6.4458 2.5388 0.9759 1.2554 5.9892 2.4472 0.9777

CF1CHE 3.7506 34.3697 5.8625 0.8724 4.0937 42.7239 6.5363 0.8407 3.8185 36.0204 6.0017 0.8661

CF2CHE 3.9296 38.7332 6.2236 0.8562 4.2455 47.6329 6.9016 0.8224 3.9920 40.4955 6.3636 0.8495

CF3CHE 4.2498 45.1744 6.7211 0.8323 4.6104 55.6710 7.4613 0.7925 4.3205 47.2368 6.8729 0.8245

CF4CHE 3.7706 35.95716 5.9964 0.8665 4.0789 43.8463 6.6216 0.8365 3.8315 37.5173 6.1251 0.8606

CF5CHE 3.6637 33.3231 5.7726 0.8762 4.1111 44.6536 6.6823 0.8335 3.7521 35.5675 5.9638 0.8678

CF6CHE 2.8434 18.5914 4.3117 0.9309 3.2112 24.5133 4.9510 0.9086 2.9156 19.7576 4.4449 0.9265

CF1ARN 0.0215 0.0012 0.0349 0.9763 0.0223 0.0013 0.0365 0.9740 0.0216 0.0012 0.0352 0.9759

CF2ARN 0.0148 0.0005 0.0241 0.9886 0.0153 0.0006 0.0248 0.9879 0.0149 0.0005 0.0243 0.9885

CF3ARN 0.0219 0.0016 0.0411 0.9180 0.0273 0.0029 0.0542 0.8557 0.0230 0.0019 0.0440 0.9057

CF4ARN 0.0451 0.0010 0.0316 0.9725 0.0205 0.0011 0.0341 0.9678 0.0194 0.0010 0.0322 0.9678

CF5ARN 0.0152 0.0005 0.0232 0.9802 0.0157 0.0005 0.0240 0.9788 0.0153 0.0005 0.0234 0.9799

CF6ARN 0.0280 0.0020 0.0447 0.9613 0.0291 0.0021 0.0465 0.9577 0.0282 0.0020 0.0451 0.0451

CF1ARE 0.0382 0.0032 0.0572 0.9367 0.0455 0.0048 0.0697 0.9054 0.0396 0.0035 0.0597 0.9308

CF2ARE 0.0194 0.0008 0.0292 0.9835 0.0273 0.0019 0.0438 0.9625 0.0208 0.0010 0.0324 0.9796

CF3ARE 0.0289 0.0017 0.0418 0.9150 0.0345 0.0026 0.0517 0.8690 0.0300 0.0019 0.0440 0.9061

CF4ARE 0.0600 0.0077 0.0879 0.7886 0.0632 0.0086 0.0932 0.7610 0.0606 0.0079 0.0890 0.7832

CF5ARE 0.0720 0.0109 0.1048 0.5993 0.0763 0.0123 0.1113 0.5459 0.0728 0.0112 0.1061 0.5888

CF6ARE 0.0343 0.0026 0.0515 0.9487 0.0405 0.0038 0.0618 0.9255 0.0354 0.0028 0.0535 0.9444

CF1PSN 1.9048 9.1531 3.0254 0.9826 1.9357 9.4159 3.0685 0.9820 1.9101 9.2011 3.0333 0.9825

CF2PSN 1.2332 3.2922 1.8144 0.9937 1.2619 3.4438 1.8557 0.9934 1.2379 3.3185 1.8216 0.9937

CF3PSN 4.4476 73.9834 8.6013 0.8598 4.5126 75.9546 8.7151 0.8554 4.4603 74.3714 8.6238 0.8589

CF4PSN 2.2198 14.1644 3.7635 0.9731 2.2453 14.5287 3.8116 0.9723 2.2241 14.2325 3.7726 0.9730

CF5PSN 1.1832 2.9791 1.7260 0.9943 1.2034 3.0779 1.7544 0.9941 1.1863 2.9957 1.7308 0.9943

CF6PSN 2.7419 18.7649 4.3318 0.9644 2.8153 19.8130 4.4511 0.9622 2.7557 18.9679 4.3552 0.9640

CF1PSE 12.7961 338.5020 18.3984 0.3585 12.9217 344.8375 18.5698 0.3437 12.8211 339.7614 18.4326 0.3556

CF2PSE 11.8390 296.6713 17.2241 0.4378 12.0690 307.3540 17.5315 0.4151 11.8849 298.8016 17.2858 0.4333

CF3PSE 9.9447 227.7232 15.0905 0.5684 10.7156 265.0752 16.2811 0.4955 10.0976 235.1329 15.3340 0.5540

CF4PSE 9.7647 216.7185 14.7213 0.5893 10.5411 250.3192 15.8214 0.5236 9.9193 223.40518 14.9467 0.5763

CF5PSE 11.1310 261.6332 16.1750 0.5042 11.4183 275.5312 16.5991 0.4756 11.1883 264.4048 16.2605 0.4985

CF6PSE 10.5734 223.1238 14.9373 0.5772 10.6936 228.3058 15.1097 0.5655 10.5973 224.1549 14.9718 0.5748

Table 3

122

Unlike Table 2 used for summarizing simulations in the beam case, here, the time column has been

omitted. This decision stems from the fact that the simulations were consistently performed on the

Google Colab server, and, as explained in the previous chapter on the beam, the server did not

consistently provide the same computation time for simulations with identical data. Nevertheless,

given the numerous simulations conducted in this case, it can be stated that the average time for

each epoch was around 40-50 seconds. However, in this case, it is not possible to analyze simulation

times based on various datasets.

Instead, a highly interesting column to analyze is that related to MAE and MSE. Here, it is notable

that the smallest errors, almost zero, are in the numerical harmonic case and subsequently in the

experimental harmonic case. Following this, slightly higher values were observed in the numerical

chirp case, the numerical pseudorandom case, and the experimental chirp case. Finally, much higher

values were found in the case of pseudorandom signals obtained from experimental data.

While valuable insights can be gleaned from these two elements, the most crucial parameter to be

analyzed is R2. As in the case of the beam, the R2 values in simulated numerical cases are very high,

resulting mainly in overfitting phenomena, especially in the harmonic and chirp signals in almost all

examined configurations. In the chirp case, the worst R2 is found in configuration 3, both in the

experimental and numerical cases, while the best configurations for the numerical case are the

second and the fifth, and for the experimental case, the first and the sixth. Although all

configurations achieve excellent R2 values, some are so good that they reach the overfitting

phenomenon explained earlier. The third configuration appears to be the worst even in the

simulation performed with numerically obtained harmonic values, while surprisingly, in the

experimental case, the lowest R2 values are obtained in the fifth configuration. Unlike other

configurations where the fifth is one of the best or the fourth, which, along with the sixth, turns out

to be the best for the pseudorandom signal in the experimental case. Finally, in the simulation using

datasets obtained from the numerical pseudorandom signal, it is observed that, in this case too, the

worst configuration is the third. In contrast to all other cases, which obtained good results, the worst

configuration for the experimental data of the pseudorandom signal is the first, obtaining a very

poor R2 value.

The result obtained, as in the case of the beam, shows excellent numerical outcomes across all three

signals. However, from the perspective of machine learning simulations derived from experimental

signal datasets, it is noticeable that in most configurations, the harmonic signal emerges as the best.

123

This is attributed to its outstanding R2 results, low MAE and MSE values, and the alignment of values

and trends along the time history of various accelerometers between experimentally acquired

accelerations and those obtained from numerical analysis using the FEM method. The chirp signal

also achieves excellent forecasting results, significantly surpassing the beam case where the R2 value

was lower. Finally, similar to the beam case, the pseudorandom signal yields the worst result.

A crucial observation from the results pertains to the best and worst accelerometer positioning

configurations. The third configuration, where most accelerometers are in the lower part of the plate

quite close to the constraint, emerges as the least effective. This positioning does not allow for an

optimal and comprehensive mapping of plate accelerations with a hole, as there are not enough

accelerometers on the upper part, resulting in suboptimal predictions. Conversely, the second

configuration, obtained through an algorithm that distributes accelerometers across a significant

portion of the plate except for the lower-left part, which has a lesser impact compared to the upper

parts, yields excellent results. The fifth configuration consistently provides the best outcomes in

most cases, where accelerometers are positioned regularly and distributed along the central and

upper part of the plate, allowing for excellent analyses and predictions, thanks to the crucial

contribution of predictions obtained from neural networks.

124

7 Conclusion

The conclusions of this study represent a critical synthesis of the analyses conducted by applying

Machine Learning (ML) methods to datasets obtained from experimentally acquired values and

numerical values obtained from finite element analysis (FEM) methods applied to 1D geometries,

such as a beam, and 2D geometries, such as a plate with a hole, subjected to various loadings. The

main objective of the thesis was to assess the effectiveness of machine learning models in predicting

accelerations in structural contexts under dynamic loads, with particular attention to the application

of finite element analysis (FEM) methods.

The results obtained indicated a significant convergence between the measured real accelerations

and those predicted by ML models. The analysis of discrepancies was underscored by a substantial

reduction in predictive errors, highlighting the models' ability to generalize and learn complex

patterns in structural dynamics. The precision of the models was evaluated through performance

metrics such as root mean square error (RMSE) and coefficient of determination (R²), confirming the

validity of the predictions obtained.

The robustness analysis of ML models highlighted a good generalization ability even in the presence

of outlier data and variations in the parameters with which the data were acquired. As evident from

the two experiments on the plate and beam, the experimental signal that achieves the best

predictions is the harmonic one, even at different frequencies and amplitudes. This is due to its

periodic and time-constant nature, facilitating much easier learning by the neural network. However,

even a non-periodic signal like the chirp achieves excellent results in both cases, while the

pseudorandom signal does not yield satisfactory results after the neural network learning.

The analyses also reveal the flexibility of the beam model to utilize only 70% of the necessary data

for the dataset compared to other simulations where 80% of the data were used. Moreover, it

demonstrates the possibility of achieving excellent predictions using only 4 accelerometers instead

of 5, resulting in less data and faster dataset training for simple structures. For a more complex

structure like the plate, however, all 7 accelerometers used are necessary, suggesting potential

application to complex and diverse structural systems based on the number of available sensors.

The practical implications of the conclusions reached extend across a broad range of sectors, from

civil engineering to aerospace structures, where accurate prediction of structural accelerations is

crucial for design and safety assessment. The use of ML models could streamline the structural

125

analysis process, reducing reliance on computationally intensive FEM models and enabling a rapid

assessment of performance in real-world scenarios.

Despite the successes achieved, it is important to highlight some limitations of this study. The limited

availability of data and the complexity of structural dynamics may impact the generalization of the

models. Future developments should focus on acquiring larger datasets and considering context-

specific factors.

In conclusion, the application of machine learning methods in the analysis of structural accelerations

has proven to be a promising perspective, opening new avenues for the design and assessment of

complex systems. Integrating these approaches with traditional methodologies, such as finite

elements, could represent the future of structural engineering, enhancing prediction accuracy and

expediting evaluation times.

126

8 References

[1] E. Meethal, R., Kodakkal, A., Khalil, M., Ghantasala, A., Obst, B., Bletzinger K., Wüchner, R.,

“Finite element method-enhanced neural network for forward and inverse problems”, 2023.

[2] Kam Liu, W., Li, S., S. Park, H., “Eighty years of the finite element method: birth, evolution, and

future”, 2022.

[3] Richmond, B. G., Wright, B. W., Grosse, I., Dechow, P. C., Ross, C. F. Spencer, M. A., Strait, D. S.,

“Finite element analysis in functional morphology”, 2005.

[4] Sliseris, J., Gaile, L., Pakrastins L., “Extended multiscale FEM for design of beams and frames with

complex topology”, Riga Technical University, Latvia,2018.

[5] Liu, Y., Zhao, T., Ju, W., Shi, S., “Materials discovery and design using machine learning”,

Shanghai University, Shanghai, 2017.

[6] Javier Naranjo-Perez, J., Infantes, M., Jimenez-Alonso, J. F., Saez, S., “A collaborative machine

learning-optimization algorithm to improve the finite element model updating of civil engineering

structures”, Seville, 2020.

[7] Le Clainche, S., Ferrer, E., Gibson, S., Cross, E., Parente, A., Vinuesa, R., “Improving aircraft

performance using machine learning: a review”, Madrid, 2022

[8] Wang, Y., Soutis, C., Ando, D., Sutou, Y., Narita, F., “Application of deep neural network learning

in composites design”, 2022.

[9] Zaparoli Cunhaa, B., Drozc, C., Zined, A., Foulard, S., Ichchoua, M., “A review of machine learning

methods applied to structural dynamics and vibroacoustic”, Lyon, 2023

[10] Zhiqiang, T., Shuai T., Jiqiao Z., Gongfa C., and Fangsen C. “Structural Damage Detection Based

on Real-Time Vibration Signal and Convolutional Neural Network”, Guangzhou, 2020.

[11] Döhler, M.; Hille, F.; Mevel, L.; Rücker, W. Structural health monitoring with statistical methods

during progressive damage test of S101 Bridge. Eng. Struct. 2014, 69, 183–193.

[12] Wilmes, L., Olympio, R., M. de Payrebrune, K. and Schatz M.” Structural Vibration Tests: Use of

Artificial Neural Networks for Live Prediction of Structural Stress”, Kaiserslautern, Germany, 2020.

[13] Pal, J., Sikdar, S., Banerjee, S., Banerji P., “A Combined Machine Learning and Model Updating

Method for Autonomous Monitoring of Bolted Connections in Steel Frame Structures Using Vibration

Data”, Hamirpur, India, 2022.

[14] Gao, Y., Mosalam, K.M., Chen, Y., Wang, W., Chen, Y. “Auto-Regressive Integrated Moving-

Average Machine Learning for Damage Identification of Steel Frames”. Appl. Sci. 2021, 11, 6084

[15] Wanga, Q., Wub, D., Tin-Loia, F., Gaoa, W., “Machine learning aided stochastic structural free

vibration analysis for functionally graded bar-type structures”, Sydney.

127

[16] López, O., López, A., Crossa, J., “Support Vector Machines and Support Vector Regression”, 2022.

[17] Awad, M., Khanna, R., “Support Vector Regression”, 2015

[18] Amari, S., Wu, S., “Improving support vector machine classifiers by modifying kernel functions”,

Hirosawa, Saitama, Japan, 1999.

[19] Cofre-Martel, S., Kobrich, P., Lopez Droguett, E., Meruane V., “Deep Convolutional Neural

Network-Based Structural Damage Localization and Quantification Using Transmissibility Data”,

Santiago, Chile, 2019.

[20] Seventekidis, P., Giagopoulos, D., Arailopoulos, A., Markogiannaki, O., “Structural Health

Monitoring using deep learning with optimal finite element model generated data” Greece, 2020.

[21] Kohara, C., Greveb, L., K. Ellerb, T., Connollya, D. S., Inala, K., “A machine learning framework

for accelerating the design process using CAE simulations: An application to finite element analysis

in structural crashworthiness”, Waterloo, Ontario, Canada, 2021.

[22] Chierichetti, M., Davoudi Kakhki, F., Huang, D., Vurturbadarinath, P., “Surrogated finite element

models using machine learning”, San Jose State University, San Jose, CA, USA,2021.

[23] Vurturbadarinath, P., Chierichetti, M., Davoudi Kakhki, F., Huang, D., “A Machine Learning

Approach as a Surrogate for a Finite Element Analysis: Status of Research and Application to One

Dimensional Systems”, San Jose State University, San Jose, CA, USA, 2021.

[24] Chierichetti, M., Davoudi Kakhki, F., “Optimal sensor location along a beam using machine

learning”, San Jose State University, San Jose, CA, USA, 2022.

[25] Basheer, I.A., Hajmeera, M., “Artificial neural networks: fundamentals, computing, design, and

application”, Kansas State University, Manhattan, USA, 2001.

[26] Gershenson, C., “Artificial Neural Networks for Beginners Article”, Universidad Nacional

Autónoma de México, 2003.

[27] Murphy, K., “Probabilistic Machine Learning: An Introduction. Probabilistic Machine Learning:

An Introduction.”, MIT Press. Retrieved 10 April 2021.

[28] Doebelin, E., “Measurement Systems: Application and Design”, McGraw-Hill Higher Education,

2003.

[29] Vibration Control Strategies for Shaker Systems,

https://www.hbkworld.com/en/knowledge/resource-center/articles/strategies-for-shaker-

systems#!ref_www.bksv.com

[30] Chassande-Mottin, E., Flandrin, P., “On the stationary phase approximation of chirp spectra, in

Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis”,

Pittsburgh, 1998, pp. 117-120.

[31] Adhikari, S., Phani, A. S., “Rayleigh’s Classical Damping Revisited”, United Kingdom

[32] Kelmar, T. K., “Machine Learning Based Sensor Selection for Modal Testing”, San Jose, US, 2023.

https://www.hbkworld.com/en/knowledge/resource-center/articles/strategies-for-shaker-systems#!ref_www.bksv.com
https://www.hbkworld.com/en/knowledge/resource-center/articles/strategies-for-shaker-systems#!ref_www.bksv.com

