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Abstract 

Real-time stress predictions require the continuous interaction of measurements and a complex, 

refined finite element model that is updated real-time based on measured conditions. Previous work 

has shown that this interaction can be based on simplified physical relationships that allow quick 

changes in the model based on actual conditions. However, even when low-fidelity models are used 

in conjunction with experimental measurements, the resulting computational times are still too 

large to be feasible with real-time predictions. This complexity has therefore restricted the ability to 

efficiently monitor the stresses in complex systems during operations without continuous 

experimental monitoring. 

Data science, with its ability to extract “knowledge” from large volumes of data, has the potential to 

be used to predict transient stresses that a structure experiences at any given time. The objective of 

this thesis is to create a novel interactive framework for combining scientific knowledge of finite 

element methods (FEM) in mechanical systems with data science methods to predict the full-field 

dynamic behavior of the system. The thesis will focus on developing data-driven models based on 

finite element models and real-time experimental data to create mid-fidelity surrogate models that 

can learn the structural behavior from rich finite element simulations and predict the dynamic 

behavior of a system based on actual measurements. The data-driven model bridges the need of 

accuracy given by high-fidelity finite element simulations, of low computational cost provided by 

low-fidelity models and of real-time stress predictions based on actual measurements. The data-

driven model will provide quick and reliable predictions of the stresses and accelerations in the 

presence of highly non-linear, transient response and in the presence of complex couplings. At the 

end of this thesis, the following goals will be attained: 

• development of data-driven model to determine time-varying stresses in structural 

components 

• definition of a database using finite elements of simple components (such as a beam) and 

complex components (such as plate with hole) 

• numerical validation of the approach 

• experimental validation doing vibration testing of simple components and complex 

components. 
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1 Overview 

1.1 Introduction   

Data science models have revolutionized numerous fields, including the Finite Element Method 

(FEM), which represents a fundamental tool in the analysis and solution of complex engineering 

problems [1]. Applying machine learning to FEM methods offers an innovative and promising 

perspective for enhancing the efficiency and accuracy of calculations and simulations in the field of 

engineering. 

The Finite Element Method (FEM) represents a powerful and widely used numerical technique for 

solving engineering and scientific problems. [2] This method provides an approximate solution to 

partial differential equations (PDEs) or integral equations by discretizing the domain of interest into 

finite elements. Its flexibility and ability to handle complex geometries and variable materials make 

it an essential analysis technique for many sectors, from structural component design to simulating 

complex physical phenomena. 

FEM is particularly suitable for modeling complex problems [3] where geometry and material 

properties can vary locally. The domain is divided into a series of finite elements, which can be as 

simple as triangles or quadrilaterals in two dimensions, or tetrahedra or prisms in three dimensions. 

Each element is defined by a set of nodal points connected by local interpolation functions. 

The approximate solution is represented as a linear combination of these local interpolation 

functions, with coefficients associated with each function. The values of these coefficients are 

determined by solving a system of linear equations obtained by applying boundary conditions and 

partial differential equations. 

One of the main advantages of the FEM is its flexibility in handling complex geometries [4] and 

variable material properties. Additionally, the FEM can address various types of problems, such as 

structural statics and dynamics, heat conduction, fluid dynamics, electromagnetism, and many 

others. This has made the FEM a fundamental tool for engineers and scientists in designing and 

analyzing a wide range of systems and components. 

However, it's essential to note that the accuracy of results obtained using the FEM depends on the 

proper choice of finite element type, domain discretization, and the quality of the generated mesh. 
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Furthermore, the approximate solution can be influenced by the numerical resolution used to solve 

the system of linear equations. 

FEM methods are widely used to model the behavior of complex structures, such as bridges, 

buildings, vehicles, and industrial facilities. These methods require the division of the problem 

domain into finite elements to approximate the system's behavior discretely. However, the accuracy 

of the solutions obtained heavily relies on the mesh quality, i.e., the division of the domain into finite 

elements. Generating an optimal mesh is a complex task and demands a substantial amount of time 

and computational resources. 

Applying machine learning to FEM methods provides a promising solution to this challenge. Thanks 

to their ability to learn from large amounts of data and recognize complex patterns, machine learning 

algorithms can be trained to predict and automatically optimize the distribution of finite elements 

in the mesh. This allows for more accurate models while significantly reducing the time and effort 

required for mesh generation. 

In this thesis, we will delve into the methodologies, techniques, and applications of machine learning 

applied to FEM methods. We will analyze the most used machine learning algorithms, such as 

artificial neural networks and regression algorithms, and discuss strategies for acquiring, preparing, 

and processing the data necessary for model training. Initially, we will apply these models to a small 

aluminum beam and subsequently to a steel plate with a hole. Additionally, we will examine the 

impacts and challenges associated with implementing machine learning in the context of 

engineering, discussing aspects such as model interpretability, adequacy of input data, and the 

validation of obtained solutions. 

Through the study of case studies and the practical application of finite element method (FEM) 

machine learning algorithms, this thesis aims to provide an in-depth overview of the capabilities and 

limitations of this emerging discipline. It is hoped that this work can contribute to the development 

and application of machine learning in FEM methodologies, opening new opportunities to enhance 

the efficiency and accuracy of FEM methods in the field of engineering. 

The state of the art in the application of machine learning to Finite Element Methods (FEM) is 

continually evolving and witnessing numerous exciting developments and applications. Machine 

learning has demonstrated its ability to make significant contributions in various aspects related to 

FEM methods. 
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Here are some of the key points in the state of the art in applying machine learning to FEM 

methods: 

• Material structure learning: Machine learning can be used to model and predict the 

properties of materials used in FEM simulations [5], enabling a better understanding of their 

behavior and performance. 

• Computational cost reduction: A highly interesting area is the reduction of computational 

costs associated with FEM simulations [6]. Machine learning can be employed to expedite 

calculations or develop reduced models that provide approximate results in shorter times. 

• Design optimization: Machine learning can be applied to optimize the design of components 

or structures [7], allowing for the discovery of superior and more efficient solutions in terms 

of performance, strength, or weight reduction [8]. 

• Noise and vibration modeling: Machine learning can be used to model and predict the noise 

and vibrations generated by a system [9], enabling better design and optimization of acoustic 

performance.  

• Data analysis and prediction: Machine learning can be employed to analyze large quantities 

of data generated by FEM simulations, extract useful information, identify patterns, and 

predict the future behavior of analyzed systems. 

These are just some of the areas where machine learning is finding applications in FEM methods. It 

is important to note that the state of the art is continuously evolving, and new techniques and 

methodologies continue to emerge, offering new possibilities and challenges in the field of analysis 

and optimization of engineering systems. 

 

1.2 Literature review 

1.2.1 Damage Detection in the Field of Civil Structures 

Currently, one of the fields where machine learning algorithms have been applied to structures is 

civil engineering. Some studies have focused on structural damage detection based on real-time 

vibration signals and convolutional neural networks, which is an advanced approach used to assess 

the structural health of buildings, bridges, industrial structures, and other infrastructure. This 

method utilizes vibration data acquired from sensors placed on the structure to identify any 

damages or anomalies. On the other hand, another study has concentrated on the use of artificial 
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neural networks for real-time prediction of structural stress through structural vibration tests. 

Similar to the first study, this method relies on vibration data collected from sensors positioned on 

the structure to estimate the stress it undergoes. 

One of the objectives was to propose an alternative to visual inspection methods, which required a 

significant amount of time to detect surface damages. Therefore, a solution was sought through the 

adoption of an SSD method based on vibrations [10], using a three-dimensional steel beam as a 

structural model. Initially, consideration was given to using natural frequencies as an indicator of 

damage. However, later [11], it was deemed preferable to use modal shapes, as they could provide 

better results than the previous indicator. Nevertheless, there were limitations due to the influence 

of the measurement environment. 

As a result, the direct use of vibration signals was considered a better option, integrated with values 

obtained from finite element analyses on the structure. This integration allows for more accurate 

detection of structural damage since it contains more information. However, this combination 

requires more signal processing. 

Several classical machine learning algorithms, such as SVM, DT, and ANN, can be utilized. Choosing 

among them was challenging due to each having its own pros and cons. SVM (Support Vector 

Machine) is a classification algorithm that seeks to find the best separator to distinguish different 

data classes. SVM has good generalization ability and can handle nonlinear data using the kernel 

trick. However, in complex situations and with large-scale samples, SVMs were found to be difficult 

to implement. DT (Decision Tree), another classification and regression algorithm based on a 

decision tree structure, requires minimal data preparation and can handle both categorical and 

numerical data. Similarly, artificial neural networks (ANNs), as advanced tools for data analysis, can 

automatically extract information about structural damages from signals and represent this 

information through mapping structural damage states. 

In their study, the researchers did not adopt ANNs as a resolution model due to limitations in 

engineering applications, as ANNs adapt too easily and require high resolution time. Instead, 

convolutional neural networks (CNNs) were chosen, not individually, as it has not been established 

whether a CNN trained with only numerical data can detect damages in a real structure. The idea 

was to associate CNNs with finite element analysis (FEA) methods, training them with samples 

obtained from FEA experiments. This allowed obtaining vibration and acceleration data from 
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numerical simulations, resulting in four numerical datasets, each corresponding to a different 

number of damages in beams and excitations at four points repeated five times. 

Through numerical simulations, vibration and acceleration signals were obtained and used for 

training and testing under various damage scenarios. The CNN architecture was based on a steel 

frame and the positions of acceleration measurement points. Using the appropriate ANN, a 

sufficiently accurate resolution was achieved, but due to the extensive data processed, model 

performance was optimized by training with the maximum number of frequency steps possible. 

In a similar context, CNNs were not employed using the FEA method. Instead, various ANNs were 

used to predict system responses during the test. Accelerations were converted into structural 

stresses, and mass operators were developed using the ANN, providing sufficiently accurate results 

but requiring substantial data processing. 

As in the previous cases and in the ongoing thesis, acceleration, stress, and load values were 

developed using the finite element method with a MATLAB code. Two structures were analyzed: 

NIRSpec's ceramic bench and the elements it supported. While a considerable amount of data was 

used, only frequencies near the peaks of the direct and uncertain response were considered. 

Regardless of the method used, it had to meet criteria for robustness, rapid implementation, 

accuracy for interface stresses, training, and quick acquisition. 

Four ANN models were compared: a frequency-dependent ANN, a pre-trained ANN, a nonlinear 

autoregressive exogenous (NARX) model, and a recurrent ANN with a bidirectional long short-term 

memory layer (biLSTM). After conducting the analyses, it was observed that only the biLSTM method 

failed to predict adequately, unlike the other three, which were more accurate. The NARX method 

was identified as the best for reducing the prediction time for structural data and for use during 

vibration tests but was negatively sensitive to frequency step division. 

The use of structure vibration data to monitor structural health was mainly applied in a civil 

engineering study, analyzing a steel structure with one and four stories, both with bolted joints. The 

hybrid combination of the previously mentioned methods aimed to monitor damages in bolted joint 

locations, requiring fewer datasets than individual techniques. Statistical values and properties 

useful for bolt loosening localization effectiveness were analyzed. 

Like previous studies, a major issue with machine learning was the need for extensive data, leading 

to longer simulations and difficulty in obtaining sufficient data for civil structures. Consequently, a 
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mix of methods was used: machine learning with vibration data for approximate localization and 

model updating to identify the exact damage location. 

Strain gauges provided data, divided into healthy (sensors away from joints) and loosened (sensors 

near joints) sets for comparison. Unlike previous studies using ANNs, a Support Vector Machine 

(SVM) algorithm was employed for machine learning. SVM's primary objective is to create a model 

that can categorize a dataset into different classes by maximizing the distance between data points 

belonging to different classes. After SVM model training, it achieved an accuracy of approximately 

80%. 

Stochastic free vibrations were also analyzed using machine learning for functionally graded (FG) 

bar-type structures through the finite element method (FEM). In contrast to the SVM model used 

previously, an X-SVR technique was employed to estimate the governing relationship between 

uncertain system parameters and structural natural frequencies. 

1.2.2 Differences between SVM and SVR algorithms and their combined approach in structural 

analysis 

SVM (Support Vector Machine) and SVR (Support Vector Regression) are both machine learning 

algorithms based on Support Vector Machines, but they have slightly different purposes and 

applications. SVM is primarily used for classification problems [16], aiming to find the optimal 

hyperplane that can separate data points of different classes in the best possible way. It produces a 

model that assigns data points to one of the predetermined classes. In contrast, SVR is used for 

regression problems [17], seeking the optimal hyperplane to approximate data points in the best 

possible way. It produces a model that can be used to estimate numerical values based on input 

data. In both cases, SVM and SVR rely on the concept of support vectors, critical data points defining 

the decision boundary or regression function. Both algorithms aim to maximize the distance 

between support vectors to achieve generalized models that perform well with new data. SVM 

focuses on classification, while SVR focuses on regression. 

The X-SVR was employed, where the addition of the prefix "X" indicates that the algorithm has been 

extended or modified from the standard SVR implementation [18]. In this case, the linear X-SVR uses 

a linear kernel instead of a more complex kernel like the polynomial or Gaussian kernels used in 

other SVR variants. The linear kernel calculates the dot product between two feature vectors 

representing independent variables without applying any transformation. The linear X-SVR can be 

advantageous when the relationship between independent and dependent variables is 
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approximately linear. Using a linear kernel, the X-SVR can be computationally more efficient than 

other SVR variants using more complex kernels. However, if the relationship between variables is 

not linear, the linear X-SVR may not accurately model the data, and a different kernel or regression 

technique may be needed. 

Subsequently, after using the previous regression, a Monte Carlo simulation (MCS) is applied to 

estimate various statistical characteristics of structural natural frequencies with significantly reduced 

times. Moreover, as in previous cases, this theoretically allows for the extension to a structural 

health monitoring algorithm during the structure's operational life. 

In another case [19], a CNN-based approach is adopted, but unlike case [10], it is not combined with 

other algorithms. Both studies aimed to derive the localization and quantification of structural 

damage. The studied systems include a structural beam and a mass-spring system. The approach 

operates on images generated from raw transmissibility functions of the structures to derive 

degradation process characteristics. The main advantage over previous investigations is that this 

approach automates feature extraction. 

Raw transmissibility functions are tools used in vibration analysis to measure and describe the 

behavior of a dynamic system subjected to vibrations. Essentially, raw transmissibility is a measure 

of the relationship between the output amplitude of a system and the input amplitude at a specific 

frequency. This ratio is often expressed in terms of acceleration, velocity, or displacement. It proves 

highly effective when damage exceeds 10%, becoming a more accurate approach. 

Structural state damage was monitored through the application of deep learning and FEM methods 

on an aluminum beam with an applied crack [20]. As in similar studies, after obtaining a database 

through FEM methods, the training in deep learning follows. The study's goal is to provide adequate 

training to ANNs, enabling the use of SHM in a real damage scenario. To achieve accurate results, 

multiple experimental trials are necessary. Maximum uncertainties are simulated until the point 

where RNA decreases its accuracy. Finally, the data is passed to CNNs trained by FEM to predict 

possible real states of damage. 

1.2.3 Improving Finite Element Methods through Machine Learning 

As seen in previous studies, including the one developed in this work, the application of the Finite 

Element Method (FEM) was necessary to obtain the results needed for training neural networks. To 

enhance the finite element model, it is imperative to address the challenge of the extensive time 
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required to compute the problem [6]. The goal was to find solutions that could improve optimization 

issues. Specifically, the objective was to reduce simulation times and enhance robustness in selecting 

the updated model using a novel algorithm that incorporates a set of algorithms, including two 

optimization algorithms, a machine learning one (ANN), and a statistical technique. 

Finally, machine learning, particularly employing Convolutional Neural Networks (CNNs) [21], was 

utilized to expedite the prediction process of results obtained through the FEM method, ultimately 

achieving a prediction of mesh deformation 2,960,000 times faster than the initial case. 

To reduce simulation times for the FEM model update process, the current trend focuses on the use 

of collaborative or hybrid computational intelligence algorithms. These algorithms leverage the key 

strengths of two or more computational intelligence algorithms, combining them into an overall new 

algorithm that demonstrates improved performance compared to individual algorithms. 

1.2.4 Machine Learning Applied to Aerostructures 

Machine learning has found applications in the aerospace field, particularly at the structural level, 

where initially maintenance intervals were predetermined based on the expected life of the system. 

To address this, the introduction of random forests and artificial neural networks was proposed to 

predict structural stresses [22], aiming to estimate more efficient maintenance schedules. 

Specifically, a one-dimensional structure, such as a beam, was examined, where the real-time 

average stress distribution was predicted after learning from data obtained through FEA simulations 

on beam stresses. This approach seeks sufficiently accurate solutions in various positions. The 

method is characterized by its considerable versatility, allowing for the use of a wide range of 

response variables (such as displacement, velocity, acceleration, deformation, and stress) for 

training and prediction purposes [23]. Although the proposed algorithm [11] primarily focuses on 

accelerations, which are directly correlated with stresses. 

Furthermore, for detecting acceleration data on the structure, sensors are used, and machine 

learning has also been applied to determine the optimal sensor placement for monitoring a vibrating 

system, thereby detecting the structural health status [24]. This methodology can be applied to any 

sensor and dynamic system to enhance precision and reduce the number of redundant sensors. 
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1.3 Organization of the Document 

After providing a brief introduction to the topic of this thesis, the first chapter focused on the 

literature review. The second chapter will delve into machine learning algorithms and the 

architecture of the utilized neural network. The third chapter will outline the tools employed for 

signal acquisition and experiment execution. In the fourth chapter, the data acquisition process and 

the utilized input signals will be detailed. The fifth chapter will cover the beam experiment and 

various comparisons, while the same procedure will be conducted in the sixth chapter with a 

different beam. Finally, the last chapter will be dedicated to conclusions and the obtained results. 
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2 Neural Networks 

2.1 introduction 

Artificial neural networks represent one of the most significant innovations in the fields of artificial 

intelligence and machine learning. To fully grasp the concept, it is essential to begin with the history 

and inspiration that led to their creation. They draw inspiration from the human brain, the most 

sophisticated information processing system known. 

In the realm of artificial intelligence, neural networks constitute a fascinating class of models and 

algorithms inspired by the functioning of the human brain. These networks are composed of 

interconnected units known as artificial neurons, which collaborate to process complex information. 

A distinctive aspect of neural networks is their intrinsic nonlinearity, achieved using nonlinear 

activation functions. This feature enables them to model intricate relationships between inputs and 

outputs, making them powerful tools for a wide range of tasks, from image processing to natural 

language recognition. Furthermore, the concept of neurons as common building blocks in neural 

networks promotes the sharing of theories and learning algorithms across various application areas. 

This uniformity streamlines the development and implementation of neural networks in diverse 

contexts. 

The process of training neural networks relies on mapping inputs to outputs through a sequence of 

training data, an approach known as supervised learning. It does not make prior assumptions about 

the model's parameters, allowing neural networks to adapt to the presented data. 

A key feature is the adaptability of neural networks. They can adjust their weights and connections 

in response to changes in the surrounding environment. It is possible to train them to operate in 

different contexts or adapt to real-time variations. 

Due to their structure, neural networks can be implemented at the hardware level for high-speed 

computational tasks. Their intrinsic parallelism makes them suitable for applications demanding 

substantial computing power. 

Moreover, hardware neural networks exhibit good fault tolerance. Performance gradually degrades 

in case of malfunctions, ensuring increased robustness in data processing. 

Ultimately, the analogy with the human brain has motivated the design of neural networks. This 

analogy demonstrates that parallel computing, fault tolerance, and efficiency are not only possible 



11 
 

but also potent, paving the way for new and exciting opportunities in the field of artificial 

intelligence. 

 

2.2 Historical Overview 

Since ancient times, humans have sought to understand the functioning of the brain. In fact, 

Hippocrates made early attempts to study the human brain by trying to identify the locations of 

certain control areas, both motor and sensory, within the brain. However, it was only in the 20th 

century that significant progress occurred. 

In 1936, the British mathematician Alan Turing proposed an analogy between the human brain and 

a computer. This idea alluded to the fundamental concept that a universal machine could be 

programmed to emulate any other computing machine, including the human brain. This concept of 

a universal machine, known as the "Turing machine," was a crucial step in the evolution of 

information theory and theoretical computer science, providing the conceptual foundations for 

computation and artificial intelligence. Turing's analogous proposal was a milestone in 

understanding the potential symbiosis between the human mind and computing machines, paving 

the way for AI and artificial neural networks. 

One of the earliest significant steps toward creating neural networks was taken by Warren McCulloch 

and Walter Pitts in 1943. They proposed a mathematical model of an artificial neuron called the 

"McCulloch-Pitts neuron," which represented a simplification of the functioning of biological 

neurons. In fact, they reproduced a simple neural network using interconnected electrical circuits 

based on considerations about the operation of individual neurons and demonstrated that neural 

networks are analogous to a Turing machine, meaning that any operation performed by a neural 

network could also be executed by a computer. 

Frank Rosenblatt developed the "perceptron" in the 1950s and 1960s, which marked another step 

forward in the evolution of artificial neural networks. The perceptron was capable of learning 

automatically from training data and performing binary classification, paving the way for the use of 

neural networks in pattern recognition. However, it soon became evident that the perceptron had 

significant limitations, as it could only handle linearly separable problems. This led to a period of 

skepticism toward artificial neural networks known as the "winter of artificial intelligence" in the 

1970s and 1980s. 
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Neural networks experienced a resurgence starting in the 1990s, thanks to several key developments 

such as learning algorithms, increased computational power, large datasets, and advanced neural 

architectures. 

Today, artificial neural networks underpin many applications of artificial intelligence, including 

speech recognition, automatic translation, image recognition, autonomous driving, and much more. 

Their development and use continue to evolve, paving the way for new opportunities and challenges 

in the field of AI. 

 

2.3 Neurons 

An artificial neural network is a machine designed to simulate the functioning of the human brain, 

implemented either physically using electronic components or simulated through software on digital 

computers (Haykin, 1999). Neural networks are composed of simple elements (neurons, nodes, 

units) that play a crucial role in the information processing process. 

Information and signals will flow among these neurons through the connections. These connections 

are weighted to regulate the flow of information. It's as if each connection holds a different level of 

importance in determining the outcome of the network. This concept of weighting connections is 

fundamental to the adaptation of the neural network to training data and the learning process. 

Information, in the form of weighted signals, accumulates within the neurons. The central body of 

the neuron, known as the nucleus, sums the input signals from synapses connected to the dendrites 

of other neurons. When this sum of signals reaches a threshold, the neuron generates an output 

signal that is transmitted to other neurons. This process is known as "firing" of the neuron and is a 

crucial step in information processing within a neural network. 

Artificial neural networks draw inspiration from the functioning of biological neurons in the human 

brain. They use artificial neurons, weighted connections, and activation functions to process 

information in a complex manner and perform a variety of tasks, from classification to image 

processing. The process of summing signals and generating output by neurons is analogous to the 

"firing" in biological neurons and constitutes a key element in the ability of neural networks to learn 

from data. 
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Figure 2.1 Structure of the neuron 

The human brain is composed of an intricate network of interconnected neurons, which possess 

dendrites to receive incoming signals. From these inputs, neurons generate electrical signals 

outgoing through axons and subsequently transmit these signals via axon terminals to other 

neurons. 

Artificial neural networks, like neurons in the human brain, are composed of interconnected units 

called nodes, which communicate with each other through connections called edges. Within a 

neural network, these nodes are organized into layers, typically with an initial broad layer. The first 

layer contains raw data, such as numerical values, text, images, or sounds, distributed among the 

nodes. Each node then transmits information to the next layer of nodes through the network's 

edges. 

The human central nervous system comprises an incredible number of approximately 1011 neurons. 

The neuron is the fundamental unit of the human brain, much like the transistor is the basic unit of 

a CPU processor. However, neurons and transistors operate at vastly different time scales and energy 

consumption levels. Neurons operate on a time scale of approximately 10−3 seconds and have a low 

energy consumption of about 10−16  Joules per operation, while transistors operate on time scales 

of approximately 10−9 seconds and have a higher energy consumption of about 10−6 Joules per 

operation. 

In the human brain, there are approximately 1010 neurons, whereas in a processor, there are 

approximately 109 transistors. Furthermore, the human brain is characterized by an extraordinary 

number of synaptic connections, totaling around 60 trillion. 
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Ultimately, the human brain can be considered a highly nonlinear and parallelized information 

processing system that operates on a time scale and with energy consumption very different from 

artificial processors. 

 

2.4 Mathematical Model of Neural Networks 

The first layer of a neural network is known as the 'input layer.' This layer serves as the entry point 

for raw data into the network, including numerical values, text, images, or sounds. It is not 

considered an actual processing layer since it does not contribute to data processing. During the 

data processing, these inputs are divided into discrete units called 'nodes.' Each node in the input 

layer represents a specific element or feature of the input data. 

One of the key features of a neural network is its layered structure. Each layer consists of a set of 

nodes, and information propagates from the nodes in one layer to the nodes in the next layer 

through the connections called 'edges' of the network. These connections play a crucial role in data 

processing as they carry information between nodes. 

Each edge between nodes is associated with a 'numerical weight' or 'algorithm.' This weight 

indicates the importance of the information transmitted through that specific edge. A fundamental 

aspect of neural networks is their ability to learn from past experiences. These weights can be 

adapted and recalibrated based on how the network processes data over time and accumulated 

experience. 

A typical neural network architecture can be divided into three main layers: the input layer, hidden 

layers, and the output layer. This structure reflects how data flows through the network during the 

processing process. 
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Figure 2.2 Neural Network Architecture 

The process begins in the input layer, where initial data is received and analyzed. This layer serves 

as the 'sensors' of the network, detecting the basic features of raw data. This initial information 

detection phase is crucial for subsequent processing. 

The input to the node is: 

𝐼𝑖 = ∑ 𝑤𝑗,𝑖𝑦𝑗

𝑁

𝑗=1

 

After the input phase, the data is sent to the hidden layers. These intermediate layers are called 

'hidden' because they work invisibly, much like the human mind processes concepts in ways that are 

not immediately evident. The hidden layers perform complex analysis and calculations to process 

the information received from the input layer. An important aspect is that data passes through each 

hidden layer progressively. Each hidden layer performs computations based on the previous ones, 

refining and optimizing the information as it moves through the network. 

The result of this processing is shown in the output layer. This layer represents the desired output 

or response of the network based on the input data and the processing done by the hidden layers. 

It is the ultimate result of data processing and represents the expected response from the neural 

network. 
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It's worth noting that the intermediate layers, the so-called hidden layers, play a crucial role. Like 

human perception, where we see an object as a coherent whole rather than as a series of separate 

elements, the hidden layers contribute to understanding the relationships between input data and 

the final output. This process of 'breaking down' data is fundamental to the effectiveness of neural 

networks. 

The net input 𝐴𝑖  of neuron 𝑛𝑖  is: 

𝐴𝑖 = ∑ 𝑤𝑗,𝑖𝑦𝑗 − 𝜃𝑖

𝑁

𝑗=1

 

• 𝑦𝑗 is the signal coming from neuron 𝑛𝑗 . 

• 𝑤𝑗,𝑖 is the weight of the synapse from 𝑛𝑗  to 𝑛𝑖. 

• 𝜃𝑖  is the threshold of node 𝑛𝑖. 

The response of neuron 𝑛𝑖: 

𝑦𝑖 = 𝜙(𝐴𝑖) = 𝜙 (∑ 𝑤𝑗,𝑖𝑦𝑗 − 𝜃𝑖

𝑁

𝑗=1

) 

Where 𝜙 is the activation function. 

The “activation function” plays a crucial role in the process of information transmission between 

nodes. This function determines whether a neuron in the next layer will be activated or not based 

on the sum of the weights of its input edges. In other words, if the sum of the weights exceeds a 

predefined “threshold”, known as the “activation function”, the neuron will be activated; otherwise, 

it won't. This mechanism leads to an “all-or-nothing” configuration, where a neuron is activated only 

if the input meets certain criteria. 

It should be emphasized that the weights assigned to each edge are unique and specific to ensure 

that nodes in the network activate differentially. This means that even if two nodes receive similar 

input, the unique weights along their edges make them react differently and consequently produce 

different outcomes. 

To effectively train the network, supervised learning is used. In this process, the model's output is 

compared with the actual output, known to be correct. The discrepancy between these two results 

is measured and referred to as “cost” or “cost value”. The training objective is to gradually reduce 
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this cost value until the model's prediction closely matches the correct output. [25] This is achieved 

by incrementally adjusting the weights in the network until the lowest possible cost value is reached. 

This training process is known as “backpropagation”. 

It should be noted that, unlike the flow of data into the neural network from left to right, 

backpropagation is performed in reverse, starting from the rightmost output layer and proceeding 

towards the leftmost input layer. This process allows the network to learn from its mistakes and 

adjust the connection weights to improve overall performance. 

However, it should be emphasized that one of the limitations of neural networks is their “black box” 

nature. This means that even though the network can produce accurate results, its internal structure 

provides limited or no information about the specific variables that influence the outcome. 

Furthermore, it is possible that two neural networks with different topologies and weights may 

produce the same result, making it even more challenging to discern relationships between variables 

and the output. This contrasts with approaches such as regression techniques and decision trees, 

which can offer greater interpretability of variable relationships. 

There are various architectures and techniques for designing neural networks, but one of the 

simplest is the so-called “feed-forward network”. In a feed-forward network, data signals flow in a 

single direction, from the input layer to the output layer. There are no cycles or loops in the structure, 

meaning information travels unidirectionally through the network. 

The most elementary form of a feed-forward network is the “perceptron”. A perceptron consists of 

one or more inputs, a processor that performs computations, and a single output representing the 

network's final result for a given input. [26] This simple model serves as a fundamental building block 

in more complex neural network architectures, which may include numerous hidden layers and 

neurons to handle more intricate problems. 

 

2.5 Keras Library 

Keras is a popular open-source library written in Python for machine learning and deep learning. It 

has been developed to provide a user-friendly, modular, and intuitive interface for building and 

training neural networks. Furthermore, Keras is designed to run on various deep learning backends, 



18 
 

such as TensorFlow, Theano, and Microsoft Cognitive Toolkit (CNTK). This allows Keras users to 

leverage the specific features of each backend without needing to change the Keras API. [27] 

The Keras library is designed with the goal of being easy to use, even for users with limited 

experience in deep learning. The Keras API is intuitive and requires only a few lines of code to create 

and train neural networks. This makes Keras a popular choice for developers and researchers who 

want to quickly prototype their machine learning models. 

The library is structured in a modular way, which means that neural networks can be created by 

adding layers one after the other. Each layer is responsible for a specific step in the learning process 

of the network. Keras offers a wide range of layers, including fully connected layers (Dense), 

convolutional layers, recurrent layers (LSTM, GRU), normalization layers, and others. 

This library supports two types of modeling: 

• Sequential models: suitable for creating layered neural networks, such as feedforward or 

convolutional networks. 

• Functional models: offering greater flexibility, allowing the creation of more complex 

computational graphs, including models with multiple inputs and outputs or with shared 

layers. It provides simple methods to compile the model with a loss function and an 

optimizer.  

Users can customize the training by using different loss functions and optimizers, as well as 

specifying evaluation metrics to monitor the model's performance during training. 

The learning rate, momentum, and decay are three key hyperparameters in optimization methods 

used in machine learning to train neural models. These parameters work together to determine how 

the model adjusts its weights during training. The learning rate controls the size of weight updates, 

momentum accelerates the training, and decay gradually reduces the learning rate during training 

for more stable convergence. Finding an optimal balance among these hyperparameters is crucial to 

achieve optimal model performance. 

2.5.1 Learning Rate 

The "learning rate" is a fundamental hyperparameter in the field of machine learning, determining 

how quickly an optimization algorithm updates the weights of a model during the training process. 

The learning rate controls the step or magnitude of weight updates based on the gradient of the cost 
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function with respect to the weights themselves. A learning rate that is too small may slow down 

training and risk getting stuck in local minima, while a learning rate that is too large may cause the 

training process to oscillate without converging to the global minimum. 

In the context of the Keras library, the learning rate is one of the configurable options in the optimizer 

used to train the model. The optimizer is the algorithm responsible for updating the weights during 

the machine learning process. Keras offers several optimizers to choose from, such as "SGD" 

(Stochastic Gradient Descent), "Adam," "RMSprop," and many others. 

As mentioned earlier, an excessively low learning rate can significantly slow down the model training 

process. Weight updates will be very small, and it may require many epochs to achieve adequate 

convergence. Additionally, a learning rate that is too low may cause the model to get stuck in local 

minima without reaching the desired global minimum. On the other hand, an excessively high 

learning rate can lead to unstable training. Weight updates could be so large that they cause the 

training process to oscillate, preventing the model from converging to the global minimum. In some 

cases, a learning rate that is too large may even cause the training process to diverge. 

For this reason, finding the optimal learning rate is a crucial part of the training process. Typically, 

multiple trials are performed with different learning rate values, and the value that produces the 

best result in terms of convergence and model performance is observed. Techniques such as 

"learning rate scheduling" or the use of adaptive optimizers, such as "Adam," help adapt the learning 

rate dynamically and automatically during training. 

An optimal choice of the learning rate helps achieve faster and more stable convergence during 

model training, thereby contributing to better performance on the test dataset. 

2.5.2 Momentum 

Momentum is a concept used in optimization methods in the field of machine learning to accelerate 

the training process and reach the global minimum of the cost function more quickly. Momentum is 

a mechanism that considers the directions of previous weight updates during the current weight 

update. This helps increase the convergence speed of the model and overcome obstacles such as 

local minima or plateaus more efficiently. 

In the Keras library, momentum, like the learning rate, is a configurable hyperparameter in the 

optimizers used to train the model. Optimizers that support momentum, such as "SGD" with 

momentum, add this feature as an additional factor to the weight updates during training. 
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Momentum can be seen as a "velocity" that the model acquires as it moves through the weight 

space. During weight updates, momentum allows accumulating information from previous iterations 

and giving more weight to updates that have a consistent direction over time. 

It helps avoid oscillations and "jumps" in the weight update directions. This accelerates the model 

training process by enabling it to follow coherent directions towards the global minimum of the cost 

function. It allows the model to overcome plateaus or flat areas in the cost function, which can be 

problematic for optimization algorithms as weight updates become very slow in these regions. 

Momentum enables "sliding" past these flat regions and reaching more significant regions of the 

cost function. 

Momentum is controlled by a hyperparameter called the "momentum coefficient." This coefficient 

is a value between 0 and 1, determining the extent to which momentum influences weight updates. 

Higher values of the momentum coefficient give more weight to previous updates, while lower 

values make it less influential. 

It can be used in conjunction with other optimization techniques, such as learning rate scheduling 

or learning rate adaptation. This combination of techniques helps address issues of oscillation, 

slowdown, or slow convergence during training. 

2.5.3 Decay rate 

Another parameter is the decay rate, which is also a hyperparameter used to gradually reduce the 

value of the learning rate during the training process. The decay rate is a dynamic learning rate 

adjustment mechanism aimed at improving training stability and model convergence. 

In the Keras library being discussed, optimizers that support the decay rate add this functionality to 

gradually reduce the learning rate over training epochs. 

This reduction rate can be expressed as a fixed percentage or as a constant value subtracted from 

the initial learning rate at each epoch. Oscillations and excessive variations in the learning rate can 

negatively affect training stability and the achievement of effective convergence. 

In the Keras library, the decay rate is configurable in optimizers to enable a more stable and optimal 

convergence of the model during the machine learning process. 
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2.5.4 Epoch 

In the context of machine learning, an "epoch" represents a single complete pass of the entire 

training dataset through the learning algorithm. During an epoch, all training data is used to advance 

the model and update the weights of its internal units. Training a model involves iterating through 

multiple epochs to allow the model to learn from the data repeatedly and improve its performance. 

The epochs parameter (number of epochs) is a hyperparameter that indicates how many times the 

entire training dataset will be presented to the model during the learning process. After each epoch, 

the model's weights are updated based on the prediction errors compared to the training data. 

During the first epoch, the model sees the entire training dataset and computes predictions for each 

input example. Subsequently, it calculates the prediction error (loss) relative to the expected output 

values. Using the optimizer and the backpropagation algorithm, the model updates the weights of 

its internal units to reduce the overall error. 

After the first epoch, the model has already begun learning from the training data. In the subsequent 

epochs, the model will continue to see the entire training dataset repeatedly. This process of 

iterating through the epochs allows the model to gradually refine its weights and improve its 

performance. 

Typically, with enough epochs, the model will converge to a weight configuration that minimizes the 

prediction error. However, it is important to find a balance in using epochs. Too many epochs may 

lead to overfitting, while too few epochs may prevent the model from learning enough from the 

data. 

During training, it is common to monitor the validation error (loss) on a separate validation dataset. 

This helps evaluate the model's ability to generalize well to unseen data during training and avoid 

overfitting. In some cases, it may be necessary to stop training before all planned epochs are 

completed if the performance on the validation dataset deteriorates. 

The decay rate can help the model converge more stably and consistently towards the global 

minimum of the cost function. By gradually reducing the learning rate, the model can explore the 

weight space more effectively, leading to better and more stable convergence. 
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2.6 Performance Evaluation Metrics for Regression Models 

2.6.1 R2 

The coefficient of determination, commonly known as R2, is a statistical index that measures the 

proportion of the data variability explained by the statistical model used. It is related to the fraction 

of the variance that the model does not account for. 

R2 is a statistical measure used to determine how well a linear regression model fits the observed 

data. It indicates the proportion of variance in the dependent variable that can be explained by the 

independent variables included in the model. 

The coefficient R2 takes values between 0 and 1. An R2 of 0 indicates that the model cannot explain 

any variance in the output data, while an R2 of 1 indicates that the model explains the entire variance 

in the output data. An R2 close to 0 suggests that the model does not fit the data well, while an R2 

close to 1 indicates a model that is highly fitted to the data. 

The formula for calculating R2 is as follows: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

Where 𝑇𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1  is Total Sum of Square. 

It is the sum of the squares of the differences between each observed value of the dependent 

variable and the mean of those values. This represents the total variance of the data. 

Where 𝑅𝑆𝑆 = ∑ 𝑒𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1  is Residual Sum of Square. 

It is the sum of the squares of the differences between the observed values of the dependent 

variable and the values predicted by the regression model. It represents the variance not explained 

by the model and is referred to as the residual error of the model. 

However, it is important to note that the coefficient R2 is not an absolute measure of the accuracy 

of the model and has some limitations. For instance, R2 tends to increase with the number of 

independent variables even if they are not relevant to the model, leading to issues of overfitting. 

Additionally, R2 may not be sufficient to fully evaluate the goodness of a regression model, especially 

when dealing with non-linear models or complex relationships between variables. 
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Therefore, it is always advisable to use other performance evaluation measures, such as the root 

mean squared error (RMSE) or the mean absolute error (MAE), to obtain a more comprehensive 

view of the model's effectiveness. 

2.6.2 RMSE and MAE 

The Root Mean Square Error (RMSE) is a valuable metric for quantifying how much a model's 

predictions deviate from actual data. It is widely used in the field of data analysis and machine 

learning to assess the performance of predictive models and guide the choice among different 

models. A lower RMSE value indicates higher model accuracy, as it represents a smaller average 

deviation. 

The formula for calculating RMSE is as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 

Where: 

• 𝑁 represents the total number of samples in the evaluation dataset. 

• 𝑦𝑖  is the actual value (or target value) of the sample. 

• 𝑦𝑖̂ is the value predicted by the model for the sample. 

While the Mean Absolute Error (MAE) is, like RMSE, a metric used to assess the accuracy of a 

prediction or regression model, it calculates the average of the absolute differences between each 

model prediction and the corresponding value in the actual data. 

Both MAE and RMSE express the mean value of the error made by the prediction, but the difference 

between the two lies in the fact that MAE is less sensitive than RMSE to extreme differences between 

the predicted and observed values. Furthermore, RMSE is decomposed into RMSEs and RMSEu to 

provide an evaluation of how much the model's predictions are affected by systematic errors. For a 

prediction to be considered "good”, RMSEs should approach zero, while RMSEu should get closer to 

RMSE. 
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3 Instruments 

3.1 Accelerometer 

The accelerometer is a sensor capable of measuring the acceleration of an object or a system at a 

specific point in space. Accelerometers provide crucial information about linear or gravitational 

acceleration, enabling the monitoring of movements, vibrations, and orientation.  

In this specific case, they have been employed to measure the acceleration relative to the structure 

of the beam, converting the acceleration into an electrical signal acquired by the acquisition system. 

Accelerometers can measure acceleration along one, two, or three axes. Single-axis accelerometers 

measure acceleration along only one axis, while dual-axis and tri-axis accelerometers measure 

acceleration along two and three orthogonal axes, respectively. This allows for the determination of 

the total acceleration and orientation of the object in a three-dimensional space. 

Accelerometers can be classified according to various criteria, including the operating principle, the 

technology employed, and the number of measurement axes. Now, let's explore the different types 

of accelerometers: 

• Piezoelectric accelerometers: They exploit the principle of piezoelectricity. A piezoelectric 

crystal generates a voltage proportional to the acceleration when subjected to mechanical 

stress. These sensors are known for their high sensitivity, rapid response, and high sampling 

frequency. However, they can be influenced by electrical noise and require proper signal 

amplification. 

• Capacitive accelerometers: They rely on the variation in electrical capacitance between two 

plates when subjected to acceleration. A movable mass inside the sensor causes a change in 

the distance between the plates, which in turn affects the sensor's capacitance. These 

accelerometers offer good linearity and accuracy, as well as low noise. However, they may 

require proper temperature compensation to achieve accurate measurements. 

• Microstructure accelerometers: They utilize microelectromechanical systems (MEMS) 

structures to measure acceleration. Microscopic structures such as springs and micro-beams 

deform due to acceleration, generating a variation in electrical resistance, capacitance, or 

inductance. MEMS accelerometers are widely used due to their small size, relatively low cost, 

and good accuracy in everyday applications. 
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In this case, piezoelectric accelerometers were available, which are sensors that exploit the 

piezoelectric properties of materials. These materials consist of a crystalline matrix that generates 

an electric field when subjected to mechanical deformation. Unlike other accelerometers, 

piezoresistive accelerometers allow for higher sensitivity but have the disadvantage of being 

influenced by temperature variations. 

 

Figure 3.1 Accelerometer 

Piezoelectric accelerometers find wide application in impact and vibration measurements. Generally, 

they do not provide any output in response to constant accelerations due to the fundamental 

principles of piezoelectric displacement measurement. However, they yield significant voltage 

signals, have small dimensions, and can have very high natural frequencies, a crucial characteristic 

for accurate measurements of impulsive phenomena. 

No intentional damping is incorporated, allowing the material's hysteresis to be the sole source of 

energy dissipation. As a result, the damping ratio is very low (approximately 0.01), which is 

acceptable given the high natural frequency. The transfer function is: 

𝑒0

𝑥𝑖̈

(𝐷) =
[

𝐾𝑞

𝐶𝜔𝑛
2] 𝜏𝐷

(𝜏𝐷 + 1) [
𝐷2

𝜔𝑛
2 +

2𝜁𝐷
(𝜔𝑛 + 1)

]
 

The high-frequency response is limited by mechanical resonance, while the low-frequency response 

is limited by the piezoelectric characteristic 𝐷/(𝑟𝐷 +  1). The dimensionless damping ratio 𝜁 of 
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piezoelectric accelerometers is generally not provided by manufacturers, but in most practical 

applications, it can be assumed to be close to zero. The frequency band where the accelerometer 

provides accurate measurements (with a 5% tolerance upward at higher frequencies and a 5% 

tolerance downward at the lower end of the frequency response band) is 
3

𝜏
< 𝜔 < 0.2𝜔𝑛. 

For accurate low-frequency response, a wide 𝜏 (time constant) is required, which is typically 

achieved by using high-impedance voltage amplifiers or charge amplifiers. Systems designed for a 

response below 1.0 Hz and subjected to temperature transients can experience errors due to the 

pyroelectric effect affecting most piezoelectric materials. In this case, an output charge is generated 

in response to a temperature input.  

For systems that exhibit negligible response at low frequencies, these temperature-induced signals 

(as they are "slow" transients) result in a small output. Significant errors may occur if a high 𝜏 is 

selected to measure low-frequency accelerations or if the accelerometer is not designed to minimize 

thermal effects. [28] 

The implementation details of piezoelectric accelerometers can be modified to emphasize specific 

performance aspects required for applications. There is no single configuration that is ideal for all 

situations due to the compromises inherent in any engineering design. 

The basic design, known as the compression type, is the simplest and most robust, offering the best 

mass/sensitivity ratio. As the housing acts as an integral part of the mass-spring system, this type is 

more sensitive to spurious inputs. For piezoelectric accelerometers, these spurious inputs include 

temperature, acoustic noise, base bending (surface deformations induced by the bending of the 

mounting surface), cross-axis motion, and magnetic fields. 

The spring is typically preloaded to make the piezoelectric material work in the most linear portion 

of its load/deformation curve. This preload also allows for measurements of both positive and 

negative accelerations, without ever subjecting the piezoelectric material to tensile stresses. In other 

words, the initial preload results in an output voltage with a certain polarity.  

However, this polarity immediately decays, and the polarity associated with the potential difference 

subsequently produced by the acceleration, which is the subject of the measurement, will follow the 

direction of motion. This is because the charge polarity depends on the deformation variation and 

not its magnitude. The preload is chosen to be large enough to never cancel out, even in the 

presence of the widest input accelerations. 
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Microcircuit electronics have enabled the development of piezoelectric accelerometers with charge 

amplifiers (Integrated Circuit Piezoelectric - ICP) placed inside the instrument's enclosure. A single 

two-wire cable, which simultaneously transmits both the power signal to supply the amplifier and 

the measurement signal, connects the instrument to a simple constant current power supply. 

A high-level output signal (a few volts) is directly provided to an oscilloscope or a signal analyzer. 

This system allows for higher sensitivity with a smaller accelerometer capable of measuring at higher 

frequencies while reducing the noise generated by the cable and the limitations on its maximum 

length, all at lower costs. 

These advantages come at the expense of a reduced temperature operating range (microcircuit 

electronics have tighter temperature limitations compared to those of the accelerometer alone) and 

less versatile signal conditioning (integrated amplifiers allow for limited or no adaptation). The 

background noise of the accelerometer-amplifier combination might need specific attention, 

especially at low frequencies, where the acceleration amplitude could be small and thus masked by 

noise. 

In the market, a wide variety of piezoelectric accelerometers can be found. The compromise 

between sensitivity and frequency response is evident in the common specifications provided for 

the instrument; an accelerometer used for impact detection may offer 0.004 pC/g and exhibit a 

natural frequency of 250,000 Hz, while a unit designed for low-level seismic measurements is 

characterized by 1000 pC/g and a natural frequency of 7000 Hz. 

The response to spurious inputs of thermal nature and due to support bending, for shear isolated 

models, is about 200 times lower compared to models not optimized for these purposes. There are 

also small triaxial units, as small as a 7 mm side length cube with a mass of 1 g. Instruments that are 

uncooled and capable of operating in a temperature range from -40 to 815 °C typically exhibit a 

sensitivity variation of approximately 10% when transitioning from -40 to 815 °C and are designed 

to withstand typical radioactive environments found in nuclear reactors. 

A system of accelerometers, wiring, and signal conditioning, designed for cost-effective multi-

channel vibration testing, employs low-cost piezoelectric film transducers as plug-in modules to 

provide single-axis, dual-axis, or triaxial measurement points when operating in non-particularly 

harsh environments, such as a laboratory. 
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Piezoelectric accelerometers demonstrate greater cross-axis sensitivity compared to other types; 

however, this is typically kept around 2-4%, and it usually does not represent a critical factor. Some 

manufacturers indicate the axis of lesser cross-axis sensitivity, allowing the user to orient the 

instrument during installation to minimize this effect. 

Accelerometers can be mounted using threaded studs (preferred method), adhesives, or wax, or 

with magnetic attachments. The primary effect of the different mounting methods is a reduction of 

the natural frequency to a lower value than what the accelerometer exhibits when not yet mounted, 

due to the elastic and inertial characteristics of the mounting system. 

3.1.1 ICP Accelerometers 

All accelerometers require an ICP (IEPE) power supply, although they can also be used with Voltage 

supply. 

The ICP technology, which stands for Integrated Circuit Piezoelectric, is a commonly used technology 

in accelerometers to amplify and condition the signal generated by the piezoelectric sensors. It was 

introduced to simplify the reading of piezoelectric signals and reduce electrical interference. 

In an ICP-based accelerometer, the piezoelectric crystal is connected to an integrated circuit within 

the same device. The ICP circuit amplifies the piezoelectric signal generated by the crystal. Since 

piezoelectric signals are generally very weak, signal amplification is essential to obtain an accurate 

measurement of acceleration. The ICP circuit amplifies the signal to make it suitable for further 

processing. This circuit provides a constant current to the piezoelectric crystal. 

This constant current ensures an accurate and stable response of the crystal to mechanical stresses, 

as well as contributes to reducing the influence of external electrical noise and interference. 

Another important function of the ICP circuit is signal conditioning. This includes converting the 

piezoelectric signal into a voltage or current signal proportional to the measured acceleration. Signal 

conditioning may also involve filtering to eliminate unwanted frequencies or noise present in the 

signal. 

This technology greatly simplifies the interfacing of the accelerometer with the data acquisition 

system. In fact, an ICP interface can be directly connected to an ICP input of a measurement system 

without requiring additional amplification or signal conditioning circuits. 
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In summary, the ICP technology in piezoelectric sensors of accelerometers offers efficient signal 

amplification and conditioning, ensuring accurate and reliable measurements of accelerations. 

Additionally, each accelerometer has its own sensitivity required to convert the Voltage value into 

𝑚/𝑠2. For these experiments, accelerometers designed and manufactured by PCB Piezotronics, Inc. 

were used, each with a different sensitivity. 

 

3.2 Load Cell 

The load cell is a device used to measure the force or load applied to it. In this case, it was used for 

the experiments on the beam and plate to measure the tension or compression generated by the 

forces applied to the structures. 

Load cells are typically composed of a solid block or a flexible component that undergoes 

deformation when a load is applied. This deformation generates a variation in electrical resistance, 

capacitance, or voltage, which is then converted into an electrical signal proportional to the applied 

load. This signal is then passed to the sensor signal to amplify it and finally to the data acquisition 

system. 

Load cells are often strategically placed along the beam to measure the forces acting on it. They can 

be positioned on either the upper or lower part of the beam, depending on the type of measurement 

desired. For example, if one wants to measure the bending or tension at the upper end of the beam, 

the load cell can be positioned at that location to detect the forces acting on it. 

It is important to select an appropriate load cell based on the experiment's specifications to obtain 

accurate and reliable results since they are available in various load capacities, ranging from grams 

to tons, and with different measurement accuracies. 

In the case of the beam, a load cell model SN LW 55202 was used, while for the plate, the model 

was SN LW 55552, designed and manufactured by PCB Piezotronics, Inc., a company specializing in 

measurement and sensor technology. PCB's load cells are available in a wide range of load capacities, 

which can vary from fractions of Newtons (or pounds) to many tons, depending on the specific 

requirements of the application. 
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Figure 3.2 Load cell 

PCB's load cells can be provided in various mechanical configurations to suit application needs. Some 

common configurations include pancake load cells (flat), basket load cells, compression or tension 

load cells, and other variants. They are designed to offer high precision and repeatability in 

measurements, ensuring reliable and accurate results. 

These sensors are constructed with durable and robust materials to withstand industrial 

environments and harsh conditions. Additionally, many PCB load cells include overload protection 

systems and safeguards against accidental damage. 

For the experiments conducted, the load cell has a mass of 22.7 g. It is considered a concentrated 

mass in the calculation of natural frequencies but was approximated to 23 g. 

 

3.3 Shaker 

The shaker is a mechanical exciter that generates electromagnetic vibrations by converting an 

electrical signal into controlled mechanical motion. 

It is a crucial component in vibration tests and seismic tests for evaluating structural performance 

and primarily consists of three main components: an electromechanical actuator that converts 
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electrical energy into mechanical energy, typically composed of a permanent magnet and a movable 

coil subjected to a variable magnetic field generated by an electric current. The oscillation of the 

movable coil generates the vibration force. 

It also includes a support and fixation system in which the shaker is mounted to withstand the forces 

generated during vibrations. It is essential for the support system to be rigid and minimize external 

interferences that could alter measurements or the behavior of the tested structure. 

Finally, it has an electronic controller that regulates the electrical current sent to the actuator to 

control the intensity and frequency of the vibrations generated by the shaker. The controller can be 

programmed to generate various vibration profiles. 

In this case, three different types of signals were generated by the shaker: harmonic cosine, 

pseudorandom, and chirp. Each of these signals had a specific frequency, sampling rate, and 

acquisition length. 

For these experiments, a K2007E01 Mini SmartShaker with an integrated power amplifier was used. 

It is an electrodynamic exciter designed for generic vibration tests of small components and 

subassemblies up to 9 KHz. [29] It can also be used as an exciter for modal tests of small structures. 

A new generation of ultra-compact precision power amplifiers integrated into its base eliminates the 

need for a separate and bulky power amplifier. The compact size of the K2007E01 shaker makes it 

ideal for applications such as production screening, reliability acceptance tests, and engineering 

evaluations. 

 

Figure 3.3 Shaker 
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The use of composite materials in the armature suspension and guidance system provides high 

lateral and rotational containment while maintaining maximum compliance in the direction of 

movement, allowing a peak-to-peak stroke of 0.5 inches (13 mm). 

The body structure of the K2007E01 shaker and the pin assembly are designed to allow a variety of 

operational positions. The K2007E01 is generally used in a vertical orientation and can be rotated up 

to 90° for horizontal applications. The shaker comes with a variety of nylon tips from 10 to 32, 

providing electrical insulation and flexible attachments for testing items. 

 

3.4 CompactDAQ 

The CompactDAQ is a data acquisition system developed by National Instruments, including a series 

of measurement modules and a user-friendly programming interface. 

The CompactDAQ system consists of several components. At its core, there is a compact chassis that 

houses the measurement modules. The chassis can accommodate various I/O (Input/Output) 

modules based on the specific needs of the application. The measurement modules may include 

analog inputs, digital inputs, analog outputs, digital outputs, counters/frequency meters, 

thermocouples, and more. 

The CompactDAQ controller is a rugged, reliable, and high-performance integrated controller with 

standard industry certifications. It is ideal for performing waveform acquisition and online software 

analysis while recording data in the integrated or removable SD memory. 

The controller also offers a wide range of standard connectivity and expansion options, such as USB, 

Ethernet, CAN/LIN, and RS232 serial. With over 60 C Series I/O modules for almost any sensor type, 

you can quickly design a custom hardware configuration optimized for size, cost, and performance. 

The C Series modules are high-quality input and output modules that provide signal conditioning 

and analog-to-digital conversion for the CompactDAQ system. 

These hot-swappable modules connect directly to the chassis, making it easy to create a tailored 

system for specific testing requirements. NI provides dedicated software called LabVIEW for the 

configuration and management of the CompactDAQ system. 
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Figure 3.4 CompactDAQ National Instrument 

In the current case, LabView software was not used; instead, Matlab was used as the interface to 

control and acquire data through a specific library and the "daqlist" command, enabling direct 

communication with NI's data acquisition devices. This usage allows for easier data acquisition and 

subsequent analysis, reprocessing, and visualization using various toolboxes available in Matlab. 

Eight modules were used, some as outputs and others as inputs, depending on the module model. 

 

3.5 Sensor Signal Conditioner 

The PCB Piezotronics model 282C series sensor signal conditioners were used. They are crucial 

devices to ensure the accuracy and reliability of sensor measurements by amplifying and converting 

the signals from the sensors into a suitable format for further processing and analysis. 

In the case of the sensors used on the beam, including the load cell and accelerometers, they 

produced very weak signals. Therefore, it was necessary to introduce this device to amplify the 

signals and obtain more precise measurements. This adjustment can have different gain settings, 

depending on how small the acquired measurement is; the correct gain is selected accordingly. 

The signals from the sensors can be influenced by various environmental factors, such as electrical 

noise and interference. The PCB sensor signal conditioners include conditioning circuits that filter 
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and isolate the sensor signal from such interferences. This ensures that the signal is clean and free 

from disturbances, thus improving the measurement quality. Additionally, PCB signal conditioners 

may include analog-to-digital conversion (ADC) circuits to convert the signal into a digital format. 

 

Figure 3.5 PCB Piezotronics model 282C series sensor signal conditioners 

Some sensors may generate non-linear signals in response to the measured physical quantity. The 

sensor signal conditioners can include linearization circuits to convert the non-linear signal into a 

linear relationship with the measured physical quantity. This enables more accurate and reliable 

measurements. They may also incorporate protection circuits to safeguard the sensor and data 

acquisition system from overvoltage, overcurrent, and short circuits. This protection is essential to 

prevent device damage and ensure the safety of the measurement setup. 

In the case of the beam experiment, a gain of 1x was set for the signals from the accelerometers and 

load cell, so that they would be visible during data reprocessing using Matlab. They are connected 

to the CompactDAQ modules through cables. 

 

Figure 3.6 Sensor signal conditioners diagram 
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3.6 Other Instruments 

Part of the experiment was conducted on a worktable with adjustable legs that allowed for changes 

in height and floor contact to avoid potential oscillations during the experimental test. Additionally, 

it was necessary to secure the beam and the plate to a support to prevent any undesired oscillations 

due to a sluggish support. This was achieved by using blocks with holes that could be bolted to the 

table using pins, along with one or more washers and nuts of various sizes. 
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4 Data Acquisition 

The acquisition of experimental data in the beam and plate experiments was carried out using a 

code developed in Matlab, which allowed for the acquisition of data from the load cell and 

accelerometers. 

In the following flowchart, an overview of the steps followed by the developed code is presented: 
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As evident from the flowchart, this code consisted of a series of steps. The initial step involved 

configuring a range of parameters based on the requirements of the specific data acquisition 

scenario. Notably, it was essential to set the number of active channels for each module, trigger 

threshold values, parameter values, and the channel type, which could be either "IEPE" or "Voltage" 

in the case of accelerometers. 

The essential parameters that needed configuration included acquisition rate, scan length, 

frequency, number of averages, and signal amplitude. Setting the amplitude correctly was of 

paramount importance because leaving it at the default value of unity would lead to errors. This is 

because, after signal acquisition, it wouldn't be able to represent the entire signal curve, potentially 

exceeding the range and resulting in values that were not acquired. The amplitude needed to be set 

to small values, given that the available accelerometers had a specified acquisition range within the 

interval of -4.75 V to 4.75 V. 

The second step involved identifying the National Instrument device through the "daqlist" command 

to provide a list of devices within the chassis. Subsequently, a "DataAcquisition Object" was created, 

and channels were added to it based on the previously selected channel type for each channel. After 

these steps, the desired output was selected from three available options, data was acquired, 

averaged, processed, and finally displayed in the requested graphs. 

The developed code allowed the usage of three different output options for the signal: 

• Chirp 

• Pseudorandom  

• Harmony 

 

4.1 Chirp Signal 

A chirp signal is a signal that varies its frequency over time according to a well-defined law. The term 

"chirp" is derived from the sound of radar signals reflected from a target, which generates an 

acoustic signal resembling the singing of a bird, hence the name "chirp". [30] 

The chirp signal can be represented in either the time domain or the frequency domain. In the time 

domain, the chirp signal is characterized by a frequency that changes linearly or nonlinearly over 

time. A common example of a chirp signal is the cosine chirp, defined by the following equation: 
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𝑥(𝑡) = 𝐴 ∙ cos (2𝜋(𝑓0𝑡 + 𝑘𝑡2)) 

Where: 

• 𝐴 is the amplitude of the signal. 

• 𝑓0 is the initial frequency of the chirp at time t = 0. 

• 𝑘 represents the steepness or rate of frequency change over time. 

When k is positive, the frequency of the chirp signal increases over time (up-chirp). Conversely, when 

k is negative, the frequency of the chirp signal decreases over time (down-chirp). 

In the frequency domain, a chirp signal will appear as an expanding or contracting frequency band. 

A chirp signal is best represented in its frequency spectrum form, using Fourier transform or Hilbert 

transform. 

Chirp signals find various applications, including radar systems for distance measurement and 

target localization. In sonar applications, chirp signals are used for similar purposes as in radar, but 

in underwater environments. 

Chirp signals can be employed in various signal processing applications, such as modulation and 

demodulation of communication signals or frequency analysis in acoustic or vibration signals. 

The use of chirp signals offers significant advantages as they provide higher frequency resolution 

compared to signals with constant frequency. This makes them useful in applications requiring 

narrowband analysis and high precision in frequency determination. 

4.1.1 Comparison between Chirp Signal Input from MatLab and Output Load Cell 

The input signal sent to the shaker was generated by the following line of MATLAB code: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑚𝑝 ∗ 𝑐ℎ𝑖𝑟𝑝(𝑡, −105, 𝑙𝑒𝑛𝑔𝑡ℎ_𝑠𝑐𝑎𝑛, 𝑓𝑟𝑒) 
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Figure 4.1 Frequency comparison between input and output of the chirp signal in the beam 

 

Figure 4.2 Low frequency comparison between input and output of the chirp signal in the plate 
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Figure 4.3 High frequency comparison between input and output of the chirp signal in the plate 

 

The previous figures display a comparison, both for the beam and the plate, at low and high 

frequencies, between the input generated by MATLAB sent to the shaker and the actual output 

detected by the load cell. As evident from the graphs, there is not a strong correspondence between 

the input generated by MATLAB and the actual signal read by the load cell. To mitigate this 

discrepancy, a decision was made to use a signal with an initial instantaneous frequency at time zero 

equal to -105 instead of 0. This choice was made to enhance the correspondence between the input 

and output signals, as an initial value of 0 resulted in a less meaningful correspondence, which did 

not contribute to obtaining values closer to the expected ones, consequently leading to 

discrepancies between the experimental values and those obtained numerically.  

 

4.2 Pseudorandom Signal  

A pseudorandom signal, also known as a pseudo-random signal, is a signal that appears random but 

is generated by a deterministic algorithm. Unlike true random signals, pseudorandom signals are 

reproducible and predictable because their sequence is generated by a Pseudo-Random Number 

Generator (PRNG). 

PRNGs are mathematical algorithms that produce sequences of numbers that, at first glance, appear 

random, but are completely determined by an initial value known as the "seed." The seed is the 

starting point of the algorithm, and if the same seed is used, the generator will always produce the 
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same sequence of numbers. To obtain different sequences, one can vary the seed or use a "jump" 

technique in the PRNG to move to a different position in the sequence. 

In data acquisition, a pseudorandom signal is used as an input signal or "stimulus" to be sent to a 

system or device for conducting tests, measurements, or calibrations. 

The main characteristic of a pseudorandom signal is repeatability. If you know the seed used in the 

random number generator, you can regenerate the exact same sequence of numbers every time. 

This repeatability is useful in many applications, for example, in testing and troubleshooting, as it 

allows reproducing the same conditions and verifying results. 

A good pseudorandom number generator will attempt to produce a sequence of numbers that 

approximates a random distribution. This means that, even though the numbers are generated 

deterministically, their distribution should exhibit some properties like those of a truly random 

number sequence. 

Although PRNGs can produce long sequences, each PRNG has an upper limit to the length of the 

generated sequence, known as the period. After a certain number of iterations, the generator will 

return to the initial sequence. This periodicity may be acceptable for many applications, but it is 

important to select a PRNG with a long enough period to ensure that the sequence does not repeat 

too frequently. 

Since the pseudorandom signal is determined by the seed and the PRNG algorithm, it is fully 

reproducible. This repeatability is advantageous in situations where one wants to precisely 

reproduce the same data acquisition conditions for testing, debugging, or comparing different 

experiments. 

Although the numbers generated by a PRNG are not truly random, a good generator will aim to 

approximate the statistical properties of a random sequence. This is particularly important when 

using pseudorandom signals in analysis and verification applications. 

Pseudorandom signals produced by a PRNG have a limited duration, determined by the generator's 

period. After a certain number of samples, the sequence will repeat. It is important to ensure that 

the signal's duration is sufficiently long to meet the data acquisition requirements. 

Pseudorandom signals can be designed to have a uniform spectral distribution or be modulated to 

follow a specific distribution. This is particularly useful when performing frequency analysis or 
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testing in certain frequency bands. Since the pseudorandom signal is a known sequence, it is 

important to ensure that it does not inadvertently contaminate the acquired data. If the 

pseudorandom signal were to overlap with a desired signal, it could alter the measurement results. 

Pseudorandom signals are widely used in data acquisition for various applications, such as: 

• Testing and verification of systems and equipment. 

• Calibration of sensors and measurement instruments. 

• Analysis of noise and system behavior. 

• Generation of test signals for functional testing and performance evaluations. 

However, it is important to note that in certain scientific or industrial applications where true 

randomness is required, it is necessary to use True Random Number Generators (TRNG) based on 

physical processes, such as thermal or quantum noise, that produce genuinely random sequences. 

4.2.1 Comparison between Pseudorandom Signal Input from MatLab and Output Load Cell 

The input signal sent to the shaker was generated by the following line of MATLAB code: 

𝑠𝑣 =  𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝑡′)) 

𝑣𝑠 =  𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑠𝑣, 𝑓𝑟𝑒, 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒, ′𝐼𝑚𝑝𝑢𝑙𝑠𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒′, ′𝑖𝑖𝑟′)             

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑣𝑠 ∗  𝐴𝑚𝑝 

 

 

Figure 4.4 Frequency comparison between input and output of the pseudorandom signal in the beam 
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Figure 4.5 Low frequency comparison between input and output of the pseudorandom signal in the plate 

 

Figure 4.6 High frequency comparison between input and output of the pseudorandom signal in the plate 

The preceding figures depict a comparison, both for the beam and the plate, at low and high 

frequencies, between the input signal generated by MATLAB and sent to the shaker, and the actual 

output registered by the load cell. As discernible from the graphs, a strong correspondence between 

the MATLAB-generated input signal and the actual signal read by the load cell is notably lacking. 

Consequently, this disparity results in experimental values that differ from those obtained 

numerically. Furthermore, unlike the previous case, it was not feasible to generate a signal that could 

closely resemble what is read by the load cell. 
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4.3 Harmonic Signal 

In data acquisition, a harmonic signal is a type of periodic signal that consists of one or more 

sinusoidal components with frequencies that are integer multiples of the fundamental harmonic. 

Understanding and analyzing harmonic signals are fundamental in studying the behavior of linear, 

electrical, and electromagnetic systems, as well as in many other areas of engineering and physics. 

A harmonic signal can be described by the following general formula: 

𝑥(𝑡) = 𝐴 ∙ sin (2𝜋𝑓𝑡 + 𝜙) 

where: 

• 𝑥(𝑡) is the value of the signal at time t. 

• 𝐴 is the amplitude of the sinusoidal wave, representing the signal's excursion. 

• 𝑓 is the frequency of the fundamental harmonic. 

• 𝑡 is the time. 

• 𝜑 is the initial phase of the signal, representing the phase shift relative to the temporal origin. 

In addition to the fundamental harmonic at frequency f, the harmonic signal can also contain higher 

harmonics, which are sinusoidal components with frequencies that are multiples of frequency. For 

instance, if the fundamental harmonic is f, the second harmonic will be at 2f, the third at 3f, and so 

on. The amplitudes and phases of these harmonics depend on the properties of the initial signal. 

The harmonic signal has a discrete and regular frequency spectrum, with peaks at the frequencies 

of the various harmonics. The frequency spectrum of a harmonic signal is useful for analyzing and 

identifying the various components of the signal. 

Harmonic signals are often used in data acquisition to perform tests, analyses, or evaluations of 

equipment, systems, or components. For example, it is common to use harmonic signals to calibrate 

measuring instruments, analyze the frequency response of an electrical or electronic circuit, or 

characterize the behavior of a mechanical system subjected to periodic vibrations. 

4.3.1 Comparison between harmonic signal input from MatLab and output load cell 

The input signal sent to the shaker was generated by the following line of MATLAB code: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐴𝑚𝑝 ∗ 𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 𝑓𝑟𝑒 ∗ 𝑡′) 
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Figure 4.7 Frequency comparison between input and output of the harmonic signal in the beam 

 

Figure 4.8 Low frequency comparison between input and output of the harmonic signal in the plate 
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Figure 4.9 High frequency comparison between input and output of the harmonic signal in the plate 

The previous figures illustrate the comparison, both for the beam and the plate, at low and high 

frequencies, between the input generated by MATLAB sent to the shaker and the actual output 

registered by the load cell. In contrast to the previous cases, a noticeable improvement in the 

correspondence between the MATLAB-generated input and the actual signal detected by the load 

cell can be observed in the graphs. This results in fewer errors compared to the previous cases. 

 

4.4 Number Average 

The "Number average" parameter allows setting the number of acquisitions to be performed before 

averaging the signal. The appropriate value of Number average depends on the nature of the signal 

and noise, as well as the application's specifications. 

In general, a larger value of Number average will provide a more stable average and further reduce 

the influence of noise, but it will require more time to complete the acquisition and averaging 

process. On the other hand, a value that is too small may not significantly reduce the noise or provide 

a reliable estimate of the desired signal. 

The choice to acquire the signal multiple times is since in most data acquisition systems, the signal 

we want to measure is often contaminated by noise. Noise consists of unwanted or random signals 

that can be caused by various sources, such as electronic interference, environmental instabilities, 
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or other sources of disturbance. The noise can vary randomly from acquisition to acquisition, and its 

level can be much lower than the amplitude of the desired signal. 

As the noise varies randomly between different acquisitions, averaging multiple acquisitions tends 

to reduce the effect of noise, as noise has a stochastic nature. The component of the signal that is 

coherent among acquisitions (i.e., the desired signal) tends to accumulate in the average. 

The "Number average" parameter allows setting the number of acquisitions to be performed before 

averaging the signal. The appropriate value of Number average depends on the nature of the signal 

and noise, as well as the application's specifications. 

In general, a larger value of Number average will provide a more stable average and further reduce 

the influence of noise, but it will require more time to complete the acquisition and averaging 

process. On the other hand, a value that is too small may not significantly reduce the noise or provide 

a reliable estimate of the desired signal. 

The choice to acquire the signal multiple times is since in most data acquisition systems, the signal 

we want to measure is often contaminated by noise. Noise consists of unwanted or random signals 

that can be caused by various sources, such as electronic interference, environmental instabilities, 

or other sources of disturbance. The noise can vary randomly from acquisition to acquisition, and its 

level can be much lower than the amplitude of the desired signal. 

As the noise varies randomly between different acquisitions, averaging multiple acquisitions tends 

to reduce the effect of noise, as noise has a stochastic nature. The component of the signal that is 

coherent among acquisitions (i.e., the desired signal) tends to accumulate in the average. 

All of this will subsequently allow for better signal processing. 

 

4.5 Trigger 

In data acquisition, a "trigger" is a mechanism or signal used to initiate the start of the data 

acquisition in synchronization with a specific event or desired condition. The trigger is crucial to 

ensure that data acquisition begins at the right moment, capturing exactly the relevant data and 

reducing unwanted noise or interference. 
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The desired event or condition that must occur for data acquisition to start is specified. This event 

can be a voltage change, a rising or falling edge, a specific value reached by a signal, or any other 

specific condition relevant to the purpose of acquisition. 

Once the trigger is activated, data acquisition is initiated in synchronization with the detected event. 

This ensures that the captured data is relevant and consistent with the specific event being studied 

or analyzed. 

In the case of the beam experiment, an initial intensity peak was observed when the input was 

initially applied. This was likely due to the beam's thickness being too thin, leading to data acquisition 

starting after the first 0.15 seconds. 

 

4.6 Dataset Creation 

In the development of a surrogate model aimed at learning stress distributions from simulations 

conducted using the Finite Element Method (FEM) to predict real-time stress distributions, the 

neural network algorithm relies on predicting accelerations along the structure nodes. This is 

achieved through accelerometers positioned along the structure, monitoring time-variable behavior. 

Following machine learning, the algorithm can then predict the structure's response at various time 

points and positions. 

The dataset comprises approximately one million entries obtained from various FEM simulations 

based on the examined signals. These data serve as input for the algorithm. At each time step, the 

machine learning algorithm establishes a relationship between the desired numerical response and 

the calculated reference quantities, either using FEM in the numerical case or accelerometer values 

in the experimental case. 

In the case of the beam modeled with the FEM, 50 nodes were used along its vertical axis, and the 

finite element simulation was executed using Matlab. For algorithm training, seven factors were 

employed as input: the 𝑥 coordinate positions of nodes, acceleration (𝑎𝑐𝑐), and 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 

representing the five accelerometers positioned at different locations along the beam. 

In contrast, for the plate, unlike the beam, the finite element simulation to obtain numerical values 

was performed using Ansys Workbench with the "transient structural" tool. Eighty-eight nodes were 
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used, and the input parameters included the 𝑥 and 𝑦 coordinates for node positions, acceleration 

(𝑎𝑐𝑐), and 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, representing the seven accelerometers used for the plate. 

The generated data is divided into two sets: a training set and a test set. This division allows training 

the model on the training data and subsequently evaluating its performance on the test set. Data 

splitting is accomplished through a stratified sampling method. The training set comprises 80% of 

the data, while the test set includes the remaining 20%. Although 70%-30% simulations will also be 

conducted to observe potential differences. This approach is crucial for assessing the overall 

accuracy of the final model. 
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5 Experiment model beam 

5.1 Experiment Preparation 

During the experiment a rectangular bar was analyzed. It was a rectangular aluminum bar measuring 

175 mm in length, 19.16 mm in width, and 3.10 mm in thickness. 

The first step involved ensuring the cleanliness of the bar, free from any dust or dirt. Subsequently, 

a thorough examination of the aluminum bar was conducted to identify any surface defects such as 

scratches, dents, or other imperfections. 

Following this analysis, the next step was to subject the bar to a surface defect removal process. Two 

different grades of sandpaper were selected for this purpose. During the sanding process, deliberate 

and consistent movements were applied. Initially, coarse-grit sandpaper was used, gradually shifting 

to finer grit as surface defects were removed. 

Upon completing the finishing process, it was essential to clean the surface from any residual dust 

using a solvent and a cloth while wearing gloves to prevent contamination of the bar. 

At the conclusion of these procedures, a significantly improved aluminum bar with a flawless surface 

was obtained. 

Once the bar was prepared and cleaned, it was initially positioned vertically on a support and 

secured with a clamp. Three accelerometers with varying sensitivities were placed at different 

positions along the bar. Additionally, a load cell was installed and subsequently connected to the 

shaker located at the same height, allowing for perpendicular force application to the beam. 

 

Figure 5.1 Old beam configuration  
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However, this configuration proved inadequate due to the clamp's inability to secure the bar 

adequately. This resulted in various errors caused by vibrations stemming from the mounting 

support. Consequently, the decision was made to adopt the configuration proposed in Figure 5.2. 

In this case, improving the bar's fixation became necessary, as illustrated in the following figure: 

 

Figure 5.2 New beam configuration 

To circumvent the problems encountered in the previous configuration, as evident in the figure, the 

bar's fixation was facilitated by two black blocks that were securely fastened to the bar. 

Onto this properly prepared beam, five accelerometers were positioned: 

• Accelerometer model 352A24 SN LW 369406 with sensitivity 9.94 𝑚𝑉/𝑚/𝑠2 

• Accelerometer model 352A24 SN LW 369402 with sensitivity 9.87 𝑚𝑉/𝑚/𝑠2 

• Accelerometer model 352A24 SN LW 339401 with sensitivity 10.00 𝑚𝑉/𝑚/𝑠2 

• Accelerometer model 352A24 SN LW 369399 with sensitivity 9.96 𝑚𝑉/𝑚/𝑠2 

• Accelerometer model 352A24 SN LW 369404 with sensitivity 9.88 𝑚𝑉/𝑚/𝑠2 
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And a Load cell model 208C01 SN LW 55202 with sensitivity 500 𝑚𝑉/𝑙𝑏. 

They were positioned as shown in the schematic diagram: 

 

Figure 5.3 Configuration of accelerometer and load cell placement 
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Figure 5.4 Configuration of accelerometer placement 

As shown in Figure 5.2, the load cell was connected to the shaker, which is positioned in a structure 

at the same height, to apply force perpendicular to the bar. 

Both the 5 accelerometers and the load cell were connected to a sensor signal conditioner. It was 

necessary to introduce this device so that the sensor signals, through the conditioning circuits, could 

be filtered and isolated from various environmental factors, such as noise and electrical interference. 

In this way, an effort was made to improve the signal by making it clean and free from disturbances, 

thus enhancing the quality of measurements. 

Subsequently, the signal was passed to the CompactDAQ, connected to the computer via a USB 

cable. The signal was acquired using CompactDAQ and the MatLab 2021b tool. 

In the MatLab code developed, it is possible to set the acquisition frequency, signal length, number 

of signal acquisitions for averaging, cut-off frequency, range, amplitude, and output type. 

It was observed that it is not possible to set the acquisition frequency arbitrarily because the 

CompactDAQ module operates only within specific ranges according to the formula: [20] 
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𝑓𝑠 =
𝑓𝑀 ÷ 256

𝑛
 

Where: 

• 𝑓𝑀 frequency of a master timebase  

• 𝑓𝑠  data rate (fs) 

• 𝑛 is any integer from 1 to 31. 

This issue may arise due to various reasons, depending on the system configuration and the use of 

National Instruments (NI) driver or APIs with MATLAB. For instance, one of the issues is the inherent 

hardware limitations of National Instruments, which can affect its ability to acquire or generate 

signals at certain sample frequencies. Therefore, it's essential to check the hardware's technical 

specifications before proceeding with data acquisition to ensure it can operate at the desired 

sampling frequencies. 

Another problem involves rounding errors. In some situations, there might be a rounding or 

approximation error in the frequencies set through the NI driver or API, resulting in slightly different 

actual frequencies. Alternatively, there may be an error in the configuration of the NI driver or APIs 

with MATLAB, preventing the system from functioning correctly at specific sampling frequencies. As 

a result, a decision was made to use the frequency of 8400 Hz, which was suitable for the dq.Rate. 

All the signals presented in the following summary table 1 have been sampled using: 

• 𝐴𝑐𝑞𝑢𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 6400 𝐻𝑧 

• 𝐿𝑒𝑛𝑔ℎ𝑡 𝑠𝑐𝑎𝑛𝑒 = 4 𝑠 

• 𝑁. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 2 

• 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 = 0.15 𝑠 
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𝑁𝑎𝑚𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝐻𝑧] 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 [𝑉] 

𝐶𝐻1 𝐶ℎ𝑖𝑟𝑝 2000 0.05 

𝐶𝐻2 𝐶ℎ𝑖𝑟𝑝 600 0.05 

𝐶𝐻3 𝐶ℎ𝑖𝑟𝑝 2000 0.025 

𝐶𝐻4 𝐶ℎ𝑖𝑟𝑝 600 0.025 

𝑃𝑆1 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 2000 0.05 

𝑃𝑆2 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 600 0.05 

𝑃𝑆3 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 2000 0.025 

𝑃𝑆4 𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 600 0.025 

𝐴𝑅1 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 2000 0.05 

𝐴𝑅2 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 600 0.05 

𝐴𝑅3 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 2000 0.025 

𝐴𝑅4 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 600 0.025 

Table 1 

 

5.2 Material 

The Young's modulus of aluminum can vary slightly based on the specific composition of the 

aluminum used, processing conditions, and measurement methods. Sometimes, to simplify analyses 

or consider a broader range of situations, an average or approximate value, such as 60 GPa, may be 

used. 

In some engineering applications, it is prudent to use conservative values to ensure that the material 

is sufficiently safe and reliable. Using a value slightly lower than the theoretical one (e.g., 60 GPa 

instead of 72 GPa) can provide an additional safety margin in the design and evaluation of material 

performance. 

The material composing the beam is aluminum, and it was not possible to ascertain the exact 

composition or precise alloy used. Therefore, for the purpose of analysis and data processing, it was 

set to 𝐸 = 60 𝐺𝑃𝑎. 
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5.3 Damping 

The differential equation that describes the behavior of a system with proportional damping is 

expressed as follows: 

[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝑓(𝑡)} 

• [𝑀] is the mass matrix, a diagonal n x n matrix with diagonal elements representing the 

masses of individual degrees of freedom. 

• [𝐶] is the damping matrix. 

• [𝐾] is the stiffness matrix, an n x n matrix representing the system's stiffness. 

• 𝑓(𝑡) is the vector of external forces applied to the system at time t. 

• 𝑢 is the vector of positions (or amplitudes) at time t, a column vector of size n x 1. 

• 𝑢̇ is the vector of velocities at time t, a column vector of size n x 1 representing the derivatives 

of positions with respect to time. 

• 𝑢̈ is the vector of accelerations at time t, a column vector of size n x 1 representing the 

derivatives of velocities with respect to time. 

The proportional damping model, also known as Rayleigh damping, [31] was used, where the 

damping matrix [𝐶] is a linear combination of the mass matrix [𝑀] and the stiffness matrix [𝐾]: 

[𝐶] = 𝛼[𝑀] + 𝛽[𝐾] 

With 𝛼 e 𝛽 being the Rayleigh damping constants. 

The damping factor is equal to: 𝜉 =
𝑐

2√𝑘𝑚
 

While 𝜔𝑖
2 represents the square of the frequencies 

The relationship that connects these three factors is: 

2𝜉𝑖𝜔𝑖 = 𝛼 + 𝛽𝜔𝑖
2 

The Rayleigh constants are determined experimentally by knowing the values of the damping and 

frequency factors: 

{
𝛼 + 𝛽𝜔1

2 = 2𝜉1𝜔1

𝛼 + 𝛽𝜔2
2 = 2𝜉2𝜔2
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From which we derive in the case of the beam: 

• 𝛼 = 7 ∙ 10−7 1/𝑠 

• 𝛽 = 1 ∙ 10−6 𝑠  

 

5.4 Comparisons of Machine Learning Simulations: Beam Case 

Various signal samplings were performed through multiple experimental tests using different input 

signals such as chirp, pseudorandom, and harmonic. The signals listed in Table 1 were analyzed, and 

in the subsequent section, we will delve into the signals that yielded the most significant results. 

5.4.1 Numerical-Experimental Chirp Signal Comparison 

In this paragraph, a chirp signal with an amplitude of 0.05 V and a frequency of 2000 Hz was 

analyzed, comparing numerical values with experimental ones. 

 

Figure 5.5 Time history chirp signal – Accelerometer 3 
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Figure 5.6 Time history chirp signal – Accelerometer 5 

Among the five accelerometers used, the third, positioned at the midpoint of the analyzed beam, 

and the fifth, located at the tip of the same beam, were compared to provide an analysis at the most 

critical points of the beam. 

From the preceding figures, it is evident that the experimental values are consistently lower than 

the predicted numerical values and do not entirely align with them, although the trend of the peaks 

is quite consistent with the numerical values obtained. This discrepancy could be attributed to 

several factors. 

Firstly, the issue highlighted in the previous paragraph must be considered, where the load cell does 

not capture the same signal generated as the input to the shaker for excitation. This leads to a 

different acceleration value than expected because the input for numerical and experimental values 

differs due to the load cell's varied readings. 

Additionally, the thickness and rigidity of the beam, which have significantly reduced values, can 

introduce irregularities in the data detected by the accelerometer. Another determining factor might 

be vibrations from the supports that secure the beam or an unstable table. 

Other factors contributing less significantly to the disparity between numerical and experimental 

values include improper accelerometer calibration or incorrect installation on the beam. If the 

accelerometer is not positioned correctly, or if there are issues with fixing or orientation, the 

collected data will be adversely affected. 
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Other influential factors may include slight defects in the beam reducing rigidity, accelerometer 

limitations due to their own range, although this was addressed by reducing the amplitude of the 

function, and environmental conditions such as temperature and humidity that could have 

influenced the accelerometer. 

These factors collectively help explain the observed divergences between experimental 

measurements and numerical predictions. 

 

Figure 5.7 FRF chirp signal – Accelerometer 3 

 

Figure 5.8 FRF chirp signal – Accelerometer 5 
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The trend of the peaks in the FRF of the two accelerometers is notably consistent between numerical 

and experimental values. 

Subsequently, the results obtained from machine learning were compared between the numerical 

model of the accelerometers (on the left) and the experimental model of the accelerometer values 

(on the right): 

 

Figure 5.9 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case 

 

 

Figure 5.10 Error evolution - Numerical case 
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Figure 5.11 Error evolution - Experimental case 

 

 

Figure 5.12 Time=0.5 s - Beam acceleration - L) Numerical case - R) Experimental case 

 

Figure 5.13 Time=1.0 s - Beam acceleration - L) Numerical case - R) Experimental case 
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Figure 5.14 Time=2.0 s - Beam acceleration - L) Numerical case - R) Experimental case 

 

Figure 5.15 Time=3.0 s - Beam acceleration - L) Numerical case - R) Experimental case 

In comparing the MAE and MSE graphs, it is evident that, in the case of numerical values, the line 

converges to zero after only 10 epochs, unlike the experimental case where significantly more 

epochs are required to reach zero. This is attributed to the fact that, in the experimental case, the 

values of the train error and value error are much higher than in the numerical case; consequently, 

a greater number of epochs are needed to bring the error values to convergence at approximately 

zero. 

From all the graphs of the numerical model, it is observed that perfect values lead to the 

phenomenon of overfitting, supported by the obtained R2 value of 0.99. In fact, at each selected 

time instant, the curve of the initial FEM corresponds to that predicted by machine learning. 
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Regarding the experimental part, a good R2 is achieved, and the predicted values align reasonably 

well along the bisector. In the graphs at various time instants, particularly at 0.5 and 3 seconds, it is 

noticeable that the predicted acceleration curve values correspond to the data recorded by the 

accelerometers. This is because the experimental and numerical values at those time instants match 

more closely compared to the cases at 1 second and 2 seconds. However, the curve of the initial 

FEM and that of the predicted values are much closer than in the cases of 0.5 and 3 seconds. 

5.4.2 Pseudorandom Signal Comparison 

A pseudorandom signal with an amplitude of 0.05 V and a frequency of 2000 Hz was analyzed, 

comparing the numerical values with the experimental ones. 

 

Figure 5.16 Time history pseudorandom signal – L) Accelerometer 3 – R) Accelerometer 5 

 

Figure 5.17 FRF pseudorandom signal – L) Accelerometer 3 – R) Accelerometer 5 

The analysis of the comparison between experimentally obtained values and numerically calculated 

values for a pseudorandom signal represents a fundamental step in validating and optimizing the 

algorithm used. The results of this comparison provide valuable insights into the adequacy of 
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modeling and implementing the pseudorandom signal, as well as the ability of the experimental 

system to measure and acquire data accurately. 

One of the most interesting aspects of this analysis is the opportunity to identify any deviations 

between experimental and calculated values. These discrepancies may arise from multiple sources, 

such as measurement errors or limitations in the system's ability to generate the pseudorandom 

signal. Identifying the cause of such differences is crucial to ensuring the reliability of the 

pseudorandom signal in the specific application. It should be emphasized that the analysis of 

comparison between experimental and calculated data is a standard practice in the design of 

pseudorandom signals, and its accurate execution is essential to ensure the reliability and 

effectiveness of systems that use them. 

Similar to the chirp signal analysis, a difference between experimental and numerical values is 

observed here, attributed to plausible reasons explained earlier. It is noted that experimental values 

are lower than numerical values, but they fairly follow the pattern of pseudorandom peaks in both 

analyzed accelerometers. In fact, the FRF trends of the experimental and numerical lines coincide 

quite well, especially at low frequencies. 

 

Figure 5.18 Predictions x Reality on dataset test - Experimental case 
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Figure 5.19 Error evolution - Experimental case 

 

Figure 5.20 Beam acceleration - Experimental case - L) Time=0.5 s - R) Time=1.0 s 

 

Figure 5.21 Beam acceleration - Experimental case - L) Time=2.0 s - R) Time=3.0 s 
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The Figure 5.18 should illustrate how the predicted values and the actual values are distributed 

uniformly along the bisector. In this case, most values concentrate in the central part of the bisector 

and less along its entire length. For this reason, as evident from Table 2, the R2 value is very low. 

Particularly near the tip of the beam, the predictive models do not closely match the actual values 

of the accelerometers. 

From figure 5.19, it is evident that the 50 epochs used are not sufficient to achieve an error close to 

zero. The MAE values are still high, and the MSE values are elevated after 50 epochs, unlike the 

experimental chirp case where 50 epochs were enough to reach a value close to zero. 

5.4.3 Harmonic Signal Comparison 

A cosine signal with an amplitude of 0.05 and a frequency of 2000 Hz was analyzed, comparing 

numerical values with experimental ones. 

 

Figure 5.22 Time history harmonic signal – Accelerometer 3 
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Figure 5.23 Time history harmonic signal – Accelerometer 5 

In the recently examined case of a harmonic sine wave signal, the analysis reveals a good agreement 

between experimental and calculated data. This suggests that the employed model can accurately 

represent the behavior of the examined harmonic signal. This outcome is highly positive, confirming 

the robustness of the model and the reliability of experimental measurements. 

Overall, a well-executed comparative analysis between experimental and calculated data for a 

harmonic signal contributes to an enhanced understanding of the phenomena under examination, 

strengthening the foundation for future decisions and developments based on such data. 

In the case of the third examined accelerometer, experimental values are slightly lower than 

numerical values, but the peaks and the curve are in phase throughout the signal's course. 

Conversely, for the accelerometer at the tip, reasonably comparable values are obtained. 
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Figure 5.24 FRF harmonic signal – Accelerometer 3 

 

Figure 5.25 FRF harmonic signal – Accelerometer 5 
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Figure 5.26 Predictions x Reality on dataset test - Experimental case 

 

 

Figure 5.27 Error evolution - Experimental case 
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Figure 5.28 Beam acceleration - Experimental case - L) Time=0.5 s - R) Time=1.0 s 

 

Figure 5.29 Beam acceleration - Experimental case - L) Time=2.0 s - R) Time=3.0 s 

From the error graph, it is evident that the initial values are already quite small, and after 50 epochs, 

convergence to nearly zero is easily achieved, although even 25 epochs would have sufficed. As 

indicated by the preceding graphs and the R2 value in Table 2, this results in the initial FEM and 

predicted values curves being almost entirely coincident, leading to a significantly high R2, exceeding 

0.90 for harmonic signals. Comparing the R2 values in the table, it is apparent that the highest R2 

values are associated with harmonic signals, followed by lower values for chirp signals, and finally, 

pseudorandom signals. 

The accuracy of the obtained results primarily stems from the near-complete coincidence between 

the excitation signal input sent to the shaker by the Matlab command and the signal detected by the 

load cell. Real and predicted values are consistently and uniformly distributed along the bisector, 
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enabling an accurate prediction of the acceleration curve for most values along the beam, with only 

a slight deviation observed at its tip. 

5.4.4 Comparison among Harmonic Signals with Different Amplitudes and Frequencies 

An analysis was conducted on a cosine signal with an amplitude of 0.05 V and a frequency of 600 

Hz, comparing it with a cosine signal with an amplitude of 0.025 V and a frequency of 2000 Hz. 

 

Figure 5.30 Predictions x Reality on dataset test - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz 

 

Figure 5.31 Error evolution - Experimental case 0.05 V and 600 Hz 
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Figure 5.32 Error evolution - Experimental case 0.025 V and 2000 Hz 

 

Figure 5.33 Time=0.5 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz 

 

Figure 5.34 Time=1.0 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz 
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Figure 5.35 Time=2.0 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz 

 

Figure 5.36 Time=3.0 s - Beam acceleration - L) Experimental case 0.05 V and 600 Hz - R) Experimental case 0.025 V and 2000 Hz 

Between the two plots along the bisector, it is evident that in the case with lower amplitude and 

higher frequency, the points along the bisector are distributed quite uniformly and compactly along 

its entire length. In contrast, the other case exhibits numerous scattered points in the plot, far from 

the main bisector, and several real values predict an acceleration value of zero. 

This leads to lower R2 values for the lower amplitude values, resulting in less pronounced bisector 

curves. The prediction curves coincide more in the case of the right-side figures, which exhibit a 

higher R2, especially up to about half the length of the beam, where they align completely with 

those of the initial FEM. 

Ultimately, at none of the examined time instances in both cases, do the lines pass through all the 

experimental values of the accelerometer calculated at that specific time, due to the differences 

between experimental and numerically obtained values. Although there are time instances, such as 
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the plot describing the moment at 2 seconds and 3 seconds, where the lines, in some cases, pass or 

are very close to the experimental accelerometer values. 

5.4.5 Comparison of Simulations using 70% Dataset and 80% Dataset 

A chirp signal with an amplitude of 0.025 and a frequency of 2000 Hz was analyzed by comparing 

the results obtained through machine learning processing using only 70% of the dataset values and, 

in contrast, processing using 80% of the dataset values. 

 

Figure 5.37 Predictions x Reality on dataset test - L) Experimental case 70% dataset - R) Experimental case 80% dataset 

 

Figure 5.38 Error evolution - Experimental case 70% dataset 
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Figure 5.39 Error evolution - Experimental case 80% dataset 

 

Figure 5.40 Time=0.5 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset 

 

Figure 5.41 Time=1.0 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset 
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Figure 5.42 Time=2.0 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset 

 

Figure 5.43 Time=3.0 s - Beam acceleration - L) Experimental case 70% dataset - R) Experimental case 80% dataset 

From the MAE and MSE graphs, it is observed that the error values are similar, and the convergence 

trend is the same in both the 70% and 80% cases, as the two bisectors show data distributed in the 

same range. Indeed, Table 2 highlights the similarity in R2 values in both cases, suggesting that 

reducing the number of database entries does not significantly impact the R2 value. 

Furthermore, in comparing various time instances, it is evident that the curves predicting the data, 

as well as error cases and the bisector, are similar in both scenarios. However, the curves predicted 

with 80% of the dataset are slightly better, closely approaching the initial FEM curves and the 

experimental values of the accelerometers. Particularly noteworthy is the case at 3 seconds, where 

the curve of predicted data closely aligns with the experimental values of the accelerometers in 

those positions. 
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5.4.6 Comparison of Simulations using 4 Accelerometers and 5 Accelerometers 

In this case, an analysis was conducted with 5 accelerometers, and another analysis was performed 

with 4 accelerometers placed in the same positions. However, in the case with 4 accelerometers, 

accelerometer 3, positioned at the center of the beam, was not included as input when the machine 

learning algorithm analysis was conducted. The obtained values for a chirp signal with an amplitude 

of 0.05 and a frequency of 2000 Hz are as follows:  

• Mean Absolute Error: 9.508295589619058 

• Mean Squared Error: 263.4765120767734 

• Mean Root Squared Error: 16.23195958831753 

• r2: 0.5821782271025184 

while the R2 value for the unused accelerometer is R2 = 0.53. 

 

Figure 5.44 Predictions x Reality on dataset test - Experimental case 
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Figure 5.45 Error evolution - Experimental case 

 

Figure 5.46 Beam acceleration - Experimental case - L) Time=0.5 s - R) Time=1.0 s 

 

Figure 5.47 Beam acceleration - Experimental case - L) Time=2.0 s - R) Time=3.0 s 
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In this simulation, it can be observed that the curves of MAE and MSE values are almost entirely 

coincident, converging with the same trend and requiring the same number of epochs to reach 

convergence. The goodness of these results is evident in the various time instances examined, where 

the acceleration values completely or almost entirely coincide along the entire curve, showing no 

significant differences between the input with 5 accelerations and the one with 4 accelerations. It is 

noteworthy that in all four cases, the curves of the predicted accelerations with 5 and 4 

accelerometers pass through the points of the calculated experimental values. Furthermore, at the 

time instances of 1 second and 2 seconds, the curves of the initial FEM, the predicted accelerations 

with an input of 5 accelerations, and the predicted accelerations with an input of 4 accelerations are 

almost entirely coincident, providing excellent results for the analyses conducted. 

 

5.5 Results 

In the following chapter, a detailed analysis of the previous comparisons and the results obtained 

will be conducted through an in-depth examination of the prediction of acceleration values along 

the beam using the previously proposed machine learning algorithm. Additionally, we will evaluate 

how the learning process has impacted the model's ability to understand and generalize such 

heterogeneous data. 

The objective of this analysis is to understand to what extent the machine learning algorithm has 

been able to capture the fundamental characteristics of accelerations obtained from these different 

types of signals. It aims to assess its ability to predict and adapt to new data accurately and 

efficiently. The results obtained in this study will provide a clear overview of the model's 

performance and help draw meaningful conclusions about its potential use in practical applications 

related to acceleration analysis in variable environments. 

Table 2 below summarizes the values obtained from various analyses of different signals acquired 

under the conditions outlined in Table 1. The first column contains the letters 'N,' indicating 

numerical analyses, while the letter 'E' indicates experimental analysis. Additionally, white cells 

indicate analyses where 80% of the dataset was used, while yellow cells indicate analyses where 

only 70% of the data were used to predict the remaining 30%. 

 



80 
 

  Evaluating Model's Performance on training 
data 

Evaluating Model's Performance on testing 
data 

Evaluating Model's Performance 

 Time [s] MAE MSE MRSE R2 MAE MSE MRSE2 R2 MAE MSE MRSE2 R2 

CH1N 2000 0.1782 0.1444 0.3801 0.9997 0.2332 0.21262 0.46111 0.9996 0.1877 0.1545 0.3931 0.9997 

CH1E 2000 9.6653 266.9188 16.3376 0.5767 9.7914 278.6832 16.6938 0.5607 9.6849 268.7449 16.3934 0.5743 

AR1N 2100 0.0089 0.0003 0.0186 0.9998 0.0142 0.0006 0.0257 0.9996 0.0092 0.0003 0.0193 0.9998 

AR1E 2100 0.2104 0.0962 0.3102 0.9499 0.2123 0.0966 0.3108 0.9497 0.2107 0.0962 0.3102 0.9499 

PS1N 2150 0.1206 0.0277 0.1667 0.9999 0.1536 0.0440 0.2099 0.9999 0.1225 0.0284 0.1687 0.9999 

PS1E 8750 13.5888 387.420 19.6830 0.3313 13.7593 395.6257 19.8903 0.3183 13.6229 389.0574 19.7245 0.3287 

CH2N 8750 0.1811 0.1323 0.3637 0.9999 0.2508 0.2075 0.4555 0.9998 0.1878 0.1386 0.3724 0.9999 

CH2E 8700 20.0150 980.517 31.3132 0.4273 20.1749 994.2210 31.5312 0.4108 20.0242 980.1429 31.3072 0.4259 

CH3N 2100 0.0723 0.0297 0.1724 0.9998 0.0843 0.0333 0.1825 0.9997 0.0736 0.0299 0.1729 0.9998 

PS2N 2000 0.0813 0.0174 0.1321 0.9999 0.1164 0.0323 0.1798 0.9999 0.0860 0.0194 0.1394 0.9999 

PS2E 7000 11.8409 333.7929 18.2700 0.2226 11.9681 339.4022 18.4228 0.2111 11.8661 334.9048 18.3004 0.2204 

AR2N 2150 0.0378 0.0030 0.0548 0.9999 0.0517 0.0055 0.0744 0.9999 0.0389 0.0031 0.0564 0.9999 

AR2E 2100 0.8340 2.9963 1.7310 0.9758 0.8377 3.0397 1.7434 0.9754 0.8343 3.0047 1.7334 0.9757 

AR3E 2100 0.1807 0.0722 0.2687 0.8758 0.1812 0.0724 0.2691 0.8754 0.1808 0.0722 0.2688 0.8758 

CH3E 2250 5.1308 73.6274 8.5806 0.5351 5.1856 76.2760 8.7336 0.5213 5.1399 74.0578 8.6056 0.5330 

CH1N 9300 0.1341 0.1257 0.3546 0.9998 0.1626 0.1523 0.3903 0.9997 0.1424 0.1359 0.3686 0.9997 

CH1E 8000 9.3914 252.187 15.8804 0.6000 9.4930 259.5497 16.1105 0.5909 9.4041 252.9557 15.9045 0.5993 

AR1N 2150 0.0083 0.0003 0.0177 0.9998 0.0144 0.0006 0.0264 0.9996 0.0090 0.0003 0.0188 0.9998 

AR1E 2150 0.2103 0.0966 0.3108 0.9497 0.2113 0.0969 0.3112 0.9495 0.2104 0.0966 0.3108 0.9497 

AR2N 2250 0.0288 0.0022 0.0476 0.9999 0.0472 0.0044 0.0666 0.9999 0.0336 0.0026 0.0514 0.9999 

AR2E 2250 0.8392 2.9974 1.7313 0.9758 0.8447 3.0410 1.7438 0.9754 0.8399 3.0058 1.7337 0.9757 

PS1N 2350 0.1137 0.0270 0.1644 0.9999 0.1681 0.0514 0.2269 0.9999 0.1204 0.0293 0.1713 0.9999 

PS1E 2400 13.4966 382.2611 19.5515 0.3402 13.687 391.6854 19.7910 0.3251 13.5346 384.145 19.5996 0.3372 

CH3E 2250 5.0123 70.0446 8.3692 0.5277 5.1075 75.7657 8.7043 0.5195 5.0287 70.9968 8.4259 0.5223 

Table 2 

 

The simulations were conducted using the Google Colab platform, a cloud-based computing 

platform that provides free computing resources to its users. The free version was employed, so the 

GPU of the computer used to run the simulation was not utilized. Consequently, the runtime for 

each simulation could vary depending on the time of day due to server load on Google Colab. Being 

used by numerous users worldwide, server load can vary significantly based on the number of users 

using the service at a given time. If multiple users are using the servers simultaneously, longer 

runtimes may be experienced due to competition for available computing resources. This results in 

a temporal variation ranging from 30 to 50 seconds per step, depending on the dataset and amount 

of motion, up to 130-180 seconds per step. 
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For a variety of reasons, it is impractical to conduct a concrete analysis on the column related to the 

analysis runtime, as their consistency is compromised by a phenomenon inducing significant 

variations in runtimes for the same type of analysis. 

If we analyze the column containing R2 values, several insights into the quality of the conducted 

analyses become apparent. The R2 column and the comparative analysis conducted in paragraph 

5.4 reveal that, in various analyses with numerical data, the obtained R2 value is consistently 0.99, 

resulting in the phenomenon of overfitting. In a numerical analysis context, overfitting occurs when 

a mathematical model is excessively tailored to the training data, including random details or noise 

that do not represent true patterns in the data distribution. In other words, the model has learned 

the training data so well that it loses its ability to generalize to new data, compromising its predictive 

validity. Overfitting can occur when the model is too complex relative to the intrinsic complexity of 

the problem and can be addressed through regularization techniques or model complexity 

reduction. 

As a result, it has become crucial to orient the assessments toward the validity of the analyses 

conducted based on the experimental values obtained. Indeed, among the three analyzed signals, 

the harmonic signal demonstrates the highest validity, with an R2 equal to or exceeding 0.90. 

Subsequently, the second signal that proves highly applicable in the conducted analyses is the chirp 

signal, with an R2 ranging between 0.42 and 0.57. Finally, the least favorable outcome is generated 

by the analyses performed with the pseudorandom signal, yielding an R2 of approximately 0.20-

0.30. For this reason, the curves of initial FEM and predictive curves were markedly distant at all 

analyzed time points, in contrast to the harmonic case with a much higher R2, where the two curves 

were almost entirely coincident. 

Another noteworthy observation that emerges relates to the percentage of data selected as input 

for the dataset in machine learning analysis. It is evident that, whether using 70% or 80% of the data, 

highly similar R2 values are obtained, and the predictive curves show a significant approximation to 

those obtained through the initial FEM in the same motion. From these results, it can be inferred 

that even with only 70% of the data available, valid analyses comparable to those conducted with 

80% of the data could be carried out. 

The same deduction can be made in the case of the analysis performed in paragraph 5.4.6, where 

initially, 5 accelerometer values were used and then compared with data obtained from signals 

coming from 4 accelerometers, excluding the accelerometer positioned at the center. The analysis 
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reveals that the R2 value with 4 accelerometers is slightly lower than that with 5 accelerometers and 

that the predicted curves pass almost along the same points. This suggests that the omitted 

accelerometer is relatively redundant, as valid results are obtained in the case with 4 

accelerometers. 
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6 Experiment model plate with hole 

After analyzing a beam in the previous chapter, we moved on to a slightly more complex two-

dimensional structure, namely a perforated plate. The perforated plate was constructed using 

Structural Steel material with a Young's modulus equal to  2 ∙ 1011 𝑃𝑎 and a density equal to 

7850 𝑘𝑚/𝑚3, its dimensions are as shown in Figure 6.1: 

 

 

Figure 6.1 Diagram of plate dimensions with hole 

6.1 Experimental Setup for Plate with Hole 

As in the previous case, all the tools already used for the beam in Chapter 5.1 were employed. After 

thoroughly cleaning the plate from possible dust or dirt, it was placed on the table with the drilled 

boards, as shown in Figure 6.3. Here, the plate was carefully secured and bolted to the table using 

washers, nuts, and bolts to minimize errors due to vibrations caused by inadequate plate fixation 

during data acquisition. 
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Figure 6.2 Plate configuration 

After securing the plate, the next step involved positioning the shaker at the correct height 

corresponding to the point where it was necessary to apply the load. This was achieved using the 

supports, which were also employed to secure the beam in the previous case, adequately fixed and 

bolted in the same manner as the plate. On top of these supports, the shaker was placed and 

connected to the load cell model 208C02 SN LW 55552 with a sensitivity of 50 𝑚𝑉/𝑙𝑏. 

On this perforated plate, using the supplied adhesive, all 7 accelerometers available were positioned: 

1. Accelerometer model 352A24 SN LW 369406 with sensitivity 9.94 𝑚𝑉/𝑚/𝑠2 

2. Accelerometer model 352A24 SN LW 369404 with sensitivity 9.88 𝑚𝑉/𝑚/𝑠2 

3. Accelerometer model 352A24 SN LW 339401 with sensitivity 10.00 𝑚𝑉/𝑚/𝑠2 

4. Accelerometer model 352A24 SN LW 369399 with sensitivity 9.96 𝑚𝑉/𝑚/𝑠2 

5. Accelerometer model 352A24 SN LW 369402 with sensitivity 9.87 𝑚𝑉/𝑚/𝑠2 

6. Accelerometer model 352A24 SN LW 369405 with sensitivity 10.06 𝑚𝑉/𝑚/𝑠2 

7. Accelerometer model 352A24 SN LW 369403 with sensitivity 10.00 𝑚𝑉/𝑚/𝑠2 

The accelerometer values are acquired by the modules in the positions just listed. For simplicity, they 

will be represented in the following graphs, illustrating the placements of the various accelerometers 

in the proposed configurations. 
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Figure 6.3 Plate configuration with table 

6.2 Sensor Placement Decision  

Unlike the case of the beam where 5 accelerometers were sufficient to obtain an adequate number 

of signals, in this scenario, the surface to be covered is much larger. For this reason, it was necessary 

to apply the study [32] to understand where to place the accelerometers in the most appropriate 

way and verify the correct method to ensure the best prediction of results. Moreover, only 7 

accelerometer positions were feasible due to the experimental unavailability of additional 

accelerometers in the laboratory. 

Six different configurations for sensor placement were examined: 

• Effective Independence Method (EIM) 

• RFR selecting for avg. FRF (RFR-FRF) 

• RFR selecting for ODS (RFR-ODS) 

• RFR selecting for normalized ODS (RFR-nODS) 

• Large distributed grid (LDG) 

• Small distributed grid (SDG) 

 

6.2.1 Configuration Effective Independence Method (EIM) 

Regarding the EIM method, it was necessary to develop a script to implement the algorithm on the 

analysis results produced by a modal finite element, providing it with natural frequencies and modal 

shapes. The goal is to maximize the independence of each accelerometer position so that the 

collected data vary from one accelerometer to another. Additionally, a strategy was adopted to 
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exclude duplicate data from the response set, allowing for obtaining the maximum amount of 

information with the least number of repetitions. 

 

Figure 6.4 Configuration 1 - Effective Independence Method (EIM) 

6.2.2 Configuration Random Forest Regression (RFR) 

Another potential method for sensor selection is the Random Forest Regressor (RFR). It is a widely 

used machine learning algorithm for addressing regression problems. This model relies on an 

ensemble concept, combining various decision trees to enhance prediction accuracy. The distinctive 

feature of the RFR is the introduction of randomness during the construction of each tree, randomly 

selecting features and training data used at each step. This randomness contributes to creating 

diversity among the trees, thereby reducing the risk of overfitting and improving the model's ability 

to generalize to new data. In practice, when making a prediction with the random forest regressor, 

each tree contributes its prediction, and the final output is often obtained by averaging these 

predictions. 

For creating the dataset used in the RFR for this specific application, it was necessary to extract it 

from the FEA models obtained from a transient analysis using the ANSYS software, where each row 

represents a frequency for which the FRF of each calculated node is obtained. 
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In this dataset, each row corresponded to the operational deflection shape (ODS) of each node in 

the FEA model for a given frequency. The ODS is a graphical representation of the vibration or 

deflection pattern of a structure during its normal operation or functionality. 

Three different results obtained from: 

Raw ODS, where a distinct value is obtained for each ODS at every frequency: 

𝑂𝐷𝑆𝜔
𝑇  𝑂𝐷𝑆𝜔 

To obtain a different value for each ODS at every frequency. 

 

Figure 6.5 Configuration 3 - RFR selecting for ODS 

Subsequently, a normalized form was analyzed to reduce the sensitivity of the output, thus 

eliminating the effect of the load magnitude: 

𝑂𝐷𝑆𝜔
𝑇  𝑂𝐷𝑆𝜔

|𝑂𝐷𝑆|2    
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Figure 6.6 Configuration 4 - RFR selecting for normalized ODS (RFR-nODS) 

 

Finally, the last output utilized was the mean FRF at each given frequency: 

∑ 𝐹𝑅𝐹(𝑓)𝑛

𝑛
 

where n is the number of nodes. 
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Figure 6.7 Configuration 2 - RFR selecting for normalized ODS (RFR-nODS) 

6.2.3 Large Distributed Grid (LDG) and Small Distributed Grid (SDG) 

Finally, the last two configurations were used without the need for a positioning technique obtained 

from the results of an algorithm. Accelerometers were simply placed in one half of the perforated 

plate in the Large Distributed Grid (LDG) configuration, while in the case of the Small Distributed 

Grid (SDG), accelerometers were positioned in one quarter of the perforated plate. 

 

Figure 6.8 Configuration 5 - Large distributed grid (LDG) 
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Figure 6.9 Configuration 6 - Small distributed grid (SDG) 

 

6.3 Finite Element Method (FEM) Analysis on Ansys 

The generation of a mesh in ANSYS Workbench 2023 is a crucial process in the numerical analysis of 

Finite Element Analysis (FEA). The mesh represents the geometric discretization of the initial model 

and consists of finite elements such as triangles or quadrilaterals (in the case of two-dimensional 

mesh) or tetrahedra and hexahedra (in the case of three-dimensional mesh). 

The process began with importing the model geometry developed in SolidWorks into the ANSYS 

work environment. Once the geometry was imported, the software automatically generated the 

mesh. However, the result obtained was not entirely satisfactory, and it was necessary to refine the 

mesh, especially in the vicinity of the plate hole, where the mesh was densified to properly discretize 

the geometry. In total, the obtained mesh consists of 15,838 nodes and 7,506 elements. 
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Figure 6.10 Mesh Ansys 

 

Figure 6.11 Mesh Refinement near the Hole 

After mesh generation, it was essential to assign the material properties of "Structural Steel" to the 

model. Subsequently, model constraints were defined, and the force values along with the 

coordinates of the load vector, stored in an Excel file, were imported using the "Imported File" 

feature. This step enabled the specification of loading conditions, completing the problem setup for 

FEM analysis. In contrast to the beam analysis performed using MatLab, a "Transient Structural" 
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analysis was conducted at this stage. This was done to obtain accelerations and deformations at the 

relevant nodes, forming the dataset required for the plate algorithm, as explained in Section 4.6. 

6.4 Comparisons of Machine Learning Simulations: Plate Case 

Various signal samplings were performed through multiple experimental tests using different input 

signals such as chirp, pseudorandom, and harmonic. The signals listed in Table 1 were analyzed, and 

in the subsequent section, we will delve into the signals that yielded the most significant results. 

As in the case of the beam, three different types of signals were analyzed: chirp, pseudorandom, and 

harmonic. All three signals were sampled in the configurations described earlier in Chapter 6.2, with 

the following characteristics: 

• 𝐴𝑐𝑞𝑢𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 6400 𝐻𝑧 

• 𝐿𝑒𝑛𝑔ℎ𝑡 𝑠𝑐𝑎𝑛𝑒 = 4 𝑠 

• 𝑁. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 2 

6.4.1 Numerical-Experimental Harmonic Signal Comparison in the Configuration with Algorithm 

In this case, a cosine signal was analyzed with accelerometers positioned as in the previously 

obtained Configuration 3, comparing numerical values with experimental ones. 

 

Figure 6.12 Time history harmonic signal – Accelerometer 1 
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Figure 6.13 Time history harmonic signal – Accelerometer 2 

 

Figure 6.14 Time history harmonic signal – Accelerometer 3 

In the recently examined case of the harmonic signal of a cosine wave, the analysis reveals good 

agreement between experimental and calculated data for accelerometers in positions 1 and 2. This 

suggests that the utilized model accurately represents the behavior of the examined harmonic 

signal. However, this excellent correspondence found in the first two accelerometers is not observed 

in the case of accelerometer 3. Unlike the first two accelerometers, which are distant from the 

constraint, the third accelerometer is close to the constraint, resulting in the numerical values 

approaching zero as expected. In contrast, the experimental results show significantly higher values. 

This is attributed to the fact that, despite properly bolting the plate supports to the table, a perfect 

constraint was not achieved, leading to movements near the connection point between the lower 

part of the plate and the table. 
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Subsequently, the results obtained from machine learning were compared between the numerical 

model of accelerometers (on the left) and the experimental model (on the right) of accelerometer 

values. 

 

Figure 6.15 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case 

 

Figure 6.16 Error evolution - Numerical case 

 

Figure 6.17 Error evolution - Experimental case 
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Figure 6.18 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.19 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.20 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.21 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.22 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.23 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.24 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.25 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.26 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.27 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.28 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.29 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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As in the case of the beam, 50 epochs were used for both the numerical and experimental cases. As 

expected, in the numerical case, there is an initially very small value for MAE and MSE; after the first 

few epochs, there is a rapid decrease in both train error and val error. In particular, the val error 

reaches a certain level of convergence after only 10 epochs, while the train error, although reaching 

very low values after 50 epochs, continues to decrease. In contrast, in the experimental case, the 

behavior of train error and val error coincides; both undergo a sharp decrease in error after half of 

the epochs but do not reach clear convergence after the 50 epochs used in the predictive analysis. 

From the graphs in Figure representing the dataset of real and predicted values, it is evident that in 

both the experimental and numerical cases, the data are evenly distributed along the bisector and 

in the same positions in both cases. This results in a very similar R2, as observed in Table 3. 

Regarding the graphs at various time points, we decided to use time instants at 0.5 sec, 1.0 sec, 2.0 

sec, and 3.0 sec. The z-axis represents the calculated deformation along this axis and remains the 

same in the predictive case since experimental values for deformation were not available, and the 

algorithm could only predict accelerations, not deformations. Acceleration values are represented 

with isocolor lines that provide this result over the entire perforated plate represented, with the 

color bar on the right indicating acceleration values in 𝑚/𝑠2. 

Thanks to the excellent R2 value, it is noticeable that at 0.5 seconds, both the numerical and 

experimental cases show excellent prediction compared to the real case, with a slight discrepancy 

in the top right and top left corners. This is due to the insufficient accelerometers in that portion of 

the plate, which hindered obtaining enough data to predict and describe the upper part of the plate. 

The same issue is encountered in the subsequent analyzed time instants, while in the lower part of 

the plate and near the hole, a much more accurate prediction is achieved in both the numerical and 

experimental cases due to the presence of more data and smaller values. 

6.4.2 Numerical-Experimental Harmonic Signal Comparison in the Regular Configuration  

In this case, a cosine signal was analyzed with accelerometers positioned as in configuration 5 

obtained previously, comparing the numerical values with the experimental ones. 
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Figure 6.30 Time history harmonic signal – Accelerometer 4 

 

Figure 6.31 Time history harmonic signal – Accelerometer 6 

In this examined case, the accelerometers were not positioned according to the results obtained 

from an algorithm but according to a regular geometry that allowed examining the central and upper 

part of the plate. As an example, accelerometers positioned at 4 and 6, representing the right and 

left sides of the plate, were illustrated. Both exhibit the same trend in both experimental and 

numerical signals and a significant agreement between the numerical and experimental values. 

These data are reflected in all the time histories of the analyzed accelerometers, presenting a 

consistent pattern similar to those shown in the figure. This is because the accelerometers were 

uniformly placed along the grid and away from the constraint, which could influence the discrepancy 

between the numerical and experimental parts, unlike the harmonic case represented earlier where 

data were obtained from accelerometers positioned according to an algorithm. 
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Figure 6.32 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case 

 

 

Figure 6.33 Error evolution - Numerical case 

 

Figure 6.34 Error evolution - Experimental case 



102 
 

 

Figure 6.35 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.36 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.37 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.38 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

 

Figure 6.39 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.40 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.41 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.42 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.43 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.44 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.45 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.46 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Unlike the previous case in Section 6.4.1, where the values obtained after the 50 epochs of the neural 

network algorithm were very similar, here some differences are noticeable. The first substantial 

difference is observed in the MAE and MSE graph, where in the numerical case, after only 10 epochs, 

the curves quickly converge to a value very close to zero, while in the experimental case, the curves 

remain more or less constant for half of the learning and then undergo a drastic decrease after half 

of the learning period but without converging after the 50 imposed epochs. 

This difference between experimental and numerical values is also evident in the figures 

representing the distributions of real values with predicted ones. In the numerical case, which has a 

very high R2 of approximately 0.98, there is a very linear distribution along the bisector, while in the 

experimental case, there is a linear distribution along the bisector, but also affecting the adjacent 

part due to an R2 of approximately 0.60. 

In the predicted time instants, numerically, there is excellent prediction of acceleration values along 

the various analyzed time instants, as in the case at 0.5 seconds and 2.0 seconds, where there is an 

excellent correspondence between Initial FEM and numerically and experimentally predicted values 

despite a low R2 value. However, at 3.0 seconds, it is noticeable that along the lower edges, below 

the hole in the plate, there is not a good prediction of experimental acceleration values. 

These experimental results can be compared to the case of Configuration 3 presented earlier, which, 

despite having a much higher R2, had prediction errors, especially in points not covered by 

accelerometers. In contrast, in this case, despite having a much lower R2, the distribution of 

accelerometers favored more accurate acceleration predictions. 

6.4.3 Numerical-Experimental Pseudorandom Signal Comparison  

In this case, a pseudorandom signal was analyzed with accelerometers positioned as in Configuration 

5 obtained previously, comparing numerical values with experimental ones. 
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Figure 6.47 Time history pseudorandom signal – Accelerometer 4 

 

Figure 6.48 Time history pseudorandom signal – Accelerometer 6 

The fifth configuration was analyzed similarly to the previous harmonic case. However, unlike the 

harmonic case where experimental and numerical values were very similar and exhibited a similar 

trend, the same correspondence in the signal is not found here. Indeed, after the first 0.5 seconds, 

the numerical values become very high, reaching unrealistic values. Due to the uniform distribution, 

a uniform signal is obtained along all signals acquired by the accelerometers. 
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Figure 6.49 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case 

 

Figure 6.50 Error evolution - Numerical case 

 

Figure 6.51 Error evolution - Experimental case 
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Figure 6.52 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.53 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.54 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.55 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.56 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.57 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.58 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.59 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.60 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.61 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.62 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.63 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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As evident from Figure 6.49, the real values of the Initial FEM and the predicted values are uniformly 

distributed along the bisector, forming a regular bisector. In contrast, in the experimental case, while 

the values also distribute along the bisector, they form a much broader distribution cloud. This, along 

with the significant difference between numerical and experimental values, results in very high MAE 

and MSE errors for the pseudorandom case. In the numerical case, the curve reaches convergence 

after just 10 epochs but with a value much higher than the almost zero value in the harmonic case. 

However, in the experimental case, the curve consistently decreases after 10 epochs, but unlike the 

numerical case, it continues to decrease without reaching convergence during the 50 epochs used. 

Given the very high R2 value in the numerical case, it is evident that the predicted acceleration 

results correspond to those of the Initial FEM, leading to an excellent match between the obtained 

acceleration values and triggering the phenomenon of overfitting at all examined time points. 

Although the results in the numerical case are overly optimal, this is not the case for experimental 

data where the R2 value is relatively low compared to the examined cases, even though among all 

configurations, this one has the best R2 value. 

The best time point is at 0.5 seconds because experimental and numerical values are very similar at 

that point, unlike the rest of the signal where numerical values are much higher. In fact, in the 

remaining examined time points in the experimental case, an excellent prediction is not achieved, 

especially with incorrect results in the lateral and lower areas of the plate where there are no values 

acquired by the accelerometers. 

6.4.4 Numerical-Experimental Chirp Signal Comparison  

In this case, a chirp signal was analyzed with accelerometers positioned as in configuration 1 

obtained previously, comparing numerical values with experimental ones: 
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Figure 6.64 Time history chirp signal – Accelerometer 4 

 

Figure 6.65 Time history chirp signal – Accelerometer 5 

In the following case, configuration 1 obtained with the EIM algorithm was examined, where the 

position of four accelerometers is in the lower right part of the plate along its edge. Among these 

four accelerometers, accelerometer 5 is positioned, where the trend of the experimentally acquired 

signal is very similar up to 1 second, after which there is a deviation with numerically higher values 

compared to the experimental case. For accelerometer 4, the experimental signal trend is much 

more similar to the numerically obtained signal compared to the previously analyzed case. The 

numerical values of accelerations are also very similar in the first two seconds, while in the 

subsequent two seconds, the numerically obtained values are much higher. 
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Figure 6.66 Predictions x Reality on dataset test - L) Numerical case - R) Experimental case 

 

Figure 6.67 Error evolution - Numerical case 

 

Figure 6.68 Error evolution - Experimental case 
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Figure 6.69 Time=0.5 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.70 Time=0.5 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.71 Time=0.5 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.72 Time=1.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.73 Time=1.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.74 Time=1.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.75 Time=2.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.76 Time=2.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.77 Time=2.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Figure 6.78 Time=3.0 s - Initial FEM numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.79 Time=3.0 s - Predicted numerical case - Colorbar indicates accelerations in m/s² 

 

Figure 6.80 Time=3.0 s – Predicted experimental case - Colorbar indicates accelerations in m/s² 
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Like the two cases analyzed previously, the predictive analysis values of the dataset obtained with 

the numerical acceleration values are distributed along the bisector uniformly, producing data 

distributed in the same manner as the numerical case of the pseudorandom and harmonic signals. 

In contrast, concerning the dataset of the distribution of real and predicted values for the 

experimental case, they are consistently distributed along the bisector in a uniform and regular 

manner but with a less extensive cloud of points compared to the experimental case of the 

pseudorandom signal. 

As mentioned in the previous cases, the same observations can be applied to the MAE and MSE 

curves, where, in the case of numerical values, there is an immediate decrease in error curves 

followed by convergence. However, unlike the previous cases, the experimental case exhibits a much 

smoother trend than the previous cases and reaches a convergence value after 50 epochs. 

As expected from the high numerical R2 value, it is evident from the colors that the acceleration 

values of the Initial FEM and the predicted acceleration values are very similar, particularly this 

excellent prediction is observed at 1.0 and 3.0 seconds. At the same time, in the other two analyzed 

time instances, a slight difference is noted in the lower-left part of the plate, attributed to the 

absence of useful data for the dataset in that part of the plate. The same holds for the experimental 

case because the algorithm used to select positions in that area does not anticipate the placement 

of accelerometers that would have been useful for predicting results comparable to numerical 

values. Although there are not excellent results in the lower-left part, the remaining sections are 

adequately represented with a suitable prediction compared to the Initial FEM data, as evidenced 

by the excellent R2 value obtained, which is 0.87 in the experimental case.  

6.5 Results 

In this section, we will delve into a detailed analysis of the previous comparisons and the results 

obtained through the in-depth examination of the acceleration value predictions along the plate 

using the proposed machine learning algorithm. All six accelerometer placement configurations and 

the three signals used will be scrutinized. 

The following Table 3 provides a summary of the values obtained from various analyses of the 

different acquired signals. The first column features the letters N, indicating numerical analyses, and 

E, indicating experimental analysis. The acronyms CF denote the configuration along with its 
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corresponding number, CH represents the chirp signal, AR signifies the harmonic signal, and PS 

denotes the pseudorandom signal. 

 Evaluating Model's Performance on training 
data 

Evaluating Model's Performance on testing 
data 

Evaluating Model's Performance 

 MAE MSE MRSE R2 MAE MSE MRSE2 R2 MAE MSE MRSE2 R2 

CF1CHN 1.0453 3.5345 1.8800 0.9868 1.0954 3.9471 1.9867 0.9852 1.0546 3.6144 1.9011 0.9865 

CF2CHN 0.6842 1.7555 1.3249 0.9934 0.7027 1.8966 1.3772 0.9929 0.6866 1.7811 1.3345 0.9933 

CF3CHN 1.8901 17.4618 4.1787 0.9351 1.9802 20.1978 4.4942 0.9247 1.9077 18.008 4.2435 0.9330 

CF4CHN 0.8824 3.4094 1.8464 0.9873 0.9345 3.9758 1.9939 0.9851 0.8920 3.5206 1.8763 0.9869 

CF5CHN 0.7041 1.9075 1.3811 0.9929 0.7275 2.0441 1.4297 0.9923 0.7074 1.9322 1.3900 0.9928 

CF6CHN 1.2458 5.8798 2.4248 0.9781 1.2994 6.4458 2.5388 0.9759 1.2554 5.9892 2.4472 0.9777 

CF1CHE 3.7506 34.3697 5.8625 0.8724 4.0937 42.7239 6.5363 0.8407 3.8185 36.0204 6.0017 0.8661 

CF2CHE 3.9296 38.7332 6.2236 0.8562 4.2455 47.6329 6.9016 0.8224 3.9920 40.4955 6.3636 0.8495 

CF3CHE 4.2498 45.1744 6.7211 0.8323 4.6104 55.6710 7.4613 0.7925 4.3205 47.2368 6.8729 0.8245 

CF4CHE 3.7706 35.95716 5.9964 0.8665 4.0789 43.8463 6.6216 0.8365 3.8315 37.5173 6.1251 0.8606 

CF5CHE 3.6637 33.3231 5.7726 0.8762 4.1111 44.6536 6.6823 0.8335 3.7521 35.5675 5.9638 0.8678 

CF6CHE 2.8434 18.5914 4.3117 0.9309 3.2112 24.5133 4.9510 0.9086 2.9156 19.7576 4.4449 0.9265 

CF1ARN 0.0215 0.0012 0.0349 0.9763 0.0223 0.0013 0.0365 0.9740 0.0216 0.0012 0.0352 0.9759 

CF2ARN 0.0148 0.0005 0.0241 0.9886 0.0153 0.0006 0.0248 0.9879 0.0149 0.0005 0.0243 0.9885 

CF3ARN 0.0219 0.0016 0.0411 0.9180 0.0273 0.0029 0.0542 0.8557 0.0230 0.0019 0.0440 0.9057 

CF4ARN 0.0451 0.0010 0.0316 0.9725 0.0205 0.0011 0.0341 0.9678 0.0194 0.0010 0.0322 0.9678 

CF5ARN 0.0152 0.0005 0.0232 0.9802 0.0157 0.0005 0.0240 0.9788 0.0153 0.0005 0.0234 0.9799 

CF6ARN 0.0280 0.0020 0.0447 0.9613 0.0291 0.0021 0.0465 0.9577 0.0282 0.0020 0.0451 0.0451 

CF1ARE 0.0382 0.0032 0.0572 0.9367 0.0455 0.0048 0.0697 0.9054 0.0396 0.0035 0.0597 0.9308 

CF2ARE 0.0194 0.0008 0.0292 0.9835 0.0273 0.0019 0.0438 0.9625 0.0208 0.0010 0.0324 0.9796 

CF3ARE 0.0289 0.0017 0.0418 0.9150 0.0345 0.0026 0.0517 0.8690 0.0300 0.0019 0.0440 0.9061 

CF4ARE 0.0600 0.0077 0.0879 0.7886 0.0632 0.0086 0.0932 0.7610 0.0606 0.0079 0.0890 0.7832 

CF5ARE 0.0720 0.0109 0.1048 0.5993 0.0763 0.0123 0.1113 0.5459 0.0728 0.0112 0.1061 0.5888 

CF6ARE 0.0343 0.0026 0.0515 0.9487 0.0405 0.0038 0.0618 0.9255 0.0354 0.0028 0.0535 0.9444 

CF1PSN 1.9048 9.1531 3.0254 0.9826 1.9357 9.4159 3.0685 0.9820 1.9101 9.2011 3.0333 0.9825 

CF2PSN 1.2332 3.2922 1.8144 0.9937 1.2619 3.4438 1.8557 0.9934 1.2379 3.3185 1.8216 0.9937 

CF3PSN 4.4476 73.9834 8.6013 0.8598 4.5126 75.9546 8.7151 0.8554 4.4603 74.3714 8.6238 0.8589 

CF4PSN 2.2198 14.1644 3.7635 0.9731 2.2453 14.5287 3.8116 0.9723 2.2241 14.2325 3.7726 0.9730 

CF5PSN 1.1832 2.9791 1.7260 0.9943 1.2034 3.0779 1.7544 0.9941 1.1863 2.9957 1.7308 0.9943 

CF6PSN 2.7419 18.7649 4.3318 0.9644 2.8153 19.8130 4.4511 0.9622 2.7557 18.9679 4.3552 0.9640 

CF1PSE 12.7961 338.5020 18.3984 0.3585 12.9217 344.8375 18.5698 0.3437 12.8211 339.7614 18.4326 0.3556 

CF2PSE 11.8390 296.6713 17.2241 0.4378 12.0690 307.3540 17.5315 0.4151 11.8849 298.8016 17.2858 0.4333 

CF3PSE 9.9447 227.7232 15.0905 0.5684 10.7156 265.0752 16.2811 0.4955 10.0976 235.1329 15.3340 0.5540 

CF4PSE 9.7647 216.7185 14.7213 0.5893 10.5411 250.3192 15.8214 0.5236 9.9193 223.40518 14.9467 0.5763 

CF5PSE 11.1310 261.6332 16.1750 0.5042 11.4183 275.5312 16.5991 0.4756 11.1883 264.4048 16.2605 0.4985 

CF6PSE 10.5734 223.1238 14.9373 0.5772 10.6936 228.3058 15.1097 0.5655 10.5973 224.1549 14.9718 0.5748 

Table 3 
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Unlike Table 2 used for summarizing simulations in the beam case, here, the time column has been 

omitted. This decision stems from the fact that the simulations were consistently performed on the 

Google Colab server, and, as explained in the previous chapter on the beam, the server did not 

consistently provide the same computation time for simulations with identical data. Nevertheless, 

given the numerous simulations conducted in this case, it can be stated that the average time for 

each epoch was around 40-50 seconds. However, in this case, it is not possible to analyze simulation 

times based on various datasets. 

Instead, a highly interesting column to analyze is that related to MAE and MSE. Here, it is notable 

that the smallest errors, almost zero, are in the numerical harmonic case and subsequently in the 

experimental harmonic case. Following this, slightly higher values were observed in the numerical 

chirp case, the numerical pseudorandom case, and the experimental chirp case. Finally, much higher 

values were found in the case of pseudorandom signals obtained from experimental data. 

While valuable insights can be gleaned from these two elements, the most crucial parameter to be 

analyzed is R2. As in the case of the beam, the R2 values in simulated numerical cases are very high, 

resulting mainly in overfitting phenomena, especially in the harmonic and chirp signals in almost all 

examined configurations. In the chirp case, the worst R2 is found in configuration 3, both in the 

experimental and numerical cases, while the best configurations for the numerical case are the 

second and the fifth, and for the experimental case, the first and the sixth. Although all 

configurations achieve excellent R2 values, some are so good that they reach the overfitting 

phenomenon explained earlier. The third configuration appears to be the worst even in the 

simulation performed with numerically obtained harmonic values, while surprisingly, in the 

experimental case, the lowest R2 values are obtained in the fifth configuration. Unlike other 

configurations where the fifth is one of the best or the fourth, which, along with the sixth, turns out 

to be the best for the pseudorandom signal in the experimental case. Finally, in the simulation using 

datasets obtained from the numerical pseudorandom signal, it is observed that, in this case too, the 

worst configuration is the third. In contrast to all other cases, which obtained good results, the worst 

configuration for the experimental data of the pseudorandom signal is the first, obtaining a very 

poor R2 value. 

The result obtained, as in the case of the beam, shows excellent numerical outcomes across all three 

signals. However, from the perspective of machine learning simulations derived from experimental 

signal datasets, it is noticeable that in most configurations, the harmonic signal emerges as the best. 
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This is attributed to its outstanding R2 results, low MAE and MSE values, and the alignment of values 

and trends along the time history of various accelerometers between experimentally acquired 

accelerations and those obtained from numerical analysis using the FEM method. The chirp signal 

also achieves excellent forecasting results, significantly surpassing the beam case where the R2 value 

was lower. Finally, similar to the beam case, the pseudorandom signal yields the worst result. 

A crucial observation from the results pertains to the best and worst accelerometer positioning 

configurations. The third configuration, where most accelerometers are in the lower part of the plate 

quite close to the constraint, emerges as the least effective. This positioning does not allow for an 

optimal and comprehensive mapping of plate accelerations with a hole, as there are not enough 

accelerometers on the upper part, resulting in suboptimal predictions. Conversely, the second 

configuration, obtained through an algorithm that distributes accelerometers across a significant 

portion of the plate except for the lower-left part, which has a lesser impact compared to the upper 

parts, yields excellent results. The fifth configuration consistently provides the best outcomes in 

most cases, where accelerometers are positioned regularly and distributed along the central and 

upper part of the plate, allowing for excellent analyses and predictions, thanks to the crucial 

contribution of predictions obtained from neural networks. 
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7 Conclusion 

The conclusions of this study represent a critical synthesis of the analyses conducted by applying 

Machine Learning (ML) methods to datasets obtained from experimentally acquired values and 

numerical values obtained from finite element analysis (FEM) methods applied to 1D geometries, 

such as a beam, and 2D geometries, such as a plate with a hole, subjected to various loadings. The 

main objective of the thesis was to assess the effectiveness of machine learning models in predicting 

accelerations in structural contexts under dynamic loads, with particular attention to the application 

of finite element analysis (FEM) methods. 

The results obtained indicated a significant convergence between the measured real accelerations 

and those predicted by ML models. The analysis of discrepancies was underscored by a substantial 

reduction in predictive errors, highlighting the models' ability to generalize and learn complex 

patterns in structural dynamics. The precision of the models was evaluated through performance 

metrics such as root mean square error (RMSE) and coefficient of determination (R²), confirming the 

validity of the predictions obtained. 

The robustness analysis of ML models highlighted a good generalization ability even in the presence 

of outlier data and variations in the parameters with which the data were acquired. As evident from 

the two experiments on the plate and beam, the experimental signal that achieves the best 

predictions is the harmonic one, even at different frequencies and amplitudes. This is due to its 

periodic and time-constant nature, facilitating much easier learning by the neural network. However, 

even a non-periodic signal like the chirp achieves excellent results in both cases, while the 

pseudorandom signal does not yield satisfactory results after the neural network learning. 

The analyses also reveal the flexibility of the beam model to utilize only 70% of the necessary data 

for the dataset compared to other simulations where 80% of the data were used. Moreover, it 

demonstrates the possibility of achieving excellent predictions using only 4 accelerometers instead 

of 5, resulting in less data and faster dataset training for simple structures. For a more complex 

structure like the plate, however, all 7 accelerometers used are necessary, suggesting potential 

application to complex and diverse structural systems based on the number of available sensors. 

The practical implications of the conclusions reached extend across a broad range of sectors, from 

civil engineering to aerospace structures, where accurate prediction of structural accelerations is 

crucial for design and safety assessment. The use of ML models could streamline the structural 
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analysis process, reducing reliance on computationally intensive FEM models and enabling a rapid 

assessment of performance in real-world scenarios. 

Despite the successes achieved, it is important to highlight some limitations of this study. The limited 

availability of data and the complexity of structural dynamics may impact the generalization of the 

models. Future developments should focus on acquiring larger datasets and considering context-

specific factors. 

In conclusion, the application of machine learning methods in the analysis of structural accelerations 

has proven to be a promising perspective, opening new avenues for the design and assessment of 

complex systems. Integrating these approaches with traditional methodologies, such as finite 

elements, could represent the future of structural engineering, enhancing prediction accuracy and 

expediting evaluation times. 
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