
Politecnico di Torino
Master’s Degree in Aerospace Engineering

Master Thesis

Multi-objective Aeroelastic Analysis and

Optimization using Surrogate Models

Candidate:

Alessandra Lunghitano, 303902

Tutors:

Prof. Frederico José Prata Rente Reis Afonso, Instituto de Engenharia

Mecânica (IDMEC), Instituto Superior Técnico, Lisbon, PT

Prof. Afzal Suleman, IDMEC, Instituto Superior Técnico, Lisbon, PT

Prof. Marco Petrolo, Department of Mechanical and Aerospace Engineering (DIMEAS),

Politecnico di Torino, Torino, IT

Prof. Enrico Zappino, DIMEAS, Politecnico di Torino, Torino, IT

December 2023

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Document Outline . 2

2 Multidisciplinary Design Optimization (MDO) 4

2.1 Overview of MDO . 4

2.2 Classification of Optimization techniques . 5

2.3 Multi-objective optimization . 6

2.3.1 Preliminary Concepts . 6

2.3.2 Categorization of Multi-objective Optimization Techniques 7

2.4 Current strategies for efficiently integrating aeroelasticity into MDO 9

2.4.1 Multi-fidelity Models . 9

2.4.2 Conventional and Machine Learning-based Surrogate Models 10

2.4.3 Reduced Order Models . 12

3 Surrogate modeling in MDO 14

3.1 Design of experiments . 14

3.2 Surrogate modeling methods . 15

3.2.1 Linear models . 15

3.2.2 Decision trees . 16

3.2.3 Support Vector Machine for Regression (SVMr) 17

3.3 Model selection and validation . 18

4 Methodology 22

4.1 Data-Set Definition and Generation . 22

4.1.1 Wing model: The Goland wing . 22

4.1.2 Aeroelastic tool: SHARPy (Simulation of High Aspect Ratio planes) . . . 23

4.1.3 Design Space and Sampling . 29

4.2 Comprehensive Surrogate Models (SMs) Analysis: from Selection to Testing . . . 33

4.2.1 Selection of SMs methods . 33

4.2.2 Training and validation of SMs . 35

4.2.3 Testing of SMs . 38

4.3 Optimization Process . 40

4.3.1 NSGA-II . 41

4.3.2 Optimization methodology . 43

4.3.3 Refinement of Design Space . 45

5 Results 47

5.1 Optimization Results at 30 m/s Cruise Speed . 47

5.2 Optimization Results at 60 m/s Cruise Speed . 50

5.3 Optimization Results at 130 m/s Cruise Speed 53

6 Conclusions and Future Work 57

6.1 Conclusions . 57

6.2 Computational Cost Analysis . 62

6.3 Future Work . 63

2

List of Figures

1.1 Collar aeroelastic triangle [1]. 1

2.1 Multidisciplinary Design Optimization (MDO) scheme. 4

2.2 Categorization of optimization techniques [2]. 5

2.3 Pareto front example [3]. 8

2.4 From High-Fidelity Models (HFMs) to Low-Fidelity Models (LFMs) [4]. 10

2.5 Key stages of the surrogate-based modeling approach [5]. 11

2.6 Model order reduction techniques [6] . 13

3.1 Different factorial designs for three design variables [7]. 15

3.2 Variations of LHS designs [7]. 15

3.3 Illustration of a decision tree [8]. 17

3.4 Learning curves example. 21

4.1 The process flowchart detailing the steps from initial wing and design space

definition to multi-objective and multidisciplinary design optimization. 22

4.2 Goland wing. 23

4.3 Geometrically-exact beam elements [9]. 25

4.4 Mapping between aerodynamic lattice and structural finite-element discretization

[9]. 26

4.5 Eigenvalues plot. 27

4.6 Damping ratios plot. 28

4.7 Natural frequencies plot. 28

4.8 3D distribution of design variables. 31

4.9 Comparison of CL/CD values before and after applying the flat plate theory

correction. 32

4.10 Procedure for selection and evaluation of SMs . 33

4.11 Comparison of RMSE and R2 metrics across SMs methods for flutter model. . . 37

4.12 Learning curves of SMs. 38

4.13 Visual comparison of the results obtained using the SHARPy simulations (in

blue) and the surrogate model (in orange) in the testing phase of the SMs. 39

4.14 Non-dominated sorting procedure and Crowding distance calculation [10]. 43

3

4.15 Procedure of NSGA-II [10]. 43

4.16 Distribution of optimization solutions along design variables boundaries for both

objectives: max CL/CD (above) and min mass (below). 45

5.1 Pareto fronts at 30 m/s. 50

5.2 Pareto fronts at 60 m/s. 52

5.3 Pareto fronts at 130 m/s. 54

5.4 Pareto fronts at 130 m/s with only the solutions without the flutter constraint

active. 55

6.1 Optimized wing design at 30 m/s. 60

6.2 Optimized wing design at 60 m/s. 60

6.3 Optimized wing design at 130 m/s. 61

6.4 Pareto fronts across analysed cruise speeds. 61

6.5 Computational costs for each optimization scenario. 63

4

List of Tables

4.1 Goland wing properties. 23

4.2 Flutter speed of the Goland wing. 27

4.3 List of input parameters for the flat plate theory calculations. 28

4.4 Design variables and their boundaries. 30

4.5 Configuration details of both the physical machine and the virtual environment

used for simulations. 32

4.6 Flutter speed performance metrics. 34

4.7 Mass performance metrics. 35

4.8 CD performance metrics. 35

4.9 CL performance metrics. 36

4.10 Optimal hyperparameters for each Extra Trees Regressor model. 37

4.11 Final RMSE and R2 metrics for each Extra Trees Regressor model at 30 m/s. . . 37

4.12 Design variables for high error points (≥ 5%) in flutter model. 46

5.1 Comparative analysis between optimized solutions and SHARPy results at 30 m/s. 47

5.2 New design variables boundaries. 48

5.3 Final RMSE and R2 metrics at 30 m/s. 48

5.4 Comparative analysis between optimized solutions and SHARPy results with

adjusted boundaries at 30 m/s. 49

5.5 Comparative analysis between optimized solutions using the new parameters and

SHARPy at 30 m/s. 49

5.6 Final RMSE and R2 metrics for each surrogate model at 60 m/s. 50

5.7 Comparative analysis between optimized solutions and SHARPy results with

adjusted boundaries at 60 m/s. 51

5.8 Range of design variables within which the flutter constraint was active at 60 m/s. 51

5.9 Comparative analysis between optimized solutions using the new parameters and

SHARPy at 60 m/s. 52

5.10 Final RMSE and R2 metrics for each surrogate model at 130 m/s. 53

5.11 Comparative analysis between optimized solutions using the new parameters and

SHARPy results at 130 m/s. 54

5.12 Comparative analysis: only no-flutter solutions with 50 generation and 180 pop-

ulation. 56

5

5.13 Comparative analysis: only no-flutter solutions with 200 generation and 280

population. 56

6.1 Optimization results across analyzed cruise speeds. 59

6

Acronyms

DIMEAS Department of Mechanical and Aerospace Engineering

IDMEC Instituto de Engenharia Mecânica

ANNs Artificial Neural Networks

CRV Cartesian Rotation Vector

CFD Computational Fluid Dynamics

DOF Degrees of Freedom

DoE Design of Experiments

FoR Frame of Reference

FSI Fluid-structure interaction

GPR Gaussian Process Regression

GEBM Geometrically-Exact Composite Beam

HARW High aspect-ratio wings

HFMs High-Fidelity Models

LHS Latin Hypercube sampling

LFMs Low-Fidelity Models

MAE Mean Absolute Error

MSE Mean Squared Error

MDO Multidisciplinary Design Optimization

MFMs Multi-Fidelity Models

ML Machine Learning

MLS Moving Least Squares

ODE Ordinary Differential Equation

OA Orthogonal arrays

PDE Partial Differential Equation

RBF Radial Basis Function

RANS Reynolds Averaged Navier-Stokes

7

RMSE Root Mean Squared Error

ROMs Reduced Order Models

RSMs Response Surface Models

SMs Surrogate Models

SVR Support Vector regression

SVM Support Vector Machine

SVMr Support Vector Machine for regression

UVLM Unsteady Vortex Lattice Method

8

Ringraziamenti

A mio nonno Basilio, di cui oggi sento la mancanza più di ogni altro giorno. Avrei voluto

condividere questo traguardo con te, e portarti a cena come ci eravamo detti tante volte.

Non sei qui fisicamente, ma sei accanto a me ogni istante.

A mia nonna Nunzia, grazie per l’amore incondizionato e inquantificabile. Ai miei nonni

Maria e Salvatore, vi immagino felici insieme, anche se in posti a noi sconosciuti.

Ai miei genitori, Licia e Alessandro, per l’amore e l’incoraggiamento che mi avete riservato

in tutti questi anni, per essermi sempre stati vicini e per la fiducia che avete sempre avuto

in me e nelle mie capacità. A mio fratello Flavio, per te ci sarò sempre, anche quando non

vorrai giocare con me alla play. Ai miei zii, a mia cugina Giulia, pilastro fondamentale

della mia vita, a mia cugina Martina, e alle mie cuginette Marika, Morena, Ginevra e

Carlotta. Avrete sempre in me una persona sui cui contare.

A Rosaria e Nicola, grazie per avermi fatto sentire a casa anche qui a Torino, grazie per

le infinite quantità di cibo, e per l’immenso supporto che mi avete dato in questi anni.

A Giulia. Grazie per avermi sopportata nei tanti momenti di sclero, grazie per tutti i

momenti insieme, quelli di leggerezza, ma soprattutto quelli meno leggeri, in cui mi hai

insegnato ad affrontare le cose che mi hanno sempre spaventata di più.

A Rebecca, Teresa, Igor, Gaia e Samuele. Grazie di essere quelle persone con cui ho

condiviso tutti i momenti più importanti della mia vita fino ad ora, per essermi sempre

stati accanto, e per non avermi mai fatto dubitare che sarà sempre cos̀ı. Grazie per tutti

i consigli che non ho mai ascoltato e la forza che siete sempre in grado di trasmettermi.

Ad Eugenio ed Elia, siete stati la mia seconda casa qui a Torino in questi anni. Per

tutti i momenti che abbiamo condiviso insieme, per tutte le storie che abbiamo già da

raccontare, e per tutte le nuove che arriveranno. Ci immagino sempre tra 30 anni a

guardare il Milan perdere.

A Rosamaria e Andrea, forse non ve l’ho mai detto, ma due anni fa avete totalmente

cambiato la mia vita. Grazie di rendere ogni momento insieme un momento felice.

E a tutte le altre persone che sono qui adesso, volevo solo dirvi che non potrei desiderare

persone migliori con cui condividere questo momento.

Scusate per l’ansia, vi voglio bene.

Abstract

Aeroelastic analysis plays a crucial role in the design and evaluation of aircraft struc-

tures, ensuring their structural integrity and dynamic stability under aerodynamic loads.

However, conducting detailed aeroelastic simulations using high-fidelity computational

methods can be computationally expensive. This paper proposes an approach to reduce

the computational cost of aeroelastic analyses through the use of surrogate modeling

techniques based on machine learning. Surrogate models act as efficient approximations

of the complex aeroelastic simulations, providing accurate predictions of critical parame-

ters while significantly reducing the computational cost. The Goland wing is utilized as a

the baseline configuration, and aeroelastic simulations are performed using the SHARPy

framework, an open-source Python tool developed by Imperial College London, to gener-

ate the data-set required for surrogate model training. The trained surrogate regression

models are capable of predicting important aeroelastic quantities, including flutter speed,

mass, and lift and drag coefficients. Moreover, a multi-objective optimization framework

is employed to maximize the lift-to-drag ratio and minimize the structural mass while

considering a flutter constraint, improving the effectiveness of the preliminary design

process.

Keywords: Aeroelasticity; Multidisciplinary Design Optimization; Multi-objective Op-

timization; Wing Design; Surrogate Models

Abstract in lingua italiana

Nella progettazione e nella valutazione delle strutture aeromobili, l’analisi aeroelastica

garantisce l’integrità strutturale e la stabilità sotto i carichi aerodinamici. L’esecuzione

di simulazioni aeroelastiche dettagliate utilizzando metodi di calcolo ad alta fedeltà può

tuttavia essere computazionalmente costosa. Un metodo che utilizza modelli surrogati

per ridurre il costo computazionale delle analisi aeroelastiche viene proposto nel presente

lavoro. I modelli surrogati riducono notevolmente i costi computazionali e forniscono pre-

visioni accurate dei parametri essenziali nelle complesse simulazioni aeroelastiche. Per

creare il set di dati necessario per l’addestramento dei modelli surrogati, è stato utiliz-

zato il framework SHARPy, uno strumento Python open source sviluppato dall’Imperial

College di Londra. L’ala Goland è stata utilizzata come configurazione di base. La ve-

locità di flutter, la massa e i coefficienti di portanza e resistenza sono tutti previsti dai

modelli di regressione surrogati. Inoltre, con l’obiettivo di migliorare l’efficacia del pro-

cesso di progettazione preliminare, viene utilizzata un’ottimizzazione multiobiettivo per

massimizzare l’efficienza aerodinamica e ridurre la massa strutturale tenendo conto di un

vincolo di flutter.

Parole chiave: Aeroelasticità; Ottimizzazione multidisciplinare; Ottimizzazione multi-

obiettivo; Progettazione di ali; Modelli surrogati

Introduction

1.1 Motivation

Aeroelasticity is the branch of science that examines how inertial, elastic, and aerody-

namic forces interact when they operate on a flexible structure exposed to fluid flow.

The interaction of these three forces, depicted in Figure 1.1 can result in a number of

unwanted events, including vortex shedding, buffeting, galloping, limit cycle oscillations

and, in particular, divergence (a static aeroelastic phenomena), and flutter (a dynamic

aeroelastic phenomena) [1]. The study of certain aeroelastic phenomena, such as flutter,

Figure 1.1: Collar aeroelastic triangle [1].

during the preliminary stage of aircraft design can be crucial. Flutter creates divergent

oscillations that could cause structural failure, performance and ride comfort degrada-

tion, or even loss of control. For these reasons, it definitely represents an undesirable

occurrence in airplanes. Costly redesign is necessary if flutter is identified during the

aircraft certification process. Adding flutter analysis as a constraint in MDO reduces the

danger of expensive changes made late in the design cycle. Moreover, such a study in the

early stages of design is becoming critical given the trend to increase wing slenderness

to improve aerodynamic performance [11]. The main problem is the high computa-

tional cost associated with aeroelastic analysis, especially in the presence of non-linear

behaviour (such as large structural deflections and transonic flow conditions) due to the

dependence of the flutter point on the equilibrium state. Structural optimization alone,

even if including aerostructural analyses for enforcing flutter constraints, yields design

solutions with suboptimal performance compared to the optimal designs resulting from

MDO, where structural and aerodynamic sizing variables are optimized simultaneously.

MDO can minimize structural weight, fuel consumption, or a combination of these two

objectives with respect to wing shape, internal structure arrangements, and sizing, while

accounting for the interactions between aerodynamics, structures, and other disciplines,

1

and satisfying various constraints [12].

1.2 Objectives

In this work, a multi-objective optimization has been performed using SMs to mitigate

the computational complexities associated with aeroelastic analyses. The primary goals

are to enhance design efficiency and maximize lift-to-drag ratio by integrating flutter

constraints within MDO, while also considering the minimization of structural weight

as a secondary objective. The research seeks to bridge the gap between computational

intensity and design precision, enabling effective aeroelastic optimization. The research

navigates a methodical exploration of methodologies and strategies, focusing on SMs for

aeroelastic optimization.

1.3 Document Outline

This thesis dissertation is organized into six chapters, whose main topics are summa-

rized below. Chapter 1 presents the rationale for the study and a general introduction

to the problem. Chapter 2 gives an introduction of the MDO problem and discusses

optimization methods in general, with a particular focus on multi-objective optimization

techniques. The chapter also provides insights into some of the methods that could be

used to successfully include aeroelasticity into the optimization problem. With the goal

of minimizing the computational cost in mind, different approaches are being considered,

namely Multi-Fidelity Models (MFMs), conventional and machine learning-based SMs,

and Reduced Order Models (ROMs). Chapter 3 discusses in more detail conventional and

machine learning-based SMs, the methodology chosen to address the problem. It clarifies

the theoretical foundations of different SMs and highlights their importance in reducing

computing overhead. Chapter 4 revolves around the methodology implemented. Starting

with the definition and creation of the dataset, it introduces the selected wing model

and the aeroelastic tool used, SHARPy, including its limitations. It also presents the

design space and the sampling method used. The chapter then explains the selection and

training process of the selected surrogate model, the Extra Trees Regressor. In addition,

the validation and testing methodology of the SMs is discussed in depth to ensure the

robustness and accuracy of the process. Finally, the heart of the research is addressed:

aeroelastic optimization using SMs. The goals, constraints and parameters of optimiza-

tion are explored. Non-dominated Sorting II (NSGA-II) genetic algorithm, implemented

through pygmo, is the chosen optimization technique. Chapter 5 closely examines the

results generated by surrogate-based aeroelastic optimization. A rigorous comparative

analysis is conducted to examine the optimization results both before and after some ad-

justments and at different cruising speeds. Finally, Chapter 6, provides a summary of the

research path, drawing conclusions from the empirical evidence gathered throughout the

study. It conducts a rigorous comparative analysis, comparing the results obtained with

2

conventional aeroelastic simulations. The chapter discusses the advantages, accuracy and

efficiency of surrogate-based optimization. The chapter also discusses the broader impli-

cations of the results for the aerospace industry and suggests potential future research

avenues.

3

Multidisciplinary Design Optimization (MDO)

This chapter explores the field of MDO, explaining its basic principles and outlining

commonly used optimization techniques. Special attention is given to multi-objective

optimization, which is critical to addressing the complex design challenges in modern

aerospace engineering.

In this scenario, the importance of considering aeroelastic factors within the optimization

framework is emphasized, bringing attention to the problem of high computational cost.

With the aim of overcoming this challenge and efficiently integrating aeroelasticity into

MDO, a detailed review of some existing strategies is conducted.

2.1 Overview of MDO

MDO, a branch of engineering that applies optimization techniques across multiple disci-

plines, finds its initial applications in aircraft design. This field harnesses the interactions

of various disciplines within the design process, enabling the determination of optimal

design variables that yield the best objective function value while adhering to defined

constraints [13]. The intricate relationship between these disciplines is encapsulated in

the MDO scheme depicted in Figure 2.1.

Figure 2.1: MDO scheme.

Modern computational analytic methods can be used to handle MDO issues early in

the design process, improving the design and reducing the length and expense of the

design cycle. In MDO, it’s crucial to specify the architecture, i.e. the organization of

the optimization software, the disciplines, and the approximation model analysis. Thus,

the distributed and monolithic architectures can be distinguished from one another. In

the monolithic approach, only one optimization problem will be tackled, whereas in the

distributed approach, several subproblems that have fewer variables and constraints will

be solved, dividing the search for the primary problem’s optimal solution into smaller

tasks [14]. There are numerous approaches to tackle the same optimal design problem,

and the choice of architecture affects both the ultimate optimum design and the com-

puting cost. The principles of computational design are based on numerical and analytic

techniques that compare the relative merits of a collection of workable solutions. The

4

value of an objective function, which is calculated by numerical simulations, determines

the quality of a design. The selection of the objective function is crucial and necessitates

thorough understanding of the current multidisciplinary design challenge [15].

2.2 Classification of Optimization techniques

Optimization algorithms fall into two primary categories:

• Gradient free: Optimization is based solely on the objective function’s value.

• Gradient based: Uses both the objective function value and its gradient with respect

to the design parameter.

While gradient free methods offer a broader exploration of the design space, they become

computationally expensive with many design variables [14]. Gradient-based methods,

conversely, are more efficient for high-dimensional problems but are sensitive to gradient

accuracy and may converge to local minima [16].

Given the complexity in areas like aeroelastic optimization, understanding available op-

timization strategies is essential. Figure 2.2 further divides optimization strategies into

classical and meta-heuristic categories.

Figure 2.2: Categorization of optimization techniques [2].

Classical techniques guarantee optimal solutions but are less used in practical scenarios.

Meta-heuristic methods, on the other hand, are versatile and effective for real-world

problems, without ensuring perfect solutions. These are split into deterministic and

probabilistic techniques [2]. Deterministic methods yield consistent results for identical

starting conditions [17], whereas probabilistic ones utilize randomness, offering varied

solutions even from identical starting points. These can be further sub-divided into single-

solution and population-based strategies, with the latter enhancing search diversity [18].

Moreover, techniques can focus on single or multi-objective problems. Single-objective

5

techniques target one objective function, whereas multi-objective ones address multiple

conflicting objectives simultaneously, gauging solution quality by dominance [19].

Numerous optimization algorithms have been discussed in the literature, but none can

be considered a universal solution for efficiently solving various problems. The choice of

algorithm for a particular problem depends on several factors, such as the number and

type of constraints, the types of variables (continuous or discrete), the type of objective

function, and the complexity of the problem [2].

In terms of aeroelastic optimization, our choice has fallen on a multi-objective optimiza-

tion. In the problem we are actively maximizing aerodynamic performance and mini-

mizing mass, subject to adhering to constraints related to aeroelastic stability. In this

way, the design seeks to ensure robust aerodynamic efficiency and aircraft wing weight

limitation while satisfying the required stability considerations.

2.3 Multi-objective optimization

The application of multi-objective optimization allows for a more holistic assessment

of the attainable solutions, providing a set of optimal solutions, known as the Pareto

frontier, instead of a single optimal solution. This is essential to ensure that the final

design is well balanced in terms of different performance goals. [20].

2.3.1 Preliminary Concepts

In this section, the basic definitions of multi-objective algorithms are outlined.

Multi-objective techniques are used to optimize two or more competing goals at the same

time, while considering certain constraints [21]. Multi-objective problems are defined by

an objective function vector F (x) which is minimized or maximized based on a decision

variables vector X. For every solution x in the decision variable space, there is a corre-

sponding point in the objective function space. The function f : X → Y evaluates the

efficiency of a given solution by assigning the objective function vector (y1, y2, . . . , yk) in

objective space Y . Additionally, some multi-objective problems have inequality gi(x) and

equality hj(x) constraints [2].

Objective Function

Objective functions are computable functions used on decision variables to evaluate the

quality of a given solution. They can be expressed as:

F (x) = (f1(x), f2(x), . . . , fk(x)) (2.1)

Here, k represents the number of objective functions in the problem. In multi-objective

problems, the value of k is greater than 1 [2].

6

Decision Variables

In optimization problems, decision variables are independent numerical variables whose

values need to be selected [2]. The decision variable vector containing decision variables

can be denoted as: x = [x1, x2, . . . , xj]
T , where j = 1, 2, . . . , n.

Dominance Relation

A dominance relationship is used to compare multi-objective solutions [2]. A solution S1

is said to dominate solution S2 if:

1. For all objectives, S2 is not clearly superior to S1.

2. In at least one of the objectives, S1 definitely outperforms S2.

Pareto Optimality

A point s∗ in the feasible search space S is Pareto optimal if no other point s in S improves

at least one objective function without worsening another. Mathematically, point s∗ ∈ S

is Pareto optimal only if there is no point s ∈ S such that f(s) ≤ f(s∗) with at least

one fi(s) > fi(s
∗). All Pareto optimal solutions, also called non-dominating solutions, in

decision variable space, form a Pareto optimal set [21]. There can be an infinite number

of non-dominant solutions, all of which are mathematically incomparable. The optimal

set depends on the type of objective and is always on the boundary of a feasible region.

Several approaches to a multi-objective optimization problem work by approximating the

Pareto optimal set [2]. An example is shown in Figure 2.3. The ideal point is achieved by

individually minimizing each objective function, disregarding the others. It is uncommon

for all the minimizations to converge at a single point in the design space, indicating that

it is not possible for one design point to minimize all objective functions simultaneously.

Therefore, the ideal point is conceptual and resides solely in the criterion space, typically

remaining unattainable in practice [3].

2.3.2 Categorization of Multi-objective Optimization Techniques

Multi-objective optimization techniques are broadly classified into three categories: evo-

lutionary, swarm-based, and hybrid techniques [2].

• Evolutionary Techniques: Derived from the principles of natural evolution, these

techniques are capable of generating a set of trade-off solutions in a single execution

while requiring lesser computational resources. Prominent techniques in this cate-

gory include Pareto Archived Evolution Strategy (PAES), Non-Dominated Sorting

Genetic Algorithm-II (NSGA-II), among others. Despite their advantages, they are

often criticized for high computational cost and poor constraint management skills.

• Swarm-based Techniques: These techniques mimic the collective intelligence

found in decentralized biological systems, and are adept at minimizing objective

7

Figure 2.3: Pareto front example [3].

functions without being trapped in local minima. Notable examples include Multi-

objective Particle Swarm Optimization (MOPSO) and Multi-objective Ant Colony

Optimization (MOACO).

• Hybrid Algorithms: These merge the strengths of evolutionary and swarm-based

strategies, enhancing solution diversity and convergence. They mitigate the draw-

backs of singular approaches. Examples include multi-objective artificial bee colony

and differential evolution (HABC-DE).

These techniques encompass a broad spectrum of tools, each with unique merits, for

addressing multi-objective optimization challenges. Among them, the the Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [21] stands out for certain advantages, which

motivated its selection for the study at hand.

The choice was as our optimization tool was first of all influenced by its proven efficacy in

handling multi-objective problems. NSGA-II is an evolutionary technique, derived from

the principles of natural evolution. This evolutionary algorithm is particularly adept

at identifying a Pareto front, thereby providing a set of non-dominated solutions from

which designers can make informed decisions. Moreover, being gradient-free, it ensures a

robust exploration of the design space without being overly sensitive to local optima or

necessitating gradient computations, which can be challenging for intricate models.

The detailed features of NSGA-II and how it was used to address the optimization chal-

lenges in this study will be discussed in full in the in the following methodology chapter

(Chapter 4).

Despite the potential of the discussed multi-objective optimization techniques, integrating

aeroelasticity into the MDO process presents an additional layer of complexity due to

the high computational cost associated with analyzing the aeroelastic behaviors of new

8

aircraft designs. This computational burden necessitates the exploration of strategies to

efficiently integrate aeroelasticity into MDO.

2.4 Current strategies for efficiently integrating aeroe-

lasticity into MDO

Although the inclusion of aeroelasticity in the optimization process of a new aircraft

requires a considerable amount of computational work, the design decision for thin, flex-

ible wings to reduce the aerodynamic induced drag makes them crucial from the very

beginning of the conceptual design phase. Therefore, effective computing solutions are

explored in order to decrease this computational effort. The type of structural and aero-

dynamic non-linearities to be captured, the existence of local or global non-linearities, the

computational time needed, the accuracy needed, the project stage (preliminary design,

detailed design, certification), the nature of the study and the development cost are some

of the factors influencing the choice of the models [11].

Different current approaches that could efficiently include aeroelasticity into the optimiza-

tion problem are presented in this Chapter, including multi-fidelity models (section 2.4.1),

surrogate models (section 2.4.2) and reduced-order models (section 2.4.3). An overview

of each model and their main features are given.

2.4.1 Multi-fidelity Models

In the preliminary or exploratory design stage, low to medium fidelity analytic tools are

utilized to do a large number of computations quickly and gather data for high level

judgments that are crucial for the long-term cost minimization of the project. In order

to accurately capture the physical effects that are relevant and that were previously

identified as not being modelled by the low fidelity tools, or as a consequence of design

experience, the fidelity of the tools being utilized must be increased [22].

HFMs typically accurately represent system behaviour for the intended purpose. These

models are typically expensive, and it is frequently impossible to afford their various

realizations. LFMs are less accurate but cheaper. For instance, dimensionality reduction,

linearization, less complex physics models, coarser domains, partially converged results,

among others as illustred in Figure 2.4 are processes used to obtain them [4].

HFMs and LFMs are combined in MFMs to provide accuracy at a fair price. MFMs offer

the conceptual framework to efficiently optimize vehicles by judiciously using a limited

number of high-fidelity analyses while leveraging the information provided by low-fidelity

methods [23].

In various flutter constrained MDO issues of wings, LFMs [24], HFMs [25,26], and MFMs

[27, 28] have all been tested. These models range from LFMs that take into account

compressibility and viscous effects, including potential flow theory and panel techniques

9

Figure 2.4: From HFMs to LFMs [4].

with corrections [24,27,28], to Euler [27] and Reynolds Averaged Navier-Stokes (RANS)

solvers [25, 26, 28]. Although fuel burn [28] and structural mass [26] minimization have

also been selected, maximizing range [24, 25, 27] was the primary goal of the majority

of these optimization challenges. The characteristics of MFMs make them very usable

for the study of the aeroelastic problem but they nevertheless present certain limitations

that complicate their use for possible optimization. In fact, knowledge of the physical

problem of interest is necessary and their reuse between different projects is infrequent.

In addition, an aeroelastic optimization would be quite costly due to the need to repeat

a large number of iterations. For these reasons MFMs typically entail the creation of

SMs [4].

2.4.2 Conventional and Machine Learning-based Surrogate Mod-

els

In the realm of optimization and analysis, SMs emerge as pivotal tools, bridging the

gap between computationally intensive simulations and the need for efficient design ex-

ploration. These models provide rapid approximations of complex system behaviors, en-

abling sensitivity studies, optimization, and decision-making processes. Surrogate models

are derived from data collected through simulations or experiments and serve as expe-

dient alternatives to direct evaluations of high-fidelity models. Their applications are

particularly significant in MDO due to the intricate interactions among various disci-

plines involved in the design process [7]. Figure 2.5 illustrates the key steps in surrogate

modeling.

The process commences with crafting a sampling plan within the design variable space,

referred to as Design of Experiments (DoE). This stage leverages allocation algorithms

to distribute samples in the design domain. The preferred technique is influenced by

the available number of samples and the intended surrogate modeling approach. Sub-

sequently, a dataset is assembled by executing the computationally expensive model for

every input delineated by the DoE. The surrogate model is then chosen and implemented.

10

Figure 2.5: Key stages of the surrogate-based modeling approach [5].

Finally, it is critical to verify the model’s accuracy and predictability beyond the available

data [7].

In selecting a surrogate modeling strategy, two primary methodologies stand out: the

conventional and the machine learning-based techniques.

Conventional methodologies employ Response Surface Models (RSMs), comprising math-

ematical functions such as linear regression, polynomial regression, and radial basis func-

tions. Though these models are relatively straightforward and cost-effective, they can

sometimes falter in capturing intricate nonlinear relationships within the data. Other

prevalent methods within this category include Kriging, co-Kriging, Moving Least Squares

(MLS), and Support Vector regression (SVR) which leverage spatial correlation to provide

accurate approximations [29].

On the other hand, machine learning-based methodologies leverages advanced algorithms

to plumb the intricate relationships in the data. Machine Learning (ML) [30] has emerged

as one of the most promising technologies in the past decade due to its capability to

provide valuable insights into vast amounts of data generated during the Internet era. A

distinctive advantage of machine learning-based SMs is the ability to continually learn

from a real-time data stream without the necessity of retraining with a new data set.

Models such as Random Forests, Extra Trees Regressor, Gradient Boosting Machines,

Artificial Neural Networks (ANNs), Gaussian Process Regression (GPR), and Deep Learn-

ing excel in capturing nonlinear and multifaceted behaviors, making them invaluable for

complex engineering challenges. ML models can be trained in various ways. Here, the

key categories include [31]:

• Supervised learning: All observations are labeled, and algorithms are trained

using datasets containing inputs.

• Unsupervised learning: Observations are unlabeled, and algorithms discern in-

herent structure from the input data.

11

• Semi-supervised learning: Contains both labeled and unlabeled observations.

Typically, a fusion of supervised and unsupervised methods is utilized.

• Reinforcement learning: This ML approach targets sequential decision-making

problems, aiming to ascertain an optimal policy to guide an agent in a particular

environment, often formulated as a Markov decision process.

In the open literature, applications based on SMs [32, 33] primarily aim to replace

Computational Fluid Dynamics (CFD) analyses and have generated good results, with

varying degrees of process acceleration. The same finding applies to those based on ma-

chine learning [31], which have broad applications in the optimization of the geometric

design space through geometric filtering or modal parametrization. Cea and Palacios [34]

state that although SMs have found certain uses in the aeroelastic area, they are rarely

used to solve MDO issues that take into account flutter. But research in this field is only

just getting started. For example, in order to build strut-braced high aspect ratio wings

while taking flutter and stress contraints into consideration, Sohst et al. [35] combined

MFMs and SMs. They discovered that even though the flutter limitation had been taken

into account during the optimization process, the optimized wing aircraft design had un-

calculated instability. Toffol and Ricci [36] have created a way to optimize the structural

layout of a conventional airplane so that its mass is kept to a minimum while taking

stress and flutter constraints, combining internal codes with SMs.

2.4.3 Reduced Order Models

Since they do not take into account the physics of the problem, SMs are severely limited

by the fact that they only use one set of parametrized curves to fit the problem. These

lend themselves very well to eventual optimization of the aeroelastic problem, but less

so to the actual analysis of the problem. ROMs derive from complex physical problems

but simplify them in order to shorten the simulation time of the models. To this end, a

given problem is often solved several times using a given set of parameters, and a simpler

model is then deduced from these results. The central idea of model order reduction is to

search for a solution in a specific basis that contains only a few, but sufficient elements

to describe the problem [37].

A Partial Differential Equation (PDE) or Ordinary Differential Equation (ODE) described

by the higher-fidelity model is transformed into a reduced order model that is essentially

another, smaller set of equations with fewer unknowns. This ODE is supposed to be

much faster to compute but at the same time captures the same physics as the higher-

fidelity model, generating results not much different from the higher-fidelity model [38].

Thomas et al. [6] review various techniques of model order reduction available in the

literature including stiffness extraction by unitary loadings, which is commonly used in

the aerospace industry, and linear algebraic matrix-based reduction methodologies. These

are summarized in Figure 2.6.

The discourse is fairly similar to that of the SMs with regard to the aeroelastic application

of these models. They have been used for aeroelasticity problems for a while [39], but

their use for MDO problems that take flutter into account is rare in the open literature,

12

Figure 2.6: Model order reduction techniques [6] .

especially for MDO problems that take structural weight and aerodynamic performance

into account. Regarding ROMs, certain applications [6, 40, 41] have demonstrated how

they can achieve exceptional results in terms of computational cost by greatly lowering

the number of Degrees of Freedom (DOF), maintaining the most important variables,

and simplifying the physics of the aeroelastic problem. All the studies reported had as

their goal to replace CFD analysis. This, in fact, is one of the biggest obstacles when

computational savings are desired, as also argued by Li et al. [31].

To create and calculate ROMs there are no readily accessible software packages due to the

complexity of the models utilized in the aerospace sector. Finding precise reduced order

model error measurements without solving the higher-fidelity model, obtaining reliable

ROMs for non-linear parametric problems, and integrating a reduced order model into

an automatic optimizer are the main issues in this field that need to be resolved. This

is because the data or designs initially used to train a ROM may differ greatly from the

actual optimal design [38].

In light of the discussed strategies for efficiently integrating aeroelasticity into MDO,

SMs have emerged as a particularly viable solution for our problem due to their ability to

provide rapid approximations of complex system behaviors while reducing computational

costs. Their capacity to bridge the gap between high-fidelity models and efficient de-

sign exploration makes them a compelling choice for further investigation. The following

chapter (Chapter 3) delves deeper into surrogate modeling within the realm of MDO,

exploring its methodologies and potential benefits in addressing the computational chal-

lenges posed by the aeroelasticity integration into the optimization process.

13

Surrogate modeling in MDO

The successful full-scale development of modern aerospace systems faces significant chal-

lenges in balancing competing goals including higher performance, lower costs, and in-

creased safety. High-fidelity, accurate models are often time- and cost-intensive to create.

The so-called surrogate-based strategy for analysis and optimization can be very helpful

in this situation. Sensitivity and optimization studies are made possible by the surrogates,

which are built using data from high-fidelity models and provide quick approximations

of the objectives and constraints at new design points [5].

This chapter focuses on SMs, which aim to integrate aeroelasticity into MDO. Although

SMs simply mimic the underlying physics of the systems they represent, they are flex-

ible and can be improved with more data, making them an essential tool. They can

integrate seamlessly with MFMs to present a layered approach to systems optimization,

demonstrating their utility beyond stand-alone applications. However, the dependence

of SMs on physics-based simulations for the development of their data sets must be con-

sidered. The demand for these simulations increases as the design space expands, posing

new problems. For these reasons this chapter delves deeper into the intricacies of SMs,

elucidating on the stages outlined in Figure 2.5.

3.1 Design of experiments

It is essential that the design variables have been chosen before conducting the DoE.

These stand for the variables that can be manipulated throughout design, in order to see

how they affect the results. The selection is not arbitrary and it is based on [42]:

• Relevance: The variable should have a potential significant impact on the system’s

performance.

• Controllability: The variable should be able to be changed and reliably controlled

across studies. It is important to ensure that any adjustments can be practically

implemented without excessive complexities or costs.

• Interactivity: Understand and account for the interactions between design variables.

A combination of variables might lead to infeasible or undesirable designs even if

each variable, in isolation, falls within its feasible range.

DoE provides a structured approach to allocate sample points in a design space for

maximum information extraction. Traditional DoE techniques, like factorial designs,

are effective for discrete variables, spanning vast areas of the search space. While full

factorial designs evaluate every combination of variables, with an increase in variables,

fractional factorial designs become practical due to the exponential growth in needed

samples [43]. Discretized continuous variables can be integrated into factorial designs.

Figure 3.1 showcases various factorial designs for three variables.

14

Figure 3.1: Different factorial designs for three design variables [7].

When the target function is unknown, newer DoE strategies like Orthogonal arrays (OA)

and Latin Hypercube sampling (LHS) aim to distribute samples uniformly across the de-

sign space. OA achieves uniform designs, potentially with replicated points [44], whereas

LHS prevents duplicates but might lack uniformity [45]. The latter is a form of stratified

sampling. In stratified sampling, the range of a variable is divided into non-overlapping

intervals, and one value from each interval is randomly selected. In Figure 3.2 are shown

three LHS designs with significant differences in terms of uniformity, where (b) and (c)

are more evenly spread throughout the design space.

Figure 3.2: Variations of LHS designs [7].

Other common DoE methods encompass quasi-Monte Carlo and Hammersley sampling

[43].

3.2 Surrogate modeling methods

The selection of the model and the determination of the pertinent parameters comes next,

after executing the expensive computational model for each value of the input variable

contained in the DoE [5].

3.2.1 Linear models

Linear models [46] are foundational regression techniques where predictions are made

based on a linear correlation with the features. This relationship can be represented by

the Equation (3.1):

ŷ(w,x) = b+ w1x1 + w2x2 + · · ·+ wnxn (3.1)

15

where ŷ stands for the predicted value, xi are the dataset’s features, wi denote the coef-

ficients of the regression for i = 1, 2, . . . , n, and b represents the bias term. All variants

of linear models adhere to this general structure.

• Least Squares: this technique [47] minimizes squared errors between model pre-

dictions and actual labels. Its challenge lies in the potential for collinearity among

features.

• Least Absolute Shrinkage and Selection Operator (LASSO): LASSO [48]

adds regularization to linear models. It effectively performs feature selection, aiding

in model simplification.

• Bayesian ridge: Bayesian regression [49], instead of assuming a single optimal

set of coefficients for the linear relationship, offers a posteriori distribution for the

model parameters. This approach allows the incorporation of a priori knowledge

about the coefficients, leading to potentially better estimations. The coefficients in

this model is represented by a spherical Gaussian.

• Automatic Relevance Determination (ARD): ARD Regression [49] can be

considered an extension of Bayesian ridge regression, with key modifications in the

priors used. ARD assumes an axis-parallel, elliptical Gaussian distribution. It

typically yields sparser coefficients compared to Bayesian ridge.

3.2.2 Decision trees

Decision Trees [50] are supervised learning methods capable of tackling both classifica-

tion and regression tasks. Conceptually, they segment the dataset through a series of

conditional statements based on feature values. Additional layers of such conditions can

further refine classifications or provide numerical estimations in regression scenarios. A

critical parameter for decision trees is their depth, representing the number of successive

conditions. Striking the right balance in depth is essential; shallow trees might underfit,

whereas overly deep ones risk overfitting. To combat overfitting, model tuning, often

focusing on optimal tree depth, is employed.

As shown in Figure 3.3, a decision tree is made up of a root node, child nodes, and leaf

nodes. The algorithm starts from the root node and basically selects a split rule and a cut

point based on its properties. This process is repeated in each child node until reaching

a leaf node.

One approach to amplify decision tree performance and reduce overfitting is through

ensemble learning. In this context, Random Forests [51] shine by merging outputs from

multiple decision trees. Each tree in the forest is trained on a feature subset from the

main dataset, introducing diversity among trees. Post-training, tree outputs are either

averaged (regression tasks) or subjected to majority voting (classification tasks).

For even more diversity, Extremely Randomized Trees or Extra Trees [52] can be trained.

Unlike random forests where splits are determined by the most discriminating features,

extra trees select splits from a pool of random thresholds. This generally reduces variance,

albeit with a slight increase in bias.

16

Figure 3.3: Illustration of a decision tree [8].

3.2.3 Support Vector Machine for Regression (SVMr)

Support Vector Machine (SVM) is a well-known tool in machine learning introduced by

Vladimir Vapnik and his peers in 1992 [53]. In a potentially high- or infinite-dimensional

space, SVM creates a hyperplane or set of hyperplanes that can be used for classifica-

tion, regression, or other tasks. Inferentially, the hyperplane with the greatest distance

from the nearest training data points of any class (referred to as the functional margin)

achieves a decent separation. Generally speaking, the larger the margin, the smaller the

generalization error of the classifier.

Support Vector Machine for regression (SVMr) [54] are effective modeling tools for many

regression problems in engineering and are also powerful tools in the field of ML. Kernel

theory can be utilized to treat the SVMr as a convex optimization problem, enabling it to

handle nonlinear scenarios. The SVMr considers both the model’s generalization ability

and prediction inaccuracy. Given training vectors x1, . . . , xn in R
p and a vector y in R

n

of target values, SVMr solves the following primal problem:

min
w,b,ξ,ξ∗

1

2
wTw + C

n
∑︂

i=1

(ξi + ξ∗i) (3.2)

subject to:

yi −wTϕ(xi)− b ≤ ϵ+ ξi

−yi +wTϕ(xi) + b ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, . . . , n

Here, ξi and ξ∗i are slack variables allowing for errors greater than ϵ, where ϵ is the

tube width (i.e., the maximum error allowed without any penalty). C is a regularization

parameter determining the trade-off between achieving a wide margin and penalizing

errors, while ϕ is a function mapping the input data to a higher dimensional space (this

mapping is performed implicitly by the kernel function).

17

The dual problem is represented as:

min
α,α∗

1

2
(α− α∗)TQ(α− α∗) + ϵeT (α + α∗)− yT (α− α∗) (3.3)

subject to:

eT (α− α∗) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , n

Here, Qij = K(xi, xj) = ϕ(xi)
Tϕ(xj) is the kernel function, and e is a vector with all its

elements set to one.

The solution is given by:

f(x) =
n

∑︂

i=1

(αi − α∗
i)K(xi, x) + b (3.4)

Kernel functions [55] play a pivotal role in SVMr, allowing the model to operate in high-

dimensional spaces without explicitly computing the coordinates in that space. This

mechanism is often called the ”kernel trick.” The most commonly used kernel functions

include linear, polynomial and Radial Basis Function (RBF) (or Gaussian). It is im-

perative to choose an appropriate kernel function and its hyperparameters based on the

nature of the data and through empirical validation methods like cross-validation.

It is essential to emphasize that the spectrum of surrogate modeling is broad and boasts

numerous approaches, both traditional and machine learning-based. The choice of a par-

ticular technique must be tailored to the requirements of the problem at hand. The meth-

ods illustrated here, which span linear, nonlinear, probabilistic and ensemble strategies,

have been chosen to provide a comprehensive yet concise overview of this heterogeneous

field.

Although they provide a glimpse of the wide range of methods available, their inclusion

was strategic: each has gained significant prominence due to its proven effectiveness,

recognition, and prevalent application in the field. In addition, each of these methods

is supported by robust Python tools, which enable their practical implementation and

facilitate direct comparative analysis.

3.3 Model selection and validation

The choice of a surrogate model is pivotal. Each model comes with its strengths, weak-

nesses, and assumptions, making it more or less suited to specific types of aeroelasticity

problems. Moreover, the chosen model’s efficacy directly impacts the optimization per-

formance, emphasizing the importance of a thorough model selection process.

In the realm of SMs, partitioning the dataset into distinct subsets is a conventional prac-

tice. The rationale behind this division is to facilitate distinct stages of the model devel-

opment process, from training to validation and evaluation. The standard partitioning

scheme comprises [56]:

18

• Training set: This is the primary dataset used for the training phase of the model.

It is usually the most substantial portion, typically encompassing 60 to 70% of the

total data points.

• Test set: After training, the model’s performance and parameters need validation.

The test set serves this purpose, enabling us to choose the best model variant based

on unseen data. It typically contains about 15 to 20% of the total samples.

• Cross-validation set: This dataset provides an estimate of the model’s general-

ization error. Commonly accounting for 15 to 20% of the total samples, it aids in

ensuring that the model isn’t overfitting or underfitting.

Once the model is trained and fine-tuned, its performance is quantitatively assessed

using specific metrics [57]. Evaluating models using these metrics enables a systematic

comparison, guiding the choice for the best-suited model for a given problem. The most

frequently used ones are shown below.

• Mean Absolute Error (MAE):

MAE =
1

n

n
∑︂

i=1

|yi − ŷi| (3.5)

This metric quantifies the average absolute disparity between observed and pre-

dicted outcomes, essentially capturing the mean residual magnitude.

• Mean Squared Error (MSE):

MSE =
1

n

n
∑︂

i=1

(yi − ŷi)
2 (3.6)

The MSE computes the mean of squared deviations between observed and model-

predicted values, highlighting the residual variance.

• Root Mean Squared Error (RMSE):

RMSE =
√
MSE (3.7)

This metric provides insight into the standard deviation of the residuals.

• Coefficient of Determination:

R2 = 1−
∑︁n

i=1(yi − ŷi)
2

∑︁n

i=1(yi − ȳ)2
(3.8)

where ȳ is the mean of the observed data. This metric denotes the fraction of re-

sponse variable variance explained by predictors in a regression model. Importantly,

it remains scale-invariant, never exceeding one.

MSE and RMSE both penalize prediction errors more severely than MAE. However,

RMSE stands out because its values are in the same unit as the dependent variable, mak-

ing it easier to interpret. Another advantage lies with the differentiability of MSE, which

often results in RMSE being the preferred choice for loss functions in many modeling

19

scenarios. In evaluating model performance, lower MAE, MSE, and RMSE values are

desired, while a higher R-Squared value suggests a model that fits the data better. It’s

important to note, though, that R-Squared can be artificially inflated with the addition

of more predictors, potentially introducing noise rather than clarity. When it comes to

gauging regression models, RMSE often provides deeper insights compared to R-Squared.

Together, these metrics streamline the process of choosing the most suitable model for

the task at hand [58].

Another pivotal aspect in the model development and selection process is hyperparameter

tuning [59]. Once a model is chosen based on its structure and assumptions, it is essential

to fine-tune its hyperparameters to optimize its performance further. Hyperparameters

are parameters that are not learned from the data but are set before the learning process

begins. Their setting can significantly influence the model’s performance, either enhanc-

ing or degrading it. Proper hyperparameter settings can lead to faster convergence during

training and improved model generalization on unseen data. Conversely, poorly chosen

hyperparameters can render even the best model structures ineffective. Hyperparameter

tuning is typically conducted using methods like grid search, random search, or more

advanced methods such as Bayesian optimization. Grid search is a methodical approach

where every possible combination of hyperparameters in a predefined list is evaluated.

While it is exhaustive and ensures that the optimal combination within the search space

is found, its efficiency diminishes as the dimensionality of the search space grows. In con-

trast, random search involves sampling hyperparameter configurations at random from

the same space. Although less exhaustive, random search can be more efficient as it might

find good configurations with fewer evaluations.

The goal of these methods is to find the optimal hyperparameters that yield the best

performance on the validation set, which can then be confirmed using the test set.

Once the process of adjusting hyperparameters is completed and the model is perceived

to be optimal, an essential next step emerges: testing its effectiveness on an independent

test set. This step is more than just validation; it is a test that measures the model’s

resilience and adaptability to data it has not encountered before [60]. Although a model

may achieve commendable metrics, such as a low RMSE or high R-square on the training

dataset, these successes could be misleading. There could be a situation where the model,

having stored the training data too closely (overfitting), fails to generalize effectively to

new, unseen data.

On the other hand, a model might be too general, failing to capture the nuances and com-

plexities of the training data. This phenomenon, known as underfitting, can be detected

when the model has lackluster performance metrics on both the training and validation

datasets. In this case the general shape may be there, but the complexities are lost.

The objective is achieving a balance, ensuring the model identifies inherent trends while

making reliable predictions. Tools like learning curves (Figure 3.4) prove essential in

identifying and remedying these issues. The plot was generated using scikit-learn, an

20

open-source Python package.

Figure 3.4: Learning curves example.

21

Methodology

The methodology employed in this thesis adheres to three fundamental steps commonly

found in surrogate-based optimization:

1. Data-set definition and generation

2. Surrogate model training, validation, and testing

3. Optimization process

3. Optimization Process

Sampling
Surrogate

Model
Generation

No

YesGood
Quality?

Aeroelastic
Simulations

Multi-Objective and
Multidisciplinary

Design Optimization

Initial Wing and
Design Space

Definition

1. Data-Set Definition and Generation 2. Surrogate Model Training, Validation
and Testing

Figure 4.1: The process flowchart detailing the steps from initial wing and design space

definition to multi-objective and multidisciplinary design optimization.

In the following sections, the methodology is elaborated in detail for a cruising speed of

30m/s, although it should be noted that the same analysis will be conducted at different

cruising speeds within this study.

All the aforementioned tasks were accomplished utilizing available open-source Python

codes, supplemented by custom Python scripts tailored for this work.

4.1 Data-Set Definition and Generation

In this section, we introduce the Goland’s Wing as our chosen model and detail the use of

SHARPy for aeroelastic analyses. The selection of design space and sampling techniques

is also discussed to provide a comprehensive dataset for our study.

4.1.1 Wing model: The Goland wing

The Goland wing [61], presented in a simplified sketch in Figure 4.2, was chosen as the

foundational model for this study. This selection was motivated by:

• The availability of experimental data facilitating the validation of the model.

• Its previous utilization for validating SHARPy [62], the elected open-source tool for

aeroelastic simulations.

The Goland wing is often considered when discussing aeroelasticity, given its simple

rectangular geometry and its wide use in the literature [9, 61, 63, 64]. This is a relatively

stiff wing for which Table 4.1 summarises the relevant properties.

22

Figure 4.2: Goland wing.

Table 4.1: Goland wing properties.

Parameter Value Units

Chord 1.8288 m

Semi-span 6.096 m

Elastic axis 33 % chord from l.e.

Centre of gravity 43 % chord from l.e.

Mass per unit length 35.71 kg/m

Moment of inertia 8.64 kg·m
Torsional stiffness 0.99×106 N·m2

Bending stiffness 9.77×106 N·m2

4.1.2 Aeroelastic tool: SHARPy (Simulation of High Aspect

Ratio planes)

SHARPy [62], developed by Imperial College London, is designed for static aeroelastic

analyses and nonlinear simulations of flexible aircraft. Using an Unsteady Vortex Lattice

Method (UVLM) aerodynamic solver [65], it can model multiple surfaces and their inter-

actions. Simpson et al. [66] describe its unique force evaluation method that accounts for

large sideslip angles and induced drag. SHARPy’s structure is based on a Geometrically-

Exact Composite Beam (GEBM) [67] which supports multibody elements and a mix of

mass formulations. Time-integration is done using the Newmark-β scheme.

SHARPy was chosen for this research because of its Python framework facilitating au-

tomation, and its proven accuracy. For instance, SHARPy’s error margin aligns with the

developers’ claims and is within 5% of experimental results for the Goland’s wing.

The subsequent sections outline the fundamental models within SHARPy and their im-

plementation specifics.

Aerodynamic Model: Unsteady Vortex-Lattice Method

The UVLM is a computational model used to address 3-D potential-flow problems, par-

ticularly for dynamic and deforming lifting surfaces. The approach’s foundation is elab-

orated in Katz and Plotkin [65], while its application on SHARPy is detailed by Murua

et al. [9].

23

At its core, UVLM uses the concept of a vortex ring. This is a loop formed by different

vortex segments, enclosing to form a structure. Inside this structure, the circulation

strength, Γk, remains constant. When the surface moves, it leaves behind an inviscid

wake as part of the solution. This wake, represented by vortex rings, forms, sheds, and

can even roll based on the prevailing flow speed.

An essential equation in this method is the boundary condition of nonpenetration:

AbΓ
n+1
b + An+1

w w = Γn+1
w . (4.1)

Here, Γb and Γw signify the circulation strength of bound and wake vortex rings. Ab

and Aw matrices indicate aerodynamic effects, while Xb and Xw are coordinate vectors.

Components of these matrices come from projecting velocity, as determined by the Biot-

Savart law.

At every time step, vortex rings are added to the wake. This process is aligned with the

free-wake model. The wake’s influence diminishes over distance, so it’s often truncated for

computational efficiency. Typically, 20 chord lengths of wake are considered to maintain

accuracy in this research.

The shedding and convection of the wake can be summarized as:

Xn+1
w = CbX

n+1
b + CwX

n
w +

∫︂ tn+1

tn
V(t) dt . (4.2)

This equation dictates how the wake moves. The method usually employs an explicit

single-step Euler method, though more advanced methods are available.

Aerodynamic loads can be calculated every time step. UVLM considers loads acting on

a local frame, A. The method only retains pressure contributing to local lift, as it’s based

on thin-wing theory. Drag is aligned with local instantaneous velocity.

The forces are stored in vectors:

Ln = ρ∞Gc

[︂

(Ui∆i + Uj∆j)Γ
n
b + Γ̇bn

]︂

, Dn = ρ∞

[︂

−U∗∆iΓ
n
b +GsΓ̇

n

b

]︂

(4.3)

Where ∆i(j) are matrices accounting for adjacent panels, and matrices Gc(s), Ui(j), and

U∗ have specific definitions linked to panel geometry, incidence angles, and weighted

velocities as per Katz and Plotkin [65].

Flexible-Body Dynamics: Displacement-Based Geometrically Exact Compos-

ite Beam

Airframe structures are modeled as composite curvilinear beams that undergo large de-

flections and rotations with the assumption of small local strains. Using a finite-element

approach with the Cartesian Rotation Vector (CRV) as primary degrees of freedom, mo-

tion equations are deduced. The dynamics of these structures, illustrated in Figure 4.3,

involve a moving Frame of Reference (FoR) labeled a, relative to an inertial frame G [9].

24

Hamilton’s principle [68] is used to derive equations of motion. The potential and kinetic

energy densities per unit length are represented in Equation (4.4).

U =
1

2

{︁

γTkT
}︁

S
{︃

γ

k

}︃

, T =
1

2

{︁

V T
B ΩT

B

}︁

M
{︃

VB
ΩB

}︃

. (4.4)

These energies involve terms such as the inertial velocities VB and ΩB, beam strains γ and

k, and the mass and stiffness matrices M and S [69]. The orientation of cross sections

in the current configuration involves finite rotations denoted by CRV, ψ(s, t).

Strains and velocities are articulated in terms of these rotations and the relative position

Ra(s, t). Crucially, the derivation of motion equations considers the position vector in the

current state, and the virtual work of applied forces. This depiction of beam dynamics

is general and not tied to a specific discretization method. In the study, the motion

equations are discretized, involving the tangent mass matrixM and the use of quaternions

ζ for aircraft orientation. The linearized equation about an equilibrium point involves

tangent damping and stiffness matrices C and K.

Figure 4.3: Geometrically-exact beam elements [9].

Coupled Aeroelasticity and Flight Dynamics of Flexible Aircraft

Aeroelastic and flight dynamics for flexible aircrafts are described using combined un-

steady aerodynamic and flexibility models. The models necessitate a process to link

structural beam nodes and aerodynamic lattices, visualized in Fig. 4.4 (a). The trans-

formation relationship between these two is:

(Xb)a = Ra + CaB(Ψ)ξB , (4.5)

(Ẋb)a = va + ω̃a ×Ra + Ṙa + CaB(Ψ)Ω̃BξB . (4.6)

Where Xb and Ẋb represent aerodynamic lattice grid point deformations and velocities,

and Ra and Ψ are beam node displacements and rotations.

25

Figure 4.4: Mapping between aerodynamic lattice and structural finite-element discretiza-

tion [9].

Aerodynamic forces, denoted by:

(Fk)
A =

⎡

⎣

Dk

0

Lk

⎤

⎦ , (4.7)

are translated to forces at beam nodes. The integration process is summarized by:

{︃

Fa

Ma

}︃

= λC̄
aA
FA , (4.8)

where specific matrices capture force transformations and integrations.

This mapping enables detailed aeroelastic and flight dynamic analyses. Strategies, such

as static aeroelastic and trim analyses, are utilized. Time evaluations use the Newmark-β

method [70]. Flutter stability is determined using a methodological approach [71] that

involves nonlinear solvers, linearization, size reductions of structural and aerodynamic

subsystems, and stability analyses at different velocities.

Linear Stability Analysis of the Goland Wing

Detailed properties of the model are shown in Table 4.1. In this study, the flutter speed is

estimated in the time domain with an assumed air density of ρ = 1.020 kg/m3. The wing,

when clamped at its root, is initiated from a static position with a minimal initial angle

of attack, α = 0.05◦. The coupled aeroelastic model progresses in time through a linear

dynamic analysis, excluding rigid-body degrees of freedom. Several freestream velocities

are considered until the inception of flutter is observed. The instability originates from a

blend of bending and torsion, with the flutter frequency being ωf = 69 rad/s.

Table 4.2 compares the flutter speed and angular frequency deduced with SHARPy

against those from prior studies. Both Goland and Luke [72] as well as Goland [61]

presented their findings employing an analytical beam model combined with 2-D aero-

dynamics. It’s crucial to highlight that initial outcomes in Goland [61] had errors, later

rectified in Goland and Luke [72]. Only the rectified values are displayed in Table 4.2, and

26

there’s noticeable alignment with other models rooted in strip theory. Remarkably, while

the preliminary (and mistaken) values for the Goland’s wing flutter were inadvertently

more aligned with the results derived from the UVLM [64], the accurate ones reveal a

significant divergence, underscoring the role of 3-D aerodynamic influences.

Table 4.2: Flutter speed of the Goland wing.

Author Model Vf ,m/s ωf , rad/s

Goland and Luke [72] Analytical 137.2 70.7

Patil et al. [63] Intrinsic beam + strip theory 135.6 70.2

Wang et al. [64] ZAERO 174.3 -

Wang et al. [64] Intrinsic beam + UVLM 163.8 -

SHARPy [9] GEBM + UVLM 165 69

In SHARPy, flutter is visualized through the analysis of eigenvalues, damping ratios,

and natural frequencies. For the previously introduced analysis, the results are shown in

Figures 4.5 to 4.7.

Figure 4.5: Eigenvalues plot.

In the context of aeroelasticity, eigenvalues provide insights into the dynamic character-

istics of the aeroelastic system. When the real part of an eigenvalue becomes positive, it

indicates that the corresponding mode is unstable, signaling the onset of flutter. Damp-

ing ratios offer a measure of the system’s resistance to oscillations. When the damping

ratio transitions from negative to positive, it indicates potential instability or the onset of

flutter. On the other hand, the natural frequency plot illustrates the inherent frequencies

at which the system would oscillate in the absence of damping and external forces [1]. It

is easy to observe how, precisely, the flutter occurs at the velocity of 165 m/s for the case

under consideration.

27

Figure 4.6: Damping ratios plot. Figure 4.7: Natural frequencies plot.

Limitations of SHARPy

Upon conducting the initial aerodynamic simulations of the Goland wing using SHARPy,

it was observed that the obtained drag coefficient values, CD, were two orders of magni-

tude lower than conventional values for several designs. This observation can be primarily

attributed to inviscid model limitations. In fact, SHARPy’s aerodynamic analysis pre-

dominantly relies on an inviscid model. As such, viscous effects, which form a significant

component of the total drag, especially at low angles of attack, are absent. Moreover, at

the cruise speeds evaluated in this study, compressibility effects are minimal and thus not

a major contributor to the drag. However, it’s essential to note that as cruising speeds

approach or exceed transonic velocities, these effects become more significant.

Incorporating viscous factors into the UVLM is normally not very meaningful when the

emphasis is on aeroelastic phenomena but to provide a more realistic drag representation

a corrective method using flat plate theory [73] was employed. The theory, primarily

applied to laminar flows, can provide an estimation of skin friction drag, serving as an

analog for the missing viscous drag component.

Table 4.3: List of input parameters for the flat plate theory calculations.

Symbol Description Value Units

z Altitude 2000 m

Vcr Cruise speed 30 m/s

ρcr Air density at cruise altitude 1.02 kg/m3

νcr Kinematic viscosity at cruise altitude 1.715× 10−5 Pa.s

acr Speed of sound at cruise altitude 332.5 m/s

taper Wing taper ratio 1 -

cmean Mean aerodynamic chord 1.8288 m

tcmax Maximum thickness to chord ratio 0.04 -

xcmax Chordwise location of the max. thickness to chord ratio 0.5 -

The flat plate theory calculations are based on the input parameters showed in Table 4.3.

28

To perform calculations based on the flat plate theory, a specific Python function was

crafted. The main inputs of this function are the aspect ratio (AR) and the leading-

edge sweep angle (sweepLE), that are extracted directly from the data-set since they are

treated as design variables. After the computations of the wing span (b), the Reynolds

number (Re) and the Mach number (M), the calculations based on the flat plate theory

are as follows:

• Effective Mach Number:

Meff =M × cos(sweepLE × π

180
) (4.9)

• Friction Coefficient:

Cf =

{︄

0.455
(log10(Re))2.58×(1+0.144×M2

eff
)0.65

if Re ≥ 3500

1.328√
Re

otherwise
(4.10)

• Form Factor:

sweeptc max = arctan

(︃

tan(sweepLE × π

180
)− 2× xcmax × cmean × (1− taper)

b

)︃

(4.11)

F =

(︃

1 +
0.6

xcmax

× tcmax + 100× tc4max

)︃

×
(︂

1.34×M0.18

eff × cos(sweeptc max ×
π

180
)0.28

)︂

(4.12)

• Wetted Area Ratio:
Swet

Sw

=

{︄

1.977 + 0.52× tcmax if tcmax > 0.05

2.003 otherwise
(4.13)

• Base Drag Coefficient:

CD0 = Cf × F ×Q× Swet

Sw

(4.14)

The interference factor Q is set to 1 because, when considering only the wing, there is

no interference with other aircraft’s components. After calculating CD0 for each set of

design variables (aspect ratio and sweep angle) derived from the dataset, it is added to

the drag coefficient values obtained from SHARPy. It is important to recognize that this

method is an approximation. In the real world, wings deviate from flat plates, and the

turbulent boundary layer doesn’t cover the entire wing surface due to laminar regions.

However, this corrective approach provides a more accurate estimate than the inviscid

predictions alone.

4.1.3 Design Space and Sampling

Having introduced the selected wing model and the theory behind the code utilized to

create the aeroelastic dataset, we now transition to the definition of the design space and

the sampling method employed.

The choice of design variables is crucial in an aeroelastic study since they have a signifi-

cant impact on both aerodynamic and structural properties. The design variables, their

boundaries for problems involving the construction of data sets and optimization, and

their beginning values that correspond to the Goland’s Wing specifications are as listed

in Table 4.4.

29

Table 4.4: Design variables and their boundaries.

Design Variable Initial Lower Boundary Upper Boundary Units

Aspect-ratio (AR) 6.67 6 16 -

Sweep angle (Λ) 0 0 40 deg

Torsional stiffness (GJ) 0.99× 106 0.70× 106 1.70× 106 N.m2

Angle of attack (α) 0.05 -5 15 deg

The first parameter chosen was the aspect ratio (AR), which emerged as a key parameter

for our aeroelastic study. In light of current economic and environmental constraints,

designing more efficient aircraft configurations has become imperative. A noticeable

trend in aircraft design is to increase the wing aspect ratio to reduce lift-induced drag,

thereby improving fuel efficiency and reducing emissions. However, this design choice

presents a challenge from an aeroelastic perspective: a narrower wing is more flexible and

is susceptible to greater deformation under the same operating conditions. This effect

could potentially alter the aeroelastic response and dynamic behavior of the aircraft,

leading to instability [11].

Next, the sweep angle (Λ) was selected as a design variable. This angle is critical in

determining the onset of transonic flow phenomena. A larger sweep can delay the onset

of such phenomena, allowing aircraft to operate efficiently just below the speed of sound.

In addition, the sweep angle has specific implications for stability that designers must

manage, especially at high Mach numbers [74].

Structural considerations bring us to the torsional stiffness (GJ). As a structural design

parameter, it is inherently linked to how the wing reacts to applied aerodynamic loads.

Optimal torsional stiffness ensures that the wing resists torsional movements, which if

uncontrolled can lead to catastrophic aeroelastic instabilities, such as flutter [1]. Tuning

this parameter is therefore of paramount importance.

Lastly, the angle of attack (α) plays a significant role in both the lift and drag experienced

by the wing. Specifically, CL rises with increasing α until a critical point, after which

it diminishes due to airflow separation, marking the onset of stall. Concurrently, CD

grows, especially past the stalling point, resulting in higher drag. Variations in α directly

influence flight stability, with extreme values potentially compromising safe and efficient

flight.

The capability of SHARPy to easily modify these design variables was also a key factor in

their selection. This feature was essential because it permitted a full and thorough inves-

tigation of the design space without becoming bogged down in difficult manual changes.

Regarding sampling, LHS was used to generate a representative data-set for this design

space, specifically through the open-source pyDOE2 package [75]. The decision to employ

LHS for sampling is underpinned by several key considerations. LHS, introduced in Sec-

tion 3.1 is one of the most common sampling techniques, as it ensures a uniform coverage

across the design space, avoiding overlaps and guaranteeing that every interval of every

30

variable is equally represented. This is especially crucial for intricate problems like aeroe-

lastic analysis, where random sampling might miss critical regions of the design space.

Additionally, LHS is efficient in terms of the number of samples needed to get a good

approximation of the design space, an essential advantage given the high computational

demand associated with SHARPy.

Figure 4.8: 3D distribution of design variables.

At this point, aeroelastic simulations in SHARPy were run for each sample to determine

the wing’s mass, flutter speed, and the lift (CL) and drag (CD) coefficients under cruising

conditions. The first analysis makes the assumption that the cruise speed is 30 m/s.

2000 samples in total were produced for this study. It’s crucial to emphasize that, given

the complexity of the problem, 2000 samples might seem a modest amount. However,

a significant constraint was the high computational cost associated with SHARPy. On

average, each iteration took a fairly long time, approximately 93.487 s. Considering

the computational intensity of the simulations performed, it is important to delineate

the system specifications utilized for the study. The simulations were executed on a

host computer that ran a virtual machine with Ubuntu as its operating system. The

specifications of the host machine and the virtual environment is presented in Table 4.5.

In order to visualize the distribution of the dataset across the key parameters, the 3D

scatter plot shown in Figure 4.8 was constructed using the matplotlib library [76]. The

plot showcases the relationship and spread of data points in terms of aspect ratio, sweep

angle, and angle of attack, with the color gradient representing the torsional stiffness.

31

Table 4.5: Configuration details of both the physical machine and the virtual environment

used for simulations.

Parameter Physical Machine Virtual Machine

Operating System Windows 11 Ubuntu 22.10

Processor Intel i7-10510U (4 cores, 8 threads) 4 cores

RAM 16 GB DDR4 11 GB

Hard Drive 477 GB SSD 59.2 GB

Graphics NVIDIA GeForce MX250 Software Rendering

Virtualization Software N/A Oracle VM VirtualBox 7.0.6

The results generated by SHARPy were then refined using flat plate theory. In addition

to the limitations posed by the inviscid model, as discussed previously, the first results

obtained in terms of CL/CD turned out to be very unrealistic also due to the low angles

of attack used for the analysis. In fatc, at these low angles, the induced drag tends to

decrease. This is due to the reduced vorticity at the wingtips at lower angles of attack.

Figure 4.9: Comparison of CL/CD values before and after applying the flat plate theory

correction.

The adopted strategy improved drag predictions, bringing them closer to real-world values

by taking into account missing viscous effects in the UVLM analysis, as can be seen from

Figure 4.9 values. The maximum lift-to-drag ratio is now around 40, with a significant

improvement compared to the unrealistic initial value of 2000. Consequently, this updated

dataset will be used for building surrogate models in the next section.

32

4.2 Comprehensive SMs Analysis: from Selection to

Testing

This section delves into a thorough examination of the entire lifecycle of surrogate model

development, ranging from the initial phases of selection and evaluation to the nuanced

steps of training, validation, and final testing. The ultimate objective of this comprehen-

sive analysis is to identify a surrogate model that not only satisfies our computational

requirements but also excels in predictive accuracy. The models discussed in this section

will serve as the cornerstone for our subsequent optimization efforts.

4.2.1 Selection of SMs methods

The selection of an appropriate surrogate model is paramount to ensure accurate pre-

dictions and a streamlined computational effort. Several methodologies exist, each with

its advantages and potential limitations. The criteria for selecting our surrogate model

included accuracy, efficiency, and robustness.

The process of selecting the most suitable surrogate models for our problem comprised

multiple steps, that are illustrated in Figure 4.10.

Figure 4.10: Procedure for selection and evaluation of SMs

Various SMs methods, introduced in Section 3.2 and available in scikit-learn Python

library [77], were lined up for the comparison, based on both their common application

in similar contexts and their intrinsic characteristics conducive for the problem domain.

The evaluated models encompass:

• Bayesian Ridge Regression

33

• Support Vector Regression (RBF and Polynomial Kernel)

• Decision Tree Regression

• Extra Trees Regression

• Lasso Regression

• ARD Regression

• Linear Regression

In the preliminary phase of surrogate model assessment, a consistent and unbiased ap-

proach was taken to ensure that each modeling technique was evaluated under comparable

conditions. This was vital to ascertain a fair comparison between the models, eliminating

any potential bias introduced by model-specific optimizations.

First, the dataset was divided into training, test, and cross-validation subsets. The

division was realized with a proportion of 60%, 30%, and 10% for training, validation,

and test sizes respectively, after manually experimenting with various combinations to

discern the optimum distribution that resulted in the best-performing model, based on

the metrics introduced in Section 3.3. Then, for this exploratory evaluation, model-

specific hyperparameters were set in a quasi-random manner, ensuring that they were

somewhat consistent across different models. The intent was not to find the absolute

best performance for each model but rather to gauge their baseline capabilities. Finally,

consistent with metrics presented in Section 3.3, every model was rigorously assessed on

the cross-validation subset.

The procedure delineated above was methodically reiterated for each of the four distinct

outputs present in the dataset: flutter speed, mass, drag and lift coefficients. All the

results are presented in Tables 4.6 to 4.9. The SMs methods in these tables are ordered

from the lowest to the highest RMSE value for ease of comparison.

Table 4.6: Flutter speed performance metrics.

Method R2 MAE RMSE MaxError EV S

ExtraTrees 0.921 2.88 8.92 88.27 0.921

DecisionTree 0.749 4.63 15.84 141.44 0.751

Linear 0.245 17.60 27.48 126.1 0.246

BayesianRidge 0.245 17.67 27.48 125.8 0.246

Lasso 0.244 17.75 27.50 125.5 0.245

ARDR 0.243 17.71 27.52 126.5 0.244

SVR Polynomial -0.085 25.29 32.95 117.5 -0.0004

SVR RBF -0.088 25.30 32.99 117.4 -0.0004

Through a detailed evaluation of the various surrogate modeling techniques, it was evi-

dent that the Extra Trees Regressor consistently outperformed the other models for all

output parameters. Its superiority was most pronounced in the predictions of flutter

velocity, where the disparity in performance between Extra Trees and the other models

was evident, as shown in Figure 4.11.

34

Table 4.7: Mass performance metrics.

Method R2 MAE RMSE MaxError EV S

ExtraTrees 0.999 0.161 0.187 0.342 0.999

ARDR 0.999 0.161 0.187 0.330 0.999

Linear 0.999 0.161 0.188 0.342 0.999

BayesianRidge 0.999 0.161 0.188 0.343 0.999

Lasso 0.999 0.369 0.445 1.10 0.999

DecisionTree 0.999 0.250 0.309 1.26 0.999

SVR RBF -0.005 150.5 176.8 362.7 -0.0008

SVR Polynomial -0.009 150.9 177.3 367.6 -0.004

Table 4.8: CD performance metrics.

Method R2 MAE RMSE MaxError EV S

ExtraTrees 0.997 0.0004 0.0008 0.008 0.997

DecisionTree 0.989 0.0009 0.0016 0.009 0.989

BayesianRidge 0.786 0.005 0.007 0.025 0.787

Linear 0.786 0.006 0.007 0.025 0.787

ARDR -0.002 0.0128 0.015 0.050 0

Lasso -0.003 0.0129 0.015 0.050 0

SVR RBF -0.903 0.018 0.021 0.0357 0

SVR Polynomial -0.903 0.018 0.021 0.0357 0

While for the flutter model only the Decision Tree method approached the performance

of Extra Trees (still remaining inferior), for the other models the difference between the

methods was minimal. In fact, with the exception of SVR, all methods showed excellent

predictive ability. With these considerations in mind and for consistency and simplicity

in the workflow, we chose to use the Extra Trees Regressor as the surrogate model method

for all output variables.

4.2.2 Training and validation of SMs

Once the Extra Trees Regressor was identified as the most proficient surrogate model for

our problem domain, we proceeded to train and validate the models.

Training: in the training phase, the model learns from the dataset. We focus on tuning

hyperparameters [59] to optimize the model’s performance, employing both Grid Search

and Random Search methods for this purpose. In fact, for models such as the Extra trees,

striking the right balance in depth is essential; shallow trees might underfit, whereas overly

deep ones risk overfitting.

During training, the model tries to minimize a loss function, effectively learning to make

predictions or decisions based on input data. The settings for the hyperparameters are

35

Table 4.9: CL performance metrics.

Method R2 MAE RMSE MaxError EV S

ExtraTrees 0.998 0.009 0.014 0.078 0.998

DecisionTree 0.993 0.025 0.035 0.138 0.993

BayesianRidge 0.973 0.055 0.072 0.226 0.973

Linear 0.973 0.055 0.072 0.226 0.973

ARDR 0.951 0.071 0.097 0.349 0.951

Lasso 0.792 0.165 0.200 0.606 0.792

SVR Polynomial 0.0010 0.378 0.440 1.010 0.001

SVR RBF 0 0.378 0.440 0.992 0

optimized to produce a model that not only performs well on the known training data

but also generalizes well to new, unseen data.

Validation: after training, it is essential to validate the model’s performance using a

dataset it has not seen before (known as the test set). This allows us to evaluate the

model’s generalizability and predictive accuracy. In this phase, performance metrics like

RMSE and R2 provide insights into the model’s efficacy. Moreover, learning curves can

provide additional insights into the model’s ability to generalize from the training data

to unseen data.

The hyperparameters [52] that we focused on for the Extra Trees Regressor are:

• n estimators: this hyperparameter specifies the number of trees in the ensemble.

Increasing this number generally improves the model’s performance but at the cost

of computational time.

• max depth: the depth of a tree is the maximum distance between the root node

and a leaf. A tree with a higher maximum depth will capture more information

about the data but may also be prone to overfitting.

• min samples leaf: this hyperparameter specifies the minimum number of samples

required to be at a leaf node. A split point at any depth will only be considered

if it leaves at least ’min samples leaf’ training samples in each of the left and right

branches. This helps to smoothen the model and is a method to prevent overfitting.

• min samples split: it dictates the minimum number of samples required for a

node to be split. If a node has fewer samples than ’min samples split’, the algorithm

will cease its splitting and declare the node a leaf. Like min samples leaf, it also

helps in controlling overfitting.

Each hyperparameter uniquely impacts the effectiveness and efficiency of the model.

Careful calibration of these parameters not only bolsters the model’s predictive accuracy

but also aids in preventing overfitting, making the model more generalizable to new

data [52].

The optimal hyperparameters, as summarized in Table 4.10, were identified through a

36

Figure 4.11: Comparison of RMSE and R2 metrics across SMs methods for flutter model.

Grid Search tuning process. Various sets of parameters were tested and evaluated, with

the selection criterion being centered around both the Root Mean Square Error (RMSE)

and R2 values.

Table 4.10: Optimal hyperparameters for each Extra Trees Regressor model.

Model n estimators max depth min samples leaf min samples split

Flutter 300 30 1 2

Mass 200 20 2 4

CD 300 20 1 2

CL 200 30 2 4

Upon training the Extra Trees Regressor models with the optimal hyperparameters, we

proceeded to evaluate their performance on the test set. The results are summarized in

terms of RMSE and R2 metrics in Table 4.11.

Table 4.11: Final RMSE and R2 metrics for each Extra Trees Regressor model at 30 m/s.

Model RMSE R2

Flutter 8.876 0.921

Mass 0.293 0.999

CD 0.0008 0.997

CL 0.0141 0.998

37

Additionally, the learning curves for each model were plotted to assess their generalization

performance. These curves are presented in Figure 4.12.

(a) Flutter Velocity (b) Wing Mass

(c) Drag Coefficient (CD) (d) Lift Coefficient (CL)

Figure 4.12: Learning curves of SMs.

4.2.3 Testing of SMs

To have a more clear understanding of the suitability of the chosen SMs for aeroelastic

analyses throughout the design space, a visualization of parameters used to compose

the objective functions (CL/CD and mass) and constraint (flutter speed) is provided in

Figure 4.13 for the testing dataset.

As one can notice from Table 4.11 and Figure 4.13, the SMs predict well both the mass

(R2 = 9.99×10−1) and lift coefficient (R2 = 9.98×10−1). Slightly higher discrepancies

between surrogate and SHARPy results (R2 = 9.97×10−1) are observed in the drag

coefficient, especially for higher values.

Furthermore, during the validation phase, some notable relative errors were detected for

the lowest values of drag coefficient. These errors, while significant in individual cases,

were diluted in the computation of the MAE, suggesting that the overall average error

remains low. Nonetheless, these errors at low and high drag coefficient values indicate that

there might be specific conditions where the surrogate model’s accuracy is less reliable.

38

(a) Flutter Velocity (b) Wing Mass

(c) Drag Coefficient (CD) (d) Lift Coefficient (CL)

Figure 4.13: Visual comparison of the results obtained using the SHARPy simulations

(in blue) and the surrogate model (in orange) in the testing phase of the SMs.

The observed discrepancies in the drag coefficient may be attributed to nonlinearities in

aeroelasticity in specific regions of the design space, particularly where some aerodynamic

and structural dynamic interactions become particularly complex. This hypothesis is

consistent with trends observed in the data for high and low cd values, and suggests a

potential area for further investigation to improve the accuracy of aerodynamic modeling

and, consequently, surrogate model predictions.

However, it is for the flutter speed that the differences are higher (R2 = 9.21×10−1).

In addition, while for mass, CD and CL the stabilized learning curves shown in Figure 3.4

demonstrate excellent generalizability and that additional data would probably not result

substantial improvement results, for the flutter model suggests overfitting. This can be

seen by the consistently high training score and a significantly lower validation score.

The validation score curve doesn’t reach a plateau, making it clear that adding new data

to the dataset can improve the performance of the surrogate model, also indicated by the

fairly high RMSE of 8.876.

It is worth noting that the challenges in optimizing the flutter model are likely due to

the inherent complexity in estimating flutter speed using the p-k method, an iterative

algorithm. This could be a contributing factor to the model’s less-than-ideal performance.

These results suggest the need for further refinement of the model, perhaps using a larger

39

dataset, or possibly the exploration of more specialized modeling approaches.

Nevertheless, within the scope of this thesis, the results obtained for all models, including

flutter and CD model, are considered acceptable.

The entirety of this multi-faceted analysis, spanning model training to evaluation, was

orchestrated using the aforementioned scikit-learn library in Python [77].

4.3 Optimization Process

Optimization is a paramount step in the engineering design process, seeking to enhance

or maximize specific desired outputs while meeting specified constraints. The SMs con-

structed and analyzed in the previous section represent the foundation of our optimization

problem, thus embodying a ”surrogate-based optimization” approach. Among the vari-

ous optimization techniques discussed in Section 4.2, the choice was made to engage in

multi-objective optimization. This choice was dictated by the need to address both the

aeroelastic aspect through a flutter constraint, as well as to ensure good aerodynamic

performance and structural requirements. The adoption of multi-objective optimization

provides a deeper examination, revealing the fundamental trade-offs for aerospace de-

sign. In addition, this method facilitates more effective exploration of the solution space,

helping to identify novel configurations that might remain unknown in a single-objective

optimization context. The ability to balance competing objectives is essential in a field

where the alignment of performance, cost, and safety is critical to the feasibility and

success of a project [20].

In our work, the primary aim was to maximize aerodynamic efficiency, quantified by the

lift-to-drag ratio, and minimize structural weight of the wing design. The formal problem

is presented as:
minimize f (−CL/CD, mass)

with respect to x = (AR, Λ, GJ, α)

subject to c = Vcr − (Vflutter/1.5) ≤ 0

, (4.15)

where f , x, and c denote the classical notation for objective functions, design variable set,

and constraints, respectively. In our constraint formulation the factor of 1.5 is a common

safety margin employed in the aerospace industry to ensure a sufficient buffer against

flutter phenomena, as is standard practice. This safety margin provides an additional

level of assurance in meeting the stringent safety and performance standards prevalent

in aerospace engineering [78].

The choice of our optimization tool fell on NSGA-II [21], introduced in Section 2.3, which

is implemented through Pygmo [79]. Several key features of NSGA-II strongly influenced

its use in this research. First, its gradient-free approach assures a thorough and solid ex-

ploration of the design space, avoiding the pitfalls of local optima and negating the need

for challenging gradient calculations in complex models. Moreover, NSGA-II is praised

for its ability to sustain diversity among solution sets, which is vital to ensure a broad

search and prevent settling for less-than-optimal solutions. It also prioritizes solutions

40

based on non-domination, guaranteeing a well-rounded and evenly distributed suite of

solutions along the Pareto front and offering a varied selection of feasible options for

designers during the decision-making process. Furthermore, NSGA-II is frequently uti-

lized in complex multi-objective problems due to its robustness and capability to manage

numerous, often conflicting, objectives.

The main features of this algorithm are shown in the following section to better under-

stand its operation.

4.3.1 NSGA-II

Before delving into the specifics of NSGA-II, it is pertinent to introduce some fundamental

concepts intrinsic to evolutionary algorithms, which form the underpinning of NSGA-

II [21].

• Population Size: the population size refers to the number of potential solutions

(individuals) in a particular generation. A larger population size ensures a diverse

search space, though at the cost of increased computational resources.

• Generation: a generation is a distinct phase in the evolutionary cycle where a

population of solutions is evaluated, selected, and evolved to form a new set of so-

lutions. The process iterates over several generations to refine the solutions towards

optimization.

• Mutation Rate: mutation is a stochastic process that introduces small random

modifications in the individuals’ characteristics, promoting diversity in the popula-

tion and aiding in escaping local optima. The mutation rate dictates the likelihood

of these modifications occurring.

• Crossover Rate: crossover is a process where traits from two or more parent

solutions are combined to form one or more offspring solutions. The crossover rate

determines the extent to which this recombination occurs, fostering the exploration

and exploitation of the search space.

These parameters are essential in controlling the behavior and performance of the evo-

lutionary algorithm. Furthermore, tuning these parameters can significantly impact the

convergence speed and solution quality.

NSGA-II is one of the most popular optimization algorithms, mainly because of its low

computation time. It was initially proposed for problems with 2-3 objectives. How-

ever, numerous improvements and extensions have been proposed to make the algorithm

efficient for solving multi-objective problems with a larger number of objectives. The

algorithm has a complexity of O(MN2), where M is the number of objective functions

and N is the size of the population [2].

This complexity is particularly advantageous, especially in cases with a small number

of objectives. In our case, the presence of two objective functions allows the algorithm

to maintain a limited level of complexity, and consequently of computational cost. Of

course, for this to happen, the size of the population must also be kept in check.

41

NSGA-II operates on the basis of four basic principles: the undominated ordering, the

elite preservation operator, the crowding distance and the selection operator, briefly il-

lustrated below [10].

• Non-Dominated Sorting: population members are sorted based on Pareto dom-

inance in this stage. The procedure initiates by assigning the first rank to the non-

dominated members of the initial population, grouping them into the first front

while removing them from the initial population. The sorting continues with the

remaining population members, assigning subsequent ranks, and grouping them

into respective fronts until all members are ranked and grouped, as depicted in

Figure 4.14 (a).

• Elite-Preserving Operator: this strategy retains elite solutions of a population

by migrating them directly to the succeeding generation, implying that the non-

dominated solutions from each generation are carried over to the next until they

are dominated by other solutions.

• Crowding Distance: this distance measures the density of solutions surrounding

a particular solution, computed as the average distance of two solutions on either

side of a given solution along each objective. A solution with a larger crowding

distance is considered to reside in a less crowded region. The crowding distance for

the ith solution is the average side-length of the cuboid as illustrated in Figure 4.14

(b), calculated as,

cd(i) =
k

∑︂

i=1

f i+1
j − f i−1

j

fmax
j − fmin

j

, (4.16)

where k is the number of objective functions, and fmax
j , fmin

j are the maximum and

minimum values of the jth objective function among all individuals respectively.

• Selection Operator: selection for the next generation is performed using a crowded

tournament selection operator, which employs the rank and crowding distances of

population members. The selection rules are as follows:

1. If the members belong to different ranks, the one with the superior rank is

selected for the next generation.

2. If both members have identical ranks, the one with the higher crowding dis-

tance is selected for the next generation.

Procedure of NSGA-II

The procedure of the chosen algorithm is summarized below. NSGA-II begins with the

generation of an initial population Pt of size N . A new population Qt is subsequently

created through crossover and mutation operations on Pt. Both populations Pt and Qt are

merged to form a new population Rt, which then undergoes the non-dominated sorting

procedure. Members of Rt are ranked into different fronts based on their non-domination

levels [10].

The subsequent step involves selecting N members from Rt to form the next population

Pt+1. If the first front size is greater than or equal to N , only N members from the least

42

Figure 4.14: Non-dominated sorting procedure and Crowding distance calculation [10].

crowded region of the first front are selected to form Pt+1. However, if the first front size

is smaller than N , all members of the first front are transferred to the next generation,

and the remaining members are selected from the least crowded region of the second

front to complete Pt+1. This process continues with subsequent fronts until Pt+1 has N

members. Populations Pt+2, Pt+3, Pt+4, . . . , for the next generations are assembled using

the same procedure, until the stopping criteria are met, as visualized in Figure 4.15 [10].

Figure 4.15: Procedure of NSGA-II [10].

4.3.2 Optimization methodology

Transitioning from the core mechanics of the NSGA-II algorithm, the practical implemen-

tation of this optimization framework in the current study follows a methodical approach

outlined below. This methodology is based on the surrogate models created before. These

models, generated from the data procured through SHARPy simulations and some cor-

43

rections (such as the flat plat theory application), endeavor to mimic the system behavior

within targeted regions, with a significant reduction in computational cost.

The role of key parameters such as population size, generation, mutation rate, and

crossover rate, as previously elucidated, comes to the forefront in the hyperparameter

tuning phase. An exhaustive tuning exercise is carried out to balance the trade-off be-

tween computational cost, hypervolume, and ranking. Hypervolume measures the space

covered by a set of solutions in the objective space, effectively capturing both the con-

vergence and the diversity of the solution set. A larger hypervolume indicates a better

spread of solutions along the Pareto front and closer convergence to the true Pareto front.

Instead, ranking is performed based on non-dominance levels, where a lower rank (i.e.,

rank 1) indicates better performance. It helps in differentiating between solutions and

selecting the better ones for creating subsequent generations [10].

Mirroring the SHARPy simulations, boundaries for the optimization design variables

are established: aspect ratio, sweep angle, torsional stiffness, and angle of attack. An

initial population is crafted using LHS, ensuring a well-dispersed set of starting points for

the optimization process. The optimization variables are interfaced with the simulation

environment, setting the stage for the ensuing aeroelastic analyses within the defined

boundary conditions.

In keeping with the iterative nature of generations in NSGA-II, an optimization driver

iteratively refines design variables, aiming to maximize the lift-to-drag ratio (CL/CD)

and minimize structural weight. The integration of flutter constraints through a penalty

method ensures the aeroelastic integrity of evolving designs. If flutter constraints are

violated, a penalty is applied that moves the optimization away from undesirable design

territories. Specifically, a penalty equal to 104 · |Vflutter − Vcruise · 1.5|.

Optimization continues until a predefined iteration limit is reached, which marks the

culmination of the optimization process according to the stopping criteria outlined in

the NSGA-II procedural scheme, as described earlier in its procedure. In our endeavor,

the NSGA-II algorithm treats each objective with equal importance, offering a Pareto

front of solutions that provide a balanced trade-off between aerodynamic efficiency and

structural weight of the wing design [21].

Upon completion of optimization, the resulting solutions are examined to evaluate their

aerodynamic, structural, and aeroelastic merits, providing a consistent interpretation of

the proposed wing designs. The ”best” solutions are then selected, specifically the one

with the lowest mass and the one with the highest lift-to-drag ratio. The associated

decision vectors are then entered into the code used to create the dataset, initiating a

comparison to assess the accuracy of the optimization.

The generated Pareto front, a manifestation of NSGA-II’s undominated sorting mech-

anism, shows the tradeoffs between lift-to-drag ratio and structural weight. This front

represents a number of trade-offs between the considered objectives, and the selection of

a specific solution among those in the Pareto front will require further evaluation based

44

on project-specific preferences or requirements. This aspect underscores the importance

and practicality of the multi-objective approach, which allows for better exploration and

understanding of the inherent trade-offs between conflicting project objectives.

4.3.3 Refinement of Design Space

After obtaining the initial Pareto fronts, a verification was conducted by selecting the

”best” solutions, specifically the one with the lowest mass and the one with the highest

lift-to-drag ratio. The associated decision vectors were then entered into the code used

to create the dataset, initiating a comparison to assess the accuracy of the optimization.

From the analysis, a high percentage discrepancy for some results emerged. It was there-

fore proceeded to examine how the optimization solutions were distributed within the

design variable boundaries. It was observed that the majority of solutions were con-

centrated near the lower boundary for sweep angle and torsional stiffness, as can be

observed in Figure 4.16, suggesting that extending these boundaries might lead to better

solutions. This observation guided the decision to extend the design variable boundaries

and add new values to the dataset, in an attempt to further explore the design space and

potentially obtain better optimization results.

Figure 4.16: Distribution of optimization solutions along design variables boundaries for

both objectives: max CL/CD (above) and min mass (below).

Furthermore, the testing of SMs showing a high prediction error at high aspect ratios

represented a significant finding in the analysis process. The design variables associated

with points with an error greater or equal to 5% in the flutter velocity model clearly

showed that the high aspect ratio is a critical area for model accuracy, as shown in

Table 4.12.

45

Consequently, in introducing new data with extended lower boundaries for sweep angle

and torsional stiffness, the range for aspect ratio was narrowed down to between 13 and

16. This change aims to densify the dataset in the identified critical area, allowing for a

more accurate representation and potentially improving the surrogate model’s prediction

capability in this aspect ratio range.

Table 4.12: Design variables for high error points (≥ 5%) in flutter model.

Aspect Ratio Sweep Angle (deg) Torsional Stiffness (N.m2) Angle of Attack (deg)

15.83 34.8 7.67× 105 10.97

15.42 13.76 9.06× 105 3.58

15.74 35.78 1.34× 106 6.56

15.23 26.74 7.79× 105 9.79

15.32 34.34 8.67× 105 9.27

13.67 24.99 7.89× 105 13.78

14.96 27.53 8.36× 105 10.07

14.02 2.24 1.31× 106 -1.36

13.45 24.49 9.54× 105 13.63

15.0 15.35 1.17× 106 -0.98

13.03 8.21 9.26× 105 9.64

14.46 1.14 1.27× 106 11.88

13.77 5.31 1.66× 106 5.96

15.67 34.84 1.60× 106 8.74

This iterative process of analysis and adjustment of the dataset and design variable

boundaries demonstrates a methodical approach to solving the issues emerged during

optimization. The ability to identify areas of weakness in the models and make informed

adjustments to address these weaknesses is fundamental for the success of the research

project.

46

Results

This chapter details the outcomes of optimization procedures created for various cruising

speeds, starting from 30 m/s and going through 60 m/s and 130 m/s. The optimization

process, which was previously described in Chapter 4, was used with a set of parameters

and was based on SMs in order to get the best possible design solutions. These answers

were then contrasted with reference results, which were primarily produced from SHARPy

simulations.

5.1 Optimization Results at 30 m/s Cruise Speed

The optimization process, whose methodology was described in detail in the previous

chapter, was first executed for a cruise velocity of 30 m/s. The SMs used for such

optimization are those introduced in Table 4.11.

A combination of a population size of 180 and a generation count of 50, with a crossover

rate of 0.8 and a mutation rate of 0.5, was selected for the genetic algorithm, post

hyperparameter tuning. The algorithm converged to an optimal set of solutions within a

computational duration of 328.2 seconds.

The solutions derived from the optimization process were compared with the benchmark

results obtained with SHARPy1 to evaluate their accuracy and effectiveness. Table 5.1

provides a comparative analysis of the optimized solutions against the reference values,

considering the results for the solutions that maximize CL/CD and minimize mass.

Table 5.1: Comparative analysis between optimized solutions and SHARPy results at 30

m/s.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 39.35 39.41 0.14

Mass (kg) 1025.85 1025.62 0.02

Flutter Speed (m/s) 123.12 143.86 16.84

min Mass

CL/CD 23.73 27.04 13.96

Mass (kg) 391.83 392.21 0.09

Flutter Speed (m/s) 186.25 185.02 0.66

The table shows minimal deviation between the optimized solutions and the benchmark

results in terms of CL/CD and mass, indicating high accuracy of the optimization results.

However, a significant discrepancy is observed in the flutter rate, especially in the CL/CD

max objective. On the other hand, as for the solutions related to the minimum mass value,

it turns out that the CL/CD error is high, while the other two are acceptable.

1Throughout the document, SHARPy also incorporates the implemented flat plate theory correction.

47

Consequently, a further analysis was undertaken to enhance the optimization results,

adopting the methodology introduced in Section 4.3.3.

In response to those results, the boundaries of the design variables were expanded in terms

of sweep angle and torsional stiffness, and additional data points were incorporated into

the dataset, respecting aspect ratios of 13 to 16. The aim was to enhance the dataset in

pivotal areas, enhancing predictive accuracy within the specified aspect ratio range, and

conferring the optimization algorithm greater liberty to traverse between boundaries.

The extended boundaries utilized for generating the additional 500 data points, subse-

quently combined with the preceding dataset, are reported in Table 5.2. The values

changed from the initial ones, shown in Table 4.4, are displayed in red.

Table 5.2: New design variables boundaries.

Design Variable Lower Boundary Upper Boundary Units

Aspect-ratio (AR) 13 16 -

Sweep angle (Λ) -10 40 deg

Torsional stiffness (GJ) 0.50× 105 1.70× 106 N.m2

Angle of attack (α) -5 15 deg

The new optimization, using the same NSGA-II hyperparameters as the first one, took

a computational time of 343.32 seconds, and was based on the SMs trained on the new

dataset, whose metrics are reported in Table 5.3. There is a visible improvement in flutter

speed estimation capability compared to the previous model (Table 4.11).

Table 5.3: Final RMSE and R2 metrics at 30 m/s.

Model RMSE R2

Flutter 7.276 0.952

Mass 0.293 0.999

CD 0.0006 0.998

CL 0.0059 0.999

Table 5.4 elucidates a comparative analysis between the optimized solutions and bench-

mark results, reflecting the impacts of the boundary adjustments.

The revised results demonstrate a notable improvement, with reduced percentage errors

across most parameters in comparison to the reference results obtained through SHARPy.

However, it is pertinent to note that the flutter speed, especially for the solution aiming

at maximizing CL/CD, still maintains a percentage error above 5%.

Although changes to the boundaries of the design variables and expansion of the dataset

produced significant improvements, further analyzes were then performed by increasing

the number of generations and the size of the NSGA-II population. It is hypothesized

that giving the algorithm more time and resources to explore the solution space could lead

to even better results, particularly in reducing the error in estimating the flutter speed.

48

Table 5.4: Comparative analysis between optimized solutions and SHARPy results with

adjusted boundaries at 30 m/s.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 39.53 39.72 0.48

Mass (kg) 1021.16 1021.26 0.01

Flutter Speed (m/s) 110.13 119.84 8.81

min Mass

CL/CD 27.54 28.45 3.30

Mass (kg) 393.84 392.23 0.10

Flutter Speed (m/s) 175.57 173.35 1.26

The population size was increased to 280, and the generation count was augmented to

200, while crossover and mutation rates were maintained.

Table 5.5: Comparative analysis between optimized solutions using the new parameters

and SHARPy at 30 m/s.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 39.83 39.79 0.09

Mass (kg) 1043.57 1043.46 0.01

Flutter Speed (m/s) 133.65 127.89 4.30

min Mass

CL/CD 26.37 27.13 2.85

Mass (kg) 313.84 392.17 0.08

Flutter Speed (m/s) 188.41 188.10 0.16

The new results, as delineated in Table 5.5, demonstrate that all metric deviations were

effectively confined within a 5% error margin, underscoring the efficacy of the optimization

strategy employed. While the results improved, there was an increase in computational

time. The new computational duration stands at 1801.28 seconds, compared to the initial

time of 343.32 seconds, indicating a trade-off between result accuracy and computational

efficiency. In Figure 5.1 the Pareto fronts obtained for both optimization are showed.

Analyzing the Pareto fronts depicted in Figure 5.1, it’s evident that the graph illustrates

the inherent trade-offs between the objectives under consideration. As one metric im-

proves, there’s a certain level of compromise in another, which is typical of multi-objective

optimization problems.

The results from the expanded configuration (in orange) seem to cover a wider range of

the Pareto front than the initial configuration (in blue). This suggests that the increased

number of generations and a larger population size allowed the algorithm to explore a

more comprehensive solution space and thus achieve better results, especially towards

higher CL/CD values.

Both configurations have dense regions, where multiple solutions are closely packed. This

is particularly noticeable in the middle section of the CL/CD axis. However, there are

49

Figure 5.1: Pareto fronts at 30 m/s.

also some outlier points, especially noticeable for the blue configuration, which might

represent specific unique solutions the algorithm identified.

Noteworthy is the observation that throughout the optimization process, the flutter con-

straint was never active. This led us to study the behavior of the Goland wing at higher

cruise speeds.

5.2 Optimization Results at 60 m/s Cruise Speed

The optimization process conducted at cruise speeds of 60 m/s replicates the methodol-

ogy delineated in Chapter 4 for 30 m/s, adhering to the initial design space and selection

method of SMs. The latter, as supported by the results, again underscored the Ex-

tra Trees Regressor as the prevailing model, showcasing superior predictive precision in

the examined scenarios. The models performance, after an hyperparameter tuning, are

reported in Table 5.6.

Table 5.6: Final RMSE and R2 metrics for each surrogate model at 60 m/s.

Model RMSE R2

Flutter 7.360 0.913

Mass 0.377 0.999

CD 0.0034 0.947

CL 0.013 0.999

The optimization procedure was executed utilizing NSGA-II, wherein the algorithmic

parameters, namely the population size, generation count, crossover rate, and mutation

rate, were kept consistent with the 30 m/s scenario to maintain a coherent comparative

framework across different cruise speeds.

50

In this analysis, after an initial optimization with the initial design space that had pre-

sented excessive percent errors, the same approach as in the 30 m/s analysis was applied.

The boundaries of the design space have been extended to negative sweep angles and the

dataset density has been intensified between for higher aspect ratios, which was identified

as the most critical part for the surrogate model.

In optimization using NSGA-II, parameters were retained from the initial analysis to

ensure consistency between different scenarios while simultaneously aiming to reduce

computational costs. Indeed, this remained within an acceptable range, for a total of

309.89 seconds. In particular, the results presented here were then subjected to a design

space refinement process which, such as the 30 m/s scenario, proved effective.

Table 5.7 reveals that the percentage errors remain relatively small, except for the flutter

speed in the solution at maximum CL/CD. Again, SHARPy results include those of

the flat plate theory correction, and considering a Mach number of 0.18, the effect of

compressibility is excluded.

Table 5.7: Comparative analysis between optimized solutions and SHARPy results with

adjusted boundaries at 60 m/s.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 36.49 36.00 1.33

Mass (kg) 1008.61 1008.55 0.01

Flutter Speed (m/s) 89.17 96.22 7.90

min Mass

CL/CD 24.86 26.13 5.10

Mass (kg) 392.35 392.50 0.04

Flutter Speed (m/s) 178.55 175.45 1.73

Unlike the 30 m/s optimization scenario, where the flutter constraint was not present for

any of the 9000 possible combinations analyzed by NSGA-II, for a cruise speed of 60 m/s

the situation changed. This scenario, which include 9000 combinations as well, had the

flutter constraint active for 0.322% of the time. The associated design variables remained

predominantly within a specific range, as shown in Table 5.8.

Table 5.8: Range of design variables within which the flutter constraint was active at 60

m/s.

Design Variable Minimum Value Maximum Value Units

Aspect-ratio (AR) 15.2 15.4 -

Sweep angle (Λ) 10.4 11.3 deg

Torsional stiffness (GJ) 1.62× 106 1.70× 106 N.m2

Angle of attack (α) 6.86 6.95 deg

However, the algorithm identified a Pareto front comprising 180 optimal solutions, in

which the flutter phenomenon remained perpetually inactive. In fact, the results, in

terms of design variables, differ from the previous design space reported in Table 5.8. The

51

optimization adequately bypassed problematic regions within the design space, identifying

and validating optimal solutions where flutter did not materialize.

Moving forward, an extended analysis was undertaken, modifying the optimization pa-

rameters as done for 30 m/s. The purpose of this computational effort was to see if it

was possible to reduce the error rate below the 5% threshold for all results.

Table 5.9: Comparative analysis between optimized solutions using the new parameters

and SHARPy at 60 m/s.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 36.08 36.16 0.21

Mass (kg) 927.40 927.06 0.04

Flutter Speed (m/s) 91.94 92.23 0.32

min Mass

CL/CD 21.28 21.56 1.32

Mass (kg) 392.62 392.32 0.08

Flutter Speed (m/s) 194.92 188.92 3.08

Results show in Table 5.9 clearly indicate that delving deeper into the design space

produced significant improvements, with all the percentage errors lower than 5%.

However, it is critical to emphasize the balance between computational resources and

solution quality. The increase in population and generations led to better results, but

also to a 490.66% increase in computational time compared to the first optimization.

Nevertheless, the potential gains in accuracy seem to justify the increase in computational

time. In Figure 5.2 both the optimization Pareto fronts are reported, where it is noticeable

an improvement in the Pareto front for higher values of CL/CD.

Figure 5.2: Pareto fronts at 60 m/s.

For the high CL/CD values, the orange set is distinctly better than the blue one. This

means that with extended optimization (Generation = 200, Population size = 280), the

52

solutions achieved a higher aerodynamic efficiency with a smaller increase in mass com-

pared to the earlier iteration.

In the middle section of the graph, instead, there is a significant overlap between the two

datasets. This overlap suggests that for certain design choices, increasing the generations

and population doesn’t significantly change the outcomes.

5.3 Optimization Results at 130 m/s Cruise Speed

Given the low percentage of solutions with active flutter at 60 m/s, an additional analysis

was conducted at 130 m/s to explore more complex aeroelastic behaviors.

This scenario was also evaluated using the methodology described in Chapter 4. The

associated metrics of the Extra Trees Regressor models, used to make the surrogate-based

optimizazion, are reported in Table 5.10.

Table 5.10: Final RMSE and R2 metrics for each surrogate model at 130 m/s.

Model RMSE R2

Flutter 7.981 0.907

Mass 0.263 0.999

CD 0.0017 0.997

CL 0.011 0.999

The design space, after a first analysis, was expanded as well. Despite this approach, even

with the new dataset of 2500 data, the percentage errors remained very high compared

to SHARPy. Moreover, the values were very far from reality, particularly in terms of

CL/CD and flutter speed. For this reason these results are not reported.

Analyzing in detail the optimization, it was found that in contrast to the 60 m/s scenarios

of the optimization, the 130 m/s scenarios—encompassing 9000 combinations—showed

the flutter constraint as active in 7452 cases.

The robust occurrence of flutter, evident in 82.2% of the design possibilities, imposed a

significant barrier in identifying optimal solutions that also adhered to the flutter con-

straint. In the Pareto front constituting 180 optimal solutions, the 24.4% were marred by

active flutter, casting an anomalous appearance and subsequently skewing the percentual

error during the initial comparison against benchmark models.

Given the significant presence of flutter and the resulting obstacle to obtaining valid

optimal solutions, the optimization approach was reevaluated by increasing both the

population size and the number of generations, as done for the previous analyses. Specif-

ically, the population was increased from 180 to 280 and the generations were increased

from 50 to 200. The attempt was to test whether this intensification, by exploring a

larger solution space, would lead to more accurate solutions or greater convergence to the

global optimum.

53

This approach produced a substantial improvement, with only 7.5% of the 280 solutions

affected by flutter, compared with the previous 24.4%. However, this came at a heavy

computational price, with a time of 2153.31 seconds and an increase of the 690% com-

pared to the first optimization. Furthermore, the percentage errors were still very high.

These results are presented in Table 5.11, where SHARPy also includes the correction

made by flate plate theory. Also for this cruise speed, since the Mach number is 0.391,

the effect of compressibility was neglected.

Table 5.11: Comparative analysis between optimized solutions using the new parameters

and SHARPy results at 130 m/s.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 21.08 14.15 32.87

Mass (kg) 960.72 961.60 0.09

Flutter Speed (m/s) 76.18 92.27 21.12

min Mass

CL/CD 14.93 9.99 33.09

Mass (kg) 393.27 393.01 0.03

Flutter Speed (m/s) 169.41 144.13 14.92

As can be observed, the percentage errors are still very large when compared to the

analyses performed at 30 and 60 m/s, and several findings, such a negative CL/CD

ratio, would suggest that the optimization in this case is not appropriate to represent the

situation.

Actually, this was because penalties had an significant impact on the outcomes. This

aspect will be explored in depth by carrying out a detailed analysis of only the subset of

solutions for which the flutter constraint, and consequently the penalty values, were not

present. The Pareto fronts produced by the two different optimizations accomplished so

far are shown in Figure 5.3.

Figure 5.3: Pareto fronts at 130 m/s.

54

It is evident that several sites along the Pareto fronts display negative CL/CD values.

These are the unfeasible solutions brought on by the active flutter issue and associated

penalties attached to the outcomes. The solutions of a rank different from 1, which

classify them as suboptimal in relation to the main Pareto frontier, are indicated by the

points presented without a continuous line.

As can be observed, the quantity of these points is substantially higher in the optimiza-

tion scenario that employs fewer generations and smaller population sizes.

Following, a second analysis including only the Pareto results not affected by flutter is

carried out to demonstrate what was said previously regarding penalties. The new Pareto

are shown in Figure 5.4.

Figure 5.4: Pareto fronts at 130 m/s with only the solutions without the flutter constraint

active.

Two distinct groups of solutions can be immediately identified from the graph. In both

cases, the optimized design space is significantly reduced, but the second offers a more

diverse set of solutions. This implies that with more generations and a larger population,

optimization is able to explore a wider solution space and potentially find more optimal

solutions.

After isolating the study on these no-flutter solutions, the two extreme were identified:

both the one with the greatest CL/CD and the least mass. The motive behind this

selection was to compare them with the SHARPy results, as done for the complete Pareto

analysis.

Tables 5.12 and 5.13 encapsulate the quantitative comparative analysis, juxtaposing

SHARPy results against optimization outputs for the two distinct optimization runs.

Notably, while the broader Pareto front exhibited substantial percentage errors, this re-

fined analysis showcases good accuracy. The errors for the 200-generation, 280-population

55

optimization were consistently less than 5%. The results, even in the initial, less exhaus-

tive optimization, can be considered accurate because the relative errors are less than

10%.

Table 5.12: Comparative analysis: only no-flutter solutions with 50 generation and 180

population.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 9.24 9.61 4.04

Mass (kg) 862.38 862.04 0.04

Flutter Speed (m/s) 184.21 195.06 8.09

min Mass

CL/CD 8.99 9.41 3.99

Mass (kg) 834.56 834.64 0.01

Flutter Speed (m/s) 187.82 195.97 4.24

Table 5.13: Comparative analysis: only no-flutter solutions with 200 generation and 280

population.

Objective Metric SHARPy Optimization Percentage Error (%)

max CL/CD

CL/CD 13.12 13.71 4.47

Mass (kg) 1030.99 1030.06 0.03

Flutter Speed (m/s) 189.21 194.87 2.96

min Mass

CL/CD 11.99 12.37 3.14

Mass (kg) 955.82 956.41 0.06

Flutter Speed (m/s) 188.82 195.03 3.29

These results, in line with those obtained for the cruising speeds previously examined,

clearly reveal that the high penalties were the main cause of the high percentage errors

previously observed in Table 5.11. Therefore, considering the division between the opti-

mization prediction and the penalty values added when the flutter constraint is active,

we obtain results that are perfectly in line with the previous analyses.

This further strengthens the validity of the optimization approach and that, despite

the obstacles represented by penalties, the algorithm is able to offer excellent quality

solutions.

56

Conclusions and Future Work

6.1 Conclusions

The issue of integrating aeroelastic analysis in the context of MDO was addressed in

this thesis. The computational challenges inherent to this integration prompted the

exploration of SMs, providing a pathway for computational efficiency.

The Goland wing was chosen, taking advantage of the availability of experimental data

that facilitate the validation of the model and its consolidated implementation within the

SHARPy tool. The dataset was constructed using the LHS, selecting aspect ratio, sweep

angle, torsional stiffness, and angle of attack as key design variables. A rigorous evalu-

ation process led to the adoption of the Extra Trees Regressor as the surrogate model

of choice. This decision was driven by its performance metrics and information gleaned

from its learning curves.

The surrogate models had noteworthy prediction ability at the fundamental cruise speed

of 30 m/s, as shown by RMSE and R2 values for mass and lift coefficient reported in

Table 4.11. However, certain variances were observed, particularly in drag coefficient

predictions and flutter speed. These discrepancies are potentially attributable to in-

herent nonlinearities in aeroelasticity in specific regions of the design space, where some

aerodynamic and structural dynamic interactions become more complex. This hypothesis

is consistent with trends observed in the data for high and low CD values. For the flutter

model, the high complexity in estimating flutter speed using an iterative algorithm, the

p-k method, and the overfitting showed by its learning curve, led to less accurate per-

formance. As cruise speeds were increased to 60 m/s and 130 m/s, the complexities of

flutter became even more pronounced.

Despite these challenges, within the scope of this thesis, the results obtained for all the

SMs, including flutter and CD model, were considered acceptable. While an error of up

to 5% was initially targeted for the testing of the SMs, predictions exhibiting a percentage

error slightly higher than this but always below 10% were also deemed acceptable.

Moreover, the adjustments to the design space after a first optimization, explained in

Section 4.3.3, contributed significantly to enhancing accuracy. In fact, it is possible to

observe an improvement in the metrics for the new SMs at 30 m/s, showed in Table 5.3.

A surrogate-based optimization strategy was then developed, leveraging open-source

Python codes. The overarching goal was to harmonize performance with aeroelasticity

metrics. The multi-objective optimization was specifically designed to maximize CL/CD

and minimize mass, keeping in view the flutter constraint across three distinct cruise

speeds. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) as implemented

in Pygmo was used to further explore the design space, considering the multi-objective

57

nature of the problem and the cheap run time of the surrogate model.

The optimization process was employed at different cruising speeds. For the initial 30

m/s cruise speed, the optimization was backed by the associated SMs, elucidating the

most efficient design solutions. While the results produced were initially off in certain

metrics, notably in flutter speed, the revision of the design space and expansion of the

design variable boundaries resulted in substantial enhancements. This is evident through

the decreased percentage errors when juxtaposed against the SHARPy results.

Nevertheless, a persistent deviation in flutter speed indicates potential areas for further

investigation and refinement. An extended analysis was then conducted using the aug-

mented dataset, wherein the optimization parameters were also increased. This advanced

analysis ensured that the percentage differences between the optimization outcomes and

SHARPy were brought under the 5% threshold.

The extended configuration of the optimization algorithm, with a generation of 200 and

a population size of 280, seems to provide a more comprehensive exploration of the trade-

offs between the two objectives, especially at higher CL/CD values.

Furthermore, the inactivity of the flutter constraint during optimization alludes to the

importance of analyzing the behavior of the Goland wing at increased cruise speeds.

At a cruise speed of 60 m/s, the Extra Trees Regressor model stood out for its predictive

accuracy. The optimization, carried out using the NSGA-II algorithm, remained consis-

tent with the 30 m/s scenario parameters to ensure comparative coherence. Adjustments

to the design space were made to address significant percent errors, akin to the approach

at 30 m/s. The optimized solutions were in close agreement with SHARPy results, espe-

cially post adjustments. Notably, the flutter constraint was active 0.322% of the time, a

deviation from the 30 m/s scenario. An extended optimization effort successfully reduced

all relative errors below 5%.

The provided Pareto fronts illustrated the effectiveness of using a more intensive opti-

mization process, with a greater number of generations and population sizes. Better

design options have been made possible by the evolving findings, particularly for those

striving for high aerodynamic efficiency. This, however, resulted in longer computation

times.

Optimization at the cruise speed of 130 m/s revealed more complex aeroelastic behaviors

than the 60 m/s analysis. For the new cruise speed the percentage of such events was

markedly higher than those observed at 60 m/s, leading to a less smooth navigation of the

landscape of possible solutions. Flutter played a dominant role in constraining solutions,

affecting 82.2% of design possibilities. This shifted optimal solutions, with 24.4% initially

showing active flutter.

Refining the optimization by increasing both population size and generations showed

improvements. This intensified exploration somewhat overcame the challenges posed by

flutter, reducing affected solutions from 24.4% to 7.5%. However, these gains in accuracy

58

and flutter reduction came at a significant computational cost, with a 690% increase in

computational time.

Examining only the solutions without flutter constraints, the optimization was partic-

ularly accurate, especially in the intensified optimization scenarios. The error margins

were in line with those of the previous velocity analyses. It was thus evident that the

significant errors initially seen in the full Pareto front stemmed from the penalties as-

sociated with activating the flutter constraint. Indeed, the visualizations provided had

shown numerous solutions that were not feasible and many others that were suboptimal

due to ranks different from 1.

Upon examination of the Pareto fronts for the solutions not affected by the flutter, it

was clear that the possibilities for optimal design were still significantly limited for this

cruising speed. This suggests that the flutter constraint may be overly restrictive for the

design space initially considered. Despite this, the optimization was found to be accurate

in predictive terms even in this scenario.

A final comparison is presented in Table 6.1, detailing the results obtained using consis-

tent parameters and dataset sizes across the three analysed cruise speeds.

Table 6.1: Optimization results across analyzed cruise speeds.

Vc (m/s) Objective CL/CD (-) Mass (kg) AR (-) Λ (deg) GJ (N.m2) α (deg) Vflutter (m/s)

30
1 39.79 1043.46 15.97 -2.10 1.54e+06 4.27 127.89

2 27.13 392.17 6.00 28.7 1.36e+06 5.13 188.10

60
1 36.16 927.06 14.20 0.72 1.61e+06 6.14 92.23

2 21.56 392.32 6.00 32.92 7.38e+05 7.03 188.92

130
1 13.71 1030.06 15.78 6.66 9.37e+05 9.12 194.87

2 12.37 956.41 14.65 7.24 8.80e+05 10.39 195.03

The optimization parameters were set at: population size = 280, number of generations =

200, mutation rate = 0.5, and crossover rate = 0.8. The results in terms of CL/CD, mass

and flutter speed (Vflutter) associated respectively with the maximum value of CL/CD, the

objective 1, and the minimum mass value, objective 2, are reported. The corresponding

design variables are also presented: aspect ratio (AR), sweep angle (Λ), torsional stiffness

(GJ), and angle of attack (α). For the last analysis, at 130 m/s, the results considered

are only the ones without the flutter active.

In Figure 6.1, 6.2, 6.3 the simplified representations of the optimized wing designs are

shown. For each cruise speed analysed, two configurations are shown: the one that

maximizes CL/CD and the one that minimizes mass.

The first thing that can be observed is that, for all the speeds analysed, by improving

one parameter the other worsens accordingly, according to the nature of multi-objective

optimization. High values of CL/CD consequently correspond to higher mass values.

It is possible to observe that the aspect ratio (AR) is consistently higher when maximizing

the CL/CD compared to minimizing the mass, across all cruising velocities. This observa-

tion aligns with established aerodynamic principles: wings with a higher AR have longer

59

Figure 6.1: Optimized wing design at 30 m/s.

Figure 6.2: Optimized wing design at 60 m/s.

spans relative to their chord, which reduces induced drag and consequently improves the

lift-to-drag ratio. However, the flip side to this advantage is that longer, slender wings

tend to be more flexible. As a result, they are more susceptible to aeroelastic instabilities,

notably flutter. This is evident in the data as well: as the AR increases for better CL/CD,

the flutter speed (Vflutter) tends to decrease, indicating a reduced stability margin against

flutter. This trade-off underlines the inherent challenges in aircraft design, where the

quest for aerodynamic efficiency often comes at the cost of structural and aeroelastic

considerations.

Moreover, as the cruising speed increases, the flutter speed (Vflutter) decreases, indicating

that flutter tends to manifest at lower speeds relative to the cruising speed. An increase

in cruising speed results in a corresponding rise in dynamic pressure acting on the air-

craft’s structure. This augmented dynamic pressure amplifies the aerodynamic forces,

which can lead to intensified interactions between the structure’s inertial, elastic, and

aerodynamic forces. As a result, the structure, especially the wings, becomes more sus-

ceptible to aeroelastic instabilities such as flutter. The data support this understanding.

This highlights the importance of careful aeroelastic considerations, especially for aircraft

designed to operate at higher speeds.

At lower cruise speeds of 30 m/s and 60 m/s, when the primary objective is to minimize

mass, a positive and more pronounced sweep angle is observed. This might be associated

with a structural benefit, redistributing the lift towards the root, which can result in

a lighter and more efficient wing structure. However, when maximizing the CL/CD, a

lower sweep may favor aerodynamic efficiency at these speeds.

As the cruise speed increases to 130 m/s, approaching transonic speeds, sweep becomes

60

Figure 6.3: Optimized wing design at 130 m/s.

crucial to delay the onset of transonic drag rise, and this is evident in the positive sweep

angles seen for both objectives.

Variations in torsional stiffness and angle of attack across the different objectives and ve-

locities are subtler compared to other parameters. However, it’s noteworthy that higher

CL/CD values are associated with lower angles of attack. This trend aligns with the

expectation that a reduced angle of attack would lead to decreased aerodynamic drag.

Lowering the angle of attack, while still achieving adequate lift, is a strategy to enhance

the aerodynamic efficiency of the wing.

Another important observation about the aspect ratio is that for both 30 m/s and 60

m/s cruising speeds, the optimal solutions approach the boundaries of the defined design

space, which was set between 6 and 16. This is significant as it indicates that the design

space might not fully encompass the optimal regions for these objectives at these speeds.

The solutions gravitating towards the edge of the design space suggest that there may

exist more optimal designs just beyond the predefined limits. This lays a foundation for

considering an expansion of the design space boundaries in future investigations.

Figure 6.4: Pareto fronts across analysed cruise speeds.

The plot presented in Figure 6.4 delineates the Pareto fronts for the three analysed cruise

speeds: 30 m/s, 60 m/s, and 130 m/s, derived using the same optimization parameters.

61

It’s important to note that the results at 130 m/s represent only the feasible solutions.

As the cruise speed augments, the Pareto front tends to shift towards lower CL/CD

values. This could be attributed to the increased aerodynamic and structural challenges

at higher speeds.

The results at 130 m/s present an evident distinction. Unlike the relatively distributed

Pareto fronts at 30 m/s and 60 m/s, the solutions at 130 m/s are remarkably clustered.

This localized concentration indicates that, at this higher cruising speed, design solutions

that avoid flutter are limited, especially within the constraints of our design space.

Moreover, these solutions at 130 m/s are characterized by relatively higher masses and

moderate CL/CD values. This could imply that, to avoid flutter at this speed, the struc-

tures would have to be heavier or more robust, potentially compromising aerodynamic

efficiency.

Pareto fronts for 30 m/s and 60 m/s show a wider range of trade-offs between mass and

CL/CD, indicating a greater variety of feasible design solutions at these speeds.

In essence, the graph accentuates the intricate challenges faced in aerostructural design.

Especially at higher speeds, such as 130 m/s, the overly stringent constraint of flutter

within our design space narrows the optimal solutions, emphasizing the tension between

aerodynamic performance and structural robustness.

6.2 Computational Cost Analysis

In this section, we compare the computational efficiency of direct simulations using

SHARPy and predictions made with our surrogate models. All the computational re-

sults discussed in this section were obtained using a specific workstation, the details of

which are provided in Table 4.5.

A direct simulation with SHARPy takes approximately 93.49 seconds per run. In contrast,

our surrogate models predict the outcomes in less than a hundredth of a second.

However, the real advantage becomes evident when considering optimization procedures.

In Figure 6.5 the computational time for each optimization made is reported:

• An optimization run with 50 generations and a population size of 180 takes an

average of 321.76 seconds. This implies a total of 50 × 180 = 9000 evaluations.

• Another optimization scenario with 200 generations and a population size of 280

takes about 1825.03 seconds, equivalent to 200 × 280 = 56000 evaluations.

For the first set of optimizations conducted with SHARPy, the computational time re-

quired would have been approximately 9000× 93.49 seconds = 841410 seconds, equivalent

to nearly 10 days.

Using direct SHARPy simulations for the subsequent scenario would have necessitated

around 56000 × 93.49 seconds = 5235440 seconds, which amounts to roughly 60 days.

62

The data underscore that the adoption of SMs provides a considerable reduction in com-

putational time, especially in optimization contexts where multiple evaluations are re-

quired.

Figure 6.5: Computational costs for each optimization scenario.

6.3 Future Work

The work presented in this thesis has opened several avenues for future research:

• Increasing the dataset: Learning curves related to flutter velocity indicate potential

for further refinement. Unlike metrics such as mass, CD and CL, where learning

curves stabilize indicating optimal generalization of the model, the flutter model

appears to suffer from overfitting. This is evidenced by the disparity between the

training and validation scores and the absence of a plateau in the validation score

curve. Expanding the dataset in this domain, especially in critical regions, could

improve the performance and reliability of the surrogate model.

• Adaptive sampling during optimization: One of the main findings of this thesis is the

efficacy of surrogate models in substantially reducing computational time. Building

on this, an interesting approach would be the implementation of adaptive sampling

techniques during the optimization process to enhance the accuracy and robustness

of the surrogate model online. Such an approach, where the surrogate model evolves

and improves as the optimization progresses, can ensure better convergence and

solution quality.

• High-Fidelity RANS simulations: For better accuracy in the aerodynamic objec-

tives, a multi-fidelity approach integrating High-Fidelity RANS simulations can be

explored.

• Analysis across a spectrum of cruise speeds: This study was based primarily on a

few fixed cruise speeds. Expanding this analysis over a wider range of cruise speeds

63

will not only provide a richer dataset, but also pave the way for the integration

of cruise speed as a design variable. Such a comprehensive analysis can provide a

more holistic view of the aeroelastic performance landscape.

• Further refinement of the design space: An interesting observation made during

the analysis is that the optimal solutions for cruising speeds of 30 m/s and 60

m/s gravitate toward the boundary of the predefined design space, particularly

with regard to aspect ratio. This suggests that the current design space may not

fully capture the optimal regions for these objectives. It becomes imperative to

consider expansion and refinement of design space boundaries in subsequent studies

to ascertain and exploit more optimal design configurations.

• Exploration of alternative wing models: The Goland wing, while useful for many

preliminary studies, provides a simplified representation of real-world wing struc-

tures. The choice of wing model can significantly influence the results of an opti-

mization analysis. Although the Goland wing model has been effectively used for

the purposes of this thesis, exploration of alternative and potentially more realis-

tic wing models could shed light on new insights and produce better performance

metrics.

Incorporating these strategies can strengthen the robustness and accuracy of the opti-

mization framework based on the surrogate model, ensuring both computational efficiency

and reliability of design results.

64

Bibliography

[1] J. Wright and J. Cooper, Introduction to Aircraft Aeroelasticity and Loads. Aerospace

Series, Wiley, 2015.

[2] S. Sharma and V. Chahar, “A Comprehensive Review on Multi-objective Optimization

Techniques: Past, Present and Future,” Archives of Computational Methods in Engineer-

ing, vol. 29, p. 3, 07 2022.

[3] F. Bre and V. Fachinotti, “A computational multi-objective optimization method to im-

prove energy efficiency and thermal comfort in dwellings,” Energy and Buildings, vol. 154,

pp. 283–294, 2017.

[4] M. G. Fernández-Godino, C. Park, N.-H. Kim, and R. T. Haftka, “Review of multi-fidelity

models,” arXiv preprint arXiv:1609.07196, 2016.

[5] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker,

“Surrogate-based analysis and optimization,” Progress in Aerospace Sciences, vol. 41, no. 1,

pp. 1–28, 2005.

[6] P. V. Thomas, M. S. ElSayed, and D. Walch, “Review of Model Order Reduction Meth-

ods and Their Applications in Aeroelasticity Loads Analysis for Design Optimization of

Complex Airframes,” Journal of Aerospace Engineering, vol. 32, no. 2, p. 04018156, 2019.

[7] S. Koziel, D. E. Ciaurri, and L. Leifsson, “Surrogate-based methods,” in Computational

Optimization, Methods and Algorithms, pp. 33–59, Springer, 2011.

[8] M. Camana, S. Ahmed, C. Garćıa, and I. Koo, “Extremely Randomized Trees-Based

Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks,” IEEE Access, vol. 8,

pp. 19921–19933, 2020.

[9] J. Murua, R. Palacios, and J. Graham, “Assessment of Wake-Tail Interference Effects on

the Dynamics of Flexible Aircraft,” AIAA Journal, vol. 50, pp. 1575–1585, 07 2012.

[10] S. Verma, M. Pant, and V. Snasel, “A Comprehensive Review on NSGA-II for Multi-

Objective Combinatorial Optimization Problems,” IEEE Access, vol. 9, pp. 57757–57791,

2021.

[11] F. Afonso, J. Vale, Éder Oliveira, F. Lau, and A. Suleman, “A review on non-linear aeroe-

lasticity of high aspect-ratio wings,” Progress in Aerospace Sciences, vol. 89, pp. 40–57,

2017.

[12] E. Jonsson, C. Riso, C. A. Lupp, C. E. Cesnik, J. R. Martins, and B. I. Epureanu, “Flutter

and post-flutter constraints in aircraft design optimization,” Progress in Aerospace Sci-

ences, 2019.

[13] I. Sadrehaghighi, “Aircraft Multi-Disciplinary Optimization (MDO),” 2022. Series CFD

Open.

[14] J. R. Martins and A. B. Lambe, “Multidisciplinary Design Optimization: A Survey of

Architectures,” AIAA journal, vol. 51, no. 9, pp. 2049–2075, 2013.

65

[15] L. Brevault, M. Balesdent, N. Bérend, and R. Le Riche, “Decoupled Multidisciplinary

Design Optimization Formulation for Interdisciplinary Coupling Satisfaction Under Uncer-

tainty,” AIAA Journal, vol. 54, no. 1, pp. 186–205, 2016.

[16] J. R. R. A. Martins, A coupled-adjoint method for high-fidelity aero-structural optimization.

PhD thesis, Stanford University, 2003.

[17] D. E. Kvasov and M. S. Mukhametzhanov, “Metaheuristic vs. deterministic global op-

timization algorithms: The univariate case,” Applied Mathematics and Computation,

vol. 318, pp. 245–259, 2018.

[18] J. O. Agushaka and A. E. Ezugwu, “Initialisation Approaches for Population-Based Meta-

heuristic Algorithms: A Comprehensive Review,” Applied Sciences, vol. 12, no. 2, p. 896,

2022.

[19] S. Bandyopadhyay and S. Saha, Some Single- and Multiobjective Optimization Techniques,

pp. 17–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[20] M. Elyasi and A. Roudbari, “Multi-objective robust design optimization (mordo) of an

aeroelastic high-aspect-ratio wing,” Journal of the Brazilian Society of Mechanical Sciences

and Engineering, vol. 42, p. 560, 10 2020.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6,

no. 2, pp. 182–197, 2002.

[22] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of Multifidelity Methods in Un-

certainty Propagation, Inference, and Optimization,” Siam Review, vol. 60, no. 3, pp. 550–

591, 2018.

[23] P. Beran, D. Bryson, A. Thelen, M. Diez, A. Serani, and L. Mainini, “Framework for

Comparison of Multi-Fidelity Approaches for Military Vehicle Design,” in AVT-354 Re-

search Workshop on Multi-Fidelity Methods for Military Vehicle Design, (Varna, Bulgaria),

September 2022.

[24] C. Riso and C. E. S. Cesnik, “Impact of Low-Order Modeling on Aeroelastic Predictions

for Very Flexible Wings,” Journal of Aircraft, vol. 60, no. 3, pp. 662–687, 2023.

[25] A. C. Gray, C. Riso, E. Jonsson, J. R. R. A. Martins, and C. E. S. Cesnik, “High-Fidelity

Aerostructural Optimization with a Geometrically Nonlinear Flutter Constraint,” AIAA

Journal, vol. 61, no. 6, pp. 2430–2443, 2023.

[26] E. Jonsson, C. Riso, B. B. Monteiro, A. C. Gray, J. R. R. A. Martins, and C. E. S. Ces-

nik, “High-Fidelity Gradient-Based Wing Structural Optimization Including Geometrically

Nonlinear Flutter Constraint,” AIAA Journal, vol. 61, no. 7, pp. 3045–3061, 2023.

[27] D. Bryson, M. Rumpfkeil, and R. Durscher, “Framework for Multifidelity Aeroelastic Ve-

hicle Design Optimization,” in 18th AIAA/ISSMO Multidisciplinary Analysis and Opti-

mization Conference, (Denver, Colorado), 2017.

[28] A. S. Thelen, D. E. Bryson, B. K. Stanford, and P. S. Beran, “Multi-Fidelity Gradient-

Based Optimization for High-Dimensional Aeroelastic Configurations,” Algorithms, vol. 15,

no. 4, p. 131, 2022.

66

[29] G. Singh and R. V. Grandhi, “Mixed-Variable Optimization Strategy Employing Multi-

fidelity Simulation and Surrogate Models,” AIAA journal, vol. 48, no. 1, pp. 215–223,

2010.

[30] P. Kumar, K. Sinha, N. K. Nere, Y. Shin, R. Ho, L. B. Mlinar, and A. Y. Sheikh, “A

machine learning framework for computationally expensive transient models,” Scientific

reports, vol. 10, p. 11492, 2020.

[31] J. Li, X. Du, and J. R. Martins, “Machine learning in aerodynamic shape optimization,”

Progress in Aerospace Sciences, vol. 134, p. 100849, 2022.

[32] A. I. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate

modelling,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 463, no. 2088, pp. 3251–3269, 2007.

[33] K. R. Brouwer and J. J. McNamara, “Surrogate-based aeroelastic loads prediction in the

presence of shock-induced separation,” Journal of Fluids and Structures, vol. 93, p. 102838,

2020.

[34] A. Cea and R. Palacios, “Geometrically Nonlinear Effects on the Aeroelastic Response of

a Transport Aircraft Configuration,” Journal of Aircraft, vol. 60, no. 1, pp. 205–220, 2023.

[35] M. Sohst, J. Lobo do Vale, F. Afonso, and A. Suleman, “Optimization and comparison of

strut-braced and high aspect ratio wing aircraft configurations including flutter analysis

with geometric non-linearities,” Aerospace Science and Technology, vol. 124, p. 107531,

2022.

[36] F. Toffol and S. Ricci, “Preliminary Aero-Elastic Optimization of a Twin-Aisle Long-Haul

Aircraft with Increased Aspect Ratio,” Aerospace, vol. 10, no. 4, p. 374, 2023.

[37] S. L. Brunton and J. N. Kutz, Reduced Order Models, p. 373–374. Cambridge University

Press, 2019.

[38] G. Mendonça, F. Afonso, and F. Lau, “Model order reduction in aerodynamics: Review

and applications,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering, vol. 233, no. 15, pp. 5816–5836, 2019.

[39] D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: new approaches for

computational physics,” Progress in Aerospace Sciences, vol. 40, no. 1, pp. 51–117, 2004.

[40] T. Lieu, C. Farhat, and M. Lesoinne, “Reduced-order fluid/structure modeling of a com-

plete aircraft configuration,” Computer Methods in Applied Mechanics and Engineering,

vol. 195, no. 41-43, pp. 5730–5742, 2006.

[41] O. Stodieck, J. Cooper, S. Neild, M. Lowenberg, and L. Iorga, “Slender-Wing Beam Reduc-

tion Method for Gradient-Based Aeroelastic Design Optimization,” AIAA Journal, vol. 56,

no. 11, pp. 4529–4545, 2018.

[42] F. A. C. Viana, C. Gogu, and T. Goel, “Surrogate modeling: tricks that endured the test

of time and some recent developments,” Structural and Multidisciplinary Optimization,

vol. 64, pp. 2881 – 2908, 2021.

[43] A. A. Giunta, S. F. Wojtkiewicz, and M. Eldred, “Overview of Modern Design of Exper-

iments Methods for Computational Simulations,” in 41st Aerospace Sciences Meeting and

Exhibit, (Reno, Nevada, USA), January 2003.

67

[44] A. Hedayat, N. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications.

Springer Series in Statistics, Springer New York, 1999.

[45] M. D. Mckay, R. J. Beckman, and W. J. Conover, “A Comparison of Three Methods for

Selecting Values of Input Variables in the Analysis of Output From a Computer Code,”

Technometrics, vol. 42, no. 1, pp. 55–61, 2000.

[46] A. Gelman and J. L. Hill, 3 - Linear regression: the basics. 2012.

[47] G. Hutcheson, Ordinary Least-Squares Regression. SAGE Publications, Ltd., 1999.

[48] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal

Statistical Society: Series B (Methodological), vol. 58, pp. 267–288, 1996.

[49] M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,” Journal of

Machine Learning Research, vol. 1, pp. 211–244, 2001.

[50] T. J. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning. NY,

USA: Springer New York, 2009.

[51] T. K. Ho, “A Data Complexity Analysis of Comparative Advantages of Decision Forest

Constructors,” Pattern Analysis & Applications, vol. 5, pp. 102–112, 2002.

[52] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine Learning,

vol. 63, pp. 3–42, 2006.

[53] V. Vapnik, The Nature of Statistical Learning Theory. Statistics for Engineering and

Information Science, New York, NY, USA: Springer, 2000.

[54] A. Smola and B. Scholkopf, “A tutorial on support vector regression,” Statistics and Com-

puting, vol. 14, pp. 199–222, 2004.

[55] A. Rahimi and B. Recht, “Random Features for Large-Scale Kernel Machines,” in NIPS,

2007.

[56] Y. Xu and R. Goodacre, “On Splitting Training and Validation Set: A Comparative Study

of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization

Performance of Supervised Learning,” Journal of Analysis and Testing, vol. 2, 10 2018.

[57] N. Amor, M. Noman, and M. Petru, “Prediction of functional properties of nano TiO2

coated cotton composites by artificial neural network,” Scientific Reports, vol. 11, p. 12235,

06 2021.

[58] A. Kassambara, Machine Learning Essentials: Practical Guide in R. STHDA, 2018.

[59] B. Panda, “Hyperparameter tuning,” 10 2019.

[60] S. Pothuganti, “Review on over-fitting and under-fitting problems in Machine Learning

and solutions,” International Journal of Advanced Research in Electrical Electronics and

Instrumentation Engineering, vol. 7, pp. 3692–3695, 09 2018.

[61] M. Goland, “The Flutter of a Uniorm Cantilever Wing,” Journal of Applied Mechanics,

vol. 12, no. 4, pp. 197–208, 1945.

68

[62] A. Carre, A. Muñoz, N. Goizueta, and R. Palacios, “SHARPy: A dynamic aeroelastic

simulation toolbox for very flexible aircraft and wind turbines,” The Journal of Open

Source Software, vol. 4, p. 1885, 12 2019.

[63] M. J. Patil, D. H. Hodges, and C. E. S. Cesnik, “Nonlinear Aeroelastic Analysis of Complete

Aircraft in Subsonic Flow,” Journal of Aircraft, vol. 37, pp. 753–760, 2000.

[64] W. Zhicun, P. Chen, D. Liu, D. Mook, and M. Patil, “Time Domain Nonlinear Aeroelastic

Analysis for HALEWings,” in 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, (Newport, Rhode Island, USA), May 2006.

[65] J. Katz and A. Plotkin, Low-Speed Aerodynamics. Cambridge Aerospace Series, Cambridge

University Press.

[66] R. J. S. Simpson, R. Palacios, and J. Murua, “Induced-drag calculations in the unsteady

vortex lattice method,” AIAA Journal, vol. 51, no. 7, pp. 1775–1779, 2013.

[67] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach.

John Wiley, 2001.

[68] R. Palacios, J. Murua, and R. Cook, “Structural and Aerodynamic Models in Nonlinear

Flight Dynamics of Very Flexible Aircraft,” AIAA Journal, vol. 48, no. 11, pp. 2648–2659,

2010.

[69] R. Palacios and C. E. S. Cesnik, “Cross-Sectional Analysis of Nonhomogeneous Anisotropic

Active Slender Structures,” AIAA Journal, vol. 43, no. 12, pp. 2624–2638, 2005.

[70] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach,

vol. 4. 01 2001.

[71] S. Maraniello and R. Palacios, “State-Space Realizations and Internal Balancing in

Potential-Flow Aerodynamics with Arbitrary Kinematics,” AIAA Journal, vol. 57, no. 6,

pp. 2308–2321, 2019.

[72] M. Goland and Y. L. Luke, “The Flutter of a Uniform Wing With Tip Weights,” Journal

of Applied Mechanics, vol. 15, pp. 13–20, 03 2021.

[73] T. Corke, Design of Aircraft. Prentice Hall, 2003.

[74] R. Vos and S. Farokhi, Aerodynamics of Swept Wings, pp. 427–511. Dordrecht: Springer

Netherlands, 2015.

[75] M. Baudin, M. Christopoulou, Y. Collette, J.-M. Martinez, A. D. Lee, R. Sjögren,

and D. Svensson, “pyDOE2: An experimental design package for python.” https:

//pythonhosted.org/pyDOE/#, January 2020.

[76] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engi-

neering, vol. 9, no. 3, pp. 90–95, 2007.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

69

[78] Office of Primary Responsibility ACE-100, Small Airplane Directorate, “System Safety

Analysis and Assessment for Part 23 Airplanes,” Tech. Rep. 23.1309-1E, Federal Aviation

Administration, 11 2011.

[79] F. Biscani and D. Izzo, “A parallel global multiobjective framework for optimization:

pagmo,” Journal of Open Source Software, vol. 5, no. 53, p. 2338, 2020.

[80] A. del Carre, A. Muñoz-Simón, N. Goizueta, and R. Palacios, “SHARPy: A dynamic

aeroelastic simulation toolbox for very flexible aircraft and wind turbines,” Journal of

Open Source Software, vol. 4, no. 44, p. 1885, 2019.

[81] K. Jovanov and R. De Breuker, “Accelerated convergence of high-fidelity aeroelasticity us-

ing low-fidelity aerodynamics,” in Proceedings of the 16th International Forum on Aeroe-

lasticity and Structural Dynamics, St. Petersburg, Russia, vol. 28, 2015.

[82] C. A. Lupp, C. E. Cesnik, P. Beran, J. Deaton, and D. Easterling, “Including geometrically

nonlinear flutter constraints in high fidelity aircraft optimization,” in International Forum

on Aeroelasticity and Structural Dynamics (IFASD 2019), 2019.

[83] Y. Gavrilova, “How to choose a machine learning technique.” Last visited in 2023/1/15.

[84] A. B. Lambe and J. R. Martins, “Extensions to the design structure matrix for the de-

scription of multidisciplinary design, analysis, and optimization processes,” Structural and

Multidisciplinary Optimization, vol. 46, no. 2, pp. 273–284, 2012.

[85] J. R. Martins, J. J. Alonso, and J. J. Reuther, “A coupled-adjoint sensitivity analysis

method for high-fidelity aero-structural design,” Optimization and Engineering, vol. 6,

no. 1, pp. 33–62, 2005.

[86] S. Chakraverty, N. Mahato, P. Karunakar, and T. D. Rao, Advanced numerical and semi-

analytical methods for differential equations. John Wiley & Sons, 2019.

[87] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of Multifidelity Methods in Un-

certainty Propagation, Inference, and Optimization,” SIAM Review, vol. 60, no. 3, pp. 550–

591, 2018.

[88] R. Yondo, E. Andrés, and E. Valero, “A review on design of experiments and surrogate

models in aircraft real-time and many-query aerodynamic analyses,” Progress in Aerospace

Sciences, vol. 96, pp. 23–61, 2018.

[89] G. Mendonça, F. Afonso, and F. Lau, “Model order reduction in aerodynamics: Review

and applications,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering, vol. 233, no. 15, pp. 5816–5836, 2019.

[90] M. Giselle Fernández-Gonino, C. Park, N. H. Kim, and R. T. Haftka, “Issues in Deciding

Whether to Use Multifidelity Surrogates,” AIAA Journal, vol. 57, no. 5, pp. 2039–2054,

2019.

[91] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher, “Computational

intelligence: A methodological introduction,” Computational Intelligence, 2015.

[92] G. V. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics

of Control, Signals and Systems, vol. 2, pp. 303–314, 1989.

70

[93] H. J. HASSIG, “An approximate true damping solution of the flutter equation by deter-

minant iteration.,” Journal of Aircraft, vol. 8, no. 11, pp. 885–889, 1971.

[94] S. A. Dovgii and A. V. Shekhovtsov, “An Improved Vortex Lattice Method for Nonsta-

tionary Problems,” Journal of Mathematical Sciences, vol. 104, pp. 1615–1627, 2001.

[95] S. Y. Wie, S. Lee, and D. Lee, “Potential Panel and Time-Marching Free-Wake Coupling

Analysis for Helicopter Rotor,” Journal of Aircraft - J AIRCRAFT, vol. 46, pp. 1030–1041,

05 2009.

[96] V. T. T. Nguyen, Introduction to Optimum design. 01 2011.

[97] M. Nikbay, A. Yanangonul, L. Oncu, and M. Kocas, “Multi-objective and gradient based

structural design optimization of an aircraft wing,” 09 2008.

[98] M. Nikbay, A. Yanangonul, L. Oncu, and M. Kocas, “Multi-objective and gradient based

structural design optimization of an aircraft wing,” 09 2008.

71

	Introduction
	Motivation
	Objectives
	Document Outline

	Multidisciplinary Design Optimization (MDO)
	Overview of MDO
	Classification of Optimization techniques
	Multi-objective optimization
	Preliminary Concepts
	Categorization of Multi‑objective Optimization Techniques

	Current strategies for efficiently integrating aeroelasticity into MDO
	Multi-fidelity Models
	Conventional and Machine Learning-based Surrogate Models
	Reduced Order Models

	Surrogate modeling in MDO
	Design of experiments
	Surrogate modeling methods
	Linear models
	Decision trees
	Support Vector Machine for Regression (SVMr)

	Model selection and validation

	Methodology
	Data-Set Definition and Generation
	Wing model: The Goland wing
	Aeroelastic tool: SHARPy (Simulation of High Aspect Ratio planes)
	Design Space and Sampling

	Comprehensive SMs Analysis: from Selection to Testing
	Selection of SMs methods
	Training and validation of SMs
	Testing of SMs

	Optimization Process
	NSGA-II
	Optimization methodology
	Refinement of Design Space

	Results
	Optimization Results at 30 m/s Cruise Speed
	Optimization Results at 60 m/s Cruise Speed
	Optimization Results at 130 m/s Cruise Speed

	Conclusions and Future Work
	Conclusions
	Computational Cost Analysis
	Future Work

