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Abstract

This work proposes a novel approach for reconstructing the three-dimensional
(3D) shapes of fluid crystal formations in their slush state, characterised by the
coexistence of liquid and solid phases at the triple point temperature.

Slush mixtures present higher density and lower specific enthalpy compared
to their liquid counterpart, thus representing attractive candidates for different
applications, such as next-generation propellants in space and ground transportation.
However, the presence of solid particles in the liquid phase poses notable obstacles
in accurately capturing their complex morphologies, and innovative strategies are
required to efficiently characterise and employ slush propellants. The present study
leverages the Visual Hull technique, which is a well-known method in computer
vision and graphics, to address this challenge.
The objectives of this research are threefold: to evaluate the efficacy of advanced
computer vision methodologies in biphasic fluid characterisation; to provide a better
understanding of crystal structure formation within the slush state; and lastly,
to produce an extensive database, encompassing different types of fluid, which
will serve as foundation for validating predictive models. Each of these activities
constitutes a benchmark in developing groundbreaking storage methodologies for
new propellants.

The first part of the work consists of a comprehensive study of several fluids to
identify samples that exhibit similar features to real next-generation propellants
(in particular hydrogen) and define a variety of test cases. The Visual Hull is then
presented and explained, along with the related algorithm for developing the 3D
model. Subsequently, a feasibility study is conducted to determine the minimum
number of cameras that could be used while maintaining an acceptable error in the
reconstruction. The following part describes the experiment implementation. A
dedicated facility was designed and built, consisting of 8 paired cameras positioned
on a circle around a transparent tank, filled with the chosen test fluid in its liquid
phase. From above, a frozen body is suspended in the tank. The experimental
section showcases the application of the Visual Hull technique to multiple scenarios
involving different samples under controlled conditions. The results obtained
from the 3D reconstructions are presented and the performance of the algorithm



is evaluated. In the final section, the broader implications of this research are
discussed and future research directions are delineated.

Overall, this thesis provides a solid contribution to the advancement of com-
putational imaging of slush-state fluid crystals, offering a holistic framework for
precise 3D shape reconstruction. Moreover, the integration of Visual Hull-based
methodologies in biphasic fluids observations represents a noteworthy leap for
gaining insights into the qualities of this fascinating state.
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Chapter 1

Introduction

1.1 Context

Given the ongoing rise in energy demand and the climatic issues humanity is
currently experiencing, it is crucial to explore new methods to produce low-carbon
energy. In this framework, hydrogen is steadily emerging as one of the most
effective energy sources, as it does not emit greenhouse gases when it is produced
using renewable energies. Therefore, the academic partnership project BE-HyFE
(Belgian Hydrogen Fundamental Expertise, Figure 1.1) was launched to explore
hydrogen’s enormous potential. This project aims to support the Belgian industry
in the development of a new approach to producing energy, that fulfils European
environmental objectives.

Figure 1.1: BE-HyFE (Belgian Hydrogen Fundamental Expertise) logo

1



Introduction

The present work is part of a PhD project funded by BE-HyFE, which focuses
on "Advanced characterization of densified cryogenic hydrogen". Specifically, the
research topic seeks to better understand the thermodynamic qualities of hydrogen
in its slush state and to ultimately improve storage efficiency. The slush state is a
multiphase mixture of vapour, liquid, and solid crystals close to the hydrogen triple
point temperature, and storing hydrogen in this state can be a way to optimise its
energy storage capacity.

The major objective of the research is to develop a multi-phase solver that can
accurately simulate the thermal and dynamical interaction between particles and
fluids, as well as take into account the crystals melting process, given their complex
geometry. When subjected to specific heat regimes or mechanical stimulation,
hydrogen crystals may experience a phase change; as a result, their physical
boundaries may assume arbitrary and complex shapes. To validate the numerical
solver, an experimental campaign is required, as detailed discussed in [1].

1.2 Project goals and methodology

Numerous researchers, among which Reynier et al [2] and Jin T. et al. [3], pointed
out a notable lack of comprehensive knowledge on the slush-state characterisation.
This is mainly due to the technical challenges associated with the research, often
requiring specialized equipment and techniques, which implies considerable costs
as opposed to very limited applications, until very recent years. With the rise of
hydrogen propellants as next-generation fuels and energy sources, however, the
interest in studying the slush state is constantly growing, as it allows considerable
improvements in energy efficiency and thermal management [4].

The present work steps towards this framework, aiming to precisely characterise
the slush particles by employing a well-established computer vision methodology,
the Visual Hull technique. The advantage lies in establishing a straightforward,
cost-effective, and easily repeatable observation strategy.

Understanding when and how the frozen crystals begin to melt due to heat
exchange with the liquid phase constitutes a critical aspect of the research. Hence,
the study focuses on tracing the evolving shape of the crystal over time, to precisely
quantify heat transfer and acquire important data for validating predictive models.

Thus, the goal is to provide an extensive multi-fluid database that accurately

2



1.2 – Project goals and methodology

tracks the evolution of melting particle boundaries, which will be useful for the
validation of a numerical solver, able to simulate the dynamics and thermal in-
teractions of complex-shaped particles, such as hydrogen crystals in a biphasic
flow.

This thesis is organised as follows: the next chapter introduces the slush state,
describing its features and properties; in Chapter 3, the principal concept of the
Visual Hull technique is explained in detail, along with the related codes used
for developing the 3D model. Chapter 4 presents the experimental setup and all
its components, while Chapter 5 discusses the calibration process of the setup.
Chapter 6 contains the methodology validation, as well as several improvements to
the technique. Finally, the resulting 3D reconstructions are shown in Chapter 7,
and the conclusive remarks are summarised in Chapter 8.

3
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Chapter 2

Slush state mixtures

2.1 Phenomenon overview

Slurries are dual-phase mixtures where solid particles are dispersed in a liquid
carrier [5]; when the liquid and solid phases are formed from the same substance
that is partially solidified coexisting in thermal equilibrium, it is referred to as
slush [2]. Typically, slush formation occurs at the thermodynamic triple point, as
shown below:

Figure 2.1: Hydrogen phase diagram, with its triple point denoted as TP, the
normal boiling point reported as NBP, and an operational slush point indicated as
SL [6]

5



Slush state mixtures

As can be seen in the graph (Figure 2.1), it is possible to easily control the pres-
sure of a slush-state substance by slightly adjusting the temperature. Furthermore,
slush mixtures exhibit higher density compared to their liquid counterpart, and
the presence of solid crystals reduces their specific enthalpy. These properties are
displayed in Figure 2.2, which represents an enthalpy-temperature curve. External
heat sources induce the melting of crystals, altering the initial solid fraction in
the mixture. Then, the solid phase needs to completely melt before reaching the
saturation curve, thus it does not transition to a vapour state as a significant
portion of the heat gets absorbed from the solid crystals. This latent heat absorbed
during the phase change enhances the slush’s capacity to store energy, enabling the
slush to endure higher temperatures for an extended period before vaporization [6].

Figure 2.2: Generic enthalpy-temperature diagram [6]

The advantageous combination of lower temperature and specific enthalpy as the
density increases makes the slush state an attractive choice for various industrial
applications: for example, cryogenic slushes show potential as refrigerants and
propellants for future space launchers.

2.2 Slush characterisation

The rheological properties of slush are directly influenced by the size and shape of its
crystals, which typically exhibit an irregular shape. Thus, accurate measurements

6



2.3 – Experimental requirements

of these characteristics are essential to efficiently design suitable infrastructures
that enable the use, storage and transportation of slush mixtures [6].

The parameters involved in the evaluation of the qualities and properties of a
slush mixture are:

• Solid Volume Fraction α, which represents the ratio of the solid phase’s volume
to the overall mixture volume. It is obtained as a weighted average of the
densities of the two distinct phases, determined at the slush temperature;

• Density Ratio β, defined as the ratio between the substance’s solid density
and its liquid state density:

β = ρs

ρl

,

where ρs is the solid density and ρl is the liquid density;

• Solid particles mean diameter, Dp;

• Liquid Dynamic Viscosity, µl. In literature, the slurry is often regarded as a
Newtonian fluid, where viscosity rises as the solid volume fraction increases;

• Settling velocity Vsl, determined by the equilibrium between gravitational
forces and drag force on a particle in a quiescent medium. Hence, it represents
the maximum speed that the particle can reach in a liquid when its acceleration
becomes zero. As reported in [6], it can be estimated analytically as:

Vsl =
(ρl − ρs)gD2

p

18µl

,

where ρl, ρs are the liquid and solid densities, g is the gravity acceleration,
Dp the particle diameter and µl the liquid dynamic viscosity of the substance.
The settling velocity aligns with the direction of g, and it can be positive or
negative depending on the density ratio between the two phases.

2.3 Experimental requirements

As documented in [6], particle size analysis of cryogenic slush has been conducted
using various methods, such as photography or microscope imaging, thereby ob-
taining two-dimensional data about the slush crystals. However, these techniques
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Slush state mixtures

are limited in providing information on the three-dimensional shape of particles.
Additionally, slush often exhibits a high solid concentration, making it challenging
to detect particle borders with flow visualization methods. For these reasons,
the application of the Visual Hull technique (introduced in Chapter 3) to slush
particle observation can be considered extremely attractive, as it provides three-
dimensional information from a set of 2D images. Nevertheless, it is necessary to
outline definite requirements, due to the limitations of the observation technique
and the significance to slush research. Considering the demanding thermodynamic
conditions required to achieve the slush state for highly promising substances like
hydrogen (Triple point at TT P = 14 K) or nitrogen (TT P = 64 K), it is worth to ex-
plore feasible alternatives, more accessible yet presenting some similarities with the
target. This study aims to use hydrogen as a reference and identify other substances
sharing one or more features similar to it, for comparative analysis. Accordingly,
the guidelines for the implementation of the experiment are the following:

• The selected material must have identical compositions in both its liquid and
solid states; in other words, the solid phase must be formed by solidifying the
same substance as the liquid phase. In addition, there must not be any third
(gaseous) phase involved;

• The solid phase must melt in the liquid phase. In addition, the substance
must have a freezing point above −30◦C, which is the lowest target point of
the freezer present in the Von Karman Institute laboratory;

• The substance must be transparent, ensuring that the solid phase is distinctly
visible within its liquid phase, and in clear contrast with the background. This
is essential to enable accurate optical measurements and correctly extract the
target’s shape from the image;

• The risk hazards in the laboratory must be minimal (i.e. the mixture must
not be toxic nor flammable);

• The chosen substitute mixture must have similar characteristics to slush
hydrogen (for example, similar β);

• Information on temperature measurements is needed, as they will constitute the
boundary condition for predictive model validation. Therefore, thermocouple
installation must be considered.

8



2.4 – Test substance selection

Taking all these requirements into account, the experiment was performed with
three different solid-liquid substances, in which the two phases are of the same
species and melting occurs. The substances are in their liquid state at room
temperature and are contained in a tank to imitate the storage condition.

2.4 Test substance selection
To identify the most suitable species to simulate some characteristics of hydrogen,
an extensive literature review was carried out, which highlighted the viability of
Phase Change Materials (PCM) as attractive candidates for the experiment.

Phase Change Materials (PCMs) are substances able to absorb and release heat
during their phase change, thus making them latent heat storage materials. A phase
change material (PCM) can efficiently absorb a considerable amount of energy
during the melting process and subsequently release stored latent energy when
solidifying, and these processes are usually almost isothermal [7], [8]. Several types
of PCMs are available, each with distinct transition temperatures and applications.
Paraffins, organic compounds derived from petroleum, are a common example.
Moreover, they generally possess a relatively low melting point, usually around
room temperature. Their most attractive properties for experimental purposes are
reported in detail in [7], and summarised below:

• Favorable phase-transition temperature at ambient pressure;

• Several advantageous chemical properties:

– Long-term chemical stability;

– Construction materials compatibility;

– Non-toxic and non-flammable;

• Economics properties: Affordable and widely available.

As a result, a table was compiled containing the most promising species that
have been identified for experimental use. The first row of Table 2.1 displays
the properties of hydrogen, for comparison with the features of the alternative
substances. The settling velocity was calculated for two distinct values of the
particle diameter Dp found in literature, to quantify Vsl either for small or larger
solid particles.

9



Slush state mixtures

Fluid TF
β

µl Vsl [m/s], Vsl [m/s],
[°C] [P a · s] DP = 0.5 mm DP = 3 mm

Hydrogen −259.19 1.12 2.50 · 10−5 0.04 1.5971
Lauric Acid 43.50 1.06 5.93 · 10−3 0.0013 0.046

Paraffin Wax −50 ∼ 60 0.92 ∼ 1.18 ∼ 20 · 10−3 8.16 · 10−4 0.0294
Octadecane 27.50 1.04 3.80 · 10−3 0.001 0.0361

Eicosane 36.70 1.11 4 · 10−3 0.0028 0.0993
Polyethylene Glycol 34 1.02 16.50 · 10−3 1.65 · 10−4 0.0059

Water 0 0.92 0.89 −1.25 · 10−2 −4.48 · 10−1

Table 2.1: Substance selection: the relevant properties for each substance are
summarised

The first substance listed is lauric acid, a saturated fatty acid of medium-chain
length. It can be found in various vegetable fats as well as in coconut and palm
kernel oils. It is mentioned in [9], where a certain amount of lauric acid is melted
in a vertically inclined rectangular enclosure. However, it exhibits a rather high
freezing temperature, thus requiring a heating system for phase change.

The next option is paraffins, which are white or colourless solid waxes. It is
composed of saturated hydrocarbons, typically a combination of straight-chain
n-alkanes CH3–(CH2)–CH; the crystallisation of the chains causes the release of a
significant amount of latent heat. They are highly versatile substances, as the melt-
ing point and the latent heat of fusion depends on chain length. Consequently, they
can manifest numerous qualities, including a wide range of freezing temperatures,
reliability, non-corrosiveness and affordability [7]. Furthermore, a large number
of studies employ several paraffin types, thereby making it a well-documented
material. A few examples of relevant studies are [10], [11] and [12]. Among the
different paraffin varieties, Octadecane is particularly interesting, as showcased
in [12], where a solid volume of octadecane is melted in its liquid phase within a
spherical tank. It can be seen that the solid phase is clearly recognisable within
the transparent liquid phase. Nevertheless, it features a moderately high freezing
temperature.

n-Eicosane is an aliphatic hydrocarbon used for candle production and also
presents several applications for cosmetics, lubricants, plasticizers, and the petro-
chemical industry. It is a paraffin-based compound, employed by Kozak, Rozenfeld
& Ziskind [13] for a study on close-contact melting effects.
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2.4 – Test substance selection

Another appealing alternative is Polyethylene glycol (PEG), whose use is re-
ported in [14]. It is a synthetic polyether compound known for its biocompatibility
and hydrophilic nature. The most common applications are in the medical field as
well as in the industrial and chemical sectors.

After a first assessment of the properties listed in the table, it was decided to
discard all substances that require a heating system for melting, thus focusing on
the identification of suitable paraffin for the considered experimental conditions.
In particular, the company Rubitherm GmbH [15] produces a wide variety of kinds
of paraffin for heat-storage applications; of these, two types were selected, whose
properties are provided in the summary Table 2.2. Moreover, slush water is also
included in both Table 2.1 and Table 2.2: despite its low-density ratio and high
viscosity, it is easily available and manageable, thus serving as an initial simple
test case for demonstrating the efficacy of the Visual Hull Technique.

Substance TF [°C] β
ρl ρs µl Vsl [m/s],

[g/cm3] [g/cm3] [mP a · s] DP = 2 mm

Hydrogen −259.19 1.12 0.069 0.077 0.025 0.71
Water 0 0.92 1 0.92 0.89 0.2052

RT-9HC -9 1.17 0.75 0.88 1.1 0.2576
RT5HC 5 1.14 0.77 0.88 1.6 0.1499

Table 2.2: Selected substances properties

As can be seen, RT-9HC and RT5HC paraffins feature a density ratio fairly
similar to that of hydrogen (especially RT5HC). The former freezes at −9◦C,
whereas the latter at 5◦C. In addition, both types are in liquid form at room
temperature and do not require any specific storage methods.

Upon completion of this investigation, the structure of the experiment emerges:
for each substance, a small part will be frozen, and then immersed in its liquid
phase within a transparent tank. The alterations in both volume and temperature
will be meticulously tracked over time.
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Chapter 3

The Visual Hull Technique

3.1 Theory

The chosen technique for this work is called Visual Hull construction, and repre-
sents the starting point for a large majority of 3D shape construction methodologies,
hence constituting an important challenge in the field of computer vision.

Visual Hull’s fundamental idea is to use an object’s silhouettes from multiple
angles to reconstruct it in three dimensions. A silhouette can be defined as a
two-dimensional representation of the outline of an object; every silhouette created
by a camera view confines the subject to a visual cone (Figure 3.1). Specifically,
each visual cone represents the projection of a silhouette obtained from a different
view, and the intersection of all these cones forms a reconstruction of the real
object’s shape [16]. For this reason, this technique is part of a larger family of
techniques that use silhouettes for the purpose of 3D reconstruction of the observed
object, known as Shape From Silhouette (SfS), first introduced by Baumgart in his
PhD thesis (1974) [17].

The final result is therefore an approximate reconstruction of the real shape of
the observed object.

Using the notation provided by Laurentini in 1994 [19], it is possible to define
the set of silhouette images obtained from N cameras at time ti as:

{{Sn
i }; n = 1, ..., N} .

Being the perspective projection function {Πn} employed to transform the 2D
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The Visual Hull Technique

Figure 3.1: Visual Hull shape reconstruction, via the intersection of the visual
cones [18]

image coordinates of a 3D point P in the nth image, a volume Ω explains exactly
{Sn

i } if its projection onto the nth image plane coincides with the silhouette image
{Sn

i } for all n ∈ {1, ..., N} so that:

Πn(Ω) = Sn
i .

The Visual Hull is defined to be the largest volume which exactly explains {Sn
i }

for all n ∈ {1, ..., N} [18]. Therefore, the reconstruction gets better as the number
of cones increases. Another important issue is the position of the cameras: the
angle between each view should be reasonably wide, in order to capture all the
features of the target. This can be seen in Figure 3.2, where every Cn

i represents a
camera viewpoint.

3.2 Features of the technique

The main advantage of the Shape-From-Silhouette approaches is that the compu-
tation of the silhouettes is easy to implement, assuming an indoor environment
with static lights and cameras. Where these conditions are not fulfilled, shadows
or moving backgrounds can make it challenging to extract an accurate silhouette
from the images. Moreover, the SfS construction provides an upper bound for
object shape without knowing the reflectance and texture properties of the object.
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3.3 – Voxel-based approximation

Figure 3.2: Importance of cameras positioning [18]

However, these algorithms also present some drawbacks to be addressed. First of
all, the silhouette calculation is very sensitive to errors in camera calibrations and
noise, which may cause problems for the intersection of the visual cones, therefore
resulting in poor 3D final reconstructions. The results are also not accurate for
concave objects, and the method requires a precise segmentation of the object
silhouette from its background. Furthermore, the result of each SfS algorithm is
just an approximation of the actual object’s shape, especially if there are only a
limited number of cameras; as a result, accurate reconstructions depend on the
fulfilment of various conditions (such as proper light, object segmentation from the
background, etc.) that cannot always be achieved, thus limiting the applications of
the method.

3.3 Voxel-based approximation

The simplest way to obtain an actual construction of the Visual Hull would
be by intersecting the visual cones (as showed in Figure 3.3); however, as the
Visual Hull reconstruction consists of a curved and irregular surface, it requires
a sophisticated geometrical representation for its cones. This leads to higher
complexity and numerical instability, which can be avoided through the use of
approximate representations, such as polyhedral shape or volume-based approach.
In practice, the voxel-based SfS computation (which is a form of volume-based
approximation) relies on the same assumptions of the visual cone intersection,
but the final shape representation is done by 3D volume elements (called voxels).
A voxel is a 3D space into a regular grid of elements, or in other words, is the
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smallest unit of volume when dividing 3D space into discrete regions. Depending
on the location of each voxel in the visual cones (inside or outside the silhouette),
the region of space is divided into sections: all voxels forming a silhouette are
intersected to reconstruct the 3D shape of the object, while voxels belonging to the
background are discarded.

Figure 3.3: Left (a): 2D example of visual cones intersection. Different views of
the object O lead to different silhouettes, and the intersection of their projection
forms the Visual Hull. Right (b): 2D example of a voxel-based approximation of
an object by a certain algorithm [16]

Although this technique is straightforward and fast, it has one major disadvan-
tage: the resulting shape is significantly larger than the actual shape of the object
(as illustrated in Figure 3.3), which makes it feasible only for applications where
an approximation is sufficient. Nevertheless, by providing a sufficient number of
visual cones (i.e. viewpoints) and a strategic camera placement, it is possible to
overcome these limitations.

3.4 The Deterministic Visual Hull
The algorithm adopted in the current work is an implementation of the voxel-based
Visual Hull reconstruction method developed by Egri & Han [20]. The method is
called Deterministic Visual Hull and it makes use of Foreground Segmentation
algorithms to determine if the voxel is inside or outside the silhouette. Basically,
these algorithms replace the image with a binary mask (silhouette) that indicates
which pixels are part of the object projection and which are part of the foreground:
this means that if a pixel is inside the silhouette, its value is 1 (white), otherwise,
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3.4 – The Deterministic Visual Hull

its value is 0 (black) and is part of the background (therefore, it is discarded).
Then, they perform the conversion of the 3D pixels (X,Y,Z) from voxels to 2D
values (x,y); hence, control is implemented to check whether the pixel belongs or
falls under the silhouette.

Based on the Visual Hull algorithm, the desired dataset needs to contain images
taken from a variety of views, together with the camera’s intrinsic and extrinsic
parameters. The code created by Egri & Han (that can be found in their GitHub
[20]) uses the Middlebury Multi-view Stereo dataset [21].

3.4.1 Algorithm implementation

The Voxel-Based Visual Hull is computed with the following algorithm:

1. Read the files in input (images, camera parameters);

2. Rebuild the camera parameters matrices and vectors;

3. Pre-process the input images (if needed) and compute the silhouettes from
them;

4. Create a Voxel grid, which constitutes the 3D space in which the shape of the
object is computed. The dimensions are M × M × M , in which each voxel
stores a value in x, y, z coordinates in the interval [0, N ];

5. For each voxel (M3 in total), initialize with count 0;

6. For each silhouette, from i = 1 to N :
For each voxel vj = (x; y; z), from j = 1 to M × M × M :

• Perform the voxel projection onto the i-th image plane using Pi(x; y; z; 1)T ,
where Pi represents the projection matrix, and (x; y; z; 1)T denotes the
voxel’s homogeneous coordinates. This process is divided into two steps:

– project voxels centers to image;
– project voxels to silhouette;

• If the projection falls within the object mask, increment the voxel’s total
count by 1;

7. Perform operations on the voxel grid:

• Store the computed voxel grid V ;
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• Compute a threshold T to determine whether a particular voxel gets filled
(binary 1) or not (binary 0) in the final reconstruction. Hence, all voxels
with a count ≥ T are regarded as filled and part of the object, whereas
the others are considered in the background and remain empty;

8. Obtain mesh representation by converting the voxel grid by applying the
Marching Cubes algorithm (generally used to extract iso-surfaces from volu-
metric data).

3.5 Input data optimisation

The existing Deterministic Visual Hull code, as presented by its authors, demon-
strates excellent results when provided with 16 camera views as inputs, as presented
by the authors [20]. Additionally, the dataset was obtained through the use of a
mechanism able to precisely rotate a single camera around a stationary object, thus
providing very accurate data. However, this sequential approach is impractical
when applied to objects with dynamic shapes that evolve over time; therefore, a new
methodology needs to be developed, involving multiple cameras to simultaneously
capture images from different viewpoints.

Another important aspect is the significant complexity of the experimental setup,
which also implies a substantial manufacturing cost. Hence, it becomes essential to
explore the feasibility of reducing the number of camera views while maintaining an
acceptable level of error in the final reconstruction (relative to the optimal scenario
with 16 images). This leads to determining the optimal number of cameras that
ensures an acceptable level of reconstruction.

The devised strategy for error estimation and viewpoint optimisation is divided
into the following steps:

1. Identify different reliable error metrics, to evaluate the error between the
reconstructions;

2. Quantification of the errors in reconstructions with a suboptimal number of
images using the original dataset (specifically, the dinosaur sculpture from
the Middlebury dataset [21]. The method consists of increasing the angle of
observation between the views, thus eliminating some input images (since
every view is defined by a set of angular coordinates);
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3.5 – Input data optimisation

3. Compare the errors and the reconstructions to identify the best trade-off
result.

3.5.1 Error evaluation metrics

Given the voxel grid of the original reconstruction (obtained from the Middle-
bury dataset of a dinosaur sculpture [21]), two distinct metrics were employed to
quantitatively assess the impact of reducing camera views on the reconstruction.

The first metric is the voxel average error and it involves voxel-wise comparison
between two reconstructions. It is determined as the weighted average of the
absolute difference between the studied reconstruction and the reference, hence
denoting an absolute measurement expressed in data units (voxels). It is calculated
as:

Errvox,avg =
q |voxelnew − voxelref |

voxel number
,

where voxelnew is the voxel grid of the considered reconstruction, while voxelref is
the reference. This metric provides insight into the deviation of the reconstruction
at a voxel level: by calculating the difference between each pair of values, the
obtained values indicate how much the values differ from each other.

The second metric, on the other hand, introduces the concept of occupied
volume difference: this involves calculating the volume of the original recon-
struction inside the bounding box (in terms of voxels) and then subtracting it from
the volume occupied by the studied reconstruction within the same bounding box.
Therefore, this metric assesses the similarities between the volumes of the two
reconstructions. If the difference is small, the two reconstructions probably share a
similar distribution of occupied voxels; conversely, a high value indicates that there
is a significant discrepancy between volumes. It is calculated as:

∆V olocc [%] = V olumenew − V olumeref

V olumeref

· 100 ,

where the new volume is determined as the product between the number of
occupied voxels in the grid and a single voxel size. As the number of viewpoints
decreases, a greater volume is expected, since there will be less detail retrieved
from the edges of the silhouettes.
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3.5.2 Error Analysis and Results

The results are summarised below in Table 3.1:

Number of images Average Voxel Error ∆V olocc

16 images - -
15 images 0.6211 0.0022 %
14 images 1.6899 0.6370 %
10 images 3.508 1.3635 %
8 images 4.3743 2.7868 %
6 images 5.5066 8.5527 %

Table 3.1: Error comparison when decreasing the number of images

As the input images decrease, there is a reduction in the accuracy of the
reconstruction and a consequent increment of the object volume, which follows a
non-linear trend. Specifically, it can be seen that for up to 10 input images the
differences are minimal: the values in the considered voxel grid have a discrepancy
up to about 3.5 units from the corresponding points in the reference, resulting
in a very similar reconstruction. The volume further displays a slight increase
with 8 viewpoints (less than 3% deviation from the original), but then the error
considerably increases when using only 6 images, to almost 9%.

By evaluating the quality of the reconstructions and taking into account the
metrics for quantifying the error, the error obtained with 8 images, less than 3%,
was considered acceptable, with the advantage of a significant reduction in the
viewpoints required for reconstruction (half of the initial inputs).

After evaluating the reconstruction quality and taking into account the error
through the presented metrics, it was decided to employ a total of 8 viewpoints,
as it differs by less than 3% from the reference with the advantage of a significant
reduction in the required viewpoints (half of the initial inputs). Therefore, an
experimental setup equipped with 8 cameras was designed, allowing the acquisition
of 8 different views around the target.
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Chapter 4

Experimental setup

In this chapter, the main components of the experimental setup are presented, as
well as the complete setup views and its geometric model.

The complete experimental setup appears as follows:

Figure 4.1: Complete Visual Hull setup structure, front view. Each component is
marked by a number: 1) Cameras, 2) Tank, 3) Background box, 4) Support, 5)
Optical plate
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Figure 4.2: Experimental setup, top view

4.1 Cameras

The camera model employed in the experimental setup is the ESP32 Cam,
developed by Espressif Systems. The ESP32 Cam is a compact camera module,
which integrates the microcontroller with the camera sensor OV2640; it possesses
remarkable technical specifications, providing substantial computing power for
image processing and data handling.

The main features and characteristics are presented in the following Table 4.1.
The camera is shown in Figure 4.3; additional information can be found at [22].

The necessary code for its operation is built-in in the espressif library on
the Arduino IDE platform. To upload the script an FTDI programmer (shown in
Figure 4.4) is needed, which serves as a USB-to-Serial converter, allowing to plug
the camera to a USB port. Then, the camera establishes a web connection and
can be controlled from the user interface on the terminal. For the present scenario,
eight cameras were deployed, and connected to the same local wireless network.

To achieve precise control of the camera positions during experiments, a suitable
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4.1 – Cameras

ESP32 Cam & Lens

Microcontroller 32-bit dual-core processor
RAM 520KB SRAM + 4M PSRAM

Image Sensor OV2640
Image resolution up to 1600x1200

Field Of View 65°
Camera dimensions 40.5mm x 27mm x 4.5mm

Additional features
Onboard PCB antenna

Wi-Fi and Bluetooth capabilities
Arduino, MicroPython compatibility

Table 4.1: Camera specifications [22]

Figure 4.3: Esp32 Cam with OV2640
lens

Figure 4.4: FTDI Programmer

cover and threaded support were employed. The cover, from [23], serves a dual
function: firstly, it fixes the camera’s position in the setup, blocking unnecessary
degrees of freedom; secondly, it provides physical protection, preventing accidental
damage to the delicate camera module. Additionally, the cover is fastened with
multiple nuts to the threaded support, which is then inserted into the optical
breadboard, ensuring the camera stability and allowing height adjustments. The
cover and the threaded support are shown in Figure 4.5.
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Figure 4.5: Camera cover fastened on the threaded support
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4.2 Tank
The transparent tank is cubic-shaped with external dimensions 20 × 20 × 21 cm

(length × width × height). The walls thickness is 1 cm, thus providing an internal
volume of 18 × 18 × 20 cm = 6480 cm3 = 6.48 liters. It is made of plexiglass
to ensure transparency, allowing for clear observation of solid-liquid interactions.
Furthermore, the cubic shape enables a uniform distribution of the fluid, maintaining
homogenous conditions everywhere in the volume, and provides sufficient distance
of the frozen object from the walls. The tank is depicted in Figure 4.6.

Figure 4.6: Plexiglass cubic tank
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4.3 Background box, support and optical bread-
board

For the deterministic visual hull algorithm to operate smoothly, a dark background
is required: therefore, a cubic metal framework with one side open was built, with
dimensions 60×60×60 cm. The lateral walls were then wrapped with black plastic.
A metal support with a plexiglass rod was then placed on the upper part of the
lateral sides, to allow the thermocouples to be positioned in the tank, as shown in
Figure 4.7.

Lastly, these components are placed on the optical breadboard, a flat metal
surface provided with threaded holes at fixed distances, allowing standardised
attachment points to secure the elements of the setup.

Figure 4.7: Background box and metal support of the transparent rod (upper
view)
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4.4 Thermocouples

A thermocouple is a sensor composed of two different metal wires joined at one end,
called junction. When a temperature difference occurs between the junction and
the other end (known as cold junction or reference junction), a voltage is generated
across the wires. This voltage is directly proportional to the temperature variation,
thus measuring the temperature at the hot junction [24].

The fundamental principle behind a thermocouple is the Seebeck effect: different
metals generate distinct voltages when subjected to the same temperature gradient,
thereby enabling the temperature to be determined by correlating it with the
voltage difference. This is displayed in Figure 4.8:

Figure 4.8: Basic principle of a thermocouple [24]

Thermocouples employ different combinations of metals or metal alloys. For
the considered Visual Hull experimental setup, the type K thermocouples were
used, made of chromel and alumel; the principal advantage of this sensor type is
its low cost and wide temperature range. Specifically, a total of five thermocouples
were deemed necessary, to monitor the heat transfer in the tank; the configuration
is displayed in Figure 4.9. Two thermocouples measure the vertical temperature
gradient, one at the bottom of the tank and one on the fluid surface at the top;
a thermocouple is located on a lateral wall, while the last one is placed inside
the frozen object. In this way, it is possible to assess the boundary conditions of
the experiment. Temperature acquisitions are then obtained using the Labview

software.
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Figure 4.9: Thermocouples placement scheme
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4.5 – Modelling of the experimental setup

4.5 Modelling of the experimental setup

The establishment of a robust experimental framework is fundamental for accurate
data acquisition, especially when it comes to three-dimensional reconstruction
from images. To precisely track the dimensions and camera positions within the
physical setup, a MATLAB model has been implemented. This model serves as a
virtual representation of the real-world configuration, a "digital twin" that includes
all the geometric information such as camera heights, orientation, and distances
from the target. The inclusion of geometric information facilitates a comprehensive
understanding of the experimental setup, while also providing a basis for the
subsequent calibration process.

Assuming the center of the tank as the origin of the geometric reference system
denoted as (X, Y, Z), and the real-world reference system indicated as (xr, yr, zr),
the cameras positions in (X, Y, Z) are summarised in the following table:

Camera X [cm] Y [cm] Z [cm]

1 25.5 1.5 6.5
2 25.5 1.5 -6.5
3 6.5 1.5 -25.5
4 -6.5 1.5 -25.5
5 -25.5 1.5 -6.5
6 -25.5 1.5 6.5
7 -6.5 1.5 25.5
8 6.5 1.5 25.5

Table 4.2: Camera coordinates in the geometric reference system

The cameras are indeed positioned at a height of 1.5 cm from the origin, which
corresponds to 11.5 cm from the ground in (xr, yr, zr), around a circumference of
52.63 cm diameter. Moreover, the cameras are paired, and the separation distance
between two cameras within a pair measures 13 cm. The angle between a camera
pair and the setup reference system’s origin (the tank’s center) was denoted as θ,
and can be calculated through the following process:

1. Computation of the circumference radius on which the cameras are placed.
This parameter can be easily derived by knowing that the rectangle formed
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by two opposing pairs has dimensions 51 cm × 13 cm since the diameter will
coincide with the rectangle’s diagonal:

D =
√

512 + 132 = 52.63 cm → r = D/2 = 26.32 cm ;

2. Once the radius r is known, it is possible to determine the angle between two
points and the center of a circumference Θ, with a trigonometric equation:

L = Θ
360◦ · 2πr → Θ = L

2πr
· 360◦ ≈ 29◦ ,

where L = 13 cm is the horizontal distance between Camera 1 and Camera 2.

Below is a visualisation of the three-dimensional geometric model, obtained
using MATLAB:

Figure 4.10: Digital twin of the experimental setup; the origin of the setup
reference system (X, Y, Z) is in the center of the tank
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Figure 4.11: Digital twin of the experimental setup: the Θ is displayed in this
image
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Chapter 5

System Calibration

This chapter first introduces the theoretical model adopted for the calibration
process; then, the calibration methods used on the setup are presented and explained.
Afterwards, the calibration results are displayed and commented on.

5.1 Geometric camera calibration

The procedure of determining the parameters of a camera is called camera calibra-
tion. This means assessing all the information about the camera, hence establishing
a precise correlation between a 3D point in the real world and the corresponding
2D projection (pixel) captured in the camera’s image [25].

Typically, there are two kinds of parameters, each of which models a transfor-
mation:

• Internal (or intrinsic) parameters: refer to the camera or lens system.
They represent the transformation that projects the world points viewed by
the camera on its image plane. E.g. focal length, optical center (the center of
projection), and radial distortion coefficients of the lens;

• External (or extrinsic) parameters: they determine the camera’s orienta-
tion and position (rotation and translation) in relation to a world coordinate
system. They model the transformation from the world coordinate system to
the camera coordinate system. Essentially, they let the user view the world
from the camera’s perspective.
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The theoretical model of the camera employed to perform the calibration is called
pinhole camera.

5.1.1 The Pinhole Camera Model

The simplest model for an optical camera is the pinhole camera model. This camera
system can be designed as a lightproof box with a small aperture between the
object to observe and a photographic film or sensor [26]. As illustrated in Figure
5.1, every point of a 3D object reflects several rays of light outwards; however, only
one (or a few) of these light rays of light enter the aperture and reach the film
reaching and exposing the film. This establishes a direct correspondence between
points on the 3D object and the film, effectively producing an image of the object,
which appears rotated by 180 degrees.

Figure 5.1: Pinhole camera model [27]

The pinhole camera model describes the mathematical relationship between the
coordinates of a point in three-dimensional space and its projection onto the image
plane of an ideal pinhole camera, where the camera aperture is described as a point
and no lenses are used to focus light.

To mathematically model the pinhole camera, the following assumptions are
made:

• The image plane, which corresponds to the sensor that captures the light
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beams, is located in front of the pinhole, contrary to its actual placement i.e.
behind the pinhole;

• All the incoming rays converge at the pinhole, which in geometric terms is
called the center of projection or camera center, and diverge from it on the
opposite side.

The idea is that the image of a point corresponds to its projection on the image
plane, and this occurs where the line extending from the camera center to the point
intersects the image plane [28].

Even if this simple model presents a certain degree of approximation, it represents
a reasonable description of how a camera depicts a 3D scene, especially if a high-
quality camera is used.

5.1.2 Intrinsics and extrinsics determination

Projecting a 3D point in the world coordinate system to camera pixel coordinates
requires two steps: the 3D point is first transformed from world coordinates to cam-
era coordinates with the use of the Extrinsic Matrix, which contains the information
of rotation and translation between the two coordinate systems. Subsequently, the
new 3D point in the camera coordinate system is projected onto the image plane
through the Intrinsic Matrix, which contains the internal camera parameters. The
Figure 5.2 illustrates the process.

The equations that relate 3D point (Xw, Yw, Zw) in world coordinates to its
projection (u, v) in the image coordinates are:


u′

v′

z′

 = P


Xw

Yw

Zw

1

 , where: u = u′

w′ , v = v′

w′ ,

P is the 3×4 Projection matrix and is composed of two parts: the intrinsic
matrix K that contains the intrinsic parameters, and the extrinsic matrix [R | t]
which is a combination of a 3×3 rotation matrix R and a 3×1 translation t vector.
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Figure 5.2: Projection of the point P onto the image plane [25]

The previous equation can be more clearly formulated as:

P =
Intrinsic Matrixúýüû

K ×
Extrinsic Matrixú ýü û

[R | t]

Moreover, the intrinsic matrix K is upper triangular:

K =


fx γ cx

0 fy cy

0 0 1

 ,

where the x and y focal lengths are indicated as fx, fy (they are generally the
same); while cx, cy represents the x and y coordinates of the optical center in the
image plane. A common approximation is to use the center of the image. Lastly, γ

is the skew between the axes, usually set to 0.
The calibration process aims to determine the 3×3 matrix K, the 3×3 rotation

matrix R, and the 3×1 translation vector t using a known set of 3D points
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(Xw, Yw, Zw) and their corresponding image coordinates (u, v) [25]. Once these
values are acquired, the camera is considered calibrated.

A more detailed explanation can be found at [25], [26], [27], [29].

5.1.3 Analytical extrinsics calculation

Given the known geometry of the setup that was previously introduced and defined,
it becomes feasible to analytically calculate the theoretical extrinsic parameters
associated with the camera positions. These parameters serve as ideal baselines for
evaluating the effectiveness of calibration. The goal is to position the cameras in
the actual setup as accurately as possible through this comparative assessment.

The extrinsic matrix corresponds to a rotation matrix, which is a type of
transformation matrix that describes the rotation of an object or a vector in a fixed
coordinate system. In a 3D space is a 3x3 matrix: each column represents one of
the axes of the reference system. The rotation matrix is also orthogonal, signifying
that its transpose is equal to its inverse, and this implies that rotation is a linear
transformation without deformation.

Considering a generic object P positioned in the (X, Y ) plane, with coordinates
px and py, the rotation matrix is able to describe its rotation in the counter-clockwise
direction by an angle θ as shown in Figure 5.3:

Figure 5.3: Rotation defined as a geometric transformation [r1]

where (X ′, Y ′) represents the new coordinates after the rotation. The rotation
matrix operates on a vector, which maintains fixed coordinate axes after the
transformation. Moreover, it is always a square matrix with real entities, meaning
that it will always have an equal number of rows and columns [30].
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Therefore, given a known angle θ, it is possible to rotate a vector around the
three axes with the following matrices:

Rx(θ) =


1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)



Rz(θ) =


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

Rx is known as Roll, and it defines the counterclockwise rotation of θ around
the x-axis; Ry is also referred as Pitch, and it represents the rotation of θ around
the y-axis; Rz is called Y aw, and it is the rotation of θ around the z-axis [30].
Thus, within the circular camera array, assuming θ represents the angle between
the x-axis and the first camera, it is possible to identify each camera as rotated
around the y-axis with the angles shown in the following Figure 5.4:

Figure 5.4: Camera angles in degrees (counterclockwise notation) [31]
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It is now possible to determine the rotation matrices of each camera.

5.2 Multi-camera calibration technique
The calibration procedure is a critical step for the reconstruction of a three-
dimensional object from two-dimensional information (such as images), which
defines both measurement accuracy and scale [32]. State-of-the-art calibration
techniques usually employ a checkerboard pattern with known geometric dimensions
as the calibration target, due to its simplicity. This pattern’s regularity and high
contrast enable precise computation of corner features with subpixel accuracy
and straightforward estimation of the checkerboard’s 3D pose. There are several
consolidated methods for automated checkerboard detection in images [33], even
suited for multi-camera systems, which generally rely on a fundamental assumption:
that there is spatial overlap between the cameras’ fields of view so that specific
points are visible for all cameras simultaneously. Then, the overlapping image
portions are used to link the cameras’ internal poses together through epipolar
geometry. This is shown in Figure 5.5:

Figure 5.5: A four camera camera system able to observe a common point [34]

However, this approach proves to be inadequate for rigidly coupled cameras in
circular or spherical imaging systems, due to the nonlinear orientation of cameras
toward the checkerboard. In such setups, a feature point detected by one camera
may not be visible to its opposing or orthogonal counterpart. Consequently, shared
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feature points between opposing viewpoints are lacking due to limited viewing
orientations, especially if there exists an angle gap of more than 90° between
two cameras [35]. As a result, opposite cameras observing an identical planar
pattern view distinct objects due to their non-overlapping fields of view, hindering
a unified calibration approach. Moreover, establishing correspondences across
multiple cameras with non-overlapping views becomes challenging, as it requires
the detection of common features to determine the relative transformations between
rig cameras, alongside each camera’s intrinsic parameters [36].

This situation necessitates partial calibration structures to be connected through
a Part-by-Part or Multi-Step Calibration method, which has the disadvantage of
being time-consuming and prone to errors.

5.2.1 Multi-step calibration process

The most efficient procedure is to calibrate all cameras against one primary camera,
with a calibration object concurrently visible to all. However, in the case of a
circular camera array, multiple calibration steps become necessary, by repositioning
the checkerboard pattern to ensure visibility from all cameras [37]. The process
then requires the computation of a transformation matrix from one camera pair
to the next within the sequence. Assuming multiple cameras designated from 1,
2... 8, the multi-camera calibration procedure unfolds across/involves the following
three stages:

1. Image acquisition: the checkerboard pattern is positioned in front of a
camera pair, inside of a tank filled with the tested fluid. A certain number
of images is then taken (in the present case, 20 images per camera) before
rotating the checkerboard by 90° and repeating the procedure with the next
camera pair. Therefore, this sequence is carried out four times, as can be seen
in Figure 5.6;

2. Intrinsic and extrinsic parameters computation: A dedicated code
has been developed to compute the parameters of all 8 cameras, using the
Matlab Camera Calibration Toolbox by J.V. Bouguet [38] as starting core
and implementing appropriate geometric transformations on it. The algo-
rithm, as illustrated in Figure 5.7, first computes an average intrinsic matrix
alongside individual extrinsic matrices for each camera. The corners on the
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Figure 5.6: Multi-step image acquisition: the checkerboard (black object in the
image) is initially positioned in front of the first camera pair and then rotated by
90° each time, for a total of four sequential steps

calibration target are detected using the detectPatternPoints() function,
executed for every image in the calibration process. This produces a set of
points for every camera, each point corresponding to a corner on the chess-
board pattern. Using this data and an array containing distance values in
millimetres corresponding to the pattern’s square size, the cameras can be
calibrated. The intrinsic and extrinsic parameters are calculated using the
function estimateCameraParameters(); this routine provides the rotation
matrix and translation vector for every pattern view, and a reprojection error
[39]. For this process it is assumed that the cameras share identical intrinsic
parameters, which is a reasonable hypothesis since they are all the same model;
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hence, even if they present small differences between each other, they can be
neglected;

Figure 5.7: Matlab Camera Calibration Flowchart

3. Geometric transformation: Two cameras are selected as calibration ref-
erence; in the considered case, Camera 1 and Camera 2 were chosen. Sub-
sequently, adjustments are needed for the viewpoints of the remaining three
pairs. As the calibration computation assumes the center of the checkerboard
as the origin of the reference system, if the pattern is positioned in the center
of the setup, the geometric reference system will coincide with the camera’s
one. Hence, to rotate the viewpoints is sufficient to add a transformation
matrix to the extrinsic matrix of each camera pair, representing a rotation
around the y-axis from the first pair. The extrinsic matrices, represented in
its compact notation as rotation vectors, appear as follows:

Rcam1 =


rx,1

ry,1

rz,1

 , Rcam2 =


rx,2

ry,2

rz,2

 ,
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Rcam3 =


rx,3

ry,3

rz,3

 −


0
π
2

0

 , Rcam4 =


rx,4

ry,4

rz,4

 −


0
π
2

0

 ,

Rcam5 =


rx,5

ry,5

rz,5

 +


0
π

0

 , Rcam6 =


rx,6

ry,6

rz,6

 +


0
π

0

 ,

Rcam7 =


rx,7

ry,7

rz,7

 +


0
π
2

0

 , Rcam8 =


rx,8

ry,8

rz,8

 +


0
π
2

0

 ,

The obtained calibration parameters stay true only if the position, orientation,
and focal settings of the cameras remain unchanged. This means that for static
setups, where cameras are rigidly fixed in their positions, the calibration needs to
be conducted only once, before all the acquisitions.
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Chapter 6

Technique Validation

Before delving into the examination of the slush substances, it is imperative to
validate the methodology and the code, ensuring any necessary adjustments for
optimal performance in the specific scenario.

The process began with the calibration of the multi-camera system, enabling
the acquisition of camera parameters. Afterwards, observation of an object with
known dimensions was conducted to have a first assessment of the technique’s
effectiveness. Only after completing these steps, it was possible to proceed with
the actual experiment.

6.1 Setup Calibration Results

A calibration checkerboard was used, fixed onto a metal plate with a height of 10
cm; thus, when submerged in the tank, the origin of the geometric reference system
(the checkerboard center) would have a height of exactly 11 cm. The checkerboard
features are listed in Table 6.1.

The cameras were manually positioned to align with the checkerboard center;
afterwards, image acquisition was performed, following the procedure described in
Chapter 5, which involves sequential rotations of the checkerboard. The obtained
images were then fed into the algorithm, which extracted the intrinsic and extrinsic
parameters of the cameras. The first results are shown on the following page, and
visualised in Figures 6.1:
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Checkerboard

Checker Size 10 mm
Length 100 mm

Height 50 mm

Squares dimensions 10x5
Internal verticies 9x4

Table 6.1: Checkerboard features

Intrinsic Matrix:


928.78 0 805.08

0 940.12 634.16
0 0 1



Radial Distorsion: [ −0.17 , 1.13 ]

Tangential Distorsion: [ 0 , 0 ]

Camera Translation vector [mm] Rotation vectors [rad]

Cam 1 [ -9.6256 , 2.9298 , 136.5509 ] [ -0.0486 , 0.1630 , 0.0016 ]
Cam 2 [ 7.7378 , 4.0619 , 137.2887 ] [-0.0382 , -0.2107 , -0.0233]
Cam 3 [-10.3999 , -3.1700 , 135.1300] [ -0.0186 , 0.1714 , 0.0047 ]
Cam 4 [ 4.0274 , 1.7596 , 135.5294 ] [-0.0177 , -0.1906 , -0.0271]
Cam 5 [ -8.7401 , 4.0238 , 136.5777 ] [ -0.0480 , 0.1716 , -0.0044 ]
Cam 6 [ 6.1530 , -4.4746 , 135.1361 ] [-0.0008 , -0.1999 , -0.0253]
Cam 7 [-10.3520 , -0.5580 , 132.2312] [ -0.0242 , 0.1232 , 0.0056 ]
Cam 8 [ 3.4595 , 3.0591 , 134.6773 ] [-0.0222 , -0.2002 , 0.0158]

Table 6.2: First calibration results

The translation and rotation vectors presented in Table 6.2 represent the outcome
of the calibration process. These vectors describe the position and orientation of
each camera target’s plane, from the camera point of view. The first two values in
the translation vector represent the target’s plane displacement on the x and y axis
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from the origin of the reference system; for example, Camera 1 is observing a target
positioned at (−9.6,2.9) mm from the origin. Then, the third value indicates the
camera distance from its observed plane.

As can be seen, the results are rather far from expectations; specifically, there
should ideally be no displacement on both the x and y axes and a distance of about
260 mm on the z-axis. Small deviations can be accepted, as long as the target
planes intersect each other at the same point (which should approximately be the
center of the reference system). However, it can be noted from Figure 6.1 that
the planes do not intersect in the reference system, thereby leading to a need for
process improvement.

Figure 6.1: Extrinsic parameters visualisation. On the right, the top view of the
camera target planes: the intersection does not occur in the center of the system

To reduce the displacement errors along the x- and y-axes, adjustments can
be made by pre-processing the input images: the images were cropped, and the
checkerboard’s center was aligned with the image’s center. The procedure is
demonstrated in Figure 6.2, while the results of the second iteration are reported
below and on the following page:

Intrinsic Matrix:


1112.30 0 749.42

0 1130.10 516.34
0 0 1



Radial Distorsion: [ 0.038 , −0.64 ]

47



Technique Validation

Tangential Distorsion: [ 0 , 0 ]

Camera Translation vector [mm] Rotation vector [rad]

Cam 1 [ −3.3200, 1.5931, 164.7334 ] [ −0.0524 , 0.1941 , 0.0041 ]
Cam 2 [ −3.7512, 1.8464, 166.1583 ] [ −0.0345 , −0.2635 , −0.0270 ]
Cam 3 [ −3.7200, 1.5565, 163.1124 ] [ −0.0370 , 0.2025 , 0.0013 ]
Cam 4 [ −3.8020, 1.7323, 163.5824 ] [ −0.0208 , −0.2337 , −0.0278 ]
Cam 5 [ −3.7523, 1.8119, 164.5766 ] [ −0.0470 , 0.2026 , −0.0012 ]
Cam 6 [ −3.8435, 1.9813, 163.4270 ] [ 0.0260 , −0.2483 , −0.0196 ]
Cam 7 [ −3.3869, 1.9536, 159.7042 ] [ −0.0365 , 0.1424 , 0.0046 ]
Cam 8 [ −3.8837, 1.3114, 162.4297 ] [ −0.0168 , −0.2448 , 0.0136 ]

Table 6.3: Improved calibration results

Figure 6.2: Input image pre-processing: the images were cropped, so that the
checkerboard is perfectly centered in the image

The translation vectors now demonstrate notable improvement: the displacement
between viewpoints measures less than 1 millimeter (approximately 0.8 mm) for
both x- and y- axes. In addition, the camera’s target plane is positioned almost
perfectly in the reference system center, with a general distance of less than 4 mm
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on the x-axis and less than 2 mm on the y-axis. There is also an improvement
on the z-axis, although the calibration results are still far from the real positions.
Nevertheless, the problem of accurately estimating the longitudinal distance from a
pattern is a well-known issue in camera calibration; fortunately, it does not impact
the efficacy of the Deterministic Visual Hull algorithm. Hence, it was decided to
still employ the obtained results for the reconstruction purpose.

Figure 6.3: Extrinsic parameters visualisation, second iteration: all the planes
are now intersecting each other almost perfectly. Minor inaccuracies still persist,
but given their small magnitude, they were deemed negligible

The final computed camera positions are depicted in Figure 6.4, referred to as
the geometric reference system (with the origin in the center of the circumference
on which the cameras are positioned).
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Figure 6.4: Reconstructed camera positions, with the use of the intrinsic and
extrinsic parameters

In summary, calibration holds a significant role in the process of 3D object
computation from two-dimensional information. The accuracy of the provided data
directly influences the output quality. Achieving satisfactory results is a challenging
task, demanding precise control over the cameras’ position and orientation, which
might not always be feasible in all scenarios. In such cases, mitigating errors
becomes imperative, to prevent error propagation in the later stages.
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6.2 Algorithm Performance Verification

A first assessment of the algorithm’s effectiveness is crucial for the successful
execution of the project. To accomplish this, an object with known dimensions
was employed as a target for observation. The chosen target, a scotch tape with a
5.5 cm diameter and 2.5 cm thickness (depicted in Figure 6.5), is readily available
and its white colour provides a sharp contrast against the dark background, thus
complying with the constraints of the Deterministic Visual Hull.

Figure 6.5: Target object for the algorithm validation

The object was thus secured on support, immersed in the plexiglass tank filled
with water and positioned in its center. The acquired images are displayed in
Figure 6.6.
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure 6.6: Original input images
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6.2.1 Image Processing

Given the input images, the silhouettes are computed. This is the most important
step for achieving a high-quality 3D reconstruction since the 3D shape information
is extracted from the silhouettes. However, the initial silhouettes, as depicted in
Figure 6.7, did not meet the desired quality standards: the target shape is not
completely disconnected from the support; moreover, the presence of a high level
of background noise may result in a faulty reconstruction. Conversely, an ideal
silhouette must have precise segmentation of the observed target (i.e. the object
shape must be separated from the other elements) with minimal background noise,
particularly around the target’s edges.

Figure 6.7: (Left) Original frame; (Right) An example of initial silhouette
computation (right)

The production of higher-quality silhouettes was accomplished by integrating
three distinct image processing methodologies within the code; these methods can
be used sequentially or separately, as required from the test case, to ensure optimal
results.

Contrast Enhancement

The first operation consists of contrast modification, through the MATLAB function
imadjust(). This function manipulates the image intensity values, leading to an
increased contrast in the output image. The operation enables a clearer distinction
between the object and the background by intensifying the target silhouette’s
whiteness. Then, a slightly higher threshold is applied for silhouette computation,
effectively reducing the background noise. This process aims to isolate the target
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shape within the silhouette. However, the main drawback of this approach is
the contrast intensification for sufficiently white background elements, making it
insufficient to completely eliminate noise. Consequently, alternative methods must
be incorporated to address this limitation.

Another useful operation is to convert a coloured image into a black-and-white
format using the function rgb2gray(). This transformation facilitates the silhouette
creation by converting all the colour pixel values to black and white; consequently,
pixels with colour values are close to darker shades and thus excluded, as each
pixel value is compared to the threshold.

Figure 6.8: Examples of image processing operation: contrast enhancement (on
the left), and greyscale conversion (on the right)

Background Removal

Another relevant operation is background removal, with the MATLAB function
imsubtract(). Specifically, given two input arrays X, Y , this function operates by
subtracting each element in Y from the corresponding element in X and provides
the difference in the corresponding element of an output array Z. Assuming that
the input arrays X and Y are numeric arrays of the same class and size, the
resulting array Z maintains the same size and class of the inputs. Since an image is
an array of pixels, each with a specific value, this function enables the subtraction
of two images. The results are illustrated in Figure 6.9.

On the other hand, this procedure may not always consistently succeed. When
dealing with objects immersed in a fluid, slight alterations in background details
might occur throughout the acquisition process, which might compromise the
operation’s effectiveness.
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Figure 6.9: Background removal demonstration: the second image is subtracted
from the first, and the resulting image only contains the target object

Largest Blob Extraction

The last operation is the most complex one, but also the most efficient. Specifically,
given an input binary image (i.e. a silhouette), it is possible to extract the largest
area composed of white pixels: the algorithm recognises a ’blob’ area, by counting
the white pixels connected to each other. If a white pixel is surrounded by one
or more white pixels, it is categorised as part of a blob area; otherwise, it is
considered background noise and removed. In the next step, the blob’s properties
are determined, retaining only the greatest area while discarding the others. This
strategical elaboration enables the isolation of the object’s silhouette from the
background noise.

Further refinement can be implemented when the object possesses a known
geometry, such as rectangular, circular, or spherical shapes. In such cases, it is
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possible to select the largest blob area that respects a certain defined aspect ratio
and discard the others. This optimization allows the algorithm to consistently
choose the circular blob that matches the input data, even if larger blobs (like the
floor silhouette) exist within the silhouette.

the operation structure can be summarised as follows:

1. Image reading and thresholding: The image is read by the code and the
silhouette is computed. This step also includes any additional pre-processing
operations (if required);

2. Connected component labelling: using the function bwlabel(), all the
connected regions in the binary image are identified and labelled;

3. Region properties measurement: properties calculation (e.g., area, cen-
troid, major and minor axis lengths) of the labelled connected components,
through the function regionprops()

4. Shape filtering: computes the aspect ratio of each labelled component and
removes regions that do not match the expected shape (in this case, ellipsoidal);

5. Minor blobs removal: the bwareaopen() function removes small connected
components based on their area. It depends on the threshold (higher thresholds
allow for larger blobs to be retained);

6. Silhouette update: it creates a new silhouette with the resulting image.

An example of the process is displayed in Figure 6.10. Nonetheless, the major
drawback of this approach is the heavy dependence on the user’s intervention on
the setting parameters, thus making it a considerably time-consuming procedure.
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Figure 6.10: Blob extraction example: on the left, all the unwanted blobs are
highlighted. The algorithm thus proceeds to remove those blobs from the silhouette;
the result is shown on the right, where the target’s silhouette is the only shape left
in the image

6.2.2 Silhouettes

The silhouettes are obtained by converting the colour images to binary images,
which are 2D matrices with elements of 0 and 1 corresponding to black and white
pixels, respectively. The input image is replaced by a binary mask (the silhouette),
where pixels that belong to the object projection (white pixels, with value 1) are
separated from those in the background (black pixels, with value 0). This technique
is called Foreground Segmentation.

For the considered test case, a simple background removal was applied as pre-
processing. It can be seen that in some images, a portion of the support is included
in the silhouette; this occurrence does not pose any issue, as not all the images
contain the same segment. Hence, during the silhouette intersection process, any
parts not present in all eight images will be excluded from the final reconstruction.
The silhouettes are displayed in the Figure 6.11.
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(a) Silhouette from Camera 1 (b) Silhouette from Camera 2

(c) Silhouette from Camera 3 (d) Silhouette from Camera 4

(e) Silhouette from Camera 5 (f) Silhouette from Camera 6

(g) Silhouette from Camera 7 (h) Silhouette from Camera 8

Figure 6.11: Silhouettes
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6.2.3 3D Reconstruction

The final reconstruction is highly dependent not only on the silhouettes but
also on the voxel grid definition. The bounding box dimensions are set prior
to the reconstruction, thus determining the volume in which the object will be
reconstructed; then, that space is divided into 100 × 100 × 100 voxels, effectively
creating the voxel grid. consequently, depending on the reconstruction dimensions, a
large voxel grid may introduce a certain level of approximation when reconstructing
small objects. A first reconstruction has been computed with a large voxel grid, to
ensure that the object is contained in it. The result is displayed in Figure 6.12,
while the voxel grid dimensions are listed below:

xlim = [−200 200]

ylim = [−200 100]

zlim = [−200 80]

Figure 6.12: 3D reconstruction of the target in a large voxel grid. The level
of shape approximation is still high; nevertheless, the cylindrical shape can be
recognised
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However, the reconstructed object dimensions are about 6×6×3.5 cm; even if the
shape was correctly created, it still presents a high level of approximation. Therefore,
by reducing the voxel grid to the minimum, a more detailed reconstruction can be
obtained, as shown in Figure 6.13. The bounding box is now defined as:

xlim = [−20 40]

ylim = [−40 20]

zlim = [−20 15]

Figure 6.13: Final reconstruction

The reconstruction now features greater sharpness and details; its size is also
quite similar to the real dimensions, except for the z-axis (which appears to be
about 1.5 cm larger than the actual size). This deviation can be clearly seen in
Figure 6.14, and is due to the Visual Hull limitation: the technique can only provide
an upper bound approximated shape of the real object, thus largely depending on
viewpoint number and position. For the present case, the constraining viewpoints
are those provided by Cameras 3, 4, 7 and 8: their perspectives are not perfectly
aligned with the object thickness, thus introducing an additional volume that does
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not exist in reality.

Figure 6.14: Final reconstruction detail: the thickness is highly dependent on
the viewpoints

Nevertheless, the object was successfully reconstructed, (an upper bound approx-
imation of it), and this constitutes a successful first step for the implementation of
the technique on the considered matter. Further improvements can be certainly
obtained by optimising the camera positions or increasing the camera number.
However, these improvements will be left to future studies.
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Chapter 7

Visual Hull Results

In this chapter, the experimental procedure is described and the results are presented
and commented. The 3D solid object reconstruction with the Visual Hull technique
was carried out for the three different cases, identified in Chapter 2: water, paraffin
RT-5HC and paraffin RT-9HC. A Python code was specifically implemented to
control all 8 cameras simultaneously, reported in Appendix A.1. Images of the
melting mass were acquired about every 20 seconds (the cameras also take about 7
seconds for a complete acquisition). At the same time, temperature measurements
were taken using Labview. The acquisitions continued until the frozen mass was
completely melted; then, an additional photo was taken to capture the background
(thus being able to perform the background removal on the input images). After
that, the code was finally stopped and the measurements were interrupted.

Once the images have been acquired and the calibration completed, the recon-
struction can be computed through the Deterministic Visual Hull. The code takes
the intrinsic and extrinsic parameter values from a file ’.txt’, and generates the
respective matrices and vectors. Subsequently, it proceeds to create the silhouette
of the target for every image, extracting from the image the pixels with a value
higher than a certain predefined threshold. After that, it reconstructs the 3D model
by intersecting the voxelised silhouettes.

To sum up, the inputs provided to the code are:

• The intrinsic and extrinsic matrices for every image (which are determined
through the calibration process, and have been saved in a ’.txt’ file);

• A different number of views of the object (for this study, 8 images).

63



Visual Hull Results

Each experiment was repeated three times, in order to create a consistent
database and verify repeatability of the experimental conditions and results. The
details are summarised in the Table 7.1.

Substance Case name Melting time [s] Total images set

Water
W_1 857 32
W_2 789 28
W_3 856 32

Paraffin RT5HC
Par5_1 1094 38
Par5_2 1101 38
Par5_3 1421 49

Paraffin RT-9HC
Par-9_1 704 22
Par-9_2 663 22
Par-9_3 750 22

Table 7.1: Test matrix of the performed experiments

It is worth noticing that only data from W_1, Par5_1 and Par-9_2 are presented
in this thesis.
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7.1 Slush State Water, Test W_1

The initial test case was conducted with water, which will serve as a preliminary
scenario for predictive model verification. The tank was filled with water and
spherical rubber moulds were used, producing ice spheres of about 5 cm in diameter.
The initial shape of the ice is depicted in Figure 7.2: the shape appears mostly
spherical, with minor imperfections on the upper hemisphere. Afterwards, the
frozen volume (at -15 ◦C) was immersed in the water tank (initially at about 18
◦C), thereby starting the experiment. The measured temperature evolution is
illustrated in Figure 7.1:

Figure 7.1: Temperature profile during the Test W_1

where Tup is the measured temperature on the water surface (thus on the
upper part of the tank), Tamb the external environment temperature, Tbottom the
temperature at the bottom of the tank, Tlat is the temperature of the tank lateral
wall, and Tice the temperature inside the ice. The ice temperature initially decreases,
to reach a plateau after about 100 seconds: during this time interval, the ice core
melts, until the ice volume becomes sufficiently small to expose the temperature
sensor. From 600 seconds onward, the thermocouple is in direct contact with the
water, thereby measuring an increasing temperature. The graph also shows a lower
temperature at the bottom of the tank, if compared with the measurements taken
at the top and side wall; this discordance is attributed to the downward movement
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of the cold water mass.

The total duration of the test was 857 seconds (about 14 minutes), during which
30 sets of images were taken. Three sets of images are analysed in this paragraph,
for the purpose of the volume reconstruction during melting: at t=0s (dashed red
line in Figure 7.1), at t=405s (green dashed line) and at t=729s (magenta dashed
line).

Figure 7.2: Test W_1: picture of the solid object at the beginning of the experiment.

7.1.1 Reconstruction at t = 0 s

The initial batch of images captures the ice sphere in its original size, depicting
its state before the melting process significantly alters its form. The input images
and the silhouettes are reported in Figure 7.3 and in Figure 7.4 respectively.
The silhouettes were obtained performing the following operations, in sequence:
background removal; grey-scale image conversion; and largest blob extraction, as
detailed in Chapter 6.
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure 7.3: Input images for Test W_1 at t=0s
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(a) Silhouette of ice from Camera 1 (b) Silhouette of ice from Camera 2

(c) Silhouette of ice from Camera 3 (d) Silhouette of ice from Camera 4

(e) Silhouette of ice from Camera 5 (f) Silhouette of ice from Camera 6

(g) Silhouette of ice from Camera 7 (h) Silhouette of ice from Camera 8

Figure 7.4: Silhouettes for Test W_1 at t=0s
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The silhouettes still contain some background details, but these do not affect
the final reconstruction. The voxel grid, defined below, perfectly reflects the real
dimensions of the ice sphere, which should have a diameter of approximately 5 cm:

xlim = [−25 25]

ylim = [−20 30]

zlim = [−25 25]

It is also possible to determine the volume occupied by the reconstruction within
the considered voxel grid, which is about 89.18% of the total space.

The reconstruction is reported in Figure 7.5.

(a) (b)

Figure 7.5: Test W_1 at t=0s: lateral views of the reconstructed ice volume

The spherical shape is clearly recognisable, despite the upper bound approxima-
tion of the shape performed by Visual Hull (whose details are evident in Figure 7.6).
A noteworthy observation is presented in Figure 7.7: the frozen sphere exhibits a
concentrated white core and a relatively more translucent outer section (in contact
with water). The ice shape could not be completely recognized in the transparent
area; this led to incomplete silhouettes, hence resulting in a visible deviation of the
final reconstruction from the original shape.
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Figure 7.6: Test W_1 at t=0s: top view of the reconstructed ice volume

Figure 7.7: In the left image, a detail of the image acquired from Camera 3 is
displayed: the transparent regions of the ice were not recognised, thus generating a
reconstruction with a missing part

7.1.2 Reconstruction for t = 405 s

The second time step considered is after almost 7 minutes from the starting time.
At this point, only the core of the ice is present; hence, it was not necessary to apply
any image enhancement. The complete set of input images and the silhouettes are
reported in Appendix A.1 and A.2. The reconstruction is depicted in Figures 7.8
and 7.9.

The current reconstruction reveals only a slightly smaller volume than the initial
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one, occupying approximately 81.87% of the total voxel grid volume. This is
because in the initial set of images, the reconstructed volume was lower than the
real one, due to the imperfect detection of the ice boundaries.

Figure 7.8: Test W_1 at t=405s: lateral view (left) and top view (right)

Figure 7.9: Test W_1 at t=405s: (left) a detail from Camera 5 image; (left) the
output of the reconstruction
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7.1.3 Reconstruction for t = 729 s

The last considered time step is after 729 seconds from the start (about 12 minutes).
Afterwards, the reconstruction of the ice volume becomes extremely difficult or
even impossible, due to its very size and insufficient contrast with respect to the
background. To compute the silhouettes, the following operations were performed:
background removal; grey-scale image conversion; and largest blob extraction. The
results are illustrated in Figures 7.10 and 7.11.

Figure 7.10: Test W_1 at t=729s: lateral views.

Despite numerous operations to improve the quality of the silhouettes, the result
was still rather poor, with a flawed reconstruction containing aberrations. The
primary issue derives from the fact that the frozen volume is situated on one side
of the supporting stick, thus invalidating some viewpoints and hindering a clear
observation. In addition, the white section of the stick (where the thermocouple is
fixed) poses problems for contrast enhancement due to its proximity to the iced
volume, thereby significantly altering the silhouette.

Nevertheless, the reconstructed object dimensions are approximately 1 mm ×
0.8 mm × 5 mm, with an occupied volume in the voxel grid of about 21.76%.
Therefore, the reconstructed volume steadily decreased during the different time
steps.
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Figure 7.11: Visual comparison: detail from Camera 5 image (left); reconstructed
ice volume (right)
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7.2 Paraffin RT5HC, Test Par5_1

The second experiment series was conducted with the paraffin RT5HC, which
freezes at 5 °C. Again, the tank was filled with the same paraffin type in its
liquid state at ambient temperature, and the frozen body (initially at T = -21
°C) was immersed into it. The frozen paraffin body before melting is depicted
in the following Figure 7.13. As opposed to the previous test case, the frozen
body presents a granular appearance combined with a bright white colour. These
features constitute an advantage for the Visual Hull technique, as higher contrast
leads to better silhouette, thus enhancing the overall reconstruction quality.

Figure 7.12: Temperature profile during the Test Par5_1

Photographs were taken at time intervals of 27 seconds; the total duration of the
experiment was 1094 seconds (about 18 minutes). The temperature measurements
evolution is displayed in Figure 7.12. As before, Tup is the measured temperature
on the liquid paraffin surface (thus on the upper part of the tank), Tamb the external
environment temperature, Tbottom the temperature at the bottom of the tank, Tlat

is the temperature of the tank lateral wall, and Tfrozen the temperature inside the
frozen object. The temperature of the frozen paraffin steadily decreases until about
900 seconds, when the trend slope increases sharply. The frozen core was almost
completely melted, and shortly after 1000 seconds, the thermocouple got exposed
to the liquid state paraffin.
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Three sets of images are analysed in this paragraph for the purpose of the volume
reconstruction during melting: at t=0s (dashed red line in the figure), at t=756s
(green dashed line) and at t=972s (magenta dashed line). The black dashed line
marks the end of the experiment.

Figure 7.13: Test Par5_1: picture of the solid object at the beginning of the
experiment.

The voxel grid reference dimensions are the same as in the previous case:

xlim = [−25 25]

ylim = [−20 30]

zlim = [−25 25]

7.2.1 Reconstruction for t = 0 s

As before, the first time step coincides with the initial acquisition. The input
images and the silhouettes are reported in Figure 7.16 and Figure7.17 respectively.

The reconstruction is shown in Figures 7.14 and 7.15. The object reconstructions
are fairly accurate, with a diameter of 5 cm and a height of 4.4 cm, due to its
imperfect spherical shape. Those dimensions lead to an occupied volume of about
95.08% of the total voxel grid volume.

The high occupied volume percentage is mainly due to a superior reconstruction
quality, especially if compared with the Test W_1. Indeed, the initial reconstruction
of the ice sphere was obtained from points and surfaces within its body. Conversely,
in the current Test Par5_1 the reconstruction was achieved solely from points
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located on the body’s surface.

Figure 7.14: Test Par5_1 reconstruction at t=0s, lateral view (left) and top view
(right). The body presents a very similar geometry to the original frozen volume

Figure 7.15: Test Par5_1 reconstruction at t=0s, lateral views
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7.2 – Paraffin RT5HC, Test Par5_1

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure 7.16: Original images for Test Par5_1 at t=0s
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(a) Silhouette from Camera 1 (b) Silhouette from Camera 2

(c) Silhouette from Camera 3 (d) Silhouette from Camera 4

(e) Silhouette from Camera 5 (f) Silhouette from Camera 6

(g) Silhouette from Camera 7 (h) Silhouette from Camera 8

Figure 7.17: Silhouettes for Test Par5_1 at t=0s
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7.2.2 Reconstruction for t = 756 s

The second time step is at 756 seconds from the starting time. The paraffin frozen
volumes appear to be almost halved from the beginning. The complete set of
input images and silhouettes are provided in the Appendix A.6. For the silhouette
computation, the grey-scale conversion and largest blob extraction were performed.
The reconstruction is depicted in Figures 7.18 and 7.19. The object-occupied volume
within the voxel grid is 47.70%. The remarkable aspect of this case study lies in
the high reconstruction accuracy, despite a significant reduction of the target’s
volume; this is due to the sharp contrast of the frozen paraffin shape against the
background.

Figure 7.18: Test Par5_1 reconstruction at t=756s, lateral views (left) and top
view (right)

Figure 7.19: Test Par5_1 reconstruction at t=756s, top view
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7.2.3 Reconstruction for t = 972 s

The last set of images analysed for this test were acquired after 972 seconds (about
16 minutes) from the starting time. The paraffin body, during its melting process,
has assumed a very peculiar shape, thereby making interesting the evaluation of
the algorithm’s effectiveness for this scenario.

The input images and silhouettes, displayed in Figures 7.22 and 7.23 respectively,
clearly illustrate an asymmetrical and randomly sized shape. Nevertheless, the
algorithm succeeds in reconstructing the element fairly acceptably, albeit with some
inevitable imperfections, as shown in Figures 7.20 and 7.21.

Figure 7.20: Test Par5_1 reconstruction at t=972s, Lateral view (left); top view
(right)

Figure 7.21: Test Par5_1 reconstruction at t=972s: detail from Camera 5 image
(left); reconstructed paraffin object (right)
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7.2 – Paraffin RT5HC, Test Par5_1

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure 7.22: Input images for Test Par5_1 at t=972s
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(a) Silhouette from Camera 1 (b) Silhouette from Camera 2

(c) Silhouette from Camera 3 (d) Silhouette from Camera 4

(e) Silhouette from Camera 5 (f) Silhouette from Camera 6

(g) Silhouette from Camera 7 (h) Silhouette from Camera 8

Figure 7.23: Silhouettes for Test Par5_1 at t=972s
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7.3 Paraffin RT-9HC, Test Par9_2

The third test was performed with the paraffin RT-9HC, with a freezing point at
-9°C. As for the previous cases, the tank was filled with the same paraffin type in its
liquid state (initially at T=18 °C), and the frozen body (initially at T=-20°C) was
immersed in it. This time, due to the paraffin properties, the rubber mould was not
able to fully contain it, thereby shaping the crystallised body with a half-spherical
geometry, as depicted in Figure 7.32. Again, the images were taken at time intervals
of 27 seconds; the total duration of the experiment was 704 seconds (about 11
minutes). The temperature profile is illustrated in the following Figure 7.24:

Figure 7.24: Temperature profile during the Test Par-9_1

where Tup is the measured temperature on the liquid paraffin surface (thus on
the upper part of the tank), Tamb the external environment temperature, Tbottom the
temperature at the bottom of the tank, Tlat is the temperature of the tank lateral
wall, and Tfrozen the temperature inside the frozen object. The temperature of the
frozen paraffin decreases sharply until about 400 seconds when the trend slope
increases sharply. It then follows an oscillating pattern between 10°C and 13°C:
this interval corresponds to the paraffin core melting. After about 570 seconds,
the thermocouple was exposed to the liquid state paraffin, thus the temperature
started to align with the others within the tank.

This time, only two sets of images are analysed: the first at t=0s (dashed red

83



Visual Hull Results

line in the figure) and the second at t=270s (green dashed line).

Figure 7.25: Test Par9_2: picture of the solid object at the beginning of the
experiment.
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7.3.1 Reconstruction for t = 0 s

The input images and silhouettes are displayed in the next pages (Figures 7.28 and
7.29). As depicted in Figure 7.26 and Figure 7.27, the reconstruction of the solid
shape appears to be very accurate, even displaying most of the surface imperfections
of the initial body. The occupied volume within the bounding box is 94.71%, thus
demonstrating the algorithm’s excellent performance.

Figure 7.26: Test Par9_2 reconstruction at t=0s, lateral views

Figure 7.27: Test Par9_2 reconstruction at t=0s, more details (left); top view
(right)
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure 7.28: Original images for Test Par-9_1 at t=0s
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(a) Silhouette from Camera 1 (b) Silhouette from Camera 2

(c) Silhouette from Camera 3 (d) Silhouette from Camera 4

(e) Silhouette from Camera 5 (f) Silhouette from Camera 6

(g) Silhouette from Camera 7 (h) Silhouette from Camera 8

Figure 7.29: Silhouettes for Test Par-9_1 at t=0s
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7.3.2 Reconstruction for t = 270 s

The input images and silhouettes are displayed in the Appendix A.7 and A.8. Once
again, the reconstructed object appears to be rich in details, as shown in Figures
7.30 and 7.31. The occupied volume within the bounding box is 66.34%.

Figure 7.30: Test Par9_2 reconstruction at t=270s, opposite lateral views

Figure 7.31: Test Par9_2 reconstruction at t=270s, top views
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7.4 Volumes Comparison
In order to evaluate the volumetric variation of the melting body, it is possible to
compute an approximation of the reconstruction volume can be computed. The
calculation is performed by counting all the voxels that are part of the reconstruction
and then multiplying the result by a single voxel’s dimensions. In MATLAB it can be
done as:

V olr = sum(voxels(:, 4) > 0) · prod(voxelsize)

Since the considered voxel grid was the same for all the reconstructions, a single
voxel has a fixed dimension of 0.5mm × 0.5mm × 0.5mm. The results are plotted
for the considered test cases W_1, Par5_1 and Par9_2.

Figure 7.32: Volume evolution of the frozen bodies as time passes

The results are significantly influenced by the material properties. For instance,
the RT5HC paraffin experiences a slower melting process compared to the ice, due
to its higher freezing point. Conversely, the RT-9HC paraffin displays a faster
melting curve as its freezing temperature is considerably lower than the conditions
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to which the frozen body was subjected.
The comprehensive results obtained throughout the analysis are summarised

in Table 7.2 below. An important remark about the approximate volume needs
to be pointed out. As previously defined, this volume corresponds to the number
of voxels that form the reconstruction, multiplied by the size of a voxel. However,
these voxels are not always completely filled, and this occurrence -which can be
quite frequent- leads to the computation of an overestimated volume, sometimes
much larger than the actual volume. Such a situation can be found in 7.1.3 and
7.2.3, where a small and fragmented object is reconstructed, but the resulting
volume still appears to be bigger than the actual shape, as showcased in Table 7.2.

Consequently, it can be concluded that this parameter can only be considered
as a preliminary estimation, rather than an accurate reconstruction descriptor.

Substance Time step [s] Vocc Approximated volume [mm3]

Water
0 89.18% 1.1147 · 105

405 81.87% 1.0233 · 105

729 21.76% 27195

RT5HC
0 95.08% 1.0696 · 105

756 47.70% 5.3659 · 104

972 29.0781% 3.2713 · 104

RT-9HC
0 94.7123% 1.1721 · 105

270 66.34% 8.2076 · 104

Table 7.2: Volumes comparison
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Chapter 8

Conclusion and future work

The main objectives of this research were to provide a novel valid approach for
slush particle observation and to establish an extensive experimental database
to validate predictive models for solid particle melting. These goals are essential
for a better understanding of the slush state, especially for future energy storage
applications.

To accomplish this, experiments were conducted using a circular multi-camera
array and a plexiglass tank, where the analysed substances, solidified in spherical
geometry, were immersed in their respective liquid phases and melted under con-
trolled temperature conditions. The acquired data was then employed to obtain
3D models of the crystallised bodies for different time steps. Different types of
fluids were investigated, providing a wide database of slush state simulations.

The first step was to identify a substance whose slush was in similarity to the
target application of slush hydrogen. Several fluids were analysed in terms of
density ratio and particle settling velocity. Paraffin was selected as a satisfying
substitute candidate because of its transparent appearance, high solidification
temperature and non-toxicity. A dedicated experimental setup was then designed
and built, to allow optical access to the experimental specimen and temperature
measurement to control the experiment boundary conditions.

To describe the melting bodies’ visual features, the Visual Hull (VH) technique
was adopted, a computer vision method that allows three-dimensional information
to be retrieved from a two-dimensional representation of the object shape. The
approach proved effective in accurately approximating static melting objects but
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showed limitations in reconstructing targets with unclear shape segmentation from
the background. Extensive Image Processing operations were also performed on
the input images, to improve the shape segmentation from the background.

The experiment yielded overall success, demonstrating the effectiveness of the
technique in reconstructing the 3D interface of a melting particle over time. Each
fluid showed a different melting dynamic, which is consistent with the required
experimental framework.

Further steps forward concern the input image pre-processing and the exper-
imental setup. In particular, the employed image processing routines proved to
be extremely time-consuming, as they depended on each image’s features. Future
work can therefore integrate specific image processing routines for each camera,
thus automating the operation.

Moreover, this work focused solely on replicating the slush phenomenon on
a macroscopic scale, whereas in reality, this phenomenon occurs on significantly
smaller scales. Future research endeavours should therefore focus on developing
the technique for microscopic measurements in this domain.

To tackle this challenge, many improvements can be made to the model. Firstly,
the camera positions can be optimized, potentially introducing an asymmetric
array. In addition, the number of viewpoints can be increased. To this extent, the
integration of mirror systems can be an interesting option, but only if provided
with an effective calibration method. Refinement of the calibration process and
the introduction of a more accurate camera model represent further potential steps
forward.

In conclusion, this research proved the effectiveness of the Visual Hull tech-
nique for melting particle observation, thereby contributing to the slush-state
characterisation.
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Appendix A

Visual Hull Results

In this section are reported the input images and silhouettes of the test cases not
included in the main work.

A.1 Multi-Camera Control Code

The following code was written using Python as programming language; its purpose
is to let the user adjust the camera settings and start a recurrent acquisition, with
a predefined time step.

Listing A.1: Python Multi-Camera Control Code
1 import r eque s t s
2 import os
3 import time
4

5 main_folder = " camera f o l d e r "
6 execution_count = 1 # Count the number o f execut ion
7 # camera IP address complete l i s t
8 camera_ips = [ " 1 92 . 16 8 . 0 . 1 0 0 " , " 1 92 . 1 68 . 0 . 1 01 " , " 1 9 2 . 1 68 . 0 . 1 02 " , "

1 9 2 . 16 8 . 0 . 1 0 5 " , " 1 92 . 1 68 . 0 . 1 0 6 " , " 1 92 . 1 68 . 0 . 1 07 " , " 1 9 2 . 16 8 . 0 . 1 08 " , "
1 9 2 . 16 8 . 0 . 1 0 9 " ]

9

10 # Set the parameters needed f o r the a c q u i s i t i o n
11 f o r camera_ip in camera_ips :
12 t ry :
13 params = {
14 " f r ames i z e " : " 13 " , # 1600 x1200
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15 # " q u a l i t y " : " 63 " , # JPEG q u a l i t y ( from 4 to 63)
16 # " auto_exposure " : " f a l s e " ,
17 }
18 re sponse = reque s t s . get ( f " http ://{ camera_ip}/ c o n t r o l ? var=

f rames i z e&va l=13" , params=params )
19 i f r e sponse . status_code == 200 :
20 pr in t ( f " Camera {camera_ip} parameters has been s e t . " )
21 e l s e :
22 pr in t ( f " Camera {camera_ip} did not respond c o r r e c t l y . " )
23 except r eque s t s . except i ons . RequestException as e :
24 pr in t ( f " Error whi l e communicating with camera {camera_ip } : {e

} " )
25

26 v ia = input ( " Press [ Enter ] to s t a r t the a c q u i s i t i o n . . . " )
27

28 # Main loop
29 whi le True :
30 folder_name = os . path . j o i n ( main_folder , s t r ( execution_count ) )

# Create f o l d e r f o r cur rent execut ion
31 os . makedirs ( folder_name , exist_ok=True )
32

33 f o r i , camera_ip in enumerate ( camera_ips ) : # Take the p i c t u r e
34 t ry :
35 re sponse = reque s t s . get ( f " http ://{ camera_ip}/ capture " )
36 i f r e sponse . status_code == 200 :
37 image_data = response . content
38 image_name = f " camera_{ i + 1} . jpg "
39 image_path = os . path . j o i n ( folder_name , image_name)
40 with open ( image_path , "wb" ) as image_f i l e :
41 image_f i l e . wr i t e ( image_data )
42 pr in t ( f " Image c o r r e c t l y acqu i red by camera {

camera_ip} and saved as camera_{ i + 1} . png " )
43 e l s e :
44 pr in t ( f " Camera {camera_ip} did not respond c o r r e c t l y .

" )
45 except r eque s t s . except i ons . RequestException as e :
46 pr in t ( f " Error whi l e communicating with camera {camera_ip

} : {e} " )
47

48 # In c r ea s e the execut ion counter ore
49 execution_count += 1

96



A.1 – Multi-Camera Control Code

50 pr in t ( f "Numero d i i t e r a z i o n e { execution_count − 1} " )
51 time . s l e e p (20) # Time be f o r e the next execut ion
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A.2 – Slush State Water

A.2 Slush State Water

A.2.1 Reconstruction for t = 405 s

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure A.1: Original ice images for t = 405 seconds
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(a) Silhouette of ice from Camera 1 (b) Silhouette of ice from Camera 2

(c) Silhouette of ice from Camera 3 (d) Silhouette of ice from Camera 4

(e) Silhouette of ice from Camera 5 (f) Silhouette of ice from Camera 6

(g) Silhouette of ice from Camera 7 (h) Silhouette of ice from Camera 8

Figure A.2: Ice silhouettes for t = 405 seconds
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A.2.2 Reconstruction for t = 729 s

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure A.3: Original ice images for t = 729 seconds
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(a) Silhouette of ice from Camera 1 (b) Silhouette of ice from Camera 2

(c) Silhouette of ice from Camera 3 (d) Silhouette of ice from Camera 4

(e) Silhouette of ice from Camera 5 (f) Silhouette of ice from Camera 6

(g) Silhouette of ice from Camera 7 (h) Silhouette of ice from Camera 8

Figure A.4: Ice silhouettes for t = 729 seconds
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A.3 Test Par5_1; Reconstruction for t = 756 s

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure A.5: Original images for t = 756 seconds
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(a) Silhouette from Camera 1 (b) Silhouette from Camera 2

(c) Silhouette from Camera 3 (d) Silhouette from Camera 4

(e) Silhouette from Camera 5 (f) Silhouette from Camera 6

(g) Silhouette from Camera 7 (h) Silhouette from Camera 8

Figure A.6: Silhouettes extraction for RT5HC at t = 756 s
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A.4 Test Par-9_1; Reconstruction for t = 270 s

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6

(g) Camera 7 (h) Camera 8

Figure A.7: Original images for t = 270 seconds
107



Visual Hull Results

(a) Silhouette from Camera 1 (b) Silhouette from Camera 2

(c) Silhouette from Camera 3 (d) Silhouette from Camera 4

(e) Silhouette from Camera 5 (f) Silhouette from Camera 6

(g) Silhouette from Camera 7 (h) Silhouette from Camera 8

Figure A.8: Silhouettes extraction for RT-9HC at t = 270 s
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