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SUMMARY 

 

Automated vehicle technology represents a revolutionary advancement in the field of 

transportation, bringing limitless possibilities to our modes of travel and future 

transportation systems. As automated vehicles gradually become a part of everyday 

traffic on the roads, human factors and the associated issues of trust and situation 

awareness has become particularly important. The thesis aims to explore these critical 

topics, with the goal of gaining a deeper understanding of how to ensure smoother, more 

efficient, and safer interactions between automated vehicles and human drivers and 

passengers. 

 

The novel concept of automated vehicles has piqued the interest of countless 

researchers, engineers, and policymakers who see it as an effective means to reduce 

road accidents, alleviate traffic congestion, and enhance travel efficiency. However, to 

achieve these goals, we must overcome various technological, legal, and societal 

challenges. Among these, human factors are widely recognized as a key determinant of 

the acceptance and successful deployment of automated vehicles.  

 

The thesis is organized into three main parts. The first part, Chapter 1: Automated 

Vehicles, delves into the technological development of automated vehicles. It explores 

various levels of automation, from advanced driver assistance systems to fully 

autonomous vehicles. The chapter investigates the historical evolution of automated 

driving systems, their technological architecture, and key features, laying the 

foundation for subsequent discussions. 

 

The second part consists of Chapter 2: Situation Awareness and Chapter 3: Trust. This 

part delves into the concept of situation awareness, examining how humans perceive 
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and understand their surroundings during the driving process and how this can be 

maintained in the context of automated driving. This part emphasizes the interaction 

between situation awareness and automated driving technology to enhance vehicle 

safety and efficiency. It also places significant emphasis on the critical role of "trust" in 

automated vehicles. We explore how trust influences driving decisions, a sense of safety, 

and user acceptance. Furthermore, we discuss strategies for establishing and 

maintaining user trust in automated driving systems. 

 

The third part, Chapter 4: Optimize HMI Design, focuses on optimizing "human-

machine interface design" to ensure effective interaction between humans and 

automated driving systems. We discuss optimization efforts in interface design, 

improvements in user experience, and enhancements in system performance. 

 

Through these three parts, the thesis comprehensively addresses "human factors in 

automated vehicles," highlighting the significance of "trust" and "situation awareness" 

in the design of human-machine interfaces. The objective is to provide valuable insights 

that contribute to the ongoing development and improvement of automated driving 

technology, ultimately leading to safer, more efficient, and user-friendly future 

transportation systems. 
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CHAPTER1. AUTOMATED VEHICLES 

1.1 Levels of Automation 

Driving is currently experiencing an unprecedented transformation, with a growing 

infusion of information technology into vehicles. These advancements manifest 

through information and entertainment systems, connected vehicle communication, and 

driver assistance technologies (Regan et al., 2009). While these innovations, especially 

in the context of automated vehicles, are lauded for offering improved, safer, and more 

user-friendly personal transportation experiences, discussions regarding the evaluation, 

feasibility, and regulation of both existing and forthcoming vehicle automation 

technologies should take center stage. This is particularly pertinent during the 

transitional phase of shifting control from partial automation to partial self-driving, 

where human drivers continue to play a diminished yet crucial role in overseeing 

vehicle operations. Notably, five key issues affecting the safety of automated vehicles 

have been identified (see Figure.1): (i) driver mobility, (ii) technological acceptance, 

(iii) failure management, (iv) third-party safety testing, and (v) government 

involvement and regulation. 

 

Figure.1 Driver (solid line) and regulatory (dashed line) safety-related 
considerations for automated vehicles. 
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Despite the immense advantages promised by automation, there remains significant 

work to be done before a fully functional system can be realized. New human-machine 

interfaces (HMI) must be developed to handle unforeseen situations where individuals 

may need to take control of the vehicle temporarily and to adapt to the evolving role of 

the driver as automation levels (LOAs) increase. In this context, we emphasize several 

critical human factors issues in the safe implementation of automation, including trust 

in automation, acceptance of automation, and how the driver/user responds to 

technological failures. 

Automated driving technology has the potential to fundamentally change road 

transportation and improve the quality of life. It is anticipated that automated vehicles 

(AVs) will reduce the number of accidents caused by human errors, enhance traffic 

flow efficiency, increase driver comfort by allowing them to perform other tasks, and 

ensure mobility for everyone, including the elderly and individuals with physical 

impairments. 

AVs can be categorized based on their technological capabilities and the level of human 

involvement, ranging from manual driving, where human drivers perform all driving 

tasks, to full automation, where there is no human intervention. 

Specifically, as AV technology advances from Level 0 to Level 5, there will be 

systematic changes in the roles and tasks of humans and vehicles. 
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At lower Levels of Automation (LOAs), the human directly operates the vehicle's 

control systems, albeit using drive-by-wire connections. Traditional control interfaces 

like steering wheels, gear shifts, and foot pedals continue to play a central role, much 

like they have throughout the history of driving. 

As LOAs increase to higher levels, the vehicle gradually assumes more of the driver's 

responsibilities. The vehicle takes charge of both its longitudinal and lateral positioning, 

as well as making emergency avoidance maneuvers when potential collisions are 

detected. In this scenario, the human's role becomes that of a supervisor, providing 

strategic instructions related to destinations, infotainment, environmental settings, and 

so on. 

Another consideration is whether to entrust the final decision to the human or to pursue 

an "optimal" solution that may not align with the preferences of the human controller. 

An example of potential conflict between human and automation arises in navigation, 

where the system suggests an "optimal" route that the driver may choose to disregard 

Table1. Levels of automation as defined by the SAE 

International 
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in favor of an alternative, preferred route – one that feels more familiar, safer, or more 

attractive, for instance. 

 

1.2 Current and Future Directions of Vehicle Automation 

1.2.1 Available Technological Solutions 

Currently, L1 automation technology can be applied to some new light-duty vehicles 

(but not all). L2 technology is beginning to be adopted across different manufacturers, 

according to a report by NHTSA (National Highway Traffic Safety Administration, 

2013). L1 automation technology aims to partially take over primary control tasks, such 

as adaptive cruise control. 

L2 technology allows the driver to physically disengage from driving tasks but requires 

ongoing monitoring of the road and vehicle performance. Some L2 technologies, like 

adaptive cruise control and lane centering features, are also gradually appearing in new 

light-duty vehicles. 

L3 technology enables the driver to hand over monitoring and control of the entire 

driving task to the automation system under specific conditions but requires readiness 

to take back control when necessary. An example is the use of L3 technology in traffic 

congestion pilots, allowing drivers to relax their monitoring of the road. Unlike L2 

technology, L3 technology allows the driver to fully relinquish control of the driving 

task. While L3 technology is in various stages of development, there are currently very 

limited models available on the market. 

As for L4 and L5 technology, they are expected to require only the input of a destination 

from the driver, with the system responsible for monitoring the road and performing all 

critical safety functions. However, except for some advanced research concepts, these 
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technologies have not yet been truly realized. L4 systems are subject to certain 

limitations in specific areas, while L5 systems can operate without any restrictions. 

 

1.2.2 Driver's Responsibilities 

As vehicle automation advances, the responsibilities of drivers in the driving task have 

undergone changes. In manual driving (L0 or L1 automation), drivers are actively 

engaged in the driving task, taking full responsibility for vehicle control and road 

monitoring to ensure the safe operation of the vehicle. However, as the level of 

automation increases, some tasks are taken over by the automated systems, leading to 

less active involvement by drivers under normal operating conditions and a more 

passive role. For example, in L1 automation, drivers may still need to steer, but when 

using adaptive cruise control, they don't have to actively maintain a safe following 

distance from the vehicle in front. In L2 automation, which includes features like 

adaptive cruise control and lane centering, drivers need to monitor vehicle performance, 

but the system can manage the following distance and lane position for extended 

periods without intervention. 

With the increasing level of automation and the transition to a monitoring role, drivers 

may face less demanding tasks. Research suggests that an increase in the time spent on 

monitoring tasks, as seen in fields like autonomous vehicles and control systems, can 

lead to a decline in performance (Cummings, Mastracchio, Thornburg, and Mkrtchyan, 

2013). However, it is currently unclear whether this situation applies to driving tasks. 

As automation technology continues to improve and develop, it is essential to 

continuously assess and reevaluate the role of drivers in the driving task. 
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1.2.3 Automation Transitions 

As higher levels of automation advance in research, design, testing, and eventual 

implementation, additional design factors need to be considered. One of the primary 

concerns with current and future levels of automation is the planned and unplanned 

transitions between different automation levels and the impact of these transitions on 

the timing and manner in which information is conveyed to the driver. This includes 

the lead time for notifications before a transition, notification modes (e.g., auditory cues, 

visual icons), and specific information (e.g., the functions being automated or 

transitioning from L3 to L1). To ensure that drivers can maintain optimal readiness to 

quickly take back manual control of the vehicle, when necessary, questions need to be 

addressed: What information should drivers receive during automation level transitions? 

When should drivers be alerted to pay attention to transitions between automation levels? 

How best to inform drivers of changes in automation levels? This topic is especially 

important because transitions between automation levels within current vehicles (such 

as L2 and L3) may occur frequently in a short span of time, meaning there is a short 

time frame from enabling automation to returning to manual mode. 

Short cycles of automation have also been observed in the aviation field. For example, 

in a study by Parasuraman, Hilburn, Molloy, and Singh (1991), participants monitored 

three flight-related functions that could be executed either automatically or manually, 

with transitions from manual to automatic occurring every 10 minutes during a 30-

minute training session. When these functions were automated, participants needed to 

perform supervisory control tasks of the automation. The results of the study showed a 

performance advantage for all three flight functions, with no evidence of performance 

degradation as these functions were automated. Furthermore, the results suggested that 

dynamic transitions between automation levels were advantageous for the performance 

of flight-related tasks, with no evidence of performance degradation when reverting to 
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manual control. While these findings provide valuable insights into short-cycle 

automation, further research is needed to ensure their applicability to ground vehicles. 

 

1.2.4 Maintenance of Driving Skills for Drivers 

Introducing higher levels of automation (L2 and L3) presents another challenge, which 

is the potential degradation of driving skills as reliance on automation increases and 

opportunities for manual driving decrease. While this may not seem like a significant 

issue at current levels of automation, it may become more pronounced as automation 

levels advance. Skill degradation has been a recognized issue in the aviation industry, 

prompting even the Federal Aviation Administration (FAA) in the United States to issue 

a safety alert advising pilots to engage in regular manual flight practice rather than 

relying entirely on automated systems (FAA, 2013). Skill degradation encompasses not 

only basic driving operational skills but also decision-making skills (Miller and 

Parasuraman, 2007). Given that the reliability of automation systems is not yet flawless, 

maintaining proficiency in driving skills is crucial. Drivers may need to take back 

manual control of the vehicle at some point, so keeping these skills sharp is essential. 

 

1.2.5 Drivers' Familiarity with the System 

Until L4/L5 technology is fully realized, it is anticipated that drivers will only need to 

provide a destination input, and the vehicle will assume all safety-critical functions, 

including road monitoring. However, at lower levels of automation, the driving task 

will still be shared to some extent with the vehicle. To ensure safety, the design of 

automated vehicles should help drivers to fully understand the capabilities and 

limitations of the automation system and be aware of the current automation status. If 

the automation system fails or encounters issues, drivers need to be able to accurately 
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ascertain the automation status and the overall state of the driving task to reduce the 

risk of accidents. This awareness and understanding of the automation system's 

functioning are critical for the safe operation of partially automated vehicles. 

 

1.3 Human Factors and the Automated Driving System 

In order to achieve their objectives, automated vehicles will need to consistently engage 

with individuals performing various roles. The specific roster of roles that automated 

vehicles will interact with will depend on factors such as the business model, 

application, and operational design domain of the technology. The roles of humans will 

also adapt depending on the level of automation, ranging from Level 3 vehicles to Level 

5 vehicles. However, individuals who are likely to interact with Automated Driving 

Systems (ADSs) encompass: 

1. Individuals within the vehicles: 

• Vehicle passengers  

• Vehicle operators, who may either delegate or regain control from the ADS, 

effectively becoming a passenger or a ready backup user  

• Ready backup users, a role defined for Level 3 (Conditional) automation, who 

possess the capability to operate the vehicle and must be responsive to ADS 

requests for intervention and preparedness for system failures (SAE 

International, 2018). 

2. Individuals external to the vehicle who exert influence over its control and 

movements:  

• Those requesting or directing the vehicle  

• Remote operators 

• System operational supervisors who oversee and manage the day-to-day 

operations of the vehicles. 
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3. Other individuals with whom the ADS may come into contact or interact with 

on public roadways:  

• Drivers of other vehicles, including freight and passenger vehicles, as well as 

motorcycles  

• Pedestrians 

• Cyclists  

• Law enforcement officers, such as police personnel  

• Emergency services personnel, including ambulance workers, police officers, 

and firefighters  

• Individuals responsible for directing traffic in public or private areas 

(including roadwork site employees and individuals in private parking facilities)  

• Roadside workers. 

In brief, it can be concluded that interactions with Automated Driving Systems (ADS) 

will differ significantly among a diverse group of users. These users will possess 

varying levels of experience and knowledge regarding how the technology functions 

and its constraints. A significant portion, if not the majority, will have received no 

specialized training in understanding how the technology operates but will have 

previous experience with conventional human-driven vehicles. The associated risks are 

substantial; making an interaction mistake can lead to injury or even loss of life. Serious 

design flaws could potentially result in numerous fatalities. 

 

1.4 Certain Human-Related Factors that Might Affect Safety. 

Part1. 

Human factor-related safety concerns for individuals inside the vehicles: Vehicles will 

feature interfaces for occupants, including traditional vehicle controls and screen-based 

interfaces on the dashboard or provided through devices. Safety risks encompass: 
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•Vehicle passengers may unintentionally or intentionally interfere with the 

system. 

•Fallback ready users must remain awake, alert, sober, licensed, and prepared to 

assume control, each of which introduces risks and potential monitoring needs. 

Will the fallback ready user be ready to take over the driving task when required? 

•At Level 3, risks may arise during the handover back to a fully prepared fallback 

ready user, especially if the user fails to comprehend the ADS's request or the 

specific risk the vehicle is addressing. 

•At Level 4, safety risks could also emerge during the transition from the ADS 

to the human driver. 

•Is there a risk of skill deterioration, and if so, is there a requirement to amend 

regulations for existing drivers? Will there be a decline in performance when the 

human driver regains control or during the transition to taking control? 

•How will drivers be educated about the technology's risks and limitations? 

 

Part2. 

People outside the vehicle affecting vehicle control and movement:  

• Is there a possibility for these individuals to direct a vehicle to an unsafe 

location? Conversely, could the vehicle place a passenger in a precarious 

situation, such as malfunctioning on a busy highway with a young child as the 

sole passenger?  

• What are the specific risks for remote operators, considering their significant 

detachment from the road environment? Are there potential risks affecting their 

ability to monitor multiple vehicles? How should they be trained and licensed, 

and what skills are necessary? Will they have sufficient information to 

comprehend the operating environment of the vehicle from a remote standpoint? 

 • What are the potential risks for system operational managers overseeing a 

network of vehicles? Will they respond appropriately to risks, resembling the 
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roles of air traffic controllers or operators of complex facilities like power 

stations? 

 

Part3. 

Other individuals that automated vehicles will encounter or interact with on public 

roads:  

• Will pedestrians alter their behavior if they perceive automated vehicles as 

safer? Will they, for instance, step directly into the street, akin to how people 

wave their hands in front of closing elevator doors, assuming they will open for 

them?  

• Will other human drivers become more aggressive in their driving habits?  

• Will other road users attempt to interfere with or manipulate automated 

vehicles in some way?  

• Are there road user behaviors or interactions between road users that currently 

lack regulation, such as making eye contact with human drivers before crossing, 

which could pose safety risks?  

• How will automated vehicles and other road users negotiate right of way in 

situations similar to those today? Will automated vehicles adopt the practice of 

nudging into traffic to signal intent, as human drivers often do? 

 • Automated vehicles are expected to adopt a more cautious approach than 

many current vehicles in terms of speed, following distances, merging, and 

other aspects. Could this cautious behavior lead to specific safety concerns? 

 • How will travel patterns change with the new opportunities offered by 

automated vehicles? 

In addition to these questions, it's important to consider the human factors pertaining to 

automated vehicle manufacturers and technology providers. The safety landscape is 

significantly influenced by the creators of the technology, so it's essential to 

comprehend the human factors at play in their decision-making processes. What 
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motivates them? How will they determine what is considered safe? What role will 

senior executives play, and how might they shape outcomes? It's important to note that 

within each of these roles, different individuals may face varying risks based on factors 

such as age, experience, training, impairments, and their understanding of the 

technology. 
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CHAPTER2. SITUATION AWARENESS 

2.1 Introduction 

Situation awareness (SA) refers to a driver's comprehensive understanding of what is 

happening in the driving environment, and it is crucial for successful driving. Poor 

situation awareness is a significant factor contributing to vehicle collisions. 

Building upon this, we can discuss the impact of autonomous and semi-autonomous 

vehicle technologies on driver situation awareness. These technologies offer 

opportunities to enhance situation awareness, but they also introduce certain risks that 

are unique to automated vehicle features. 

 

Situation awareness (SA) serves as the fundamental cognitive mechanism by which 

drivers comprehend the state of their vehicle and the environment, laying the 

groundwork for continuous decision-making in the rapidly changing world of road 

traffic. 

It has been established that SA is the cornerstone of successful driving. Poor situation 

awareness is recognized as a significant contributor to vehicle accidents, with 

inadequate monitoring and inattention being two prominent examples. Distraction and 

recognition errors (where drivers 'look but fail to see') also stand out as major causes of 

vehicle collisions that point to problems with SA. 
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2.2 SA Requirements for Driving 

1. SA is defined as the perception of elements in the environment within a specific 

spatial and temporal range, understanding their significance, and predicting their 

future status. 

2. Specific perceptual (SA Level 1), comprehension (SA Level 2), and projection (SA 

Level 3) requirements are demanded. This is typically achieved through Goal-

Directed Task Analysis (GDTA), offering a systematic approach to understanding 

the cognitive demands associated with any job or task, encompassing performance 

under both normal and abnormal conditions. 

3. The overarching objective is to transport the vehicle from the point of origin to the 

destination safely, legally, and in a timely manner. Numerous related primary 

objectives include (1) ensuring the safe operation of the vehicle, (2) selecting the 

optimal route to reach the destination, (3) executing the chosen route safely, legally, 

and on time, and (4) minimizing the impact of exceptional circumstances to the 

greatest extent possible. Additionally, each objective can be further subdivided as 

needed. 
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                  Figure.2 Goal tree for driving in road transportation. 

 

 

SA Requirements for Driving 
Level 1 SA: Perception Level 2 SA: Comprehension Level 3 SA: Projection 

Location of nearby objects 

(vehicles, pedestrians, cyclists, 

other objects) 

Distance to other objects, vehicles, 

pedestrians, cyclists 

Projected trajectory of own 

vehicle, other vehicles, objects, 

pedestrians, cyclists 

Relative speed of traffic in 

adjacent lanes 

Preferred lane for traffic 

avoidance/speed 
Projected collision/miss distances 

Open areas in adjacent lanes Vehicle in blind spot 
Projected effect of evasive 

maneuver/braking 

Planned route Compliance with planned route Projected distance to turns/exits 

Planned destination(s) location 
Traffic lane needed for route 

execution 

Projected distance & time 

remaining to destination 

Traffic density along route(s) 

(crashes, construction, major 

events, time of day, road/exit 

closures) 

Areas of congestion Projected trip delay time 

Emergency vehicles Alternate routes 
Projected time to destination on 

alternate routes 
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Emergency personnel Avoidance of emergency vehicles 
Projected traffic stops/slowdowns 

ahead 

Hazardous weather along route 

(rain, snow, icing, fog, high winds, 

areas of flooding) 

Compliance with safety personnel Projected changes in weather 

Daylight/dusk/night 
Impact of weather on vehicle 

safety, systems, & route time 
Projected safety of route(s) 

Road conditions along route (road 

size/paving, construction, 

frequency of stop signs/lights, 

security) 

Visibility of road and vehicle 
Projected time and distance to 

destination on route(s) 

Speed limit 
Impact of road conditions on route 

time 

Projected cost/benefit of change in 

route 

Stoplight status 
Impact of road conditions on route 

safety 
Projected locations of police 

Traffic control measures Vehicle compliance with laws 
Projected time until refueling is 

needed 

Lane markings Fuel sufficiency & usage 
Projected ability of vehicle to 

make trip 

Direction of traffic Fuel to reach destination Projected refueling points 

Vehicle parameters (speed, gear, 

fuel level, position in lane, 

headlights, wipers) 

Road worthiness Projected stop points 

Vehicle malfunctions Vehicle safety Projected time until stop is needed 

Location of fuel stations Distance to refueling stations 
 

Location of restaurants Distance to restaurants 
 

Parking place(s) (location, size) Distance to vehicles, curbs 
 

Driver status (fatigue, injury, 

hunger, thirst, intoxication) 

Need for rest break, assistance, 

alternate driver  

 

Michon (1985) has delineated three categories of driving behaviors: (1) strategic, which 

emphasize high-level decision-making concerning overarching objectives like 

navigation; (2) tactical, focusing on maneuvering; (3) operational, centering on low-

Table2. SA Requirement for Driving 
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level driving actions - such as steering and braking. When this categorization is 

juxtaposed with the goal tree in Figure.2, strategic behaviors map primarily to three 

main objectives: ensuring the safe operation of the vehicle, selecting the optimal route 

to the destination, and minimizing the impact of exceptional circumstances. Tactical 

behaviors are mainly mapped to the execution of the chosen route. While operational 

actions, like steering and braking, necessitate contextual awareness (e.g., brake lights, 

traffic signals, and lane markings), these low-level actions are embedded within sub-

goals, such as maintaining safe following distances from traffic, obstacles, and 

pedestrians, and maneuvering within traffic. These low-level operational actions, often 

classified as skill-based behaviors, can either be consciously and thoughtfully executed 

or may become cognitively automated (which we'll delve into in more detail later). 

Even routinely traveled routes, like the daily commute home, can become highly 

automated. 

 

2.3 SA Model 

The cognitive model of SA, illustrated in Figure.2 (Endsley, 1995), serves as a 

framework for comprehending the factors influencing a driver's SA within the dynamic 

road traffic environment. Each of these factors will be examined. Based on the factors 

within this model, we can subsequently delve into the role and impact of automation 

and vehicle design on SA. 

At the bottom of Figure.2, we can observe the vital cognitive processes and structures 

that constitute the functioning of an individual driver. These encompass pertinent 

information processing mechanisms such as attention, working memory, goal-oriented 

processing, and data-driven processing approaches. 
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2.3.1 Limited Attention 

In many instances, drivers may find themselves juggling multiple elements that demand 

their attention, necessitating a form of divided focus. For instance, when attempting a 

lane change, a driver might have to simultaneously monitor several surrounding 

vehicles, the traffic ahead, and upcoming road signs. Similarly, drivers making a left 

turn at an intersection must be vigilant of oncoming traffic and pedestrians crossing at 

crosswalks. Given the finite nature of human attention, this places significant 

constraints on a driver's ability to accurately perceive multiple streams of information 

simultaneously. While the capacity to allocate attention between different types of 

information can alleviate this challenge to some extent (Damos & Wickens, 1980; 

Wickens, 1992), attention remains the primary limiting factor in a driver's ability to 

maintain situation awareness (SA) (Fracker, 1989). 

Figure.3 Model of SA in dynamic decision-making. (Endsley, 1995) 
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In other situations, attention may not be fully dedicated to the driving task, particularly 

on uncongested highways, where drivers may become susceptible to distractions, such 

as thinking about other tasks, events, or even daydreaming, due to excess cognitive 

capacity. Yanko and Spalek (2014) discovered that drivers experience distraction in 39% 

of cases, which is significantly correlated with an increase in speed and a decrease in 

braking reaction time. 

 

2.3.2 Limited Working Memory 

Likewise, working memory faces significant constraints, which limit novice drivers' 

capacity to gather and integrate data for formulating higher-level situation awareness 

(SA) and their ability to deal with novel situations, such as getting lost in a new city or 

navigating unfamiliar roads (Endsley, 1995). Gugerty and Tirre (1997) have 

demonstrated a significant correlation between working memory and SA scores in 

driving tasks. Kaber et al. (2016) found that Level 1 SA is strongly associated with the 

breadth of working memory during simulated driving tasks, especially in the aftermath 

of hazardous events, but this isn't the case for Level 2 or Level 3 SA. 

As individuals gain experience, they can significantly mitigate the limitations of 

working memory by tapping into long-term memory stores, such as mental models. 

This has been substantiated in various studies (Endsley, 1990; 2015; Sohn & Doane, 

2004). 

 

2.3.3 Goal-Driven Processing Alternating with Data-Driven Processing 

In a broader context, goal-driven processing is notably more efficient when it comes to 

gathering pertinent information in order of priority to achieve objectives. However, if 
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drivers solely adhere to goal-driven processing, they may overlook crucial information 

signaling the need to adapt their goals. For instance, if a driver intends to change lanes, 

they still need to remain alert to the vehicle in front braking, which should trigger a 

swift shift from the "lane change" goal to the "avoiding other vehicles" goal. A hallmark 

of good situation awareness is the interplay between these modes: employing goal-

driven processing to seek and effectively process information necessary for achieving 

objectives and using data-driven processing to adjust the selection of the most pertinent 

goal at any given moment (Endsley, 1995). 

When this alternating process fails, serious SA issues arise. Those overly driven by 

goals might overlook vital cues, such as an emergency vehicle in their rearview mirror, 

a low fuel gauge on the dashboard, or a stalled vehicle in the lane ahead while they are 

engrossed in interacting with the in-car navigation system. Those primarily driven by 

data might struggle to shift their focus to relevant information when required. For 

instance, they might get distracted by a phone call and neglect to keep their attention 

on pertinent details for avoiding other vehicles and maintaining lane discipline. While 

at times these conspicuously distracting cues may not pertain directly to driving (e.g., 

distractions involving phones, texting, or conversations with passengers), it should be 

noted that in many instances, they are relevant to the driving task. For example, a driver 

might become distracted by observing pedestrians near a bustling intersection, causing 

them to miss the sudden stoppage of traffic ahead. In demanding driving environments, 

maintaining awareness of all pertinent information can be a formidable challenge due 

to the constraints of attention. 

 

2.3.4 Long-Term Memory Stores 

Moreover, in contrast to automation systems lacking these intricate models developed 

through experience, these mental models may lead drivers to possess vastly different 
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interpretations of the significance of events and objects. Consequently, they may have 

differing priorities and predictions compared to automation systems. This lays the 

foundation for viewpoints in which appropriate actions may clash, particularly when 

drivers are overseeing new automation technologies. Such conflicts can give rise to 

confusion, incorrect expectations, and added workloads. 

 

Mental models play a crucial role in reducing the cognitive workload associated with 

real-time information processing and integration. They enable drivers to (Endsley, 

1995): 

1. Rapidly interpret and integrate various components to form an 

understanding of their meaning (Level 2 SA). For example, this allows 

drivers to comprehend the significance of warning lights on the dashboard or 

the impact of road conditions and weather on vehicle performance and safety. 

2. Mechanisms to predict the future state of the environment based on the 

current state and their dynamic understanding (Level 3 SA). This enables 

drivers to forecast potential traffic congestion on roads and at specific times or 

anticipate the likely behavior of vehicles in a parking lot. 

3. Identify which aspects of the environment are relevant and carry critical 

significance. By incorporating information about critical cues, mental models 

are highly effective in swiftly grasping the situation and guiding attention. For 

instance, the sight of a ball on a residential street prompts experienced drivers 

to slow down and watch for children who may run onto the road. 

 

2.3.5 Expertise 

Inexperienced drivers exhibit notably low efficiency in their data-driven processing 

(Endsley, 2006). This inefficiency stems from the novice drivers' lack of knowledge 

about which information holds the utmost importance, resulting in sporadic and 
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suboptimal scanning patterns (Chapman & Underwood, 1998; Underwood, 2007). 

They may either overlook critical information or unnecessarily over-sample data. 

Novice drivers lack a clear understanding of where to locate crucial information. 

Additionally, they struggle to focus their attention across a broad spectrum of 

information in their environment, likely due to the less developed mental models 

guiding their search efforts (Underwood, Chapman, Bowden, and Crundall, 2002). 

 

An important consideration is the impact of vehicle automation on the development of 

expertise among novice drivers. If many driving tasks are handed over to automation, 

will novice drivers develop the deep knowledge (mental models, patterns, and goal-

driven processing) crucial for situation awareness (SA)? For instance, as GPS 

navigation devices become widespread, the skill of map reading for navigation has 

become a lost art. Moreover, there's evidence that even experienced drivers may lose 

skills if they predominantly rely on automation. When vehicles provide automatic 

blind-spot warnings, drivers may no longer check their blind spots and instead become 

reliant on automation, which may not always be entirely reliable. It's crucial to focus 

on how vehicle automation influences the development of expertise among future 

drivers and its impact on the skill atrophy of experienced drivers. 

 

2.3.6 Cognitive Automaticity 

Through experience, individuals can also acquire a form of cognitive automation. 

Automatic cognitive processing is often rapid, automated, effortless, and can occur 

without conscious awareness, as it can happen in the background without drawing 

attention (Logan, 1988) or require minimal attention when needed to activate 

appropriate patterns, execute scripts, and follow procedures (Reason, 1984). 

Automation can serve as a mechanism to overcome limited attention capacity, thus 

freeing up attention for other tasks, which can be highly beneficial for situation 
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awareness (SA). However, it can also lead to a reduction in SA for familiar features in 

everyday situations (Endsley, 1995). Charlton and Starkey (2011) have indicated that 

as driving experience increases, task difficulty ratings decrease as performance 

becomes more automated, and object detection becomes more procedural. Additionally, 

drivers become more "attentionally blind" to many objects while driving, indicating a 

lack of conscious awareness. 

The significant importance of introducing vehicle automation lies in its impact on 

highly automated cognitive processes. For instance, when a semi-automated vehicle 

takes control of steering (both horizontal and vertical), the driver will no longer engage 

in the low-workload automation procedures required to drive the vehicle. This implies 

that they will need to consciously attend to responding to traffic lights and road 

fragments, which previously occurred automatically from a human performance 

perspective. Conscious attention may be redirected or delayed in determining the need 

for human action, presenting new challenges. 
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CHAPTER3. TRUST 

3.1 The Connotation of Human-Machine 

Trust The definition of human-machine trust proposed by Lee and See (2004) has been 

widely accepted by researchers (such as French et al., 2018; Hoff & Bashir, 2015; 

Khastgir et al., 2017). They argue that there is an inherent connection between attitudes, 

intentions, and behavior: an operator's attitude toward a system influences their 

willingness to use the system and their reliance on it. However, relying on a system and 

having the intention to use it does not necessarily equate to trusting the system. 

Therefore, Lee and See define trust from an attitude perspective, where trust is the 

individual's (e.g., a driver) attitude that an agent (e.g., an automated driving system) can 

help them achieve a specific goal (e.g., a driving task) in uncertain or potentially 

harmful situations. 

 

3.1.1 Trust Measurement  

Trust measurement in the context of automated driving primarily revolves around the 

connotation of trust and focuses on aspects such as the driver's reliance on the 

automated driving system, physiological indicators, and the driver's subjective attitude. 

Specifically: 

First, measuring the driver's reliance on the automated driving system involves 

behaviors such as the ratio of manual driving to automated driving during the driving 

process, the delay in time it takes for the driver to regain control after a takeover request, 

and the frequency or duration of the driver's monitoring of driving-related areas as a 

percentage of the total time. 
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Second, physiological indicators of the driver during the driving process are measured, 

such as heart rate and skin conductance. When the automated driving system requests 

control takeover, if the driver trusts the system, their emotional state will be relatively 

stable, with a smoother heart rate and heart rate variability (e.g., Petersen et al., The 

influence of risk on driver's trust in autonomous driving system. 2017), and lower skin 

conductance levels (e.g., Morris et al., 2017). Conversely, if the driver does not trust 

the system, they may become anxious and this will affect their physiological indicators. 

Third, the subjective level of trust that the driver has in the automated driving system 

is measured (e.g., Chien, Lewis, et al., 2014; Chien, Semnani-Azad, et al., 2014; Jian et 

al., 2000). The Human-Machine Trust Questionnaire by Jian et al. (Foundations for an 

Empirically Determined Scale of Trust in Automated Systems, 2000) is currently the 

most widely used questionnaire for this purpose. 

 

3.1.2 Trust Calibration  

The relationship between the assessment of system capabilities and the driver's actual 

trust level is one of the central issues in the field of human-machine trust. Researchers 

typically use a two-dimensional coordinate system with system capabilities (Capability) 

on the horizontal axis and trust level (Trust) on the vertical axis (see Figure.4) to 

describe the relationship between the two (de Visser et al., 2014; Lee & See, 2004). 

System capabilities reflect the objective level of trustworthiness that operators should 

have in a specific situation based on the system's capabilities, while trust level reflects 

the driver's subjective actual trust level during real human-machine interactions. By 

measuring the relative relationship between subjective actual trust and objective 

trustworthiness, we can assess whether the current trust state is appropriate and, if 

necessary, calibrate trust (Lee & See, 2004). 
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Figure.4 The relationship between system capability and subjective actual trust level (adapted from de 
Visser et al., 2014; Lee & See, 2004). The gray dashed area in the figure represents a zone in practical 
applications where trust calibration exists, with an inappropriate but recoverable or safe trust level 
(specific range to be further explored). 

 

The appropriateness of trust can generally be evaluated through three aspects (Lee & 

See, 2004): 

1. Calibration: The matching between the subjective actual trust level and the 

objective trustworthiness level. Based on their relative relationship, trust can be 

categorized into Appropriate trust, Under-trust, and Over-trust. Appropriate 

trust, also known as calibrated trust, refers to the driver's subjective actual trust 

level being consistent with the objective trustworthiness level, as shown on the 

diagonal line in Figure.4 (de Visser et al., 2014). Under-trust occurs when the 

driver's subjective actual trust level is lower than the objective trustworthiness 

level (bottom-right area of Figure.4), often because the driver underestimates 

the capabilities of the automated driving system. In such cases, the driver may 
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ignore the system's valid suggestions, leading to disuse of the system's functions. 

Over-trust occurs when the driver's subjective actual trust level is higher than 

the objective trustworthiness level (top-left area of Figure.4), typically due to 

the driver overestimating the capabilities of the automated driving system. In 

this case, the driver may not monitor the current vehicle and road conditions in 

a timely manner, leading to the misuse of the system's functions. 

2. Resolution: The ability of subjective actual trust to distinguish changes in 

objective trustworthiness. High resolution means that when the objective 

trustworthiness level varies significantly, the subjective actual trust level 

changes accordingly, while low resolution means that the subjective actual trust 

level remains unchanged or changes only slightly when objective 

trustworthiness varies significantly. 

3. Specificity: Specificity of subjective actual trust can be divided into two 

categories: time specificity and function specificity. Time specificity refers to 

the degree to which the driver's subjective actual trust level changes in real-time 

as the objective trustworthiness level changes. High time specificity indicates 

high time sensitivity, with the subjective actual trust decreasing when the 

system makes mistakes and increasing with a time lag. Function specificity 

refers to the driver's varying levels of trust in different subsystems, functional 

modules, or driving modes of the automated driving system. High function 

specificity reflects differentiated trust levels for different subsystems, while low 

function specificity indicates the opposite. Current research on human-machine 

trust in automated driving mainly revolves around the first aspect, i.e., how to 

mitigate under-trust and over-trust in human-machine co-driving and help 

drivers achieve or maintain an appropriate trust level. 
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3.2 Dynamic Trust  

Framework We have constructed a dynamic trust framework for automated driving 

based on the development process of trust. This framework elucidates the dynamic 

nature of trust in automated driving and the related influencing mechanisms, by 

delineating the factors and their underlying logical relationships at different stages of 

trust development (see Figure.5) (Chen et al., 2021). In this section, we will provide a 

detailed introduction to this framework. It should be noted that this framework is 

applicable to different levels of automated driving systems (excluding L0), and the 

impact of relevant elements may vary across different system levels. 

 

 

 

 

 

3.2.1 Framework Elements  

From the perspective of trust development, Merritt and Ilgen (2008) propose that an 

operator's trust in automated systems lies on a continuum between dispositional trust 

Figure.5 Dynamic Trust Framework for Autonomous Driving based on the Trust 
Development Process. The a line represents how driver characteristics affect all 
four factors, except system performance, while the b line indicates that all factors 
within the framework can be translated into the driver's prior experience. 
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and history-based trust. Dispositional trust represents an inherent trust people have in 

automated systems, while history-based trust is trust formed through interactions with 

automated systems. An operator's trust level constantly falls somewhere along this 

continuum. As the operator continues to use the system, their trust gradually shifts from 

being primarily dispositional to being predominantly history-based, and it goes through 

three historical trust states: initial trust, ongoing trust, and post-task trust (French et al., 

2018; Merritt & Ilgen, 2008). Therefore, this framework divides trust development into 

four stages: dispositional trust, initial trust, ongoing trust, and post-task trust. Initial 

trust develops from dispositional trust and refers to the trust an operator holds for an 

automated system they are about to use. They have some cognitive awareness of the 

system but have not yet used it. Ongoing trust refers to the trust an operator has in the 

system during human-machine interactions, while post-task trust pertains to the trust an 

operator holds for the system after the interaction has ended, representing an overall 

assessment of trust in the system post-interaction. The factors influencing post-task 

trust and ongoing trust significantly overlap, so this model primarily focuses on the 

factors affecting dispositional trust, initial trust, and ongoing trust. 

Regarding the factors influencing trust, this framework identifies three main aspects: 

operator characteristics (human), system characteristics (the automated driving system), 

and situational characteristics (environment). Operator characteristics can be divided 

into inherent traits and prior experience. Inherent traits encompass an individual's 

physiological and stable long-term characteristics, such as gender, personality, age, 

cultural background, and more, which are unrelated to the system and environment. 

Prior experience refers to information about the system and environmental 

characteristics acquired through learning and largely reflects the driver's mastery of the 

vehicle. 

During a driver's use of an automated driving system, system characteristics and 

situational characteristics are objectively reflected through the system's performance. 
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These objective system performance characteristics are then transformed into 

subjective perception characteristics (which also include an individual's perception of 

potential risks associated with the system's performance) through the driver's cognitive 

processing of the system. These subjective perception characteristics are the direct 

factors that influence trust. 

 

3.2.2 Influence Mechanisms of Different Types of Trust  

3.2.2.1 Dispositional Trust and Initial Trust  

Dispositional trust is the initial stage of trust development and reflects a person's innate 

trust propensity. Dispositional trust is primarily influenced by driver's inherent traits 

such as age and personality. Research has shown that driver age can affect dispositional 

trust (Molnar et al., 2018), with older drivers tending to trust and use automated driving 

systems more. When using automated driving systems, driver control preferences can 

affect trust. Drivers with lower control preferences are more inclined to trust automated 

driving systems (Molnar et al., 2018). Driver personality traits can also influence trust 

propensity (Chien et al., 2016). For example, individuals with higher agreeableness are 

more likely to trust automated systems, which may be related to the fact that 

agreeableness encompasses traits like trust and compliance. There is currently no 

significant evidence to suggest that gender has a significant impact on dispositional 

trust (Molnar et al., 2018). 

Initial trust develops from dispositional trust. In addition to being influenced by a 

driver's existing trust propensity, it is also affected by the driver's prior experience with 

the automated system. Prior information can facilitate the driver's understanding of the 

system, influence the driver's psychological model of the system, and subsequently 

affect trust. During the initial encounter with the system, prior information primarily 
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comes from descriptions by others (especially brand reputation generated by 

advertising) and experiences with similar systems. Drivers tend to have higher trust in 

automated driving systems with strong brand reputations (Celmer et al., 2018). 

Information about the possibility of system errors can affect a driver's initial trust level 

(Beggiato & Krems, 2013). The higher the level of automation, the higher the driver's 

initial trust level in the system may be. After multiple interactions with the system, the 

driver's experience with the automated system is transformed into the driver's prior 

knowledge, influencing their initial trust in the next driving session (as shown by line 

b in Figure.5). Research has found that takeover experiences allow drivers to experience 

system shortcomings, which can help them better understand the system and, in turn, 

increase their trust level (Molnar et al., 2018). 

It's important to note that the impact of takeover experiences on trust may not be a 

singular effect. For example, takeover experiences may expose system shortcomings in 

the short term, leading to a decrease in trust. However, in the long term, these 

experiences may enhance the driver's understanding of the automated system, leading 

to a more accurate psychological model of the system and ultimately promoting the 

attainment of an appropriate trust level (Payre et al., 2016). 

 

3.2.2.2 Ongoing Trust  

Ongoing trust develops from initial trust. A driver's level of ongoing trust directly 

influences whether they use an automated system and to what extent they rely on it. 

During the use of automated systems, the system's characteristics and context-related 

features of driving are objective factors and direct influences on trust. Objective factors 

determine the objective level of trust that a driver should have in the automated system. 

However, these objective factors do not directly impact ongoing trust. Instead, drivers 
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need to process them cognitively to transform them into subjective perceptual features, 

which are the direct factors influencing ongoing trust, as illustrated in Figure.5. 

Ongoing trust is mainly influenced by system characteristics and context features. 

System characteristics encompass system purpose, system processes, and system 

capabilities. System purpose refers to the intentions of the designer or the functionality 

of the system, such as adaptive cruise control or lane-keeping assistance. Users typically 

perceive the system's provided functions as reliable and trust them. System processes 

refer to how the automated system accomplishes driving tasks. Research has found that 

automated driving systems providing driving-related information through alerts 

enhance trust. Systems that provide driving guidance are more trustworthy than those 

that only offer vehicle information (Cramer et al., 2008). Systems with proactive 

feedback have higher levels of trust than systems with reactive feedback (Du et al., 

2019). System capabilities are essential factors influencing trust, such as system 

reliability (Petersen et al., 2018), system errors (Kraus et al., 2020), and the level of 

automation. The more severe the system errors and the lower the reliability, the more 

trust is eroded. System failure (false alarms) can seriously undermine trust. Context 

features include task difficulty, road conditions, and weather. Existing research has 

found that traffic density affects a driver's trust in the system. 

Subjective perceptual features are a core element influencing ongoing trust, and thus, 

the appropriateness of ongoing trust depends on a driver's accurate perception of the 

system and contextual features (i.e., the driver's situation awareness level; Endsley, 

1995, 2016). As depicted in Figure.5 with the circular arrow-containing ring, ongoing 

trust impacts a driver's reliance on the system during the process of automated driving. 

Drivers dynamically perceive system characteristics and contextual features through 

the system's performance and adjust their ongoing trust level accordingly. 

When the system's performance consistently remains excellent, a driver's trust in the 

system gradually increases. Conversely, when the system experiences errors, a driver's 
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trust level decreases (Kraus et al., 2020). Systems can enhance a driver's accuracy in 

perceiving these features through the Human-Machine Interface (HMI) by providing 

information about system characteristics and contextual features. 

Regarding system characteristics, research has found that presenting information about 

system reliability or uncertainty through visual means (such as using bar graphs to 

illustrate the automated driving system's response capabilities under the current 

situation) helps drivers establish an appropriate level of trust and prevents over trust 

(Kunze et al., 2019). 

In terms of contextual features, environment reconstruction views allow drivers to 

perceive environmental risks more accurately, enabling their trust level to dynamically 

adjust with actual traffic risk levels. 

Recent research has begun to focus on the impact of social cues within the Human-

Machine Interface (HMI) on trust. Relevant social cues carried by automated systems 

can be perceived by drivers through specific aspects of automated driving systems, such 

as their appearance, driving behavior, and decision-making patterns, thus influencing 

drivers' trust in the system. 

These social cues include anthropomorphism, system-driver similarity, and driving 

style. Anthropomorphism involves giving automated driving systems human-like 

characteristics, such as voice, appearance, or gender. Anthropomorphic features 

enhance a driver's understanding of automated systems (Niu et al., 2018), foster 

emotional connections, or create a sense of social presence (Lee et al., 2015), all of 

which contribute to higher levels of trust among drivers (e.g., Waytz et al., 2014). 

System-driver similarity encompasses visual similarity, behavioral similarity, and 

cognitive similarity between automated systems and drivers. Cognitive similarity, such 

as having common driving goals, can increase a driver's trust in the system (Verberne 
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et al., 2015). This effect may be due to the principle that similarity breeds trust 

(Verberne et al., 2015). 

Regarding the driving style of automated systems, it can mirror human driving styles in 

behaviors such as lane changes, acceleration, braking, following distance, lateral safety 

margins, and other driving patterns. Research has found that drivers tend to trust 

automated vehicles with a conservative driving style more than those with a more 

aggressive driving style (Ekman et al., 2019). This preference may stem from drivers 

perceiving lower risks in vehicles with conservative driving styles. When considering 

both driver and vehicle driving styles, Hartwich et al. (2018) found that automated 

systems with driving styles similar to the drivers are more trusted. 

 

3.3 Trust Calibration 

The ultimate goal of trust research is trust calibration, ensuring that drivers maintain an 

appropriate level of trust in automated systems. Trust calibration essentially aims to 

ensure that real-time trust remains at a reasonable level (i.e., along the diagonal line in 

Figure.5). Based on the dynamic trust framework for automated driving discussed 

earlier, trust calibration can be approached from three aspects: monitoring and 

correction, driver training, and optimizing HMI design. We will discuss the first two 

sections for now and delve deeper into HMI in the next chapter. 

3.3.1 Monitoring and Correction 

The most direct way to calibrate inappropriate trust is to monitor the driver's real-time 

trust level and provide appropriate interventions when the driver either trusts the system 

too little or too much. When the driver exhibits over trust, the system can provide 

warning feedback and information about system reliability to indicate the current 
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system and environmental risks. This helps recalibrate the driver's inappropriate 

cognition and adjust their trust level in the system (Kunze et al., 2019). When the driver 

lacks trust, their trust can be increased by providing information about system reliability 

and using various forms of feedback such as visual and auditory cues (e.g., Kunze et 

al., 2019). Interpersonal techniques like apologies, denial, explanations, and 

commitments can be used to repair trust between the driver and the automated driving 

system (trust recovery, de Visser et al., 2018; Khastgir et al., 2017). 

There are two challenges in implementing current monitoring and correction 

approaches. (1) How to dynamically measure real-time trust: Real-time trust monitoring 

in laboratory studies can be achieved through the measurement of behaviors (e.g., eye 

movements) and physiological indicators (e.g., heart rate, skin conductance) during 

driving. However, accurate measurement of indicators directly related to trust, such as 

eye movements and skin conductance, remains challenging in real-world driving due to 

factors like ambient light, body movements, and emotional states. Future research needs 

to strengthen real-time measurement methods and indicators. (2) How to identify 

inappropriate trust: The core issue of appropriate trust lies in whether there is a match 

between system capabilities and the current actual trust level. However, these two 

aspects do not exist in the same measurement dimension. Even with a given level of 

system capabilities and the driver's real-time trust level, determining whether the trust 

state is appropriate is still challenging. A possible solution is to construct a mapping 

between system capabilities and objective trust levels. For example, researchers can 

attempt to construct objective trust levels for different levels of automated driving and 

scenarios. For instance, for Level 3 vehicles performing automated driving on highways, 

drivers must reach a minimum monitoring frequency or minimum monitoring time; 

otherwise, they must intervene. Overall, the implementation of monitoring and 

correction requires further exploration in terms of trust indicators selection and the 

identification of inappropriate trust in real-world driving. 
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3.3.2 Driver Training 

According to the dynamic trust framework, a driver's prior experience determines their 

psychological model or expectations of the automated driving system, which 

subsequently affects the dynamic change in real-time trust (as indicated by line "a" in 

Figure.5). Therefore, inappropriate trust can be calibrated through training to 

accumulate a driver's prior experience and foster correct perceptions of the system. 

Through training, drivers can learn about the system's capabilities and limitations, 

acquire the ability to use the system to gather environmental information, and form 

correct psychological models of the automated system in advance (Ekman et al., 2018). 

This helps reduce the impact of initial system failures (first failure, Manzey et al., 2012) 

and enhances the driver's ability to maintain an appropriate trust level (Molnar et al., 

2018). 

In addition, in-depth training, involving exposure to complex scenarios like overtaking, 

being overtaken, and takeover events, can mitigate the negative impact of over trust on 

takeover responses (Payre et al., 2016). Some researchers have suggested incorporating 

automated driving training, including control transfer operations, into driver's license 

assessments. However, existing studies often involve short driving experiences and 

may not represent systematic, long-term training. Moreover, the psychological models 

formed through training may have lower ecological validity. Future research should 

consider the long-term impact of training on drivers of automated vehicles and explore 

the mechanisms of training based on real-world automated driving scenarios. 
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CHAPTER4. OPTIMIZE HMI DESIGN 

 

According to the dynamic trust framework, drivers can perceive system characteristics 

through the system's performance. Therefore, inappropriate trust can be calibrated 

through optimizing HMI (Human-Machine Interface) design, providing drivers with 

information about system characteristics and situational features to enhance their 

situation awareness. This approach primarily focuses on increasing the transparency 

and comprehensibility of objective features by providing information about the system 

and the context, helping drivers process objective features more effectively, and 

enhancing their perception, understanding, and prediction of the system and the context 

to calibrate trust. 

 

The key issue in this approach is what information HMI should provide. De Visser et 

al. (2014) and Mirnig et al. (2016) proposed HMI design frameworks for trust cues. 

These two design frameworks include two dimensions: system characteristics and 

driver information processing. Regarding system characteristics, de Visser et al. 

proposed that HMI should provide system information across five dimensions: system 

purpose, system capabilities, system processes, presentation format, and system design 

background and reputation. Mirnig et al. framed HMI design from the perspective of 

different levels of automation in system functionality, suggesting that HMI should 

provide information across three levels: operational, tactical, and strategic system 

information. It's worth noting that there is some overlap between the five dimensions 

proposed by de Visser et al., which could be further simplified into system purpose, 

system capabilities, and system processes. This simplification aligns with the 

explanation provided in this chapter's model framework of the elements of system 

features. For instance, to convey system capabilities, drivers can be presented with 

sensor recognition results or sensor reliability under different weather conditions. To 
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convey information about system processes, drivers can be shown schematic 

representations of processes like overtaking and lane-changing. 

 

Regarding the driver's information processing dimension, the two frameworks (de 

Visser et al., 2014 and Mirnig et al., 2016) essentially revolve around enhancing the 

three levels of situation awareness (Chen et al., 2018; Endsley, 1995, 2016): perception, 

comprehension, and projection of how the system operates in different situations. 

 

4.1 Automated Vehicle HMI Design 

Through surveys, mock-ups, driving simulators, test tracks, and real-world driving, 

extensive research has been conducted on driver preferences, behaviors, and 

performance. Much of this research has been summarized and incorporated into design 

guidelines (e.g., Campbell, Richard, Brown, & McCallum, 2007; Campbell et al., 2016), 

as well as into standards and best practices published by organizations such as the 

Society of Automotive Engineers (SAE) International and the International Standards 

Organization (ISO). However, relatively few published research studies provide 

actionable insights into the questions surrounding how to design the human-machine 

interface (HMI) for vehicles with higher levels of automation. In many respects, this 

reflects the early stage of maturity of the technology. But perhaps a broader challenge 

is the multitude of uncertainties surrounding the circumstances and scenarios in which 

automated driving system (ADS) HMIs will be deployed. Specifically, automated 

vehicle (AV) warnings may need to be richer and more carefully designed than the 

simple hazard warnings that have been the focus of much of the published research. For 

example, driver warnings and even status information in AVs serve additional long-

term goals of aiding the driver in developing and maintaining a functional mental model 

of the system, as well as supporting and increasing the driver's trust in the system. 

Information may also be frequently presented in situations where the driver is not fully 
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engaged in the driving task and may be unaware of current conditions. 

 

With these considerations in mind, we provide the following tentative design principles: 

• Providing both basic status and mode information. 

• Identifying key principles for presenting warning information. 

• Facilitating the transfer of control (TOC). 

• Supporting improved situation awareness (SA). 

 

4.1.1 Communicating AV System Status and Mode 

The automation mode refers to the specific level and type of automation that is active 

at a given time. This includes specific driving functions under automation, such as 

steering, speed control, and/or braking, as well as other information that helps the driver 

understand the current operation of the system. Appropriate feedback regarding 

automation status and modes is crucial for the following reasons: (1) maintaining the 

driver's situation awareness (SA), (2) communicating if the automation has received a 

driver's request (e.g., transfer of control request), (3) notifying the driver if the system's 

operations are executed correctly, and (4) informing the driver if issues or errors occur 

(Toffetti et al., 2009). 
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4.1.2 HMI Guidelines for AV Warnings 

Past research and guidelines can support the design of visual, auditory, and tactile 

warnings (see, for example, Campbell et al., 2007, 2016, 2018). However, it's important 

to note that there is limited research supporting a range of warning situations and 

conditions related to Levels 2-4 automation. In general, the effectiveness of specific 

warning methods may vary depending on the level of automation, the implementation 

of automation, and the driver's level of engagement with driving situations and 

conditions. 

 

Therefore, we will focus on three warning design parameters that are easy to understand 

and highly applicable to automated vehicles: selecting warning modes, reducing false 

and nuisance warnings, and using staged (or tiered) warning methods. 

 

Table3. Principles for Presenting System Status Information in AV 
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4.1.2.1 Selecting Warning Modality 

The mode of warning presentation can influence a driver's response and behavior. The 

choice of message mode depends on the driving environment (e.g., anticipated 

vehicle/cabin noise and vibration, hazardous situations), message severity (e.g., critical 

vs. non-critical situations), the location of visual displays (assuming these locations 

cannot be changed), and other factors. 

 

1. Auditory warnings are effective at quickly capturing the driver's attention and can be 

used to present short messages that require rapid or immediate action (e.g., simple or 

complex tones or voice messages), including high-priority alerts and warnings (Lerner, 

Kotwal, Lyon, & Garder-Bono, 1996). 

 

2. Visual messages are most suitable for presenting more complex information 

(Deatherage, 1972), information that is non-safety-critical and doesn't require 

immediate action. This includes continuous information presented over an extended 

period (uninterrupted information throughout a journey, trip, or even an entire drive) 

and lower-priority information, such as navigation instructions or advisory messages. 

 

3. Tactile feedback (similar to auditory warnings) can quickly capture the driver's 

attention and can be used when auditory information might not be as effective. 

 

4. Depending on the vehicle's level of automation and the implementation of automation, 

drivers may not always have physical contact with certain parts of the pedals, steering 

wheel, or even the seat. 
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4.1.2.2 Reducing False and Nuisance Warnings/Alarms 

From Campbell et al. (2016), false alarms are alerts that indicate a threat when there is 

none. They should be avoided as they can distract drivers, lead to incorrect decisions 

and/or responses, and even increase a driver's reaction time to real warnings. Nuisance 

alarms, on the other hand, are correct alerts of potential threats that drivers perceive as 

unnecessary or not needed, possibly because they are already aware of the threat or 

believe that it can be resolved without driver intervention. Importantly, drivers may not 

always distinguish between false alarms and nuisance alarms. Excessive false or 

nuisance alarms can increase workload and decrease driver trust in AV systems. 

Strategies to minimize the frequency and impact of false/nuisance alarms, as provided 

by Lerner et al. (1996) and Horowitz and Dingus (1992), include: 

 

- Automatically deactivating the warning device when it's not needed in specific driving 

conditions (e.g., requiring the gearshift to be placed in reverse to activate the backup 

warning device). 

- Allowing drivers to reduce detection sensitivity to a limited extent to minimize 

false/nuisance alarms without significantly affecting the device's target detection 

capability. 

- Issuing warnings only after a specified minimum time has elapsed when a target or 

critical situation is continuously detected. 

- Allowing drivers to reduce the warning intensity or volume to mitigate interference. 

- Changing modes with increasing severity (e.g., issuing visual warnings initially and 

adding auditory components as severity increases). 

 

Recent examples of staged warnings include a system that, if it detects that the driver 

is not paying attention to the road, activates a series of warning lights, sound alerts, 

and/or seat vibrations on the steering wheel. The system only applies the brakes to bring 

the vehicle to a stop if the driver fails to respond appropriately to these warnings. 
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The advantages of two-level or multi-level warnings are that they provide drivers with 

continuous information, offering more time to identify and respond to emerging threats. 

They can also help drivers build a functional and consistent mental model and a better 

understanding of the operation and limitations of automated systems (Campbell et al., 

2016). 

 

4.2 Interaction Design Space for Automated Vehicles 

When designing human-machine interfaces (HMI), the design space for communication 

between systems and humans is closely tied to the vehicle's technology, interior, and 

human capabilities (senses and actions). Modern vehicles have already integrated 

numerous high-end technologies such as touch panels, microphones, cameras, GPS 

sensors, light sensors, and algorithms that analyze the driver's steering behavior. Future 

vehicles will further integrate additional technologies and expand the possibilities for 

interaction. For best practices related to sensing and feedback, we refer to Riener et al. 

(2017). 

 

Figure.5 illustrates the evolution of cockpits over the past three decades in a BMW 3 

series (a-c) and various modern approaches (c-e). These designs exclusively represent 

the current design space for lower levels of automation (SAE 0-2). They have not yet 

been designed for higher levels of automation (SAE 3-5) and do not include design 

solutions for automation cooperation or fully automated driving. Presently, tactile and 

touch interfaces with visual or vibrotactile feedback dominate interface design. Vehicle 

system designers may consider that some of the human senses and actions, like human 

brain interfaces, lack practical value because they require additional effort. However, 

technology evolves rapidly, and concepts that seem impractical today may become 

feasible tomorrow with advances in technology. The less critical the primary driving 



48 

 

task becomes, the higher the potential for other control mechanisms to become more 

relevant. 

 

 

 

 

4.3 Some Key Points and Cases Related to HMI Design in AV 

More and more automakers today are promoting automated driving capabilities as a 

selling point for their vehicles, from Tesla's FSD to NIO's NAD. Vehicles without 

automated (assisted) driving capabilities are hardly considered intelligent electric cars. 

While accidents involving this still immature technology are frequent today, it is 

undeniable that automated driving is getting closer to us. As all manufacturers are 

pushing for automated driving, how will the experience design of the Human-Machine 

Interface (HMI) develop? 

 

4.3.1 Safety Remains the Top Priority 

Recurring accidents related to "automated driving" have provided harsh lessons that 

demonstrate there is no absolute safety in current automated driving technology. In the 

design of HMI interfaces, safety remains the most critical factor. Information 

presentation and interface color schemes must prioritize safety to help users better 

understand and complete interactive operations quickly. 

Figure.5 The evolution of cockpit design. Credits: a (Witzel, 2011), b (Doerfer, 2009), c 
(Wagner, 2019), d (Jurvetson, 2017), e (Verch, 2019). 
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1) Placement of Road Safety-Related Icons at the Highest Level 

 

According to national standards and regulations, mandatory icons related to driving 

safety, such as front windshield defogging, should be placed at the top level of the 

interaction hierarchy to ensure the quickest possible completion of the operation. 

 

 

 

2) Clear Visual Contrast 

 

Appropriately sized fonts and clear color contrast assist users in completing operations 

quickly, avoiding prolonged visual attention that could pose safety risks. 

 

A mature in-car font system should have distinct font hierarchies, differentiating various 

interaction functions and usage scenarios based on font thickness and font size. Highly 

legible text aids drivers in reducing browsing and decision-making times, thus 

minimizing cognitive and visual distractions. 

 

Figure.6 Tesla dock 
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Since different users may perceive font sizes differently, adjustable dynamic font 

systems are also increasingly used in in-car operating systems. 

 

 

 

The interface color of HMI directly affects user operational safety and user experience. 

Traditional automotive manufacturers often use dark interfaces with strong contrasts to 

reduce glare, even in strong light. With the improvement of in-car capabilities and the 

growing diversity of user needs, more and more automakers are providing users with 

the option to choose between light and dark themes. 

 

 

Table4. Baidu In-Car Ecosystem Open Platform Font Guidelines 

 

Figure.7 Xiaopeng Xmart's Light Interface 
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Taking into account the impact of real-world lighting conditions, the contrast of icons, 

text, and other images must be at least 4.5:1. In NIO's 3.1.0 update's light mode, the 

text-to-background contrast is 9.9:1, ensuring accurate information presentation while 

providing comfortable reading for users. 

 

4.3.2 Instantly Understandable Interface 

As vehicle functions continue to expand, the volume of information in HMI interfaces 

is also increasing. HMI serves as a platform for users to input and receive information 

within the car. Designing an interface that balances the amount of information with 

readability is crucial for enhancing user experience. 

 

QQ Music offers different presentations on PC and in-car systems, representing two 

distinct approaches to displaying information. One is business-oriented, and the other 

is efficiency-oriented. 

 

Figure.8 The differences between different platforms of Music software. 

 

The improvement in automated driving capabilities can certainly free up the user's 

attention inside the vehicle. However, it also increases the demands on information 

interaction and places a higher focus on enhancing the user experience. 
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A car interface equipped with automated driving capabilities should achieve the 

following: 

 

1. Accurately and quickly convey the vehicle's current performance status. 

2. Provide pre-event notifications to guide user actions. 

3. Communicate information about the driving environment and anticipate potential 

interactions with the surroundings. 

4. Implement standardized interaction processes to avoid overly complex interaction 

methods. 

  

Figure.9 Interactive capabilities continue to improve with automated driving capabilities 
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4.3.3 Usability Improvements 

Improving usability is one of the major challenges for HMI designers. Enhancing 

usability relies on user insights and research in the early stages and is also influenced 

by technological factors and continuous iterations. 

 

In the era of automated driving, user demands have surged, placing higher requirements 

on HMI usability compared to the previous approach of keeping in-vehicle systems as 

simple as possible to ensure usability. 

 

1) Design Consistency: 

Consistency here doesn't only refer to visual consistency but also consistency in 

interaction methods. Many people have experienced the need to relearn various vehicle 

operations when switching to a new car, which is caused by cognitive differences due 

to different feature layouts and sign prompts. 

 

In the design of assisted driving modes, companies like Tesla and XPeng use gear lever 

controls, while NIO employs a separate start button. If there are significant 

inconsistencies in this aspect, it can directly impact the user experience. 

 

 

       NIO: button                                       Tesla: column shift 



54 

 

Figure.10 The differences in interaction between different brands. 

 

2) Meeting More Specific User Needs 

Today, the age range of drivers is expanding, and different age groups have varying user 

requirements. In HMI design, visual cues such as size and color, auditory indicators' 

volume and sound frequency should be optimized to cater to the specific needs of 

different user groups. 

In an increasingly aging population, various mobile phone manufacturers are exploring 

elderly-friendly mobile operating systems. In the not-so-distant future, we might see 

senior-friendly versions of in-car systems. 

 

4.3.4 Enhance Trust between People and Vehicle 

The process of people accepting new technologies is essentially a process of building 

trust. As automated driving gradually matures, establishing trust between HMI and 

users becomes crucial. During automated driving, it's vital that the vehicle operates as 

per the user's expectations and that the in-car system enhances the overall experience. 

All of this is built on the foundation of trust between the user and the vehicle. 

 

To increase user trust in HMI, the following aspects can be considered: 

 

1. Informing users about the current status of the vehicle's automated driving. 

2. Providing driving event notifications during automated journeys. 

3. Offering timely feedback for user operations. 

4. Granting users more control over HMI settings and interactions. 

 

Building trust in automated driving systems is fundamental for their successful adoption 

and integration into the daily lives of users. 
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4.3.5 Human-Centered Design Thinking 

At every stage of human-machine interface design, human-centered design is the most 

crucial consideration. In-vehicle systems, serving as information bridges between 

people and their vehicles, need to convey information about the vehicle's status, 

environmental conditions, media, entertainment, and more to the users. 

 

Figure.11 Drivers simultaneously receive various types of information during the driving process. 

 

The improvement in automated driving capabilities also means that in-vehicle systems 

will have more diverse functions, leading to a rise in personalized user demands. 

Through recommending functions based on usage habits, prioritizing high-frequency 

applications, and intelligently categorizing information, the in-vehicle system should 

be able to predict user needs more effectively and provide a seamless user experience.  

NIO offers customizable quick control pages, allowing users to prioritize functions 

according to their needs. 
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Figure.12 NIO's customizable quick control pages 
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CONCLUSION 

 

In this thesis, we reviewed and delved into the human factors of automated vehicles, as 

well as issues closely related to trust and situation awareness in human-machine 

interfaces. We provide profound insights into these topics through a review of relevant 

research and case studies. 

 

First and foremost, we emphasize the extensive potential applications of automated 

vehicles and their significant impact on the future of transportation. However, we also 

point out the numerous challenges that must be overcome before realizing this vision. 

These challenges include technical feasibility, regulatory requirements, road safety, and 

other issues, but the primary focus of this chapter is on human factors and human-

machine interfaces. 

 

We delve into the importance of trust in automated vehicles. Trust is a key factor in user 

acceptance and effective use of new technology. We underscore the necessity of 

establishing and maintaining user trust in automated systems to ensure they can realize 

their full potential. Additionally, we discuss how building and maintaining trust require 

time and appropriate information communication. 

 

On the other hand, we also emphasize the significance of situation awareness. 

Automated vehicles must accurately perceive their surroundings to operate safely. 

Human-machine interfaces play a critical role in providing information about the 

vehicle's surrounding context. By designing intuitive and efficient interfaces, driver 

awareness of road conditions can be enhanced, thus improving safety. We illustrate 

some attempts made by automated vehicle companies in this regard through specific 

cases. 
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In summary, the thesis underscores the crucial role of human factors and human-

machine interfaces in the field of automated vehicles. Efforts must continue in future 

research and development to address these issues and ensure the success of automated 

vehicles on real roads. We anticipate that these future endeavors will further promote 

the advancement of automated technology and bring about positive transformations in 

the way we travel. 
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