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Abstract 

The global automotive landscape is evolving rapidly, driven by increasingly stringent 

regulations aimed at reducing emissions and mitigating the impact of climate change. As a 

result, Battery Electric Vehicles (BEVs) are gaining prominence considered a cleaner and more 

efficient mode of transportation. However, several challenges, including limited range, energy 

consumption, and battery degradation, continue to hinder the widespread adoption of BEVs. 

This thesis addresses these challenges by focusing on the development of an optimization 

strategy based on Model Predictive Control (MPC) for BEVs. The primary objective is to 

enhance energy efficiency and extend battery life. It accomplishes this by optimizing the vehicle 

speed profile to minimize energy consumption and reduce battery degradation. To achieve this, 

multiple simulations employing different approaches has been implemented so that to ensure 

with the highest probability, real-time implementation capability without compromising 

performances. 

A comprehensive BEV baseline model is developed, incorporating state-of-the-art battery State 

of Health (SOH) estimation methods, longitudinal vehicle dynamics models, and HVAC model. 

Notably, the HVAC system serves as the foundation for a parallel developed strategy, known 

as Integrated Energy and Thermal Management (IETM), which aims to reduce HVAC power 

demand during peak traction power commands, ensuring cabin comfort without compromising 

vehicle performance. 

The MPC strategy employs a Connected Adaptive Cruise Control (CACC) system capable of 

optimizing the speed trajectory based on data from a leading vehicle. By predicting the leading 

vehicle's speed and regulating the distance from preceding vehicle, energy consumption and 

battery degradation are effectively reduced. Simulations conducted under various driving 

conditions and noise levels demonstrate the robustness and efficacy of the proposed strategy, 

resulting in up to 3.7% improvement in energy consumption and 9.7% increase in battery life 

extent. Furthermore, the implementation of this strategy requires only software updates, making 

it cost-effective and easily adaptable to existing BEVs. The combination of this MPC-based 

strategy with the IETM strategy offers the potential for even greater benefits, as both 

approaches complement each other, optimizing both traction power and auxiliaries loads. 

In summary, this research contributes to the advancement of sustainable transportation and 

addresses critical issues surrounding BEVs. By alleviating range anxiety, reducing energy 

consumption, and promoting the longevity of battery systems, this strategy lays the foundation 

for a more sustainable and environmentally conscious future of mobility. 
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1. Introduction 

1.1 Emissions and Their Impact: A Catalyst for Change in the 

Automotive Landscape 

The global automotive industry is currently experiencing a significant transformation, driven 

by an increasing embrace of sustainable and eco-friendly transportation solutions. This shift is 

not merely a matter of choice but rather a necessity imposed by stringent regulations aimed at 

curbing air pollutant emissions and mitigating the rise in Greenhouse Gas (GHG) 

concentrations in the Earth's atmosphere. These environmental factors have gained prominence 

due to a surge in vehicle demand, particularly in nations such as China and India, as documented 

in [1]. 

Before delving into the intricacies of prevailing regulations and the challenges they pose to 

automobile manufacturers, it is crucial to highlight the distinction between GHGs and air 

pollutants, which underpins the reasons behind these legislative mandates. 

The greenhouse gas effect, as elucidated in [2], is a phenomenon wherein certain gases, 

including CO2, CH4, water vapor, NOx, and others, act as a thermal blanket around the Earth. 

They absorb heat energy emitted by the Earth's surface, preventing it from dissipating into 

space. This natural mechanism maintains the Earth's temperature at a level conducive to 

supporting human life. However, human activities such as the combustion of fossil fuels (coal, 

oil, and natural gas), deforestation, and industrial processes have substantially increased the 

concentration of these greenhouse gases in the atmosphere, contributing to the phenomenon 

known as global warming. 

In contrast, pollutants encompass solid, liquid, or gaseous substances in the air that have 

detrimental effects on the environment and human health. These pollutants can be categorized 

into primary pollutants, emitted directly as a result of human activity or natural processes, and 

secondary pollutants, which are formed through complex reactions involving primary 

pollutants, sunlight, and atmospheric components [3]. Among the most significant pollutants 

resulting from incomplete or suboptimal combustion processes, especially in Internal 

Combustion Engines, are CO, HC, NOx, PM. 

As outlined in [3], the transportation sector (including exhaust emissions, brake and tire wear, 

road abrasion, and fuel evaporation) stands as a major contributor to Nitrogen oxides (NOx) 

and hydrocarbons (HC) emissions, while carbon monoxide (CO) and particulate matter (PM) 
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primarily emanate from building-related activities such as cooking, heating, and lighting. In the 

context of GHGs, as depicted in Figure 1, the transport sector accounts for 23% of global 

anthropogenic emissions. Further scrutiny reveals that road transport constitutes a significant 

portion, representing 73.9% of the total CO2 emissions attributed to the transportation sector. 

Among these, light-duty vehicles, which include low-weight vehicles designed for the 

transportation of passengers and light payloads, make up a substantial portion, accounting for 

53.5%. Therefore, addressing emissions from these vehicles has the potential to yield 

substantial environmental benefits. 

To address the issues outlined earlier, governments worldwide are implementing stringent 

regulations targeting both CO2 emissions and pollutant emissions, exemplified by the European 

EURO 6 standards. These regulations establish comprehensive guidelines, ranging from vehicle 

homologation procedures to emission limits for various types of propulsion systems. Notably, 

while EURO 6 focuses on emissions generated during the vehicle's operation (commonly 

referred to as "Tank-to-Wheel" or TTW emissions), there are currently no restrictions on the 

production cycle of vehicles. 

However, there is a growing trend toward more rigorous environmental considerations 

throughout the vehicle development and production process. This shift is characterized by an 

increasing emphasis on Life Cycle Assessment (LCA), a systematic methodology used to 

evaluate the environmental impact of a product, process, or activity throughout its entire life 

cycle, from raw material extraction to production, use, and disposal. In the context of the 

automotive industry, LCA assesses various environmental aspects, as illustrated in Figure 2, 

Figure 1: Road transport contribute to CO2 emissions [4] 
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which provides an overview of the environmental footprint of a Battery Electric Vehicle (BEV) 

light-duty commercial vehicle.  

Figure 2 clearly demonstrates that global warming, a critical factor addressed by the current  

 

EURO 6 regulations, is significantly mitigated by BEVs when compared to Internal 

Combustion Engine (ICE) vehicles. It's important to note that EURO 6, as it stands, primarily 

considers TTW CO2 emissions, focusing on emissions produced during a vehicle's operation, 

such as tailpipe emissions. This emphasis on TTW emissions has driven the choice of 

propulsion system, particularly for passenger vehicles, toward Battery Electric Vehicles 

(BEVs). Those are increasingly recognized as one of the most promising alternatives to 

conventional ICE vehicles due to their zero tailpipe emissions and enhanced energy efficiency. 

Examining Figure 3, it becomes evident that conventional Internal Combustion Engine (ICE) 

vehicles exhibit a significantly higher total Well-to-Wheel (WTW) CO2 emissions compared 

to Battery Electric Vehicles (BEVs). This difference holds true even when considering various 

countries, each with its distinct electricity generation sources. It's worth noting that in some 

instances, the Well-to-Tank (WTT) emissions, which pertain to the production and 

Figure 3: WTW CO2 emissions comparison [7] 

Figure 2: Life Cycle Assessment of an NMC Battery for Application to Electric Light-Duty Commercial 

Vehicles [6] 
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transportation of the energy source up to the distribution point, are notably higher for BEVs. 

This, however, is counterbalanced by substantially higher Tank-to-Wheel (TTW) emissions for 

conventional vehicles. 

As illustrated in Figure 4, a closer examination of the current landscape reveals a remarkable 

surge in the market penetration of Battery Electric Vehicles (BEVs), particularly over the last 

three years. This surge is primarily attributed to trends observed in China and Germany, 

exemplifying a global shift towards more environmentally friendly and sustainable 

transportation solutions. This technology is well-positioned for significant market expansion, 

with projections pointing towards a substantial increase in BEV adoption by 2040. These 

forecasts are bolstered by considerable investments, including the allocation of 150 billion 

funds through Sustainable Recovery Plans aimed at promoting efficient cars and electric 

vehicles (EVs), as reported in [5]. 

Figure 5 further underscores this transformation by highlighting that for Light Duty Vehicles 

(LDVs) since 2018, annual sales have increased, exceeding five times their previous figures. 

This surge signifies a clear preference for Battery Electric Vehicles (BEVs) over other 

alternatives, such as plug-in vehicles or fuel cell-based vehicles, within the automotive market. 

Notably, the global BEV market is prominently led by China, which accounts for more than 

half of all BEVs sold worldwide. China's proactive approach in promoting and adopting BEVs 

aligns with the global trend towards sustainable and environmentally friendly transportation 

solutions. 

Figure 4: Light Duty EV penetration for each county [10] 
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It is worth noting that, while EURO 6 represents a significant step toward addressing emissions 

concerns, future regulations, such as EURO 7, are expected to impose even more stringent 

constraints. As delineated in [8], EURO 7 norms are expected to come into effect in July 2025 

for new light-duty vehicles and on July 1, 2027, for new heavy-duty vehicles. Notably, EURO 

7 rules are described as technology- and fuel-neutral, applying the same emission limits across 

all vehicle categories regardless of their technology (e.g., conventional internal combustion 

engines, hybrids, or plug-ins) or the type of fuel used (gasoline, diesel, or others). These limits 

also extend to zero CO2 emission vehicles, including electric and fuel cell vehicles. The EURO 

7 proposal introduces several changes, encompassing updated limits for pollutant emissions, 

expanded boundary conditions for Real Driving Emissions (RDE) testing, prolonged emission 

durability periods, and the introduction of the first-ever limits for particulate emissions, with 

measurements lowered from 23 nm to 10 nm for brake emissions. Additionally, it includes 

regulations on microplastic emissions from tires, affecting not only vehicles with internal 

combustion engines but also Battery Electric Vehicles (BEVs). 

Furthermore, the new regulation places increased emphasis on Life Cycle Assessment (LCA) 

for CO2 emissions. The idea is to consider emissions throughout a vehicle's entire lifecycle, 

moving beyond Tank-to-Wheel (TTW) emissions and encompassing Cradle-to-Grave (CTG) 

emissions. This approach entails evaluating the CO2 impact of a product from raw material 

acquisition through the manufacturing process, distribution, use, and end of life (EoL) 

treatments. This shift in regulations underscores the growing importance of comprehensive 

sustainability assessments in the automotive industry, prompting a reconsideration of what was 

once the obvious choice under the current regulations, namely BEVs. 

According to the European Parliament and the Council [9], the regulation establishes targets 

for battery waste collection for light means of transport, mandating 51% by the end of 2028 and 

61% by the end of 2031. It also sets a target for lithium recovery from waste batteries of 50% 

by the end of 2027 and 80% by the end of 2031. Furthermore, the regulation prescribes 

Figure 5: Annual electric vehicle sales globally by vehicle category (left), technology pathway (middle), 

and market (right) from 2018 to 2022 [10] 
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mandatory minimum levels of recycled content for industrial EV batteries. It introduces 

labelling and information requirements, including details on the battery's components and 

recycled content, as well as an electronic "battery passport" and a QR code. To provide 

sufficient preparation time, labelling requirements will apply by 2026, and the QR code by 

2027.  

As a result of this regulation, the choice of future technology as the dominant one becomes 

uncertain. Automakers are grappling with the challenges posed by these rapidly evolving 

regulations, which necessitate adjustments not only in production but also in the future market 

landscape. 

1.2 Challenges in the Adoption of Battery Electric Vehicles (BEVs) 

Taking into account the previous paragraph, several challenges still exist for BEV technology. 

The most significant ones are outlined below: 

1. Range: This remains one of the most significant issues for these vehicles. The current 

technology limits battery energy 

storage, with Specific Energy 

values around 128 
𝑤ℎ

𝑘𝑔
 and 

Volumetric Energy Density 

around 230 
𝑤ℎ

𝑙
 for lithium-ion 

batteries, the most prevalent 

solution on the market due to 

their high charging efficiency, 

high specific energy and high 

energy density [12]. These 

values indicate the energy a 

battery can store relative to its 

weight and size. The larger these values, the smaller and lighter the battery. However, 

these values are still far from the properties of ICE fuels, trailing by approximately two 

orders of magnitude. Consequently, it remains challenging for automakers to compete 

with traditional vehicles. 

Figure 6: Battery characteristics comparison 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

7 

 

2. Production Costs: Presently, due to factors such as insufficient infrastructure and the 

high cost and limited availability of raw materials, especially in Europe, the production 

costs of BEVs exceed those of conventional ICE-based vehicles. As noted in [11], this 

price gap is expected to narrow with technological advancements and improvements in 

production processes. Additionally, increases in battery capacity and electric range for 

BEVs in the coming years will mitigate the impact of reductions in cost per kWh on the 

overall additional costs associated with these powertrains. 

3. Infrastructure: The charging time for Battery Electric Vehicles (BEVs) remains a pivotal 

concern in the adoption of electric mobility, presenting a complex trade-off between 

convenience and battery health. 

On one hand, fast charging can significantly reduce the time required to charge a BEV, 

making it more practical for daily use. However, rapid charging at high current is 

detrimental to the battery accelerating its degradation over time, thus shortening the 

battery's lifespan.  

On the other hand, slow or standard charging methods are gentler on the batteries 

extending the battery's life expectancy. However, these charging modes necessitate 

longer charging durations, which can be less convenient for users accustomed to very 

short charging time, especially during long journeys or for those without access to 

overnight charging at home. 

Furthermore, the production of electricity for charging stations is another aspect that 

warrants consideration. As the sales of BEVs have surged, the demand for electricity to 

power these vehicles has also grown substantially. The need for substantial infrastructure 

investments and upgrades to electricity grids to support the higher demand for charging 

stations is a logistical challenge. It's essential to ensure that the electrical grid can handle 

the load while also minimizing the environmental impact. 

Regarding charging infrastructure, the study presented in paper [13] sheds light on the 

relationship between the number of charging points and the number of BEVs in 

commerce. In 2015, the Netherlands stood out as the only country with a surplus of 

charging points compared to the number of BEVs in commerce. However, a highlighted 

above, the sales of BEVs have surged significantly in recent years. This increase in BEV 

adoption has led to a rapid decrease in the ratio of charging infrastructure to vehicles 

across various countries.  
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4. Battery life and recycling: In accordance with the European regulations scheduled to 

come into effect in 2025 for Light-Duty Vehicles (LDV) [8], the longevity of batteries 

will become a critical aspect to monitor. The new Battery Electric Vehicles (BEVs) will 

be expected to achieve a minimum mileage of 200,000 kilometres, setting a high standard 

for endurance. Furthermore, the recycling phase is a complex and sensitive topic. To 

comply with cradle-to-grave carbon footprint requirements, End-of-Life (EOL) 

treatments must be considered to reduce carbon dioxide (CO2) equivalents, as depicted 

in the figure below: 

As outlined in the study [14], reusing batteries in different sectors to give them a second 

life before recycling can offer significant benefits. However, when utilizing 

Pyrometallurgical processes, as elucidated in [8], certain battery components can be 

Figure 7: BEV charging point chart [13] 

Figure 8: LCA impact on CO2 equivalent emissions [14] 
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recovered, but others like lithium (Li) and manganese (Mn) are not efficiently reclaimed, 

and the recovery process can be energy intensive. Consequently, new technologies, such 

as Hydrometallurgical methods with high recovery rates and low energy consumption, 

are being explored. These approaches also face current challenges in minimizing 

wastewater generation and optimizing the overall process, further complicating their 

implementation. 

1.3 Enhancing Vehicle Efficiency: Challenges and Strategies for 

Battery Electric Vehicles  

These challenges underscore the complexity of the transition to sustainable mobility and the 

need for continued innovation and adaptation in the automotive industry. With a deeper 

understanding of why governments are strongly advocating for Battery Electric Vehicles 

(BEVs) and the primary challenges facing this technology, it becomes evident that significant 

improvements in vehicle performance, consumption, and battery life are necessary without 

significantly impacting the vehicle price. Within vehicles, the most substantial factors 

contributing to energy consumption include: 

• Aerodynamics 

• Tires Rolling Resistance 

• Inertia  

• Efficiency and Friction 

In the case of BEVs, losses due to transmission and engine inefficiency are almost negligible. 

Typically, BEVs have a single transmission ratio between the wheels and the Electric Motor 

(EM), with EMs exhibiting high efficiency, often approaching 90% (more than double the one 

of ICE). Consequently, the contributions of transmission and engine inefficiencies can be 

disregarded for BEVs.  

Considering BEVs, the sectors where engineers can make a substantial physical impact are 

Aerodynamics, Tire Rolling Resistance, and Weight Reduction. According to [8], a 10% 

reduction in each of these areas can yield significant improvements: 

• Tire Rolling Resistance → -1.5% Fuel consumption 

• Aerodynamics (Cx * Frontal Area) → -2.7% Fuel consumption 

• Weight Reduction → -3.5% in Fuel consumption 
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While each of these areas can offer notable improvements, achieving 10% improvements 

presents challenges and may lead to costly development endeavours. 

One potential solution includes powertrain-level enhancements through different levels of 

hybridization or more complex solutions, as well as vehicle body modifications aimed at 

reducing resistance forces or weight. However, all of these approaches entail significant time 

and cost, rendering them impractical for many passenger vehicles available in the market. 

Alternatively, engineers can focus on developing optimization strategies at the software level, 

leveraging existing vehicle sensors to minimize energy consumption and enhance battery life 

without significantly increasing vehicle complexity or cost. This approach aligns with the 

current trend of the Internet of Things (IoT) and can be further enhanced by utilizing 

communication between vehicles and infrastructure, allowing for rapid responses to unforeseen 

conditions and predictive actions to reduce energy consumption while extending battery life.  

This study, instead, directs its focus towards optimal powertrain control in autonomous and 

connected environments. The overarching objective is to optimize future vehicle speed profiles 

with the dual purpose of minimizing energy consumption and extending battery life. This 

strategic choice aligns with the prevailing automotive trend, which emphasizes Autonomous 

and Connected vehicle technologies, specifically targeting enhanced energy efficiency and 

prolonged battery life [39,40,41,42,43].  

Various strategies within the current scientific literature share analogous objectives but employ 

distinct implementation architectures compared to our research. These methods span from the 

rudimentary Constant Time Gap Adaptive Cruise Control architecture [44] to the utilization of 

manual Human-Machine Interface (HMI) [22], noted for its simplicity and cost-effectiveness. 

An alternative approach, converging on similar objectives yet adopting a divergent 

implementation and embracing a more intricate architecture, involves dynamic programming 

(DP). While DP is adept at discovering a global optimal solution, it lacks the capability for 

online applications. Recognizing the inherent limitations of DP, research has explored solutions 

such as extracting a set of rules for real-time implementation [45]. Similarly, Reinforcement 

Learning is presented as valid alternative for that, achieving near-optimal results analogous to 

dynamic programming. Nevertheless, it contends with the intrinsic drawback of a substantial 

amount of data imperative for effective training [38]. An alternative solution, Data-Driven 

Predictive Control, obviates the necessity for intricate mathematical models by leveraging 

historical data to inform control decisions [37]. While similar to Reinforcement Learning in its 

adaptability to non-linear and intricate systems, it necessitates a significant volume of data for 

accurate predictions. 
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Transitioning toward methodologies more aligned with our research goals, adaptive cruise 

control systems for connected energy-saving electric vehicles are elucidated. These systems 

leverage connectivity and automation through a non-linear Model Predictive Control (MPC) 

framework, encompassing design considerations for stochastic communication delays [36,46]. 

Techniques oriented towards minimizing energy consumption, with a concurrent focus on 

battery degradation, are explored in an economic adaptive cruise controller (EACC). Founded 

on a Non-Linear model that accommodates battery aging characteristics based on adaptive 

model predictive control (AMPC) [47]. 

Expanding upon the established foundations in prior research, this paper identifies a critical 

research gap and endeavours to introduce an innovative solution. The approach adopted in this 

study capitalizes on the strengths of existing strategies while conscientiously addressing their 

limitations and criticalities. Accordingly, this paper introduces an Optimal Adaptive Cruise 

Control (OACC) system designed to bridge this identified gap. 

The proposed system employs a Linear Model Predictive Control approach, which optimally 

determines the vehicle's speed profile for the short-term future though a multi objective cost 

function. The primary objectives are to enhance energy efficiency, reduce battery degradation, 

and maintain safe inter-vehicle distances simultaneously. This innovation serves to decrease 

computational costs compared to Nonlinear Model Predictive Control, eliminates the need for 

extensive training data typically required in reinforcement learning, and reduces the data 

dependency associated with data-based predictive control. 

Furthermore, the implemented architecture is equipped to leverage information from sensors 

embedded in vehicles with an Automation level greater or equal than 1. This distinctive feature 

ensures the system functions seamlessly in a mixed environment without compromising 

performance, a characteristic observed in prior literature [37]. It can seamlessly adapt to sensor 

data or connected information. 

In a notable departure from existing research, this work not only presents a new strategy that 

evaluates its impact solely on energy consumption, but also tests its influence on battery health. 

A dedicated battery state of health estimation model which influence battery energy storage 

will be employed to evaluate the system's influence on battery condition. 

The model's robustness will be further validated through simulations conducted across various 

driving scenarios, including urban and extra-urban highways. These simulations will also factor 

in external disturbances such as noise and delay, closely replicating real-world conditions 

stemming from sensor acquisition and communication. Moreover, an estimation model for 

battery state of health is proposed to illustrate the benefits of the implemented strategy on 
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battery life. In addition to the research presented in this thesis, the broader project includes a 

strategy for minimizing peak power demand associated with Heat Ventilation (HVAC) and Air 

Conditioning while maintaining cabin comfort and reducing battery degradation. A 

comprehensive thermal model for the cabin and HVAC system was developed to simulate real-

time temperature changes. 

The following sections will delve into the details of the developed models and present the 

outcomes of the combined strategies. These sections will highlight their benefits and 

performance improvements across various scenarios, reinforcing the novel contributions 

identified in support of this thesis. 
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2. BEV Baseline Model 

Before delving into the detailed description of the models developed in this project, let's begin 

with a brief overview of the baseline Battery Electric Vehicle (BEV) model provided by the 

McMaster Automotive Resource Centre (MARC). The baseline model used for this project 

represents a 2015 Chevy Spark city car powered by a battery. Key vehicle specifications are 

summarized in Table 1. 

Electric Motor 

Torquemax 444 N·m 

𝜔𝑏𝑎𝑠𝑒 1910 rpm 

𝜔𝑚𝑎𝑥 5503 rpm 

 

Battery 

Cell rated capacity 2.5 A·h 

N° cells in parallel 22 

N° cells in series 121 

Columb efficiency 0.99 

OCV1 400 V 

Battery internal Resistance1 55 mΩ 

  

Vehicle data 

Mass  1300 kg 

Cx 0.326 m 

Wheelbase 2.375 m 

Weight distribution  50/50 

Single gear efficiency  0.95 

Frontal Area  1.77 m2 

Rolling resistance coefficient μ1 0.006 

Rolling resistance coefficient μ2 0.0001 𝑠 𝑚⁄  

 

1 The following data varies according to the SOH of the battery; the one in the table are value referring to 100% 

SOH and 95% SOC 
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Wheel Radius 0.277 m 

Final Drive ratio 3.87 

Mot inertia 0.02 kg·m2 

Final drive inertia  0.1 kg·m2 

One wheel inertia 1 kg·m2 

Electric auxiliary power 200 W 

Table 1: BEV specifications 

The baseline model, constructed in Simulink® environment, represents a simplified Electric 

Vehicle (EV) architecture with a single battery providing power for traction and auxiliaries, one 

single Electric Motor (EM), one inverter and a single gear ratio transmission at wheel level. 

This architecture is illustrated in Figure 9. 

This model is of the forward type describing only the longitudinal vehicle dynamic, meaning it 

translates driver input into vehicle behaviour at the wheel level. The driver, in this context, 

receives a driving cycle speed profile as input and adjusts the requested torque to the EM 

accordingly. This process accounts for efficiency considerations and feasibility checks before 

transmitting the request to the wheels, propelling the vehicle. The battery model embedded in 

this setup allows monitoring of current requirements and estimation of the state of charge (SOC) 

for the vehicle at each time-step (with a simulation time-step of 0.1 seconds).  

Figure 9: BEV architecture 
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Figure 10 illustrates the BEV baseline model, where a specific driving cycle is provided as the 

primary input. In this thesis, two distinct driving cycles are employed to represent realistic 

scenarios: the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), used in Europe, and 

the EPA cycle, utilized in the United States. [8]: 

• WLTC: This cycle spans 25.25 km and is the current European standard for test 

procedures. It covers a range of driving scenarios, including urban, highway, and extra-

urban conditions, featuring high average speeds, short stop durations, and intense 

acceleration, making it a closer approximation of real-world driving. 

• EPA: This cycle combines two sub-cycles: the Urban Dynamometer Driving Schedule 

(UDDS), simulating city driving conditions for Light-Duty Vehicles (LDVs) testing, 

and the Highway Fuel Economy Test (HWFET), assessing fuel economy at highway 

speeds, with speeds approaching 100 km/h. The EPA cycle is less aggressive compared 

to WLTC. Considering the amount of SOC and SOH decrease for km driven, it is 

respectively 6.7% and 20.4% more for WLTC with respect to EPA. Anyway, it is 

currently employed in the United States and covers a longer distance of 28.5 km. 

consequently has been used as a further check on controller flexibility and adaptability.  

These two cycles aim to encompass diverse driving scenarios, ensuring comprehensive testing 

and evaluation of the BEV model. Moving forward, the model incorporates the driver and 

controller blocks. The driver block receives the vehicle speed input and employs a Proportional-

Integral (PI) controller to generate commands for driving and braking torque, based on the 

speed error between the actual chassis speed and the imposed driving cycle. These commands 

are then passed to the controller block, which, considering the EM characteristic curves (such 

as Torque/shaft speed), friction limits, and maximum regenerative braking, determines the 

feasible braking or driving torque. Within the plant, the commanded torque is translated into 

Figure 10: BEV baseline model 

        

           

               

        

              

      

               

       

                  

            

     

           

       

          

          

               

          



Fiorillo Carlo                                                                                                 Politecnico di Torino 

16 

 

current requests to the battery, accounting for battery capacity decrease over time. 

Simultaneously, the torque is transmitted through the final drive to the wheels, and converted 

into chassis speed. This information is then fed back into the driver to initiate the process once 

more.  

This brief introduction provides an overview of the baseline model used as the foundation for 

this project. In subsequent sections, we will delve into the details of the developed models, 

explaining the implementation process and presenting the obtained results. 

 

 

 

 

 

Figure 11: EPA and WLTC driving cycles 
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3. State of Heath model 

3.1 A brief overview of battery State of Health (SOH) estimation 

models and the motivation driving their development 

Ensuring the longevity and reliable performance of batteries for automotive applications is 

fundamental, aligning with the regulatory guidelines in Europe. Working on peak current 

demands and optimizing secondary components, such as auxiliary systems is a way to maximise 

the battery extent, enhancing not only safety but also contributing to maintaining consistent 

vehicle performance for an extended period.  

As elaborated in [16], the State of Charge (SOC) represents a critical parameter, offering a real-

time snapshot of a battery's energy storage capacity as a percentage relative to its last full 

charge. The formula for SOC is as follows: 

𝑆𝑂𝐶 =  
𝐶𝑎𝑐𝑡𝑢𝑎𝑙

𝐶max 𝑎𝑐𝑡𝑢𝑎𝑙
· 100          (I) 

However, relying solely on SOC does not provide a precise estimate of the remaining time until 

complete battery discharge without considering the battery's history. This is where State of 

Health (SOH) comes into play, offering insights into a battery's dynamic status relative to its 

initial condition, typically designated as SOH = 100% at the time of manufacture. Over time 

and with usage, SOH gradually diminishes due to irreversible chemical and physical processes, 

collectively referred to as battery aging. When the battery's ability to store and deliver energy 

falls below a predefined threshold, it is considered depleted, although it may still be used for 

less demanding applications, necessitating eventual replacement. SOH considers various 

parameters, including internal resistance, open-circuit voltage (OCV) variation, and actual 

maximum capacity degradation. The most common approach gauges battery health by 

evaluating its maximum capacity, denoted as Cmax actual in the SOH formula, which represents 

the current battery capacity when the SOC is at its maximum level. The denominator of the 

SOH formula represents the capacity of the battery when it was new and at maximum SOC 

level, denoted as Cmax initial . The SOH formula, consequently, is given by: 

𝑆𝑂𝐻 =  
𝐶max 𝑎𝑐𝑡𝑢𝑎𝑙

𝐶max 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
· 100         (II) 
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The significance of monitoring SOH lies in determining the battery's End of Life (EoL). 

Typically, a battery is considered to have reached EoL when its actual maximum capacity 

reaches 80% of its initial capacity [18]. This decline in capacity adversely impacts various 

performance aspects, including range, power output, and operational temperature. 

Consequently, the battery necessitates replacement. 

As outlined in [15], as the battery undergoes degradation, its attainable maximum capacity 

progressively diminishes. Looking at equation (I) in fact, reducing the denominator multiplying 

the capacity for the SOH factor, it is possible to reach 100% SOC with a smaller battery actual 

capacity, indicating that the total amount of energy that the battery can store has been reduced. 

This, in turn, translates into a diminished range for the battery's operation. Furthermore, the 

Open Circuit Voltage (OCV) declines and internal resistance increases due to the natural wear 

and aging of internal components (SOH decrease), as shown in the following figures where 

experimental data from battery fading test illustrated in [15] are considered. Consequently, the 

greater demand for current leads also to increased thermal losses.  

To counteract these rising operating temperatures, the adoption of power reduction or an 

intensified Battery Management System (BMS) proves indispensable. These systems, as 

elaborated in [16], enable the battery to operate within the confines of the safe operating area 

(SOA), preventing the occurrence of overcharging or over discharging by continually 

monitoring key battery parameters. 

Since directly measuring the State of Health (SOH) of a battery is not feasible [18], it's 

necessary to employ a method that estimates these states based on measurable variables. 

Among the current strategies for assessing battery health, five primary models have been 

identified based on existing research [16]: 

Figure 12: OCV and Internal Resistance as function of SOC and SOH [15] 
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1. Algorithms based on electrochemical principles. 

2. Algorithms utilizing equivalent circuit models. 

3. Performance-based models. 

4. Analytical methods incorporating empirical fitting. 

5. Statistical Methods. 

For this project, the chosen model falls under the category of analytical methods with empirical 

fitting. This approach involves using a mathematical model exploiting the Arrhenius relation 

and a coulomb counting method to estimate the current SOH of the battery. Experiments 

conducted by [15] were utilized to include characteristics such as Open Circuit Voltage (OCV) 

and internal resistance. The model's parameters were then fine-tuned to align with the 

experimental results, consequently the methos falls under that category. Further detailed 

insights into this model will be provided in subsequent sections, where its comprehensive 

analysis will be presented. 

3.2 Equivalent Circuit Battery Model  

To ensure reliable and consistent result, a 

model based on paper [15] data has been 

implemented in the previously presented 

BEV architecture. This model simplifies 

the battery as a series and parallel 

connection of elementary cells, depicted 

in figure 13. This representation includes 

a voltage generator representing the cell's 

Open Circuit Voltage (OCV) in series 

with a resistance representing the cell's 

internal resistance. 

To match the energy storage performance of the actual Chevy Spark BEV, the cells from the 

paper were configured in 121 series and 22 parallel. These cells are A123 26650 LiFePO4 

lithium-ion cylindrical cells with a nominal voltage of 3.3 V and a rated capacity of 2.5 Ah. 

This configuration produces a battery with the characteristics expressed in the following 

equations: 

𝑅𝑖𝑛𝑡 𝑏𝑎𝑡𝑡 =  𝑅𝑐𝑒𝑙𝑙  ∙
𝑁𝑠𝑒𝑟𝑖𝑒𝑠

𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
                                      (III) 

Figure 13: Cell electric scheme 
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𝑉𝑂𝐶𝑉 𝑐𝑒𝑙𝑙 =  𝑉𝑐𝑒𝑙𝑙 1𝐶 𝑑𝑖𝑠𝑐ℎ + 2.5 ∙ 𝑅𝑐𝑒𝑙𝑙                     (IV) 

𝑉𝑏𝑎𝑡𝑡 =  𝑉𝑂𝐶𝑉 𝑐𝑒𝑙𝑙  ∙  𝑁𝑠𝑒𝑟𝑖𝑒𝑠                                       (V) 

𝐼𝑏𝑎𝑡𝑡 =  𝐼𝑐𝑒𝑙𝑙  ∙ 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙                                            (VI) 

These equations were implemented in the Simulink® environment as follows: 

Within this model, Cell actual max capacity and Cell actual capacity serve as inputs. The 

difference between these values indicates the State of Charge (SOC) of the battery. This 

information is used to access lookup tables, based on experimental results from [15], which are 

dependent on the actual State of Health (SOH) and SOC. These tables, depicted in Figure 12, 

reveal the influence of SOC and SOH on OCV and Internal Resistance curves. The first lookup 

table yields the cell terminal voltage experimentally evaluated at a 1C discharge current (2.5 

amperes). Knowing the cell capacity and the cell resistance from the second lookup table, it has 

been possible to determine the cell OCV and subsequently the battery OCV. The remaining 

components of this block calculate the battery pack internal resistance and output current. In 

this case it is important to notice that some preliminary assumptions were made before creating 

the model: 

• A straightforward voltage generator in series with internal resistance is adequate for 

assessing battery dynamics in our study. Developing a comprehensive battery model 

would have required access to experimental data that was unavailable for this specific 

cell and would have exceeded the scope of our project. 

• Has been assumed that the BMS is able to maintain the temperature of the pack constant 

at 25°C regardless external temperature and load conditions. 

Figure 14: Simulink® Battery pack model 

          

        

       

 

       

 

              

                        

    

 

 

 

 

 

 

 

 

 

 

 
 
 

        
  

  

 

                        

 
 

   

 

            

 

                    

        
  

  

 

                        

             

        

                                 

       

                   

               

        



Fiorillo Carlo                                                                                                 Politecnico di Torino 

21 

 

• The internal resistance is considered equal in both charging and discharging conditions.  

• Uniform cell discharge/charge levels across the battery pack. 

3.3 SOH Estimation Model  

Having defined the equivalent circuit of the battery, has been possible to go through the SOH 

estimator block, illustrated in the following scheme:  

This structure 

encompasses the 

three primary 

blocks: the SOC 

estimator 

(already present 

in the model and 

modified to 

consider SOH), 

the Battery 

Voltage output 

block (converting 

cell variables to 

equivalent battery pack values, discussed earlier), and the battery SOH estimator, which we 

will detail. The block takes cell current output as input and employs Arrhenius formulation to 

estimate the battery's State of Health (SOH) through the following equation: 

                                                                  𝐴ℎ𝑏𝑎𝑡𝑡% =  𝐵(𝑐) ∙ 𝑒−
𝐴𝑓

𝑇 ∙ 𝐴ℎ𝑡𝑝
𝑧
                                     (VII) 

In this equation 𝑨𝒉𝒃𝒂𝒕𝒕% represents the cell capacity loss as percentage, B is a pre-exponential 

factor determined through experimental fitting of real data in [15]. Its values vary with the 

current C-rate, considering both calendar aging and wear due to battery usage. The pre-

exponential factor values are tabulated below: 

Empirical pre-exponential factor, B(c) [21681; 12934; 15512; 15512] 

Current C-rate, c [2; 6; 10; 20] 

Table 2: Pre-exponential factor values 

Figure 15: Simulink® battery model 
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c is the current C-rate (the ratio of current to nominal cell capacity 𝐼 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙
⁄  ), Af  is the aging 

factor defined as follows: 

                                                                  𝐴𝑓 = 3814.7 − 44 ∙ c                                               (VIII) 

and T represent the cell temperature (considered fixed at 25 °C). 𝑨𝒉𝒕𝒑(𝒄, 𝑻) denotes the total 

amper-hours throughput considered for a specific c-rate and cell temperature, and z is an 

exponential factor set experimentally equal to 0.55. 

To ascertain the battery's cycle life, we assume End of Life (EoL) occurs when 20% of battery 

capacity is lost. By setting Ah_batt% to 20% and inverting equation (VII), we can calculate 

the number of cycles the battery can withstand up to EoL for a given c-rate and cell temperature: 

                                                                  𝑁(𝑐, 𝑇) =  
𝐴ℎ𝑡𝑝(𝑐,𝑇)

2 ∙ 𝐴ℎ𝑏𝑎𝑡𝑡
                                                     (IX) 

Here 𝑨𝒉𝒃𝒂𝒕𝒕 is the rated battery capacity evaluated in ampere-hours, which for an A123 cell is 

2.5 Ah. 

Once this variable has been evaluated it is possible to evaluate the SOH(t) at a specific instant 

‘t’ integrating equation over time (X) providing the output of the estimator block: 

                                                                  𝑆𝑂𝐻̇ (𝑐, 𝑇) =
0.2  ∙  c

3600 ∙ N(c,T)
                                                  (X) 

                                                                  𝑆𝑂𝐻(𝑡) = 𝑆𝑂𝐻0 −  ∫  𝑆𝑂𝐻 ̇ ∙  dτ
𝑡

0
                                        (XI) 

In this case, the state of health for the initial condition (𝑆𝑂𝐻0) is set to 1, indicating a new 

battery cell. After this block outputs the current SOH, it enters the two remaining blocks in the 

battery model, modifying the cell OCV and internal resistance. Subsequently, it enters the SOC 

estimator, adjusting the actual max cell capacity to account for reduced energy storage 

capabilities due to degradation. 
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3.4 Simulation Set-up 

With the model now complete, a method to evaluate battery degradation through a complete 

discharge cycle, ranging from 95% to 5% SOC is required. A cycle iteration and battery 

recharging process has been implemented. When the battery's SOC is considered insufficient 

to start a new cycle or when the driving cycle ended, the external input imposing the driving 

cycle was either set to zero to charge the battery or the cycle time was reset to initiate a new 

cycle. This procedure is illustrated in the following figure depicting the external architecture 

governing the vehicle plant: 

The SoC low variable is triggered when the cycle ends with a SOC too low to commence a new 

one. When this occurs, the vehicle speed is forced constant to zero, enabling the battery to 

recharge. During this time, within the battery block, a negative current is enforced, designed to 

match the manufacturer's declared charging time for full battery charge, which was set lower 

than 7 hours for a US standard AC 240V charging (non-fast charging) using a dedicated 

charging station [17]. Observing the following charts, it is possible to observe the behaviour of 

the vehicle when charging occurs: 

Figure 16: Driving cycle reset/charging 

    
               

        

       

                  

       

            

     

        

            

 

 

  

               

   

  

  
               

           

       

          

          

               

          

               

        

              

      

Figure 17: WLTC vehicle speed charging 
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We can observe a sequence of driving cycles in the graph. The red portion represents a single 

WLTC (Worldwide Harmonized Light Vehicles Test Cycle), while the charging phase is 

depicted in blue. When the state of charge (SOC) at the end of a cycle is insufficient to initiate 

another one, the vehicle enters a charging phase. During this phase, the vehicle remains 

stationary, maintaining a speed of zero. As a result, the battery current also reaches zero, as the 

vehicle is not in motion. Meanwhile, the SOC gradually increases, accumulating energy within 

the battery until it reaches 95%. At this point, the vehicle can recommence the driving cycle. 

Figure 19: WLTC Battery Current charging 
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Figure 18: WLTC SOC charging 
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This process can be repeated as many times as necessary and for each driving cycle to assess 

battery degradation and its impact on vehicle performance. 

This model provides a means to evaluate battery degradation, relying solely on battery current 

output as input. However, it's worth noting that this model has limitations as it is semi-empirical 

and based on parameters derived from experiments conducted at constant battery temperature 

and C-rate, with results being fit to the model. Nevertheless, in the context of current industry 

trends, where car manufacturers should guarantee in the future a minimum number of 

kilometres until End of Life (EOL), (according to EURO 7 proposal normative the limit is set 

to 160 000 km [8]), such experiments will become essential. As a result, this model can be 

readily adapted, taking also into account that these experiments needed for the model 

implementation can be conducted at the single-cell level, simplifying their implementation. 

 

 

 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

26 

 

4. Vehicle speed trajectory optimization strategy 

4.1 How Autonomous and Connected vehicle technology can improve 

energy consumption and reduce battery fading in a BEV 

The essence of this chapter lies in exploiting the capabilities of connected vehicle technology 

and sensors information to optimize vehicle speed trajectories, especially in mixed driving cycle 

scenarios that encompass urban, extra-urban, and highway conditions. However, before diving 

into the specifics of this endeavour, it is essential to provide a brief overview of autonomous 

and connected vehicle technology, elucidating their current capabilities and how they are 

harnessed in this chapter. Given the challenges associated with Battery Electric Vehicles 

(BEVs), including range anxiety and battery degradation, the marriage of connectivity and 

autonomous drive presents a compelling solution. This synergy offers the potential to minimize 

energy consumption significantly, particularly in architectures where limited energy 

management can be performed at the powertrain level, as seen in the BEV architecture used as 

the baseline in this project, equipped with only one electric motor. 

4.1.1 Autonomous vehicle technology   

 

Figure 20: SAE level of driving automation [19] 
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Within the field of autonomous vehicle technology, it is crucial to understand the various levels 

of automation. The levels, as defined by [19], range from 0 to 5, each representing a different 

degree of automation and driver involvement. 

 

• LEVEL 0: At this stage, the vehicle provides warnings such as blind-spot warnings, 

lane departure warnings, and automatic emergency braking, but no physical support for 

driving. 

• LEVEL 1: Level 1 offers support for either steering or braking/accelerating to assist 

the driver. 

• LEVEL 2: This level provides support for both longitudinal and lateral dynamics, 

incorporating features like lane cantering and Adaptive Cruise Control (ACC). 

The transition from Level 2 to Level 3 marks a significant shift. 

• LEVEL 3: the driver could become distracted, as the vehicle must allow the driver time 

to react in case of system faults, making it essential for the driver to take over when 

needed. 

• LEVEL 4: the driver is never expected to take control of the vehicle. Pedals and steering 

can be eliminated. The distinction between Level 4 and fully autonomous vehicles lies 

in the fact that a Level 4 vehicle may not be capable of driving in all possible conditions. 

Therefore, it must respond appropriately and safely when it encounters challenging 

conditions. 

• LEVEL 5: This represents the highest level of automation, where the vehicle is fully 

capable of driving in any scenario and under all external conditions. 

 

Notably, the transition from Level 2 to Level 3 is substantial due to the shift in responsibility 

with Level 3, introducing the need for the vehicle to monitor the environment comprehensively. 

In this scenario, the vehicle must offer ample time for the driver to react in critical situations, 

making fault attribution challenging in case of an accident. Levels 3 and above also highlight a 

significant challenge: the inability of current technology to predict human intention reliably, 

given its unpredictable and stochastic nature. This challenge is exacerbated when autonomous 

vehicles operate in mixed environments, further increasing the technology requirements 

compared to environments where all vehicles are fully autonomous. As automation levels 

progress from 0 to 5, the driver's effort in driving diminishes, paving the way for more complex 

optimization strategies, reducing human errors, and enhancing travel comfort in all conditions. 
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In order to implement this level of automation, sensor fusion is required, namely combine 

different type of sensor in order to have a complete overview of the environment around the 

vehicle. Radars, cameras and lidar are the most used to control vehicle dynamics. Also, ultra-

sounds sensors are frequently used but are not of interest for this application since more related 

to blind spot monitoring or parking manoeuvre due to their very small detection range. The 

Radar instead, can catch metallic object up to 250 m with a 120° horizontal range and 30° 

vertical range [21]. It has a very high accuracy for long distanced detection and can distinguish 

objects very closed between each other. It can work almost in any weather condition. Anyway, 

it has very poor object detection resolution, so we are able to understand the presence of an 

object without knowing what it is. Cameras are very cheap, can detect object longer than our 

eyes thanks to postproduction, can detect also non-metallic object but produce very heavy data 

and it’s functioning is impaired by the weather conditions and cameras cleaning. Lidars, from 

their part, can detect object at very high distance (240 m) and with a very high accuracy [20]. 

Differently from radar they detect object and are able to distinguish them. They create a 3D 

map of the environment anyway they are very expensive and very sensitive also to very small 

particles that can reflect the light and impair their functioning. 

Given the focus on Adaptive Cruise Control (ACC) in the strategy to be described in detail, an 

automation Level 1 technology, primarily utilizing radar, suffices, which could be supported, 

in particular conditions where the sensor cannot work properly due to its limitations, by 

connected vehicle information coming from vehicle or infrastructure.  

4.1.2 Connected vehicle technology 

In recent years, as highlighted by [22], the automotive industry has witnessed rapid 

advancements in vehicle-related technologies, notably in the context of connected vehicle (CV) 

technology and automation. These developments have collectively shaped a shared vision of 

future vehicles characterized by their automation, connectivity, electrification, and shared 

mobility. Notably, the advent of connected vehicle (CV) technology has ushered in a new era 

for modern intelligent transportation systems, unlocking a realm of virtually limitless potential 

applications. 

The pivotal enablers of communication between vehicles, as elucidated by [23], are DSRC 

(Direct Short-Range Communications) and 5G Cellular network technologies. Each of these 

technologies possesses its own set of advantages and disadvantages, contingent upon the 

specific use case. DSRC, characterized by its short-range communication capabilities (spanning 
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hundreds of meters), facilitates the rapid transmission of concise messages with minimal 

latency. In contrast, 5G technology boasts the ability to transmit data across substantial 

distances (on the order of kilometres, provided there are no persistent metallic obstacles). 

However, it does come with higher latency compared to DSRC. In the context of our intended 

application, which is non-safety related, the adoption of 5G technology emerges as a pragmatic 

choice. This is primarily due to the significant investment required for DSRC implementation. 

Furthermore, the presence of 5G in cellular networks, positions it as an accessible and effective 

solution, with the potential to support safety-related applications when 5G stand-alone 

configurations become available. Consequently, the integration of connected vehicle 

technology enhances a vehicle's situational awareness, augmenting sensor robustness and 

acting as a redundancy measure. This approach allows the vehicle to anticipate scenarios in 

which sensors may fail due to obstructions, thereby expanding the operational design domain 

of autonomous vehicles. Notably, the degree of connectivity among vehicles and the extent of 

shared data directly correlates with the effectiveness of a vehicle's environmental perception. 

4.2 Connected Adaptive Cruise Control (CACC) 

Examining the presently accessible technology and drawing upon insights from [24], we have 

the opportunity to delve into ACC controllers and explore their potential applications. In the 

context of Level 1 or 2 automation, Autonomous Vehicles (AVs) rely heavily on the Adaptive 

Cruise Control (ACC) algorithm to respond to the movements of preceding vehicles within 

traffic. The design of these controllers generally falls into one of two categories: reactive 

controllers or predictive controllers. Reactive ACC controllers (RACC) utilize explicit 

feedback control laws, typically parameterized to allow for optimization of controller 

parameters, especially with regards to energy efficiency and car following dynamics. In 

contrast, predictive ACC (PACC) takes a more proactive approach by directly optimizing the 

future trajectory based on predictions of the leading vehicle's future movements. This approach 

yields substantial enhancements in energy efficiency. Importantly, by establishing connections 

between vehicles, the accuracy of future predictions can be significantly improved. 

Additionally, the utilization of navigation systems further refines the ability to predict the 

trajectory of leading vehicles, offering a more precise glimpse into their planned routes. 

As we peer into the near future of transportation, it becomes increasingly evident that traffic 

scenarios will evolve towards a heterogeneous mix of connected and non-connected vehicles. 
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Controllers tailored to function effectively in these mixed traffic environments are collectively 

referred to as Connected Cruise Control (CCC). 

Given the context elucidated above, the strategy developed within this thesis can be aptly 

categorized as a Predictive Adaptive Cruise Control system capable of operating seamlessly 

within mixed traffic scenarios. This approach leverages vehicle information from various 

sources, including other vehicles, infrastructure, and sensors. As a result, the nomenclature 

"Connected Adaptive Cruise Control" has been chosen to succinctly encapsulate the essence of 

the implemented strategy. 

4.2.1 CACC model implementation 

To develop a predictive adaptive cruise control system capable of effectively functioning across 

diverse driving scenarios by harnessing sensor data and connectivity, we can explore three 

primary approaches: 

1. Rule-Based Approach: This approach relies on predefined rules that trigger specific 

actions when particular conditions arise. It offers simplicity and computational 

efficiency, but it has inherent limitations. These rules are often tailored to specific 

situations and can be challenging to generalize across a wide range of scenarios. 

2. Reinforcement Learning: Leveraging neural networks, this approach involves training 

an agent to learn optimal actions by interacting with its environment. The agent learns 

from the consequences of its actions, making it adaptable to various situations. 

However, one significant drawback is the substantial need for training data to ensure 

effective performance across diverse conditions. 

3. Model Predictive Control (MPC): MPC employs an optimization strategy driven by 

a cost function designed to satisfy desired requirements. It achieves this by predicting 

the future state of the system and determining actions that minimize the cost while 

avoiding unfeasible conditions. 

Given the project's objectives, which prioritize reliability and manageable complexity, MPC 

was chosen as the most suitable option. Before delving into the implementation details and 

results quantification, preliminary data were acquired on the Worldwide Harmonized Light 

Vehicles Test Cycle (WLTC), EPA cycle, and a basic car-following strategy involving one 

leading vehicle and an ego vehicle (representing the vehicle I want to control) as baseline for 

future comparisons. 
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4.2.2 Vehicles environment set-up 

To establish a car-following model, which mathematically describes how vehicles follow one 

another on a road, the behaviour of the leading vehicle to be followed must be selected. In this 

case, as explained in Chapter 2, it is assumed that the leading vehicle precisely follows either a 

WLTC cycle or an EPA cycle. Several assumptions were made regarding the environmental 

setup for the model: 

• Only two vehicles are present in the environment. 

• No vehicles enter or exit the lane. 

• Only longitudinal dynamic is examined and controlled. 

• All types of road conditions, from urban to highway, are considered without accounting 

for traffic, focusing solely on the actions of the leading vehicle. 

• Information from the leading vehicle, including actual speed and position, is available 

through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communication or 

sensors, giving the possibility to the leading and ego vehicle to be either connected or 

non-connected. 

• Disturbances in the leading vehicle's information are considered as white noise with a 

specified maximum amplitude, accounting for sensor accuracy and communication 

delays. 

The results obtained from the leading vehicle, which precisely follows the WLTC or EPA cycle, 

are presented in the following section. Various aspects are examined to encompass different 

characteristics: 

• Energy Consumption: A primary concern in the project, the state of charge (SOC) of 

the battery is monitored and controlled. 

• Battery Health: Indirectly affected by control commands, the state of health (SOH) of 

the battery is monitored to assess potential benefits. 

• Comfort: To implement an autonomous driving strategy, comfort is essential. Abrupt 

accelerations or decelerations that would make the strategy impractical in a real vehicle 

are monitored through jerk measurements. 

• Input Command: Monitoring acceleration ensures that the optimal solution obtained 

is feasible without high-frequency oscillations in the control variable. 

• Following Capability and Time: The strategy should not only reduce energy 

consumption but also ensure the ability to follow without significantly impacting travel 

time, thereby improving traffic flow and passenger satisfaction. 
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• Safety: While pursuing performance improvements, safety is paramount. A safety 

distance that varies with speed is imposed and observed in all scenarios to ensure safety. 

These pieces of information are provided to demonstrate the model's capability to enhance 

performance while considering realistic factors such as comfort and safety. 

4.3 Leading vehicle data 

The results of a vehicle following precisely the WLTC and EPA cycles are presented here:  

In this scenario the vehicle initial conditions are SOC = 95%, SOH = 1, v0 = 0 (initial vehicle 

speed) and x0 = 0 (initial position). The values in the table represent the variations at the end of 

one cycle with respect to the initial conditions and the maximum values recorded during the 

simulation. 

One interesting observation derived from these results is that, despite WLTC being a more 

aggressive cycle, the SOC degradation at the end of it is smaller compared to EPA. However, 

when considering the number of kilometres travelled, since the second cycle is longer, the ratio 

∆SOC
𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁄  confirms the earlier observation. The SOH also supports this, with 

a greater degradation even when considering a shorter distance. A plot illustrating these results 

will serve as a reference in all subsequent plots, referred to as 'Leading vehicle,' for the purpose 

of comparing the analysed methods with a vehicle that precisely replicates these cycles. 

4.4 Constant time gap (CTG) method 

4.4.1 Model description 

The CTG method simulates a reactive adaptive cruise control strategy in which vehicle speed 

varies according to the leading vehicle's speed. The goal is to maintain a predetermined time 

interval from the leading vehicle without the need for complex optimization strategies. This 

method is characterized by its simplicity and low computational cost. Instead of imposing a 

specific desired distance between the two vehicles, it focuses on maintaining a certain time gap, 

DSOC |max acc| [m/s^2] Jerk max [m/s^3] Time cycle (23,25 km) [s]

12,39 1,75 14,06 1791,50
WLTC driver

DSOH 

7,329 E-06

Table 3: WLTC/EPA results 

DSOC |max acc| [m/s^2] Jerk max [m/s^3] Time cycle (28,49 km) [s]

13,05 1,51 15,90 2130,70
EPA driver

DSOH 

7,147 E-06
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which can be readily converted into a distance based on the vehicle's speed using the following 

relation: 

                                                                  𝐿𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =  ℎ𝑒𝑔𝑜 ∙ �̇�𝑒𝑔𝑜 + 𝑥0 𝑒𝑔𝑜                                            (XII) 

Here �̇�𝒆𝒈𝒐 represent the actual ego speed, hego is the desired constant time gap (set to 2.7 seconds 

to ensure both safe distance and smooth traffic flow for various speeds) and x0 ego is the distance 

when the vehicle is stand still (set to 5 meters). According to [25] this method ensures that 

errors within a platoon of vehicles do not propagate, ensuring the so called ‘String Stability’. 

The controller based on this method according to the same paper, follows those simple relations: 

                                                                  𝜀 =  𝑥𝑒𝑔𝑜 − 𝑥𝑙𝑒𝑎𝑑𝑖𝑛𝑔                                                     (XIII) 

                                                                  𝛿 =   𝜀 + 𝐿𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                                       (XIV) 

                                                                 𝑎𝑐𝑜𝑚𝑚𝑎𝑛𝑑 =  −
1

ℎ𝑒𝑔𝑜
(𝜆𝛿 +  𝜀̇)                                                 (XV) 

Equation XIII calculates the actual distance between the two vehicles by subtracting their 

instantaneous positions. Equation XIV calculates the distance error between the actual distance 

and the desired distance. The last equation, Equation XV, combines the previous formulations 

to command acceleration based on the distance error and the difference in speed (𝜀̇). The 

following representation illustrates the variables in the equation and aids in understanding how 

the controller functions: 

Figure 21: Following vehicle scheme 
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It's important to note that ε is always negative, resulting in 𝛿 ideally oscillating around zero. 

When the actual distance is smaller than the desired distance (indicating that the vehicle is 

below the safe distance limit), 𝛿 becomes positive, and the commanded acceleration is negative 

to increase the distance. Conversely, in the opposite case, when the ego vehicle's speed is higher 

than the leading vehicle's speed, 𝜀̇ becomes positive, leading to a commanded negative 

acceleration. The only parameter that requires tuning in this controller is λ, which determines 

the controller's sensitivity to relative distance versus relative speed. For the current vehicle, λ 

has been set to 0.2 [1/s]. 

The following strategy has been implemented in Simulink®, utilizing CTG as an input for the 

BEV driver, as depicted in the figure below: 

In this diagram, key components are color-coded for clarity. The red block, highlighted in red, 

enables the cycle to restart or recharge the vehicle if the State of Charge (SOC) at the end of 

the cycle is insufficient to begin another one. The blue block represents the previously described 

controller, which takes leading and ego vehicle positions and ego speed as inputs and provides 

the commanded acceleration to the driver, depicted in the orange block. The yellow block 

ensures that the vehicle comes to a complete stop by forcing the driver's input to zero when the 

vehicle speed falls below 0.01 m/s. Lastly, the green block represents the vehicle's plant, which 

receives inputs from the preceding blocks and responds by generating feedback for the system. 

The simulation results obtained using this control strategy are presented alongside those of the 

leading vehicle, which corresponds to a vehicle precisely replicating the driving cycle. 

4.4.2 CTG results 

In the first section, we present the results obtained when a leading vehicle follows a WLTC. 

The first two plots reveal that the CTG attempts to mimic the leading vehicle's speed profile, 

even if with some discrepancies due to the distance between them. Because the ego vehicle lags 

the leading vehicle, it reduces speed less or it has smaller peaks in some conditions. Analysing 

the vehicles relative distances, we observe a significant limitation of this approach. Since it 

Figure 22: Simulink® CTG vehicle architecture 
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lacks an optimization strategy, the control system merely aims to keep the vehicle around the 

safety distance, maintaining δ close to zero with oscillations generally under 1 meter. This 

happens regardless of the energy needed or safety distance requirements, resulting in certain 

conditions where the relative distance (the disparity between actual and desired distances) falls 

below the safety limit, anyway of a very small amount. Indeed, when the relative distance δ 

turns negative, it signifies that the actual distance is less than the desired safe distance.  

As a result, this impact is evident in the State of Charge (SOC) and State of Health (SOH), both 

of which are influenced by the accelerations and peak power demands. A system that responds 

solely to the objective of maintaining a constant distance between vehicles, without considering 

future predictions, results in higher energy consumption and increased battery degradation, as 

illustrated in Figure 24. 

Figure 23: CTG(WLTC)  Speed profile - Distance Error Plots  
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Figure 24: CTG(WLTC)  SOC - SOH Plots  
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The acceleration data confirms our earlier observations, with the ego vehicle being in retard. 

Consequently, it must react swiftly to the leading vehicle's movements, resulting in more 

significant accelerations to catch up. Observing the traction power, one can discern a correlation 

between acceleration and power demand, where a higher request on the acceleration peaks 

results in a proportionate increase in the requested power peaks. This observation helps provide 

a more comprehensive explanation for the heightened energy consumption and accelerated 

battery degradation experienced within a single cycle. 

    

The same principles apply when the ego vehicle follows an EPA cycle, with similar trends but 

variations in the magnitude of results due to inherent differences in the driving cycles. 

 

Figure 25: CTG(WLTC)  Acceleration – Traction Power Plots  
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Figure 26: CTG(EPA)  Speed profile - Distance error Plots  
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The tables below provide a summary of the results at the end of the cycle for the ego vehicle 

controlled by the CTG, following either a WLTC or EPA cycle.  

In conclusion, the CTG is a straightforward controller that effectively follows a leading vehicle 

at a certain distance with minimal computational cost. However, as highlighted in the previous 

section, its lack of additional constraints sacrifices energy efficiency and battery life. This 

suggests that alternative approaches should be explored, as detailed in this thesis.  

Table 4: CTG results for WLTC and EPA 

DSOC |max acc| [m/s^2] Jerk max [m/s^3] Time cycle (23,25 km) [s]

13,48 2,4 3,92 1793,50
WLTC - CTG

DSOH 

10,110

DSOC |max acc| [m/s^2] Jerk max [m/s^3] Time cycle (28,49 km) [s]

14,03 2,53 6,26 2131,90
EPA - CTG

DSOH 

9,419

                                     

              

    

  

    

  

    

 

   

 

   

 

 
 
 
 
  
  
  
 
 
  
 
  
  
 

                         

   
       

       

   
   

       

Figure 28: CTG(EPA)  Acceleration – Traction Power Plots  
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Figure 27: CTG(EPA)  SOC -SOH Plots  
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4.5 Model Predictive Control (MPC) 

Recognizing the limitations of the previous approach, we will now delve into a more complex 

yet efficient method. This approach, as the name suggests, centres on prediction along a specific 

horizon of future vehicle states to create a smoother vehicle speed profile and enhance overall 

travel efficiency. In this thesis, we explore the following strategies: 

• Non-linear model predictive control (NMPC): This approach employs the entire vehicle 

plant to simulate future predictions. Consequently, it features a highly non-linear and 

computationally intensive architecture, serving as a benchmark for subsequent steps. 

• Linear model predictive control (LMPC): employs a linearized model, leveraging 

specific relationships to approximate the real vehicle plant's behaviour based on 

knowledge gained from the benchmark solution. 

4.5.1 NMPC architecture  

In Figure 29, you'll observe a resemblance to the previously explained CTG architecture. To 

the right, we have the Ego vehicle components in orange, including the driver, controller, and 

plant. The Leading vehicle, in green, is represented by the driving cycle. Moving to the left, the 

yellow block denotes the vehicle's zero-speed control, previously described, and the blue block 

signifies the MPC block containing all the necessary inputs derived from actual ego and leading 

vehicle information to facilitate predictions. At the core of MPC lies the concept of iterative 

modelling over multiple time steps. In this case, a non-linear model represents the vehicle's 

behaviour, with the aim of finding the best control actions for future steps. These control actions 

are chosen based on a Cost Function, which, taking vehicle states as input, provides a cost for 

each action. After assessing the cost for each action, a feasibility check is performed to 

Figure 29: NMPC architecture 

           

                   

               

   
               

       

                  

       

            

          

                   

            

 
 
 
 
 
 
   
 
 
 
 
 
  
 

 
 
 

     

   

   

   

   

           

             

         

               

   

   

   

                                 

            

   

   

               

        

              

                     

      

        

            

                    

              

                  

           

       

          

          

               

          

MPC controller 

Zero speed control 

EGO vehicle 

Leading vehicle 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

39 

 

determine the definitive best action for that specific time step. Different structures are available 

for MPC, with the Predictive Horizon (PH) and Controlled Horizon (CH) playing critical roles. 

These factors significantly impact computational cost and result accuracy: 

• PH: represents the span of time or states into the future for which the controller 

calculates and evaluates the system's predicted responses to different control inputs. A 

longer predictive horizon allows the controller to make predictions further into the 

future, enabling it to better anticipate and plan for future system behaviour. 

• CH: represents the time or states into the future for which the controller actively 

computes and applies control inputs to the system. The control horizon is typically 

shorter than the predictive horizon. It defines the finite sequence of control inputs that 

the controller will use over a specific time period to optimize the system's performance 

while considering constraints. 

To understand the pros and cons of different architectures, a description of the implemented 

model is done with the related assumptions and the imposed control. 

The first model, depicted in Figure 29, employs a constant control action for the entire PH 

(tested for values of 2, 5, and 10 time steps) with a CH of one time step.  

Key assumption for realistic predictions in this model includes: 

• Leading vehicle speed (acquired from sensors or connectivity) remains constant during 

the predictive horizons. This assumption holds since, based on the aggressive WLTC 

cycle, the maximum variation in one time step for peak speed values is only 0.175 m/s, 

making it a valid hypothesis. 

• Only one control variable is utilized: the commanded acceleration, which enters the 

driver. To further simplify the model, a constant acceleration for the entire PH is chosen 

for the initial simulations. 

To comprehend the model's actions, let's outline the process: 

1. Define all the necessary input necessary to define the Ego and Leading vehicle states 

for the current instant is crucial for successful MPC implementation. 

2. Access the MPC block where various accelerations are tested by leveraging a for loop.  

3. For each tested acceleration, the model simulates the vehicle state evolution for the 

entire Predictive Horizon (PH) while considering a constant acceleration. Consequently, 

a for loop spanning the entire PH duration is necessary. 

4. Evaluate the cost function for each locally simulated time-step and accumulate it to 

assess the overall cost for the entire PH. 
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5. Conduct a feasibility check for each acceleration to discard control actions leading to 

unfeasible conditions. 

6. Select the optimal acceleration for future use in the Controlled Horizon (CH). 

7. Update real ego plant and feed back the vehicle states inside the MPC block after CH 

in order to restart from step 1. 

Now that we have understood how the structure operates, let's delve into each step in detail, 

elucidating the implementation process. 

 

1.DEFINE INPUT  

Precisely defining the input is a critical step in implementing MPC. As iteration is a core 

element, using Simulink® 'for iteration block' does not allow the use of 'integrator and 

derivative blocks.' Moreover, feedback cannot be incorporated since the program simulates the 

flow of all blocks anew with each iteration. Consequently, to work with the vehicle model, we 

have substituted these blocks by exploiting the mathematical relations governing integrator 

blocks: 

                                                           𝐼𝑛𝑡𝑜𝑢𝑡(𝑡) =  𝐼𝑛𝑡𝑜𝑢𝑡(𝑡 − 1) + 𝑣𝑎𝑟𝑖𝑛 ∙ Δ𝑡                         (XVI) 

Where the output of the integrator is performed summing the previous integrator output 

(obtained from ego plant simulated at previous time step) to the variable that must be integrated 

multiplied times the sample time interval. This approach enables integration within the iteration 

block. Similarly, for derivatives, Equation XVII demonstrates how the derivative output is 

found: 

                                                                 𝑑𝑒𝑟𝑜𝑢𝑡(𝑡) =  
𝑣𝑎𝑟𝑖𝑛(𝑡)+𝑣𝑎𝑟𝑖𝑛(𝑡−1)

 Δ𝑡
                                 (XVII) 

By considering the current and previous values of the variable over the sample time, the 

derivative is calculated. This is the reason why the input for the MPC block in figure 29, requires 

this so high number of variables, since the complexity of the iterated model is large and the 

results for the integrator and derivative variables at previous interval are necessary. 

Furthermore, these variables include the state variables required for the cost function, namely 

Ego and Leading actual position and speed, as well as Ego SOC. Subsequently, we will 

elucidate how the feedback aspect has been managed to make predictions extending beyond a 

single time-step. 
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2.ACCELERATION FOR LOOP 

Upon entering the MPC block, two For 

Loop blocks are nested within one 

another, as illustrated in Figure 30. 

The first loop (light blue) is employed to 

test different accelerations, while the 

second loop (dark blue) is used to evaluate 

the best acceleration based on cost 

considerations over multiple time-steps. 

Let's explore the two methods applicable 

to implement the first loop. 

The first method leverages the Golden Section Search Method (GSM)2. It is referred to a 

numerical optimization algorithm used to find the minimum of a unimodal function within a 

specified interval. For this application a 1-Dimensional approach is sufficient because it 

operates on a cost function driven by a single control variable. This method works by iteratively 

narrowing down the search interval (initialize by two arbitrary acceleration values considered 

as extreme bounds) while maintaining two interior points, often denoted as x1 and x2, that 

subdivide the interval into two subintervals with the "golden ratio" proportion. At each step, it 

evaluates the cost function at two interior points and updates the interval based on the function 

values. The process continues until a predefined convergence criterion is met, such as a 

specified tolerance or a maximum number of iterations. This method is a very efficient way to 

find the minimum of a function without recurring on analytical calculations (impractical in 

some conditions) reducing the iteration number. However, it assumes the cost function to be 

strictly convex to find the global minimum, which is not feasible for our model considering the 

cost function we will illustrate later. Even if the model were capable of functioning with this 

method, it would yield a suboptimal solution. As a result, the outcomes would be significantly 

influenced by the driving conditions, making it impractical to create a model that can operate 

effectively in all conceivable driving scenarios, as we desire. Consequently, an alternative 

approach is presented. 

The second approach rely on a for loop where all the possible acceleration are tested one at a 

time and the best one is chosen. In this case, the computational cost and the results depends 

 

2 GMS definition has been extracted from [26] and contextualized to the project purpose.  

Figure 30: MPC iteration blocks 
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significantly on the number of accelerations tested and the discretization of the vector 

containing these values. With this method, we can be certain of finding the optimal solution, 

regardless of the shape of the cost function, but within the tested values. Consequently, if the 

global optimal solution lies outside this tested range, it will never be found.  

In order to find a compromise between computational cost and accuracy of the results in almost 

all the scenario, the following approach has been implemented (this is what the light blue block 

does in figure 30): 

Observing the figure, it's evident that the for loop doesn't merely provide the acceleration value 

as input for the subsequent for loop. Instead, it employs a more complex architecture. Knowing 

the feasibility limit of the vehicle, in order to impose the one related to the Jerk (
𝑑𝑎𝑐𝑐

𝑑𝑡
), and at 

the same time reduce as much as possible number of iterations, a linear relation has been 

exploited: 

                                             𝑎𝑐𝑐𝑡𝑒𝑠𝑡 =  𝑎𝑐𝑐𝑚𝑖𝑛 +
(𝑎𝑐𝑐𝑚𝑎𝑥−𝑎𝑐𝑐𝑚𝑖𝑛)∙(𝑖𝑡𝑒𝑟𝑎𝑐𝑡𝑢𝑎𝑙−𝑖𝑡𝑒𝑟𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑚𝑖𝑛
                (XVIII) 

In the equation accmax and accmin are the upper and lower bounds chosen based on the imposed 

Jerkmax limit: 

                                                     𝑎𝑐𝑐max(𝑡 + 1) =  𝑎𝑐𝑐𝑒𝑔𝑜(𝑡) +  𝐽𝑒𝑟𝑘𝑚𝑎𝑥 ∙ Δ𝑡                       (XIX) 

                                                     𝑎𝑐𝑐min(𝑡 + 1) =  𝑎𝑐𝑐𝑒𝑔𝑜(𝑡) −  𝐽𝑒𝑟𝑘𝑚𝑎𝑥 ∙ Δ𝑡                         (XX) 

This relation ensures that was tested only accelerations within a feasible range of the current 

ego acceleration, thereby reducing the number of accelerations tested, enforcing feasibility 

limits, and enhancing comfort by limiting Jerk values. Anyway, this range of acceleration 

cannot be too narrow as it could impaired the following capability of the vehicle, making the 

simulation diverge. Once Jerkmax is determined, we can calculate the maximum range of 

acceleration variation within one time-step. With these boundaries in place, we can determine 

the number of tested accelerations for each time-step, using a discretization of 0.05 m/s². For 

Figure 31: For iteration strategy 
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instance, with Jerkmax = 2, the acceleration variation from the current value in one time step 

(sample time = 0.1) is Δacc = ± Jerkmax ∙ Δ𝑡  = 0.2. Considering a discretization of 0.05, this 

results in 9 iterations. This value is incorporated into Equation XVIII as itermax. The variable 

itermin is set to 1 (conventionally starting iterations from 1). By using the current iteration 

number provided by the for-iterator block, we can test all accelerations within the defined 

discretization interval, from accmin to accmax. 

  

3.PREDICTION PHASE 

With the test acceleration defined, it must be applied to the model for a number of time-steps 

equal to the Predictive Horizon (PH). To execute this step, we enter the dark blue block of 

Figure 30. To simulate multiple time-steps within a pre-existing for loop, we've implemented 

another iteration block: 

 

This iteration is essential for predicting multiple local time-steps within a single real time-step, 

creating a data flow as if a closed loop is running multiple times. The for iterator block in the 

figure ranges from 1 to N, with N representing the PH. The simulation flow unfolds as follows: 

1. Inputs from real plant model, explained in previous point, enters this section through 

the lower inputs in red, together with the constant acceleration command from the for 

loop mentioned in above described part.  

2. For the first local time-step (N = 1) the switch selects the inputs coming from lower part 

and feeds them into the vehicle plant as input simulating the vehicle’s evolution, starting 

from these inputs, and using the commanded acceleration. 

Figure 32: Prediction model implementation 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

44 

 

3. The new states of the vehicle at the end of the first local time-step are passed to a block 

that accumulates the cost for this step and stores it in a 'memory block.' 

4. For the subsequent local time-steps, the input selection changes. Instead of the lower 

input in red, the upper input in green is chosen. These values are retrieved from the 

memory block, simulating a regular evolution over multiple time-steps.  

5. This process repeats, with the selection of green input values being updated for each 

subsequent local time-step. It is important to notice the acceleration command, kept 

constant for all PH simulation. 

6. At the end of the predictive horizon, the overall cost function, derived from the sum of 

contributions from each step, is evaluated. Additionally, a feasibility check is 

performed, as explained in the next section. At this point, the for iterator block is 

completed, and the for iterator loop is reset to 1. It then proceeds to test the new 

acceleration from the outer acceleration for loop for the entire Predictive Horizon, re-

evaluating the cost function and repeating the process until all accelerations have been 

simulated.  

7. Once all accelerations have been tested, the one providing the best cost function without 

causing any infeasibility is commanded to the real vehicle model for CH time-steps.   

 

4. COST FUNCTION  

In Model Predictive Control (MPC), the cost function, denoted as J, is a mathematical function 

that assesses the cumulative performance of control inputs and system states over a finite 

prediction horizon N. It is formulated as the sum of individual cost terms, as shown below: 

                                                                         𝐽 =  ∑ 𝐿(𝑥𝑘, 𝑢𝑘)𝑁
𝑘=1                                              (XXI) 

• k is the time index, ranging from 1 to N, representing the prediction horizon. 

• N is the prediction horizon PH. 

• xk is the state of the system at time step k. 

• uk is the control input at time step k. 

• L(xk,uk) is the state cost function, which quantifies how desirable or undesirable a 

particular state and control input are at each time step k. 

The primary goal of MPC is to determine the optimal control input u* (in this case acceleration), 

that minimize the total cost J, while satisfying system dynamics and input/output constraints. 

                                                                          𝑢∗ =  𝑎𝑟𝑔𝑚𝑖𝑛(𝐽)                                               (XXII) 
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Subjected to: 

                                                                          𝑥𝑘+1 =  𝑓(𝑥𝑘, 𝑢𝑘)                                             (XXIII) 

Which indicates the future state 𝑥𝑘+1 as a function of actual state 𝑥𝑘 and actual input 𝑢𝑘. In this 

case, the states variables xk we are going to consider are: 

• Leading vehicle speed (�̇�𝑙𝑒𝑎𝑑𝑖𝑛𝑔) 

• Leading vehicle positions (𝑥𝑙𝑒𝑎𝑑𝑖𝑛𝑔) 

• Ego vehicle speed (�̇�𝑒𝑔𝑜) 

• Vehicle position (𝑥𝑒𝑔𝑜) 

• Ego SOC (SOCego) 

On the other hand, the single control action uk we are going to consider is the commanded 

acceleration (𝑎𝑐𝑐𝑐𝑜𝑚𝑚𝑎𝑛𝑑).  

The choice of cost function terms, their weights, and the prediction horizon are crucial design 

parameters in MPC, allowing engineers to customize the control strategy to meet specific 

performance and constraint objectives for complex dynamic systems. 

For this specific application in order to full fill all the requirements in terms of following 

capability and energy management the following total cost has been designed: 

                          𝐽 =  ∑ [𝛼 (
Δ 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

Δ 𝑑_𝑚𝑎𝑥
)

2

+ 𝛽 (
Δ 𝒔𝒑𝒆𝒆𝒅

Δ 𝑣_𝑚𝑎𝑥
)

2

+ (1 − 𝛼 − 𝛽) (
−Δ 𝑺𝑶𝑪

Δ 𝑆𝑂𝐶_𝑚𝑎𝑥
)]𝑁

𝑘=1          (XXIV) 

Within this cost function, three main contributions are highlighted allowing to control 

respectively: 

• Δ𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 permit to keep the vehicle in the desired range of distance between max and 

min value, accounting for the distance error at the future time step. The α factor allows 

us to adjust the weight assigned to the desired distance constraints. Δ𝑑_𝑚𝑎𝑥 is the 

maximum distance allowed, normalizing the distance term to ensure all factors in the 

equation fall within the same range of values (0 - 1).  The square value has been chosen 

taking inspiration from [27] where a cost function for a cooperative adaptive cruise 

control strategy optimization for EV base with MPC has been implemented. This 

square term allows to consider detrimental both positive and negative deviations. The 

most important variable in this factor is presented in the following formulation inspired 

by CTG approach:  
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                                    Δ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = [(𝑥𝑒𝑔𝑜 - 𝑥𝑙𝑒𝑎𝑑𝑖𝑛𝑔) − (ℎ𝑒𝑔𝑜  �̇�𝑒𝑔𝑜 +  𝑠𝑒𝑔𝑜_0)]𝑘+1              (XXV) 

The first difference represents the vehicle distance at the next step, enforces the ideal 

distance according to the vehicle's speed. Here, Sego_0 represent the desired distance 

when both vehicles are stationary.    

• Δ 𝒔𝒑𝒆𝒆𝒅 represents the speed difference between the ego and leading speed in future 

time steps. This component allows the ego vehicle to more or less strictly adhere to an 

imposed vehicle speed profile. Similar to the Δ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 term, a normalization process 

is applied to accommodate the maximum speed variation we impose between the two 

vehicles. The square term is introduced for the same reason as in the previous case, 

and β represents the weighting factor. 

                                                                 Δ 𝑆𝑝𝑒𝑒𝑑 = (�̇�𝑒𝑔𝑜 - �̇�𝑙𝑒𝑎𝑑𝑖𝑛𝑔)𝑘+1                                (XXVI) 

• Δ𝑺𝑶𝑪 term represent the difference between the ego SOC (State of Charge) at the next 

step and the current step.  

                                                                    Δ𝑆𝑂𝐶 = (𝑆𝑂𝐶𝑘+1 - 𝑆𝑂𝐶𝑘)                                 (XXVII) 

The weighting factor for this term is denoted by (1 − 𝛼 − 𝛽) to ensure that the sum of 

all three weights equals 1. Increasing the weight of a factor effectively adds more cost 

to it, making variations in that factor result in larger costs. Consequently, the controller 

responds by reducing control effort on the other factors, allowing them to oscillate 

more around their desired values. The term Δ 𝑆𝑂𝐶_𝑚𝑎𝑥, serves as normalization factor, 

ensuring that this factor remains within the 0 to 1 range, similar to the other two cases. 

To determine its value, a test was conducted to assess its maximum value during a 

WLTC, and it was then adjusted to align with the order of variation seen in the other 

two factors. 

Unlike the other two components, the SOC factor is not squared because its negative 

effect should be considered only when the SOC decreases, consequently not in both 

directions. Therefore, a minus sign is incorporated into the function to assign a higher 

cost to actions that cause larger negative variations in SOC. 

A critical aspect to consider in doing so, is that Δ𝑆𝑂𝐶 can have both positive and 

negative values. During braking, when the SOC-related factor is negative, there is a 

significant advantage in applying negative acceleration. However, this creates 
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problems during acceleration phases, especially when the distance and speed factors 

are not strongly influential. In such cases, the controller may favour negative 

acceleration even if the leading vehicle is still accelerating. This leads to a local 

improvement, but as soon as negative acceleration is applied, the distance and speed 

factors rapidly increase since deceleration occurs while the leading vehicle is 

accelerating. Consequently, the ego vehicle controller is compelled to command a 

significant acceleration to recover the gap lost from the leading vehicle, resulting in 

detrimental effects on energy consumption and battery health. 

To mitigate this oscillating effect, a dynamic weight is applied to the SOC factor. This 

weight is set equal to equal to (1 − 𝛼 − 𝛽) when positive accelerations are tested and 

zero when negative acceleration are tested. This allows negative acceleration to be 

imposed when the leading vehicle is decelerating or when the vehicles are too close to 

each other, providing an advantage in applying negative acceleration. This approach 

optimizes energy consumption during acceleration phases acting also on distance and 

speed and focus only on distance/speed error during braking manoeuvres where no 

energy optimization is needed just exploiting as much as possible regenerative braking. 

Figure 33: Cost Function Simulink® Block 
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The block within the previous figure contains the relationships previously outlined for 

computing the total cost over the entire prediction horizon (PH). The first input represents the 

value of the cost function evaluated at the previous time step. This value is then summed with 

the current cost evaluated for each step (k-step), resulting in the total cost of function XXIV. It 

is important that at the end of the predictive horizon the Jprec value is reset to zero in order to 

perform another prediction using a different acceleration. In the following will be shown the 

Matlab® script for the cost function evaluation. 

Additionally, it's essential to consider the leading vehicle's speed and position. As assumed 

earlier in the analysis, the leading vehicle's speed remains constant throughout the prediction 

horizon. Consequently, this input is kept constant as soon as it enters the for-iterator loop. As a 

result, the leading vehicle's position entering the cost function is updated using the following 

straightforward relation: 

                                                   x𝐿𝑒𝑎𝑑𝑖𝑛𝑔
𝑡+𝑁 =   x𝐿𝑒𝑎𝑑𝑖𝑛𝑔

𝑡 + 𝑁 ∙ �̇�𝑙𝑒𝑎𝑑𝑖𝑛𝑔
𝑡 ∙ ∆𝑡                   (XXVIII) 

This equation calculates the position along the prediction horizon by summing the leading 

vehicle's position at the instant when the prediction phase begins with the product of the 

constant vehicle velocity and the sample time interval, indicating the distance covered in one 

sample time at that speed, multiplied by N, which represents the iteration number within the 

Figure 34: Cost Function Matlab® Script 
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prediction horizon. This ensures that the leading position increases as the prediction time 

progresses. 

All the remaining inputs are the updated ego vehicle states and constants necessary for cost 

evaluation. The output of the cost function is the total cost J at the end of the PH, along with 

Δ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  and Δ 𝑠𝑝𝑒𝑒𝑑, which will be used for feasibility check for next step. 

The weight parameters were selected to prioritize energy consumption significantly while 

assigning relatively lower importance to speed and distance factors. This allocation permits 

more extensive variations in speed and distance from the nominal values, promoting smoother 

velocity profiles, while still ensuring adequate following capability. Specifically, α was 

configured to a value of 0.15, and β was set to 0.05 for these reasons. 

 

5.UNFEASIBILITIES CHECK 

Once the total cost has been evaluated for all prediction horizons (PH) for a single control 

variable, an additional check is imperative to ensure the action leads to feasible conditions. The 

following constraints have been imposed: 

• Δ 𝑑_𝑚𝑖𝑛 < Δ 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

< Δ 𝑑_𝑚𝑎𝑥  

• Δ 𝑣_𝑚𝑖𝑛 < Δ 
𝑠𝑝𝑒𝑒𝑑

< Δ 𝑣_𝑚𝑎𝑥 

• 𝑣𝑒𝑔𝑜 ≥ 0 

Here Δ 𝑑_𝑚𝑎𝑥 is set t 20 m, Δ 𝑑_𝑚𝑖𝑛𝑎𝑡 0 𝑚, Δ𝑣_𝑚𝑎𝑥 at 10 m/s and Δ𝑣_𝑚𝑎𝑥 at -10 m/s. These 

values indicates that we want our vehicle to operate at a distance bounded within the safety 

Figure 35: Feasibility check 
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distance (Δ 𝑑_𝑚𝑖𝑛 = 0 𝑚) and 20 m far from this to ensure following vehicle capability and 

sufficient traffic flow rate. Speed has also been bounded in that range to prevent excessive speed 

difference that could lead to dangerous situations or impossible following capability.  

It’s worthing notice that Jerk control has been intentionally excluded from this check. As 

explained in STEP 2, the accelerations tested are selected based on the maximum jerk value, 

starting from the current acceleration, creating a form of self-control on jerk beforehand. 

The check is performed using relational operators, which output 1 if infeasibility is detected or 

0 otherwise. Once all the checks are completed, the sum of these results is sent to the next block 

to determine the best acceleration to command. 

 

6.MINIMUM COST ACCELERATION  

The figure below shows the architecture used for finding the minimum cost acceleration for the 

entire PH.  

In the orange segment, the system extracts the best acceleration based on the best-cost action 

stored by the blue block. The flow of this system operates as follows: 

1. The commanded acceleration enters the control combination input, which consists of 

two variables: the commanded acceleration and the unfeasibility variable. The cost 

function related to the acceleration enters Input 2. 

Figure 36: Minimum cost acceleration search 
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2. The cost function is compared using a relational operator with the best cost function 

found up to that moment by blue block.  

3. If the cycle time (which is kept constant for all prediction horizons, as it is the real global 

simulation time) differs from previous cycle time, it signifies the start of a new 

predictive horizon. Consequently, an initial cost value is set equal to 15e5, which is 

compared with the first value entering the block as input. Within the prediction horizon, 

the cycle time remains equal to the previous one. Therefore, the value considered as a 

reference is the one stored in memory after exiting the cost selector. 

4. The blue block selects whether to use the previously stored value or the new one based 

on input from the orange block. The orange block compares if the cost function 

evaluated for the currently tested control action is lower than the best previously 

evaluated cost AND if the unfeasibility variable is equal to zero. If these conditions are 

met, the output will be 1, the new best cost will be this one, and the new acceleration 

will be sent as output and stored in the memory block. 

5. This iterative procedure is performed for all accelerations for the entire prediction 

horizon by the iterator block, which provides the best acceleration as output, stored in 

the memory block. 

By following this process, if an infeasibility is detected by the previously examined block, the 

input variable will differ from zero, and consequently, the acceleration will be discarded, 

preventing the vehicle from entering an unfeasible condition. 

 

7.UPDATE EGO REAL PLANT 

According to the implemented architecture, the number of control accelerations commanded 

during a single prediction horizon can be larger than one. For the sake of simplicity in this 

explanation, a scenario with a single constant acceleration is considered. Once the best 

acceleration is chosen, it exits the MPC controller block, as shown in Figure 29, and is sent to 

the Ego plant driver to be executed by the real vehicle. The vehicle states evolve and are 

returned as input to the MPC block, which then recommences from Step 2. 

4.5.2. NMPC Test 

Using the previously illustrated architecture, numerous tests were conducted to determine the 

optimal combination of prediction horizon (PH), control horizon (CH), the number of iterations, 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

52 

 

and computational cost. The conducted analyses are listed below, with the most significant 

results presented to highlight the advantages and disadvantages of each tested simulation: 

 

-NMPC with PH = 2, CH = 1 - single constant acceleration for the whole PH: 

This is the simplest MPC architecture that can be implemented, as it differentiates from 

punctual optimization strategies by having a PH greater than one. In this application, a 

prediction is made over two time-steps, and control is applied to the next single time step. 

Despite its simplicity, this strategy, with its very small prediction horizon, tends to converge 

towards a local solution. It optimizes each individual step without sufficiently considering more 

distant vehicle states. Examining some results reveals that the commanded acceleration exhibits 

significant oscillations. Since acceleration is closely linked to power request, having high 

values and large oscillations is detrimental to State of Charge (SOC) and State of Health (SOH). 

Nonetheless, in this case, peak values are smaller, resulting in small improvements.  

                                 

              

  

    

  

    

 

   

 

   

 

 
 
 
 
  
  
  
 
 
  
 
  
  
 

                         

   
       

       

   
   

       

Figure 37: Longitudinal acceleration and Traction Power Plot NMPC PH = 2, CH = 1 
Time [s] Time [s] 

                                 

              

 

 

  

  

  

  

  

  

  

 
 
  
 
  
 
  
 
  
 

                     

 
       

      

 
   

      

Figure 38: Longitudinal Velocity and Vehicle Distance Plot NMPC PH = 2, CH = 1 
Time [s] Time [s] 
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These results are depicted for a WLTC, where a more aggressive command clearly highlights 

the limitations of this control. However, all these tests have also been repeated for the EPA 

cycle to assess the model's robustness and adaptability to different scenarios.  

The most intriguing results can be observed by examining the speed profile and vehicle distance 

plots. In the speed profile, one can discern an initial hint of smoothing, where most speed peaks 

are reduced in both acceleration and deceleration phases. This smoothing effect is possible due 

to the soft constraint on distance, which allows for larger variations. During deceleration, the 

smoother action is achieved thanks to the distance constraint, which prevents the speed from 

rapidly reaching zero to approach the desired distance when the vehicle is stationary. This 

allows for a gradual reduction in speed until reaching a distance of 5 meters. 

Analysing the vehicle distance plot on the right reveals a difference from the Constant Time 

Gap (CTG) approach. In this case, the controller doesn't rigidly maintain a safe distance but 

rather oscillates, allowing the distance to vary according to current conditions while striving to 

minimize the total cost function. As expected, these oscillations are bounded within maximum 

(yellow curve) and minimum (red curve) limits. During this simulation, despite some noise in 

trends for the explained reasons, the SOC improves by 2.91%, and the SOH improves by 7.8%. 

Remarkably, even though the cost function does not explicitly aim to minimize SOH, the 

reduction in peak power requests indirectly benefits battery SOH. Additionally, other important 

statistical data show reductions, such as a 4% decrease in maximum acceleration and an 8% 

reduction in maximum Jerk value due to the imposed constraints. These advantages have been 

achieved while maintaining the time required to complete the overall cycle, with a difference 

of only 6.5 seconds over a 30 minutes trip. To achieve a more realistic and applicable control 

strategy with fewer oscillations, further tests were conducted by increasing the PH to find the 

optimal compromise between computational cost, low oscillations, and improvements. 

 

-NMPC with PH = 10, CH = 1 - single constant acceleration for the whole PH: 

After conducting various tests, we identified the best compromise with this configuration. In 

this case, the prediction horizon is sufficiently large to ensure a smoother profile without an 

excessively long horizon, which would lead to incorrect predictions. This is particularly 

problematic when considering the assumption of constant Leading vehicle speed, especially 

when transitioning from braking to accelerating and vice versa, causing overshoot in ego 

vehicle actions.  

The results presented here are based on simulations using the WLTC since it is a more 

aggressive cycle compared to the EPA cycle, making improvements more evident. In this case, 
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the acceleration command exhibits significantly less oscillation, with considerable reductions 

in all peaks. Approaching zero speed, a smoother profile (for the same reasons explained earlier) 

is achieved, indicating a substantial reduction in power request. Furthermore, in terms of 

comfort, jerk values are greatly reduced in all conditions, more than halved, indicating that the 

controller operates more effectively and smoothly. 

 

Now, let's focus on the two most important results. Examining the velocity profile, it's evident 

that the initial objective, set at the beginning, has been successfully achieved. The ego vehicle 

(in red), predicting future vehicle behaviour, optimizes its trajectory, smooths its speed profile, 

and avoids oscillations in the behaviour of the leading vehicle. All speed peaks are diminished, 

and the vehicle approaches zero speed more smoothly, sometimes even avoiding stops when 

the leading vehicle comes to a halt. In many instances, the leading vehicle experiences rapid 

positive and negative speed changes, but our ego vehicle effectively smooths them out, 

                                 

              

  

    

  

    

 

   

 

   

 

 
 
 
 
  
  
  
 
 
  
 
  
  
 

                         

   
       

       

   
   

       

                                 

              

   

   

  

 

 

  

  

 
 
  
  
 
  
  
 

    

    
       

       

    
   

     
 
 

Figure 39: Longitudinal acceleration and Jerk Plot NMPC PH = 10, CH = 1 
Time [s] Time [s] 

Figure 40: Longitudinal speed and Vehicle distance Plot NMPC PH = 10, CH = 1 
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exhibiting nearly linear behaviour. Moreover, the distance is expertly managed, varying as 

much as needed within the desired interval without ever falling below the safety distance or 

exceeding the maximum limit. However, it's essential to acknowledge the limitations of this 

configuration. For instance, in some peak speed conditions, the ego vehicle exhibits a slight 

delay in speed reduction compared to the leading vehicle. This limitation arises from assuming 

constant leading vehicle speed throughout the entire prediction horizon. If in reality the leading 

vehicle's speed changes sign in the next steps, our predictions for that instant would be entirely 

inaccurate, causing this discrepancy observable in figure 40. Despite these limitations, the 

improvements achieved with this approach are more significant, with a 4.12% reduction in 

energy consumption and a 10.2% improvement in battery State of Health (SOH) for a single 

cycle. These values are primarily due to a 17% reduction in maximum acceleration, indicating 

a decrease in power demand. In terms of comfort, the 81% reduction in jerk peaks ensures a 

substantial improvement for passengers. These improvements are achieved while keeping travel 

time almost constant, with a difference of only 5 seconds for the same distance travelled.     

These results confirm the anticipated benefits of leveraging leading vehicle information to 

predict future vehicle trajectories, smoothing profiles, and consequently improving energy 

consumption and indirectly enhancing battery life. However, it's important to consider another 

factor. To perform such extensive prediction, the computational cost becomes substantial for a 

passenger car's microprocessor, as it simulates the overall nonlinear model within the controller 

during simulations. Therefore, the next step is proposed to address this issue. 

4.5.3 LMPC architecture 

The previous architecture demonstrated the potential of leveraging leading vehicle information 

to enhance energy consumption and extend battery life. However, it also revealed limitations 

in terms of computational cost due to the complex model simulated within the plant. As a 

benchmark, NMPC was considered, from which simplifications could be made and compared 

against the ideal result. The primary challenge with the previous architecture, as explained, lies 

in the nonlinear model simulated within the controller. To address this, the following strategy 

was implemented to establish a linear relationship between vehicle states and control variable, 

significantly simplifying the simulation cost. 

Several realistic assumptions were made to facilitate the linearization of the model: 
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• Constant Cell actual max capacity during PH: This assumption was made because, 

over ten time-steps (equivalent to 1 second), the cell's actual max capacity degrades by 

a factor of 10^-7. 

• Ego Plant's Ability to Replicate Driving Cycle: It was assumed that the ego plant can 

precisely replicate the imposed driving cycle by the controller. This assumption enabled 

the evaluation of vehicle speed, position, and acceleration at the next time steps as 

function of the command input using linear relations: 

                                                                 �̈�𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑖𝑚 =   𝑎𝑐𝑐𝑐𝑜𝑚𝑚𝑎𝑛𝑑                                     (XXIX) 

                                                �̇�𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑖𝑚
𝑡 =   𝑎𝑐𝑐𝑐𝑜𝑚𝑚𝑎𝑛𝑑 ∙ ∆𝑡 +  �̇�𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑖𝑚

𝑡−1                    (XXX) 

                         𝑥𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑖𝑚
𝑡 = 𝑥𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑖𝑚

𝑡−1 + �̇�𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑖𝑚
𝑡 ∙ ∆𝑡 +

1

2
∙ 𝑎𝑐𝑐𝑐𝑜𝑚𝑚𝑎𝑛𝑑∆𝑡2   (XXXI) 

It has been possible to do that since the PI controller inside the ego vehicle driver 

provides a command which allows to exactly copy input request as shown in the 

following charts where the lines are overlapped, and no difference could be appreciate:   

Figure 42 Commanded vs Chassis speed WLTC 

                                 

        

 

 

  

  

  

  

  

  

  

 
 
 
 
 
  
 
  
 

                  

     
       

     
       

Figure 41: Commanded vs Chassis acceleration WLTC 
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• Linear relation between commanded acceleration and Ego battery SOC: This 

characteristic was considered linear after specific tests. In particular, given that the 

effect of acceleration on State of Charge (SOC) within the cost function is significant 

only for positive accelerations (as the weight associated with the energy-related factor 

is set to zero in other cases), a series of tests were conducted focusing on various positive 

accelerations. To establish this linearity, a ramp signal ranging from 0 𝑚 𝑠2⁄  to 2  𝑚 𝑠2⁄  

(covering most positive accelerations the vehicle can withstand) was used. This range 

of accelerations was tested on the real vehicle plant, revealing an almost linear relation 

between 
𝑐𝑒𝑙𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑
 and commanded acceleration. Given that cell current depends on 

both acceleration and current vehicle speed (due to different resistance forces at 

different speeds), considering this ratio allowed for the establishment of a linear relation 

with input acceleration. After an initial approximation using linear regression with 

Matlab® functions such as 'polyfit,' the following equation was derived:  y = 0.00112 + 

0.2057*acccommand.  

To verify the effectiveness of this equation, a test was conducted using the ramp signal, 

comparing results from the real plant with those from the equation. The cell current was 

plotted for both cases, with the output of the linear equation multiplied by the current vehicle 

speed. 

Figure 43: I/V linearized characteristic 
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The trends in the figures closely overlapped, particularly within the useful cell current range 

from 0 to 5 A for the WLTC request. This suggested that the linearization hypothesis and 

implementation were successful. 

With the output cell current evaluated, the transition to State of Charge (SOC) follows linear 

relations: 

The change in SOC for a single time-step (Δt), i.e., the numerator of the energy-related factor 

within the cost function, can be calculated by multiplying the current by the sample time 

interval, dividing by 3600 to obtain Ampere-hour (Ah), and then dividing by the cell's actual 

max capacity.  

                                                               Δ𝑆𝑂𝐶 =  −
𝐼𝑐𝑒𝑙𝑙∙∆𝑡

3600∙𝐶𝑎𝑐𝑡𝑢𝑎𝑙 max 𝑐𝑒𝑙𝑙
                                       (XXXII)  

Now it becomes possible to comprehend the reasons behind the initial assumption of 

maintaining the Cell's actual maximum capacity as constant throughout the Prediction Horizon 

Figure 44: Cell current comparison 

Figure 45: Linearized model 
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(PH). In this simplified model, which lacks an estimation mechanism for battery State of Health 

(SOH), the actual maximum capacity of the cell is not updated at each local time-step. Instead, 

this update is deferred until the conclusion of the PH, once the control action is transmitted to 

the actual vehicle plant, and the vehicle's states evolve. Consequently, we opt for treating this 

value as a constant, albeit with infinitesimal error, when making predictions. With these 

assumptions, in line with those presented previously, the linearized model (as depicted in Figure 

45) is now fully established. It is noteworthy that this linearized model substantially reduces 

the number of inputs required for the controller compared to its non-linear counterpart (as 

illustrated in Figure 46), thus significantly simplifying the model's complexity. This 

potentially allows testing on a real vehicle microprocessor to evaluate its real-time 

capabilities. 

Despite the linearized model, the overall scheme and steps required for prediction remain 

unchanged. Two main simulations were performed using the new linearized model, 

starting from the best configuration of NMPC tests: 

• PH = 10, CH = 1 with constant acceleration along PH: This simulation aimed to evaluate 

the effectiveness of the linearized model compared to the benchmark solution, verifying 

if the model correctly predicts outcomes. 

• PH = 10, CH = 2 with constant acceleration along PH and CH: This configuration aimed 

to reduce the number of iterations significantly and assess whether the computational 

cost reduction still preserves the improvements. 

 

LMPC PH = 10, CH = 1 with constant acceleration along PH 

Despite the linearized model closely mimic the realistic trend of the vehicle plant, it 

incorporates certain limits and simplifications that yield slightly different results. To quantify 

the performance reduction resulting from these simplifications, we repeated the same tests 

Figure 46: NMPC simulated model 
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conducted for NMPC under this configuration. Consequently, this simulation was executed for 

both the WLTC and EPA to assess the controller's robustness and flexibility. 

This specific configuration keeps the same structure of NMPC with modification limited to the 

components related to figure 46, which are modified as follows:  

The number of inputs required is significantly reduced, employing expressions XXIX, XXX, 

XXXI, and utilizing a mechanism identical to that used in Figure 32. With this setup, the 

following results were obtained. 

The plots in this case show similarities to those from  NMPC, featuring some oscillations or 

larger peaks that, nevertheless, do not lead to unrealistic trends. Utilizing this model, the 

reductions in improved performance compared to the WLTC (following the leading vehicle) 

are noticeable, with a 7.84% decrease in SOC improvement and a 3.09% reduction in SOH 

improvement. However, this decrease is reasonable considering the simplifications and 

assumptions in the model, yet the resulting improvements in SOC and SOH compared to the 

WLTC remain substantial at 3.79% and 9.8%, respectively. 

When examining the EPA cycle, the decrease is less pronounced, at 7.69% for SOC and 1.31% 

for SOH. This lesser impact is attributed to the less aggressive nature of the EPA cycle, which 

reduces the influence of different strategies and the resulting reduction.  

 

LMPC PH = 10, CH = 2 with constant acceleration along PH and CH 

After quantifying the performance reduction, we further analysed and reached the final 

configuration, which halves the number of iterations while maintaining high performance 

levels. This section presents all the results in comparison to both leading vehicle following 

under the WLTC or EPA and a current strategy implementable in real vehicles, Adaptive Cruise 

Control (CTG). This comparison helps us understand the improvement achieved by 

implementing this strategy in vehicles that already have a standard control architecture.  

Figure 47: LMPC internal blocks structure 
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The solution achieved in this section involves implementing a Control Horizon (CH) greater 

than 1, specifically set to 2. It operates with constant acceleration during this period. This 

outcome follows multiple simulations that tested various CH lengths with constant acceleration 

to determine the best compromise. CH = 2 emerged as the optimal choice, as increasing this 

horizon led to controlling the vehicle in ways that deviated significantly from realism due to 

the assumption of constant Leading vehicle speed. To implement multiple controlled horizons 

with constant acceleration, the MPC block must be enabled not at each time-step, acting anyway 

on the plant also when the controller is turned off. This was made possible by utilizing the 

architecture shown below: 

The largest block on the left is the MPC controller, responsible for determining the optimal 

acceleration command. To predict values every two time-steps and influence the plant 

accordingly in the subsequent two time-steps, a 'Rate Transmission' block has been 

incorporated. This block enables the adjustment of the sampling frequency of its output, thereby 

modifying the operational response of the subsequent blocks. Placing this block before the MPC 

controller and setting the output sampling frequency to half of the simulation frequency ensures 

that it produces results every two-simulation time-steps. 

Once the results exit the MPC controller block, the rest of the Simulink model must revert to 

working with the normal sampling frequency. Therefore, another 'Rate Transmission' block 

with an output frequency equal to the simulation frequency has been introduced. Given that the 

input to this block is generated every two-simulation time-steps, the remaining time step it is 

kept constant equal to the last output value. This architecture allows predicting a single 

Figure 48: Multiple CH block scheme implementation 
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commanded acceleration while acting on two time-steps, significantly reducing computational 

costs and enabling the spreading of MPC predictions over two time-steps. 

With this alternative method, utilizing Jerkmax=4 m⁄s³, a discretization of 0.1 for the acceleration 

loop, PH=10, and CH=2, the number of iterations required for each time-step is 45. Given the 

very simple linearized model employed, this setup could ensure real-time implementation on a 

passenger car microprocessor. Employing this alternative method, the following results were 

collected. 

 

WLTC BASED SIMULATIONS 

 

Upon examining these plots, it becomes evident that the results closely resemble those obtained 

for NMPC, even though in this case, the number of iterations is significantly reduced, and the 

                                 

              

  

    

  

    

 

   

 

   

 

 
 
 
 
  
  
  
 
 
  
 
  
  
 

                         

   
       

       

   
   

     
 
 

                                 

              

   

   

  

 

 

  

  

 
 
  
  
 
  
  
 

    

    
       

       

    
   

       

Figure 49: WLTC Longitudinal acceleration and Jerk Plots LMPC PH = 10, CH = 2 

Time [s] Time [s] 

                                 

              

 

 

  

  

  

  

  

  

  

 
 
  
 
  
 
  
 
  
 

                     

 
       

      

 
   

      

Figure 50: WLTC Longitudinal speed and Vehicle Distance Plots LMPC PH = 10, CH = 2 

Time [s] Time [s] 
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model complexity is simplified. In this case, the reduction in performance compared to NMPC 

is slightly higher but still within a small amount. The increase in energy consumption compared 

to the WLTC is also noticeable, with a 9.8% decrease for SOC improvement at the end of the 

cycle and a 4.7% decrease in battery degradation improvements. As expected, these results are 

less favourable compared to having CH = 1. Nevertheless, the residual improvement is still 

significant, with 3.71% and 9.7% improvements in SOC and SOH, respectively. 

Examining the maximum acceleration values reveals a more substantial deterioration, 

approaching 60%, due to higher peak requests. However, this value still remains below the peak 

acceleration request by the leading vehicle by 6.5% (compared to the 17% observed in NMPC). 

In this case, the jerk value, resulting from imposing constant acceleration for two time-steps, 

experiences a smaller decrease in the jerk peak value, with a gain of 4.03%. Overall, the driving 

travel is completed in nearly the same time. Based on these results, this configuration has been 

selected as the definitive one, capable of enhancing vehicle energy consumption and battery 

life while keeping computational costs to a minimum. 

 

RESULTS COMPARISON WITH CTG STRATEGY (WLTC) 

Up to this point, the implemented strategy has been compared with the results from a leading 

vehicle that exactly replicates a driving cycle, benefiting from the aforementioned 

improvements. To gain a more comprehensive understanding, this section compares the 

optimization strategy's results with a simple CTG control strategy that does not leverage 

optimization or prediction, relying on a basic formulation instead. 

These results are useful to understand the improvement that can be achieved by implementing 

this optimization strategy compared to the simplest implementable one. 

Figure 51: WLTC- [MPC vs CTG] longitudinal acceleration and Traction Power 

                                 

              

  

    

  

    

 

   

 

   

 

 
 
 
 
  
  
  
 
 
  
 
  
  
 

                         

   
   

       

   
   

       

Time [s] Time [s] 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

64 

 

Observing the plots, it's clear that the acceleration command for each instant is significantly 

reduced, directly linked to the traction power requested. In this case, all the peaks are 

consistently lower, thanks to optimization ensuring a lower current request. This reduction is 

further justified by the improvements showcased in SOC and SOH in the following images.   

Analysing energy consumption and battery health status at the end of the WLTC cycle reveals 

substantial improvements. In numbers, this translates to a 12.34% improvement in SOC and a 

34.2% enhancement in SOH, signifying a remarkable gain in performance. This underscores 

the potential of a predictive model that leverages information from the leading vehicle. Even 

with basic data, these predictions yield significant improvements.  

 

EPA BASED SIMULATIONS 

All these experiments were replicated for the EPA cycle, showcasing the ability to improve 

performance in a different scenario. In this case, given the less aggressive nature of the cycle, 

the improvements are naturally smaller but still substantial. Since these experimental charts do 

not provide additional information beyond what has been explained, only plots illustrating 

speed smoothing and commanded acceleration will be presented in comparison to results 

following a leading vehicle, ensuring completeness. Even for this cycle, all the previously stated 

findings are reaffirmed, with significant improvements, especially when comparing results with 

the CTG controller. Relative to WLTC-based simulations, although the improvements are 

slightly lower, at 7.6% for SOH and 2.8% for SOC, they remain noteworthy.                                    

Figure 52: WLTC – [MPC vs CTG] SOC and SOH 

                                 

              

        

       

        

        

        

        

 

 
 
 
  
  

   

   
   

   
   

                                 

              

  

  

  

  

 
 
 
  
  

   

   
   

   
   

Time [s] Time [s] 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

65 

 

All simulation results will be summarized at the end of this chapter in the final tables. 

Figure 54: EPA Longitudinal acceleration Plot LMPC PH = 10, CH = 2 

Time [s] 

                                     

              

 

 

  

  

  

  

  

  
  
  
  
   

  
 

                     

 
   

      

 
   

      

Figure 53: EPA Longitudinal speed Plot LMPC PH = 10, CH = 2 

Time [s] 
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4.6 Noise and delay sensitivity analysis  

To enhance the realism of the simulation, we considered incorporating noise and data delays 

from the leading vehicle information. This addition aimed to evaluate the control strategy's 

robustness and effectiveness. To introduce these external disturbances, we incorporated two 

simple blocks into the input for Leading Speed and Leading Position: 

• Delay block: This block enables us to specify the number of time-steps after which the 

information entering the block must be provided as output. 

• Band Limited White Noise: This block allows us to create a white noise signal with a 

predefined maximum oscillation amplitude.  

The delay block should be implemented before providing the information as input to the MPC 

controller, while the white noise is added to that data by simple summation, as shown below: 

Within the Noise block, you can observe the inclusion of a saturation block before the output, 

which is bounded between zero and infinity. The lower bound is essential to discard unrealistic 

information that, in specific conditions such as when the vehicle starts from zero speed, might 

result in negative speed or position values. We analysed the effects of these two contributions 

separately to comprehend the influence they have. 

 

Figure 55:  Noise and Delay implementation 
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4.6.1 Delay in data Communication and Sensor data acquisition 

Delays in communication, whether in Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure 

(V2I) communication, as well as inherent sensor acquisition delays, can have significant 

impacts on the performance and safety of connected and autonomous vehicles. The magnitude 

of these delays varies and depends on the sensors and infrastructure used. 

Since our application is non-safety-related, we considered using 5G cellular network 

technology for communication and a specific radar, LLR4 [21], commonly used in vehicle 

applications. According to references [21] and [28], the delays induced by these technologies 

are as follows: 

• The long-range radar has a cycle time of 60 ms, indicating how frequently the sensor 

collects and processes data or updates its measurements.  

• The latency values for cellular network technology, representing the delay or lag in data 

transmission between a sender and receiver, are highly dependent on the level of 

technology implemented. According to test results from Ookla, average latency values 

for specific countries are 32 ms for the United States (US) and 37 ms for Italy. While 

these values are averages and can vary by country, they provide a useful reference, 

especially since they are lower than the delay induced by the sensor.  

Having identified a range of reasonable delay values, we assessed whether their implementation 

would lead to significant modifications. Considering a simulation time-step of 100 ms in 

Simulink, the minimum delay we can implement is at least that value, resulting in an 

overestimation of the disturbance.  

Within one time-step, assuming worst-case scenarios with maximum speeds in the WLTC, the 

speed variation is approximately 0.175 m/s, and the distance travelled is around 3.6 m. Given 

these values, we expect practically negligible variations in the speed profile and more 

significant changes in relative distance. Particularly with respect to distance values, the ego 

vehicle's controller consistently receives delayed information, effectively acting as if it were 

one time-step behind. This discrepancy causes the actual real distance to be poorly managed, 

leading to unnecessary increases in the gap from the leading vehicle at each moment leading 

the vehicle out of the upper bound limit. While this is almost imperceptible in speed, it's more 

noticeable in the relative distance. The phenomenon is illustrated in the following plots: 
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This behaviour has minimal influence on the results. In fact, SOC and SOH remain practically 

the same because the MPC operates exactly as before, and the effect on distance goes unnoticed 

since the controller continuously takes into account the delayed information it receives. 

We also repeated this simulation using the EPA cycle. Here, the results remained almost 

unchanged, but slight differences in the speed plots became more apparent due to the delay. 

These differences are more noticeable because, although the cycle is less aggressive, there are 

more points where the speed remains higher. Consequently, the error becomes more evident, 

especially in the speed chart. 

 

                                 

        

 

 

  

  

  

  

  

  

  
 
 
 
 
 
  
 
  
 

                          

             

              

Figure 56 WLTC - Delay effect on Relative distance and Speed 
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4.6.2 Noise in Sensor data acquisition 

Another aspect that requires consideration is the presence of noise in the acquired information. 

From a communication perspective, data is divided and transmitted in packets according to 

specific protocols that ensure the correct addressing and formatting of messages. In the event 

of transmission errors, messages are retransmitted to correct these errors, contributing to 

communication latency. Data packets can be lost for various reasons, such as network 

congestion, obstacles, or interference. In all such cases, when a packet is lost, it must be 

Figure 57: EPA-Delay effect on Relative distance and Speed 
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retransmitted. Therefore, introducing noise into the signal due to this reason is not entirely 

appropriate. 

Instead, a more realistic scenario involves the noise introduced by sensor acquisition. Due to 

their nature, sensors inherently possess some degree of error in their measurements, leading to 

variations from the nominal values. This variation is precisely what sensor accuracy describes. 

For example, [21] indicates that the speed and distance measuring error achievable with the 

described long-range radar are approximately ± 0.11 m/s and ± 0.12 m, respectively. 

Given this information, we introduced white noise with an amplitude within this specific range 

and a frequency equal to the simulation frequency (10 Hz) into our input signals, as shown in 

Figure 58: 

The addition of this noise has a more significant impact compared to the introduction of 

communication delays. This is because noise introduces oscillations in the commanded 

acceleration, which, even if to a small extent, deteriorates performance. Consequently, this 

effect results in a decrease in performance compared to improvements without noise, amounting 

to -2.17% for SOC and -2.3% for SOH improvements. These values are obtained when 

simulating a WLTC. However, the decrease is nearly the same for the EPA, with -2.78% for 

SOC and -2.4% for SOH. 

This noise has similar adverse effects for both cycles and on both SOC and SOH. This is 

because its detrimental impact is independent of speed, unlike the Delay. Consequently, using 

the same controller, if the vehicle is capable of following a specific driving cycle, it should be 

Figure 58: White Noise signal 
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robust enough to perform effectively in other cycles. The obtained results confirm all these 

assertions. For the sake of clarity, WLTC results are displayed below. 

These plots clearly illustrate how noise influences the introduction of oscillations in the 

acceleration command, resulting in a much more disturbed profile. This, in turn, affects the jerk 

values, which are reduced but exhibit significant oscillations. Therefore, the inclusion of noise 

and delays in the simulation allows us to assess the model's capability to operate effectively in 

more realistic environments without excessively compromising performance. Simulate noise 

and delay together doesn't provide any additional information because the delay merely 

                                 

              

  

    

  

    

 

   

 

   

 

 
 
 
 
  
  
  
 
 
  
 
  
  
 

                         

   
    

       

   
          

       

                                 

              

   

   

  

 

 

  

  

 
 
  
  
 
  
  
 

    

    
    

       

    
          

       

Figure 59: WLTC - Acceleration and Jerk with added NOISE 
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translates the command one step earlier, but it doesn't alter the random nature of the noise. In 

essence, the two effects operate independently and do not add to or amplify each other, resulting 

in no added information or meaningful interaction between them in this context. 

4.7 MPC Results 

In the concluding section, we delve into the comprehensive results obtained from an array of 

MPC tests. These tests evaluate various control strategies, shedding light on their individual 

impacts and effectiveness. As we analyse the outcomes, our focus gravitates towards critical 

performance indicators. 

Throughout these experiments, our primary aim was to optimize the control strategy to achieve 

several key objectives. Foremost among these was the minimization of energy consumption, 

monitoring SOC factor. Additionally, we observe maximum acceleration in absolute value 

since both positive and negative peaks greatly influence State of Health (SOH), another 

important parameter to be monitored. We also examined jerk to ensure passenger comfort and 

trip duration to ensure sufficient traffic fluidity and customer satisfaction.  

These findings serve as a comprehensive overview, illustrating the extent of improvement 

brought about by each method while rigorously monitoring the essential parameters that drive 

performance and sustainability in our system. 

Before delving into the detailed results, it's crucial to have in mind that the maximum jerk and 

maximum acceleration data presented here refers to peak values. Consequently, these peak 

values might not necessarily translate to consistently higher accelerations across the whole 

cycle. This observation helps explain instances where we may find higher values in places 

where we expect lower ones. 

4.7.1 WLTC based simulation Results 

The first set of tables shows the benefits of some architecture compared to the leading vehicle 

following a single WLTC starting from 95% SOC. The gain values refer to the difference 

between the architecture results subtracted to the leading one and the normalized over the 

leading one to have a percentage of improvement. The time cycle gap is evaluated in the same 

way but in this case the percentage shown represents the additional time required to drive over 

the cycle by the specific architecture. Through this some frequent trend could be observed: 

• CTG has almost everywhere the worst results with worsening with respect to the leading 

vehicle especially on SOH and SOC which are the most relevant parameters to consider. 
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• Increasing the PH performance improvement is higher compared to the leading vehicle 

in particular for SOC and SOH. 

• NMPC with PH = 10 and CH = 1 has almost everywhere the best results as expected. 

• Adding linearization performance slightly reduces with respect to the best architecture 

of NMPC, observing table 6, but are still satisfactory. 

• Increasing CH the performances are generally slightly worsened.  

• The inclusion of a delay in the simulations has minimal impact on the results, whereas 

the addition of noise marginally diminishes performance, as highlighted in Table 7. 

 

 

 

DSOC -2,17%

DSOH -2,3%

CACC effects

HVAC OFF
NOISE Analysis

CACC vs WLTC

Table 7: WLTC - Decrease In performance of LMPC PH = 10, CH = 2 adding Noise 

DSOC -7,84%

DSOH -3,1%
CACC vs EPA

CACC effects

HVAC OFF
LMPC vs NMPC

Table 6: WLTC -  LMPC vs. NMPC performance reduction 

Table 5: WLTC - Architecture Benefits compared to Leading vehicle 

DSOC Gain |max acc| Gain Time cycle Gap (23,25 km) Jerk max Gain DSOH Gain

LMPC P.H. = 10 C.H. = 2 84,42%

CTG

NMPC P.H. = 2 C.H. = 1

LMPC P.H. = 10 C.H. = 2 + NOISE

LMPC P.H. = 10 C.H. = 2 + DELAY

CACC effects

HVAC OFF

Benefits wrt WLTC

NMPC P.H. = 5 C.H. = 1

NMPC P.H. = 10 C.H. = 1

LMPC P.H. = 10 C.H. = 1

-8,80%

2,91%

3,47%

4,12%

3,79%

3,71%

3,71%

6,40%

5,71%3,63%

5,71%

0,35%

0,36%

0,36%

0,11%

0,36%

0,36%

0,28%

0,35%

-37,14%

4,00%

14,29%

16,57%

16,00%

84,21%

84,35%

-37,95%

7,82%

8,79%

10,15%

9,84%

9,67%

9,46%

9,63%

72,15%

7,54%

28,88%

81,15%

89,40%
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All the subsequent data has been compared also with the CTG strategy, instead of the leading 

vehicle, to unveil the full spectrum of optimization benefits for each architectural configuration. 

In this context, the improvements are more pronounced, and, in general, all the trends elucidated 

earlier remain consistent.  

 

4.7.2 EPA based simulation Results 

 

DSOC Gain |max acc| Gain Time cycle Gap (23,25 km) Jerk max Gain DSOH Gain

CACC effects

WLTC driver

NMPC P.H. = 2 C.H. = 1

NMPC P.H. = 5 C.H. = 1

NMPC P.H. = 10 C.H. = 1

LMPC P.H. = 10 C.H. = 1

-0,11%

0,25%

0,25%

0,17%

0,24%

HVAC OFF

Benefits wrt CTG

37,5%

39,2%

38,8%

27,1%

30,0%

8,09%

10,76%

11,28%

11,87%

11,57%

-259% 27,5%

-232%

-155,4%

32,3%

62,0%

44,1%

43,3%

43,8%

33,2%

33,9%

34,9%

34,6%

34,5%

34,4%

34,5%

0,24%

0,25%

0,25%

11,50%

11,42%

11,50%

31,8%

31,3%

31,3%

LMPC P.H. = 10 C.H. = 2

LMPC P.H. = 10 C.H. = 2 + NOISE

LMPC P.H. = 10 C.H. = 2 + DELAY

Table 8: WLTC - Architecture Benefits compared to CTG controlled vehicle 

DSOC Gain |max acc| Gain Time cycle Gap (28,49 km) Jerk max Gain DSOH Gain

7,61%

7,60%

7,43%

7,44%

HVAC OFF

0,05%

0,08%

0,04%

0,04%

60,63%

18,24%

37,11%

54,84%

85,85%

86,67%

86,60%

86,54%

2,76%

2,76%

2,68%

2,76%

-67,55%

0,66%

1,32%

1,32%

1,32%

-9,27%

-14,57%

-11,26%

-7,51%

1,69%

2,22%

2,99%

0,06%

0,06%

0,05%

0,05%

-31,79%

5,08%

6,00%

7,65%

NMPC P.H. = 5 C.H. = 1

CACC effects

Benefits wrt EPA

LMPC P.H. = 10 C.H. = 2 + NOISE

NMPC P.H. = 10 C.H. = 1

LMPC P.H. = 10 C.H. = 1

LMPC P.H. = 10 C.H. = 2

CTG

NMPC P.H. = 2 C.H. = 1

LMPC P.H. = 10 C.H. = 2 + DELAY

Table 9: EPA- Architecture Benefits compared to Leading vehicle 
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All the architectural configurations tested on a WLTC have been replicated while travelling on 

the EPA cycle. The results continue to exhibit the same trends elucidated previously. In this 

scenario, the magnitudes are marginally reduced, as repeatedly clarified, owing to the less 

aggressive nature of the cycle. Consequently, the optimization strategy's effectiveness 

diminishes somewhat, as the reduction in peaks becomes smaller in percentage. Nevertheless, 

the improvements remain noteworthy. In this case as well, the results are compared with those 

of a CTG-controlled vehicle. Sensitivity analyses for disturbances have also been conducted in 

this context, comparing the definitive architecture (LMPC PH = 10, CH = 2) both with and 

without noise, and assessing the performance differences between LMPC and NMPC. 

 

 

 

 

 

DSOC Gain |max acc| Gain Time cycle Gap (28,49 km) Jerk max Gain DSOH Gain

66%

66,0%

0,02%

24%

28%

29%

30%

30%

30%

29,8%

29,77%

-154%

-108%

-60%

-15%

64%41%

35%

31,6%

33,60%

0,06%

0,00%

0,00%

0,00%

0,01%

-0,03%

0,02%

0,02%

6,99%

8,55%

9,05%

9,76%

9,55%

9,55%

9,48%

9,55%

40%

41%

41%

41%

EPA driver

NMPC P.H. = 2 C.H. = 1

NMPC P.H. = 5 C.H. = 1

HVAC OFF

Benefits wrt CTG

LMPC P.H. = 10 C.H. = 2 + NOISE

CACC effects

NMPC P.H. = 10 C.H. = 1

LMPC P.H. = 10 C.H. = 1

LMPC P.H. = 10 C.H. = 2

LMPC P.H. = 10 C.H. = 2 + DELAY

Table 10: EPA - Architecture Benefits compared to CTG controlled vehicle 

DSOC -2,78%

DSOH -2,2%

CACC effects

HVAC OFF
NOISE Analysis

CACC vs EPA

Table 11: EPA - Decrease in performance of LMPC PH = 10, CH = 2 adding Noise 



Fiorillo Carlo                                                                                                 Politecnico di Torino 

76 

 

 

In conclusion, the MPC (Model Predictive Control) strategy detailed throughout this discussion 

offers significant advantages in the realm of battery electric vehicles (BEVs). This approach 

has proven instrumental in considerably reducing both battery degradation and energy 

consumption. By doing so, it not only could aids automotive companies in successfully meeting 

homologation test requirements but also could steers BEVs toward a more sustainable choice 

for modern mobility. 

One of the most compelling aspects of the strategy presented in the preceding sections is its 

adaptability. It can be seamlessly integrated into the majority of existing vehicles, regardless of 

their powertrain architecture. This integration is accomplished with remarkable simplicity, as it 

operates solely at the software level. This accessibility allows for a flexible and scalable 

deployment, making it an attractive proposition for the broader automotive industry's pursuit of 

cleaner, more efficient transportation solutions. 

 

 

 

 

DSOC -7,69%

DSOH -0,5%

CACC effects

HVAC OFF
LMPC vs NMPC

CACC vs EPA

Table 12:  EPA - LMPC vs. NMPC performance reduction 
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5. HVAC Model 

As explained in the introduction of the thesis the CACC strategy was a part of a broader project 

developed. In fact, a second optimization strategy was created in parallel with the one explained 

in this thesis with the purpose of leveraging auxiliaries power demand according to traction 

power request without compromising the latter. In order to make this second optimization 

strategy effectively working and analyse its contribute, a vehicle cabin model and a control 

strategy used as reference has been also developed and will be explained in this section.  Before 

delving into the detail of the implemented model let’s analyse the motivation behind the choice 

of working on this strategy. 

5.1 Auxiliaries effect on battery life and energy consumption 

The Heating, Ventilation, and Air Conditioning (HVAC) system is a vital component in both 

conventional Internal Combustion Engine (ICE) vehicles and Battery Electric Vehicles (BEVs), 

accounting for a significant share of their energy consumption. However, it's crucial to 

recognize that the impact of HVAC systems differs substantially between these two vehicle 

types. This distinction underscores the critical need for dedicated HVAC optimization tailored 

to BEVs. 

In ICE vehicles, the HVAC system's energy requirements are relatively modest. This is 

primarily due to the availability of excess heat generated by the engine's inherent inefficiencies. 

In colder months, this surplus heat is efficiently harnessed to warm up the cabin, with minimal 

fuel consumption attributed mainly to fan operation. Consequently, the HVAC system's energy 

demand remains relatively low in ICE vehicles. 

On the contrary, BEVs operate on an entirely different principle. With the absence of an internal 

combustion engine, BEVs rely solely on electrical power for cabin temperature control. This 

reliance on electric power results from the remarkable efficiency of electric motors, which 

minimizes heat dissipation. To tackle the challenge of cabin heating in a BEV, more complex 

HVAC systems are employed, often integrating Positive Temperature Coefficient (PTC) 

heaters or heat pumps [30]. This complexity leads to higher power consumption, occasionally 

reaching up to some kW. Remarkably, this power demand can constitute a substantial portion 

of the total energy consumption in a BEV moreover, this consumption is highly dependent on 

external conditions, which in turn significantly impacts the BEV's driving range and battery 

longevity. As observed in the following figures, the power demand of auxiliary systems and the 
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overall battery current request exhibit a strong correlation with seasonal changes in ambient 

temperature. The figures, obtained from a study on a Nissan Leaf, a compact vehicle equipped 

with a 24 kWh battery capacity, 

depict the vehicle's performance 

during a driving cycle designed to 

meet Real Driving Emission (RDE) 

requirements [29]. Upon closer 

examination of these plots, it 

becomes evident that specific 

energy consumption is significantly 

influenced by temperature 

variations, manifesting differently 

across the various seasons. 

Furthermore, the same study 

provides an insightful chart 

illustrating the impact of 

temperature fluctuations on battery 

current. It also dissects this 

influence, isolating the contribution 

of auxiliary systems' energy 

consumption. This approach 

enables us to assess the proportion 

of energy consumption attributable 

solely to auxiliary systems and to 

gauge their sensitivity to 

temperature fluctuations. 

This heightened dependence on the HVAC system underscores that any inefficiencies or 

excessive power consumption directly affect the BEV's driving range. Furthermore, given the 

comparatively longer recharging times and limited charging infrastructure for BEVs, as 

discussed in introduction chapter, the consequences of excessive HVAC power consumption 

can be exacerbated, potentially leading to range anxiety among drivers. 

While tackling these challenges, it's worth noting that many HVAC optimizations for BEVs 

can be implemented through software-level adjustments. This approach offers a cost-effective 

means of enhancing performance without necessitating extensive hardware modifications. By 

Figure 60: Monthly change in specific energy consumption and 

ambient temperature [29]. 

Figure 61: Sensitivity analysis of battery current in the calculation 

of specific energy consumption and auxiliary specific energy 

consumption with varying ambient temperature [29]. 
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harnessing data on battery fading and implementing sophisticated software strategies, BEV 

manufacturers can bolster energy efficiency and extend battery life. 

In essence, optimizing the HVAC system in BEVs represents a multifaceted endeavour. It not 

only significantly influences energy consumption and driving range but also demands 

innovative solutions to navigate the unique complexities of electric vehicle architecture. This 

chapter introduces a foundational model. This model has been crafted to simulate the authentic 

evolution of cabin temperatures within a BEV. Employing a standard Proportional-Integral (PI) 

controller, it adeptly manages the cabin's temperature dynamics. Through this approach, we can 

emulate real-world scenarios, capturing the fluctuations in energy consumption and the 

variations in battery degradation highly dependent on external conditions and the desired cabin 

temperature. Subsequently, building upon this baseline model, another study was conducted to 

develop a strategy aimed at optimizing HVAC power consumption. While my direct 

involvement in this strategy creation was limited, it will be shortly described in future section. 

The final chapter of this thesis will concentrate on the integration of this strategy with the 

developed CACC strategy, examining their combined impact on energy consumption and 

battery life degradation.  

5.2 Cabin Model 

To assess the power demands of the HVAC system, has been developed a cabin model that 

accurately simulates the temperature changes within the vehicle. To ensure the model closely 

resembles real-world conditions, has been utilized Simscapes™ as working environment. The 

primary assumption made in this model is the omission of cabin moisture level monitoring. We 

made this choice to streamline the model, assuming that the air entering the cabin contain the 

required humidity level for comfort, considered in the HVAC model design.  

5.2.1 Interaction with external environment  

The general First Law of Thermodynamics for an open system, tailored to describe the energy 

balance in a particular context, such as a vehicle cabin with various heat sources, internal energy 

changes, and heat removal mechanisms will be shown in order to understand all the contributes 

playing a role in the examined thermodynamic system. In this case the considered relation is 

the following: 

     �̇�𝑠𝑢𝑛 + �̇�𝑐𝑜𝑛𝑣,𝑐𝑜𝑛𝑑 + �̇�𝑝𝑎𝑠𝑠𝑒𝑛𝑔 = (
𝜕𝐸𝑡

𝜕𝑡
)

𝐶.𝑉.
+ (�̇� 𝑟𝑒𝑐𝑖𝑟𝑐 + �̇� 𝑙𝑒𝑎𝑘) 𝑐𝑝𝑇𝑐𝑎𝑏𝑖𝑛 −  �̇� 𝐻𝑉𝐴𝐶  𝑐𝑝𝑇𝐻𝑉𝐴𝐶,𝑜𝑢𝑡       (XXXIII) 
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Upon examining the equation and the accompanying figure, several key components become 

evident. Let's delve into these contributions: 

The first three terms account for the net heat transfer rates into the system, originating from 

diverse sources. These sources encompass solar radiation (Q̇sun), convection and conduction 

(Q̇conv,cond), and passenger-generated heat (Q̇passeng). In the general first law of thermodynamics 

equation, these terms collectively represent ΔQ, the net heat transfer rate.  

The subsequent term (
𝜕𝐸𝑡

𝜕𝑡
)

𝐶.𝑉.
represents the rate of change of total energy content within the 

control volume (C.V.). In the general equation, this term represents ΔE, encapsulating changes 

in the total energy content within the open system. 

The last two terms encompass the heat that is either added to or removed from the system. This 

can be attributed to recirculated air, leaks, and the HVAC system. In the general equation, this 

pair of terms collectively signifies ΔH, indicative of the rate of change of enthalpy within the 

system. For context, ṁHVAC,ṁrecirc ,ṁleak denote the mass flow rates of air managed by the 

HVAC system, the recirculation system, and any leakages (as previously explained). 

Additionally, cp represents the specific heat capacity of air, THVAC,out is the temperature of air 

as it exits the HVAC system, and Tcabin denotes the temperature within the vehicle cabin. 

 

 

 

Figure 62: Cabin C.V. thermodynamic contributions 
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5.2.2 Solar radiation contribution 

The first contribute described in equation XXXIII is the solar radiation one (Q̇sun). This term 

reflects the heat transfer rate from the sun to the system. In an open system, energy can be 

exchanged with the environment through heat. We consider incoming solar radiation �̇�𝑠𝑢𝑛 as a 

constant value, typically set at 1000 
𝑊

𝑚2 for worst-

case scenarios during summer months at midday 

[31]. When solar radiation reaches the vehicle's 

surface, it is divided into different components that 

affect the cabin temperature. For instance, when it 

interacts with a glass surface, some of the radiation 

is reflected, and some is transmitted, while metal 

panels only experience reflection. Subsequently, a 

portion of this radiation is absorbed by the external 

surface layer and then conducted through all internal layers, ultimately reaching the innermost 

layer. At this point, temperature differences between the internal layer and the internal air, as 

well as between the external air and external layer, induce heat exchange through convection. 

The expressions describing these contributions are derived through the application of 

fundamental thermodynamic relations: 

                                     �̇�𝑟𝑎𝑑 𝑡𝑟𝑎𝑛𝑠𝑚 𝑔𝑙𝑎𝑠𝑠 = 𝜏 ∙ �̇�𝑠𝑢𝑛 ∙ ∑ 𝐶𝑖 ∙ 𝐴𝑖 ∙ sin (𝛼𝑖) 
𝑁𝑠𝑢𝑟𝑓

𝑖=1
               (XXXIV) 

                                            �̇�𝑟𝑎𝑑 𝑎𝑏𝑠 = 𝜌 ∙ �̇�𝑠𝑢𝑛 ∙ ∑ 𝐶𝑖 ∙ 𝐴𝑖 ∙ sin (𝛼𝑖) 
𝑁𝑠𝑢𝑟𝑓

𝑖=1
                       (XXXV) 

The first equation quantifies the contribution given by the sun directly transmitted into the cabin 

through vehicle glass surfaces. Here 𝜏 represents the transmissivity of the glass, as previously 

introduced. �̇�𝑠𝑢𝑛 is the incoming solar radiation, while the summation accounts for 

contributions from each glass surface, including a shading coefficient Ci and only the surface 

orthogonal to the incoming solar radiation taken into account multiplying the area times the sin 

of the incidence 𝛼𝑖.   

The second equation encompasses the portion of radiation absorbed by both the glass and metal 

surfaces, considering a different absorptivity factor 𝜌 for metal and glass surfaces. An average 

shading factor 𝐶̅ is utilized to account for the various surfaces, and consequently it is taken out 

from the summation. 

Figure 63: Incident Solar Radiation Contributions 
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As outlined in reference [31], the key surfaces contributing to the effects described earlier are 

as follows: 

- Roof 

- Floor  

- Glasses 

It's important to mention that doors are not considered in these equations. This omission is 

based on the assumption that doors, featuring almost vertical surfaces, have negligible 

contributions to radiation transfer. This is due to the sine of the incidence angle  sin (𝛼𝑖) 

approaching near-zero values for such surfaces. Subsequently, these prepared contributions 

feed into a dedicated block modelling the cabin's heat transfer process.  

Starting with the first contribution, as illustrated in the initial diagram, we can observe how the 

solar radiation absorbed by the roof is incorporated into the model. Within the Simscape™ 

environment, a primary block named 'Controlled Heat Flow Rate source' is employed for this 

purpose. This block functions as an ideal energy source, capable of maintaining a controlled 

heat flow rate independently of temperature variations. It is important to note that this block 

has no specific setup and exclusively receives the source input, which, in this case, represents 

solar radiation absorbed by the roof. 

The second block utilized in the simulation is the 'Convective Heat Transfer' block. This 

component models heat transfer through convection induced by fluid motion, which will be 

explained in the following paragraph. It's crucial to highlight that the input radiation is 

intentionally placed after the convective heat transfer block. Given that it represents absorbed 

radiation, it needs to act directly on the roof surface, as will be clarified in the subsequent 

section, where the mechanism of heat transfer within the roof layers via conduction is explained. 

Figure 64: Simscape™ - Solar radiation absorbed roof 
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Consequently, the image left side represents the external environment, while the right side 

symbolizes the transition into the cabin. 

Concerning the second contribution, solar radiation absorbed by the glass, the same approach 

is employed. The input is positioned after the convection block for the same reasons as 

described earlier.  

The final contribution stemming from solar radiation is the portion transmitted through the glass 

and directly entering the vehicle. In this case, the input block, as observed in the preceding 

diagram, is applied to the innermost section on the right, where it directly influences the thermal 

mass that simulates the thermal inertia of the vehicle cabin's air. It's worth noting that in the 

previous scenario, a thermal mass representing the external air was not included. This omission 

is based on the assumption that external air mass, being infinite, is capable of maintaining a 

constant temperature, regardless of the vehicle's conditions. Conversely, within the cabin, a 

finite amount of air is contained, and temperature variations are significant. As a result, a 

thermal mass is introduced, calculated as the product of the cabin volume (considered constant 

Figure 66: Simscape™ - Solar radiation transmitted glass 

Figure 65: Simscape™ - Solar radiation absorbed glass 
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due to fixed walls) and air density. Similar blocks are employed to incorporate this contribution 

as input, which, in turn, influences the cabin temperature, as depicted in the thermal model. 

5.2.3 Conduction – Convection thermal contribution 

The second contribution within equation XXXIII is the one related to conduction and 

convection. 

Concerning convection, the 'Convective Heat Transfer' block is introduced at the two extremes 

of the model, representing the heat exchange between the external air and the external 

metal/glass layer, as well as between the internal air and the more internal layer of the vehicle. 

In this case the surfaces involved also includes the contribution of lateral doors. To ensure a 

realistic cabin temperature evolution with the appropriate thermal inertia, also conductive heat 

transfer is considered. Moreover, a detailed internal layer stratigraphy is employed for the most 

influential surface, such as the roof, due to its large area and significant contribution from solar 

radiation, which significantly impacts the results. 

The diagram above depicts on the left the external air, and on the right, the internal air. As 

expected, the first blocks simulate convective heat transfer from both sides. This block receives, 

for example, on the left side, the external air temperature ('Outside'), roof surface, and minimum 

heat transfer coefficient, enabling the simulation of heat transfer by convection between the 

external air and the roof. The second external input to this block is the convective heat transfer 

coefficient ℎ𝑒𝑥𝑡 . Since the vehicle is in motion, the heat transfer coefficient due to convection 

varies with speed. This effect, is considered using the following relation from [33]:    

                                                   ℎ𝑒𝑥𝑡 = 1.163 ∙ (4 + 12√�̇�𝑣𝑒ℎ𝑖𝑐𝑙𝑒)                                 (XXXVI) 

This equation is formulated so that when the vehicle is stationary, the convection heat transfer 

coefficient is equal to 4.652 𝑊 (𝑚2𝐾)⁄ . 

Once the heat exchange through convection is evaluated, it 'flows' into the metal, where the 

stratigraphy detailed by [31] is implemented. Here, heat is transmitted by conduction between 

each layer. To further enhance the realism of heat transmission, a thermal mass is introduced 

Figure 67: Simscape™- Roof Conduction/Convection  
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between the two halves of each layer to accurately account for thermal inertia, as depicted in 

the following figure. 

The mass is calculated by multiplying the material density by the single layer's thickness and 

the roof surface (as each layer covers the entire area). This process is repeated for all the layers, 

considering the thickness and conductive heat transfer coefficient for each layer. It's essential 

to note that the insulant layer of still air is considered in the conduction transfer since, being 

motionless, it doesn't induce any convective effects. 

 For the glass, doors, and floor surfaces, a more simplified structure is employed, applying the 

same concept used for the roof. This involves considering a single material layer with an overall 

thickness and an average convective heat transfer coefficient, along with a thermal mass in 

between. The areas considered include the front/rear windshield and lateral windows for the 

glass. For the doors, it encompasses lateral doors, the trunk, and the front firewall. The floor is 

treated as a unified surface covering the entire underbody. 

Figure 68: Simscape™ - Conduction roof metal layer 

Figure 70: Simscape™ - Conduction/Convection glass 

Figure 69: Simscape™ - Conduction/Convection doors 
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 5.2.4 Passenger contribution 

The final heat source considered in the system is that generated by passengers inside the vehicle. 

Q̇passeng term accounts for the heat transfer rate associated with passengers inside the system. 

For instance, the metabolic heat generated by passengers can contribute to the energy balance 

of the system. To incorporate these factors, the following relation from [32] is applied: 

                                                  �̇�𝑝𝑎𝑠𝑠𝑒𝑛𝑔 = 𝑁𝑝𝑎𝑠 ∙ 𝐴𝑝𝑎𝑠 ∙ 𝑀𝑠                                          (XXXVII) 

Here Npas represents the number of passengers within the cabin, Apas symbolizes the average 

passenger areas set equal to 1.8 𝑚2 and Ms, represents the sensible specific heat set equal to 70 

𝑊
𝑚2⁄ . This contribution should be considered as originating from inside the cabin and directly 

connected to the innermost point in the model. 

 

For a comprehensive view of the entire structure encompassing all contributions, the following 

figure provides an overview of the previously described components. 

 

Figure 71: Simscape™ - Conduction/Convection Floor 

Figure 72: Simscape™ - Passenger heat contribution 
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5.2.5 Cabin Control Volume model 

Once all the external heat transfer contributions have been analysed, we delve into the mass 

flow rate equilibrium within the control volume represented in the right part of equation 

XXXIII. A dedicated set of blocks is employed with the assumption of a constant control 

volume (the vehicle cabin's volume). The following image illustrates all these contributions and 

how they have been considered. 

 

The purple square, labelled, Cabin control volume (C.V.), simulates a constant volume 

chamber containing gas. This block models mass and energy storage and evolves pressure and 

Cabin 

C.V. 

�̇�𝑯𝑽𝑨𝑪 

�̇�𝑹𝒆𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒕𝒆𝒅 

�̇�𝑳𝒆𝒂𝒌𝒂𝒈𝒆𝒔 

Figure 74: Simscape™ mass equilibrium blocks 

Figure 73: Simscape™ complete cabin heat transfer blocks 
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temperature according to the dynamics of the gas volume. Port H of the block represents the 

thermal conserving port related to the thermal mass contribution received from the previously 

illustrated blocks’ output. This input evolves in response to temperature differences between 

the environment and the cabin. The remaining ports represent chamber input ports where all the 

previous mass flow rate contributions are taken into account for equilibrium.  

The first term, �̇�𝑯𝑽𝑨𝑪, represents the air mass flow rate regulated by the HVAC system as it 

enters the cabin. This parameter is under the control of a dedicated controller, which acts in 

response to the relative difference between the desired internal cabin temperature and the actual 

temperature. As a result, this mass enters the cabin with a precise temperature, known as 

THVAC,out. The Simscape™ block, referred to as the 'Controlled Mass Flow Rate Source,' is the 

component responsible for providing a specific mass flow rate at a designated temperature and 

direction. This source can ensure a predetermined mass flow rate independently of pressure 

differentials. It's important to note that this block neglects flow resistance and involves no heat 

exchange with the environment. When the mass flow rate is positive, it signifies that gas flows 

from port A to port B. To specify the environment from which the gas originates, the following 

blocks have been incorporated. 

The controlled reservoir block defines an environment with infinite volume, which allows it to 

maintain consistent temperature and pressure characteristics, essentially behaving as a quasi-

static volume. The second component,  �̇�𝒓𝒆𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒕𝒆𝒅, refers to a predefined portion of air within 

the cabin that is recirculated and directed back to the HVAC system. Further details regarding 

this will be discussed in the following section, where the control architecture is explained. In 

this context, considering the cabin as the control volume, this mass is exiting the system. 

Consequently, in this scenario, the 'Controlled Mass Flow Rate Source' block is essentially 

reversed, indicating an outflow from the cabin. As this air must ultimately return to the HVAC 

Figure 75: �̇�𝑯𝑽𝑨𝑪 boundary conditions 

Controlled Reservoir 
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model's starting point, it is regarded as entering an external environment with ambient pressure 

and temperature. This environment is simulated accurately by using the ‘controlled reservoir 

block’ and modifying the boundary conditions for temperature and pressure.  

The last contribution is denoted as  �̇�𝒍𝒆𝒂𝒌𝒂𝒈𝒆𝒔. In real-world scenarios, the control volume is 

not hermetically sealed due to mechanical tolerances, resulting in additional airflow entering 

and exiting the cabin based on temperature differentials between the interconnected 

environments. To address this contribution, a 'local restriction block' is employed to simulate 

pressure loss due to a flow area restriction, similar to an orifice in a gas network. Importantly, 

this process involves no heat exchange with the environment. Given that this mass is exchanged 

with the external ambient in this case, the flow directed from point A to point B reaches an 

environment simulated in a manner consistent with that used for the recirculated mass. 

With all the contributions considered and evaluated, a cabin model capable of simulating a 

realistic temperature evolution is completed and ready for control. To assess the realism of 

temperature increase within the vehicle, a free temperature evolution simulation was conducted 

with the HVAC system turned off. This simulation considered the following initial conditions: 

- External temperature of 32°C 

- No passenger inside the vehicle 

- 1000 𝑊 𝑚2⁄  solar radiation acting vertically on the vehicle 

- Initial cabin temperature of 23 °C 

 

                   

          

  

  

  

  

  

  

  

  

  

  

 
 
 
 
 
  
  
  
  
  

 

                               

                      

                         

Figure 76: Free Cabin temperature evolution 
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Examining the chart, it becomes evident that the initial temperature increase exhibits a steeper 

slope. This is because the heat flow is directed into the cabin due to both solar radiation and the 

temperature difference (initially, Tcabin < Tenvironment). As the cabin temperature surpasses the 

external temperature, the slope of the curve decreases, although it continues to rise. This is 

because the incoming solar radiation contributes more heat than the cabin loses to the 

surroundings. In the end, the temperature evolution tends to stabilize, reaching reasonable 

temperatures for a vehicle stopped, exposed to direct sunlight in the worst-case scenario. 

5.3 HVAC system model and control 

In this paragraph, we will elaborate on how the HVAC architecture is modeled and controlled 

to achieve a more realistic representation, taking into account benchmark solutions found in the 

literature. The baseline architecture considered for HVAC in a BEV has been adopted from 

[30]. This architecture involves a cooling phase executed by an evaporator, which absorbs heat 

from incoming air to produce a cooling effect. Subsequently, a heating process is required. 

Given the absence of an Internal Combustion Engine (ICE), a heat pump system has been 

integrated. This system employs a condenser to release heat into the incoming airflow and 

control the temperature of the air entering the cabin. Based on this, the following scheme has 

been employed: 

In this context, one can observe the interplay of mass flow rate and temperature contributions. 

To begin, external air, maintained at a fixed ambient temperature, is subjected to a certain mass 

flow rate regulated by a fan. It is then mixed with a constant fraction of recirculated cabin air, 

considered at the current cabin temperature. These two streams, once combined, are introduced 

into the cooling system with a specific total mass flow rate, �̇�𝐻𝑉𝐴𝐶 , at a designated temperature, 

Figure 77: HVAC system architecture 
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THVAC, in. For the purposes of this system, we have ignored mass flow rate losses through the 

components, assuming a constant value throughout the system. 

The architecture is engineered so that the air exiting the cooling component achieves a 

predefined temperature, Tcool which depends on Tref, representing the desired cabin temperature. 

This temperature has been selected to ensure that the air entering the cabin maintains an 

acceptable relative humidity level for passenger comfort, falling within the range of 20% to 

60% [34]. This is derived from an analysis of the Mollier chart, revealing that to stay within 

this relative humidity range, cooling of up to 3°C is necessary for a reference temperature of 

18°C, and up to 17°C for a reference temperature of 27°C within the cabin. For the intermediate 

values within this range, a linear interpolation method has been applied. By doing so, we 

guarantee that the air exiting the cooler is maintained at the appropriate humidity level. 

Subsequently, this air undergoes reheating through the heat pump while retaining a constant 

absolute humidity. This process consistently maintains passenger comfort. Once the air enters 

the cabin, it undergoes temperature evolution, and the entire procedure is repeated to attain the 

desired cabin temperature. To establish this control system, we rely on the initial assumption of 

mass conservation: 

                                               �̇�𝐻𝑉𝐴𝐶 = �̇�𝑅𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑 + �̇�𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑠                            (XXXVIII) 

Utilizing this assumption, we formulate the first law of thermodynamics as follows: 

                                        �̇�𝑠𝑢𝑛 + �̇�𝑐𝑜𝑛𝑣,𝑐𝑜𝑛𝑑 + �̇�𝑝𝑎𝑠𝑠𝑒𝑛𝑔 − �̇�𝐻𝑉𝐴𝐶 = (
𝜕𝐸𝑡

𝜕𝑡
)

𝐶.𝑉.
                          (XXXIX) 

Where:  

                                             �̇�𝐻𝑉𝐴𝐶 =  �̇� 𝐻𝑉𝐴𝐶 𝑐𝑝(𝑇𝑐𝑎𝑏𝑖𝑛 − 𝑇
𝐻𝑉𝐴𝐶,𝑜𝑢𝑡

)                                      (XL) 

                                                       (
𝜕𝐸𝑡

𝜕𝑡
)

𝐶.𝑉.
=  𝑀𝑎𝑖𝑟 𝑐𝑝

𝜕𝑇𝑐𝑎𝑏𝑖𝑛

𝜕𝑡
                                                  (XLI) 

Basing on that it is possible to elaborate on how cabin temperature control and HVAC power 

demand are determined. The following steps outline the process required to derive the desired 

parameters: 

1. The first analysed information is the temperature error Tref – Tcabin. This error is pivotal 

in understanding and regulating the required HVAC power. It serves as an input for a 

Proportional-Integral (PI) controller, which produces the desired �̇�𝐻𝑉𝐴𝐶, directly related 

to the cabin temperature variable Tcabin. Consequently, the HVAC power demanded will 
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vary depending on the temperature difference between the desired and actual cabin 

temperatures. 

2. Knowing the desired reference temperature inside the cabin, a specific value for 𝑇𝐻𝑉𝐴𝐶,𝑜𝑢𝑡 

is imposed. This value is set to be 7°C lower than the reference temperature. This 

reduction is necessary in achieving a swift approach to the reference temperature and is 

particularly vital because, to maintain a constant cabin temperature while continuously 

exposed to solar radiation, a temperature lower than the desired cabin temperature is 

necessary. 

3. Having �̇�𝐻𝑉𝐴𝐶 , the actual Tcabin, THVAC,OUT and cp (air specific heat) at our disposal, we 

can reverse Equation XL to find the required, �̇� 𝐻𝑉𝐴𝐶  needed to satisfy the heat power 

demand of the cabin. 

4. With this variable in hand, we can further calculate the recirculated mass flow rate by 

simply multiplying it by the constant recirculation ratio. At this stage, having �̇� 𝐻𝑉𝐴𝐶 , 

THVAC,out and �̇� 𝑅𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑 , which are necessary for minimizing the temperature error, 

they are integrated into the cabin model, as previously explained, enabling the cabin 

temperature to evolve accordingly. 

At this juncture, the control process is concluded, and the temperature evolution is regulated to 

align with the desired cabin temperature. 

Figure 78: HVAC controlled architecture 
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To incorporate the HVAC system's impact on energy consumption and battery degradation 

within the battery model, an assessment of the power required for this operation is essential. 

The following set of operations is implemented to achieve this. 

1. By Knowing �̇� 𝐻𝑉𝐴𝐶 and �̇� 𝑅𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑, their subtraction yields �̇� 𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑠. 

2. In reference to the HVAC system architecture, the following relation can be established: 

�̇�𝐻𝑉𝐴𝐶 ∙ 𝑇𝐻𝑉𝐴𝐶,𝑖𝑛 = �̇�𝑅𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑 ∙ 𝑇𝑐𝑎𝑏𝑖𝑛 + �̇�𝑒𝑥𝑡 ∙ 𝑇𝑒𝑥𝑡. By reversing this relation, we can 

determine 𝑇𝐻𝑉𝐴𝐶,𝑖𝑛, the only unknown variable in the equation.  

3. To calculate the total power required by the HVAC system, the thermal power requested 

by the cooling and heating systems must be assessed:  

                                                      �̇�𝑐𝑜𝑜𝑙 =  �̇� 𝐻𝑉𝐴𝐶 𝑐𝑝(𝑇𝐻𝑉𝐴𝐶,𝑖𝑛 − 𝑇
𝑐𝑜𝑜𝑙

)                                   (XLII) 

                                                                     �̇�
ℎ𝑒𝑎𝑡

=  �̇� 𝐻𝑉𝐴𝐶 𝑐𝑝(𝑇𝑐𝑜𝑜𝑙 − 𝑇
𝐻𝑉𝐴𝐶,𝑜𝑢𝑡

)                                 (XLIII) 

 

Starting from these relations, they can be converted into electrical power requirements 

by considering the coefficient of performance (COP). Additionally, an efficiency term 

is incorporated to consider additional power required for compressors and heat 

exchangers power request:  

                                                      𝑃𝑐𝑜𝑜𝑙 =
�̇�𝑐𝑜𝑜𝑙

𝐶𝑂𝑃
 ∙

1

𝜂𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟∙𝜂ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ

                                  (XLIV) 

                                                      𝑃ℎ𝑒𝑎𝑡 =  
�̇�ℎ𝑒𝑎𝑡

𝐶𝑂𝑃−1
 ∙

1

𝜂𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟∙𝜂ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ

                                   (XLV) 

                                                         𝑃𝐻𝑉𝐴𝐶 =  𝑃𝑐𝑜𝑜𝑙 + 𝑃ℎ𝑒𝑎𝑡                                             (XLVI) 

Once all these computations are completed, and the cabin temperature is allowed to evolve 

while the power requirements are calculated, the process restarts, beginning again at the initial 

point. At the subsequent time step, the temperature error is reevaluated, and the following steps 

are executed. 

The results presented are derived from various simulations commencing with the cabin initially 

set at 40°C. These simulations illustrate how the HVAC controller manages the temperature 

and which are the related power consumption compared to the traction power request. 

The initial two plots demonstrate the exemplary management of temperature, starting from the 

initial cabin temperature and progressing towards the reference temperature. In this scenario, 

it's noteworthy that the HVAC power starts slightly lower. This is attributed to the cabin 
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temperature being higher than the external temperature, which enhances heat transfer to the 

surroundings, thus reducing the power demand on the HVAC. The power requirements stabilize 

once the reference temperature is achieved. The vehicle follows the WLTC during these 

simulations.  

It's important to emphasize that the power value is dependent on both the reference temperature 

and the initial vehicle temperature. Consequently, in the following chart, we can observe how 

altering the reference temperature impacts the results, leading to a variation in the required 

            

          

  

  

  

  

  

  

  

  

  

  

 
 
 
 
 
  
  
 
  
  
  

 

                           

                     

                          

                         

Figure 79: PI controlled cabin temperature evolution with constant reference temperature 

                                 

          

   

   

   

 

  

  

  

  

  

  

 
 
 
 
  
  
 
 

                

 
        

     

 
    

     

Figure 80: PI controlled HVAC power request compared to Traction Power with constant reference temperature 
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power. Additionally, this chart clearly illustrates the controller's capability to promptly track 

and converge to the updated reference temperature. As expected, the higher is the reference 

temperature the smaller will be the required power by the HVAC system. Moreover, it is worth 

noting that when the temperature must increase the controller does not provide any power 

allowing the temperature to evolve naturally and reacting as soon as the cabin temperature 

overcome the reference temperature. This behaviour accounts for the temperature overshoot 

observed in the final temperature plot. 

 

            

          

  

  

  

  

  

  

  

  

  

  

  

 
 
 
 
 
  
  
 
  
  
  

 

                           

                     

                          

                         

Figure 81: PI controlled cabin temperature evolution with variable reference temperature 

                                 

          

   

   

   

 

  

  

  

  

  

  

 
 
 
 
  
  
 
 

                

 
        

     

 
    

     

Figure 82: PI controlled HVAC power request compared to Traction Power with variable reference temperature 
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5.3 Lumped parameter model for cabin temperature evolution 

As previously discussed at the outset of this chapter, the HVAC model was created as a 

foundational framework for the implementation of an optimization strategy. This strategy is 

designed to control HVAC power with the goal of reducing battery degradation and energy 

consumption, without compromising traction power request. 

The results presented in the preceding section indicate that maintaining a cabin temperature of 

23°C when the outside temperature is 32°C leads to a 39% increase in energy consumption and 

a 17% higher battery degradation compared to a vehicle following the same WLTC cycle with 

the HVAC system turned off. To address this, the research group (not authored directly by me) 

has developed an optimization strategy. To ensure real-time applicability of this strategy, a 

simplified cabin model was created, avoiding computationally intensive Simscape™ blocks. 

Instead, the original Simscape™ model served as a reference to design a lumped parameter 

model capable of replicating the temperature dynamics within the desired operational range. 

Based on the first law of thermodynamics, the following equation (XLVII) has been derived. 

Building upon equation XXXIX, it expresses each contribution as follows: 

                              𝐶1 ∙ �̇�
𝑠𝑢𝑛

+ 𝐶2 ∙ (𝑇𝑒𝑥𝑡 − 𝑇𝑐𝑎𝑏𝑖𝑛) + �̇�𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 − �̇�𝐻𝑉𝐴𝐶 =  𝐶3 ⋅
𝜕𝑇𝑐𝑎𝑏𝑖𝑛

𝜕𝑡
           (XLVII) 

Each parameter introduced in this equation is grounded in physical principles, ensuring that the 

implemented model is based on realistic assumptions. C₁ denotes an effective surface area of 

heat exchange with the external environment [m²], C₂ physically represents an average heat 

transfer coefficient [𝑊 𝐾⁄ ], and C₃ corresponds to the thermal capacity of an air volume [𝐽 𝐾⁄ ]. 

By utilizing this equation, it can be readily implemented in Simulink through simple elementary 

blocks, and integrating the last term on the right allows for the calculation of cabin temperature 

evolution given the other contributions as input. 

This approach allows for the simplification of the complex Simscape™ model, making use of 

these coefficients, which have been fine-tuned to replicate the temperature dynamics within the 

cabin accurately. 

The inclusion of a free cabin temperature evolution serves to illustrate both the limitations of 

this lumped parameter model and why it was deemed suitable for the specific objectives of our 

study.   
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In each of these simulations, the initial conditions are consistent, with an initial cabin 

temperature Tcabin = 23°C, no passengers within the vehicle, a stationary vehicle, and a constant 

solar radiation input �̇�𝑠𝑢𝑛 = 1000 𝑊 𝑚2⁄ . Initially, the two curves are nearly identical, but as 

the simulation progresses, they begin to diverge significantly. This divergence arises from a 

key limitation of the lumped parameter model, which does not accurately account for the 

thermal inertia of materials, as effectively managed by the Simscape™ model. 

Accordingly. the gap between the two curves widens as the lumped parameter model, 

represented by the blue curve, responds more rapidly to changes. Moreover, due to this 

limitation, the materials in the lumped parameter model reach equilibrium with the external 

environment quickly, ultimately stabilizing at a lower temperature. 

Despite this limitation, for the specific application's requirements, the model remains valid. 

When the HVAC system is active, the cabin temperature consistently remains within the desired 

range of 18°C to 27°C. Additionally, the model allows for slight temperature variations (1-2°C) 

during HVAC operation. Consequently, the model remains predominantly within the region 

where the two curves closely overlap. This characteristic makes the simplified model suitable 

for the intended purpose, as it significantly reduces computational costs, thereby enabling the 

real-time implementation of the developed optimization strategy. 

 

 

Figure 83: Simscape™ model vs. Lumped parameter model free temperature evolution 
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6. Integration of Eco-Driving and Thermal Management 

Strategies for Improved Vehicle Efficiency  

In this concluding chapter of the thesis, we explore the culmination of research endeavours 

cantered around optimizing vehicle performance, reducing energy consumption, and 

minimizing battery degradation. The research journey has encompassed the development of 

two primary strategies that have been advanced in parallel. Firstly, an Eco-Driving strategy has 

been designed to optimize vehicle speed profiles by tracking and predicting the behaviour of a 

leading vehicle (CACC). This Eco-Driving strategy effectively harnesses Model Predictive 

Control (MPC) techniques to achieve its goals. The second pivotal strategy that has evolved in 

parallel, although not under the author's direct development, is the Integrated Energy and 

Thermal Management (IETM) strategy. This integrated strategy is a part of a more 

comprehensive global project, aimed at optimizing HVAC power commands. Its key objective 

is to regulate HVAC operations during peak traction power demand scenarios, thereby 

minimizing battery degradation and, indirectly, reducing energy consumption. This 

optimization strategy differs from the Eco-Driving structure based on MPC in that it is a 

punctual optimization strategy, designed to optimize instant by instant a dedicated cost 

function. It operates without the need for future predictions and ensures that traction power is 

never compromised. For more detailed information regarding its results and implementation, it 

is suggested to consult [35]. As the Connected Adaptive Cruise Control (CACC) strategy 

remains largely uninfluenced by accessory loads, such as the HVAC system, the combined 

benefits of integrating these two strategies are expected to be more pronounced than the 

individual advantages of each strategy operating in isolation. The subsequent sections elucidate 

the foundational framework for our analysis and delineate the series of tests conducted to 

comprehensively evaluate the synergistic enhancements resulting from this integration. 

6.1 CACC and IETM combined Results 

To ensure reliable and consistent results, a common baseline is essential to assess the effective 

benefits of each strategy. In this context, various simulations have been conducted with the 

HVAC system activated. For the baseline scenario, the air conditioning system is controlled by 

a Proportional-Integral (PI) controller designed to maintain the cabin temperature at a constant 

reference temperature. The driver follows the cycle precisely, and this configuration serves as 

the reference for comparison. 
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In these experiments, different reference temperatures, ranging from 18 °C to 27 °C, have been 

examined to gauge the impact on HVAC power demand. The tests were performed with an 

external temperature of 32 °C and solar radiation �̇�𝑠𝑢𝑛 = 1000W ⁄ m^2. Furthermore, the tests 

encompass both WLTC and the EPA cycle to assess how the cycle's aggressiveness affects the 

results. All the presented outcomes are projected over a distance of 160,000 km, involving 

multiple iterations of the driving cycle, enabling an effective quantification of battery 

degradation and its impact. 

In contrast, State of Charge (SOC) results have been evaluated based on a single driving cycle 

to gauge the immediate effects of the strategies. 

6.2.1 CACC results 

In this section, will be presented the results of the Eco-driving strategy, taking into account the 

presence of the HVAC system. It is important to note that the improvements achieved will differ 

from those presented in the previous chapter due to the HVAC system being active. 

1. SOC Benefits: 

As mentioned earlier, the values are slightly reduced in this case. This phenomenon can be 

attributed to the fact that the CACC strategy, which doesn't directly affect the HVAC system, 

offers a relatively constant improvement in ΔSOC regardless of the air conditioning settings. 

However, since the HVAC system contributes to a higher overall energy consumption, the 

percentage of improvement with the CACC strategy is somewhat smaller. For instance, when 
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Figure 84: CACC - SOC benefits 
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the HVAC system works harder to maintain an internal cabin temperature of 18°C, the benefits 

of implementing the CACC strategy are less pronounced. Conversely, with higher reference 

temperatures, the benefits tend to be more substantial. Similar considerations apply to the EPA 

cycle, where the influence of the CACC strategy is even more modest due to the less aggressive 

nature of the cycle. It's worth noting that the Eco-driving strategy is entirely independent of 

auxiliary systems since it solely focuses on minimizing traction power. These plots are included 

to provide a common baseline for comparing the benefits of both strategies. 

2. SOH Benefits 

Examining the histogram, we observe a consistent effect as described previously. The trends 

align with the earlier discussions, showing greater improvements in the WLTC-based cycle and 

a more significant benefit when the HVAC consumption is lower at higher reference 

temperatures. It is essential to note that even in the worst-case scenario with the most realistic 

and aggressive cycle, the improvement remains around 5%. This result is not negligible, 

especially considering that over a distance of 160,000 km, it translates to approximately 8,000 

km in extended battery life.  
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6.2.2 Combined results 

In this section the combine benefits of both strategy working together are presented. We can 

gain insight into the improvements achieved when these strategies collaborate. It's worth noting 

that these two strategies are not entirely independent. While the Eco-Driving approach remains 

unaffected by auxiliary systems, the IETM strategy is influenced by CACC. The IETM strategy 

aims to reduce HVAC power during peak traction power demand to mitigate battery 

degradation. Thus, having a different traction profile induced by the Eco-Driving strategy does 

impact the IETM results. Therefore, the combined results aren't a simple summation of the two 

contributions; they exhibit slight variations due to this interplay. 

 

1.  SOC Benefits 

Upon observing the combined results, we can discern that the percentage of improvement is 

higher for each cycle and reference temperature. However, an interesting trend emerges: the 

percentage of improvement decreases as the reference temperature increases, primarily 

influenced by the IETM strategy's effects (detailed in [35]). The IETM strategy is particularly 

effective at lower reference temperatures, where higher energy is used by the HVAC, resulting 

in larger improvements. When the temperature is higher, the improvement offered by the IETM 

strategy decreases, leading to a downward trend in the overall improvement. 

Additionally, when considering the results related to the EPA cycle, it's noticeable that the 

improvements are quite close to those observed in the WLTC. This is largely attributed to the 
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IETM strategy, which exhibits higher benefits on the EPA cycle compared to the WLTC, 

particularly at lower temperatures. With a more aggressive cycle, the strategy temporarily 

sacrifices cabin comfort by releasing the HVAC power constraint to cope with the peak current 

demand for traction. However, if the cabin temperature deviates significantly from the 

reference, the system acts to re-converge it to the desired temperature. This effect results in 

increased energy consumption, especially at lower reference temperatures, where, in the 

absence of the HVAC, the temperature would quickly rise, necessitating more substantial power 

requests to return to the reference temperature. Consequently, this justifies the observed results: 

the CACC strategy contributes more significant improvements in the WLTC, while the IETM 

strategy shines on the EPA cycle. From an energy perspective, this leads to overall benefits that 

are comparable for both cycles. 

2. SOH Benefits 

Concerning battery SOH, the trend aligns with what was found for the CACC single strategy. 

In this context, the HVAC system provides higher benefits when the reference temperature is 

lower since it reduces auxiliary power requests (most significant at an 18°C reference 

temperature) during high current draws for traction. As a result, higher benefits are achieved at 

lower temperatures. Given that the battery degradation benefits are more pronounced for the 

CACC strategy, this trend carries through in this aspect as well. 
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7. Future work 

The implemented architecture provides a solid baseline for the development of more 

sophisticated strategies. Several interesting avenues for future work emerge from this 

foundational research. 

First and foremost, enhancing the strategy's awareness of the vehicle's surroundings presents a 

promising direction. This could involve integrating more complex information obtained from 

communication between vehicles. For instance, leveraging data from the vehicle's navigation 

system could provide critical insights into road conditions, such as slope, traffic congestion, 

and road geometry. These additional details could enable more precise optimization. 

Furthermore, such data could empower the system to receive comprehensive information about 

the leading vehicle, allowing it to predict future behaviour more accurately. This would be 

particularly valuable as it would eliminate the assumption of constant speed in the preceding 

vehicle, a notable limitation in the current strategy. 

Expanding the control architecture to accommodate non constant control variables is another 

avenue of exploration. While this possibility has been explored in the project, the computational 

demands were prohibitively high for real-time implementation. The requirement for N2 

iterations, where N represents the number of acceleration options considered for a single 

constant control action, posed challenges. One potential solution to this issue could be to 

explore the application of reinforcement learning techniques. By leveraging reinforcement 

learning, it could be possible to identify optimal control actions leading to minimum costs in 

subsequent steps, starting from a specific state. 

As last point, to validate the real-time feasibility of the implemented strategy, hardware-in-the-

loop (HIL) testing should be considered as a future step. HIL testing would involve real-time 

hardware testing to verify the strategy's performance under real-world conditions. While this 

was not conducted during the thesis due to time limitations, it stands as a valuable opportunity 

for further verification and validation of the model. 
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8. Conclusion 

In conclusion, this research has been dedicated to the development and implementation of a 

novel optimization strategy based on Model Predictive Control (MPC) for battery electric 

vehicles (BEVs). It's important to note that the secondary strategy, Integrated Energy and 

Thermal Management (IETM), which focuses on optimizing HVAC power commands to 

regulate cabin thermal conditions, was not the primary focus of this thesis and was not 

developed by the author. 

Crucially, the combination of these two strategies offers the potential for greater benefits than 

either strategy in isolation. By merging the precision of the Eco-Driving approach with the 

HVAC optimization capabilities of the IETM strategy, a comprehensive solution emerges. This 

dual approach has the potential to significantly extend the range of BEVs, mitigate range 

anxiety, and substantially enhance battery longevity. This, in turn, contributes to the long-term 

sustainability and economic viability of these eco-friendly vehicles. 

Additionally, this research underscores the importance of practicality in these strategies. By 

developing simplified models that retain the essential characteristics of the complex 

Simscape™ model, computational costs are dramatically reduced, making the strategies 

suitable for real-time implementation. The robustness of the model, capable of withstanding 

noise and delay, and achieving reasonable results for various driving cycles, is a testament to 

its practicality and real-world adaptability. Importantly, no hardware updates or modifications 

are necessary for implementing these strategies, as only software updates are required. This 

practicality is vital for the widespread adoption and application of these strategies in real-world 

scenarios.  

In summary, this work contributes to the ever-evolving field of sustainable transportation. As 

electric vehicles continue to gain prominence in the automotive landscape, strategies like these 

could be fundamental. They have the potential to advance the adoption of BEVs by alleviating 

range anxiety, reducing energy consumption, and promoting the longevity of costly battery 

systems. This research lays the foundation for a more sustainable and environmentally 

conscious future of mobility, where BEVs are not just a viable choice but a compelling one, 

offering a cleaner and more sustainable mode of transportation for the generations to come. 
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