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Abstract

The Equivalent Consumption Minimization Strategy (ECMS) and Dynamic
Programming (DP) are two different Energy Management Strategies for Hybrid
Electric Vehicles (HEVs) powertrain control. Dynamic Programming is a backward
approach that starts from the driving cycle itself, optimizing stage costs from the
last system state to the first system state. Therefore, the solution of Dynamic
Programming is generally used as a reference for establishing control rules, as the
control trajectory derived from Dynamic Programming is not practically applicable
but represents the optimal solution in theory. In this work, we use the Dynamic
Programming algorithm to obtain the theoretical optimal control logic of hybrid
IVECO DAILY, as a reference for the ECMS algorithm.

The application of the ECMS needs forward vehicle modeling and specifically
a driver model to compare the actual vehicle speed and the speed profile in the
driving cycle. Then ECMS generates commands to the vehicle system to fulfill
the speed request and selects the optimal control logic with the lowest Equivalent
Fuel Consumption at each time instant, which is associated to the Equivalence
Factor that directly determines the utilization of the electric motor. The optimal
Equivalence Factor varies with different conditions and, thereby, needs to be
controlled. This thesis analyzes the fuel consumption and battery state of charge
(SOC) fluctuation caused by 3 Equivalence Factor controllers (Relay-based switching
logic, Adaptive-ECMS, and PID) over the WLTC and RDE driving cycles from
a software perspective. In addition, the optimal control rule obtained from the
Dynamic Programming algorithm is used as a comparative reference.

Apart from the Energy Management Strategies mentioned above, the perfor-
mances of different HEV architectures (parallel and series-parallel) and various
battery sizes are compared from a hardware point of view in this work.

Keywords: HEV architectures, Energy Management Strategies, Dynamic Programming,
ECMS, Equivalence Factor, Battery, MATLAB, Simulink
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Chapter 1

Introduction

1.1 Background

As the automotive industry increasingly shifts towards environmentally friendly
solutions, Hybrid Electric Vehicles (HEVs) have become a promising choice for
reducing fuel consumption and emissions. The increasing market size of electric
vehicles[1] is a strong reflection of electrification, as shown in Figure 1.1.

Compared to traditional vehicles, in addition to Internal Combustion Engines
(ICE), HEVs have one or more electric motors[2], offering enhanced flexibility in
energy provision. However, effectively allocating energy output from these sources
is challenging. Due to the different efficiencies of ICE and electric motors at
various torque and speeds, maintaining high efficiencies for both components under
changing driving conditions becomes very intricate. Moreover, the limited battery
capacity poses a challenge, as extremely low or high battery state of charge (SOC)
can harm battery life. Thus, achieving optimal efficiency while managing SOC
requires sophisticated powertrain control.

Furthermore, different HEV architectures and hardware specifications provide
varied performance and costs. For instance, the P1 architecture, or parallel ar-
chitecture, offers a simple yet efficient powertrain control structure. However,
its flexibility is constrained due to the direct connection between the ICE and
electric motors, resulting in less efficient ICE operations during acceleration since
the ICE cannot be turned off. Conversely, the P2 architecture, with engaged
clutches, provides a more flexible solution, mitigating some inefficiencies in the ICE
but at the expense of increased complexity, raising costs and potentially affecting
reliability. The absence of a standardized framework for selecting appropriate
configurations for different HEVs persists because achieving a balanced compromise
between performance and cost remains challenging in an objective manner.

1



Introduction

Figure 1.1: Global EV market projection between 2021 and 2026

1.2 Motivation
Although HEVs have been on the market for many years, the applicable optimal
energy management strategy that can fully utilize the potential advantages of
hybrid systems has not yet been invented.

The actual improvement of fuel economy in HEVs ranges from 10 percent for
mild hybrid vehicles to over 30 percent for full hybrid vehicles[3]. This potential
can only be achieved through complex control systems that optimize the internal
energy flow of vehicles. It has been realized that using optimization strategies
based on system models and effective objective functions to improve the effect of
energy management is a way to achieve near-optimal results.

Therefore, this thesis will explore and compare two energy management strategies,
the Equivalent Consumption Minimization Strategy (ECMS) and the Dynamic
Programming (DP) algorithm, which have been widely applied in the analysis of
HEV energy management, with a special focus on the Equivalence Factor controllers.

In addition, the choices of HEV architecture and battery size encounter many
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Introduction

dilemmas among performance, cost, and complexity, which need to be compromised
considering different situations that are not merely from a technical point of
view. This thesis will compare the performance of different HEV hardware in a
quantitative approach.

1.3 Overview of the Project

Figure 1.2: PITEF Project

The PITEF – AutoECO project is a government-funded research project sup-
ported by the Piedmont Region, where the PITEF is the abbreviation of Piattaforma
Tecnologica di Filiera[4], translated as Supply Chain Technology Platform. The
project aims to promote and validate an integrated system consisting of hybrid
drive modules and control units on a demonstrator vehicle, which can evaluate
potential benefits and utilize information provided by ADAS sensors in optimizing
energy management control and improving energy efficiency. There are many
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partners involved in this project, as shown in Figure 1.2. The road map consists of
three steps:

• Step 1: Assess the benefits of fuel economy resulting from the integration of a
P1 Hybrid Architecture.

• Step 2: Assess the further reduction potential brought about by the imple-
mentation of ADAS sensors.

• Step 3: Design, Integration, and Validation of Control Logic to optimize fuel
consumption by utilizing the hybrid architecture and leveraging information
from ADAS.

This thesis work is a part of the PITEF – AutoECO project, which investigates
the performance of two HEV energy management algorithms, namely the ECMS
and DP, in improving the fuel economy of IVECO DAILY (Figure 1.3), a P1
Hybrid light-duty vehicle. The simulation was conducted within the Worldwide
Harmonized Light-Vehicle Test Cycle (WLTC) and Real Driving Emission (RDE)
driving cycle by using MATLAB. This research builds a comparative analysis of
these two algorithms in various driving scenarios, evaluating their impact on key
parameters such as fuel consumption, battery state of charge (SOC), power flows,
energy contribution, loss, etc. Moreover, the effects of different Equivalence Factor
controllers (Relay-based switching logic, Adaptive-ECMS, and PID) in ECMS are
also critical indicators for the feasibility of the implementation of ECMS in reality,
because the optimal Equivalence Factor varies across different driving scenarios.

In addition to the energy management algorithms, the various architectures
of HEV and different battery sizes are critical parts of optimization due to their
different performance and cost, which will be discussed in detail in the following
chapters.

1.4 Thesis Outline
This thesis is structured as follows:

• Chapter 2 presents the theoretical background of HEVs. Firstly, the definition
of HEVs is summarized and the primary types and the architectures of HEVs are
categorized. Then, the concept and the architecture of the Energy Management
System (EMS) are outlined graphically. Afterward, the 2 Energy Management
algorithms, ECMS and DP, which are the candidates for comparison, are
introduced in detail.

• Chapter 3 focuses on the vehicle modeling process and model validation,
employing both forward and backward approaches. The forward approach

4
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Figure 1.3: IVECO DAILY

initiates with driver input, implementing the ECMS algorithm to control
the power split between the ICE and the electric motor. Conversely, the
backward approach originates from the driving cycle, using DP to work out
the theoretically optimal results.

• Chapter 4 presents the results from the simulations covering three different
Equivalence Factor controllers with the P1 48V architecture in different driving
cycles, taking the results from DP as the reference. Furthermore, the results
of different HEV architectures and battery sizes are computed by means of
the DP algorithm.

• Chapter 5 is the final chapter, summarizing the results from the simulations
carried out with various software and hardware configurations and indicating
the possible future works that might be done afterward.

5



Chapter 2

Theoretical Background

Before discussing the simulation results, we will first introduce the definition and
possible classification of Hybrid Electric Vehicles (HEVs) and provide the definition
and classification of Energy Management Strategies (EMS). Then, the concepts of
Equivalent Consumption Minimization Strategies (ECMS), Dynamic Programming
(DP), and Adaptive ECMS (A-ECMS) are also summarized in this chapter. What
is worth mentioning is that Adaptive ECMS involves the real-time adjustment of
Equivalence Factors based on changing driving scenarios, ensuring a more responsive
and adaptive energy management approach in HEVs. The construction and tuning
processes of the A-ECMS controller will also be shown in this chapter.

2.1 HEV definition
Conventional vehicles are driven by an internal combustion engine through a
transmission, which provides different transmission ratios, resulting in different
wheel speeds. Hybrid vehicles combine two or more power sources to deliver power
directly or indirectly. The primary energy source is usually the chemical energy
in the fuel of internal combustion engines. “Hybrid” can refer to Hybrid Electric
Vehicles (HEVs), mechanical hybrids, or fuel cell hybrids, depending on the category
of secondary energy source.

In our research, the focus is on a Hybrid Electric Vehicle that incorporates an
electric motor into the powertrain system, testing the fuel economy improvement
due to the electrification.

2.1.1 HEV classification
The HEVs can be classified according to different involvements of the electric
motor(s)[5], from Micro Hybrid to Plug-in Hybrid. A possible classification is as
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Theoretical Background

follows:

• Micro Hybrid (start/stop): The start-stop systems allow the ICE to shut
down and restart when the vehicle starts and stops frequently, especially in
urban conditions, which reduces the engine idling time and therefore lowers
fuel consumption and emission.

• Mild Hybrids (start/stop and kinetic energy recovery): The ICE in Mild HEV
is coupled with an electric motor, usually in parallel. The electric motor can
serve as a generator when the vehicle is braking, also known as regenerative
braking. When the vehicle is coasting, braking, or stopping, the ICE is turned
off. However, there is no purely electric mode in Mild HEVs.

• Full Hybrids (mild hybrid + electric launch + engine assist): The HEV having
purely electric mode, pure ICE mode, and power-split mode between ICE and
electric motor simultaneously can be categorized as Full HEV, which needs
high-capacity battery pack for essential electric power to run the vehicle solely
using the electric motor. In this case, the appropriate EMS is required to fully
explore the potential of hybridized parts of vehicles, which will be discussed
in the following.

• Plug-in Hybrids (full hybrid + electric range): The functionalities of Plug-
in HEV (or PHEV) comprehensively cover those in Full HEV, but with
rechargeable batteries that can be connected to external power and with a
plug to connect to the electrical grid. Appropriate EMS is still needed, as Full
HEV does.

In our baseline HEV configuration, the hybrid version of IVECO DAILY, the
P1 48V architecture is a mild hybrid because it does not have a pure electric
mode, as ICE has the same speed as the motor and cannot be shut down during
vehicle acceleration, the ICE cannot charge the battery like the serial architecture
either. On the contrary, another candidate for comparison, the P2 architecture
200V motor is a full hybrid, as the purely electric mode and the battery charging
by the ICE can be realized by using planetary gear sets and clutches. However,
the P2 architecture 200V motor is more complex than the P1 48V architecture.
The detailed HEV operating mode and architecture and the comparison of P1 and
P2 architecture will be discussed in the following.

2.1.2 HEV operating modes
Due to the assembly of electric motor(s), the vehicle might be possibly driven
by ICE or electric motor(s), or both at the same time. There are three general
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operating modes for HEVs, depending on the driving scenarios and the control
logic of the energy management system:

• Purely Electric Mode: In this mode, the vehicle is propelled solely by the
electric motor(s), with no contribution from the ICE. It relies entirely on the
electrical energy for propulsion.

• Pure ICE Mode: Conversely, the Pure ICE mode indicates that the vehicle
is exclusively powered by the ICE. In this mode, the electric motor remains
inactive, and the vehicle’s propulsion is driven solely by the ICE.

• Power-split Mode: The Power-split mode represents a hybrid state where the
vehicle’s power delivery is a combination of electric motors and ICE. These
two power sources work together to drive the vehicle, and their contributions
are synchronized to optimize performance and efficiency.

2.1.3 HEV architectures
The architectures of HEV can be classified according to the means of connection
among ICE, electric motor(s), and drivetrain. A possible classification of HEV
architectures is the following[6]:

• Serial: In the serial architecture, the ICE drives the generator, and the
electrical energy generated by the generator can be added to the electrical
energy of the Rechargeable Energy Storage System, and then transmitted to
the electric motor to drive the wheels.

• Parallel (P1: Figure 3.1): The sum of power in the parallel architecture is
only mechanical, where the ICE and electric motor(s) are connected through
a gear set, chain, or belt to add up their torque and transmit it to the wheels.

• Power-split: The ICE and electric motor(s) are connected to a power-split
device (usually a planetary gear set), and the power from the ICE and the
electric motor(s) can be merged through both a mechanical and an electrical
path, thus combining series and parallel operation.

• Series/Parallel (P2: Figure 3.8): In the Series/Parallel architecture, the
engagement/disengagement of one or more clutches allows the powertrain
configuration to be changed from series to parallel, and vice versa, thereby
allowing the use of the most suitable configuration for the current operation.

Different HEV architectures have various flexibility, and high flexibility improves
fuel economy. However, its complex structure can also have reliability issues

8



Theoretical Background

and high costs. Therefore, how to choose an appropriate HEV architecture is
always an important issue, which depends on the market positioning of automotive
products and the automotive culture of various regions, rather than just technical
considerations.

2.2 Energy Management Strategies of HEVs

2.2.1 EMS definition
The control of HEVs[7] is composed of two tasks, as shown in Figure 2.1: One is
the low-level control task, where the powertrain is controlled by classical feedback
control methods. The second task is the high-level control (or supervisory control),
which optimizes the power split between the primary and secondary sources of
energy. This optimization is based on the power required by the vehicle, which
meets the speed profile of the driving cycle while maintaining the battery state of
charge (SOC) within a certain window to extend battery life.

The Energy Management Strategies (EMS) is used to complete the second
task, the high-level control, receiving and processing information from the vehicle
and driver, sending the optimal set point to the actuator and executing it by the
low-level control layer, responsible for selecting the optimal modes of operation for
the hybrid powertrain, which include start-stop, power-split, and electric launch.

2.2.2 EMS classification
The existing literature describes various categories of EMS, which can be gener-
ally categorized into two main groups: rule-based and model-based optimization
methods[8][9][10], their detailed definitions are as follows:

Rule-based approaches

These approaches are recognized for their real-time effectiveness. They do not
require explicit minimization or optimization but instead rely on a predefined
set of rules to determine control variables at each time instant. These rules are
usually developed based on heuristics, intuition[11], or knowledge gained from
optimal global solutions obtained through mathematical models and optimization
algorithms[12][13][14].

For example, the threshold of changing the purely electric mode to the pure
ICE mode can be a certain engine speed or power requested by the driver, which is
defined according to the experience or experimental results that can improve the
fuel economy. Similarly, whether to use the power split mode or not can depend

9
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Figure 2.1: HEVs control tasks, where ECU is the Engine Control Unit, TCU
is the Transmission Control Unit, BMS is the Battery Management System, and
MCU is the Motor Control Unit

on the current battery state of charge (SOC) because we want to keep the SOC to
the target value.

Model-based optimization

In the model-based strategies, the optimal actuator set-points are established by
minimizing a cost function over a predefined and well-defined driving cycle. This
approach leads to globally or locally optimal solutions. While model-based optimiza-
tion control methods are often not directly suitable for real-time implementation
due to their predictive nature and complexity of computation. These methods can
be utilized to derive practical rules for online implementation or serve as reference
benchmarks to assess the effectiveness of alternative control strategies.

Model-based optimization methods can be categorized into two main approaches,
numerical and analytical:

• Numerical optimization methods (global optimum): In numerical optimization
methods, such as Dynamic Programming (DP)[14] and Genetic Algorithms[15],
the entire driving cycle is analyzed, and the global optimum is determined
through numerical computations. These methods consider the complete driv-
ing cycle, accounting for all relevant parameters and constraints, and aim to

10
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identify the optimal solution that minimizes or maximizes the objective func-
tion. Numerical optimization methods are particularly suitable for problems
where analytical solutions are not feasible or efficient.

• Analytical optimization methods (local optimum): In contrast, analytical op-
timization methods use analytical equations to obtain solutions. In analytical
methods, Pontryagin’s minimum principle[16] has special significance. The
Equivalent Consumption Minimization Strategy (ECMS)[17] also belongs to
this category, as it involves minimizing the instantaneous cost function for
each time instant within the driving cycle. However, local optimization does
not definitely result in global optimization, thus, local optimization is regarded
as a sub-optimal solution.

2.3 Dynamic Programming (DP)
2.3.1 Dynamic Programming definition
Dynamic Programming (DP) was originally proposed by Richard Bellmann[18] in
1950 and has been widely applied in various fields. In the context of Hybrid Electric
Vehicles (HEVs), DP plays a crucial role as an ideal optimal reference, especially
in solving multi-stage decision-making problems with limited and deterministic
constraints, such as gear number and battery state of charge (SOC) in a hybrid
powertrain. Because HEVs integrate traditional ICE and electric motors, they
require complex control strategies to optimize energy utilization, improve fuel
efficiency, and reduce emissions.

In multi-stage decision-making problems, decisions are made across stages with
the aim of minimizing the costs incurred. At each stage, the progress of the system
is completely predictable, and given the state variables and control variables, the
system’s state in the next stage can be predicted without any uncertainty.

Given the initial state of the system x0, the optimization problem lies in selecting
the appropriate control variables over N stages (u0, u1, ..., uN−1) that minimize the
total cost.

J(x0, u0, u1, ..., uN−1) = F (xN) +
N−1Ø
k=0

LK(xk, uk) (2.1)

where xk is the system state k, xk is the control logic from state k to state
k+1, J(x0, u0, u1, ..., uN−1) is the total cost, LK(xk, uk) is the stage cost incurred
by advancing one stage, and F (xN) is a terminal cost associated to the terminal
system state.

The goal of the optimization problem is to find the optimal cost V0(x0), which
is the minimum total cost that can be incurred:

11
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V0(x0) =min
uk∈Uk(xk),k=1,...,N−1 (F (xN) +

N−1Ø
k=0

Lk(xk, uk)) (2.2)

and the control sequence that minimizes it:

u∗
0, ..., u∗

N−1 =argmin
uk∈Uk(xk),k=1,...,N−1 (F (xN) +

N−1Ø
k=0

Lk(xk, uk)) (2.3)

Uk(xk) is the set of feasible control variables that can be selected at stage k.

Backward Phase of Dynamic Programming

Start by setting:
VN(xN) = F (xN) (2.4)

Set k = N - 1 and solve:

Vk(xk) =min
uk∈Uk(xk) (Lk(xk, uk)) + Vk+1(fk(xk, uk))) (2.5)

Where Vk(xk) represents the minimum cost that can be incurred if the system
must evolve from stage k to stage N under a given initial state xk, it is also known
as the cost-to-go.

Set k back by one stage and repeat the last step until V0(x0) is obtained.

Forward Phase of Dynamic Programming

Start from k = 0, and evaluate

u∗
k(xk) =argmin

uk∈Uk(xk) (Lk(xk, uk)) + Vk+1(fk(xk, uk))) (2.6)

Advance the simulation by updating the state variables

xk+1 = f(xk, u∗
k(xk)) (2.7)

Advance k by one stage and repeat these two steps until the last stage.

2.3.2 Dynamic Programming Toolbox
The Dynamic Programming algorithm used for the vehicle model in this thesis relies
on the "DynaProg" toolbox[19], developed in 2021 by Federico Miretti, Daniela
Misul, and Ezio Spessa at Politecnico di Torino. For more detailed information,
please refer to the MATLAB Add-On "DynaProg"[20].
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2.4 Equivalent Consumption Minimization Strat-
egy (ECMS)

2.4.1 ECMS definition
The Equivalent Consumption Minimization Strategy (ECMS)[21] is a local opti-
mization method that aims to minimize instantaneous costs at each time instant,
known as “sub-optimal”. The term “sub-optimal” indicates a local minimization in
fuel consumption at each time step, which may not necessarily result in the optimal
fuel consumption for the entire driving cycle. The sub-optimal fuel consumption is
derived from the integral of the local minimization of Equivalent Fuel Consumption
for each time instant, where the local optimization depends on the control logic
and specific time instants. Equivalent fuel consumption, shown in Equation 2.8,
includes the actual fuel consumption generated by internal combustion engines
and the virtual fuel consumption generated by the operation of electric motors. In
addition, the optimal control logic for each time instant is selected from available
options, which are related to specific equivalent fuel consumption values. Globally,
all the energy comes from fuel.

ṁf.eqv = ṁfc + s ∗ Pbat

LHV
(2.8)

Where ṁf.eqv is the Equivalent Fuel Consumption at each time instant, ṁfc is
the actual fuel consumption due to the use of internal combustion engines, s ∗ Pbat

LHV

is the virtual fuel consumption due to the use of electric motor, and "s" is the
Equivalence Factor (or s-factor).

Since power is the derivative of energy, Pbat is related to ˙SOC, the Equivalent
Fuel Consumption can be rewritten as Equation 2.9.

ṁf.eqv = ṁfc + λ ∗ ˙SOC(t) (2.9)

In this expression, the second term is from Pbat-related to ˙SOC-related.

2.4.2 The effect of Equivalence Factor
The Equivalence Factor (or s-factor) has a significant impact on charging sustain-
ability. The control logic prioritizes configurations with the lowest Equivalent
Fuel Consumption. Consequently, lower s-factor will tend to use electric motors
frequently, since the use of electric motors results in a lower Equivalent Fuel
Consumption, which, however, may affect charging sustainability.

On the contrary, an excessively high s-factor will restrict the utilization of electric
motors, leading to insufficient exploration of the potential of hybrid systems.
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2.4.3 The phase of ECMS implementation
The general phase for the implementation of ECMS at each time instant is as
follows:

• Power demand and powertrain state identification: Given the state of the
system (required power, engine speed, electric motor speed, SOC, etc), the
acceptable range of control values that satisfies the instantaneous constraints
has to be identified.

• Identification of a finite number of control candidates: Discrete the interval of
control variables into a finite number of control candidates.

• Equivalent fuel consumption computation: The Equivalent Fuel Consumption
is computed for each control candidate.

• Optimal control value selection: select the control candidate that minimizes
the Equivalent Fuel Consumption.

2.5 Adaptive ECMS (A-ECMS)
2.5.1 SOC window and Equivalence Factor
By carefully controlling the state of charge (SOC) of the battery within an appro-
priate window, the HEV system can efficiently optimize the power split between
the electric motor and the ICE while extending the battery life.

While tuning the SOC window in the RDE Rural driving cycle, characterized by
medium and high speeds with frequent acceleration and deceleration, we observed
that the SOC window has a direct impact on fuel consumption. This effect is due
to the direct relationship between the SOC window and the Equivalence Factor
with a penalty function for SOC which directly influences the utilization of the
electric motor, thereby exerting a notable influence on fuel consumption. Detailed
data from these experiments are presented below.

The SOC window in the RDE Rural driving cycle, initially set between 0.55
and 0.65, has a target SOC value of 0.6 as recommended by the OEM. To optimize
the SOC window, the first step involves maintaining the target SOC at 0.6 while
changing the allowable range of SOC values. Table 2.1 provides the details of the
tuning process.

The next step is to maintain the original SOC window and focus on changing
the target SOC value. The details of this tuning process are presented in Table 2.2.

It can be observed that the SOC window and target SOC change the fuel
consumption because they influence the Equivalence Factor that directly determines
the usage of the electric motor. Thereby, the Equivalence Factor should be a function
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Table 2.1: Tuning of SOC window

SOC window [%] FC [L] ∆SOC [%] EMotion EICE EMotor ERegen.

[55, 65] 3.468 0.775 -7.566 12.343 0.715 -1.011
[56, 64] 3.488 4.009 -7.598 12.442 0.652 -0.978
[54, 66] 3.417 -3.361 -7.557 12.134 0.780 -1.039

Table 2.2: Tuning of target SOC

Target SOC [%] FC [L] ∆SOC [%] EMotion EICE EMotor ERegen.

60 3.468 0.775 -7.566 12.343 0.715 -1.011
61 3.449 3.987 -7.574 12.275 0.694 -1.042
59 3.496 4.896 -7.567 12.482 0.685 -1.036

of SOC, aiming to maintain the SOC to the target value, when SOC is lower than
the target SOC, the Equivalence Factor should be increased to hinder the use of
the electric motor, when SOC is higher than the target SOC, the Equivalence
factor needs to be decreased to promote the use of electric motor. So a controlling
approach named "Adaptive ECMS" is invented to associate the Equivalence Factor
and SOC.

2.5.2 Adaptive ECMS (A-ECMS) definition
By integrating all the information about SOC above, it can be concluded that the
Equivalence Factor, which determines the battery utilization for the electric motor,
should be a function of SOC. Thus, the Adaptive ECMS controller (Figure 2.2) is
defined as Equation 2.10[21].

λk+1 = 1
2(λk + λk−1) + cp(SOCref − SOC(t)) (2.10)

Where the time instant t = k*T, k = 1, 2,..., T is the time interval between the
new value of the s-factor and the old one, λk+1 is the new s-factor that will be used
in the time interval [kT,(k+1)T], λ is the current s-factor, λk−1 is the previous
s-factor, SOCref − SOC(t) is the difference between the reference SOC and the
actual SOC value, and cp is the proportional gain of the feedback controller.

2.5.3 Tuning of A-ECMS
Tuning of proportional gain cp in WLTC driving cycle

The tuning of the proportional gain cp is rather sensitive and time-consuming, as
shown in Table 2.3 and Figure 2.3. The proportional gain cp is very small, if the

15



Theoretical Background

Figure 2.2: Adaptive ECMS controller architecture

gain is larger, the s-factor will go up and down strongly, while if the gain is too
small, the controller will lose its ability to control the s-factor.

Table 2.3: Performance of different proportional gain cp

cp (T=5s) 0.00314 0.1 0.01 0.001
Fuel consumption [L] 2.329 2.347 2.377 2.332

SOC variation [%] +0.654% +1.364% +0.581% -0.156%

Tuning of the time interval for sampling in WLTC driving cycle

The strong sensitivity exists in the choice of the time interval for sampling, when
the time interval is short, the s-factor will sharply fluctuate during the driving
cycle, on the contrary, if the time interval is long, the effect of the controller will
be impaired as well.

Tuning of the Initial s-factor in WLTC driving cycle

The lower initial s-factor of "1" prompts the control system to utilize the electric
motor for power supply right from the beginning of the driving cycle. Then the
battery will be charged when the battery state of charge (SOC) reaches the lower
limit of the SOC window. On the flip side, when confronted with a higher s-factor
of "2," the control system restrains the initial engagement of the electric motor.
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Figure 2.3: Tuning of proportional gain cp

Table 2.4: Performance of different time intervals for sampling

T (cp=0.00314) 5s 1s 10s 20s
Fuel consumption [L] 2.329 2.348 2.331 2.332

SOC variation [%] +0.654% +3.416% +0.599% -0.118%

This selection of the higher initial s-factor makes the battery charged at first,
then discharged after the SOC reaches the upper limit of the SOC window. A
graphical representation (Figure 2.5) demonstrating the SOC curves during the
WLTC driving cycle under these different initial s-factors is presented below for a
more intuitive understanding. The fuel consumption when using different s-factor
are shown in Table 2.5.

In the final configuration, the proportional gain (cp) and sampling time inter-
val have been tuned through iterative trials, settling at 0.00314 and 5 seconds,
respectively. It’s important to note that due to the constrained time, the complete
potential of the A-ECMS controller is rather likely not fully explored. This implies
that further optimization and exploration of the architecture and parameters of
A-ECMS might extract more advantages in fuel economy and battery life.
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Figure 2.4: Tuning of time intervals for sampling

Table 2.5: Performance of different initial s-factor

Initial s-factor 1 2
Fuel consumption [L] 2.329 2.349

Figure 2.5: Tuning of initial s-factor
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Chapter 3

Vehicle Modeling and
Methodology

3.1 Vehicle parameters

3.1.1 Vehicle specifications

The subject of this study is IVECO DAILY, a lightweight vehicle with a diesel
engine. The mean specifications of the vehicle are listed in Table 3.1. The main
objective of this project is to evaluate the impact of electrification on vehicles,
especially in terms of fuel consumption. The driving cycle analyzed in this thesis
only considers the longitudinal dynamics of the vehicle.

Table 3.1: IVECO DAILY specification

Engine FIA 2.3 Eu6d
Max Power 136 HP / 3250 rpm
Max Torque 350 Nm / 1500 rpm

Gearbox Hi - Matic (ZF AT8)
Length 6087 mm
Width 2010 mm

Wheelbase 3520 mm
Height 2660 mm

Mass (empty) 2250 kg
Carrying Capacity 1250 kg
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3.1.2 Vehicle Longitudinal Dynamics
The driving resistance exerted on the vehicle can be expressed in Equation 3.1, and
the force acting on the vehicle is Equation 3.2.

FResistance = F0 + F1 ∗ Vveh + F2 ∗ Vveh
2 (3.1)

Fveh = FResistance + mveh ∗ aveh (3.2)
Where FResistance is the driving resistance, F0 is the constant road-load coefficient,

representing the resistance a vehicle encounters when it is not in motion, such as
friction, rolling resistance of the tire, and other constant resistances. F1 is the
linear road-load coefficient, accounting for forces that change linearly with the
vehicle speed, such as rolling resistance or aerodynamic drag due to speed. F2
is the quadratic road-load coefficient, referring to factors like aerodynamic drag
at higher speeds or non-linear rolling resistance. Fveh is the force acting on the
vehicle, mveh is the vehicle mass, aveh is the acceleration of the vehicle, and Vveh is
the vehicle speed.

Figure 3.1: P1 architecture

In the baseline P1 48V HEV architecture (Figure 3.1), the ICE speed (ωICE)
equals shaft speed (ωshaft). And, the torque coupling ratio (τtc) is defined as the
ratio between the speed of the electric motor (ωem) and the speed of the shaft
(ωshaft). The torque coupling ratio (τtc) is equal to 1 in the P1 architecture because
the electric motor speed equals the ICE speed, thus, equals the shaft speed.

However, the total torque transmitted to the shaft is the sum of the torque from
the ICE and from the electric motor, respectively.

The relationship between the speed of the electric motor and the speed of the
shaft is:

ωem = ωshaft ∗ τtc (3.3)
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The torque transmitted to the shaft by the electric motor is:

Tshaft = Tem ∗ τtc (3.4)

The gear ratio (τgb) shows the relationship between the speed of the shaft and
the speed of the final drive.

Crankshaft speed (rad/s):

ωshaft = τgb ∗ ωfd (3.5)

The final drive ratio represents the relationship between the speed of the final
drive and the speed of the wheel.

Final drive input speed (rad/s):

ωfd = τfd ∗ ωwheel (3.6)

Final drive input torque (Nm):

Tfd = Twheel/τfd (3.7)

Wheel speed (rad/s):
ωwheel = Vvehicle/Rwheel (3.8)

Wheel torque (Nm):
Twheel = Fvehicle/Rwheel (3.9)

3.1.3 Vehicle powertrain
The engine performance is represented by a map composed of engine torque and
engine speed, which is derived from real experiments. The different fuel flow
rates and BSFC of the engine correspond to different engine speeds and torques,
respectively. The fuel consumption is the integral of the fuel flow rate over time.
Similarly, the performance of the electric motor is also map-based, which is obtained
from real experiments as well. The engine maps will be illustrated in Chapter 4:
Results & Discussion, while the efficiency of electric motors is very high compared
to the ICE, so, as far as we are concerned, it is not essential to show the maps of
electric motors.

As for the battery, in our simplified vehicle model (Figure 3.2), the battery model
for the electric motor is composed of battery equivalent resistance and battery
open circuit voltage.

The open circuit voltage and equivalent resistance of the baseline battery vary
with the battery state of charge (SOC). The baseline 48V battery in this thesis
comprises 14 cells arranged in series across two parallel branches, and its open
circuit voltage and equivalent resistance are calculated based on the number and
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Figure 3.2: Simplified battery model

structure of cells. These specifications are determined based on the literature
concerning the application of 48V batteries[22]. The characteristics of them are
plotted in Figure 3.3.

The current of the battery (Equation 3.10) depends on the battery voltage, the
battery resistance, and the power requested from the battery.

Ibatt =
Vbatt −

ñ
V 2

batt − 4 ∗ Rbatt ∗ Pbatt

2 ∗ Pbatt

(3.10)

The state of charge (SOC) of the battery in the next time instant (Equation
3.11) depends on the current SOC, battery current, Coulombic efficiency, and
battery nominal capacity.

SOCnext = − ηcoul ∗ Ibatt

Cbatt ∗ 3600 ∗ dt + SOC (3.11)

When describing batteries, the discharge current is generally standardized using
the C-rate[23], a common practice to explain differences in battery capacity. The
C-rate is a measure of the discharge rate relative to the maximum capacity of
a battery. Specifically, the rate of 1C indicates that the discharge current will
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Figure 3.3: Battery specification

consume the entire battery within 1 hour. For consistency and security reasons,
this thesis adopts the 10C ratio as the standard.

3.1.4 Vehicle power split

Now that the hybrid version of the IVECO DAILY incorporates an electric motor
into its powertrain, the power-split factor (αeng) is the ratio between the engine’s
power (Peng) and the vehicle’s required power (Preq). When the power-split factor
is 1, the vehicle operates solely in ICE mode. Conversely, when the factor is 0, the
vehicle operates in pure electric mode. When the power-split factor falls between 1
and 0, a power-split mode between the ICE and the electric motor (Pem) is engaged.

In the baseline P1 48V architecture, the ICE has the same speed as the electric
motor, so the ICE cannot be completely shut down when the vehicle is propelled
by the powertrain because of the physical characteristics of the engine operation.
Thus, there is no purely electric mode in the P1 48V architecture.

23



Vehicle Modeling and Methodology

Power-split:
peng = αeng ∗ Preq (3.12)

Power provided by electric motor:

pem = (1 − αeng) ∗ Preq (3.13)

Power of ICE and electric motor:

P = T ∗ ω (3.14)

Where P is the power of ICE or electric motor, T is the torque of ICE or electric
motor, and ω is the speed of ICE or electric motor.

Energy delivered by ICE or electric motor:

E =
Ú t

0
P (t)dt (3.15)

Where P is the power of ICE or electric motor and E is the energy of ICE or
electric motor.

3.2 Forward modeling approach with ECMS
If a vehicle can be regarded as a mass point interacting with the external en-
vironment, its equation of motion from equilibrium can be written as Equation
3.16:

Mveh
dvveh

dt
= Finertia = Ftraction − Froll − Faero − Fgrade (3.16)

Where Mveh is the effective vehicle mass, vveh is the vehicle velocity in the longi-
tudinal direction, Finertia is the inertia force of the vehicle, Ftraction = Fpowertrain −
Fbrake is the traction force, Froll is the rolling resistance (friction due to tire defor-
mation and losses), Faero is the aerodynamic resistance and Fgrade is the force due
to road slope.

The vehicle acceleration dvveh

dt
is calculated as the result of the traction force

generated by the powertrain, and then the speed is obtained by integrating the
acceleration. This is the forward approach, which reproduces the physical causal
relationship of the system, as shown in Figure 3.4.

The forward approach is a commonly chosen option in most simulators, as shown
in Figure 3.4. For example, in the case of a hybrid vehicle forward simulator, the
expected speed is compared to the actual vehicle speed, and a driver model (such
as a PID controller) is used to generate braking or throttle commands to follow
the driving cycle. This driver command is input to the supervisor block, which
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Figure 3.4: Forward modeling approach

is responsible for issuing the actuator settings (engine, electric motor, and brake
torque) to the remaining components of the powertrain that ultimately generate
traction and fuel consumption. Finally, the force is applied to the vehicle dynamics
model, where the acceleration is determined by the equation of motion while taking
into account road load information. Then, the new vehicle speed resulting from
the acceleration generated by the powertrain is compared to the speed profile in
the driving cycle again by the driver model, the same process repeats until the end
of the driving cycle.

3.3 Backward modeling approach with DP
On the other hand, in order to calculate the traction force that is needed to be
produced by the powertrain to fulfill the given acceleration, the equation of motion
can be rearranged to Equation 3.17:

Ftraction = Fpowertrain − Fbrake = Finertia + Fgrade + Froll + Faero (3.17)

The force follows the velocity profile of the driving cycle and the traction force is
calculated starting from the inertia force: in this case, it is assumed that the vehicle
is following a prescribed velocity and acceleration profile, and Ftraction represents
the corresponding force that the powertrain must supply.

In contrast with the forward modeling approach, the backward simulator (Figure
3.5) operates without a driver model, which utilizes the requested speed as input,
while engine torque and fuel consumption are the outputs. The simulator calculates
the net traction force required based on factors such as speed, payload, slope, and
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Figure 3.5: Backward modeling approach

vehicle attributes. Using these data, the simulator determines the torque that should
be delivered by the powertrain. Subsequently, the torque and speed characteristics
of different powertrain components are taken into account to establish engine
operating conditions, thereby determining the fuel consumption.

3.4 Validation of the vehicle model
Table 3.3 compares the fuel consumption of the forward model (with ECMS),
backward model (with DP), CARS-AVL TestBed, and FEV Roller during the
WLTC driving cycle. According to the mean value of the results in the real
experiments, the mismatch of the forward model on WLTC is less than 2.5%, of
the backward model is around 4% to 6%, as Table 3.4 shows. It should be noted
that the backward model also selects high gears at low speeds (shown in Figure
3.7), which theoretically reduces fuel consumption, but is not realistic in practice.

Table 3.2: Coast-down values in Model Validation

Vehicle mass 3283 kg
F0 345 N
F1 0 N/(km/h)
F2 0.1007 N/(km/h)2

Figure 3.6 compares the engine operating points for ECMS, DP, and Real
Experiment in Pure ICE mode during the WLTC driving cycle, revealing that
DP (purple) leads to a distribution of engine operating points that is closer to the
OOL compared to ECMS, with lower average engine speeds. ECMS (blue) makes
the engine operate at higher average speeds and similar torque compared to DP.
The average engine speed in the Real Experiment is lower than that in ECMS but
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Table 3.3: ICE-only results - WLTC

Test platform FC [L] Distance [Km] FC [L/100Km]
CARS-AVL TestBed 2.710 23.302 11.623

FEV Roller 2.784 23.363 11.916
Forward model 2.762 23.197 11.905

Backward model 2.599 23.283 11.162

Table 3.4: Model mismatch - WLTC

Numerical results FEV CARS
Forward model mismatch on WLTC -0.092% +2.426%

Backward model mismatch on WLTC -6.328% -3.966%

higher than that in DP, as the yellow points show.
Figure 3.7 compares the gear shifting among DP, ECMS, and Real Experiment,

with Pure ICE mode during the WLTC driving cycle. DP exhibits the highest
gear number, resulting in lower engine speed as the engine map shows. The gear
numbers in Real Experiments are slightly lower than those in DP, especially at
low-speed regions. Lastly, The ECMS, however, with Pure ICE mode, has the
lowest average gear number, which is consistent with the engine operating points
observed in the engine map.

The Table 3.5 and Table 3.6 compare the fuel consumption of the forward model,
CARS-AVL TestBed, and FEV Roller during the RDE driving cycle. The mismatch
between the results of the forward model and the real vehicle is less than 7.5%.
While, the results of the backward model are not comparable with others in the
RDE driving cycle because they are down-sized due to limited vehicle performance.

Table 3.5: ICE-only results - RDE

Test platform FC [L] Distance [Km] FC [L/100Km]
CARS-AVL TestBed 12.336 83.212 14.825

FEV Roller 11.745 83.928 13.995
Forward model 11.266 84.065 13.716

Backward model - - -

3.5 Usage of the vehicle model
The forward and the backward modeling approaches have different utilities apart
from their different modeling process. In brief, the solution derived from the
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Figure 3.6: Engine operating points for ECMS, DP, and Real Experiment in Pure
ICE mode during WLTC driving cycle

Figure 3.7: Gear number in ECMS, in DP and in Real Experiment, with Pure
ICE mode during WLTC driving cycle

backward approach is not applicable, whereas that of the forward approach might
be.

The backward modeling approach with the DP algorithm, in theory, provides an
optimal trajectory of operational points for both ICE and the electric motor. How-
ever, its practical application is unfeasible. Nonetheless, the trajectory generated
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Table 3.6: Model mismatch - RDE

Numerical results FEV CARS
Forward model mismatch on RDE -1.993% -7.474%

Backward model mismatch on RDE - -

by the DP algorithm serves as a crucial benchmark for evaluating the effectiveness
of various EMS.

The forward modeling approach with ECMS optimizes the equivalent fuel
consumption, which is a composite of the actual fuel consumption attributed to the
ICE and the virtual fuel consumption resulting from the electric motor, at discrete
time instants starting from the beginning of the driving cycle. ECMS with different
s-factor controllers is the algorithm under comparison with the DP algorithm in
this thesis. The effects of different s-factor controllers are the key points to compare,
which directly influence the feasibility of using the ECMS algorithm in reality.

In addition to comparing different algorithms, several HEV architectures and
electric motor configurations were also tested by using the backward approach,
namely, DP to summarize a possible principle for designing the hardware.

3.6 Scope of Hybridization
This thesis includes a wide range of exploration of hybridization aspects in vehicles,
including key components such as the electric motor, powertrain architecture,
power-split algorithms between the ICE and electric motor, and the objective of
hybridization, the details are as follows:

• Electric Motor Specification: The choice between 48V and 200V motors is an
important decision regarding the voltage level of the motor. This choice has
a significant impact on the performance and application of the motor. For
example, batteries with higher voltage motors carry lower currents, extending
battery life, while high voltage poses a higher safety risk to passengers inside
the vehicle.

• Powertrain Architecture Options: In the field of hybrid vehicles, parallel
hybrids feature the concurrent operation of both the ICE and electric motor,
permitting cooperative or separate operation. On the contrary, series hybrids
employ the electric motor to drive the vehicle, and the ICE is used to charge
the battery and its function is independent from direct wheel propulsion.
In addition, there are differences between the P1 and P2 classifications in
the category of parallel architecture. In the P1 configuration, ICE and the
motor share a common speed but may exhibit different torque outputs. In
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contrast, the P2 architecture has a more intricate coupling between the ICE
and the electric motor, facilitated by planetary gear systems and clutches
which provides the choice between pure electric and ICE modes, as well as
enabling battery charging through the ICE.

• Energy Management Algorithm Considerations: Among many energy manage-
ment algorithms, the DP algorithm theoretically delivers an optimal trajectory
of operational points for both the ICE and electric motor. But it is a backward
approach that commences from the last discrete time instant to the first one
of the driving cycle, necessitating substantial computational resources and
thereby making practical applications infeasible. Nevertheless, the trajectory
derived from the DP algorithm serves as a benchmark reference for assessing
the performance of other EMS. Another part of the focus of this thesis centers
on ECMS, characterized as a forward approach starting from the command of
the driver. ECMS optimizes Equivalent Fuel Consumption at each discrete
time instant from the beginning of the driving cycle. There are three different
controllers in this research for ECMS to control the s-factor that is determinant
for power split between ICE and electric motor: Relay-based switching logic,
A-ECMS, and PID controller. ECMS serves as the algorithm compared with
the DP algorithm in this thesis.

• Primary Research Objective: In this thesis, the most important focus is on
reducing fuel consumption within the HEV system, and emission-related issues
are beyond the specific scope of this study.

3.7 Choice of HEV architectures
Hybrid electric vehicles (HEV) have developed various architectures that combine
ICE with electric propulsion systems. In this thesis, we delved into two main HEV
architectures: P1 (Figure 3.1) and P2 (Figure 3.8), paired with two types of motors,
48V and 200V, respectively. By DP algorithm, we test the fuel consumption and
battery state of charge (SOC) of hybrid electric vehicles with the following two
architectures.

The characteristic of P1 48V architecture is the direct connection between
ICE and electric motors. In this architecture, both the ICE and the 48V electric
motor operate at the same speed but can provide different torque outputs. This
architecture provides simplicity and reliability with lower potential safety hazards.

The P2 200V architecture adopts a complex coupling mechanism, using a
planetary gear system and clutch to interconnect ICE and electric motors. This
complex design allows for a choice between purely electric and pure ICE operating
modes.
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Figure 3.8: P2 architecture

3.8 Battery sizing
This article explores the impact of battery size on battery state of charge (SOC) and
fuel consumption during the World Harmonized Light Vehicle Test Cycle (WLTC)
in the configuration of the P1 48V architecture by using the DP algorithm. This
test includes a range of battery sizes, ranging from 0.5 kWh to 3.0 kWh.

From a common sense perspective, larger batteries provide more benefits. How-
ever, it is evident that as the battery size approaches a certain threshold, the
related advantages will weaken.
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Chapter 4

Results & Discussion

This chapter concludes the performance test results of three controllers of the
Equivalence Factor of the ECMS algorithm - relay-based switching logic, PID, and
A-ECMS with P1 48V architecture, during the WLTC and the RDE driving cycle,
including fuel consumption, battery state of charge (SOC), power flow, and energy
contribution and loss. The performance of A-ECMS is emphasized to compare
with the theoretical best performance obtained by the DP algorithm, providing a
reference for optimizing the algorithm.

Apart from the P1 48V architecture, the performances of the P2 200V architec-
ture and of the different battery sizes in the P1 48V architecture are also discussed
in this chapter.

4.1 P1 48V architecture in the WLTC Cycle
The baseline of the Hybrid version of IVECO DAILY is P1 48V architecture. The
test of the vehicle during the WLTC driving cycle is committed with 2 algorithms:
DP and ECMS, respectively.

4.1.1 DP in WLTC driving cycle
In the vehicle model of DP, the state variables, which represent the vehicle system
state, include the battery state of charge (SOC), and the previous gear number.
The control variables, which are regarded as the control logic from one vehicle
system state to another, are the gear number and the power-split factor. Minimizing
fuel consumption while maintaining the battery state of charge (SOC) to a proper
window to extend the battery life is the primary objective. Reducing frequent gear
shifting that might wear the drive-train components by comparing the current
gear number with the previous one using a penalty function is the secondary goal.
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The fuel consumption of the vehicle using DP during the WLTC driving cycle is
2.263 L, and the SOC variation at the end of the driving cycle is 0 compared with
the initial SOC value. Other detailed information is listed below. However, these
results are merely the ideal conditions that are used as a reference to analyze other
algorithms.

Figure 4.1: P1 48V Main profile with DP in WLTC

The first graph of Figure 4.1 illustrates the WLTC driving cycle, covering the
urban, rural, and motorway driving conditions simultaneously. The vehicle speed
fluctuates from 0 m/s to 40 m/s.

The second graph of Figure 4.1 shows the state of charge (SOC) of the battery
with the initial value being 0.6. The state of charge ends up being 0.591 because of
the state variable constraints defined in the DP control logic (from 0.59 to 0.61).

The third graph of Figure 4.1 depicts the gear number of the vehicle during the
driving cycle. What is obvious is that the gear number strictly follows the vehicle
speed over the driving cycle.

The fourth graph of Figure 4.1 represents the value of the power-split coefficient.
As observed, the value of the power-split coefficient varies between 0 and 1 frequently
when using the DP strategy. This means the engine starts and stops very frequently,
which will result in energy loss and shorter component life.

The last graph of Figure 4.1 indicates the accumulation of fuel consumption
during the drive cycle, which increases unsteadily due to some issues such as the
varying vehicle speed, the intervention of the electric motor, etc.

The first graph of Figure 4.2 shows different power modes at different speeds. It
can be observed that the "pure electric" mode is typically used for braking conditions.
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Figure 4.2: P1 48V Power profile with DP in WLTC

Whereas the "power-split" mode is mostly used for acceleration, especially at high
speeds when the engine and electric motor work together. The “pure thermal”
mode is applied when the vehicle speed is high or the vehicle is accelerating. And,
the battery charges when braking in "pure electric" mode. This can be seen by
looking at the SOC graph in the main profile and the power graph below.

The second graph of Figure 4.2 shows the variation of power of the vehicle, engine,
and electric motor during the drive cycle. If the power of the vehicle is negative,
it indicates that the vehicle is decelerating. If the power of the electric motor is
negative, the motor acts as a generator and the battery is charged. However, the
thermal engine cannot have negative power.

4.1.2 DP vs. ECMS in WLTC driving cycle

Table 4.1 lists the fuel consumption of the 4 different algorithms and their final SOC
variation at the end of the driving cycle. A-ECMS exhibits the least deviation in fuel
consumption from DP, primarily because of its sufficient use of the electric motor
during the low-speed region of the WLTC driving cycle as evidenced by the SOC
trend shown in the following figure. The final SOC of A-ECMS is approximately
60.5%, while the SOC of the relay-based switching logic is 59.8%. In contrast, PID
ultimately recorded a 5% SOC change, which is the highest SOC limit. Further
detailed comparisons of various parameters are provided below.
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Table 4.1: P1 48V architecture performance - WLTC

Performance - WLTC DynaProg A-ECMS Relay PID
Fuel consumption [L] 2.263 2.329 2.335 2.345
Fuel consumption gap Reference +2.916% +3.182% +3.624%

SOC variation [%] 0 +0.654% -0.153% +5.000%

Comparison of engine operating points with DP and A-ECMS

Figure 4.3 illustrates the engine map, showing a significant difference in control
logic between DP and A-ECMS. The x-axis and y-axis represent engine speed and
engine torque, respectively. For each engine speed, the corresponding maximum
engine torque is limited due to engine performance. The contour curves in Figure
4.3 represent different normalized Brake Specific Fuel Consumption (BSFC) at
each engine speed and torque, with lower normalized BSFC indicating lower fuel
consumption at the same engine power. The OOL of the engine is shown by the
dashed curve in Figure.

Figure 4.3: P1 48V Engine operating points of DP and A-ECMS during WLTC
driving cycle

The purple points in the map refer to the engine operating points using DP.
It can be observed that the engine is working at a relatively lower speed and
higher torque and the operating points are rather close to the OOL compared
with A-ECMS, where the most of normalized BSFC of operating points in DP is
lower than 0.32, while a considerable portion of operating points in A-ECMS (blue
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points) are located at the area where the normalized BSFC is higher than 0.32.
The reason why the distributions of operating points in DP and A-ECMS are

different can be inferred from the following comparison of engine power flows, engine
torque, and gear shifting logic. In brief, DP renders higher gear numbers over the
driving cycle, which results in lower engine speed and higher engine torque, bringing
the operating points closer to OOL and, thereby, reducing fuel consumption.

Comparison of power flows and torque of ICE with DP and A-ECMS

Figure 4.4 and Figure 4.5 compare the engine power profile and engine torque profile
between DP and A-ECMS at each time instant over the driving cycle, respectively.

Figure 4.4: P1 48V Power flows of ICE in A-ECMS and DP during WLTC driving
cycle

In comparison to A-ECMS, DP (blue curve) results in the engine operating at
higher torque with basically the same power. This leads to a lower engine speed,
as indicated by the relationship between engine power, engine speed, and engine
torque. The characteristic of lower engine speed observed in DP aligns with the
trends identified in the comparison of engine operating points.

Comparison of gear shifting with DP and A-ECMS

Figure 4.6 shows the gear-shifting logic of DP and A-ECMS over the WLTC driving
cycle.

When comparing DP with its corresponding A-ECMS, an intriguing discovery
emerged. As demonstrated by Figure 4.6, DP (green curve) consistently favors
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Figure 4.5: P1 48V Torque of ICE in A-ECMS and DP during WLTC driving
cycle

Figure 4.6: P1 48V Gear numbers in A-ECMS and DP during WLTC driving
cycle

higher gears over the entire driving cycle. This preference for higher gear numbers
translates into a unique operating mode where the engine maintains a lower speed
and higher torque level during vehicle propulsion. This tendency is rooted in the
pursuit of optimizing fuel efficiency. The principle is straightforward: by selecting a
higher gear number, DP reduces engine speed and increases engine torque, ensuring
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the engine operates closer to OOL, which makes DP significantly different from
A-ECMS in the field of shift logic.

Comparison of power flows and torque of electric motor with DP and
A-ECMS

Figure 4.7 and Figure 4.8 compare the electric motor power profile and electric
motor torque profile between DP and A-ECMS at each time instant over the driving
cycle, respectively.

Figure 4.7: P1 48V Power flows of electric motor in A-ECMS and DP during
WLTC driving cycle

A notable difference emerges in the behavior of the electric motor. The illustra-
tion demonstrates that DP (green curve) consistently opts for lower electric power
while simultaneously achieving higher levels of torque. Moreover, DP adopts a less
aggressive approach that is more favorable for battery health.

Comparison of fuel consumption with DP and ECMS

Figure 4.9 provides an overview of fuel consumption accumulation under various
energy management algorithms throughout the driving cycle. The green curve
represents the theoretically optimal fuel consumption achieved through DP. Addi-
tionally, the performances of three equivalence factor controllers: A-ECMS, PID
controller, and Relay-based switching logic, are compared to DP, depicted by three
distinct curves in Figure, each distinguished by its color.
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Figure 4.8: P1 48V Torque of electric motor in A-ECMS and DP during WLTC
driving cycle

Figure 4.9: P1 48V Fuel consumption in A-ECMS and DP during WLTC driving
cycle

The A-ECMS controller exhibits the most efficient fuel consumption, particularly
in the low-speed region of the driving cycle, where it closely approaches the efficiency
of DP. Conversely, the PID controller yields the highest fuel consumption. Towards
the conclusion of the driving cycle, the fuel consumption performances of the three
controllers are close.
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Comparison of SOC with DP and ECMS

The battery SOC, an essential parameter in this context, reflects the energy level of
the battery throughout a driving cycle. Figure 4.10 demonstrates the SOC trends
during the WLTC driving cycle for four different energy management algorithms.

Figure 4.10: P1 48V SOC variation in A-ECMS and DP during WLTC driving
cycle

The characteristics of the 4 algorithms in terms of SOC are the following:

• DP: DP adopts a stable SOC variation approach throughout the driving cycle.
It avoids aggressive SOC fluctuations, ensuring a consistent SOC level from
the beginning to the end of the cycle.

• Adaptive ECMS: The A-ECMS exhibits a strong tendency for battery usage
during low-speed driving phases, which resembles the DP, and charges the
battery during medium and high-speed regions. Despite these variations,
A-ECMS maintains SOC stability, with no significant SOC variation observed
at the end of the driving cycle.

• The ECMS with Relay-based switching logic: The ECMS with Relay-based
switching logic initially operates without using the electric motor. Subse-
quently, it follows an aggressive approach with sharp electric motor usage.
Remarkably, despite this aggressiveness, no significant SOC variation is ob-
served at the end of the driving cycle.

• ECMS with PID controller: The ECMS with PID controller pursues to
maintain the target SOC, but exhibits greater SOC changes after the driving
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cycle at the end of the cycle, due to strong braking, the SOC increases
sharply to approximately 65%. Compared with other algorithms, this s-factor
controller has a relatively large change in SOC.

Overall, DP prioritizes SOC stability and battery health, A-ECMS tends to
explore the battery potential at low vehicle speed, ECMS with Relay-based switching
logic takes less usage of the electric motor at the beginning of the driving cycle,
and ECMS with PID Controller shows more significant SOC variations due to its
PID control strategy.

Comparison of energy contribution and loss with DP and A-ECMS

Figure 4.11 and Figure 4.12 illustrate the energy sources powering the powertrain
in the DP and A-ECMS algorithm during the WLTC driving cycle, respectively. In
the A-ECMS algorithm, the majority of the energy to the powertrain is delivered
by an Internal Combustion Engine (ICE), about 92%. The electric motor provides
7% of the total energy for propulsion of the vehicle, while nearly 1% of the total
powertrain energy is lost due to the electric motor. While the energy provided by
the ICE takes up more proportion in the DP algorithm (95%). Table 4.2 shows
the energy contribution in the 4 conditions with different algorithms and s-factor
controllers.

Table 4.2: P1 48V architecture Energy contribution in WLTC driving cycle

Energy Contributions - WLTC [kWh] DynaProg A-ECMS Relay PID
Energy delivered by ICE 7.994 8.312 8.311 8.405

Energy delivered by electric motor 0.335 0.639 0.649 0.566
Energy delivered by powertrain 8.328 8.951 8.961 8.971

Electric motor loss 0.050* 0.099 0.096 0.092
Regenerative energy -0.414 -0.828 -0.828 -0.812

*The Electric motor loss is Electric motor loss + battery loss for all DP cases.
In terms of energy losses in A-ECMS (Figure 4.13 and Figure 4.14, aerodynamic

drag, primarily occurring during the high-speed phase at the end of the cycle,
contributes to over 50% of the total loss. Driveline losses and rolling resistance
evenly split the remaining half, accounting for 17% and 24%, respectively, while
electric motor losses are less than 1%. The loss due to the drive-train in DP is
only 6%, which might be due to the different modeling processes in the drive-train.
Table 4.3 shows the energy loss in the 4 conditions with different algorithms and
s-factor controllers.
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Figure 4.11: P1 48V Energy contribution in DP during WLTC driving cycle

Figure 4.12: P1 48V Energy contribution in A-ECMS during WLTC driving cycle

Comparison of available regenerative energy in DP and A-ECMS

Figure 4.15 and Figure 4.16 show the theoretically available energy that can be
used for regeneration in DP and A-ECMS, respectively.

The potential of using regenerative braking for energy recovery is equal to the
amount of kinetic and potential energy that needs to be dissipated, minus the
amount dissipated due to rolling and aerodynamic resistance.

42



Results & Discussion

Table 4.3: P1 48V architecture Energy loss in WLTC driving cycle

Energy Losses - WLTC [kWh] DynaProg A-ECMS Relay PID
Aerodynamic loss 4.344 4.302 4.300 4.296

Rolling loss 2.231 1.776 1.776 1.775
Electric motor loss 0.050 0.099 0.096 0.092

Driveline loss 0.421 1.275 1.249 1.259

Figure 4.13: P1 48V Energy loss in DP during WLTC driving cycle

After subtracting the aerodynamic loss and rolling loss, the remaining part of
the powertrain energy can be regarded as potentially available energy for regenera-
tion[24], which is about 32% of the total energy in A-ECMS. On the other side, due
to the higher rolling loss in the DP model, a lower theoretically available energy
for regenerative braking is observed, nearly half of that in A-ECMS.

Summary of P1 48V architecture with DP and ECMS in WLTC Cycle

This section of the thesis evaluates the performance of three Equivalence Factor
controllers, namely Relay-based switching logic, PID, and A-ECMS, in the context
of the ECMS algorithm throughout the WLTC driving cycle. A primary focus is
placed on A-ECMS, which is closely compared to the theoretically optimal DP
algorithm.

The assessment encompasses key parameters, including fuel consumption, battery
state of charge (SOC), power flow, energy contributions, and losses. The analysis
reveals that DP consistently favors lower engine speed and higher torque, closing
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Figure 4.14: P1 48V Energy loss in A-ECMS during WLTC driving cycle

Figure 4.15: P1 48V Kinetic energy in DP during WLTC driving cycle

to the OOL, and reducing fuel consumption, while A-ECMS explores the battery’s
potential during low-speed phases. Moreover, the less aggressive approach adopted
by DP is more battery-friendly. The SOC profiles illustrate the stability of DP
compared to A-ECMS, showing its prioritization of battery health.

In addition, the high-speed region of the WLTC cycle results in high aerodynamic
loss which accounts for over half of the total. One-third of the powertrain energy
can be theoretically recycled for regeneration in the case of A-ECMS.
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Figure 4.16: P1 48V Kinetic energy in A-ECMS during WLTC driving cycle

Overall, the A-ECMS controller has shown good prospects in using batteries at
low speeds, but there is still a significant gap compared to the theoretical optimal
control strategy, DP.

4.2 P1 48V architecture in the RDE Urban Cycle

RDE Urban cycle is characterized by low speed and frequent accelerations. As
shown in Figure 4.17, the operating points of DP (purple), which are closer to
OOL, are far better than those of A-ECMS (blue) in terms of BSFC. A-ECMS has
the smallest fuel consumption gap with DP among the 3 s-factor controllers, shown
in Table 4.4

Table 4.4: P1 48V architecture performance - RDE Urban

Performance - RDE Urban DynaProg A-ECMS Relay PID
Fuel consumption [L] 0.657 0.703 0.712 0.705
Fuel consumption gap Reference +7.001% +8.371% +7.306%

SOC variation [%] -0.648% -0.022% +2.658 +0.606%
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Figure 4.17: P1 48V Engine operating points of DP and A-ECMS during RDE
Urban driving cycle

4.2.1 Comparison of power flows of ICE with DP and A-
ECMS

The power flow of ICE in DP during the RDE Urban driving cycle basically
resembles that in A-ECMS, as plotted in Figure 4.18. The slightly different power
flows of them are due to the different usage of the electric motor.

4.2.2 Comparison of power flows of the electric motor with
DP and A-ECMS

The phenomenon is similar to the result in the WLTC driving cycle, DP has lower
power but higher torque, as Figure 4.19 shows. The DP still exhibits a more stable
utilization of the electric motor and, therefore a more stable utilization of the
battery as well.

4.2.3 Comparison of SOC with DP and A-ECMS
Figure 4.20 demonstrates the SOC fluctuation when using DP and ECMS with
3 different s-factor controllers. A-ECMS uses the motor at the beginning of the
driving cycle and then charges the battery when it is depleted to the lower limit of
the SOC window. While the PID controller maintains the SOC around 60% with
no significant fluctuation. Additionally, the Relay-based switching logic charges the
battery at the beginning of the driving cycle and has a sharp decrease and increase
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Figure 4.18: P1 48V Power flows of ICE in DP and A-ECMS during RDE Urban
driving cycle

Figure 4.19: P1 48V Power flows of the electric motor in DP and A-ECMS during
RDE Urban driving cycle

of SOC, finally, the SOC ends with 62.7%. Lastly, DP is as stable as it works in
WLTC.
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Figure 4.20: P1 48V SOC in DP and A-ECMS during RDE Urban driving cycle

4.2.4 Comparison of fuel consumption with DP and A-
ECMS

The fuel consumption of A-ECMS is even lower than that of DP at the beginning of
the driving cycle, but due to a finite SOC window, the battery needs to be charged
afterward, resulting in higher fuel consumption during battery charging. Finally,
A-ECMS has the smallest gap with DP in terms of fuel consumption, which is
illustrated and compared to other s-factor controllers in Figure 4.21.

4.2.5 Energy contribution and loss with A-ECMS
The energy delivered by the electric motor during the RDE Urban driving cycle
accounts for 20% of the total, which is higher than that in the WLTC driving cycle,
shown in Figure 4.22. The detailed comparison is listed in Table 4.5.

Table 4.5: P1 48V architecture Energy contribution in RDE Urban driving cycle

Energy - RDE Urban [kWh] DynaProg A-ECMS Relay PID
Energy delivered by ICE 2.099 2.141 2.176 2.179

Energy delivered by electric motor 0.284 0.585 0.545 0.572
Energy delivered by powertrain 2.383 2.726 2.721 2.751

Regenerative energy -0.346 -0.725 -0.720 -0.748

As for the perspective of energy loss (Figure 4.23), the rolling loss takes the
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Figure 4.21: P1 48V Fuel consumption in DP and A-ECMS during RDE Urban
driving cycle

Figure 4.22: P1 48V Energy contribution in A-ECMS during RDE Urban driving
cycle

dominance of the loss contribution, with 47%. The aerodynamic loss only takes up
17% of the total loss, which is because of the low-speed feature of the RDE Urban
driving cycle. The comparison of energy loss during the RDE Urban driving cycle
with different conditions is in Table 4.6.
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Table 4.6: P1 48V architecture Energy loss in RDE Urban driving cycle

Energy Losses RDE Urban [kWh] DynaProg A-ECMS Relay PID
Aerodynamic loss 0.241 0.241 0.241 0.241

Rolling loss 0.855 0.683 0.683 0.683
Electric loss 0.038 0.100 0.129 0.104

Driveline loss 0.128 0.393 0.385 0.424

Figure 4.23: P1 48V Energy loss in A-ECMS during RDE Urban driving cycle

4.2.6 Available regenerative energy in A-ECMS algorithm
Figure 4.24 shows that more than half of the kinetic energy can be recycled for
regeneration from a theoretical point of view in the RDE Urban driving cycle, due
to the low aerodynamic loss. This means the energy regeneration potential is very
high in urban conditions.

4.2.7 Summary of P1 48V architecture with DP and ECMS
in the RDE Urban Cycle

The A-ECMS controller sufficiently utilizes the electric motor and battery, then
recharges the battery when SOC is approaching the lower limit in the RDE Urban
driving cycle. The PID controller is still strong enough to keep the SOC around
the target level. And the Relay-based switching logic still recharges the battery at
the beginning. The performance of fuel consumption and SOC variation in this
driving cycle when using the A-ECMS controller is the best of the three.

50



Results & Discussion

Figure 4.24: P1 48V Kinetic energy in A-ECMS during RDE Urban driving cycle

To put it simply, the A-ECMS controller is prone to use the electric motor
during the RDE Urban driving cycle. The PID controller is still aggressive and
strong.

4.3 P1 48V architecture in the RDE Rural Cycle
RDE Rural cycle is composed of medium-to-high speed profiles, examining the
vehicle in rural conditions, but it is down-scaled due to the constraints of vehicle
performance. In the RDE Rural cycle, the operating points with DP are still better
than those in A-ECMS, which is, anyway, not as dramatic as it is in the RDE
Urban cycle, as illustrated in Figure 4.25.

Table 4.7 lists the performance of DP and ECMS with different s-factor con-
trollers. The PID controller enables the lowest fuel consumption gap with DP.
However, the difference between these 3 controllers is not obvious.

Table 4.7: P1 48V architecture performance - RDE Rural

Performance - RDE Rural DynaProg A-ECMS Relay PID
Fuel consumption [L] 1.910 2.016 2.012 2.009
Fuel consumption gap Reference +5.550% +5.340% +5.183%

SOC variation [%] -0.340% +1.628% +1.429% +0.952%
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Figure 4.25: P1 48V Engine operating points of DP and A-ECMS during RDE
Rural driving cycle

4.3.1 Comparison of power flows of ICE with DP and A-
ECMS

As for the power flow of ICE during the RDE Rural driving cycle (Figure 4.26),
the power flows of ICE when using DP and A-ECMS are almost the same, but DP
still has a higher torque profile.

4.3.2 Comparison of power flows of the electric motor with
DP and A-ECMS

Similar to the previous driving cycles, DP renders lower electric motor power but
higher electric motor torque in the RDE Rural driving cycle, as plotted in Figure
4.27.

4.3.3 Comparison of SOC with DP and A-ECMS
When it comes to the SOC variation during the RDE Rural driving cycle (Figure
4.28), what is consistent with previous driving cycles is that the A-ECMS uses a
motor at the beginning of the driving cycle and then charges it when the battery
runs out. The PID controller charges the battery during the braking process and
then maintains SOC without significant fluctuations. The SOC change of the
relay-based switching logic still shows a sharp decrease and increase, ultimately
ending at 61.4%. Besides, DP is as stable as previous driving cycles.
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Figure 4.26: P1 48V Power flows of ICE in DP and A-ECMS during RDE Rural
driving cycle

Figure 4.27: P1 48V Power flows of the electric motor in DP and A-ECMS during
RDE Rural driving cycle

4.3.4 Comparison of fuel consumption with DP and A-
ECMS

A-ECMS is prone to utilize the battery and recharge it, resulting in higher fuel
consumption at the rear part of the cycle. Overall, the 3 controllers have similar
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Figure 4.28: P1 48V SOC in DP and A-ECMS during RDE Rural driving cycle

fuel consumption in the RDE Rural driving cycle, which can be seen from Figure
4.29. This is due to the fewer opportunities for the electric motor to power the
vehicle compared to the RDE Urban driving cycle.

Figure 4.29: P1 48V Fuel consumption in DP and A-ECMS during RDE Rural
driving cycle
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4.3.5 Energy contribution and loss with A-ECMS
The electric motor provides 7% of the total energy for propulsion (see Figure 4.30),
and the majority of energy is still delivered by ICE. Table 4.8 lists the energy
contribution of each component of the powertrain with different algorithms and
s-factor controllers. Moreover, Figure 4.31 presents the energy loss distribution,
where the aerodynamic loss and rolling loss are both significant during the RDE
Rural cycle, with 44% and 32% respectively. The detailed losses are presented in
Table 4.9.

Table 4.8: P1 48V architecture Energy contribution in RDE Rural driving cycle

Energy - RDE Rural [kWh] DynaProg A-ECMS Relay PID
Energy delivered by ICE 6.543 6.927 6.898 6.905

Energy delivered by electric motor 0.424 0.569 0.585 0.576
Energy delivered by powertrain 6.966 7.496 7.483 7.481

Regenerative energy -0.570 -0.765 -0.783 -0.764

Figure 4.30: P1 48V Energy contribution in A-ECMS during RDE Rural driving
cycle

4.3.6 Available regenerative energy in A-ECMS algorithm
Near half of the kinetic energy can be recycled in the RDE Rural cycle, which is
less than that in the RDE Urban cycle and similar to the WLTC cycle, as shown
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Table 4.9: P1 48V architecture Energy loss in RDE Rural driving cycle

Energy Losses RDE Rural [kWh] DynaProg A-ECMS Relay PID
Aerodynamic loss 2.520 2.514 2.514 2.514

Rolling loss 2.304 1.836 1.836 1.836
Electric loss 0.038 0.102 0.102 0.100

Driveline loss 0.353 1.259 1.263 1.248

Figure 4.31: P1 48V Energy loss in A-ECMS during RDE Rural driving cycle

in Figure 4.32. It is due to the high aerodynamic losses caused by the medium and
high-speed section of the RDE rural cycle.

4.3.7 Summary of P1 48V architecture with DP and ECMS
in the RDE Rural Cycle

The three controllers have similar performance in the RDE Rural cycle, although
A-ECMS tends to use the electric motor and charge the battery after the SOC is
in the lower limit, there is not too much chance for the electric motor to power the
vehicle in RDE Rural cycle.

Thereby, due to the fewer occasions of using the electric motor, the fuel con-
sumption gap between DP and A-ECMS is smaller than the RDE Urban driving
cycle.
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Figure 4.32: P1 48V Kinetic energy in A-ECMS during RDE Rural driving cycle

4.4 P1 48V architecture in the RDE Motorway
Cycle

The RDE Motorway cycle is also down-scaled due to the limited performance of the
vehicle. However, It still tests the vehicle in a high-speed condition. In the RDE
Motorway driving cycle, the distributions of engine operation points for these two
algorithms are similar in terms of BSFC (shown in Figure 4.33), resulting in little
fuel consumption difference between these two algorithms. Furthermore, Table 4.10
shows that the performances of these three s-factor controllers are very close.

Table 4.10: P1 48V architecture performance - RDE Motorway

Performance - RDE Motorway DynaProg A-ECMS Relay PID
Fuel consumption [L] 3.165 3.344 3.340 3.351
Fuel consumption gap Reference +5.656% +5.529% +5.877%

SOC variation [%] -0.348% +4.423% 0.491% +5.027%

4.4.1 Comparison of power flows and torque of ICE with
DP and A-ECMS

When it comes to the power flow of ICE (Figure 4.34), the power flows of ICE with
the two algorithms are almost the same, and DP still has a higher torque profile,
which makes the engine operating points closer to OOL.
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Figure 4.33: P1 48V Engine operating points of DP and A-ECMS during the
RDE Motorway driving cycle

Figure 4.34: P1 48V Power flows of ICE in DP and A-ECMS during the RDE
Motorway driving cycle

4.4.2 Comparison of power flows and torque of the electric
motor with DP and A-ECMS

Similar to previous cycles, DP has lower electric motor power but higher electric
motor torque, and the comparison is plotted in Figure 4.35. It is obvious that the
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occasions of using the electric motor are even fewer than those in the RDE Rural
cycle because of the high-speed characteristics of the RDE Motorway cycle.

Figure 4.35: P1 48V Power flows of the electric motor in DP and A-ECMS during
the RDE Motorway driving cycle

4.4.3 Comparison of SOC with DP and A-ECMS
Figure 4.36 compares the SOC variation of the DP algorithm and the ECMS
algorithm with three different Equivalence Factor controllers during the RDE
Motorway driving cycle, respectively. A-ECMS and DP tend to use the electric
motor at the beginning of the driving cycle, and there are not so many opportunities
for the electric motor to power the vehicle at high speeds. The PID controller
and Relay-based switching logic still do not use the electric motor from the start
of the driving cycle. The sharp braking in the driving cycle renders more energy
regeneration that results in a higher SOC at the end of the driving cycle for all
s-factor controllers.

4.4.4 Comparison of fuel consumption with DP and A-
ECMS

Figure 4.37 illustrates the accumulation curve of fuel consumption of the DP and
the ECMS algorithm with three different Equivalence Factor controllers during
the RDE Motorway driving cycle, respectively. The 3 controllers have very similar
fuel consumption and are rather close to the DP because, in the RDE Motorway
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Figure 4.36: P1 48V SOC in DP and A-ECMS during the RDE Motorway driving
cycle

driving cycle, only a little energy can be provided by the electric motor due to the
high-speed characteristics of the driving cycle.

Figure 4.37: P1 48V Fuel consumption in DP and A-ECMS during the RDE
Motorway driving cycle
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4.4.5 Energy contribution and loss with A-ECMS
As it is observed in Figure 4.38, only 2% of energy is provided by the electric motor
because it is impossible for the electric motor to engage the power generation in
high-speed conditions due to its limited power. Figure 4.39 shows that the majority
of loss is from aerodynamics (60%) because of the high-speed characteristics of the
driving cycle. The driveline loss and rolling loss are 13% and 18%, respectively.
The detailed data about the energy and loss are listed in Table 4.11 and Table 4.12.

Table 4.11: P1 48V architecture Energy contribution in RDE Motorway driving
cycle

Energy - RDE Motorway [kWh] DynaProg A-ECMS Relay PID
Energy delivered by ICE 11.721 12.435 12.420 12.469

Energy delivered by electric motor 0.189 0.193 0.228 0.173
Energy delivered by powertrain 11.899 12.628 12.647 12.642

Regenerative energy -0.227 -0.324 -0.301 -0.310

Figure 4.38: P1 48V Energy contribution in A-ECMS during the RDE Motorway
driving cycle

4.4.6 Available regenerative energy in A-ECMS algorithm
Only a few of kinetic energy can be reused theoretically. On account of the high
aerodynamic resistance in high-speed conditions, as Figure 4.40 shows. These
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Table 4.12: P1 48V architecture Energy loss in RDE Motorway driving cycle

Energy Losses in RDE Motorway [kWh] DynaProg A-ECMS Relay PID
Aerodynamic loss 7.867 7.826 7.825 7.826

Rolling loss 2.687 2.140 2.140 2.141
Electric loss 0.027 0.037 0.037 0.034

Driveline loss 0.596 1.837 1.858 1.871

Figure 4.39: P1 48V Energy loss in A-ECMS during the RDE Motorway driving
cycle

phenomena of the available regenerative energy change with the speed are con-
sistent with the literature [25], which demonstrates that the available energy for
regeneration is higher in urban or low-speed conditions but lower in high-speed
conditions.

4.4.7 Summary of P1 48V architecture with DP and ECMS
in the RDE Motorway Cycle

In the RDE Motorway driving cycle, the electric motor does not frequently partici-
pate in the energy supply at high speeds, so these three s-factor controllers perform
similarly and cannot further explore the potential of the electric motor. And their
performances are very close to the performance of DP.

62



Results & Discussion

Figure 4.40: P1 48V Kinetic energy in A-ECMS during the RDE Motorway
driving cycle

4.5 P1 48V architecture vs. P2 200V architecture
electric motor

Table 4.13: Performance of P1 (CS) and P2 (CS with double-sized battery)
compared to Pure ICE mode

Architecture ICE-only P1 (CS) P2 (CS 2xBat.)
Fuel consumption [L] 2.456 2.263 2.105
Fuel consumption gap Reference -7.858% -14.292%

SOC variation [%] - 0 0

Under identical ICE specifications, the P1 architecture (Figure 3.1) integrates
a 48V motor, and the P2 architecture (Figure P2 3.8) is generally equipped with
a 200V motor, with clutches that allow for pure electric operating mode. For
consistency of the efficiency of the electric motor, we still use the map of a 48V
motor but a double-sized battery to mimic the 200V motor. By using the DP
algorithm, it can be observed that the P2 architecture can further reduce fuel
consumption by 6.434% compared to the P1 architecture with the same charge-
sustaining (CS) strategy due to its flexibility in selecting operating modes, allowing
the engine to operate in more efficient areas of the engine map. However, the
complexity of P2 architecture makes this increase in fuel economy less worthwhile.
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4.5.1 P1 charge-sustaining vs. P2 charge-sustaining

Figure 4.41: P1 48V architecture Engine operating map (charge-sustaining)

Figure 4.42: P2 200V architecture Engine operating map (charge-sustaining)

Figure 4.41 and Figure 4.42 are the engine operating maps for P1 and P2 (with
double-sized battery) architectures with CS strategy, respectively. The red points
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refer to pure ICE mode, and the blue points represent power-split mode. It can be
seen that in the P2 architecture, there are fewer operating points located in the
high BSFC region. However, we found the gap in fuel consumption between P1
and P2 is only 6.434% (see Table 4.13) because we have very stringent constraints
of the final SOC and SOC window. What if we reduce the limitation of SOC by
using a charge-depleting strategy (CD)?

4.5.2 P1 charge-sustaining vs. P2 charge-depleting

Table 4.14: Performance of P1 (CS) and P2 (CD with double-sized battery)
compared to Pure ICE mode

Architecture ICE-only P1 (CS) P2 (CD 2xBat.)
Fuel consumption [L] 2.456 2.263 1.618
Fuel consumption gap Reference -7.858% -34.121%

SOC variation [%] - 0 -60.0%

Figure 4.43: P2 200V architecture Engine operating map (charge-depleting)

When the strict SOC constraints are relieved (namely, the CD strategy), the
engine map (Figure 4.43) shows a large number of power-split mode points that are
very close to the optimal operating line (OOL), significantly reducing fuel consump-
tion. While, it should be noted that due to limitations of battery performance,
these points are not realistic.
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Figure 4.44: P2 200V architecture battery current (charge-depleting)

Operating the P2 architecture (with double-sized battery) with a CD strategy,
the fuel consumption can be further decreased by 26.263% compared to the P1
architecture with CS strategy (shown in Table 4.14). However, for safety and
sustainability reasons, overly frequent battery charging and discharging in this case
(Figure 4.44) is not feasible in reality.

Figure 4.45: Fuel consumption with different architectures

In summary, as Figure 4.45 illustrates, the P2 architecture shows the ability
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to reduce additional fuel consumption by approximately 6.434% when using the
same CS strategy. However, the complex structure of the P2 architecture leads
to higher production costs and potentially reduced reliability. Additionally, the
P2 architecture with the CD strategy can significantly decrease fuel consumption
by about 26.263% even further. By integrating all the results above, it can be
concluded that the P1 48V architecture is the most suitable configuration for
the IVECO DAILY since it can provide satisfactory performance with acceptable
complexity and sustainability.

4.6 P1 48V architecture with different battery
sizes

As depicted in Table 4.15, under the P1 48V architecture, there is a noticeable
reduction in fuel consumption as the battery size increases, from 2.262L with
0.5kWh to 2.208L with 1.5kWh, which is about -2.387%. However, the effect of
excessive battery size exceeding 1.5kWh can be ignored. Figure 4.46 graphically
shows the fuel consumption with different battery sizes.

Table 4.15: Performance of P1 48V architecture with different battery size

Battery size [kWh] Fuel consumption [L] SOC variation [%]
ICE-only 2.456 -

0.5 2.262 +0.528%
0.75 2.230 +0.160%

1 2.219 +0.119%
1.5 2.208 -0.015%
2 2.207 -0.028%
3 2.207 -0.041%

Figure 4.47 illustrates the comparison of SOC with varying battery sizes. The
observation is clear: a larger battery size leads to a more stable SOC change. This
is because, with a larger battery, the same energy consumption represents a smaller
proportion of the total energy, resulting in a smaller SOC change.

Overall, 1.5kWh is the most appropriate battery size for P1 48V architecture,
which reduces the fuel consumption by over 2% compared to the 0.5kWh battery.
And no further benefit is derived from overly large battery sizes.
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Figure 4.46: P1 48V Fuel consumption with different battery size

Figure 4.47: P1 48V SOC variation with different battery sizes
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Chapter 5

Summary of thesis and
future works

5.1 Summary
In the configuration of P1 48V architecture, DP enables the engine to operate in
areas with low BSFC, close to OOL, thereby reducing fuel consumption. The gap
in fuel consumption between DP and ECMS is 2.659% to 5.610% depending on
different driving cycles. However, DP is a backward approach that may not be
practically implementable. Nevertheless, the solutions derived from DP serve as
valuable references.

Table 5.1: Coast-down values in Simulation

Vehicle mass 2620 kg
F0 345 N
F1 0 N/(km/h)
F2 0.1007 N/(km/h)2

When using the fuel consumption of the forward model with ICE-only mode
over the WLTC and RDE driving cycles as a reference and considering the results
of DP as the theoretical optimum (shown in Table 5.2), the A-ECMS controller
demonstrates potential, particularly in the RDE Urban driving cycle, where low
speeds allow for increased electric motor engagement. The A-ECMS controller
efficiently utilizes the battery from the start, maintaining charging sustainability
by smoothly adjusting the s-factor based on SOC variation, thereby controlling the
use of an electric motor. The fuel consumption gap between A-ECMS and DP is
4.528% in the RDE Urban driving cycle, while that for the Relay-based controller is
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Table 5.2: Fuel consumption gap between Pure-ICE mode and various HEV
algorithms during WLTC and RDE driving cycles

P1 48V ICE-only DP A-ECMS Relay PID
WLTC [L] 2.482 2.263 2.329 2.335 2.345

FC gap Reference -8.823% -6.164% -5.923% -5.520%
R. Urban [L] 0.832 0.657 0.703 0.712 0.705

FC gap Reference -20.033% -15.505% -14.423 -15.264%
R. Rural [L] 2.120 1.910 2.016 2.012 2.009

FC gap Reference -9.906% -4.906% -5.094% -5.235%
R. Motorway [L] 3.363 3.165 3.344 3.340 3.351

FC gap Reference -5.888% -0.565% -0.684% -0.357%

5.610%, the extra benefit of fuel economy due to the A-ECMS is over 1%. On the
other hand, the PID controller is robust, tightly controlling SOC around the target
value, beneficial for extending battery life. However, overly aggressive variations
in the s-factor can impact fuel consumption and battery life. Differences among
these s-factor controllers tend to diminish during high-speed driving cycles, where
electric motor utilization is limited.

What is worth mentioning is that A-ECMS and the PID controller have nearly
5% SOC increase at the end of the RDE Motorway driving cycle, which means
that the electrical energy stored after this driving cycle can be used to save future
fuel consumption[26].

Table 5.3: Fuel consumption gap of different HEV architecture during the WLTC
driving cycle

Architecture ICE-only P1 (CS) P2 (CS 2xBat.) P2 (CD 2xBat.)
Fuel consumption [L] 2.456 2.263 2.105 1.618
Fuel consumption gap Reference -7.858% -14.292% -34.121%

SOC variation [%] - 0 0 -60.0%

Regarding different HEV architectures (Table 5.3), the P2 architecture offers
greater power-split flexibility but also increases complexity, and fuel economy only
further improves by 6.434% compared to the P1 architecture. Unless the charge-
depleting strategy can be used, P1 48V is the best choice to balance complexity
and performance.

Battery selection is more straightforward (Table 5.4), with higher capacity
resulting in lower fuel consumption, where the fuel consumption decreases over 2%
when changing the battery size from 0.5kWh to 1.5kWh, but exceeding capacity
does not bring further advantages. Therefore, 1.5kWh is the most suitable solution.
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Table 5.4: Fuel consumption gap with different battery sizes during the WLTC
driving cycle

Battery size [kWh] Fuel consumption gap
ICE-only Reference

0.5 -7.899%
1.5 -10.098%
3 -10.138%

In conclusion, from the software perspective, the A-ECMS shows promising
potential in urban conditions, effectively exploiting the motor while maintaining
charge sustainability. The PID controller in ECMS robustly maintains the SOC
around the target value. The Relay-based controller efficiently manages the s-
factor with a simple structure. The ECMS has closely approximated DP with a
fuel consumption gap of less than 6% when the s-factor is effectively controlled.
However, A-ECMS and PID controllers are not yet optimized to their full potential
due to finite time and can be further refined. From the hardware viewpoint, the
P1 48V architecture shows satisfactory results with less complexity compared to
the P2 200V architecture. The optimal battery size for the P1 48V architecture is
determined to be 1.54 kWh.

5.2 Future works
The possible future works for the A-ECMS and the PID controller include further
tuning in parameters, such as gain and sampling rate, and the refinement of the
architecture. For instance, what is very interesting is that the performance of
A-ECMS varies with driving scenarios. Is it possible to associate the s-factor with
the vehicle speed and acceleration? If so, the electric motor might be further used
at low speeds and frequent acceleration and deceleration conditions to prevent less
efficient ICE operations. On the contrary, the electric motor might be shut down
during high-speed conditions to save electricity.

As for DP, although the optimal trajectory obtained from it cannot be directly
implemented, the results can be used to design a rule-based controller that is
simple to utilize. In addition, is it possible to leverage machine learning tools such
as Clustering-Optimized Rule-Extraction (CORE)[27] to extract some rules from
the DP results? This CORE provides a way to convert the optimal theory into
actionable control strategies.

Finally, regarding the P2 200V architecture, its flexibility and complexity bring
challenges and opportunities. Identifying an appropriate automotive product
that can effectively utilize this architecture is a possible further step. It includes
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evaluating specific vehicle models or applications where the P2 200V architecture
can maximize its advantages and reduce the impact of its complexity.
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