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Abstract

Inspired by pertinent literature in the context of Analogue Gravity, this work analyzes the
stream profiles of a fluid film flowing along a radially symmetric, inclined bed with different
bottom topographies, in the framework of a 2-D Shallow-water model in radial symmetry.
First, steady state profiles are obtained without including turbulent friction, with different
slopes and three kinds of bottom topography: flat, stepped and sinusoidal. The flat
bottom produces new kinds of orbits with a two Critical Froude Horizons behaviour,
because of the interplay between Discharge Conservation and Momentum Balance, which
is affected by the presence of slope. The stream profiles obtained for the stepped bottom
exhibit instead an energy jump, which allows to interpret discontinuities as orbit jumps.
The sinusoidal profile instead can be seen as a sinusoidal perturbation of the flat one: the
response of the stream to the amplitude of such perturbation is found to be dependent on
an inequality involving Radiant Specific Kinetic Height, and can be amplifying, stabilizing
or damping. When turbulent friction (modeled with Chézy parametrization) is included,
the stream profiles obtained for the same bottom topographies result to be governed
by gravity in case of subcritical regime and by friction in case of supercritical one. In
addition, also novel bottom topographies ensuring energy conservation, critical depth and
uniform height are obtained. The solutions with Hydraulic jump, represented as a shock
discontinuity of zero order, are then obtained and the limits of such representation are
analyzed. Finally, a Perturbation Equation of the Shallow-water model is obtained to
serve as a future work on Linear Stability analysis.
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Introduction

Circular Shallow Water profiles have found progressively greater interest in the field of
Hydrodynamics, although the related literature remains currently narrower and less sys-
tematic with respect to that on Open Channel flows, for which notable textbooks, includ-
ing Ref. [36], organize the main theoretical aspects and applications.
The most common situation to observe Circular Shallow Water profiles comes from the
daily experience: a water jet impinging on the kitchen sink, forming an inner circular, thin
film (where water flows rapidly) followed by an outer region with increased height (where
water flows more slowly). By introducing the Froude Number Fr = U/

√
gh, where U is

the mean velocity of the flow, h is the water depth and g is the gravitational constant,
the inner region is characterized to have Fr > 1 while, on the contrary, the outer region
is characterized to have Fr < 1 and they are respectively denoted as supercritical and
subcritical regimes. The transition from the inner supercritical region, where the gravity
waves can only propagate upstream, to the outer subcritical region, where gravity waves
can propagate both downstream and upstream, takes place through a marked shock dis-
continuity of the flow features (including depth) usually referred to as "Circular Hydraulic
Jump", which is well shown in Fig. 1. This common phenomenon was described also
by Leonardo da Vinci in the 16th century (Ref. [6]), but the first notable experimental
study is dated 1820 and has been carried out by the Italian mathematician and hydraulic
engineer Giorgio Bidone, in Ref. [7]. One of the first attempts to provide instead a math-
ematical description of Hydraulic Jump in Open Channel flows by means of Continuity
and Momentum equations was made by Lord Rayleigh in Ref. [35], which included also a
description of the Circular Hydraulic Jump as a bore on a small scale.
A notable work in modelling Circular Hydraulic Jump is that in Ref. [8], which makes use
of both a 2D Shallow-water model in radial symmetry and Boundary Layer equations to
obtain a qualitative description of the dynamics and a scaling law for the radial position.
Other related works include [22, 23].
Practical applications of stream profiles in radial symmetry can be found in the field of
River Engineering for the design of stilling basins (Ref. [1, 28]), where the related studies
are mostly focused on finding and estimating practical measures to control the formation
of circular hydraulic jumps (such as jump position and sequent depth ratio).
However, a fascinating point of view, which highlights one more time the interdisciplinarity
of Hydrodynamics, is provided by the analogies between the behaviour of Shallow-water
streams and several cosmological phenomena, in the wider context of Analogue Gravity
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(Ref. [5]). The aim of the research related to Analogue Gravity is to find analogs of rel-
ativistic gravitational fields within other physical systems ([5]), usually well understood.
An early work (1981) in this sense is provided in Ref. [40], where it is shown that there
exist well known acoustic phenomena having the same properties of the black holes, as
far as the quantum thermal radiation is concerned.
The advantage of finding well described physical analogs of more complex phenomena
is not only to provide a more accurate theoretical description by means of well under-
stood properties, but also to reproduce them in a proper laboratory setting, with simpler
instrumentation. This is the case of the Shallow-water experiments carried out in Ref.
[18], which aimed to reproduce the Standing Accretion Schock Instability happening into
the stellar core during the collapse that originates a neutron star, completed by a 2D
Shallow-water model where the aforementioned shock-instability is represented by that of
the circular hydraulic jump, in a convergent radial flow.
In Ref. [20] the Circular Hydraulic Jump, in divergent radial flow, is instead taken as a
hydrodynamic analogue of a White Hole (i.e., a time-reversed Black Hole), described from
a Dynamical Systems point of view as a Saddle-Node Bifurcation.
Despite all of these applications, few works aim to provide an organic classification of
steady Shallow Water Profiles in radial symmetry: these include Ref. [42], where the
supercritical and subcritical solutions are obtained for a stream flowing in both conver-
gent and divergent direction over a horizontal bed, finding analytical form by means of a
perturbative expansion and modeling hydraulic jump as a shock discontinuity of 0 length.
Finally, another work which provides a classification of steady Circular Shallow-water
profiles is that in Ref. [29], where flows along a horizontal bed in both convergent and
divergent direction are taken into account, including also turbulent friction, in order to
find analogies with the aforementioned cosmological phenomena, including black holes,
white holes and neutron stars.
Despite the fascinating connections highlighted between different physical phenomena ob-
served at distant scales and the refined theoretical and experimental methods used, all of
the previous works are focused on specific aspects of model adopted. This results in the
lack of a unified mathematical point of view which, starting from the governing equation,
would make able to reproduce the main physical aspects and explicit the energetic con-
tributes that drive the behaviour of the stream properties. In this context, this work aims
to enrich the classification of steady Circular Shallow water profiles started in Ref. [29],
by including in the set of de Saint-Venant equations in radial symmetry the slope of a bed
of general inclination angle ϕ ∈ [0, π[ with respect to the ground level and the presence of
a non-flat bottom topography, for instance sinusoidal and negative stepped. The general
appearance, due to the radial, axially-symmetric geometry, will be that of a Horizontal, a
Cone or a Funnel bed depending on whether ϕ = 0, ϕ ∈]0, π/2[ or ϕ ∈]π/2, π[, as shown
in Figures 2, 3, while the bottom topography is represented as a departure from the flat
bottom. Beyond the analytical and computational effort that requires the introduction of
the aforementioned features in the model and the deduction of general properties from it,
the complexity they add opens to a wider variety of novel solutions with respect to what
already discussed in [29, 42]. This is particularly visible by the introduction of the sole bed
slope, which in case of a funnel-shaped bed gives rise to stream profiles reaching critical
conditions at exactly two points, exhibiting a so called two Froude Horizons behaviour.
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Profiles connecting two critical horizons were already documented in [29] for a horizontal
bed and flat bottom when turbulent friction is included, along with the corresponding
astrophysical analog (Ref. [40, 46]), but our results show that the same can be obtained
by simply changing the bed inclination, showing a beautiful connection between appar-
ently different dynamics and proving that the same phenomenon can be also reproduced
by means of a different laboratory setting.
Inspired by similar observations, especial attention is dedicated throughout the whole
work to the monotony properties of the stream profiles obtained, which are strongly re-
lated to the interplay between the bed slope, the presence of turbulent friction and the
bottom topography considered, the latter being evident in the geometric shape of the
profiles. In particular, by introducing Radiant Specific Kinetic Height (which arises by
the first derivative of the Stream Head) and Radiant Specific Discharge (this one already
introuced in [29]), respectively describing the distribution of Kinetic Height and Volumet-
ric Flowrate along the radial coordinate, it is possible not only to find the exact monotony
intervals, but also a physical explanation of the monotony properties and the flow ampli-
tude response to the sinusoidal bottom topography.
The development of Circular Hydraulic Jump in the solution is investigated by means
of a detailed analysis of the dynamical systems describing the height profiles, valid for
general bottom topographies satisfying certain regularity requirements and highlighting
an important difference between the flat bottom and the sinusoidal bottom: while in the
first case the possibility of hydraulic jump is connected to the presence of a focus in the
physical region of the phase space, multiple focus followed by as many saddle points can
arise, depending on the Stream Energy balance. The hydraulic jump is then treated as
a shock discontinuity of zero length, its position being determined as the intersection be-
tween the specific supercritical and subcritical forces, which include the sole contributes
due to hydrostatic and dynamic pressure. This is an important simplification, since co-
herently with Ref. [29, 42] lateral hydrostatic components and bed friction are neglected.
Intrinsic in the depth-averaging process giving rise to the Shallow-water equations is the
hypothesis of gradually varied flow (Ref. [36]), which drives the choice of the parameter
values for the simulations and provides an additional element to interpret the solutions.
In this sense, the case of sinusoidal bottom topography can be considered as non violating
the hypothesis of gradually varied flow for sufficiently small amplitudes and wavenumbers
and can serve as a starting point for future studies on Roll-waves Instability in radial
symmetry, similarly to what done in Ref. [4] in a Cartesian geometry for open channel
flows. The same is not true instead for stepped bottom topography, for which the high
steepness around the step make the Shallow-water approximation useless and not suitable
for the study of the consequent hydraulic jump, which is complicated by separation phe-
nomena and air-water interactions (Ref. [41, 43]). However, it remains as a valid academic
example helping to understand the variations of stream energy from an orbit of the phase
space to another and to explore the validity limits of the Shallow-water model adopted.
The work is organized as follows:

• Chapter 1 is devoted to the formulation and the mathematical analysis of a non-
dimensional, 2D Shallow-water model in radial, axially symmetric geometry, taking
into account a basal slope due to the inclination with respect to gravity direction, a
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general bottom topography and the presence of turbulent friction;

• in Chapter 2, the general model is particularized to the case in which turbulent
friction is neglected and stream profiles and features are obtained for flat, sinusoidal
and stepped bottom topographies;

• in Chapter 3, friction is included into the model, employed in its general form, in
order to first obtain three notable topographies which show that, thanks to friction,
it is possible to obtain stream profiles preserving energy, maintaining same depth
and maintaining critical depth; for second, the general model including friction is
applied to obtain again stream profiles for flat, sinusoidal bottom topography and
negative stepped;

• in Chapter 4, steady state solutions for depth and velocity are perturbed and a
system of partial differential equations (time-space depending) is obtained for the
perturbations; the problem is then particularized to the steady solution of uniform
depth, in order to obtain the sole governing equations of the perturbations.

Although the main goal is to provide steady solutions with a potentially wide range of
applications, some brief reminds to the cosmological analogs previously described are
possible, in order to give physical significance to certain solutions.

(a) (b) (c)

Figure 1: Circular Hydraulic Jump and Wave propagation. The three figures depict
the Circular Hydraulic Jump generated by a jet impinging on a steel plate. The yellow natural
dye is oil-based, in order to avoid mixing with water, and is injected by a syringe. Fig. 1(a) -
Circular Hydraulic Jump. Fig. 1(b) - The yellow die is injected into the supercritical region. It
is evident a Mach Cone, indicating a sole upstream propagation of gravity waves. Fig. 1(b) - The
yellow die is injected into the subcritical region. It is evident in the yellow dye drop a blurred
boundary surrounding a more concentrated drop, indicating that gravity waves can propagate
both downstream and upstream.
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(a) (b)

Figure 2: Section of a Cone and a Funnel bed with Flat Bottom. Fig. 2(a) - Section of
a Cone-shaped bed (ϕ ∈]0, π/2[). Fig. 2(b) - Section of a Funnel bed (ϕ ∈]π/2, π[). The black
dashed line represents represents the rotation axis that allows to obtain the Cone and Funnel
beds by a rotation of 360◦ around it. The other notations are clear from the picture.

(a) (b) (c)

Figure 3: Appearance of Cone, Funnel and Horizontal bed with Flat Bottom. Fig.
3(a) - Cone-shaped bed in three dimensions. Fig. 3(b) - Funnel-shaped bed in three dimensions.
Fig. 3(c) - Horizontal bed in three dimensions. The presence of the central holes for which the
fluid is drained will be clear within the next chapters. Figures are realized with GeoGebra.
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Chapter 1

General Model and Profile
Equation

This chapter is devoted to the formulation of a two-dimensional Shallow water model
to describe the flow features of a fluid film flowing along an inclined bed, along with
a bottom topography simulating possible irregularities with respect to the flat bottom.
Radial symmetry will be taken into account, as done in [29] for the case of Horizontal Bed
with flat bottom. Additionally, also turbulent friction will be included in the model. The
general formulation that will be introduced in this Chapter is similar to that in [4] except
for the geometry, which due to the radial symmetry allows to write the two dimensional
equations in polar coordinates and to neglect the dependence on the angular coordinate
1. The chapter organizes as follows:

• dimensional model formulation in polar coordinates, assuming radial symmetry and
steady state;

• choice of reference units and formulation of the non-dimensional, stationary model;

• analytic discussion of the stationary model.

The aim is to obtain a general, non-dimensional equation describing fluid depth for the
steady state profiles, that will be useful to perform Linear Stability Analysis, as a future
work.

1.1 Dimensional Equations
The first step to formulate the model is to define the geometry. As was early mentioned
in the Introduction, the problem will be considered in radial, axially-symmetric geometry,
thus the bed will appear as Horizontal, Cone-shaped or Funnel-shaped depending on the

1In [4] the geometric setting is Cartesian and one-dimensional.
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General Model and Profile Equation

angle ϕ formed with the ground level, as shown in Figures 2, 3. Therefore, it is useful
to start by describing a single section of the bed. Let consider an inclined plane forming
an angle ϕ ∈ [0, π

2 [∪]π
2 , π[ with respect to the ground level (orthogonal to the gravity

direction), assumed to be clockwise oriented. Moreover, let consider a cartesian reference
with origin placed along the inclined plane, x-axis tangent to the incline. Although it
appears reasonable to fix the reference system in such a way the x-axis points towards the
flow direction, that is, along the favourable slope, its direction is determined as follows:

• towards the direction of the favourable slope for Cone-shaped beds, i.e., ϕ ∈]0, π/2[;

• towards the direction of the opposite slope for Funnel-shaped beds, i.e., ϕ ∈]π/2, π[.

The reason of this choice has the only purpose to use the same concept of convergent and
divergent streams, which are defined as streams respectively flowing along increasing and
decreasing ξ. This will be clearer in Sec. 1.4.1, where the transformation of the general
equation under spatial flow inversion will be discussed.
Finally, assume instead the y-axis orthogonal to the x-axis, pointing in the direction oppo-
site to gravity. A sketch of the geometrical setting is reported in Fig. 1.1, after changing
to polar coordinates that will be soon introduced.
Let consider the generic height z = z(x) of the fluid with respect to the incline. Then the
gravitational force (per unit of fluid weight) can be evaluated as:

P = −g cos ϕ∇z

where:
z(x) = h(x) + zb(x) − x sin ϕ

In the proposed setting:

• zb(x) is a function, assumed for simiplicity at least C2(R), which maps the height
profile of a physical irregularity of the bottom at coordinate x: if zb(x) > 0, the
irregularity lies over the plane and vice versa, while if zb(x) ≡ 0 the bottom is flat;

• h(x) is the fluid depth with respect to the bottom; x sin ϕ is instead related to the
basal slope and represents a positive contribute to the gravitational potential, as
expected since the x-axis points towards the direction favourable to the slope.

For simplicity:

• ϕ will be called basal angle, and the related slope will be called basal slope;

• zb(x) will be called bottom topography, given the role of such function

Finally, bottom friction is included into the model by means of the following term:

j = Cf f(u, h) (1.1)
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1.1 – Dimensional Equations

whose specific expression depends on the model adopted for the closure of drag term.
Therefore, de Saint-Venant’s Equations are formulated as:∂u

∂t + u∂u
∂x = g cos ϕ

1
tan ϕ − ∂h

∂x − ∂zb

∂x

2
− Cf f(u, h)

∂h
∂t + ∂(hu)

∂x = 0
(1.2)

Several kinds of friction parametrization can be considered, included Manning-Strickler
([37]). Here, as in [29], the following family of drag parametrizations will be taken into
account:

j = |u|α

C2hβ
u = 1

C2
sgn(u)uα+1

hβ
(1.3)

where Cf = 1/C2, being C the Chézy Coefficient, and f(u, h) = u|u|α/hβ. In particular,
fully developed turbulent flow will be assumed, in such a way α = β = 1 and one has the
so called Chézy Parametrization:

j = u|u|
C2h

= 1
C2

sgn(u)u2

h
(1.4)

Consider now radial symmetry 2. In order to write the equation according to such geom-
etry, which is reported in Fig. 1.1, let consider the change to polar coordinates:I

x = r cos θ

z = r sin θ
(1.5)

where r > 0 and θ ∈ [0, 2π].
For the transformation of the differential operators it is taken into account that the par-
tial derivative ∂

∂x(·) involved in the right member of the momentum equation and the
one involved in the continuity equation derive respectively from gradient and divergence
operators. Therefore, the system turns into the following:∂u

∂t + u∂u
∂r = g cos ϕ

1
tan ϕ − ∂h

∂r − ∂zb

∂r

2
− 1

C2
sgn(u)u2

h
∂h
∂t + 1

r
∂
∂r (rhu) = 0

(1.6)

Assuming steady state:udu
dr = g cos ϕ

1
tan ϕ − dh

dr − dzb

dr

2
− 1

C2
sgn(u)u2

h
1
r

d
dr (rhu) = 0

(1.7)

2Due to radial symmetry, the dependencies on the angular coordinate θ and the derivatives with
respect to it are neglected.
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General Model and Profile Equation

Let consider the Continuity Equation reported in (1.7). Multiplication of both members
by 2πr and the application of Fundamental Theorem of Calculus allow to obtain:

2πrhu = Q (1.8)

being Q the total volumetric flowrate 3, which is constant and provides a relation between
radial distance, depth and velocity. Considering instead the Momentum Balance equation
of (1.7), one can divide both members by g cos ϕ (it is possible because the angle ϕ = π

2
is excluded in the classical model of inclined plane) to obtain:

1
g cos ϕ

u
du

dr
= tan ϕ − dh

dr
− dzb

dr
− 1

C2
sgn(u)u2

h
(1.9)

By using:

u
du

dr
= d

dr

31
2u2

4

and re-arranging the members, the equation assumes the following form:

d

dr

A
u2

2g cos ϕ
+ h

B
= tan ϕ − dzb

dr
− 1

C2
sgn(u)u2

h
(1.10)

One can define the stream head as follows:

H = u2

2g cos ϕ
+ h (1.11)

and rewrite equation (1.11) in the form:

dH

dr
= tan ϕ − dzb

dr
− 1

C2
sgn(u)u2

h
(1.12)

which shows that, in general, stream energy is not conserved, due to the interplay between
basal slope, bed topography and bottom friction. The first novelty with respect to [29] is
that the stream head can also increase: this happens when the right hand side member
of Equation 1.12 is positive, i.e., when the energy contribute of basal slope overbalances
those of friction and bottom topography, as the following inequality shows:

tan ϕ ≥ dzb

dr
+ u|u|

C2h
(1.13)

3Notice that, in dimensional terms, one has [Q] = [L]3[T ]−1. This expression provides an additional,
simple motivation for the identification of the integration constant with the volumetric flow rate.
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1.2 – Non-Dimensional Variables and Notable Relations

(a)

(b)

Figure 1.1: Geometry for the Inclined Bed with Bottom Topography. Left and right
figure respectively refer to the section along a single radiant for the the cases 0 < ϕ < π

2 (Cone-
shaped) and π

2 < ϕ < π (Funnel-shaped).

1.2 Non-Dimensional Variables and Notable Relations
Since H is non constant, as discussed before, it appears natural to use as vertical reference
unit the value of the stream head at the boundary, H0, in order to define the variables:

y := h

H0
(1.14)

and:

ζ := zb

H0
(1.15)
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A natural reference unit for the velocity of the fluid can be identified in a modified Torricel-
lian velocity, which takes into account only the vertical component g cos ϕ of the gravity,
that is, U0 =

√
2gH0 cos ϕ. In this way, the non-dimensional velocity is:

ν := u√
2gH0 cos ϕ

(1.16)

By plugging (1.14) and (1.16) into (1.8), the following equation is obtained:

ryν = Q

2πH0
√

2gH0 cos ϕ

The second member of such equation has the dimension of a length and can be chosen as
a radial reference unit. Therefore, by defining:

R := Q

2πH0
√

2gH0 cos ϕ

the non-dimensional radius is:

ξ = r

R
(1.17)

The previous introduction of the modified Torricellian velocity motivates the definition of
the Froude Number as follows:

Fr = u√
gh cos ϕ

(1.18)

By plugging (1.14), (1.16), (1.17) into (1.8), one obtains:

ν = 1
ξy

(1.19)

Moreover, by plugging (1.19) and (1.14) into (1.18), one finally obtains:

Fr = Fr(ξ, y) = 1
ξ

ó
2
y3 (1.20)

It is worth to notice that:

Fr(ξ, y) = 1 ⇐⇒ y = 3

ó
2
ξ2 (1.21)

which provides the locus of the points where the stream is in critical condition. Finally,

18



1.3 – Non-Dimensional Equation

the Radiant Specific Discharge is introduced:

Qr = Q

2πr
(1.22)

that, in non-dimensional form, is simply defined as:

q = q(ξ) = 1
ξ

(1.23)

1.3 Non-Dimensional Equation
By plugging (1.14), (1.16), (1.17) into Equation (1.10), one obtains:

d

dξ

3 1
ξ2y2 + y

4
= γb − dζ

dξ
− R

H0
· 2g cos ϕ sgn(ν)

C2 · 1
ξ2y3 (1.24)

which, after few calculation, is equivalent to the so called Bresse Profile Equation ([15]):

dy

dξ
(1 − 2

ξ2y3 ) = γb − dζ

dξ
+ 2

ξ3y2 − α

ξ2y3 (1.25)

The equation depends on two parameters (apart from those related to bottom topogra-
phy), which are defined as follows:

α := R

H0
· 2g cos ϕ sgn(ν)

C2 (1.26)

is a parameter related to friction and determines whether the flux is convergent (α < 0)
or divergent (α > 0), while:

γb := R

H0
tan ϕ (1.27)

encloses the dependence on the basal slope. Equation 1.25 is general and, depending on
the values of the parameters and bottom topography, a large variety of solution can be
obtained. Some notable cases are summarized into Table 1.1, obtained for ζ(ξ) ≡ 0 (flat
bottom); other bottom topographies, such as sinusoidal and step, will be discussed within
the next chapters.

1.4 Mathematical Analysis of Profile Equation
In this section, some mathematical aspects of Profile Equation 1.25 will be discussed.
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Table 1.1: Some notable settings obtained from Eq. 1.25, for notable values of the parameters
and flat bottom. Here, "Inv." stands for "Inviscid", while "Vis." stands for "Viscous". The
dependance on the sign of α will be investigated within the next chapters.

Plane Inv. Plane Vis. Cone Inv. Cone Vis. Funnel Inv. Funnel Vis.
ζ(ξ) 0
γb 0 0 >0 >0 <0 <0
α 0 /= 0 0 /= 0 0 /= 0

1.4.1 Physical Domain and Symmetry
Since ξ is the non-dimensional radius, it is assumed to be positive. Moreover, Since
y = y(ξ) is the fluid depth with respect to the bottom, negative depth points would be
located under the bottom: thus, it appears natural to consider only positive y, and the
domain of interest is finally:

D = {ξ > 0} × {y > 0}

Notice that, by applying the transformation:

ξ → −ξ (1.28)

and plug it into Equation 1.25, one obtains:

dy

dξ
(1 − 2

ξ2y3 ) = γb − dζ

dξ
+ 2

ξ3y2 − α

ξ2y3 (1.29)

which is identical to 1.25, except for the sign of γb. This indicates that considering negative
values of ξ brings to same stream solutions, but on opposite basal slope, thus indicating
that the flow direction can be inverted. This happens because, due to Transformation
1.28, one has: I

ν = 1/ξy → −ν

α = R
H0

· 2g cos ϕ
C2 · sgn(ν) → −α

Finally, notice that if α = 0, γb = 0 and ζ(ξ) ≡ 0, Eq. 1.29 modifies as:

dy

dξ
(1 − 2

ξ2y3 ) = 2
ξ3y2 (1.30)

and the transformation :

ξ → −ξ
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1.4 – Mathematical Analysis of Profile Equation

brings to an identical equation, guaranteeing perfect symmetry.
What discussed before has an important implication for all of the solutions that will
be described throughout the whole work: a single Equation describes a orbit on the
Phase Plane (that, as will be shown later, is split into two branches by the Critical Line)
which provides two families of solutions along two opposite directions with respect to the
reference systems illustrated in Fig. 1.1:

• those on Convergent direction, i.e., along decreasing ξ;

• those on Divergent direction, i.e., along increasing ξ.

1.4.2 On the sign of α

The two families of solutions along convergent or divergent direction, previously described
in Sec. 1.4.1, make the stream flow on two opposite directions. Since bottom friction is
always opposite to the motion direction, the sign of α must be chosen subsequently, in
particular:

• α > 0 for flows along divergent direction (i.e., in the same direction of the ξ-axis as
in Fig. 1.1);

• α < 0 for flows along convergent direction (i.e., in the opposite direction of the ξ-axis
as in Fig. 1.1).

What here discussed will be used in Chapter 3, where stream profiles in presence of friction
are simulated and discussed.

1.4.3 The Hypothesis of Gradually Varied Flow
The use of a 2D Shallow-water approximation brings with it a series of hypothesis to be
satisfied and that determine the validity of the model itself. Beyond the hypothesis that
the characteristic transversal dimensions of the flow can be neglected with respect to the
longitudinal ones, which justify the name "Shallow water", an additional one is that of
gradually varied flow, which can be summarized by the following two points (Ref. [36]):

• the flow is steady under the observation time interval;

• the streamlines along the depth can be considered nearly parallel.

In this way, variations of the flow properties along the normal direction can be neglected.
In order to ensure the validity of the hypothesis of gradually varied flows, few assumptions
must be taken into account for the values of the model parameters, enclosed into Eq. 1.25:

• the basal slope γb must be sufficiently small in order to guarantee that energy gains
or losses with respect to the boundary Stream Head are not significant;

• for the same reason, the departures from the flat bottom represented by the bottom
topography ζ(ξ) must be contained both in height and slope ζ ′(ξ);
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• the turbulent friction coefficient α must be sufficiently small in order to guarantee
that energy losses do not cause rapid variations of the stream properties.

Regarding the choice of a suitable bottom topography, in Ref. [42], by means of a pertur-
bative expansion, the following upper-bound is obtained in order to ensure the validity of
the hypothesis of gradually varied flow:

ζ(ξ) ≤ 3
2 −

33
√

3
ξ

4 2
3

(1.31)

In this work no upper bounds are obtained. However, as will be seen within the next
sections, the parameter chosen will automatically satisfy Ineq. 1.31. In particular:

γb ∈ [−0.1, 0.1] (1.32)

The hypothesis of gradually varied flow will be violated in two situations: the first, arising
naturally from the dynamics, is nearby the hydraulic jump; the second, instead, is the
case of stepped bottom topography around the step region, due to the high steepness.
This allows to conclude that the results obtained have only a limited physical meaning,
despite their help in understanding the flow dynamics.

1.4.4 Phase Plane
Equation 1.25 can be rearranged considering that ξ > 0 and y > 0 for the multiplications,
in order to obtain the following equation:

dy

dξ
= (γb − ζ ′)ξ3y3 + 2y − αξ

ξ3y3 − 2ξ
= N(ξ, y)

D(ξ, y) (1.33)

where ζ ′ = dζ
dξ . The second member is surely finite if both N(ξ, y) and D(ξ, y) are non-zero

and is exactly zero when N(ξ, y) = 0 and D(ξ, y) /= 0, in this case allowing to recover the
constant constant depth solution already seen in Sec. 3.1.2. Particular attention is to be
paid to couples (ξ, y) such that both N(ξ, y) and D(ξ, y) equal zero, lying in the so called
nullclines. Remembering Eq. 1.21, one can find that:

y = 3

ó
2
ξ2 ⇔ Fr(ξ, y) = 1 (1.34)

This allows to conclude that D(ξ, y) = 0 for couples (ξ, y) such that Fr = 1, therefore the
nullcline described by the denominator coincide with the Critical Line within the domain
D.
Basing instead on the definition of N(ξ, y) itself, the couples (ξ, y) ∈ D such that N(ξ, y) =
0 satisfy the following equation:

γbξ
3y3 − ζ ′ξ3y3 + 2y − αξ = 0 (1.35)
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The lines N(ξ, y) = 0 and D(ξ, y) = 0, described by Eq. 1.34, 1.35, organize the geometry
of the phase space and their intersections govern the behaviour of the trajectories. The
radii at which of the the previous lines intersect, if there exist, can be determined by
plugging Eq. 1.34 into Eq. 1.35 which, after some algebra, leads to the following equation
in the unknown ξ:

ζ ′ = γb − α

2 + 2 1
3 ξ− 5

3 (1.36)

The nature of Eq. 1.36 (implicit or explicit) depends on the bottom topography ζ(ξ)
chosen (by means of its first derivative) and the only physical solutions ξ∗ are the positive
ones. However, by simple re-arrangement of the members and restriction to the set {ξ >
0}, one concludes that Eq. 1.36 does not admit any physical solution if the following
condition holds:

−γb + ζ ′
∗ ≤ −α

2 (1.37)

where ζ ′
∗ = dζ

dξ |ξ=ξ∗ . Let define:

γ(ξ) := γb − dζ

dξ
(1.38)

representing the topographical slope "faced by the stream" while flowing, due to both
basal slope and bottom topography. Then such condition expresses that physical points
at which dy

dξ = [ 0
0 ] can exist only if the energy contribute of the bed slope γ is greater than

friction dissipation. Notice that if for all ξ > 0 the following inequality holds:

−γb + ζ ′(ξ) ≤ −α

2 (1.39)

then by integration of the two members of such inequality 1.39 within [ξ0, ξ], assuming
ξ > ξ0 for simplicity and using the monotony property of the integrals, one obtains that:

ζ(ξ) ≤ ζ(ξ0) + (γb − α

2 )(ξ − ξ0) (1.40)

where in the second member the asymptotic profile described by Eq. 3.23 can be recog-
nized. Therefore, if the slope of the bed topography function is bounded by γb − α

2 , the
line represented by the aforementioned profile can be interpreted as the boundary of the
region in which values such that dy

dξ = [ 0
0 ] are not possible. Finally, if one plugs Eq. 1.36

(evaluated at ξ = ξ∗) into Eq. 1.34, one obtains the heights at which the two organizing
lines intersect:

y∗ = 5

ó
2

(−γb + ζ ′
∗ + α

2 )2 (1.41)
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where ζ ′
∗ = dζ

dξ |ξ=ξ∗
.

Assume there exist points (ξ∗, y∗) such that dy
dξ = [ 0

0 ]. The nature of such points depends
on the bed topography considered and the friction coefficient, and can be deduced by
Eq. 3.1, transformed to an equivalent set of two ordinary differential equation in the
parameter s ∈ R (which corresponds to a parametrization of the curves (ξ(s), y(s)) in the
phase space). This procedure is analogous to what done in [8] and brings to the following
system:

d

ds

5
ξ
y

6
=
5

ξ3y3 − 2ξ
(γb − ζ ′)ξ3y3 + 2y − αξ

6
(1.42)

where it can be defined the vector function F : R2 → R2 as:

F(ξ, y) =
5

ξ3y3 − 2ξ
(γb − ζ ′)ξ3y3 + 2y − αξ

6
=
5
F1(ξ, y)
F2(ξ, y)

6

In this setting, curves described by N(ξ, y) = 0 and D(ξ, y) = 0 represent the nullclines of
1.4.4, while the solutions of Equations 1.34, 1.36 can be easily thought as the equilibrium
points of the previous system, whose nature is determined by the Jacobian Matrix of the
system evaluated at the equilibrium points considered. Let start computing the entries of
the Jacobian Matrix of F:

JF(ξ, y) =
5 3ξ2y3 − 2 3ξ3y2

y3(3γbξ
2 − 3ζ ′ξ2 − ξ3ζ ′′) − α 3ξ3y2(γb − ζ ′) + 2

6
(1.43)

In order to evaluate JF at the equilibrium point, one can define for the sake of clearness:

t∗ = −γb + α

2 + ζ ′
∗ (1.44)

and, more in general:

t = t(ξ) = −γb + α

2 + ζ ′(ξ) (1.45)

which can be interpreted as a generalized slope including the contribute of friction (in
terms of energy subtraction), the first evaluated at the eventual equilibrium points, the
second in a general point ξ > 0.
Then, since equations 1.34 and 1.36 hold, one can operate the following substitutions:y∗ = 2 1

3 ξ
− 2

3∗

ξ∗ = 2 1
5 t

− 3
5∗

(1.46)

By using what reported before, one obtains:
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

dF1
dξ |(ξ∗,y∗) = 4

dF1
dy |(ξ∗,y∗) = 6t−1

∗
dF2
dξ |(ξ∗,y∗) = −6t∗ + 2α − 2 6

5 t
− 3

5∗ ζ ′′
∗

dF2
dy |(ξ∗,y∗) = 3αt−1

∗ − 4

(1.47)

which are the components of the Jacobian matrix evaluated at the equilibrium points. By
plugging γb = 0 and ζ(ξ) = 0 (identically zero) into 1.47 one can find that the Jacobian
matrix for the case of Horizontal Bed with Flat Bottom assumes the following simpler
form:

JF(ξ∗, y∗)hor, flat =
5 4 12

α
−α 2

6
(1.48)

Notice that, in this specific case, both the Jacobian Determinant and Trace are found
to be independent on the friction coefficient α, and so the eigenvalues do: therefore, the
nature of the equilibrium point does not depend on friction, coherently with the results
found by [29]. Back to the general equation, the Jacobian matrix is:

JF(ξ∗, y∗) =
C

4 6t−1
∗

−6t∗ + 2α − 2 6
5 t

− 3
5∗ ζ ′′

∗ 3αt−1
∗ − 4

D
(1.49)

from which:

(tr JF)|(ξ∗,y∗) = dF1
dξ

|(ξ∗,y∗) + dF2
dy

|(ξ∗,y∗) = 3αt−1
∗ (1.50)

and:

(det JF)|(ξ∗,y∗) = dF1
dξ

|(ξ∗,y∗)
dF2
dy

|(ξ∗,y∗) − dF2
dξ

|(ξ∗,y∗)
dF1
dy

|(ξ∗,y∗) = 4(5+6 ·2 1
5 ζ ′′

∗ t
− 3

5∗ ) (1.51)

The signs of expressions 1.50, 1.51 determine those of the eigenvalues of JF and, there-
fore, the nature of the equilibrium point. The study of the sign of (tr JF)|(ξ∗,y∗) and
(det JF)|(ξ∗,y∗) leads to the following inequalities:

3αt−1
∗ ≥ 0

5 + 6 · 2 1
5 ζ ′′

∗ t
− 3

5∗ ≥ 0
t∗ > 0

Notice that substantial differences arise with respect to the case of Horizontal Bed with
Flat Bottom. Indeed, the sign of the trace generally depends on the sole α. In particular,
if the equilibrium point lies within the physical region D, that is, t∗ > 0, the trace assumes
the same sign of α, thus allowing to obtain both unstable configurations (saddle point,
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when determinant is negative) and stable configurations (stable node or focus, when the
determinant is positive). It is important to notice that while the instability of the equi-
librium point for the linearized system implies the instability for the nonlinear system,
the contrary is generally not true (that is, the stability of the linearized system does not
imply the stability of the nonlinear one) . However, notice that if α < 0, with α chosen
in such a way that the determinant remains positive, if the equilibrium point lies in the
physical region, then one has:

0 ≥ α

2 ≥ γb − ζ ′
∗

from which:

ζ ′
∗ ≥ γb

Therefore, in this situation, friction acts as a control on the positive energy contribute
given by the slope, guaranteeing the stability of the equilibrium point (in the linearized
system). Further details will be provided for the specific kinds of beds that will be
examined within the next sections.

1.4.5 Hydraulic Jump as a Shock Discontinuity
The presence of friction in the model opens to the possibility of having a transition from
the supercritical to the subcritical stream through a hydraulic jump. As described in
[29], it can manifest in the form of turbulent bores or undular jump, depending on the
Froude Number in a neighbourhood of the jump. For the purpose of this work, however,
it is modelled as a shock discontinuity of zero length, coherently with [29, 42]. This is a
significant simplification, since it means to neglect most of the physics, included the eddy
formation and the air entrainment (Ref. [14, 27]), which cannot be described by a simple
Shallow-water model. However, this assumption has the privilege of making the model
capturing basic physical aspects (such as energy dissipation across the jump and its posi-
tion) with relatively simple mathematics. Moreover, the presence of the Hydraulic Jump
can be deduced by simply finding critical points (such as focus) of the dynamical system
1.42, where the gradually varied flow hypothesis ceases to be valid and a discontinuity
arises (Ref. [36]).
To do so, let consider a short reach of circular sector of stream, with central angle θ to
delimit an infinitesimal volume enclosing the whole hydraulic jump, as in Fig. 1.2. In
order to apply the the Global Momentum Equation, let consider a section of height h and
arc length rθ enclosed into the volume, so its area is Ω = rhθ. Lateral hydrostatic compo-
nents and bottom friction are neglected, so that the only force components are given by
the hydrostatic force and the dynamic force which, in dimensional terms, are expressed
by:

Fh = pGΩ = γshGΩ = γsrθ
h2

2 (1.52)
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where hG = h2/2 is the baricentric coordinate of the immersed section and γs is the fluid
specific weight, while:

Fd = βρ
Q2

Ω = βρΩu2 = βrθu(hu) = βrθuq (1.53)

where β is the momentum coefficient, u is the velocity and q is the radiant specific dis-
charge, being q = Q/2πr = hu in force of the Continuity Equation 1.8. By assuming fully
turbulent flow then β = 1 and the momentum equation across the section becomes, in
dimensional terms:

Fh + Fd = const (1.54)

Introducing non-dimensional variables, one then obtains the following final equation, ana-
logue of that obtained in [29]:

F (ξ, y) = y2 + 4
ξ2y

≡ const (1.55)

where F (ξ, y) is denoted in this work as Specific Force.
One can then obtain the jump position by simple intersection of the Specific Forces for
the subcritical and supercritical branches. This procedure will be followed from now and
throughout the whole work to determine the jump position.
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Figure 1.2: Force Balance to determine Hydraulic Jump Position. In this figure, θ
denotes the central angle, (ξG, h/2) the coordinates of the baricentre of the immersed section.
The red and blue sections delimit the volume containing the jump, with hsup and hsub being
the supercritical and subcritical heights in proximity of the hydraulic jump. The blue arrow
indicates the flow direction.

1.4.6 Stiffness and Numerical Methods
The presence of a singularity expressed by the Critical Line y = 3

ð
2/ξ2 and of possible

critical points of the dynamical system 1.42 make concrete the possibility of having regions
in which the height profile y = y(ξ) approaches the singularities with nearly vertical
tangent (and this will be the case, as will be seen later in the next chapters), thus System
1.42 is stiff ([30]). This is not surprising, as it happens also for the stream profiles in
open channel flows (Ref. [36, 25]), but suggests that numerical solutions of 1.42 should
be obtained with proper numerical methods. In particular, the majority of the cases
will be solved with the Variable Step Variable Order (VSVO) method ode15s already
implemented in MATLAB® (Ref. [34]). Alternatively, another method that is used in
specific cases is "StiffnessSwitching" method for NDSolve function available in Wolfram
Mathematica 12, which appears to perform better than ode15s for the case of stepped
bottom topography.
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Chapter 2

Stream Profiles for Inviscid de
Saint-Venant’s Equations

In this chapter, the solutions of Eq. 1.25 will be analyzed in absence of friction, for
different values of basal slope γb and bed topographies ζ(ξ). Therefore, for the whole
chapter, α = 0 will be considered, corresponding to the case of a negligible value of the
friction coefficient, i.e., Cf ≈ 0.
In this case, Profile Equation 1.25 assumes the form:

d

dξ

3 1
ξ2y2 + y

4
= γb − dζ

dξ
(2.1)

where it can be recognized the function

H̃ := 1
ξ2y2 + y (2.2)

representing the non-dimensional Stream Head. Let denote the radial coordinate of the
boundary by ξ0. Then, by the scaling chosen reported at the top of Section 1.2, one has
the following boundary condition:

H̃(ξ0) = 1 (2.3)

To solve Eq. 2.1, one can simply integrate the two members within the interval [ξ0, ξ], use
the Fundamental Theorem of Calculus and enforce the Boundary Condition 2.3 to obtain:

1
ξ2y2 + y − 1 = γb(ξ − ξ0) − [ζ(ξ) − ζ(ξ0)] (2.4)

The so obtained equation is no longer differential and once the topology of the bed (i.e., the
slope parameter γb and the irregularity profile ζ(ξ)) is known, it can be solved numerically.
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For this purpose, the following function is introduced:

F (ξ, y) = 1
ξ2y2 + y − 1 − γb(ξ − ξ0) + [ζ(ξ) − ζ(ξ0)] (2.5)

which is defined on R2 ∖ {(0,0)}. Then the curve described by Eq. 2.4 can be interpreted
as the zero-level curve of F (ξ, y) and describes the behaviour of the solutions y.
The case of inclined bed with flat bottom is recovered by imposing ζ(ξ) ≡ const into Eq.
2.4 (for simplicity ζ(ξ) ≡ 0):

1
ξ2y2 + y = 1 + γb(ξ − ξ0) (2.6)

In this case, the stream head varies linearly with the radial distance, with slope governed
by γb. In particular:

• if γb > 0 (Cone-shaped), the stream head increases;

• if γb < 0 (Funnel-shaped), the stream head decreases.
If additionally γb = 0 is considered, the case of Horizontal Bed with Flat Bottom can be
recovered and Equation 2.4, which now describes the energy conservation, becomes the
following:

1
ξ2y2 + y = 1 (2.7)

Latterly, if one considers the case in which only γb = 0, one obtains the equation for a
plane bed with a prescribed bottom topography ζ = ζ(ξ):

1
ξ2y2 + y = 1 − [ζ(ξ) − ζ(ξ0)] (2.8)

2.1 Case 0 - Horizontal Bed with Flat Bottom
In this Section, solutions of Equation 1.25 will be analyzed in the case of Horizontal Bed
with Flat Bottom, i.e., γb = 0 and ζ(ξ) ≡ 0. Therefore, the proper form of the Profile
Equation to be used is Eq. 2.7. Such case was deeply discussed in [29] 1 where a series of
analytical and numerical results were obtained and classified to find astrophysical analo-
gous of the stream profiles described, in the context of Analogue Gravity (Ref. [5, 20, 46]).
Some of the notation of the previous article will be used in this Section and, generally, in
the following sections and chapters.

1The current case of Horizontal Bed with Flat Bottom is named in [29] as "Isentropic", due to the
astrophysical analog which refers to.

30



2.1 – Case 0 - Horizontal Bed with Flat Bottom

2.1.1 Numerical and Analytical Results
Equation 2.7 is here reported for the sake of clearness:

1
ξ2y2 + y = 1

Then it can be re-formulated, by using Def. 2.2 of the Stream Head, as:

H̃(ξ) ≡ 1 (2.9)

Therefore, Eq. 2.7 describes constant Stream Head orbits and expresses nothing but the
Stream Energy conservation.
In order to analyze the corresponding, Height Profiles y = y(ξ), one can re-arrange Eq.
2.7 (considering ξ > 0 and y > 0) to obtain:

ξ = ξ(y) = 1
y
√

1 − y
(2.10)

which is not injective, therefore suggesting that the inverse relation y(ξ) is a curve
described by two branches. Fig. 2.1(a) confirms the observations coming from non-
injectivity: the orbit y = y(ξ) is split by the Critical Line (where Fr(ξ, y) = 1 into a
Supercritical (lower) and Subcritical (upper) branch, as shown by the Froude Number in
Fig. 2.1(c) . Each branch, thanks to the symmetry property discussed in Sec. 1.4.1, rep-
resents two possible solutions, depending on the flow is on convergent (along decreasing
ξ) or divergent (along decreasing ξ).
An interesting feature emerges by observing the orbits: the two branches join solely at a
minimum radius ξmin, which lies on the Critical Line ymin = y(ξmin). Mathematically, it
can be determined by looking for the stationary points of function ξ(y) in 2.10, obtaining:

(ξmin, ymin) =
A

3
√

3
2 ,

2
3

B

Using the same notation of [29] in the context of Analogue Gravity, often throughout this
work the term Froude Horizon will be used to denote points at which Critical Conditions
are reached, like ξmin.
In view of what just discussed, each of the two branches can be exemplified by the following
physical situations:

• a stream starting in supercritical (subcritical) condition from an external annular
gate placed at radius ξ = ξ0 and flowing along convergent direction (maintaining
constant Stream Head and Discharge), until reaching critical conditions at the edge
of a hole, at ξ = ξmin, where the flow is drained;

• a stream emerging in critical conditions from an internal source, whose external edge
is located at radius ξ = ξmin, and flowing in supercritical (subcritical) conditions.
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Flow feautures and Stream Profiles are reported respectively in Figures 2.1, 2.2.
The convergent flow previously described helps understanding the physical reason why
the minimum radius ξmin arises in this case and for many other solutions throughout
this work. Indeed, such behaviour finds an explanation in the governing equations of the
current case, which impose constant Discharge (Volumetric Flow Rate) and Stream Head.
If the fluid emerges from an annular gate and flows along convergent direction within the
bounded region delimited by the annular gate and no hole is present, keeping the same
Discharge would make the flow height dramatically increase and the Stream Head would
no longer be constant as prescribed: the only way to keep both constant is to drain the
fluid with a hole of radius ξmin, i.e., that the flow attains critical conditions at ξ = ξmin.
Similarly, if the flow is divergent from a critical source, its radius ξmin is that guaranteeing
the flow to maintain constant Stream Head and Discharge.
The way used by [29] to illustrate this behaviour, the same used in this work, is by means
of Radiant Specific Discharge introduced in 1.23: if one pulls its definition into Eq. 2.7
and re-arranges the members to explicit q, one obtains the relation:

q(y) = y
ð

1 − y (2.11)

which is non monotonic. In particular q(y) attains its maximum at y = ymin, i.e., where
the flow necessary reaches critical conditions.

2.1.2 Role of Benchmark Case for Boundary Conditions
Through the next sections, different geometries will be taken into account, described by
gradually more complex equations. The present case, however, will be considered as a
benchmark when imposing boundary conditions. Indeed, the orbit described by Eq. 2.7
represents the locus of the points (ξ, y) of constant Stream Head, since there the non-
dimensional Stream Head H̃(ξ, y) is 1, but at the same time it is obtained by using
H0 = H(ξBC) (the dimensional Stream Head at the boundary) as reference scale.
In most of the cases that will be discussed later on in this work, unitary Stream Head
H̃ will be imposed at a specific point ξ0, but this has to be made by fixing supercritical
and subcritical heights y0,sup and y0,sub for which H̃(ξ0, y0,(·)) = 1. Therefore, y0,sup and
y0,sub will be selected by the supercritical and subcritical branches of the orbit described
by 2.10.
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(a) (b)

(c) (d)

(e)

Figure 2.1: Stream flowing along an Horizontal Bed with Flat Bottom, γb = 0, ζ(ξ) ≡ 0.
Blue arrows indicate that each branch of the curves represents two solutions, depending on the
Convergent (along decreasing ξ) or Divergent (along increasing ξ) direction of the flow. Fig.
2.1(a) - Supercritical and Subcritical Height Profiles. Fig. 2.1(b) - Supercrital and Subcritical
branches of Velocity. Fig. 2.1(c) - Supercrital and Subcritical branches of Froude Number.
Fig. 2.1(d) - Constant Stream Head, along with Supercrital and Subcritical branches of Kinetic
Height. Fig. 2.1(b) - Radiant Specific Discharge versus Height.
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(a) (b)

Figure 2.2: Stream Profiles - Horizontal Bed with Flat Bottom, γb = 0, ζ(ξ) ≡ 0. Left
and right figure respectively refer to Supercritical and Subcritical Stream Profile. Blue arrows
indicate that each branch of the curves represents two solutions, depending on the Convergent
(along decreasing ξ) or Divergent (along increasing ξ) direction of the flow.

2.2 Case 1 - Inclined Bed with Flat Bottom
In this section, solutions of Equation 1.25 will be analyzed in the case of an inclined bed
with flat bottom (ζ(ξ) ≡ 0). Therefore, the reference form of the Profile Equation to be
used is that reported in 2.6.

2.2.1 Structure of the Solution
In order to establish if equation (2.4) defines implicitly a single function y = y(ξ) within
the domain of interest D = {ξ > 0} × {y > 0}. In order to study the injectivity of the
curve described by the equation, let fix any ξ = ξ∗ > 0 and plug it into (2.4). Then:

1
ξ∗2y2 + y − 1 − γb(ξ∗ − ξ0) = 0 (2.12)

Multiplication by y2 holds and re-arranging of the addends hold:

y3 + y2[−1 − γb(ξ∗ − ξ0)] + 1
ξ∗2 = 0 (2.13)

The last equation is algebraic of third degree of the form:

ay3 + by2 + cy + d = 0

where a = 1 , b = −1 − γb(ξ∗ − ξ0) , c = 0 , d = 1
ξ∗2 .

The number of real solutions strictly depends on the coefficients (therefore, on the point
ξ∗ and on the radius of the boundary ξ0). Following the classical procedure to determine
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2.2 – Case 1 - Inclined Bed with Flat Bottom

the solutions of a third degree algebraic equation, let define:I
p = c

a − b2

3a2 = − b2

3
q = d

a − bc
3a2 + 2b3

27a2 = d + 2b3

27

where the simplified form is due to the fact that a = 1 , c = 0.
Let define also:

∆III = ∆III(ξ∗; ξ0) = q2

4 + p3

27 = d

31
4d + 1

27b3
4

(2.14)

If ξ∗ and ξ0 are such that ∆III > 0, then three solutions obtained are surely distinct, but
two of them are complex and the remaining is real. It means that to an arbitrary ξ∗ > 0
such that ∆III > 0, there corresponds exactly one value of y, whose sign depends on the
coefficients b and d: it makes sense only if y > 0. If ξ∗ and ξ0 are such that ∆III = 0,
since d = 1

ξ∗2 > 0, the only possibility is that:

1
4d + 1

27b3 = 0 ⇐⇒ d = − 4
27b3 (2.15)

In this case, referring to the solutions formulae of a third degree algebraic equation in the
case ∆III = 0, the three solutions are real, at least two of them are equal and they all
coincide if and only if q = 0.
Remembering the definition of q, one has:

q = 0 ⇐⇒ d = − 2
27b3 (2.16)

However, this is not consistent with condition (2.15), showing that in this specific case
q /= 0 necessarily. This means that in this case equation (2.13) has two coincident solutions
and one distinct solution, that is, for each arbitrary ξ∗ such that ∆III = 0 there are exactly
two distinct solutions y, which are expressed in the form:y1 = −2

! q
2
" 1

3 − b
3

y2 = y3 =
! q

2
" 1

3 − b
3

(2.17)

Simple algebraic passages and the use of (2.15) show that in this case the two solutions
of (2.17) are strictly positive.
If instead ξ∗ and ξ0 are such that ∆III < 0, according to the solutions formulae for the
present case, one defines:

z = −q

2 + i
ð

−∆III = ρ(cos θ + i sin θ) (2.18)

where ρ > 0 and θ ∈ [0,2π] are modulus and angle of the trigonometric form of the com-
plex number z, which cannot be purely imaginary since ∆III < 0. Therefore θ cannot be
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an integer multiple of π. In this case, the roots are expressed as follows:
y1 = 2

ñ
−p
3 cos

1
θ
3

2
− b

3

y2 = 2
ñ

−p
3 cos

1
θ+2π

3

2
− b

3

y3 = 2
ñ

−p
3 cos

1
θ+4π

3

2
− b

3

where the square roots are real numbers because of p = − b2

3 < 0. The only factor
which distinguishes the three solutions is the one involving cosinus. A simple study of the
functions cos

1
θ
3

2
, cos

1
θ+2π

3

2
, cos

1
θ+4π

3

2
shows that there not exists any point where the

three graphs intersect, meaning that independently from the particular angle θ considered,
at least one root is different from the others. Moreover, couple-by-couple intersections of
the aforementioned cosinus functions happen at angles θ which are integer multiples of
π, in contradiction with the fact that ∆III > 0. Therefore, the three roots y1, y2, y3 are
always distinct, meaning that in the case ∆III < 0, for any ξ∗ > 0 one obtains three
distinct values of y. About the sign of the roots, one can study the following inequalities
by exploiting the fact that p = −b2

3 :
y1 > 0 ⇐⇒ 2| b

3 | cos (θ) − b
3 > 0

y2 > 0 ⇐⇒ 2| b
3 | cos

1
θ+2π

3

2
− b

3 > 0
y3 > 0 ⇐⇒ 2| b

3 | cos
1

θ+4π
3

2
− b

3 > 0
(2.19)

If b > 0, (2.19) turns into: 
cos (θ) > 1

2
cos

1
θ+2π

3

2
> 1

2

cos
1

θ+4π
3

2
> 1

2

In particular, if θ ∈ [0, π] one has y1 > 0, y2 < 0, y3 < 0, while if θ ∈ (π, 2π] one has
y1 < 0, y2 < 0, y3 > 0. Hence, in any case, when b > 0 there correspond a single physical
y > 0 to ξ∗.
If b < 0, (2.19) turns into: 

cos (θ) < −1
2

cos
1

θ+2π
3

2
< −1

2

cos
1

θ+4π
3

2
< −1

2

In particular, for all θ ∈ [0,2π] one has y1 < 0, y2 > 0, y3 < 0. Hence, again, when b > 0
there correspond a single physical y > 0 to ξ∗. What considered allow to conclude that
points ξ∗ such that ∆III < 0 correspond to a single physical y > 0.
What discussed before can be summarized in this way:
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• points ξ∗ such that ∆III(ξ∗; ξ0) > 0 correspond to a unique y satisfying the equation,
whose sign depends on ξ∗ itself. Therefore, such ξ∗ can correspond to at most one
physical y > 0;

• points ξ∗ such that ∆III(ξ∗; ξ0) = 0 correspond to exactly two distinct values of y
satisfying the equation, both positive and, thus, physical;

• points ξ∗ such that ∆III(ξ∗; ξ0) < 0 correspond to exactly one physical solution
y > 0.

This suggests a structure of the solution with at most two physical branches, i.e., corre-
sponding to positive heights y.

2.2.2 Critical points
Assume it is possible to explicit locally ξ = ξ(y), where ξ is differentiable. Then the two
members of (2.4) can be differentiated by y and evaluated along ξ = ξ(y), obtaining the
following:

− 2
ξ2y3 + 2

ξ3y2
dξ

dy
+ 1 − γb

dξ

dy
+ dζ

dξ
|
ξ=ξ(y)

dξ

dy
= 0

By re-arranging:

3 2
ξ3y2 − γb + dζ

dξ
|
ξ=ξ(y)

4
dξ

dy
= −

3
− 2

ξ2y3 + 1
4

(2.20)

By enforcing dξ
dy = 0 and using some algebra, one obtains the following equation:

− 2
ξ2y3 + 1 = 0 ⇐⇒ y =

5 2
ξ(y)2

6 1
3

(2.21)

Remembering (1.21), then (2.21) shows that extrema points of ξ = ξ(y) are characterized
by Fr = 1 independently from the eventual irregularities of the bed, as obtained for the
plane case.

2.2.3 Numerical simulations
Since neglecting drag and considering flat bottom reduces Equation 1.25 to the algebraic
equation (2.6), all the numerical simulations presented make use of such form. In partic-
ular, to plot the curve described, (2.6) is interpreted as the equation of the zero-level set
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of the function
F (ξ, y) = 1

ξ2y2 + y − 1 − γb(ξ − ξ0) (2.22)

in order to use a contour-plot technique, restricted to the physical domain of the problem
D.
Equation 2.6, once fixed the boundary radius ξ0 at which unitary stream head is imposed,
determines a family of orbits depending on the basal slope γb, which are reported in Fig.
2.3 along with the Critical Line.
Again, the orbits are sliced into a subcritical and a supercritical branch by the Critical
Line, and the case of Horizontal Bed with Flat Bottom can be recovered by considering
γb = 0. However, a novel feature emerges from the plots: while orbits corresponding
to γb > 0 are open, those corresponding to γb < 0 are closed. Therefore, while the
existence of a minimum radius ξmin is a common feature to all the possible orbits, those
obtained with γb < 0 also exhibit a maximum radius, ξmax, and the two branches of the
solution are non monotonic. Both ξmin and ξmax are slope dependent. As γb decreases for
negative values, the minimum and maximum radii approach smaller values and correspond
to higher maxima (minima) of the subcritical (supercritical) profile, with a consequently
more abrupt decrease (increase) towards the critical height. The physical interpretation of
the previous observation will be provided in Sec 2.2.4 and Sec. 2.2.6, after the description
of the stream profiles that can be obtained.

Figure 2.3: Orbits for different values of γb. Unitary stream head is imposed at ξ0 = 8,
corresponding to a subcritical depth y0,sub = 0.98 and a supercritical depth y0,sup = 0.13 . Black
Thick line refers to the Plane Bed with Flat Bottom (γ = 0), while the red thick line marks the
Critical Divide (Fr = 1).
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Funnel-shaped bed - γb < 0
The particular structure of the orbits for γb < 0 is responsible for two peculiar aspects.
The first one is that subcritical branches of such solutions are generally non monotonic,
exhibiting a maximum height yM placed at radius ξM progressively smaller and nearer to
the minimum radius. In particular, within the region [ξmin, ξM ], the profile experiments
an abrupt variation, which becomes sharper as γb decreases. This is well shown in Fig.
2.5, which refers to a stream starting flowing with unitary head and converging towards
a central hole, on favourable slope: this is a first example of flows in which energy
increases, as can be observed in Fig. 2.5(e), 2.5(f).
The subcritical profile starts with Fr < 1 and unitary stream head, then it accelerates
to reach the hole in critical condition. Depth increases until reaching a maximum, then
decreases to critical height, showing a non-monotonic behaviour. This can be understood
by means of the radian specific discharge, at Fig. 2.6(a): indeed, the relation between y
and q (the reversed graph) is non monotonic, having a maximum corresponding to the
height yM .
The flow can be also inverted, thanks to the symmetry described in Sec. 1.4.1. In this
case, the flow is divergent, on opposite slope, over a funnel-shaped bed, as can be seen
by the behaviour of the Stream Head: coherently, the flows described are dissipating. It
starts with unitary stream head and reaches critical conditions, according to one of the
two branches. Results are reported in Fig 2.4.
The supercritical profile starts instead with unitary stream head and Fr > 1, then depth
strictly increases until reaching the hole in critical condition. Velocity, as long as Froude
Number, increases until reaching a maximum, then decrease: this is explained by the fact
that, in order to maintain the prescribed linear Stream Head with the depth increasing to
reach critical height at the hole, kinetic energy must decrease, as reported in Fig. 2.5(f).
A second aspect of solution curves with γb < 0 is that they exhibit also a maximum radius
ξ = ξmax, which was also evident in the profiles reported in Fig. 2.4(a) and introduces
an additional class of profiles: those enclosed between two Froude Horizons (in the
context of Analogue Gravity, it describes a Reissner-Nordstrometric Black Hole, See [33]),
as shown in Fig. 2.7. This solution is similar to that obtained for the case of plane, flat
bed, in presence of friction: the novelty of this case is that this behaviour happens although
friction is not considered, opening to the possibility to simulate the phenomenon also in
a simpler laboratory setting. Once the flow direction is specified, one can fix a critical
boundary condition upstream (downstream) and integrate downward (upward) in order to
obtain the supercritical (subcritical) branch of the solution. The so obtained profiles are
non-monotonical, as shown in Fig. 2.7(a). Moreover, it can be observed that the heights
ycrit,max and ycrit,min associated to maximum and minimum respectively correspond to
the minimum and maximum Radian Specific Discharge, while the minimum (maximum)
height attained by the supercritical (subcritical) profile is also a minimum (maximum)
height with respect to the discharge which, as a function of y, is non monotonic.

Cone-Shaped Bed - γb > 0
As described before, the geometry of the orbits for γb > 0 is significantly different, since
they are open: therefore, they exhibit a minimum radius ξmin, but not a maximum one
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like for γb < 0. Such structure of the solution is similar to that of the plane case, with
the exception that the minimum radius depends on the slope. Such behaviour reflects
on the possible stream profiles, which are monotonic increasing if subcritical, monotonic
decreasing otherwise.
When considering convergent direction, stream flows on opposite slope, thus energy de-
creases. This is the case of the stream reported in Fig. 2.9: subcritical (supercritical)
branch starts with unitary stream head at ξ0 = 8, then it accelerates (decelerates) ap-
proaching critical conditions (physically corresponding to a hole) with progressively lower
(higher) depth.
Divergent direction describes instead flows on favourable slope, as the stream head in-
creases. This is the case of the stream reported in Fig. 2.8: it starts flowing in critical
condition at ξ = ξ0 (physically correponding to a source), then it decelerates (accelerates)
according to the subcritical (supercritical) branch attaining progressively higher(lower)
depths, monotonically. In order to highlight this aspect, one can see the plot of Radiant
Specific Discharge q with respect to y, reported in Fig. 2.8(e). Such relation is actually
a function: q increases with the supercritical heights, reaches a maximum at y(ξ = ξmin)
(the critical height at minimum radius), then decreases to 0 as the subcritical heights
increase, thus explaining the monotony of depth profiles.
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(a) (b)

(c) (d)

Figure 2.4: Divergent stream flowing on opposite slope over a funnel-shaped flat bed,
γb = −0.05. Unitary stream head is imposed at ξ0 = 8 for both supercritical and subcritical
flows. Fig. 2.4(a) - Supercritical and Subcritical stream profiles. The blue arrow shows the flow
direction. Fig. 2.4(b) - Supercritical and Subcritical velocities. Fig. 2.4(c) - Supercritical and
Subcritical branches of the Froude Number. Fig. 2.4(d) - Stream Head, along with supercritical
and subcritical branches of Kinetic Height.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Convergent stream flowing on favourable slope over a funnel-shaped flat
bed, γb = −0.05. Left and right column respectively refer to Subcritical and Supercritical
solutions. In each column Stream Profile, Velocity and Froude number, Stream Head and Kinetic
Height are reported for γb = −0.05. Unitary stream Head boundary condition is imposed at
ξ0 = 8. The blue arrow represents the convergent flow direction.
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(a) (b)

Figure 2.6: Radiant Specific Discharge -Convergent stream flowing on favourable
slope over a funnel-shaped flat bed, γb = −0.05. Left and right column respectively
refer to the relation between Radiant Specific Discharge and Height for the Subcritical and the
Supercritical solutions. Unitary stream Head boundary condition is imposed at ξ0 = 8. Vertical
lines are depicted to show that the maximum Radiant Specific Discharge is attained at the
critical height associated to the minimum radius, while at the maximum subcritical height the
curve has vertical tangent.
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(a) (b)

(c) (d)

(e)

Figure 2.7: Two Horizons Solution, γb = −0.05. Unitary Stream Head condition is imposed
at ξ0 = 12. 2.7(a) - Subcritical and Supercritical branches. 2.7(b) - branches of the Velocity.
2.7(c), branches of the Froude Number. 2.7(d) - Stream Head and branches of the Kinetic
Height. 2.7(e) - Branches of the Radiant Specific Discharge, along with the notable heights: the
critical heights ycrit,max and ycrit,min, corresponding to the heights attained at minimum and
maximum radius; the maximum height attained by the Subcritical Profile, yM and the minimum
height attained by the Supercritical Profile, ym.
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(a) (b)

(c) (d)

(e)

Figure 2.8: Divergent stream flowing on favourable slope over a Cone-shaped flat bed,
γb = 0.05. In both regimes, flow starts in critical condition at ξ0 = 3.75, physically corresponding
to a source, and flows in the divergent direction. 2.8(a) - Subcritical and Supercritical Stream
Profiles; the blue arrow indicates flow direction. 2.8(b), branches of the velocity. 2.8(c) - branches
of the Froude Number. 2.8(d) - Stream Head along with the branches of Kinetic Height. 2.8(e),
branches of the Radian Specific Discharge. Notice that the relation q ∼ y is actually a function.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Convergent stream flowing on opposite slope over a Cone-Shaped flat bed,
γb = 0.05. Left and right column respectively refer to Subcritical and Supercritical solutions.
In each column Stream Profile, Velocity and Froude number, Stream Head and Kinetic Height
and the relation between Radian Specific Discharge and the depths of the profiles are reported
for γb = 0.05. The blue arrow represents the convergent flow direction.
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(a) (b)

Figure 2.10: Radiant Specific Discharge -Convergent stream flowing on opposite slope
over a Cone-shaped flat bed, γb = −0.05. Left and right column respectively refer to the
relation between Radiant Specific Discharge and Height for the Subcritical and the Supercritical
solutions. Unitary stream Head boundary condition is imposed at ξ0 = 8. Vertical lines are
depicted to show that the maximum Radiant Specific Discharge is attained at the critical height
associated to the minimum radius.

2.2.4 Monotony of Stream Profiles: Mathematical Point of View
A first point of view to explain the different behaviour of the orbits for positive, null and
negative basal slopes γb (open or closed) is provided by Eq. 1.29, which in case of an
Inclined Bed with Flat Bottom, with no friction, assumes the form:

dy

dξ
=

γb + 2
ξ3y2

1 − 2
ξ2y3

=
γb + 2

ξ3y2

1 − Fr2(ξ, y) (2.23)

In order to discuss the sign of dy/dξ, one can easily observe that the denominator of Eq.
2.23 is:

• positive for the subcritical branch;

• negative for the supercritical branch.

Regarding the nominator of Eq. 2.23, one can study its sign by means of the following
inequality:

2
ξ3y2 ≥ −γb (2.24)

where one can observe that −γb is the opposite slope and, by using the relation 1.19 for
the velocity ν = ν(ξ, y), that:

ks(ξ, y) := 2
ξ3y2 = 2 ν2

ξ
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represents Radiant Specific Kinetic Height, which is a measure of how Kinetic energy
distributes along a specific radiant, at each radial position ξ.
Last inequality is satisfied ∀ξ, y > 0 if γb ≥ 0: therefore, the nominator is positive if the
bed is horizontal or Cone-shaped.
If instead one considers γb < 0, last inequality can be re-arranged as:

y ≤
ó

− 2
γbξ3 (2.25)

Let define:

yst,flat(ξ) :=
ó

− 2
γbξ3 (2.26)

Then Ineq. 2.25 tells that if the bed is Funnel-shaped (γb < 0), then the nominator of Eq.
2.23 is:

• positive where the height profile is lower than yst,flat(ξ);

• negative where the height profile is greater than yst,flat(ξ).

Table 2.1 combines the results just obtained to determine the sign of dy/dξ for the super-
critical and the subcritical profile.
It is evident that Funnel-shaped bed gives rise to non-monotonic height profiles, since the
sign of dy/dξ expressed by Eq. 2.23 can change.
Moreover, yst,flat(ξ) in 2.26 represents the curve where the stationary points of the height
profile lie, since along it dy/dξ = 0: they can be find as intersections between 2.26 and
solutions curve expressed by Eq. 2.6.

2.2.5 Velocity - Gravity Interplay and Monotony of Stream Pro-
files

In view of what just discussed, Ineq. 2.24 can be interpreted from a physical point of view
as an interplay between Kinetic and Potential Energies, which is illustrated in Fig. 2.11
and justifies what is described below.
Indeed, if the bed is Cone-shaped (γb > 0, Figures 2.11(b), 2.11(d)), Kinetic Energy
definitively overcomes the energy subtractions given by opposite slope one and governs
the behaviour of the stream profiles, granting no monotony variations: it helps the stream
when flowing on both favourable slope (in order to linearly increase the Stream Head) and
opposite slope, providing the fluid as much kinetic energy to go up the cone to contrast
gravity until reaching the central hole at minimum radius (if the hole was not present, the
stream head would abruptly decrease, being no longer linear as prescribed by 2.6, and the
fluid would come back flowing on favourable slope).
Flows on Horizontal Beds (γb = 0) have an analogous behaviour, with the exception that
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there is no slope, so the Stream Head is constantly 1.
If instead the bed is Funnel-shaped (γb < 0, Figures 2.11(a), 2.11(c)), such interplay shows
more complex features on the supercritical and subcritical branches:

• if the stream is on favourable slope (convergent) and subcritical, kinetic energy
progressively increases, balances the effects of gravity where the height profile reaches
its maximum and then helps the fluid reaching the central hole (Left Horizon). If
the hole was not present, Stream Head would dramatically increase breaking linear
behaviour as prescribed by Eq. 2.6;

• if the flow is subcritical, but on opposite slope, kinetic energy decreases until being
overbalanced by gravity, helping the flow going up the funnel until reaching the
external hole (Right Horizon). If such hole was not present, the stream would come
back flowing on favourable slope under the effect of gravity);

• the same holds for the supercritical flow, but the two energetic contributes balance
exactly where the height profile attains its minimum. This happens because the
kinetic energy is greater in the supercritical regime, implying that for supercritical
flows on opposite slope gravity overbalance on kinetic energy appears at greater dis-
tances with respect to the subcritical ones, while for supercritical flows on favourable
slope Radiant Specific Kinetic Energy abruptly nearby the central hole (Right Hori-
zon), to force the flow reaching critical Conditions.

It is therefore evident the role of Radiant Specific Kinetic Energy in individuating, par-
ticularly for Beds with γb < 0, the regions where the flows are more influenced by the
presence of the holes (Left and Right Horizon).

Table 2.1: Sign of dy/dξ. The sign is determined according to that of the numerator and
denominator of the right hand side of Eq. 2.23.

Sign of dy/dξ, Inclined Bed with Flat Bottom

γb > 0 γb = 0 γb < 0
y ≤ yst,flat(ξ) y > yst,flat(ξ)

Sign of dy/dξ - Supercritical Flow > 0 > 0 > 0 < 0
Sign of dy/dξ - Subcritical Flow < 0 < 0 < 0 > 0
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(a) (b)

(c) (d)

Figure 2.11: Radiant Specific Kinetic Height ks(ξ) for Flows over Inclined Bed with
Flat Bottom, γb = ±0.10. Left panel (Figures 2.11(a),2.11(c) ) refer to a Two-Horizons Flow
(in both convergent and divergent direction) over a Funnel shaped Bed (γb = −0.10) with
Flat Bottom. Right panel (Figures 2.11(b),2.11(d) ) refer to a Flow over a Cone shaped Bed
(γb = 0.10) with Flat Bottom (in both convergent and divergent direction). Both profiles are
obtained by imposing unitary Stream Head at ξ0 = 12.

2.2.6 Energy - Discharge Interplay and Non Monotonic Profiles
The non-monotonic behaviour of the height profiles obtained for γb < 0 (whose mathe-
matical explanation was provided by the study of Eq. 2.23 at the start of Sec. 2.2.3)
can be understood in physical terms by means of the Convergent and Divergent stream
profiles in the framework of the governing equation 2.6, which prescribes:

• a linear Stream Head H̃(ξ) = 1 + γb(ξ − ξ0), which is exactly 1 at ξ = ξ0;

• a constant Discharge Q.

Considering the Convergent Flow over Funnel shaped Bed with Flat Bottom reported in
Fig. 2.5, fluid emerges from an external annular gate placed at ξ0 = 8, where the stream
head is enforced to be 1, and starts flowing according to the supercritical or subcritical
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branch on favourable slope until converging to a central hole, located at minimum radius,
which drains the fluid: for radii smaller than the minimum one (i.e., for tighter or absent
central holes) and same discharge, fluid Height y(ξ) and Radiant Specific Discharge q(ξ)
would dramatically increase, and the only possibility to maintain the Stream Head linear
as prescribed by the governing equation 2.6 would be to reduce the discharge itself, in
contradiction with Eq. 2.6 itself which expresses instead its conservation.
If one considers instead Divergent Flow over Funnel shaped Bed with Flat Bottom, re-
ported in Fig. 2.4, fluid emerges from an internal annular gate placed again at ξ0 = 8,
where the stream head is enforced to be 1, and starts flowing on opposite slope according
to one of the two branches, until reaching a maximum radius. For radii greater than the
maximum one, the fluid Height y(ξ) and Radiant Specific Discharge q(ξ) would dramat-
ically decrease, and the only possibility to maintain the Stream Head Linear would be
instead to increase the Discharge, again in contradiction with the governing equation 2.6.
The consequence of such interplay is the non monotony of the profiles, particularly evident
in the two branches of the Two-Horizons Stream solutions reported in Fig. 2.7. Indeed,
nearby the minimum and maximum radii (respectively Left and Right Horizons indicated
in Fig. 2.7(a)) the subcritical (supercritical) flow approaches critical conditions, velocity
abruptly accelerates (slows down) and consequently height decreases (increases): since the
critical heights at minimum and maximum radius are different, the only possibility to con-
nect Left and Right Critical Horizons is via a non monotonical profile, with a maximum
if the flow is subcritical and a minimum if supercritical.

2.3 Case 2 - Inclined Bed with Sinusoidal Bottom
Following what has previously studied in [4] in a two-dimensional cartesian reference, let
consider again a bed with general basal slope γb. Moreover, in order to simulate the effects
of irregularities of the bed on the flow, let consider a simple sinusoidal irregularity profile:

ζ(ξ) = a cos(kbξ) + a (2.27)

where:
• a > 0 is the amplitude of the sinusoidal bottom 2, therefore the maximum height of

the bottom is given by hsin,max = 2a;

• kb is the wavenumber of the sinusoidal bed
Then the Solution Curve expressed by Equation 2.4, with sinusoidal bottom expressed by
2.27, assumes the following form:

1
ξ2y2 + y − 1 − γb(ξ − ξ0) + a cos(kbξ) − a cos(kbξ0) = 0 (2.28)

2Translation by a makes the codomain of the profile described by 2.27 be [0,2a] instead of [−a, a].
In this way, the bed profile is completely included within the domain of interest, i.e., D = {(ξ, y) : ξ >
0, y > 0}
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Again, three main cases of beds with Sinusoidal Bottom can be distinguished, depending
on γb:

• Cone shaped Bed, γb > 0;

• Funnel shaped Bed, γb < 0;

• Horizontal Bed, γb = 0

However, the sinusoidal topography introduces a and kb as additional parameters, from
which depends the nature of the solutions. In order not to violate the hypothesis of
gradually varied flow, small amplitude values are chosen: in particular, ain[0.01,0.1],
similarly to Ref. [4].
The aim of this section is to investigate the influence of a and kb, along with γb, in the
features of the flow.

2.3.1 Numerical Simulations
Orbits described by Eq. 2.28, again, exhibit a similar behaviour to those of the inclined
bed with flat bottom: they are open with a minimum radius for γb ≥ 0, closed for
γb < 0. However, the sinusoidal irregularity of the bottom influences the features of both
supercritical and subcritical flow. This is evident in Fig. 2.12, where orbits are obtained
with amplitude a = 0.05, wavenumber kb = 5 and basal slopes γb = −0.1, 0, 0.1, while
unitary stream head is imposed at ξ0 = 12.
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(a) (b)

(c)

Figure 2.12: Bed with Sinusoidal Bottom - Orbits. In all of the three cases, unitary stream
head is enforced at ξ0 = 12, a = 0.05 and kb = 5, while the basal slope, from top left figure and
clockwise, assumes the values γb = −0.1, 0.1, 0.

Horizontal Bed with Sinusoidal Bottom, γb = 0

Height profiles obtained for the Horizontal Bed with Sinusoidal Bottom (γb = 0) are
characterized, as for the case of Horizontal Bed with Flat Bottom, by bounded subcritical
and supercritical branches forming an open curve, each one representing two possible
solutions depending on the direction of the flow (convergent, flowing towards a central
critical hole or divergent, starting from a critical source). However, the presence of the
sinusoidal irregularity induces a marked non monotony, which is exhibited in both the
subcritical and the supercritical branch, but with significant differences:

• the supercritical branch shows damped undulatory behaviour, with maxima and
minima almost on phase with those of the bottom profile (tend to be on phase with
the bed for sufficiently large ξ);

• the subcritical branch shows progressively stabilizing undulatory behaviour, with
maxima and minima exhibiting a phase offset with respect to the ones of the bed
profile (the phase offset tends to be π

2kb
).

Such behaviour is well shown in Fig. ?? and can be explained by two factors:
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• the interplay between Kinetic and Potential energy, because of the sinusoidal irreg-
ularity;

• the interplay between the unitary stream head boundary condition placed at ξ = ξ0
and the critical condition attained at the minimum radius.

From an energetic point of view, Mechanical Energy is not conserved and variations of
the stream head are due to the sole effect of the irregularities of the bed, as it is shown
by Eq. 2.8, which here assumes the following form:

1
ξ2y2 + y = 1 − a cos(kbξ) + a cos(kbξ0) (2.29)

Such equation expresses the fact that the Stream Head is sinusoidal and, since it contains
the term −acos(kbξ), it shows an offset of exactly π

2kb
with respect to the bottom topog-

raphy: if bottom topography increases, mechanical energy (the Stream Head) decreases,
and vice versa. This is similar to what discussed in Sec. 2.4.2 for the effect of the Step
Bottom topography: each half-oscillation of the bottom (which can be increasing or de-
creasing) can be "felt" by the flow as ascending or descending depending on the direction
(convergent or divergent), respectively "helping" or "opposing" to the flow and therefore
increasing or decreasing total Energy.
What causes the offset between the subcritical and supercritical flow features is instead
the interplay between the unitary stream head boundary condition and the critical condi-
tion at the minimum radius. In order to illustrate this, let consider the case of a divergent
flow starting from a critical source located at ξ = ξmin = 2.9 and reaching unitary stream
head at ξ0 = 12, as reported in Fig. 2.13. The sinusoidal bottom has amplitude a = 0.10
and wavenumber kb = 5: the convergent case can be interpreted by simply inverting
flow direction and considering a hole draining the fluid (in place of the source) in criti-
cal conditions. Once barely moving from the critical source, flow is forced to accelerate
(decelerate) in order to flow according to the supercritical (subcritical) regime, indepen-
dently from the potential energy contribute of the sinusoidal bottom, which is felt instead
by the flow starting from the first extremum point of the bottom topography faced after
the minimum radius. Therefore, independently again from the behaviour of the sinusoidal
bottom, in a neighbourhood of the minimum radius flow depth is forced to increase (sub-
critical) or decrease (supercritical) and, since the stream head must be the same for the
two regimes at any radial distance ξ, the two height profiles exhibit an offset.
Mathematically, it can be explained generally by considering Profile Equation 1.25, which
in the current case of Horizontal Bed with Sinusoidal Bottom and no friction ( i.e., α = 0),
assumes the following form:

dy

dξ
=

akb sin(kbξ) + 2
ξ3y2

1 − 2
ξ2y3

=
akb sin(kbξ) + 2

ξ3y2

1 − Fr(ξ, y)2 (2.30)

Indeed, the denominator of Eq. 2.30 is:

• positive if the flow is subcritical;
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• negative if the flow is supercritical;

• 0 if the flow is critical.

Moreover, in order to study the sign of the numerator of Eq. 2.30, one obtains by simple
re-arrangement:

2
ξ3y2 ≥ −akb sin(kbξ) (2.31)

Because of the physical domain 3, the previous inequality is surely satisfied when the sinus
term is non-negative (since the left hand side is strictly positive, while the right hand side
would be negative or zero). Therefore, the numerator is surely positive for:

k

kb
π ≤ ξ ≤ (2k + 1)

kb
π , k ∈ Z

Consider now the case in which sinus term is negative, i.e., when

2k − 1
kb

π < ξ <
2k

kb
π , k ∈ Z

Then the right hand side of Ineq. 2.31 is positive and, by using some algebra and re-
arranging, two cases can be distinguished:

• if y ≤
ñ

− 2
akbξ3 sin(kbξ) , Ineq. 2.31 is satisfied and the numerator of Eq. 2.30 is

non-negative;

• if y >
ñ

− 2
akbξ3 sin(kbξ) , Ineq. 2.31 is not satisfied and the numerator of Eq. 2.30 is

negative.

Table 2.2 provides an organic combination of the results just obtained, along with the sign
of dy

dξ as a consequence, while a graphic display can be found in Fig. 2.13. It is evident
that height profiles for the supercritical and subcritical branch always exhibit opposite
monotony, which explains the offset which was previously detected in Fig. 2.12(c). Notice
that when the sinus term at the right hand side of Ineq. 2.31 is positive, it also provides
the curve along which the stationary points (minima and maxima) of both subcritical and
supercritical height profiles are located, i.e., the line:

yst,sin(ξ) :=
ó

− 2
akbξ3 sin(kbξ) (2.32)

In particular, they can be found as the intersections between 2.32 and the solution curve
expressed by Eq. 2.28, as it is shown in Fig. 2.13.

3Recall: The physical domain, introduced in Sec. 1.4.1, is D = {ξ > 0} × {y > 0}.
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(a) (b)

(c) (d)

Figure 2.13: Divergent Flow along an Horizontal Bed with Sinusoidal Bottom, γb = 0,
a = 0.1, kb = 5. Unitary Stream Head Boundary Condition is imposed at ξ0 = 12. Fig.
2.13(a) - Subcritical and Supercritical height profiles, along with the function yst,min(ξ) defined
in 2.32 (purple line) to display the results summarized in Tab. 2.2. Figures 2.13(b), 2.13(d) -
Supercritical and Subcritical Stream Profiles. Fig. 2.13(c)- Stream Head and Kinetic Height.

A last interesting aspect emerges from the Stream Head. Indeed the bed is horizontal
(γb = 0), so, as described by Eq. 2.30, the Stream Head H̃(ξ) is expressed by the sum
of a constant mean Stream Head H0,γb=0 due to the boundary condition imposed and a
sinusoidal fluctuation H ′(ξ) due to the energy contribute of bottom slope:

H̃(ξ) = H0,γb=0 + H ′(ξ)

where:

H0,γb=0 = 1 + a cos(kbξ0) = 1 + H ′
0

can be interpreted as a mean Stream Head, while
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Table 2.2: Sign of dy/dξ and of the bottom slope dζ/dξ. As usual in this subsection, a
and kb respectively represent amplitude and wavenumber of the sinusoidal bottom topography.
Notice that by varying k ∈ N0, the whole physical domain ξ > 0 is covered: in this way, the
analysis shows that supercritical and subcritical height profiles always exhibit opposite monotony
properties.

Sign of dy/dξ and dζ/dξ , Sinusoidal Bottom, γb = 0

kπ/kb ≤ ξ ≤ (2k + 1)π/kb
(2k − 1)π/kb < ξ < 2kπ/kb

y ≤ yst,sin(ξ) y > yst,sin(ξ)
Sign of dy/dξ - Supercritical Flow < 0 ≤ 0 > 0
Sign of dy/dξ - Subcritical Flow > 0 ≥ 0 < 0
Sign of dζ/dξ= −akb sin(kbξ) <0 >0

H ′(ξ) = −a cos(kbξ)

is a spatial perturbation of the mean Stream Head.
In general, one has:

H ′
− = −a + H0,γb=0 ≤ H̃(ξ) ≤ a + H0,γb=0 = H ′

+ (2.33)

This is helpful to understand the role of the amplitude a, the wavenumber kb and the unit
stream head boundary condition:

• H ′
0 is a constant perturbation of the unitary stream head, which grows in absolute

value with the amplitude a > 0, but whose sign depends on kb and ξ0 by means of
the cosinus term: therefore, a variation of the sole wavenumber alters the dynamics,
causing an increase or decrease of energy depending on the sign of cos(kbξ0);

• H ′(ξ) depends instead also on the radial coordinate, thus varying with the position,
but is 0 on average over a period T = 2π/kb.

Therefore, net of the fluctuations, the mean strem head H0,γb=0 is conserved.
In order to show the role of the amplitude in determining the maxima and minima of
the height profiles, Fig. 2.14 reports a comparison between the solutions obtained with
Stream Head H̃(ξ), H0,γb=0 and H ′

± = H0,γb=0 ± a. Again, it is taken into account a
Divergent Flow along an Horizontal Bed with Sinusoidal Bottom of amplitude a = 0.1
and wavenumber kb = 5, forced to attain unitary Stream Head at ξ0 = 12.
On the contrary, convergent direction, unitary stream head boundary condition and am-
plitude are chosen for the height profiles reported in Fig. 2.15, where instead a vari-
able wavenumber is considered in order to show its influence: in the examples provided,
kb = 1, 5, 10.
Similar profiles can be obtained also by changing amplitude a and radial position ξ0 of the
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unitary stream head condition: indeed, the mean features of the flow (i.e., net of spatial
perturbation expressed by H ′(ξ) in terms of stream head) are determined by the combi-
nation of the three parameters enclosed in H0,γb=0. What emerges by Fig. 2.15, is that
larger mean stream head H0,γb=0 are associated to lower minimum radii at which the flow
reaches critical condition. This is not surprising, since the mean stream head is conserved
and therefore, on average, the behaviour is similar to that described for the Horizontal
Bed with Flat Bottom in Sec. 2.2.3 4 and reported by [29]: for radii smaller than the mim-
imum radius (at which critical condition is attained), Radiant Specific Discharge would
increase so much that the only possibility to conserve flow rate is to decrease the mean
Stream Head (which therefore is not conserved) and, conversely, the only possibility to
conserve mean stream head H0,γb=0 (mean total energy) is to reduce the flow rate (which
therefore is not conserved): thus, in order to conserve both the flow rate and the mean
stream head, the minimum radius behaviour arises. The larger H0,γb=0, the larger the
possible heights and velocities that can be attained by the flow, the larger the maximum
radiant specific discharge, the smaller the position of the minimum radius.

(a) (b)

Figure 2.14: Comparison between solution with different stream heads - Horizontal
Bed, Sinusoidal Bottom, a = 0.1, kb = 5, γb = 0. Fig. 2.14(a) reports height profiles, while
2.14(b) reports the corresponding Stream Head profiles. Solid lines refer to Height profiles for
a divergent flow along an horizontal bed with sinusoidal bottom, the fluid emerging in critical
condition at ξ = 2.88 (unitary stream head is imposed at ξ0 = 12). Black dotted lines refer to
the mean Stream Head H0,γb=0 and the corresponding solution; blue and magenta dotted lines
refer respectively to H ′

− and H ′
+ defined in 2.33 (and the corresponding solutions). It can be

noticed in this way how the amplitude influences the local minima/maxima of the height profiles.

4Recall: Horizontal Bed with Flat Bottom Described in Sec. 2.2.3 is obtained for γb = 0 and
ζ(ξ) ≡ 0.
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(a) (b)

(c)

Figure 2.15: Comparison between solutions for different wavenumbers - Horizontal
Bed, Sinusoidal Bottom, a = 0.1 γb = 0. Fig. 2.15(a) reports height profiles for kb = 1, 3, 5.
Fig. 2.15(b) reports the corresponding Stream Head profiles and Fig. 2.15(c) the corresponding
relations between Height Radiant Specific Discharge. Flow is divergent along an horizontal bed
with sinusoidal bottom, the fluid emerges in critical condition (unitary stream head is imposed
at ξ0 = 12 for all of the three profiles). Because of the different wavenumber, flows attain critical
conditions at different minimum radii.

Introduction of Basal Slope γb /= 0 and Stream Head Split

When a basal slope γb is included, solutions are described by Eq. 2.4, which in case of a
sinusoidal bottom assumes the form:

1
ξ2y2 + y = 1 + γb(ξ − ξ0) − a cos(kbξ) + a cos(kbξ0) (2.34)

Such equation describes a linear stream head of slope γb with a fluctuation expressed by
the sinusoidal term, i.e.:

H̃(ξ) = H0,BC + H0,γb
(ξ) + H ′(ξ) (2.35)
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where:

H0,BC := 1 + a cos(kbξ0) − γbξ0 (2.36)

is the contribute to Stream Head due to boundary condition,

Hγb
(ξ) := γbξ (2.37)

is the energy contribute due to the basal slope γb, giving positive or negative slope to
Stream Head if respectively γb is positive or negative.
Finally,

H ′(ξ) := −a cos(kbξ) (2.38)

represents the fluctuation due to the energy contribute of the sinusoidal bottom.
It can then be defined the mean Stream Head (i.e., the stream head net to the sinusoidal
fluctuation H ′(ξ)) similarly to the case of Horizontal Bed with Sinusoidal Bottom:

H0,γb
(ξ) := H0,BC + Hγb

(ξ) = 1 + a cos(kbξ0) + γb(ξ − ξ0) (2.39)

Therefore, the following split of the Stream Head H̃(ξ) holds:

H̃(ξ) = H0,BC + Hγb
(ξ) + H ′(ξ) = H0,γb

+ H ′(ξ) (2.40)

Notice that H0,γb
(ξ) is associated to the following Equation:

1
x2 + y2 + y = 1 + a cos(kbξ0) + γb(ξ − ξ0) (2.41)

which is of the same form of Eq. 2.6, with boundary stream Head:

1 + a cos(kbξ0)

instead of 1. Therefore, the behaviour of the mean solution, i.e., the solution net of the
perturbation H ′(ξ) which satisfies Eq. 2.41, is the same of the cases of Inclined (Cone or
Funnel) Bed with Flat Bottom described in Sec. 2.2, as expected.
The behaviour of the Stream Head H̃(ξ) and, particularly, of the mean Stream Head has
implications in the solutions that will be discussed within the next two subsections.
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Cone shaped Bed with Sinusoidal Bottom, γb > 0

Similarly to the case of Cone shaped Bed with Flat or Step bottom, the orbits are open
and characterized by a subcritical and a supercritical branch, while critical condition is
attained at a minimum radius, as reported in Fig. 2.12(b). Each branch, as for the
previous cases, represents two possible solutions depending on the direction (convergent
or divergent):

• in case of convergent direction, stream flows on opposite basal slope γb attaining
unitary stream head at ξ = ξ0 and until reaching a critical hole, thus the mean
stream head H0,γb

(ξ) decreases;

• in case of divergent direction, stream emerges from a critical source and flows on
favourable basal slope, attaining again unitary stream head at ξ = ξ0, thus H0,γb

(ξ)
grows indefinitely.

Fig. 2.16 reports the stream profiles and features for both convergent and divergent di-
rection: there, γb = 0.10, a = 0.10 and kb = 5, while unitary stream head is enforced
at ξ0 = 12. As already observed for the case of Horizontal Bed with Sinusoidal Bottom,
subcritical height profiles exhibit an offset with respect to supercritical ones and to the
bottom topography.
Moreover, while the supercritical profiles exhibit the already seen damped undulatory
behaviour, the subcritical profiles amplifies the effects of the amplitude of bottom topog-
raphy, due to interplay between the energy contribute of basal slope and bottom slope.
This is particularly evident in Fig. 2.16(c), where the stream Head is reported for the
diverging case (thus, the stream flows on favourable slope):

• the sinusoidal fluctuations given by the bottom topography, expressed by contribute
H ′(ξ) to the Stream Head, help or hamper the flow in terms of potential energy
depending on whether the bottom topography is felt as ascending or descending by
the flow direction;

• however, the favourable basal slope γb > 0, expressed by the contribute Hγb
(ξ),

helps the flow in terms of potential energy, reducing the decrease and amplifying the
increase of the Stream Head H̃(ξ) due to the fluctuation H ′(ξ).

The interplay between the two potential energy contributes is mathematically described
by:

Hγb
(ξ) + H ′(ξ) = γbξ − a cos(kbξ)

The interaction with the kinetic energy, expressed by the kinetic height in Fig. 2.16(c),
gives rise to the height behaviours described for the supercritical and subcritical profiles
(divergent case):

• for the subcritical profile, velocity tends to decrease as ξ increases and so the kinetic
height does, thus height tends to increase with progressively larger amplitude in
order to maintain the increasing oscillations of the Stream Head H̃(ξ);
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• for the supercritical profile, velocity tends to increase as ξ increases and so the kinetic
height does, thus height tends to decrease with progressively damping amplitude in
order not to exceed the increasing oscillations of the Stream Head H̃(ξ).

(a) (b)

(c) (d)

Figure 2.16: Flow along a Cone shaped bed with Sinusoidal Bottom, γb = 0.10, a = 0.10,
kb = 5. Unitary Stream Head is imposed at ξ0 = 12. Fig. 2.16(a) - Subcritical and Supercritical
height profiles. Figures 2.16(b), 2.16(d) - Supercritical and Subcritical stream profiles (blue
colored areas), along with bottom topography (brown colored area). Fig. 2.16(c) - Stream Head
along with supercritical and subcritical branches of Kinetic Height. Double blue arrows indicates
that Stream and Height profiles can be interpreted in both convergent and divergent direction,
as well as the branches of the Kinetic Height and the Stream Head in Fig. 2.16(c) (although
arrows are not depicted in this figure).

Funnel shaped Bed with Sinusoidal Bottom, γb < 0

Also for the case of Funnel Shaped Bed with Sinusoidal Bottom, solutions can be obtained
by solving Eq. 2.34, which now represents a linear stream Head of negative slope γb with a
fluctuation induced by the sinusoidal bottom topography, again expressed by the cosinus
term of the aforementioned Equation.

62



2.3 – Case 2 - Inclined Bed with Sinusoidal Bottom

As for the cases of Funnel bed with flat or step bottom, orbits obtained for γb < 0 are
closed, therefore both supercritical and subcritical profiles are characterized by a "Two
horizons" behaviour, with a minimum and a maximum radius. Again, each branch can
represent two solutions depending on the flow direction (convergent or divergent). In
particular, using the same notation introduced in 2.36, 2.37, 2.38 and 2.39 (which leads
to the splitting of the Stream Head 2.40) four main physical situation can be described:

• a stream flowing on favourable basal slope along convergent direction, starting from
an external annular source located at ξ = ξ0 (where the Stream Head is enforced to
be unitary) until reaching a central hole where the fluid is drained (Fig. 2.17);

• a stream flowing on opposite basal slope along divergent direction, starting from an
internal annular source located at ξ = ξ0 (where the Stream Head is enforced to be
unitary) until reaching an external hole where the fluid is drained (Fig. 2.17);

• a stream flowing on favourable basal slope along convergent direction which emerges
from a critical source placed at a maximum radius ξ = ξmax, attains unitary Stream
Head at ξ = ξ0 and enters a critical hole at minimum radius placed at ξ = ξmin;

• a stream flowing on opposite slope along divergent direction which emerges at a
critical source placed at minimum radius ξ = ξmin, attains unitary stream head at
ξ = ξ0 and enters a critical hole at maximum radius ξ = ξmax.

It is not surprising that, net of the fluctuations, the overall behaviour is non monotonical:
this is indeed due to the mean Stream Head H0,γb

(ξ), which thanks to Eq. 2.41 and nega-
tive γb gives rise to a mean solution with analogous behaviour to the case of Funnel-shaped
Bed with Flat Bottom in Section 2.2, including the presence of two Froude Horizons.
What is interesting is the behaviour of the height profiles, which is well depicted for
the case of Two-Horizons stream reported in Fig. ?? (but can be recovered also for the
Convergent and Divergent case in Fig. 2.17. Indeed, the subcritical profile behaves as
follows:

• in a neighbourhood of the left horizon (i.e., nearby the minimum radius), abruptly
decreases as it approaches critical condition, appearing almost not influenced by the
sinusoidal bottom;

• within the left and right horizons, after reaching the absolute maximum, amplitude
constantly decreases;

• nearby the right horizon, amplitude decreases more rapidly towards critical height.

Regarding the supercritical profile, instead:

• in a neighbourhood of the left horizon (i.e., nearby the minimum radius), abruptly
increases as it approaches critical condition, appearing almost not influenced by the
sinusoidal bottom;

• within the left and right horizons, the effect of bottom topography appears rapidly
damped until the profile reaches its absolute minimum; from this point, amplitude
increases until reaching the right horizon, where the increase is more abrupt.
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The damping or amplifying response of the height profile to the sinusoidal bed topography
has an interesting connection with the behaviour of Radiant Specific Kinetic Height and
will be discussed into the next Section.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.17: Flow along a Funnel shaped bed with Sinusoidal Bottom, Convergent
and Divergent directions, γb = 0.10, a = 0.10, kb = 5. Unitary Stream Head is imposed
at ξ0 = 12. Left panel and right panel respectively refer to Convergent and Divergent Flow,
as indicated by the blue arrows. First row (Figures 2.17(a), 2.17(b)) report height profiles.
Second row (Figures 2.17(c), 2.17(d)) report Stream Head, along with Kinetic Height. Third
row (Figures 2.17(e), 2.17(f)) report Radiant Specific Discharge.
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(a) (b)

(c) (d)

Figure 2.18: Flow along a Funnel shaped bed with Sinusoidal Bottom, Convergent
and Divergent directions, γb = 0.10, a = 0.10, kb = 5. Unitary Stream Head is imposed
at ξ0 = 12. Left panel and right panel respectively refer to Convergent and Divergent Flow, as
indicated by the blue arrows. First row (Figures 2.18(a), 2.18(b)) report Supercritical Stream
Profiles. Second row (Figures 2.18(c), 2.18(d)) report instead Subcritical Stream Profiles.

2.3.2 Velocity - Gravity Interplay and Flow Response to Sinu-
soidal Bed Topography

The Stream Profiles obtained in Sec. 2.3.1 have a different response to the Sinusoidal
Bottom Topography, which from a qualitative point of view appears to vary with the sign
of bottom slope γb and the regime (supercritical or subcritical).
Results are summarized in Table 2.3 and graphically displayed in Fig. 2.19. As can be
observed, the profiles of Radiant Specific Kinetic Height ks(ξ) appear very similar to those
obtained with Flat Bottom, except for the presence of the sinusoidal perturbation and the
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2.3 – Case 2 - Inclined Bed with Sinusoidal Bottom

reason comes from a re-organization of the governing Profile Equation 1.29 5 similar to
that operated to obtain Eq. 2.30:

dy

dξ
=

γb + akb sin(kbξ) + 2
ξ3y2

1 − 2
ξ2y3

=
γb + akb sin(kbξ) + 2

ξ3y2

1 − Fr2(ξ, y) (2.42)

It is straightforward to conclude that the denominator of Eq. 2.42 is positive or negative
if the flow is, respectively, subcritical or supercritical (and 0 at critical conditions). The
study of the sign of its nominator, instead, leads to the following Inequality:

ks(ξ, y) = 2
ξ3y2 ≥ −γb − akb sin(kbξ) (2.43)

Notice that the right hand side of 2.43, as displayed in Fig. 2.19, describes nothing but a
sinusoidal oscillating around the basal opposite slope −γb with amplitude akb.
Ineq. 2.43 not only provides the monotony variations of the height profiles, but similarly to
what discussed in Sec. 2.2.5 encloses the interplay between velocity (Kinetic Energy) and
gravity (Potential Energy), whose contribute in terms of slope can be found at the right
hand side: where Ineq. 2.43 is satisfied, kinetic contribute overbalances the gravitational
one and vice versa.
The behaviour of the Height profiles obtained appears intimately connected with that of
the corresponding ks(ξ, y(ξ)) (see Fig. 2.19):

• for couples (ξ, y(ξ)) satisfying Ineq. 2.43, i.e., where kinetic contribute overbalances
that of gravity, the amplitudes of subcritical profiles grow (linearly or, for the Hori-
zontal Bed, until a stabilization), while supercritical profiles dampen;

• for couples (ξ, y(ξ)) not satisfying Ineq. 2.43, i.e., where the kinetic contribute is
overbalanced by that of gravity, the amplitudes of subcritical profiles dampen, while
those of the supercritical profiles grow.

It is interesting to notice that the transition from damping to amplifying regime (or vice
versa) which is observed for supercritical and subcritical height profiles with γb < 0 takes
place only and exactly at, respectively, their absolute minimum and absolute maximum
(there, Ineq. 2.43 reduces to the corresponding equality): therefore, the sinusoidal per-
turbation at the right hand side of Ineq. 2.43 influences the location of the absolute min-
imum and maximum, however the distinction between the two regimes remains perfectly
dichotomous (instead of having, for example, an alternation of zones with amplification
or damping as expected by the graphical solution of Ineq. 2.43 evident by the graphs of
ks(ξ, y(ξ)) in Fig. 2.19).)
Such transition does not happen for supercritical and subcritical height profiles with γb ≥ 0
where, although Ineq. 2.43 shows that there exists multiple zones where gravity contribute

5Considering α = 0 and ζ′(ξ) = −akb sin(kbξ) due to the absence of of bottom friction and the
Sinusoidal Bottom Topography.
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overbalances the kinetic one, both subcritical and supercritical brances of ks(ξ, y(ξ) over-
come the opposite basal slope.
What just discussed suggests that the damping and amplifying behaviour depends mostly
on γb, independently from the characteristics of the sinusoidal perturbation which only
affect the position of the absolute minimum and maximum for γb < 0.

Table 2.3: Amplitude response of Flow to Sinusoidal Bottom Topography. Here,
"AMP", "DAMP" and "STAB" stand respectively for "AMPLIFYING", "DAMPING", "STABI-
LIZING". The notation "Min/Max" has to be interpreted as "Minimum" for the Supercritical
Flow and "Maximum" for the Subcritical Flow. The Table must be read in the divergent flow
direction (increasing ξ): for the convergent one, it suffices to invert "DAMP" with "AMP" and
"Before" with "After".

γb > 0 γb = 0
γb < 0

Before Abs. Min/Max After Abs. Min/Max

Supercritical DAMP DAMP DAMP AMP

Subcritical AMP AMP → STAB AMP DAMP
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(a) (b)

(c) (d)

(e) (f)

Figure 2.19: Radiant Specific Kinetic Height and Amplitude Response of Stream
Profiles to Sinusoidal Bottom Topography. Left column (Figures 2.19(a), 2.19(c), 2.19(e)
) reports Height profiles for respectively (from top to bottom) γb = −0.10,γb = 0.10,γb = 0,
while right column report the corresponding profiles of Radiant Specific Kinetic Height. For all
the profiles, unitary stream Head condition is imposed at ξ0 = 12.
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2.4 Case 3 - Inclined Bed with Step Bottom
In order to obtain a simple model for the presence of a step along the bed, let consider
the following irregularity profile:

ζ(ξ) = hs tanh[σs(ξ − ξs)] + hs (2.44)

where hs > 0 controls the step height (which is given by hstep = 2hs) 6, |σs| controls the
steepness of the step and sgn(σs) controls the direction of the step (increasing or decreas-
ing): this is shown in Fig. 2.20. This kind of function, which is C∞ (R), represents a
suitable choice to represent the step geometry without loosing regularity, since its deriva-
tive

ζ ′(ξ) = hsσs sech2[σs(ξ − ξs)] (2.45)

is almost 0 everywhere except for a straight interval around the maximum, which is hsσs

and is attained at ξ = ξs
7. For this purpose, |σs| will be considered as a prescribed,

sufficiently large number and Eq. 2.4 now depends on:

• basal slope γb;

• step height hs;

• steepness sign sgn(σs).

The aim of this section, in particular, is to investigate the energetic role of the step
topography. It is worth to notice, however, that the presence of a sort of discontinuity at
the step, although the regularity of the bottom topography, can lead to solution violating
the hypothesis of gradually varied flow. In order to limit such violation only in the step
region, the parameter hs is chosen in such a way it is sufficiently small compared to the
unitary stream head. Typical values will be in the range [0.01, 0.2[.

6Translation by hs makes the codomain of the profile described by 2.44 be [0,2hs] instead of
[−hs, hs]. In this way, the bed profile is completely included within the domain of interest, i.e.,
D = {(ξ, y) : ξ > 0, y > 0}

7It can be proved (Ref. [13]) that, if {σn}∞
n=1 is a strictly increasing sequence in absolute value, then

lim
n→+∞

hsσn sech2[σn(ξ − ξs)] = δ(ξs)

in the sense of distributional convergence, therefore such a bed profile well approximates the presence
of a step for sufficiently large values of σ.
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(a) (b)

Figure 2.20: Step Bed configurations. For both panels, same step heights are used, as long
as for the value |σs| = 100. The only difference is given by sgn(σs), which is 1 for the increasing
step (left) and −1 for the decreasing step (right).

2.4.1 Numerical Simulations
Orbits described by Eq. 2.4, with the bottom topography ζ(ξ) = hstanh(σs[ξ − ξ0)],
exhibit a similar behaviour to those of the inclined bed with flat bottom: they are open
with a minimum radius for γb ≥ 0, closed for γb < 0. However, the presence of the step
reflects on both profiles, particularly the subcritical one. This is evident in Fig. 2.21,
where orbits are obtained by imposing unitary stream head at ξ0 = 8 and considering a
decreasing step located at ξs = 9, with height hs = 0.1. The reason of this behaviour will
be clear within the next subsections, were specific solutions will be illustrated.

(a) (b)

Figure 2.21: Orbits for Inclined Bed with Step Bottom. Left and right figure respectively
refer to γb = −0.05, γb = 0.05. For both cases, decreasing step of the bottom is located at
ξs = 12 and unitary Stream Head is imposed at ξ0 = 12.
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Convergent Flow over Funnel-shaped Bed with Step Bottom - γb < 0

Fig. 2.22 reports the main features of a convergent flow down a cone-like bed with step
bottom, increasing or decreasing depending on sgn(σs) as described earlier. Stream flows
in convergent direction, on favourable step, starting with unitary stream head at ξ0 = 12,
then faces a step at ξs = 9 and finally reaches a hole in critical condition. In case of
increasing step, i.e., sgn(σs) = 1, the subcritical height experiments an abrupt increase,
while supercritical heights slightly reduces. This behaviour is the consequence of the
combination of two factors: the step, which is "felt" as descending by the flow, increases
the stream energy (as shown by the stream head in Fig. 2.22(c)), while the Radian
Discharge remains constant across the step (see Fig. 2.22(e)). A perfectly opposite be-
haviour is shown instead if, maintaining all the other features, one considers decreasing
step (sgn(σs) = −1): indeed, the step is "felt" as ascending by the flow, causing an en-
ergy decrease. The stream profiles obtained, showing water surface, are shown in Fig. 2.23.

Divergent Flow over Funnel-shaped Bed with Step Bottom - γb < 0

Fig. 2.24 reports the main features of a divergent flow over a funnel bed with step bot-
tom: the flow starts with unitary stream head at ξ0 = 5, then faces a step and ends
up in critical condition, represented by a hole. Also divergent flow is affected by the
presence of the step, for the same reasons (variation of the energy and conservation of
radian discharge) described for the convergent flow. The only changes are due to the
direction of the flow, which now is dissipating. The effect of the increasing step will be to
enlarge dissipation, since will be felt by the flow as ascending while, on the contrary, to
reduce dissipation if decreasing. The corresponding stream profiles are shown in Fig. 2.25.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.22: Convergent stream flowing on favourable slope over a funnel-shaped bed
with step bottom, γb = −0.05. Left panel refers to an increasing step, while right panel refers
to a decreasing one. Blue arrow, as usual, indicates flow direction.
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(a) (b)

(c) (d)

Figure 2.23: Convergent stream flowing on favourable slope over a funnel-shaped bed
with step bottom - Stream Profiles and Free Surface, γb = −0.05. Left column refers to
an increasing step, right column to a decreasing one.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.24: Divergent stream flowing on opposite slope over a funnel-shaped bed
with step bottom, γb = −0.05. Left panel refers to an increasing step, while right panel refers
to a decreasing one. Blue arrow, as usual, indicates flow direction.
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(a) (b)

(c) (d)

Figure 2.25: Divergent stream flowing on opposite slope over a funnel-shaped bed
with step bottom - Stream Profiles and Free Surface, γb = −0.05. Left column refers to
an increasing step, right column to a decreasing one.

Flow over a Cone-shaped Bed with Step Bottom, γb > 0

As described before, orbits are open for γb > 0, with the supercritical branch approaching
to 0 and the supercritical branch growing indefinitely as ξ increases. Therefore, analo-
gously to the cone-shaped bed with flat bottom, two possible solutions can be represented
by each branch, depending on the convergent or divergent direction:

• stream starting from a source in critical condition and flowing on favourable slope
along divergent direction in subcritical (supercritical) conditions, with the heights
increasing (approaching 0) as ξ grows;

• stream starts with unitary stream head and flows on opposite slope along convergent
direction in subcritical (supercritical) conditions, decreasing (increasing) to reach
critical conditions at the edge of a hole, located at a minimum radius.

The main features of such flows are described in Fig. 2.26, while the stream profiles are
reported in Fig. 2.27. As expected, the role of the step is the same as before: it increases
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or decreases energy depending on the direction at which is felt by the flow (ascending or
descending).

(a) (b)

(c) (d)

(e) (f)

Figure 2.26: Stream flowing on over a Cone-shaped bed with step bottom, γb = 0.05.
Left column refers to an increasing step, while right panel refers to a decreasing one. Double
blue arrows, indicates that each branch can represent flows on both converging and diverging
direction. Boundary Conditions placed are to be intended for the converging flow
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(a) (b)

(c) (d)

Figure 2.27: Flow down a Cone-Shaped bed with Step Bottom- Stream Profiles and
Free Surface, γb = −0.05. Left column refers to an increasing step, right column to a decreasing
one.

Horizontal Bed with Step Bottom - γb = 0

As for the case γb > 0, solutions with γb = 0 (horizontal bed with step bottom) correspond
to open curves, with the supercritical branch lower bounded by 0. Each branch of the
solution, again, describes two possible solution depending on the direction of the flow:

• stream starts from a source in critical condition, flows on favourable slope along
divergent direction in subcritical (supercritical) conditions and faces a step;

• stream starts with unitary stream head and flows on opposite slope along conver-
gent direction in subcritical (supercritical) conditions and faces a step; the height
decreases (increases) then to reach critical conditions at the edge of a hole, located
at a minimum radius.

The main difference with respect to the Horizontal Bed with flat bottom (γb = 0, ζ(ξ) ≡ 0)
is that energy is no longer conserved. This is evident by the behaviour of the Stream Head,
reported in Fig. 2.28, where a discontinuity located at ξ = ξstep connects two branches:

• a constant branch corresponding to a unitary stream head;
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• a constant branch corresponding to a stream head 1 ± 2hs, the sign depending on
whether, respectively, the step is increasing or decreasing.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.28: Stream flowing over a Horizontal Bed with Step Bottom , γb = 0. Left
column refers to the case of Increasing Step, the right one to the case of Decreasing Step.Figures
2.28(a), 2.28(b) - Comparison between height profiles obtained for the horizontal bed with step
and flat bottom, respectively for increasing and decreasing step. Step is located at ξs = 9, while
the solution with step bottom is obtained by imposing unitary stream head at ξ0 = 12. Figures
2.28(c), 2.28(d) - Stream Head of the solutions with increasing and decreasing step, along with
the extensions H̃+(ξ) and H̃−(ξ) of the two branches connected by the discontinuity at ξs.
Figures 2.28(c), 2.28(d) - Relation between Radiant Specific Discharge and Height Profiles.
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The energetic role of the bottom step, which will be described in details in Section 2.4.2, is
determined by the flow direction (convergent or divergent) and the step shape (increasing
or decreasing), according to Table 2.4: an increasing step will be felt as "ascending" from
a divergent flow and "descending" from a convergent flow, causing respectively an increase
or a decrease in terms of energy; the contrary holds for the decreasing step. The main
features of the flows are reported in Fig. 2.28, while the corresponding Stream Profiles
are reported in Fig. 2.29.

(a) (b)

(c) (d)

Figure 2.29: Horizontal bed with Step bottom, γb = 0 - Stream Profiles. Left column
refers to the case of Increasing Step, Right column to the case of Decreasing Step. In both cases,
step is located at ξs = 9 and the orbits are obtained by imposing unitary Stream Head at ξ0 = 8.

2.4.2 Role of the Step: Orbit Jump
As seen in the previous subsections by the behaviour of the stream head, the presence of
the step bottom affects the energy of the stream, while the Radian Specific Discharge is
conserved across the step. The results obtained are summarized in Table 2.4. The step
reflects on all the kinematic and dynamic features of the flow, and alters the behaviour of
both supercritical and subcritical height (and free surface) profiles.
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Table 2.4: Energetic Role of the Step. Positive sign "+" means that the step causes an
energy increase, the contrary holds for the negative sign "-".

Step - Energy Variations

γb > 0 γb < 0

Incr. Step Decr. Step Incr. Step Decr. Step

Conv. Flow + - + -

Div. Flow - + - +

To explain this, Fig. 2.30 and Fig. 2.31 reports a comparison between the height profiles
obtained for inclined bed with flat bottom and step bottom, considering the same value
of γb. It is evident, from all the figures reported, that depending on the increasing (de-
creasing) direction of the step, the two orbits are coincident within the left (right) region
delimited by the step, which acts as a discontinuity and marks a difference between the
behaviour of the orbits within the respective opposite regions. This happens because if
one considers Eq. 2.4 with step topography 8, one has:

1
ξ2y2 + y = 1 + γb(ξ − ξ0) − {hs tanh[(σs(ξ − ξs)] − hs tanh[σs(ξ0 − ξs)]} (2.46)

One can observe that except for a small neighbourhood around the step position:

• at the left (right) of the increasing (decreasing) step tanh[σs(ξ − ξs)] abruptly ap-
proaches −1 9;

• at the right (left) of the increasing (decreasing) step tanh[σs(ξ − ξs)] abruptly ap-
proaches 1 10.

Therefore, if the bed is increasing (decreasing), immediately at the left (right) of the step
Eq. 2.46 approximates as:

8Recall: the function chosen to represent step bottom topography is the following:

ζ(ξ) = hs tanh[σs(ξ − ξs)]

where hs is the non-dimensional step height, sgn(σs) determines step direction (+1 if increasing, −1
if decreasing), |σs| controls steepness of the step (the higher |σs|, the steeper is the step ).

9Precisely, limξ→0+ tanh[σs(ξ − ξs)] = −1 if σs > 0 (increasing), while limξ→+∞ tanh[σs(ξ − ξs)] =
−1 if σs < 0 (decreasing).

10Precisely, limξ→+∞ tanh[σs(ξ − ξs)] = 1 if σs > 0 (increasing), while limξ→0+ tanh[σs(ξ − ξs)] = 1
if σs < 0 (decreasing).
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1
ξ2y2 + y ≈ 1 + γb(ξ − ξ0) + hs{1 + tanh[σs(ξ0 − ξs)]} = H̃−(ξ) (2.47)

while, on the contrary, immediately at the right (left) of the step Eq. 2.46 approximates
as:

1
ξ2y2 + y ≈ 1 + γb(ξ − ξ0) − hs{1 − tanh[σs(ξ0 − ξs)]} = H̃+(ξ) (2.48)

Such approximations motivate the structure of the Stream Head represented in Fig. 2.30
and Fig. 2.31, which exhibits two branches separated by a discontinuity located at the
step position ξ = ξs: functions H̃−(ξ) and H̃+(ξ) can be respectively interpreted as :

• the right and left branches of the Stream Head if the step is increasing (σs > 0);

• the left and right branches of the Stream Head if the step is decreasing (σs < 0).

The difference between the two branches is given by:

∆H(ξ) = |H̃−(ξ) − H̃+(ξ)| = 2hs

which, as explained at the top of this subsection, corresponds to the height of the step:
therefore, the higher hs (i.e., the higher step height), the higher the energy difference
across the step. Since it is independent on the radial position ξ, such difference is the
same at both step position and boundary radial position ξ = ξ0. Considering separately
the two linear branches, one can find therefore that each one is associated to a specific
orbit of those obtained in the case of Inclined bed with flat bottom, already discussed
previously. The two orbits have the same value of γb, but different stream heads at the
boundary ξ0:

• H̃−(ξ = ξ0) = 1 + hs tanh[σs(ξ0 − ξs)];

• H̃+(ξ = ξ0) = 1 − hs + hs tanh[σs(ξ0 − ξs)].

This is also justified by the fact that Equations 2.47, 2.48 have the same form of Eq. 2.6,
which describes the Stream Head for the case of an inclined bed with flat bottom, and
explains why the presence of the step modifies the position of the minimum and maximum
radius: the step causes an energy jump, represented by a discontinuity, which also causes
an orbit jump giving rise to the profiles described in Fig. 2.30 and Fig. 2.31.
Another interesting aspect emerging by Equations 2.47 and 2.48 is the dependence on the
relative position between step and unitary stream head boundary condition, by means of
the term:

tanh[σs(ξ0 − ξs)]

Indeed, since hyperbolic tangent is an odd function, a sign change between the relative
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distance ξ0 − ξs turns into a sign change of the hole aforementioned term. This means
that the stream head branches H̃−(ξ) and H̃+(ξ) described by Equations 2.47 and 2.48
vary according to whether ξ0 > ξs or ξ0 < ξs: it can increase or decrease, giving rise to
different orbits which exhibit different minimum or maximum radius if compared to the
solutions obtained with same γb, but flat bottom.

(a) (b)

(c) (d)

Figure 2.30: Cone - Orbit comparison between step and flat bottom, γb = 0.05. textcap-
tion
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(a) (b)

(c) (d)

Figure 2.31: Funnel - Orbit comparison between step and flat bottom, γb = −0.05,
ξ0 > ξs. Left column shows orbits for decreasing (top left) and increasing (bottom left), the
right one the corresponding stream head. The step of bed topography is located at ξs = 9.
Unitary stream head is enforced at ξ0 = 12 > ξs, showing that in this case only the minimum
radius is different with respect to that of the orbits obtained with same γb, but flat bottom. The
maximum radius remains instead the same.
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(a) (b)

(c) (d)

Figure 2.32: Funnel - Orbit comparison between step and flat bottom, γb = −0.05,
ξ0 < ξs. Left column shows orbits for increasing (top left) and decreasing (bottom left), the
right one the corresponding stream head. The step of bed topography is located at ξs = 9.
Unitary stream head is enforced at ξ0 = 7 < ξs, showing that in this case only the minimum
radius is different with respect to that of the orbits obtained with same γb, but flat bottom. The
maximum radius remains instead the same.
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Chapter 3

Stream Profiles for de
Saint-Venant’s Equations
Including Drag

In this chapter, an analysis of de Saint-Ventant’s Equations in circular symmetry will be
performed, taking into account also the contribution of bottom friction. For this reason,
the general model introduced in Chapter 1 in its complete form is taken into account by
means of Eq. 1.25, here reported again to facilitate reading:

dy

dξ
(1 − 2

ξ2y3 ) = γb − dζ

dξ
+ 2

ξ3y2 − α

ξ2y3 (3.1)

Friction introduces an additional degree of complexity with respect to the models previ-
ously discussed 1 , interacting in terms of energy with basal slope, bottom topography
and Kinetic Energy to determine height profiles y(ξ): by varying one of such contributes,
mathematically expressed at the right hand side of Eq. 3.1, one can obtain different
stream profiles.
Before investigating the effect of Bottom Topography in the stream profiles obtained (
which is the main purpose of the whole current Chapter), it is interesting to find and
analyze bottom topographies that ensure particular features to the flow.
Therefore, the current Chapter organizes into two macro-studies, according to the objec-
tives to be pursued. The first study, reported in Sec. 3.1, is dedicated to find bottom
topographies ensuring:

• constant stream head;

• constant depth;

1Compared to the models obtained in absence of friction in Chapter 2, governed by Eq. 2.4, now
representing a particular case of Eq. 3.1 that can be recovered by considering α → 0.
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• everywhere critical conditions.

The second study, involving Sections 3.3, 3.5, 3.4, is instead devoted to study the ener-
getic role of Bottom Friction for the same bottom topographies introduced in Chapter 2,
namely:

• flat bottom, Sec. 3.3;

• step bottom, Sec. 3.5;

• sinusoidal bottom, Sec. 3.4.

The link between the two studies is provided by the choice of the Boundary Conditions,
which are briefly reported and discussed in Sec. 3.2.

3.1 Notable Bed Topographies
In this section, differently to what done before, the bottom topography ζ(ξ) is unknown.
The goal is to find bottom topographies which ensure specific features to the stream: con-
stant Stream Head, Constant Height and everywhere Critical Height. Such configurations
provide steady state profiles that can be useful also to perform Linear Stability Analysis,
as will be discussed next in Chapter 5.

3.1.1 Constant Stream Head Topography
Assume constant, given stream head H(r) = H0, which in non-dimensional terms reads
as H̃(ξ) ≡ 1. Then dH̃/dξ ≡ 0, as well as the left hand side of Eq. 3.1 which therefore
assumes the following form:

dζ

dξ
= γb − α

ξ2y3 (3.2)

On the other hand, as described by [29], the solution y = y(ξ) related to constant stream
head satisfies:

ξ = 1
y
√

1 − y

By plugging such solution into the right hand side of Eq. 3.2, one finally obtains the
following equation:

dζ

dξ
= γb − α[1 − y(ξ)]

y(ξ) (3.3)

where is to be intended that y(ξ) is the supercritical or subcritical constant stream head
solution, therefore by fixing α and γb one obtains two different bottom topographies
depending on the regime. Eq. 3.3 describes the behaviour of the bottom slope ensuring
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constant stream head, due to a balance between friction dissipation and energy gain
because of slope. Indeed, it can be formulated also in the following way:

γ(ξ) = α(1 − y)
y

(3.4)

where:

γ(ξ) = γb − dζ

dξ
(3.5)

is the topographic slope "felt" by the stream while flowing, which takes into account the
contributes of both basal slope and bottom topography.
Equation 3.3 opens to an additional class of profiles which can be both monotonic or not,
depending on the values of α and γb and the supercritical or subcritical solution y(ξ).
Indeed, one can easily find by the equation itself that bottom topography :

• increases where the right hand side of Eq. 3.3 is positive, i.e., where basal slope
energy gain overbalances energy loss due to friction;

• decreases where the right hand side of Eq. 3.3 is negative, i.e., where basal slope
energy gain is overbalanced by energy loss due to friction;

• attains stationary points (maxima or minima) where the right hand side of Eq. 3.3
where basal slope energy gain balances energy loss due to friction.

Such behaviour is well illustrated in Figures 3.1(e), 3.1(f), 3.2(e), 3.2(f), 3.3(e), 3.3(e),
where friction contribute α[1 − y(ξ)]/y(ξ) is reported along with γb.
Notice that non-monotonical bottom topographies are possible only if γb /= 0. Indeed, if
γb = 0, then Eq. 3.3 modifies as:

dζ

dξ
= −α[1 − y(ξ)]

y(ξ) (3.6)

Since the Constant Stream Head Solution 2.10 is such that 0 < y(ξ) < 1 for all ξ > ξmin
2, then the right hand side of Eq. 3.6 only depends on α, therefore it does not vary with
ξ.
Remembering that both supercritical and subcritical solutions y(ξ) are well defined and
continuous for ξ ≥ ξmin, one can fix a point ξ0 > ξmin and integrate Eq. 3.3 within
[ξ, ξ0], where ξ ≥ ξmin, to obtain the bottom topography ζ(ξ). Using Torricelli-Barrow’s
Fundamental Theorem of Calculus and re-defining ζ(ξ) as ζCH(ξ) 3, one obtains the

2Recall: ξmin is the minimum radius arising in the Height Solution for the Horizontal Bed with
Flat Bottom, see Sec. 2.1

3The subscript "CH" stands for "Constant Head".
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following expression for the topography ensuring Constant Stream Head solution:

ζCH(ξ) = ζ(ξ0) + γb(ξ − ξ0) − α

Ú ξ

ξ0

1 − y(ξ′)
y(ξ′) dξ′ (3.7)

The integral term of 3.7 can be numerically computed for each value of ξ ≥ ξmin, by
means of the Trapezoidal Numerical Integration and by using the numerical values of the
function y(ξ), according to the supercritical or subcritical branch. The previous analysis
expresses therefore that Stream Energy Conservation is possible also in presence of bot-
tom friction, provided that the related dissipation is balanced by bottom topography.
Figures 3.1, 3.2 and 3.3 illustrate some examples of monotonic topographies ensuring Con-
stant Stream Head, respectively obtained for Funnel-shaped, Cone-shaped and Horizontal
Bed: each one reports supercritical and subcritical stream profiles, along with the basal
line (black dot-dashed line) indicating the flat bottom. It is evident, from the Stream Pro-
files obtained, the role of the topography in trying to maintain the Stream Head constant,
particularly from those related to the subcritical profile:

• for convergent flows along Funnel-shaped Bed (Fig. 3.1(c)) or divergent flows along
Cone-shaped bed (Fig. 3.2(d)), where in case of flat bottom the Stream Head would
increase due to the flow on favourable slope, the bottom topography increases, oppos-
ing to the stream in order not to increase the Stream Head and keeping it constant;

• for divergent flows along Funnel-shaped Bed (Fig. 3.1(d)) or convergent flows along
Cone-shaped bed (Fig. 3.2(c)), where in case of flat bottom the Stream Head would
decrease due to the flow on opposite slope, the bottom topography decreases, helping
the stream in order not to decrease the Stream Head and keeping it constant.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Bottom Topographies ensuring Constant Stream Head for Funnel-shaped
Bed in presence of Bottom Friction, γb = −0.05, α = ±0.1. Left column (Figures 3.1(a),
3.1(c), 3.1(e)) refer to a stream flowing down a Funnel-shaped bed along convergent direction
(γb = −0.05, α = −0.1). Right column (Figures 3.1(b), 3.1(d), 3.1(f)) refer to a stream flowing
over a Funnel-shaped bed along divergent direction (γb = −0.05, α = 0.1). In each column, top
and middle figures respectively report supercritical and subcritical stream profiles and related
topographies (the black dashed-dotted line stands for the flat bottom), while bottom figure
reports friction for both supercritical and subcritical profiles, along with γb, in order to show
the behaviour of the right hand side of Eq. 3.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Bottom Topographies ensuring Constant Stream Head for Cone-shaped
Bed in presence of Bottom Friction, γb = 0.05, α = ±0.1. Left column (Figures 3.2(a),
3.2(c), 3.2(e)) refer to a stream flowing over a Cone-shaped bed along convergent direction
(γb = 0.05, α = −0.1). Right column (Figures 3.2(b), 3.2(d), 3.2(f)) refer to a stream flowing
down a Cone-shaped bed along divergent direction (γb = 0.05, α = 0.1). In each column, top
and middle figures respectively report supercritical and subcritical stream profiles and related
topographies (the black dashed-dotted line stands for the flat bottom), while bottom figure
reports friction for both supercritical and subcritical profiles, along with γb, in order to show
the behaviour of the right hand side of Eq. 3.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Bottom Topographies ensuring Constant Stream Head for Horizontal Bed
in presence of Bottom Friction, γb = 0, α = ±0.1. Left column (Figures 3.3(a), 3.3(c),
3.3(e)) refer to a stream flowing along convergent direction (γb = 0, α = −0.1). Right column
(Figures 3.3(b), 3.3(d), 3.3(f)) refer to a stream flowing along divergent direction (γb = 0, α =
0.1). In each column, top and middle figures respectively report supercritical and subcritical
stream profiles and related topographies (the black dashed-dotted line stands for the flat bottom),
while bottom figure reports friction for both supercritical and subcritical profiles, along with γb,
in order to show the behaviour of the right hand side of Eq. 3.3.
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3.1.2 Constant Flow Depth Topography
In this Section, bottom topography will be obtained by imposing uniform stream depth
y0, followed by a discussion about the stream profile and the choice of the boundary
conditions.

Bottom Topography

Assume everywhere constant flow depth y(ξ) = y0, with y0 given constant. Then dy
dξ = 0

and Eq. 3.1 modifies as:

dζ

dξ
= γb + 2

ξ3y2
0

− α

ξ2y3
0

(3.8)

The stationary points of ζ(ξ) can be found by imposing the right hand side member of
Eq. 3.8 as null, obtaining the following third degree algebraic equation with no quadratic
term which can be solved for ξ > 0 by using the well known Cardano’s formulae ([9]):

ξ3 − α

γby3
0

ξ + 2
γby2

0
= 0 (3.9)

For the purpose of this work, eventual computation of the stationary points from Eq. 3.9
is demanded to classical numerical algorithms, instead of the exact formulae, while basics
results of third degree equations show that:

• profiles in which α and γb have different sign (i.e., convergent flows over a cone-
shaped bed or divergent flows over a funnel-shaped bed) are characterized by at
most one stationary point;

• profiles in which α and γb have both negative sign (i.e., convergent flows over a
funnel-shaped bed) are characterized by at most one stationary point too;

• profiles in which α and γb have both positive sign (i.e., divergent flows down a cone-
shaped bed) are characterized by at most one stationary point if 0 < α ≤ 3

ñ
27 γb y5

0,
up to two otherwise, and in this latter case they are a maximum and a minimum
(they cannot be of the same nature).

It is interesting, here, to observe how the presence of friction introduces physical and
computational complexity, giving rise to a variety of monotonic or non-monotonic bottom
configurations. Neglecting friction (i.e., α → 0) reduces such complexity. Indeed, in order
to study the sign of the right hand side of Eq. 3.8, one obtains the inequality:

γb + 2
ξ3y2 ≥ 0 (3.10)

which allows to conclude that, in the domain {ξ > 0}:

• profiles with γb > 0 (cone-shaped bed) are monotonic;
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• profiles with γb < 0 have a maximum point located at ξ = 3
ñ

− 2
γby2

0
.

On the other hand, also considering horizontal beds (γb = 0) reduces complexity, as the
study of the sign of the right hand side in Eq. 3.8 reduces to the following inequality:

2
ξ3y2 + α

ξ2y3
0

≥ 0 (3.11)

In this case, one has that, in the domain {ξ > 0}:

• profiles with α < 0 (i.e., flowing on convergent direction) are monotonic;

• profiles with α > 0 are non-monotonic and exhibit exactly one maximum located at
ξ = 2y0

α .

Finally, considering horizontal beds with no friction (γb = 0, α = 0), the sign study of the
right hand side of Eq. 3.8 brings to the following inequality:

2
ξ3y2

0
≥ 0 (3.12)

which is always verified within the domain {ξ > 0}, therefore the bottom topographies
obtained are monotonic.
The start point for the interpretation of the bottom topographies just obtained, which
are illustrated in Figures 3.5, 3.6 and 3.7, is to find a closed analytical expression for
the bottom topography. Given a boundary radius ξ0, such expression is found by direct
integration in the variable ξ of the two members of Eq. 3.8 (assume for simplicity ξ >
ξ0 > 0) and re-naming of ζ(ξ) as ζUH(ξ) 4, thus obtaining:

ζUH(ξ) = ζUH(ξ0) + γb(ξ − ξ0) + α

ξy3
0

− 1
ξ2y2

0
− α

ξ0y3
0

+ 1
ξ2

0y2
0

(3.13)

Notice that for large ξ the last two addends defining the solution 3.13 assume small values,
so the following approximation holds:

ζUH(ξ) ≈ ζUH(ξ0) + γb(ξ − ξ0) − α

ξ0y3
0

+ 1
ξ2

0y2
0

= γb(ξ − ξ0) + ∆ζ (3.14)

where ∆ζ is the intercept:

∆ζ := ζUH(ξ0) + 1
ξ2

0y2
0

− α

ξ0y3
0

(3.15)

This is coherent with the fact that, by studying Eq. 3.13 for sufficiently large values of ξ,

4The subscript "UH" stands for "Uniform Height".
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one obtains, independently from α:

dζ

dξ
→ γb

that is, the bottom tends to be flat as the friction dissipation, as well as Radiant Kinetic
Height, tends to vanish. Notice that if friction is absent, then:

∆ζα=0 := ζUH(ξ0) + 1
ξ2

0y2
0

(3.16)

therefore:

• if α < 0 (convergent flows), then ∆ζ is greater than in the case in which α = 0;

• if α > 0 (divergent flows), then ∆ζ is lower than in the case in which α = 0.

Supercritical to Subcritical Smooth Transition

A second important aspect, emerging instead from the constant height solution y(ξ) = y0
itself, is that flows on divergent direction experience a smooth transition from supercritical
to subcritical regime, without hydraulic jump. Indeed, remembering the expression 1.20,
the Froude Number is:

Fr(ξ, y0) =
ó

2
ξ2y3

0
(3.17)

which now only depends on the radial position ξ (notice that the Froude Number is also
not explicitly dependent on friction coefficient α). Such behaviour is reported in Fig. 3.4
for different values of y0.
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Figure 3.4: Froude Number for Constant Depth Solution y(ξ) ≡ y0. Froude Number is
reported for equally spaced values of y0 between 0.1 and 1, along with the Critical Line

Therefore, the flow is:

• supercritical for ξ <
ñ

2
y3

0
;

• critical if ξ =
ñ

2
y3

0
;

• subcritical for ξ >
ñ

2
y3

0
;

This is a peculiar difference with respect to all of the other profiles obtained in the previous
chapters, where the supercritical and subcritical branches of the stream attained critical
condition at singular points and a transition was possible only through an hydraulic jump.
Indeed, the important difference between Eq. 3.1 (where y = y(ξ) is one of the solutions
obtained in Chapter 2) and Eq. 3.13, where y(ξ) ≡ y0, is that now dy

dξ ≡ 0, therefore the
singular term:

(1 − Fr2) dy

dξ

vanishes.
For the same reason, there is no longer a two-branches behaviour of the solution nor the
presence of a minimum radius: the Froude Number, indeed, blows up as ξ approaches
0, as well as velocity, while on the contrary bottom topography decreases unbounded in
order to maintain constant depth.
At the same time, y(ξ) ≡ y0 is an admissible solution because, thanks to the balance
between basal slope γb, friction (by means of α) and Radiant Specific Kinetic Height
2/ξ3y2

0 described by Eq. 3.13, there exist topographies (those described in this section)
that ensure its existence in physical terms. Examples of curved bed giving rise to smooth
supercritical to subcritical transition of the flow are also described in [2], [17].
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Interpretation of the Bottom Topography

In view of the previous discussion, supported by the stream profiles in Figures 3.5, 3.6 and
3.7, Eq. 3.8 explains the monotony characteristics obtained for the bottom topography.
The interaction of the terms appearing at its right hand side can be analyzed within three
main areas, which are evident in Figures 3.8 and 3.9:

• for sufficiently small radii, i.e., ξ → 0, where Kinetic Energy and Friction dominate;

• for sufficiently large radii, i.e., ξ → +∞, where Basal Slope dominates;

• a central area where the three contributes into r.h.s. of Eq. 3.13 are comparable.

Indeed, one can observe that since no minimum radius arises, the stream profile, as well
as the bottom topography, is well defined for {ξ > 0}: in order to visualize this fact in
physical terms, one can figure out a stream starting from an external annular gate located
at ξ0 and flowing continuously along convergent direction, with no central hole draining
the fluid 5, as reported in Figures 3.5(a), 3.5(c). In mathematical terms, this is described
by the fact that for ξ → 0 the dominant term on the right hand side of Eq. 3.8 is that of
Radiant Specific Kinetic Height, i.e.,

ks(ξ; y0) = 2
ξ3y2

0
= 2 ν(ξ; y0)

ξ
(3.18)

which represents nothing but the Head Slope dH̃
dξ |y=y0 , where as usual H̃(ξ, y) is the

Stream Head: in absence of a hole draining the fluid and with a constant discharge at the
boundary, the Stream Head would grow indefinitely as well as the flow depth (which is
imposed instead to be constant) if no energy sinks are present. On the other hand, both
basal slope γb and the boundary energy contributes on the right hand side of Eq. 3.8 are
constant and bounded, so the only way to contrast the strong energy increase given by
the term 3.18 for radii approaching zero and maintain constant depth y0 is via a strong
energy decrease given by the slope of bottom topography. This explains why, in all the
cases, ζ(ξ) → −∞ as ξ → 0.
As described in the approximation 3.14, for sufficiently large ξ the topography tends
instead to be linear, with slope γb: indeed, thanks to the Chézy formula and the geometry
chosen, both ks(ξ; y0) and the friction term of Eq. 3.8 approach 0 as ξ → +∞. In this
case, the effects of friction and boundary are only enclosed into the intercept ∆ζ of Eq.
3.14.
The most important range to understand the monotony properties of bottom topography
is that in which ks(ξ; y0), friction term and basal slope become progressively comparable
and give rise to the eventual stationary points of the bottom topography ζ(ξ), depending
on the sign of α and γb. In order to illustrate this, it suffices to remember that the right

5Recall: for the flows described in Chapter 2, the minimum radius ξmin arising in the solutions
could be interpreted as the edge of a central hole which, in case of convergent flows, drained the fluid
acting as a control on the increase or decrease of the Stream Head. In this case, it is like the minimum
radius is located at ξ = 0, thus being described by a hole of zero radius.
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hand side of Eq. 3.13 is nothing but a sum of energy contributes, taken with their sign.
Figures 3.8, 3.9 report the behaviour of the tree terms separately and their sum (i.e.,
the right hand side) for all of the possible sign combinations of α and γb: the cases in
which γb = 0 (horizontal bed) or α = 0 (no bottom friction) can be easily derived and
interpreted, so they are not reported. It is peculiar the presence of a maximum followed
by a minimum for α > 0 and γb > 0: the first appears to be connected to a balance
between Radiant Specific Height and Friction, while the second seems to be related to the
balance between friction and basal slope. It is now clear how the bottom topography drives
the maintenance of the constant height y0, giving rise to the topographies illustrated in
Figures 3.5, 3.6: for small radii, it rapidly increases (decreases) to add (subtract) energy
in case of divergent (convergent) flow for small ξ, independently from the basal slope γb.
The same happens for large ξ , where instead:

• if γb < 0, it linearly decreases (increases) in order to help (control) the flow on
opposite (favourable) slope maintaining constant depth y0;

• the contrary happens if γb > 0.

The uniform depth stream profile will be useful in Chapter 5, to write the perturbation
equation derived from Linear Stability Analysis.
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(a) (b)

(c) (d)

Figure 3.5: Bottom Topography ensuring Uniform Depth Stream flowing along a
Funnel-Shaped bed. Left and right column respectively refer flows along Convergent and
Divergent direction, as indicated by the blue arrows. For all of the stream profiles reported,
the bottom topography at boundary ζUH(ξ0) is imposed to be 0. Each figure reports boundary
radius ξ0, uniform depth y0, basal slope γb and friction coefficient α are reported: in particular,
bottom figures (Fig. 3.5(c) and 3.5(d) ) report the case in which friction is absent, i.e., α = 0.
Finally, the dot-dashed line indicates the level of the flat bottom. Plot range is ξ ∈ [1,25].
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(a) (b)

(c) (d)

Figure 3.6: Bottom Topography ensuring Uniform Depth Stream flowing along a
Cone-Shaped bed. Left and right column respectively refer flows along Convergent and Di-
vergent direction, as indicated by the blue arrows. For all of the stream profiles reported, bottom
topography at boundary ζUH(ξ0) is imposed to be 0. Each figure reports boundary radius ξ0,
uniform depth y0, basal slope γb and friction coefficient α are reported: in particular, bottom
figures (Fig. 3.6(c) and 3.6(d) ) report the case in which friction is absent, i.e., α = 0. Finally,
the dot-dashed line indicates the level of the flat bottom. Plot range is ξ ∈ [1,25].
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(a) (b)

(c) (d)

Figure 3.7: Bottom Topography ensuring Uniform Depth Stream flowing along a
Horizontal Bed. Left and right column respectively refer to flows along Convergent and
Divergent direction, as indicated by the blue arrows. For all of the stream profiles reported,
bottom topography at boundary ζUH(ξ0) is imposed to be 0. Each figure reports boundary
radius ξ0, uniform depth y0, basal slope γb and friction coefficient α are reported: in particular,
bottom figures (Fig. 3.7(c) and 3.7(d) ) report the case in which friction is absent, i.e., α = 0.
Finally, the dot-dashed line indicates the level of the flat bottom. Plot range is ξ ∈ [1,25].
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(a) (b)

(c) (d)

Figure 3.8: Monotony of Bottom Topographies ensuring Constant Depth for Cone-
shaped Beds in presence of Bottom Friction, γb = 0.05, α = ±0.4, y0 = 0.5. Boundary
radius ξ0 is imposed to be 1 for the divergent flow (α = 0.4, right column), 25 for the convergent
flow (α = −0.4, left column). Top figures (3.8(a), 3.8(b)) report the overall behaviour of the
right hand side rhs(ξ) of Eq. 3.13, while bottom figures (3.8(c), 3.8(d)) report the behaviour
of its specific terms: Friction −α/ξ2y3

0 , Radiant Specific Kinetic Height 2/ξ3y2
0 and Basal Slope

γb. The two red dots reported in Fig. 3.8(b) are the zeros of the right hand side of Eq. 3.8,
corresponding (in increasing order) to a maximum and a minimum of the bottom topography
ζ(ξ). Plot range is ξ ∈ [1,25].

103



Stream Profiles for de Saint-Venant’s Equations Including Drag

(a) (b)

(c) (d)

Figure 3.9: Monotony of Bottom Topographies ensuring Constant Depth for Funnel-
shaped Beds in presence of Bottom Friction, γb = −0.05, α = ±0.4, y0 = 0.5. Boundary
radius ξ0 is imposed to be 1 for the divergent flow (α = 0.4, right column), 25 for the convergent
flow (α = −0.4, left column). Top figures (3.9(a), 3.9(b)) report the overall behaviour of the
right hand side rhs(ξ) of Eq. 3.13, while bottom figures (3.9(c), 3.9(d)) report the behaviour
of its specific terms: Friction −α/ξ2y3

0 , Radiant Specific Kinetic Height 2/ξ3y2
0 and Basal Slope

γb. Plot range is ξ ∈ [1,25].

Choice of the Boundary Conditions

Unlike what done the previous Chapters, where the boundary conditions were chosen
differently for the supercritical and subcritical regime in order to ensure unitary Stream
Head at the boundary (according to the benchmark case of Horizontal Bed with Flat
Bottom described in Sec. 2.1), here the following methods are used to impose boundary
conditions:

• choose the height y0 and the Froude Number at the boundary in order to obtain, by
inverting expression 3.17, the coordinate ξ0 at which imposing the boundary bottom
height ζUH(ξ0);

• choose the radial position ξ0 at which imposing not only the boundary bottom height

104



3.1 – Notable Bed Topographies

ζUH(ξ0), but also the boundary Froude Number from which y0 is determined by using
again 3.17;

• simply choose the uniform height y0 and the radial position ξ0 at which imposing
boundary bottom height ζUH(ξ0), the Froude Number being them a consequence by
3.17.

Such three ways are identically useful and suitable for the problem analyzed.

3.1.3 Everywhere Critical Flow Topography
Let consider the problem of finding a bottom topography ζ(ξ) such that the flow is every-
where critical. It is recalled here that the critical depth ycr(ξ) is described by expression
1.21, here reported for the sake of clearness:

ycr(ξ) = 3

ó
2
ξ2 (3.19)

By plugging such expression into Eq. 3.1 and re-organizing the two members, one obtains:

dζ

dξ
= γb − α

2 + 3

ó
2
ξ5 (3.20)

where at the right hand side, from left to right, one can find the energetic contributes
of basal slope, friction and kinetic energy, this latter one being easily recognized by the
following chain of equalities :

3

ó
2
ξ5 = d

dξ

C
H̃(ξ, ycr(ξ))

D
= 2

ξ3[ycr(ξ)]2 = ks(ξ, ycr(ξ))

where H̃(ξ, ycr(ξ)) = H̃(ξ, y)|y=ycr(ξ) and ks(ξ, ycr(ξ)) are respectively the Stream Head
and the Radiant Specific Kinetic Height associated to the critical solution ycr(ξ).
In order to study the monotony of the bottom topography ζ(ξ) one obtains by the right
hand side of Eq. 3.20 the following inequality, in the domain {ξ > 0}:

3

ó
2
ξ5 ≥ α

2 − γb (3.21)

Two cases can be distinguished, giving rise to two different kinds of bottom topography:

• if α < 2γb, then dζ
dξ > 0 for all possible ξ > 0, giving rise to monotonic bottom

topographies;

• if α ≥ 2γb, then the bottom topographies so obtained are non-monotonic and exhibit
a maximum point located at ξ = 5

ñ
(α−2γb)3

2
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The monotony properties for topographies ensuring critical depth when bottom friction
is negligible (α = 0) or the stream flows along a horizontal bed (γb = 0) can be easily
studied by interpreting these as particular cases of Ineq. 3.21.
An important difference with respect to Equations 3.2, 3.8 (respectively describing bottom
topographies ensuring Constant Stream Head and Constant Stream Depth) is that here
friction dissipation contribute does not depend on ξ: this reflects on the linear part of the
bottom topographies, obtained by direct integration Eq. 3.20 and re-naming of ζ(ξ) as
ζCR(ξ) 6, as follows:

ζCR(ξ) = ζCR(ξ0) + (γb − α

2 )(ξ − ξ0) − 3

ó
27
4ξ2 + 3

ó
27
4ξ2

0
(3.22)

Examples of bottom topographies obtained with different values of α and γb are reported
in Figures 3.10, 3.11, 3.12.
Notice that also Critical Stream Profile does not exhibit singular behaviour at a mini-
mum or maximum radius like for the profiles obtained in Chapter 2, but for a different
reason with respect to what discussed in Section 3.1.2 for the Constant Depth Solution.
Indeed, while in that case the singularity was eliminated by imposing y(ξ) ≡ y0, here for
y(ξ) = ycr(ξ) the left hand side of the general governing Equation 3.1 is null because it is
studied exactly at the singularity, i.e., when the Froude Number is exactly 1, having from
Eq. 3.1: C

dy

dξ
(1 − Fr2(ξ, y))

D
|y=ycrit(ξ) ≡ 0

Therefore, it makes sense to study the Critical Solution, as well as the Bottom Topography
and all of the other terms involved into Eq. 3.20 for all ξ > 0.
In order to investigate the interaction between basal slope, friction and kinetic energy
gain or dissipation to determine bottom topography according to the balance expressed
by Eq. 3.20, one can again figure out a stream flowing on convergent direction starting
from an external reservoir located at radial position ξ = ξ0 which is not drained by any
central hole (Fig. ??), and visualize the energetic contributes into two areas:

• for sufficiently small ξ, where kinetic energy dominates while basal slope and friction
have barely no effect;

• for larger ξ, where kinetic energy contribute decays to 0, being overbalanced by the
interplay between friction dissipation and energy gain/loss due to basal slope γb,
both independent on ξ according to Eq. 3.20.

For sufficiently small radii, i.e., ξ → 0, the dominant term of Eq. 3.20 is that connected
to Kinetic Energy, which blows up to +∞: it is expected, since the fluid is not drained
from any hole and the bounded contribute of basal slope γb and dissipation α is not

6The subscript "CR" stands for "Critical".
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enough to control such a high energy increase in order to maintain critical conditions. The
equilibrium term required comes instead from bottom topography which, by means of its
opposite energetic contribute, counterbalances that of Kinetic Height and is responsible
for the characteristic strongly decreasing behaviour down to −∞, independently from the
values of α and γb, as reported in Figures 3.10, 3.11, 3.12.
Looking instead at the behaviour of ζCR(ξ) for sufficiently large values of ξ, it can be
observed that while the contribute of Kinetic Height in Eq. 3.20 decays to 0, those
of friction and basal slope become progressively more significant and both determine the
asymptotic slope of the bottom topography, since they are both independent on the radial
position ξ. In particular:

ζCR(ξ) ≈ ζCR(ξ0) + (γb − α

2 )(ξ − ξ0) (3.23)

Also in this case, the bed shape which determines everywhere critical flux is approximately
linear at sufficiently large ξ, but the dominant term is governed not only by the bottom
angle (γb), but also by friction, by means of the parameter α: it regulates increasing
or decreasing in order to maintain critical depth, that for sufficiently large ξ decays to
0. The overall behaviour of the right hand side of Eq. 3.20 and of its terms separately
is reported in Figures 3.13, 3.14 in order to illustrate their balance giving rise to the
monotony properties of the so obtained bottom topographies.
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(a) (b)

(c) (d)

Figure 3.10: Bottom Topography ensuring Critical Depth Stream flowing along a
Funnel-Shaped bed. Left and right column respectively refer to flows along Convergent and
Divergent direction, as indicated by the blue arrows. For all of the stream profiles, the bottom
topography at boundary ζUH(ξ0) is imposed to be 0. For each figure boundary radius ξ0, basal
slope γb and friction coefficient α are reported: in particular, bottom figures (Fig. 3.5(c) and
3.5(d) ) report the case in which friction is absent, i.e., α = 0. Finally, the dot-dashed line
indicates the level of the flat bottom. Plot range is ξ ∈ [1,25].
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(a) (b)

(c) (d)

Figure 3.11: Bottom Topography ensuring Critical Depth Stream flowing along a
Cone-Shaped bed. Left and right column respectively refer flows along Convergent and Di-
vergent direction, as indicated by the blue arrows. For all of the stream profiles, bottom topog-
raphy at boundary ζUH(ξ0) is imposed to be 0. For each figure boundary radius ξ0, basal slope
γb and friction coefficient α are reported: in particular, bottom figures (Fig. 3.11(c) and 3.11(d)
) report the case in which friction is absent, i.e., α = 0. Finally, the dot-dashed line indicates
the level of the flat bottom. Plot range is ξ ∈ [1,25].
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(a) (b)

(c) (d)

Figure 3.12: Bottom Topography ensuring Critical Depth Stream flowing along a
Horizontal Bed. Left and right column respectively refer to flows along Convergent and
Divergent direction, as indicated by the blue arrows. For all of the stream profiles reported,
bottom topography at boundary ζUH(ξ0) is imposed to be 0. For each figure boundary radius
ξ0, basal slope γb and friction coefficient α are reported: in particular, bottom figures (Fig.
3.12(c) and 3.12(d) ) report the case in which friction is absent, i.e., α = 0. Finally, the dot-
dashed line indicates the level of the flat bottom. Plot range is ξ ∈ [1,25]
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(a) (b)

(c) (d)

Figure 3.13: Monotony of Bottom Topographies ensuring Critical Depth for Cone-
shaped Beds in presence of Bottom Friction, γb = 0.05, α = ±0.4. Boundary radius ξ0
is imposed to be 1 for the divergent flow (α = 0.4, right column), 25 for the convergent flow
(α = −0.4, left column). Top figures (3.13(a), 3.13(b)) report the overall behaviour of the right
hand side rhs(ξ) of Eq. 3.20, while bottom figures (3.13(c), 3.13(d)) report the behaviour of its
specific terms: Friction −α/2, Radiant Specific Kinetic Height 3

ð
2/ξ5 and Basal Slope γb.
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(a) (b)

(c) (d)

Figure 3.14: Monotony of Bottom Topographies ensuring Critical Depth for Funnel-
shaped Beds in presence of Bottom Friction, γb = −0.05, α = ±0.4. Boundary radius
ξ0 is imposed to be 1 for the divergent flow (α = 0.4, right column), 25 for the convergent flow
(α = −0.4, left column). Top figures (3.14(a), 3.14(b)) report the overall behaviour of the right
hand side rhs(ξ) of Eq. 3.20, while bottom figures (3.14(c), 3.14(d)) report the behaviour of its
specific terms: Friction −α/2, Radiant Specific Kinetic Height 3

ð
2/ξ5 and Basal Slope γb.

3.2 Boundary Conditions
According to the analysis performed in Sec. 3.1, Constant Stream Head solution is ob-
tained by imposing a balance between the energy contributes of topographical slope (i.e.,
cumulative of the slope contributes due to both basal angle ϕ and bottom topography
dζ/dξ) and friction. Therefore, assuming bottom topography ζ(ξ) = ζCH(ξ) as found in
3.7, Eq. 3.1 reduces to Eq. 2.7, obtained for the Horizontal Bed with Flat Bottom and
expressing Stream Energy conservation.
Therefore, the stream height solution y(ξ) is given by:

ξ = 1
y
√

1 − y

112



3.3 – Flat Bottom Topography

For all of the cases that will be discussed throughout the rest of this chapter, such solution
will be used (as for Chapter 2) to impose supercritical and subcritical boundary conditions
(although differently specified, as will be done in several cases) for the stream heights, in
the way described in Sec. 2.1.2, remarking the important benchmark role of the case of
Horizontal Bed with Flat Bottom.

3.3 Flat Bottom Topography
This section is devoted to the study of the Shallow-water model with general formulation
expressed by 1.33 in the particular case of flat bottom, which is expressed by the following
bottom topography:

ζ(ξ) ≡ 0 (3.24)

Then Eq. 1.33 describing the height profile assumes the following form:

dy

dξ
= γbξ

3y3 + 2y − αξ

ξ3y3 − 2ξ
= N(ξ, y)

D(ξ, y) (3.25)

or, equivalently:

d

ds

ξ

y

 =

 ξ3y3 − 2ξ

γbξ
3y3 + 2y − αξ

 (3.26)

where (ξ, y) = (ξ(s), y(s)) is a parametrization of the orbits in the parameter s ∈ A ⊆ R,
as in 1.42. , Since the goal of this study is to investigate how taking into account friction
alters the dynamics with respect to the same case in absence of friction, discussed in
Sections 2.1, 2.2, the section organizes as follows:

• analysis of the geometry of the phase plane;

• solutions for different values of bottom slope γb.

3.3.1 Geometry of the Phase Plane
The study of the geometry of the Phase Plane when friction is taken into account in the
Shallow-water model described by 3.26 is focused on two main aspects: the intersections
of the nullclines of Eq. 3.25 7, equivalent to the equilibrium points of System 3.26 and
the structure of the trajectories, by varying bottom slope γb (particularly its sign) and
friction coefficient α, actually the only parameters of the model.

7The nullclines of Eq. 3.25 are expressed by the equations N(ξ, y) = 0 and D(ξ, y)=0, the last one
corresponding to the Critical Line y = 3

ð
2/ξ2
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Intersections of the Nullclines

The starting point is to study the intersections of the nullclines of Eq. 1.33, i.e., N(ξ, y) =
0 and D(ξ, y = 0). Indeed, at these points one has dy/dξ = [0/0], thus the trajectories
(describing the height profiles) can pass through these points with either finite or infinite
gradient, as described by [4]. The only intersection can be easily computed exactly,
according to 1.46, as: ξ∗ = 2 1

5 t
− 3

5∗

y∗ = 2 1
3 ξ

− 2
3∗ = 2 1

5 t
2
5∗

(3.27)

where t∗ is the generalized slope at the equilibrium points as defined in 1.44, which for
the specific case of flat bottom topography assumes the following form:

t∗ = −γb + α

2 (3.28)

It is worth to notice that such intersection lies within the physical domain {ξ > 0}×{y >
0} if and only if t∗ > 0, i.e.:

α > 2γb

In order to investigate the internal stability properties of such point as equilibrium point
of System 3.26, one can use 1.50 and 1.51 to respectively determine the Trace and Deter-
minant of the corresponding Jacobian Matrix evaluated at (ξ∗, y∗) as follows:

(tr JF)|(ξ∗,y∗) = 3αt−1
∗ = 6α

α − 2γb
(3.29)

and:

(det JF)|(ξ∗,y∗) = 4(5 + 6 · 2 1
5 ζ ′′

∗ t
− 3

5∗ ) = 20 (3.30)

since ζ ′′
∗ = d2ζ

dξ2 |ξ=ξ∗ = 0. Therefore, at a physically meaningful intersection, one has:

• sign of the Jacobian Trace equal to that of α;

• positive determinant, independently from the values of α and γb.

Moreover, one can compute the discriminant of the characteristic polynomial associated
to the Jacobian Matrix as:

∆∗ = [(tr JF)|(ξ∗,y∗)]2 − 4(det JF)|(ξ∗,y∗) = (α/2 − γb)2 − 80 (3.31)

Mathematically, it is possible to choose α and γb such that ∆∗ ≥ 0. However, according
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to the values chosen for γb and α 8, the quantity α/2 − γb is typically two up to three
orders of magnitude below 80, therefore it can be assumed that ∆∗ < 0.

Thanks to this, one can conclude that the point (ξ∗, y∗) =
A

5
ñ

2
(α/2−γb)3 , 5

ð
2(α/2 − γb)2

B
is a focus, in particular:

• if α > 0, it is an unstable focus;

• if α > 0, it is a stable focus.

Phase portraits containing the focus are reported in Fig. 3.15.
A finest range for the values of α and a specific region where the focus should be located
to produce effect on the solutions will be provided after the description of the trajectories,
when the energetic point of view will be highlighted.

8Recall: suitable values for γb used in this work to maintain the hypothesis of gradually varied
flow are −0.10 ≤ γb ≤ 0.10, while typical values of friction coefficients range between −1 and 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: ξ − y Phase Portrait Horizontal axis reports the radius ξ, the vertical one reports
the corresponding values of height y, based on Eq. 3.25. Red line marks Critical conditions:
subcr. trajectories lie under the red line, while supercr. ones lie above. Green line is the nullcline
N(ξ, y) = 0 of Eq. 3.25. Black line depicts y(ξ) for the Conservative Solution (Hor. Bed with
Flat Bott. with no friction, Sec. 2.1). Left column, Figures 3.15(a), 3.15(c), 3.15(e) - Flows on
Convergent direction (α = −0.4) for Cone, Funnel and Horiz. Bed (resp., γb = 0.05, −0.05, 0).
Right column, Figures 3.15(b), 3.15(d), 3.15(f) - Flows on Divergent direction (α = 0.4) for
Cone, Funnel and Horiz. Bed (resp., γb = 0.05, −0.05, 0).
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Trajectories

A first novel aspect with respect to the case of flat bottom without including friction
discussed in Sections 2.1, 2.2 emerges by looking at the trajectories, some examples of
which are reported in Fig. 3.15 for α = ±0.4 and γb = 0.05, −0.05, 0. Indeed, it appears
that:

• the subcritical trajectories are mainly governed by the basal slope γb, and exhibit a
similar behaviour with respect to the inviscid case: for γb ≥ 0, they collide with the
Critical Line at exactly one point, showing a one Froude Horizon behaviour, while
if γb < 0 they meet the Critical Line at a minimum and a maximum point, thus
exibiting a two Froude Horizons behaviour;

• the supercritical trajectories, on the contrary, are mainly governed by friction, show-
ing a completely different behaviour with respect to the inviscid case: independently
from γb, supercritical streams flowing on convergent directions (α < 0) collide with
the Critical Line at exactly one point (one Froude Horizon behaviour), while those
flowing on divergent direction (α > 0) collide with the Critical Line at a minimum
and a maximum radius (two Froude Horizon behaviour).

The reason of this different behaviour resides again in the behaviour of the Radiant Spe-
cific Discharge q with respect to the stream height y. Their relation, however, is no longer
algebraic as for the case with no friction, but differential. In order to obtain it, one can
remember by the definition 1.23 itself that:

q(ξ) = 1
ξ

from which the differential dξ can be expressed as:

dξ = −ξ2dq = − 1
q2 dq

and Eq. 3.25 assumes the following form 9:

dq

dy
= 2q4 − y3q2

γby3 + 2q3y − αq2 = Nq(q, y)
Dq(q, y) (3.32)

One can then compute the intersections between the nullclines Nq(q, y) = 0 10 and

9It is worth to notice that this can be done only by assuming that the Inverse Function Theorem
holds for y = y(q) separately for the supercritical and the subcritical branch of each orbit, since only
the restriction to one of the branches is actually a function.

10The nullcline Nq(q, y) = 0 is represented by the line q(y) =
ñ

y3

2 and it is nothing but the Critical
Line in terms of q and y.
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Dq(q, y) = 0 to obtain, as expected, that the only one is given by:q∗ = 5
ñ

(α/2−γb)3

2 = 1
ξ∗

y∗ = 3
ð

2q2
∗

(3.33)

The point (y∗, q∗) represents a focus (for the typical values of α and γb used in this work)
and, as seen for the focus (ξ∗, y∗) in the y − ξ diagram, it lies in the physical region
{y > 0} × {q > 0} only when α/2 > γb, i.e., when friction dissipation overcomes the
energy contribute of basal slope. Again, if one restricts to the typical values of γb and
α used, the focus lies in the physical regions for almost all α > 0, that is, for divergent
flows, which in the q − y plane are those on decreasing q direction 11.
Fig. 3.16 reports the phase planes q−y obtained for different couples (α, γb), where α /= 0.
It is evident that:

• for γb < 0, α > 0, where the flow is divergent on opposite slope, the trajectories
start at a maximum discharge (minimum radius), that can be thought as a central
source and flow along decreasing q (increasing radius), with the friction dissipation
amplifying the contrasting effect due to the opposite slope. The focus than forces
both supercritical and subcritical reaches to collide again with the Critical Line at
a minimum q (maximum radius), that can be exemplified by the edge of the plate:
for smaller radii, flow would not be so energetic to continue;

• for γb > 0, α > 0, where the flow is divergent on favourable slope, both supercritical
and subcritical trajectories start in critical condition; however, while the subcritical
trajectories continue helped by favourable slope along decreasing q (increasing ξ),
which is asymptotically 0, the supercritical trajectories accelerate until reaching a
maximum velocity at the minimum height, than decelerate to collide again with the
Critical Line at a minimum q (maximum ξ).

By considering α = 0, one can mathematically explain also the case of Flat Bottom with
no friction discussed in Sec. 2.2.3. Indeed, the only equilibrium point is given by:q∗ = 5

ñ
−γ3

b

2 = 1
ξ∗

y∗ = 3
ð

2q2
∗

(3.34)

and lies within the physical region {y > 0} × {q > 0} only if γb < 0, that is, for funnel-
shaped beds, which effectively are those exhibiting the two Froude Horizons behaviour.

11Since divergent flows are along increasing ξ and q = 1/ξ.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: q − y Phase Portrait Horizontal axis reports the Height values y, the vertical
one reports the corresponding values of Radiant Specific Discharge q = q(y), based on Eq. 3.32.
Red line marks Critical conditions: subcr. trajectories lie under the red line, while supercr. ones
lie above. Green line is the nullcline Nq(y, q) = 0 of Eq. 3.32. Black line depicts q(y) for the
Conservative Solution (Hor. Bed with Flat Bott. with no friction, Sec. 2.1), q(y) = y

√
1 − y.

Left column, Figures 3.16(a), 3.16(c), 3.16(e) - Flows on Convergent direction (α = −0.4) for
Cone, Funnel and Horiz. Bed (resp., γb = 0.05, −0.05, 0). Right column, Figures 3.16(b),
3.16(d), 3.16(f) - Flows on Divergent direction (α = 0.4) for Cone, Funnel and Horiz. Bed
(resp., γb = 0.05, −0.05, 0).
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3.3.2 Energetic Point of View and Restricted Ranges for α

Looking at the physics of the problem, one can observe that when the stream flows
on opposite slope and friction is considered its energy, expressed by the Stream Head
H̃(ξ, y(ξ)) = 1

ξ2[y(ξ)]2 , once fixed a prescribed boundary value, can only diminish. In Sec-
tions 2.1.2 and 3.2 has been emphasized the benchmark role of the case of the Horizontal
Bed with Flat Bottom to impose boundary condition, since it expresses energy conserva-
tion ˜H(ξ, y) ≡ 1. The curve ˜H(ξ, y) = 1, which in the plane ξ − y describes the orbit
expressing energy conservation, separates therefore two regions:

• the internal region, where ˜H(ξ, y) < 1;

• the internal region, where ˜H(ξ, y) > 1.
Therefore, solutions for which the Stream Head can only diminish with respect to that
imposed at the boundary must lie into the internal region. This particularly holds for
flows along Horizontal Bed (independently from the convergent or divergent direction
of the flow), along convergent direction over a Cone-shaped Bed and along divergent
direction over a Funnel-shaped Bed. In these cases, in order for the focus (ξ∗, y∗) =A

5
ñ

2
(α/2−γb)3 , 5

ð
2(α/2 − γb)2

B
to be included into the internal region, α must vary into a

more restricted range. Indeed, by plugging the expression of (ξ∗, y∗) into the inequality
H̃(ξ, y) < 1 and few algebraic computation, one obtains that:

α <
8

9
√

3
+ 2γb (3.35)

This is coherent with previous literature for the Horizontal Bed, since by imposing γb = 0
one recovers the same inequality reported in [29], Sec. IV.

3.3.3 Solutions
In view of what discussed about the geometry of the Phase Plane ξ − y, the energetic
point of view and the possibility of having hydraulic jump, solutions are obtained for
different values of basal slope γb and friction coefficient α, which also encloses in its sign
the direction of the flow. In particular, the following values will be used:

• γb = −0.05, 0, 0.05;

• α = −0.1, 0.1
Such ranges are coherent with those adopted in [19, 29], i.e., small bottom slopes and
small values of friction coefficient α. Moreover, α = ±0.1 lies within the range discussed
previously in Sec. 3.3.2. The stream profiles and features are reported, for both convergent
and divergent direction, in the following figures:

• Figures 3.17, 3.18 for the Horizontal Bed, γb = 0, α = ±0.1;

• Figures 3.19, 3.20 for the Cone-shaped Bed, γb = 0.05, α = ±0.1;

• Figures 3.21, 3.22 for the Funnel-shaped Bed, γb = −0.05, α = ±0.1.
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Flow along a Horizontal Bed, γb = 0, α = ±0.1

Height Profiles and Specific Forces are reported in Fig. 3.17, while Froude Number, Stream
Head and Stream Profiles are reported in Fig. 3.18.
This case has been widely discussed in [29], with a numerical approach analogous to that
pursued in this work and by [42], with a first order perturbation procedure to obtain an
approximate analytical solution.
For the convergent case (α = −0.1), the stream starts flowing with unitary Stream Head,
in supercritical condition, from an external annular gate; before reaching critical condi-
tions, a hydraulic jump connects the supercritical reach to the subcritical one, and the
flow proceeds until reaching a central hole draining the fluid, whose edge is located at a
minimum radius, in critical conditions.
For the divergent case (α = 0.1), the stream starts flowing with unitary Stream Head,
in supercritical condition, from a central source, which can be thought for example as
originating from a jet impinging the bed; before reaching critical conditions, a hydraulic
jump connects the supercritical reach to the subcritical one, and the flow proceeds along
the plate indefinitely, in subcritical conditions.

Flow along a Cone-shaped Bed, γb = 0.05, α = ±0.1

Height Profiles and Specific Forces are reported in Fig. 3.19, while Froude Number, Stream
Head and Stream Profiles are reported in Fig. 3.20.
For the convergent case (α = −0.1), the stream starts flowing with unitary Stream Head
from an external annular source and proceeds over the cone decelerating, while conse-
quently increasing height; before reaching critical conditions, a hydraulic jump connects
the supercritical reach to the subcritical one, and the flow proceeds over the cone until
reaching a central hole which drains the fluid, whose edge is located at a minimum radius.
For the divergent case (α = 0.1), the stream springs from a central source in critical condi-
tions and, after an acceleration, it decelerates although decreasing height; before reaching
critical conditions, a hydraulic jump connects the supercritical reach to the subcritical
one and then, helped by favourable slope, continues flowing down the cone indefinitely.
The reason why the supercritical trajectories manifest this novel trajectory is the presence
of the focus, as shown in Fig. 3.16(b) in the q − y Phase Portrait, which attracts all of
the supercritical trajectories if the flow is divergent, forcing them to meet critical condi-
tions. Indeed, the flow proceeds along increasing ξ, i.e., for decreasing Radiant Specific
Discharge q, thus the arrows reported in the Phase Portrait in Fig. 3.16(b) must be read
in the inverse direction. Moreover, they are all forced to cross the Conservative Solution
(that obtained for Horizontal Bed, Flat Bottom and no friction) and enter the internal
region, where the Stream Head becomes minor of 1.

Flow along a Funnel-shaped Bed, γb = −0.05, α = ±0.1

Height Profiles and Specific Forces are reported in Fig. 3.21, while Froude Number, Stream
Head and Stream Profiles are reported in Fig. 3.22.
For the convergent case (α = −0.1) the flow starts in supercritical condition (with Stream
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Head greater than 1) from an external source; before reaching critical condition, a hy-
draulic jump connects the supercritical branch to the subcritical one, which flows with
non monotonic profile until reaching a central hole draining the fluid, in critical condi-
tions. Also in this case, the action of friction manifests in the presence of the focus in the
Phase Portrait, from which the trajectories escape in case of Divergent Direction in such
a way they exhibit a two Froude Horizons behaviour and are forced to cross the Conser-
vative Solution Line, as shown in Fig. 3.16(c). Where they meet Critical Line, radiant
specific discharge q attains its minimum (at the maximum radius) and its maximum (at
the minimum radius): for radii greater than the maximum one, q would be too small for
the stream to start flowing, while for radii smaller than the minimum one q would be
too high to contemporary maintain total discharge Q conservation (Continuity Equation)
while satisfying the Stream Head (Energy) described by Eq. 3.25. For the divergent case
(α = 0.1), instead, flow starts in supercritical condition from a central source (jet im-
pinging the bed) and flows in supercritical conditions, on opposite slope; before reaching
critical conditions, a hydraulic jump connects the supercritical reach to the subcritical
one, that flows until reaching the external edge of the bed and the fluid is drained.
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(a) (b)

(c) (d)

Figure 3.17: Hydraulic Jump Solution - Stream flowing along a Horizontal Bed with
Flat Bottom. In each column Height Profile, Specific Force, Froude Number and Stream Head
are reported for γb = 0 and α = −0.1 (convergent flow, left column) and α = 0.1 (divergent flow,
right column) . Figures 3.17(a), 3.17(b): solid lines represent the solution with hydraulic jump
(black and red respectively for the subcritical and supercritical branch), dotted line represent
subcritical and supercritical solutions without jump, black dashed line represents the hydraulic
jump. Figures 3.17(c), 3.17(d) show the behaviour of the specific force for the supercritical (red)
and subcritical (black) branches of the solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Stream Flowing along a Horizontal Bed with Flat Bottom - Flow features.
In each column (top to bottom) Froude Number, Stream Head and Stream Profile are reported
for γb = 0 and α = −0.1 (convergent flow, left column) and α = 0.1 (divergent flow, right
column), basing on Fig. 3.17 . Figures 3.18(a), 3.18(b) (Froude Number) and Fig. 3.18(c),
3.18(d) (Stream Head) : solid lines represent the solution with hydraulic jump (black and red
respectively for the subcritical and supercritical branch), dotted line represent subcritical and
supercritical reach without jump, black dashed line represents the hydraulic jump. Figures
3.18(e), 3.18(f) show the stream profiles, i.e., the free surface of the fluid.
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(a) (b)

(c) (d)

Figure 3.19: Hydraulic Jump Solution - Stream flowing along a Cone-shaped Bed
with Flat Bottom. In each column Height Profile, Specific Force, Froude Number and Stream
Head are reported for γb = 0.05 and α = −0.1 (convergent flow, left column) and α = 0.1
(divergent flow, right column) . Figures 3.19(a), 3.19(b): solid lines represent the solution with
hydraulic jump (black and red respectively for the subcritical and supercritical branch), dotted
line represent subcritical and supercritical solutions without jump, black dashed line represents
the hydraulic jump. Figures 3.19(c), 3.19(d) show the behaviour of the specific force for the
supercritical (red) and subcritical (black) branches of the solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Stream Flowing along a Cone-shaped Bed with Flat Bottom - Flow
features. In each column (top to bottom) Froude Number, Stream Head and Stream Profile
are reported for γb = 0.05 and α = −0.1 (convergent flow, left column) and α = 0.1 (divergent
flow, right column), basing on Fig. 3.19 . Figures 3.20(a), 3.20(b) (Froude Number) and Fig.
3.20(c), 3.20(d) (Stream Head) : solid lines represent the solution with hydraulic jump (black and
red respectively for the subcritical and supercritical branch), dotted line represent subcritical
and supercritical reach without jump, black dashed line represents the hydraulic jump. Figures
3.20(e), 3.20(f) show the stream profiles, i.e., the free surface of the fluid.
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(a) (b)

(c) (d)

Figure 3.21: Hydraulic Jump Solution - Stream flowing along a Funnel-shaped Bed
with Flat Bottom. In each column Height Profile, Specific Force, Froude Number and Stream
Head are reported for γb = −0.05 and α = −0.1 (convergent flow, left column) and α = 0.1
(divergent flow, right column) . Figures 3.21(a), 3.21(b): solid lines represent the solution with
hydraulic jump (black and red respectively for the subcritical and supercritical branch), dotted
line represent subcritical and supercritical solutions without jump, black dashed line represents
the hydraulic jump. Figures 3.21(c), 3.21(d) show the behaviour of the specific force for the
supercritical (red) and subcritical (black) branches of the solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Stream Flowing along a Funnel-shaped Bed with Flat Bottom - Flow
features. In each column (top to bottom) Froude Number, Stream Head and Stream Profile
are reported for γb = −0.05 and α = −0.1 (convergent flow, left column) and α = 0.1 (divergent
flow, right column), basing on the solution in Fig. 3.21. Figures 3.22(a), 3.22(b) (Froude
Number) and Fig. 3.22(c), 3.22(d) (Stream Head) : solid lines represent the solution with
hydraulic jump (black and red respectively for the subcritical and supercritical branch), dotted
line represent subcritical and supercritical reach without jump, black dashed line represents the
hydraulic jump. Figures 3.22(e), 3.22(f) show the stream profiles, i.e., the free surface of the
fluid.
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3.4 Sinusoidal Bottom Topography
This section is devoted to the study of the sinusoidal bottom topography in presence of
friction. Again, let consider the following sinusoidal bottom topography:

ζ(ξ) = a cos(kbξ) (3.36)

recalling that a > 0 is the amplitude and kb > 0 is the wavenumber. The goal here is to
understand how the introduction of friction coefficient α influences the stream features
already seen in Sec. 2.3, in the framework of Eq. 3.1, formulated as in 1.33 and here
assuming the following form:

dy

dξ
= [γb + akb sin(kbξ)]ξ3y3 + 2y − αξ

ξ3y3 − 2ξ
= N(ξ, y)

D(ξ, y) (3.37)

where N(ξ, y) and D(ξ, y) respectively represent the numerator and the denominator of
the right hand side of Eq. 3.37, useful for the study of the corresponding Phase Portrait
(as done in Sec. 1.4.4) since the lines N(ξ, y) = 0 and D(ξ, y) = 0 represent the nullclines
of the equivalent system:

d

ds

ξ

y

 =

 ξ3y3 − 2ξ

[γb + akb sin(kbξ)]ξ3y3 + 2y − αξ

 (3.38)

where (ξ, y) = (ξ(s), y(s)) is nothing but a parametrization of the orbits in the parameter
s ∈ A ⊆ R.

3.4.1 Geometry of the Phase Space
This section is devoted to the study of the Phase Portrait when a sinusoidal bottom
topography is considered, in presence of bottom friction and a basal slope γb, as described
by System 3.38 or, equivalently, by Eq. 3.37. The aim of is to understand the influence
of the model parameters γb, α, a and γb in determining:

• the number of intersections points of the nullclines of System 3.38, which are the
points where dy/dξ is undetermined;

• the nature of the aforementioned intersections points, as equilibrium points of System
3.38;

• the main geometric features of the orbits.

Such aspects connected to the Phase Portrait will be analyzed in the order they have just
been reported.
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Number of Intersection Points of the Nullclines

As can be observed by Eq. 3.37, the geometry of the phase space depends not only on
γb and α, but also on a and kb. The first step to understand the behaviour of the orbits
in presence of bottom friction is to find possible crossing points of the nullclines described

by Eq. 1.34, 1.35 12, i.e., points where dy
dξ =

C
0
0

D
and so the slope of the stream depth

can be either finite or infinite 13, as described in [4]. In order to do this, one has to plug
Eq. 1.34 into Eq. 1.35 (this time using the specific definition of ζ(ξ) given in 3.4), thus
obtaining:

2ξ

C
γb − α

2 + akb sin(kbξ)
D

+ 2 3

ó
2
ξ2 = 0 (3.39)

This equation is in general implicit and can be easily solved numerically. However, by
simple re-arrangement, the following equivalent form is obtained:

sin(kbξ) =
α
2 − γb − 2 1

3 ξ− 5
3

akb
(3.40)

The number of the solutions of Eq. 3.40 within the physical domain depends strictly on
the parameters of the model. Indeed, it can be observed that while the function sin(ξ)
periodically oscillates within [−1,1] for all ξ > 0, the function at the right hand side of
Eq. 3.40 (which is continuous for ξ > 0) has instead the following behaviour, for ξ → 0+:

lim
ξ→0+

α
2 − γb − 2 1

3 ξ− 5
3

akb
= −∞

For ξ → +∞, instead:

lim
ξ→+∞

α
2 − γb − 2 1

3 ξ− 5
3

akb
=

α
2 − γb

akb

Moreover, such function results to be strictly increasing for all ξ > 0, therefore the value
α
2 −γb

akb
results to be an upper bound (never reached as a maximum by the function). Let

define the non-dimensional coefficient:

A :=
α
2 − γb

akb
(3.41)

12They coincide with the equilibrium points of System 3.38.
13Recall: as described in Sec. 1.4.4, at points where D(ξ, y) = 0 and N(ξ, y) /= 0 the stream height

profile exhibit vertical tangent, as they lie in the Critical Line, which is the locus of the singularities
of Eq. 1.33. On the contrary, points where N(ξ, y) = 0 and D(ξ, y) /= 0 represent stationary points
for the stream height, so they are not singular.
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where it can be recognized that:

• at the numerator of A, one has the energy gain/loss due to the basal slope γb net of
the dissipation, which in terms of slope is given by α/2;

• at the denominator of A, one has the maximum gain/loss (in absolute value) in terms
of slope due to sinusoidal bottom topography.

Therefore, A can be used to compare the energetic contribute of bottom topography with
the stream energy in absence of bottom topography, for large ξ. By means of A, three
cases can be distinguished:

• A ≤ −1 for which no intersections are possible;

• −1 < A ≤ 1 for which infinitely (countable) many intersections arise;

• A > 1 for which only a finite number of intersections arises.

The first of the inequalities just seen can be re-arranged (taking into account that akb > 0
) in order to obtain:

α

2 ≤ γb − akb

By observing that akb = max
ξ>0

ζ ′ and using the properties of minimum and maximum

operators 14 with extension to the constant γb, one concludes that physical intersections
are not possible if and only if:

α

2 ≤ min
ξ>0

[γb − ζ ′(ξ)] = min
ξ>0

[γ(ξ)] (3.42)

where γ(ξ) is the slope "felt" by the stream while flowing, defined in 3.5.
Thus, nullclines of Sys. 3.38 does not intersect if friction dissipation does not exceed the
energetic contribute given by slope and topography. An analogous re-arrangement with
similar usage of the properties of min and max operators brings to the following inequality:

α

2 > − min
ξ>0

[γb − ζ ′] = max
ξ>0

[−γ(ξ)]

This allows to conclude that if friction dissipation definitely overbalances the one of the
topographic counter-slope, one has only a finite number of crossing points.
Therefore, it appears immediate that the presence of intersection points of the nullclines
and, consequently, the possibility of having multiple hydraulic jumps, strictly depends on
friction coefficient α.

14Indeed, one has that max
ξ>0

[ζ′(ξ)] = − min
ξ>0

[−ζ′(ξ)], while min
ξ>0

[ζ′(ξ)] = − max
ξ>0

[−ζ′(ξ)]
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Nature of the Intersection Points of the Nullclines

The three possible cases for the number of intersections determines several geometries
of the phase space, which are displayed in Fig. 3.26 and summarized in Tab. 3.2, here
discussed more in details.
In particular, as expected, combinations of the model parameters resulting in A < −1
give no intersections of the nullclines, therefore the trajectories exhibit local stationary
points (minima or maxima) where they cross the line N(ξ, y) = 0 and infinite gradient at
points where they cross the Critical Divide Line D(ξ, y) = 0, which separates subcritical
and supercritical branches of the solutions.
Interesting and novel geometries emerge instead when considering the cases in which
A > −1 (infinitely many countable intersections), as illustrated in Fig. 3.26(a). Indeed,
it can be observed that the orbits exhibit an alternation of unstable focus followed by
saddle points: the trajectories move out from the unstable focus, then enter the saddle
point following the stable direction and leaves it following the unstable direction to join
the repulsion basin of the next unstable focus, which enlarges as ξ increases. It is worth
to notice that, although from Fig. 3.26(a) it looks like focus arise nearby the minimum
points of bed topography and saddles around the maxima, this is only due to the fact
that, as in this case, a small value of A is used. Therefore, by using Eq. 3.40, one can
find that intersections are located at points where sinus function assumes values very close
to 0 and in any case no more than A, which is the upper-bound of the function at the
right hand side member. Therefore, at that points, the slope of the sinusoidal bottom
topography function is very close to 0, that is, bottom topography assumes values very
close to the extremum points.
The geometry just described is coherent with the study of the Phase Space reported in
Sec. 1.4.4 for the general model (Eq. 1.25), particularly for what concerns the signs of the
Jacobian Trace 1.50 and Determinant 1.51. Indeed, the alternation of unstable focuses and
saddles obtained for A > −1 is due to the fact that while the sign of the Jacobian Trace
is constant (as it is the same sign of α), that of the determinant alternates, as it is well
shown in Fig. 3.27. Particular is the case α = 0 (no bottom friction), corresponding to a
null Jacobian Trace: the sole sign of the determinant governs the nature of the crossing
point, which can be saddles (negative determinant) or centres (positive determinant).
In principle, the case of a sinusoidal bottom topography exhibits six possible geometries,
which are summarized in Tab. 3.2. However, some of these are hard to obtain (as for the
stable focus) because of the choice of the parameters that, since they are non-dimensional,
will be in general between 0 and 1 (except for the wavenumber kb ) in absolute value :
typical values used for α and γb are −1 < α < 1, −0.1 ≤ γb ≤ 0.1 (as in [29]) , while a
spans in the range 0.01 ≤ a ≤ 1 (as in [4]). Geometries requiring values of α and a out of
the aforementioned ranges

Main Geometric Features of the Orbits

A last interesting aspect is that the sign of the basal slope γb is no longer the sole model
parameter in dictating the general behaviour of the trajectories. Indeed, it appears that
while the geometry of the subcritical branches of the trajectories is mostly governed by
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γb (similarly to what obtained in Sec. 2.3), that of the supercritical branches is closely
related to the flow direction (i.e., to the sign of α). In particular

• if γb ≥ 0, subcritical trajectories diverge (or stabilize oscillating around an asymp-
totic value if γb = 0) as ξ increases, while if γb < 0 they exhibit overall non-
monotonical behaviour, starting and terminating on the critical line at respectively
minimum and maximum radius, as it was observed for the Sinusoidal Bottom To-
pography in absence of friction, in Sec. 2.3;

• the supercritical branches, instead, are described by non-monotonic curves starting
and ending in critical condition (with a minimum and maximum radius, i.e., a two
Froude Horizons behaviour) if α > 0 (i.e., for flows on divergent direction), while
if α < 0 (convergent flows) they result described by curves that meet Critical Line
only at a minimum radius (i.e., only one Froude Horizon).

The overall behaviour just described for the supercritical branches with α < 0 seems to
be qualitatively independent on basal slope γb, amplitude a and wavenumber kb, novel
geometries for the case of Sinusoidal Bottom with respect to the case in which turbulent
friction is not included (Sec. 2.3), as reported in Table 3.1. Care has to be taken, in
the current case, while imposing boundary condition and during integration, since such
trajectories cross the ξ-axis and then, net of the sinusoidal fluctuation, converge to 0 ( if
γb ≥ 0) or diverge to −∞ (if γb > 0) 15, therefore giving rise to non-physical solutions 16.
Results are summarized in Table 3.1, while examples of the aforementioned trajectories
are reported in Fig. 3.23.

15If one considers the trajectories without excluding the sinusoidal fluctuation, they oscillate indef-
initely, thus it is a mathematical mistake to talk about convergence to 0 or divergence to −∞. In
particular, 0 is only an upper bound in case γb ≥ 0.

16As they exceed the physical domain D = {ξ > 0} × {y > 0}.
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(a) (b)

(c)

Figure 3.23: Supercritical Trajectories with one Froude Horizon for Convergent
Streams along Cone, Funnel and Horizontal bed, α = −0.1, γb = −0.05, 0, 0.05, a = 0.1,
kb = 0.05. In all the figures: red line separating the two branches is the Critical Divide Line;
supercritical and subcritical profiles are respectively the red and black branches.
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Table 3.1: Geometric Structure of the Trajectories in the Phase Plane in case of
Sinusoidal Bottom including friction . The table highlights the dependence of the geometric
structure of trajectories described by Sys. 3.38 (equivalently, Eq. 3.37) on the main model
parameters: basal slope γb and friction coefficient α. The abbreviations "SUB" and "SUP"
respectively stand for "Subcritical branch" and "Supercritical branch", while "1 F.H." and "2
F.H." stand respectively for one Froude Horizon (i.e. only a minimum radius where the stream
meets Critical conditions) and two Froude Horizons (i.e., both a minimum and a maximum
radius where the stream meets Critical conditions). In order to make a comparison with the
current case in which turbulent friction is included in the model (i.e., α /= 0), the case in which
friction is not included (see Sec. 2.3) is reported.

Friction No Friction (Sec. 2.3)

γb ≥ 0 γb < 0 γb ≥ 0 γb < 0

α > 0 α < 0 α > 0 α < 0 α = 0

SUB 1 F.H. 2 F.H. 1 F.H. 2 F.H.

SUP 2 F.H. 1 F.H. 2 F.H. 1 F.H. 1 F.H. 2 F.H.

(a) (b)

Figure 3.24: Orbits in presence of Sinusoidal Bottom Topography for Positive and
Negative Basal Slope, α = 0.4, γb = ±0.05. In both figures: red line is the Critical Divide
Line; green line is the Numerator Divide Line; arrows represent the stream lines. Fig. 3.24(a)
corresponds to orbits obtained for negative γb = −0.05, while Fig. 3.24(b) corresponds to those
obtained for positive γb = 0.05.
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Table 3.2: Geometries of the Phase Space for Sinusoidal Bottom Topography. The
table highlights the dependence of the nature of the equilibrium points of Sys. 3.38 (i.e., crossing
points of the corresponding nullclines) on the sign of the Jacobian Trace (equivalently, of α),
Jacobian Determinant and Discriminant ∆ = tr2 −4 det of the characteristic polynomial asso-
ciated to the Jacobian Matrix 1.49. The abbreviations "Un." and "St." respectively stand for
"Unstable" and "Stable", while "Foc.", "Sad." and Cen." respectively stand for "Focus", "Saddle"
and "Center".

α > 0 α < 0 α = 0

tr(ξ∗, y∗) > 0 < 0 0

det(ξ∗, y∗) > 0 < 0 > 0 < 0 > 0 < 0

∆(ξ∗, y∗) <0 >0 >0 <0 >0 >0 <0 >0 >0

Eq. Point Un. Foc. Un. Node Sad. St. Foc. St. Node Sad. Cen. Sad.

(a) (b) (c)

Figure 3.25: Orbits in presence of Sinusoidal Bottom Topography depending on the
number of crossing points of the nullclines A. In all the figures: red line is the Critical
Divide Line; green line is the Numerator nullcline N(ξ, y) = 0; black dashed line is the bottom
topography; the arrows represent the stream lines. Fig. 3.25(a) corresponds to the case A = −1.3
(no intersections); Fig. 3.25(b) corresponds to the case A = 0.3 (infinitely many intersections);
Fig. 3.25(c) corresponds to the case A = 1.4 (finitely many intersections).
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(a) (b)

(c) (d)

(e)

Figure 3.26: The six possible geometries of the Phase Space. Fig. 3.26(a) - Unstable
Focus at ξ ≈ 3.13 followed by a Saddle Point at ξ ≈ 3.81, α = 0.4, γb = 0.05, a = 0.1, kb = 5.
Fig. 3.26(b) - Stable Focus at ξ ≈ 8.16, α = −0.4, γb = −0.1, a = 4 (this value is out of range
for the applications here), kb = 5. Fig. 3.26(c) - Source located at ξ ≈ 1.63, α = 2 (out of
range), γb = 0.05, a = 0.1, kb = 5. Fig. 3.26(d) - Sink located at ξ ≈ 8.44, α = −1, γb = −0.05,
a = 0.1, kb = 5. Fig. 3.26(e) - Centre located at ξ ≈ 8.16, α = 0, γb = −0.05, a = 0.1, kb = 5.
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(a) (b)

(c)

Figure 3.27: In all the panels: α = 0.4, γb = −0.05, a = 0.1, kb = 5, therefore A = 0.25.
Fig. 3.27(a) shows the behaviour of the Jacobian Determinant for 0 ≤ ξ ≤ 10: black dots
represents the value of the determinant at crossing points, while solid black line is plotted to
better underline, by simple piecewise linear interpolation, the alternate change in sign. Fig.
3.27(b) shows the behaviour of the Jacobian Trace for 0 ≤ ξ ≤ 10: as before, black dots
represent the values of the trace at crossing points, while the interpolating black line is to better
represent the behaviour as ξ increases. Finally, Fig. 3.27(c) shows crossing points by graphical
solution of Eq. 3.40.

3.4.2 Solutions
Such a variety of possible geometries reflects on the possible solutions of Eq. 1.33, whose
structure depends on the nature of the equilibrium points and boundary conditions.
What is interesting is that, because of the sinusoidal structure of bed topography and,
consequently, of the numerator N(x, y) of Eq. 1.33, if A > −1 (when the energetic
contribute of friction is not definitely overbalanced by the one of topographic slope) one
can have up to infinitely many countable crossing points, opening to the possibility of a
stream profile with multiple shock discontinuities, physically corresponding to hydraulic
jumps. Such kinds of solutions are in principle possible also in absence of friction as
shown in Tab. 3.2, where for α = 0 the Focus degenerate to Centres, therefore opening to
the possibility of having shock discontinuities. Here, hydraulic jump stream profiles are
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obtained including turbulent friction α and their position, as done in previous sections
for the cases of Flat Bottom and Step Bottom, is obtained as intersection of the specific
forces of the supercritical and subcritical branch.
The different cases analyzed within the next subsections have been chosen coherently with
the general behaviour of the trajectories in the phase portrait (as discussed at the end of
Sec. 3.4.1): after considering the case A ≤ −1 (no crossing points), convergent ( α < 0
) and divergent (α < 0 ) flows will be analyzed for both cone (γb > 0), funnel (γb < 0)
and horizontal (γb = 0) shaped beds, for different amplitudes a of the bottom topography.
The goal is to understand how the presence of friction influences the response of the flow
to the amplitude of the sinusoidal bottom topography, compared to the results obtained
in absence of friction and summarized in Tab. 2.3.

Solutions in absence of crossing points (A ≤ −1)

In case A ≤ −1, Eq. 3.40 has no solution and therefore there not exists any physical point
at which nullclines intersect. Thus, according to Eq. 1.33, the trajectories join critical
line with vertical tangent and exhibit horizontal tangent where they meet the nullcline
N(ξ, y) = 0: there, the subcritical profiles attain local stationary points. On the contrary,
supercritical profiles are monotonic within the physical domain {ξ > 0}×{y > 0}, since in
this case the line N(ξ, y) = 0 always remains above the Critical Line). This is well shown
in Fig. 3.28, where stream profiles are reported for different parameter combinations
resulting in A ≤ −1.
As expected from the discussion at the end of Sec. 3.4.1, the overall behaviour of the
subcritical branch is determined by the sign of basal slope γb, similarly to the inviscid
case in Sec. 2.3: diverging oscillating if γb > 0, oscillating and confined between two
critical horizons if γb < 0.
Variations over negative α values (opposite slope) does not produce significant differences
of supercritical trajectories. Such a behaviour of the supercritical profiles can be explained
by the fact when A ≤ −1 friction energetic contribute is definitively lower than the one
given by topographic slope, as expressed by the inequality 3.42.
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(a) (b)

(c)

Figure 3.28: Three possible solutions for parameter combinations resulting in A ≤ −1. In all the
figures: thick black and red lines represent respectively subcritical and supercritical profiles, thin
red and green lines represent the nullclines (the red one is the Critical Line), arrows represent
streamlines. Fig. 3.28(a) and 3.28(b) refer to positive γb and, respectively, negative and positive
α, while Fig. 3.28(c) illustrates the case of negative α and γb.

Convergent Stream on Opposite Slope over a Cone-shaped Bed (γb > 0, α < 0)

Interesting stream profiles emerge by considering the case α = −0.1, γb = 0.05 and the
tree values of amplitude a = 0.1, 0.05, 0.01. Fig. 3.29 reports height profiles, along with
specific force in order to determine the radius at which hydraulic jump takes place (shock
discontinuity of 0 length) and the corresponding sinusoidal bottom topography. Fig. 3.30
displays instead the main flow features: stream profile (free surface and bottom), Froude
Number and non-dimensional Stream Head H̃(ξ) = H(ξ)/H0.
The fluid springs from an external circular gate located at ξ = ξ0 in supercritical conditions
and flows along convergent direction ascending the cone-shaped bed, while increasing
depth to join critical conditions. Then a hydraulic jump located at ξ = ξjump < ξ0
connects the supercritical profile to the subcritical one, which oscillates decreasing in
height until reaching critical conditions at a hole which drains the fluid.
The oscillations of the subcritical height profile progressively decrease in amplitude and
exhibit a variable phase offset with respect to the bottom topography, more evident for
higher values of α and smaller radii ξ. On the contrary, that of the supercritical branch are
almost on phase with bottom topography and increase as the stream flows on convergent
direction.
Notice in Figures 3.30(g), 3.30(h), 3.30(i) the role of the amplitude in determining the
energy jump intensity, which is lower for lower values of a. This appears coherent with
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the behaviour of stream energy: indeed, while the supercritical stream (where inertia
dominates) appears less affected by variations of a, it is not the same for the subcritical one,
where gravity dominates and greater values of amplitude provide an additional contribute
contrasting the stream, which moreover flows along opposite basal slope. Therefore, the
higher a, the less energetic tends to be the subcritical branch and, as a consequence, the
higher the energy jump tends to be.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.29: Height Profiles with Hydraulic Jump - Convergent Stream flowing on
opposite slope over a Cone-shaped Bed with Sinusoidal Bottom. In each column
Height Profile, Specific Force and Bottom Topography are reported for γb = 0.05, α = −0.1,
kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01. Figures
3.29(a), 3.29(b), 3.29(c): solid lines represent the solution with hydraulic jump (black and red
respectively for the subcritical and supercritical branch), thick dotted line represent subcritical
and supercritical solutions without jump, black dashed line represents the hydraulic jump as a
discontinuity (shock). Figures 3.29(d), 3.29(e), 3.29(f) show the behaviour of the specific force
for the supercritical (red) and subcritical (black) branches of the solution, the radial position of
the hydraulic jump being the intersection of the two branches. Figures 3.29(g), 3.29(h), 3.29(i)
depict instead the bottom topography for the different values of amplitude a.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.30: Stream Profiles and features of the Hydraulic Jump - Convergent Stream
flowing on opposite slope over a Cone-shaped Bed with Sinusoidal Bottom. In
each column Height Profile, Specific Force and Bottom Topography are reported for γb = 0.05,
α = −0.1, kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01,
basing on the hydraulic jump height profiles in Fig. 3.29. Figures 3.30(a), 3.30(b), 3.30(c)
report Free Surfaces and Bottom Topographies: the blue arrows indicate flow direction and the
hydraulic jump is represented as a sharp discontinuity. Figures 3.30(d), 3.30(e), 3.30(f) show the
behaviour of the Froude Number for the supercritical (red) and subcritical (black) branches of
the solution. Figures 3.30(g), 3.30(h), 3.30(i) reports finally the Stream Head for the supercritical
(red) and subcritical (black) branches: the dotted line reports the energy discontinuity at the
hydraulic jump in order to illustrate dissipation.

Divergent Stream on Favourable Slope down a Cone-shaped Bed (γb > 0, α > 0)

Let consider the case α = 0.1, γb = 0.05, for the tree different values of amplitude
a = 0.1, 0.05, 0.01. Fig. 3.31 reports height profiles, along with specific force in order
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to determine the radius at which hydraulic jump takes place (shock discontinuity of 0
length) and the corresponding sinusoidal bottom topography. Fig. 3.32 displays instead
the main flow features: stream profile (free surface and bottom), Froude Number and
non-dimensional Stream Head H̃(ξ) = H(ξ)/H0.
The fluid springs from a central source in critical conditions (described by the presence of
a minimum radius) and flows along divergent direction descending the cone-shaped bed,
oscillating with an overall non-monotonic trend. Before re-joining critical conditions at a
maximum radius, a hydraulic jump located at ξ = ξjump < ξ0 connects the supercritical
profile to the subcritical one, which oscillates with increasing amplitude.
The oscillations of the subcritical and supercritical height profiles maintains the same
phase offsets with respect to bottom topography described for the convergent case.
Notice in Figures 3.32(g), 3.32(h), 3.32(i) the role of the amplitude in determining the
energy jump intensity, which is higher for lower values of a. Again, it is coherent with
the behaviour of the stream energy: although the the "ascending" parts 17 of the bottom
topography contrast the stream in terms of energy, they are overbalanced by the "descend-
ing" parts 18, which are also helped by the fact that the flow is on favourable slope: the
more the amplitude, the more the bottom topography helps the flow in energetic terms.
Therefore, the subcritical flow is more energetic as a increases and the supercritical flow
needs less energy dissipation at the jump to reach it.

17Increasing taking as a reference the flow direction, thus contrasting the stream that in such parts
goes on opposite slope.

18Decreasing taking as a reference the flow direction, thus helping the stream that in such parts goes
on favourable slope.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.31: Height Profiles with Hydraulic Jump - Divergent Stream flowing on
favourable slope down a Cone-shaped Bed with Sinusoidal Bottom. In each column
Height Profile, Specific Force and Bottom Topography are reported for γb = 0.05, α = 0.1,
kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01. Figures
3.31(a), 3.31(b), 3.31(c): solid lines represent the solution with hydraulic jump (black and red
respectively for the subcritical and supercritical branch), thick dotted line represent subcritical
and supercritical solutions without jump, black dashed line represents the hydraulic jump as a
discontinuity (shock). Figures 3.31(d), 3.31(e), 3.31(f) show the behaviour of the specific force
for the supercritical (red) and subcritical (black) branches of the solution, the radial position of
the hydraulic jump being the intersection of the two branches. Figures 3.31(g), 3.31(h), 3.31(i)
depict instead the bottom topography for the different values of amplitude a.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.32: Stream Profiles and features of the Hydraulic Jump - Divergent Stream
flowing on favourable slope down a Cone-shaped Bed with Sinusoidal Bottom. In
each column Height Profile, Specific Force and Bottom Topography are reported for γb = 0.05,
α = 0.1, kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01,
basing on the hydraulic jump height profiles in Fig. 3.31. Figures 3.32(a), 3.32(b), 3.32(c)
report Free Surfaces and Bottom Topographies: the blue arrows indicate flow direction and the
hydraulic jump is represented as a sharp discontinuity. Figures 3.32(d), 3.32(e), 3.32(f) show the
behaviour of the Froude Number for the supercritical (red) and subcritical (black) branches of
the solution. Figures 3.32(g), 3.32(h), 3.32(i) reports finally the Stream Head for the supercritical
(red) and subcritical (black) branches: the dotted line reports the energy discontinuity at the
hydraulic jump in order to illustrate dissipation.
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Convergent Stream on Favourable Slope down a Funnel-shaped Bed (γb < 0,
α < 0)

Let consider the case α = −0.1, γb = −0.05, for the tree different values of amplitude
a = 0.1, 0.05, 0.01. Fig. 3.33 reports height profiles, along with specific force in order
to determine the radius at which hydraulic jump takes place (shock discontinuity of 0
length) and the corresponding sinusoidal bottom topography. Fig. 3.34 displays instead
the main flow features: stream profile (free surface and bottom), Froude Number and
non-dimensional Stream Head H̃(ξ) = H(ξ)/H0.
The fluid springs in supercritical conditions from an external circular gate located at
ξ = ξ0 (where a supercritical boundary condition is imposed) and flows along convergent
direction descending the funnel-shaped bed, oscillating with an overall increasing trend.
Before joining critical conditions, a hydraulic jump located at ξ = ξjump < ξ0 connects
the supercritical profile to the subcritical one, which oscillates with increasing amplitude
until reaching the edge of a central hole draining the fluid, located at a minimum radius
that identifies the diameter of the hole.
The oscillations of the subcritical and supercritical height profiles maintains the same
phase offsets with respect to bottom topography described for the previous cases.
Notice in Figures 3.34(g), 3.34(h), 3.34(i) the role of the amplitude in determining the
energy jump intensity, which is lower for lower values of a. Again, it is coherent with
the behaviour of the stream energy: although the the "ascending" parts 19 of the bottom
topography contrast the stream in terms of energy, they are overbalanced by the "descend-
ing" parts 20, which are also helped by the fact that the flow is on favourable slope: the
more the amplitude, the more the bottom topography helps the flow in energetic terms.
Therefore, the subcritical flow is more energetic as a increases and the supercritical flow
needs less energy dissipation at the jump to reach it.

19Increasing taking as a reference the flow direction, thus contrasting the stream that in such parts
goes on opposite slope.

20Decreasing taking as a reference the flow direction, thus helping the stream that in such parts goes
on favourable slope.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.33: Height Profiles with Hydraulic Jump - Convergent Stream flowing on
favourable slope down a Funnel-shaped Bed with Sinusoidal Bottom. In each column
Height Profile, Specific Force and Bottom Topography are reported for γb = −0.05, α = −0.1,
kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01. Figures
3.33(a), 3.33(b), 3.33(c): solid lines represent the solution with hydraulic jump (black and red
respectively for the subcritical and supercritical branch), thick dotted line represent subcritical
and supercritical solutions without jump, black dashed line represents the hydraulic jump as a
discontinuity (shock). Figures 3.33(d), 3.33(e), 3.33(f) show the behaviour of the specific force
for the supercritical (red) and subcritical (black) branches of the solution, the radial position of
the hydraulic jump being the intersection of the two branches. Figures 3.33(g), 3.33(h), 3.33(i)
depict instead the bottom topography for the different values of amplitude a.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.34: Stream Profiles and features of the Hydraulic Jump - Convergent Stream
flowing on favourable slope down a Funnel-shaped Bed with Sinusoidal Bottom. In
each column Height Profile, Specific Force and Bottom Topography are reported for γb = −0.05,
α = −0.1, kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01,
basing on the hydraulic jump height profiles in Fig. 3.33. Figures 3.34(a), 3.34(b), 3.34(c)
report Free Surfaces and Bottom Topographies: the blue arrows indicate flow direction and the
hydraulic jump is represented as a sharp discontinuity. Figures 3.34(d), 3.34(e), 3.34(f) show the
behaviour of the Froude Number for the supercritical (red) and subcritical (black) branches of
the solution. Figures 3.34(g), 3.34(h), 3.34(i) reports finally the Stream Head for the supercritical
(red) and subcritical (black) branches: the dotted line reports the energy discontinuity at the
hydraulic jump in order to illustrate dissipation.

Divergent Stream on Opposite Slope over a Funnel-shaped bed (γb < 0, α > 0)

Let consider the case α = 0.1, γb = −0.05, for the tree different values of amplitude
a = 0.1, 0.05, 0.01. Fig. 3.35 reports height profiles, along with specific force in order
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to determine the radius at which hydraulic jump takes place (shock discontinuity of 0
length) and the corresponding sinusoidal bottom topography. Fig. 3.36 displays instead
the main flow features: stream profile (free surface and bottom), Froude Number and
non-dimensional Stream Head H̃(ξ) = H(ξ)/H0.
The fluid springs in critical conditions from a central source located at a minimum radius
(which identifies the diameter of the source) and flows along divergent direction ascending
the funnel-shaped bed, oscillating with an overall non monotonic trend (also net of the
sinusoidal fluctuation). Before re-joining critical conditions, a hydraulic jump connects
the supercritical profile to the subcritical one, which oscillates with decreasing amplitude
until reaching critical conditions at a maximum radius, which can be exemplified as the
external border of the bed and after which the fluid falls down.
The oscillations of the subcritical and supercritical height profiles maintains the same
phase offsets with respect to bottom topography described for the previous cases.
Notice in Figures 3.36(g), 3.36(h), 3.36(i) the role of the amplitude in determining the
energy jump intensity, which is lower for lower values of a. Again, it is coherent with
the behaviour of the stream energy: although the "descending" parts 21 of the bottom
topography help the stream in terms of energy, they are overbalanced by the "ascending"
parts 22, which are also helped by the fact that the flow is on opposite slope: the more
the amplitude, the more the bottom topography contrasts the flow in energetic terms.
Therefore, the subcritical flow is less energetic as a increases and the supercritical flow
needs more energy dissipation at the jump to reach it.

21Decreasing taking as a reference the flow direction, thus helping the stream that in such parts goes
on favourable slope.

22Increasing taking as a reference the flow direction, thus contrasting the stream that in such parts
goes on opposite slope.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.35: Height Profiles with Hydraulic Jump - Divergent Stream flowing on
opposite slope over a Funnel-shaped Bed with Sinusoidal Bottom. In each column
Height Profile, Specific Force and Bottom Topography are reported for γb = −0.05, α = 0.1,
kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01. Figures
3.35(a), 3.35(b), 3.35(c): solid lines represent the solution with hydraulic jump (black and red
respectively for the subcritical and supercritical branch), thick dotted line represent subcritical
and supercritical solutions without jump, black dashed line represents the hydraulic jump as a
discontinuity (shock). Figures 3.35(d), 3.35(e), 3.35(f) show the behaviour of the specific force
for the supercritical (red) and subcritical (black) branches of the solution, the radial position of
the hydraulic jump being the intersection of the two branches. Figures 3.35(g), 3.35(h), 3.35(i)
depict instead the bottom topography for the different values of amplitude a.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.36: Stream Profiles and features of the Hydraulic Jump - Divergent Stream
flowing on opposite slope over a Funnel-shaped Bed with Sinusoidal Bottom. In
each column Height Profile, Specific Force and Bottom Topography are reported for γb = −0.05,
α = 0.1, kb = 5 and different values of amplitude: from left to right column, a = 0.1, 0.05, 0.01,
basing on the hydraulic jump height profiles in Fig. 3.35. Figures 3.36(a), 3.36(b), 3.36(c)
report Free Surfaces and Bottom Topographies: the blue arrows indicate flow direction and the
hydraulic jump is represented as a sharp discontinuity. Figures 3.36(d), 3.36(e), 3.36(f) show the
behaviour of the Froude Number for the supercritical (red) and subcritical (black) branches of
the solution. Figures 3.36(g), 3.36(h), 3.36(i) reports finally the Stream Head for the supercritical
(red) and subcritical (black) branches: the dotted line reports the energy discontinuity at the
hydraulic jump in order to illustrate dissipation.

Divergent Stream along a Horizontal Bed, (γb = 0, α > 0)
Let consider the case α = 0.1, γb = 0, for the tree different values of amplitude a =
0.1, 0.05, 0.01. Fig. 3.37 reports height profiles, along with specific force in order to de-
termine the radius at which hydraulic jump takes place (shock discontinuity of 0 length)
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and the corresponding sinusoidal bottom topography. Fig. 3.38 displays instead the
main flow features: stream profile (free surface and bottom), Froude Number and non-
dimensional Stream Head H̃(ξ) = H(ξ)/H0.
The fluid springs in critical conditions from a central source located at a minimum radius
(which identifies the diameter of the source) and flows along divergent direction along the
horizontal bed, oscillating with an overall non monotonic trend (also net of the sinusoidal
fluctuation). Before re-joining critical conditions, a hydraulic jump connects the super-
critical profile to the subcritical one, which oscillates with increasing, but progressively
stabilizing amplitude.
The oscillations of the subcritical and supercritical height profiles maintains the same
phase offsets with respect to bottom topography described for the previous cases.
Notice in Figures 3.38(g), 3.38(h), 3.38(i) that the energy jump is not significantly affected
by differences in the amplitude a, whose effects are quiet evident in the jump position.
This is due to the fact that the bed is horizontal, therefore the increasing or decreas-
ing parts of the bottom topography are not amplified by the additional effect of bottom
slope and each increasing half oscillation is perfectly balanced by the decreasing one. On
average, keeping same friction coefficient α and boundary conditions, supercritical and
subcritical branches are not affected by changes in the amplitude a in terms of energy, as
well as the energy jump.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.37: Height Profiles with Hydraulic Jump - Divergent Stream flowing along a
Horizontal Bed with Sinusoidal Bottom. In each column Height Profile, Specific Force and
Bottom Topography are reported for γb = 0, α = 0.1, kb = 5 and different values of amplitude:
from left to right column, a = 0.1, 0.05, 0.01. Figures 3.37(a), 3.37(b), 3.37(c): solid lines
represent the solution with hydraulic jump (black and red respectively for the subcritical and
supercritical branch), thick dotted line represent subcritical and supercritical solutions without
jump, black dashed line represents the hydraulic jump as a discontinuity (shock). Figures 3.37(d),
3.37(e), 3.37(f) show the behaviour of the specific force for the supercritical (red) and subcritical
(black) branches of the solution, the radial position of the hydraulic jump being the intersection
of the two branches. Figures 3.37(g), 3.37(h), 3.37(i) depict instead the bottom topography for
the different values of amplitude a.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.38: Stream Profiles and features of the Hydraulic Jump - Divergent Stream
flowing along a Horizontal Bed with Sinusoidal Bottom. In each column Height Profile,
Specific Force and Bottom Topography are reported for γb = 0, α = 0.1, kb = 5 and different
values of amplitude: from left to right column, a = 0.1, 0.05, 0.01, basing on the hydraulic jump
height profiles in Fig. 3.37. Figures 3.38(a), 3.38(b), 3.38(c) report Free Surfaces and Bottom
Topographies: the blue arrows indicate flow direction and the hydraulic jump is represented
as a sharp discontinuity. Figures 3.38(d), 3.38(e), 3.38(f) show the behaviour of the Froude
Number for the supercritical (red) and subcritical (black) branches of the solution. Figures
3.38(g), 3.38(h), 3.38(i) reports finally the Stream Head for the supercritical (red) and subcritical
(black) branches: the dotted line reports the energy discontinuity at the hydraulic jump in order
to illustrate dissipation.

Convergent Stream along a Horizontal Bed, (γb = 0, α < 0)
Let consider the case α = −0.1, γb = 0, for the tree different values of amplitude
a = 0.1, 0.05, 0.01. Fig. 3.39 reports height profiles, along with specific force in or-
der to determine the radius at which hydraulic jump takes place (shock discontinuity of 0
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length) and the corresponding sinusoidal bottom topography. Fig. 3.40 displays instead
the main flow features: stream profile (free surface and bottom), Froude Number and
non-dimensional Stream Head H̃(ξ) = H(ξ)/H0.
The fluid springs in supercritical conditions from an external gate and flows along con-
vergent direction along the horizontal bed, oscillating with increasing amplitude. Before
joining critical conditions, a hydraulic jump connects the supercritical profile to the sub-
critical one, which oscillates with decreasing amplitude.
The oscillations of the subcritical and supercritical height profiles maintains the same
phase offsets with respect to bottom topography described for the previous cases.
Notice in Figures 3.40(g), 3.40(h), 3.40(i) that the energy jump is not significantly affected
by differences in the amplitude a, for the same reasons discussed for the Divergent case.
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(g) (h) (i)

Figure 3.39: Height Profiles with Hydraulic Jump - Convergent Stream flowing along
a Horizontal Bed with Sinusoidal Bottom. In each column Height Profile, Specific Force
and Bottom Topography are reported for γb = 0, α = −0.1, kb = 5 and different values of
amplitude: from left to right column, a = 0.1, 0.05, 0.01. Figures 3.39(a), 3.39(b), 3.39(c): solid
lines represent the solution with hydraulic jump (black and red respectively for the subcritical and
supercritical branch), thick dotted line represent subcritical and supercritical solutions without
jump, black dashed line represents the hydraulic jump as a discontinuity (shock). Figures 3.39(d),
3.39(e), 3.39(f) show the behaviour of the specific force for the supercritical (red) and subcritical
(black) branches of the solution, the radial position of the hydraulic jump being the intersection
of the two branches. Figures 3.39(g), 3.39(h), 3.39(i) depict instead the bottom topography for
the different values of amplitude a.
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(a) (b) (c)
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Figure 3.40: Stream Profiles and features of the Hydraulic Jump - Convergent Stream
flowing along a Horizontal Bed with Sinusoidal Bottom. In each column Height Profile,
Specific Force and Bottom Topography are reported for γb = 0, α = −0.1, kb = 5 and different
values of amplitude: from left to right column, a = 0.1, 0.05, 0.01, basing on the hydraulic jump
height profiles in Fig. 3.39. Figures 3.40(a), 3.40(b), 3.40(c) report Free Surfaces and Bottom
Topographies: the blue arrows indicate flow direction and the hydraulic jump is represented
as a sharp discontinuity. Figures 3.40(d), 3.40(e), 3.40(f) show the behaviour of the Froude
Number for the supercritical (red) and subcritical (black) branches of the solution. Figures
3.40(g), 3.40(h), 3.40(i) reports finally the Stream Head for the supercritical (red) and subcritical
(black) branches: the dotted line reports the energy discontinuity at the hydraulic jump in order
to illustrate dissipation.

3.4.3 Friction-Gravity Interplay and Phase Offset
The height profiles obtained for the Sinusoidal Bottom Topography when friction is taken
into account show a common feature:
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• subcritical profiles exhibit a variable phase offset with respect to bottom topography,
which is more evident for small radii ξ and higher values of α in absolute value;

• on the contrary, supercritical profiles are almost on phase with bottom topography,
although slight offsets can be observed for small radii.

This is similar to what observed for the Sinusoidal Bottom in the Inviscid case (Sec. 2.3)
and finds a natural explanation in the behaviour of the stream energy (Stream head),
with the difference that now it is affected by friction dissipation: bottom topography still
help or contrast the stream where it respectively decrease or increase, due to gravity,
but friction amplifies the contrasting effect which, due to the Chèzy parametrization, the
shallow-water model used and the radial symmetry, are more felt for smaller radii. In
view of this, one can conjecture an offset of the Stream Head with respect to bottom
topography, but no longer constant as described in Sec. 2.3 due to friction. This is
actually confirmed by the model formulation described by Eq. 1.29, here reported for the
specific case of sinusoidal bottom:

dy

dξ
=

γb + akb sin(kbξ) + 2
ξ3y2 − α

ξ2y3

1 − Fr2 (3.43)

or, equivalently, by using the non-dimensional Stream Head H̃(ξ) = 1/ξ2y(ξ)2:

dH̃

dξ
= γb + akb sin(kbξ) − α

ξ2y(ξ)3 (3.44)

Indeed, since the bottom topography slope is ζ ′(ξ) = −akbsin(kbξ), one can conclude
that the sinusoidal term of Eq. 3.44 exhibits an offset with respect to bottom topography,
which is modulated (as well as amplitude) by the linear term due to basal slope γb and
the friction term. The different response of the fluid height is then evident from Eq. 3.43
and depends on the Froude Number, which determines the sign of the denominator and
reflects how inertia and gravity dominate the flow:

• subcritical flows (Fr < 1, where gravity dominates) maintain the marked offset
observed for the Stream Head;

• supercritical flows (Fr < 1, where intertia dominates) are almost on phase with
bottom topography, the slight offsets being determined by the presence of basal
slope and friction.

Such results are evident in Figures 3.30, 3.32, 3.34, 3.36.

3.5 Step Bottom Topography
Let consider a step in the bed topography. For the sake of simplicity, this is represented
by the function:

ζ(ξ) = hs tanh[σs(ξ − ξs)] (3.45)
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where, as already discussed in Sec. 2.4, hs > 0 controls the step height (which is given by
hstep = 2hs), |σs| controls the steepness of the step, sgn(σs) determines the direction of
the step (increasing or decreasing) and ξs determines the radial position of the jump, as
shown in Fig. 2.20.
As done previously, in order to simplify the model:

• |σs| is assumed as an arbitrarily high number in order for the step to be sufficiently
steep, but it is not considered as a parameter of the model;

• ξs would not be considered a parameter too, since eventual changes of the radial
positions are not relevant for the economy of this work.

Finally, the expression of the first derivative ζ ′(ξ) is recalled:

ζ ′(ξ) = hsσs sech2[σs(ξ − ξs)] (3.46)

By plugging bed topography function 3.45 into Profile Equation 1.33, one obtains the
following:

dy

dξ
= (γb − hsσs sech2[σs(ξ − ξs)])ξ3y3 + 2y − αξ

ξ3y3 − 2ξ
= N(ξ, y)

D(ξ, y) (3.47)

which is also equivalent to the following system:

d

ds

ξ

y

 =

 ξ3y3 − 2ξ

(γb − hsσs sech2[σs(ξ − ξs))ξ3y3 + 2y − αξ

 (3.48)

where, again, (ξ, y) = (ξ(s), y(s)) represent a parametrization of an orbit with respect to
the parameter s ∈ A ⊂ R.
The goal of this study is to investigate how the interaction between the step bottom
and friction alter the dynamics with respect to the same case in absence of friction, as
discussed in Sec. 2.4.

3.5.1 Phase Portrait
This section is devoted to the study of the ξ − y Phase Portrait described by Eq. 3.47,
whose geometry is again organized by the corresponding nullclines N(ξ, y) = 0 and
D(ξ, y) = 0, this last one representing the Critical Line as usual. The section is organized
as follows:

• first two subsections, in which the number and nature of the intersections of the
nullcines are determined;

• qualitative appearence of the trajectories.
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Number of Intersections of the Nullclines

By plugging the current expression of ζ ′(ξ) into Eq. 1.36, some algebra leads to the
following implicit equation to determine the number of possible intersections between the
null-clines of Eq. 1.33:

sech2[σs(ξ − ξs)] =
γb − α

2 + 2 1
3 ξ− 5

3

hsσs
(3.49)

The right hand side member of Eq. 3.49 defines a strictly increasing or decreasing function
depending on whether, respectively σs < 0 or σs > 0.
Moreover:

lim
ξ→0

γb − α
2 + 2 1

3 ξ− 5
3

hsσs
= ±∞

for, respectively, σs > 0 or σs < 0, while:

lim
ξ→+∞

γb − α
2 + 2 1

3 ξ− 5
3

hsσs
=

γb − α
2

hsσs

The left hand side of Eq. 3.49 defines instead a positive function, which exhibits the only
absolute maximum 1 at ξ = ξs and is symmetric with respect to such point. The number
of intersections is governed by the monotony of the right hand side member of Eq. 3.49
and by the ratio A defined below:

A :=
γb − α

2
hsσs

(3.50)

The number of solutions of Eq. 3.49, which is consequence of the structure of the func-
tions defining its two members, is reported in Chapter A of the Appendix, along with a
discussion motivating the results summarized in Table A.1. As can be seen, the maximum
number of intersections obtainable is three.
There are three cases in which intersections do not arise. The first one is the case in which
σs > 0 and As ≥ 1, that is:

γb − α
2

hsσs
≥ 1

which can be re-arranged into:

γb − α

2 ≥ hsσs = max
ξ>0

ζ ′(ξ)

Last inequality suggests that intersections of the nullclines, potentially representing dis-
continuities, do not arise if the potential energy given by the basal slope, net of the energy
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dissipation, exceeds the energy contribution given by the step (which is increasing, since
σs > 0). The second is the case in which σs < 0 and As < 0, that is:

γb − α
2

hsσs
< 0

which corresponds to the case γb < α
2 , that is, when friction dissipation dominates and

the effect of the step (which is decreasing, since σs < 0) does not affect the dynamics.
The last case is the one in which 0 ≤ As < 1, but according to what discussed in Chapter
A, the function defining right hand side evaluated at ξ = ξs exceeds 1, that is:

γb − α
2 + 2 1

3 ξ
− 5

3
s

hsσs
≥ 1

This can be interpreted similarly to the case in which σs > 0 and As ≥ 1, but with the
additional contribute 2 1

3 ξ
− 5

3
s which appears because here 0 ≤ As < 1.

Nature of the intersections of the Nullclines

Assume (ξ∗, y∗) being an intersection point of the nullclines, ξ∗ > 0. By plugging the
current expressions of ζ(ξ), ζ ′(ξ) and ζ ′′(ξ) 23 into 1.44, 1.50, 1.51, the corresponding
expressions for the Jacobian Trace and Determinant of system 1.4.4 are obtained:

(tr JF)|(ξ∗,y∗) = 3αt−1
∗ (3.51)

(det JF)|(ξ∗,y∗) = 5 + 6 · 21/5t−3/5
∗ {−2hsσ

2
s tanh[σs(ξ∗ − ξs)] sech2[σs(ξ∗ − ξs)]} (3.52)

where, according to 1.46, in order to have ξ∗ > 0 it must be satisfied:

t∗ = −γb + α/2 + hsσs sech2[σs(ξ∗ − ξs)] > 0

Then the sign depends on the relative position between ξ and ξ∗ by means of tanh[σs(ξ∗ −
ξs)]. One can thus conclude that (det JF)|(ξ∗,y∗) is positive for ξ∗ ≷ ξs when respectively
σs ≶ 0, and equals 5 when ξ = ξs.
The resulting geometries are displayed in Fig. 3.41 and summarized in Tables 3.3, 3.4,
3.5, respectively referred to the case α > 0 (divergent flow), α < 0 (convergent flow),
α = 0 (no friction).

23Remark: ζ′′(ξ) = hsσ2
s tanh[σs(ξ − ξs)] sech[σs(ξ − ξs)]
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Trajectories

Figures 3.41, 3.42 show the behaviour of the orbits in the Phase Plane ξ − y, for γb =
0.05, −0.05, 0, α = ±0.4 and step height 2hs = 0.1. The step is said to be Positive if it
represents an increase of the bottom topography as ξ increases (σs > 0), otherwise it is
said to be Negative (σs > 0). The case σs > 0 will be useful to determine the solutions.
In case of Positive Step (σs > 0, reported in Fig. 3.41), similarly to what observed
for the inviscid case with same topography (Sec. 2.4), the trajectories result affected by
the presence of the step in the bottom in proximity of its position. In particular, there
is always at least one intersection, which is a focus that, in case friction coefficient or
steepness are sufficiently small in absolute value, it is followed by a saddle.
Sufficiently far from the step position and the intersection points, the trajectories exhibit
instead the same features observed for the flat case, as they represent nothing but a jump
between two orbits obtained with flat bottom (see Sec. 2.4.2) due to a discontinuity in
the height of the bottom.
Finally, it is interesting to observe the energetic role of the step, already discussed in Sec.
2.4: in case of convergent flows, where the step is felt as "descending" by the flow and helps
adding favourable slope, the trajectories experiment an energy boost and can overcome
the Conservative Solution reaching a Stream Head that is major of 1. On the other hand,
in case of divergent flows, the step is felt as "ascending" by the flow and subtracts energy,
being on opposite slope. Therefore, the trajectories experiment an abrupt reduction and
can enter the internal region delimited by the Conservative Solution, reaching a Stream
Head that is minor of 1.
Similar arguments can be used to explain the trajectories in case of Negative Step (σs > 0),
reported in Fig. 3.42 where, as for the Positive Step case, a focus can arise but, on the
contrary, it appears followed by a saddle only by increasing the step height 2hs or the
friction coefficient α.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.41: ξ − y Phase Portrait for Positive Step Bottom Topography In all of the
figures, hs = 0.05, σs = +30, while the step is located at ξs = 3. Horizontal axis reports the
radius ξ, the vertical one the height y, based on Eq. 3.47. Red line marks Critical conditions:
subcr. trajectories lie under the red line, while supercr. ones lie above. Green line is the
nullcline N(ξ, y) = 0 of Eq. 3.47. Black line represents the Conservative Solution (see Sec.
2.1). Left column, Figures 3.41(a), 3.41(c), 3.41(e) - Flows on Convergent direction (α = −0.4)
for Cone, Funnel and Horiz. Bed (resp., γb = 0.05, −0.05, 0). Right column, Figures 3.41(b),
3.41(d), 3.41(f) - Flows on Divergent direction (α = 0.4) for Cone, Funnel and Horiz. Bed (resp.,
γb = 0.05, −0.05, 0).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.42: ξ − y Phase Portrait for Negative Step Bottom Topography In all of the
figures, hs = 0.05, σs = −30, while the step is located at ξs = 3. Horizontal axis reports the
radius ξ, the vertical one the height y, based on Eq. 3.47. Red line marks Critical conditions:
subcr. trajectories lie under the red line, while supercr. ones lie above. Green line is the
nullcline N(ξ, y) = 0 of Eq. 3.47. Black line represents the Conservative Solution (see Sec. 2.1).
Left column, Figures 3.42(b), 3.42(b), 3.42(e) - Flows on Convergent direction (α = −0.4) for
Cone, Funnel and Horiz. Bed (resp., γb = 0.05, −0.05, 0). Right column, Figures ??, 3.42(d),
3.42(f) - Flows on Divergent direction (α = 0.4) for Cone, Funnel and Horiz. Bed (resp.,
γb = 0.05, −0.05, 0).
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α > 0

tr(ξ∗, y∗) > 0

σs > 0 σs < 0

ξ∗ > ξs ξ∗ < ξs ξ∗ > ξs ξ∗ < ξs

det(ξ∗, y∗) > 0 < 0 > 0 > 0 > 0 < 0

∆(ξ∗, y∗) < 0 > 0 > 0 < 0 > 0 < 0 > 0 < 0 > 0 > 0

Equilibrium Point U.F. U.N. Saddle U.F. U.N. U.F. U.N U.F U.N Saddle

Table 3.3: Possible geometries of the Phase Plane with step bottom topography
for α > 0. The classification depends on the Jacobian Determinant and Discriminant ∆∗ =
[(tr JF)|(ξ∗,y∗)]2 − 4(det JF)|(ξ∗,y∗) of the characteristic polynomial associated to the Jacobian
Matrix 1.49. Here, "U.F." and "U.N." respectively stand for "Unstable Focus" and "Unstable
Node".

α < 0

tr(ξ∗, y∗) < 0

σs > 0 σs < 0

ξ∗ > ξs ξ∗ < ξs ξ∗ > ξs ξ∗ < ξs

det(ξ∗, y∗) > 0 < 0 > 0 > 0 > 0 < 0

∆(ξ∗, y∗) < 0 > 0 > 0 < 0 > 0 < 0 > 0 < 0 > 0 > 0

Equilibrium Point S.F. S.N. Saddle S.F. S.N. S.F. S.N. S.F. S.N. Saddle

Table 3.4: Possible geometries of the Phase Plane with step bottom topography
andα < 0. The classification depends on the Jacobian Determinant and Discriminant ∆∗ =
[(tr JF)|(ξ∗,y∗)]2 − 4(det JF)|(ξ∗,y∗) of the characteristic polynomial associated to the Jacobian
Matrix 1.49. Here, "S.F." and "S.N." respectively stand for "Stable Focus" and "Stable Node".

3.5.2 Solutions
Since the purpose is to investigate the effect of a step topography, but described by an
infinitely many times differentiable function, the parameter σs will be consider as fixed
and sufficiently high in order for the first derivative to represent a slope of about 90◦: in
this work, |σs| = 100. Also the position of the step, for the sake of simplicity, will be fixed
to ξs = 4.
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α = 0

tr(ξ∗, y∗) 0

σs > 0 σs < 0

ξ∗ > ξs ξ∗ < ξs ξ∗ > ξs ξ∗ < ξs

det(ξ∗, y∗) > 0 < 0 > 0 > 0 > 0 < 0

Equilibrium Point Centre Saddle Centre Saddle Centre Saddle

Table 3.5: Possible geometries of the Phase Plane with Step Bottom topography in
case friction is absent. The classification depends on the sign of the Jacobian Determinant
associated to the Jacobian Matrix 1.49.

Further simplifications arise from the geometry considered: σs < 0 (Negative Step) is as-
sumed, in order to describe a bottom topography which decreases as ξ grows. Therefore,
the step will be felt by the stream as "descending" if it flows on divergent direction, other-
wise it will be felt as "ascending", helping or contrasting it in terms of energy depending
on if it constitutes a favourable or an opposite slope variation.
Finally, in order to be more reliable with practical situations, only three cases will be
discussed, that is, those for which the step is on favourable slope, helping the flow with
an additional energy boost:

• Divergent stream flowing down a Cone-shaped Bed with Negative Step Bottom;

• Convergent stream flowing down a Funnel-shaped Bed with Negative Step Bottom;

• Divergent stream flowing along a Horizontal Bed with Negative Step Bottom.

Solutions for the case of Positive Step (σs > 0) are not discussed here, although the
trajectories are reported in Fig. 3.41, as they do not provide further information to the
description of the physical point of view carried out in this work. In view of this, Eq. 3.47
depends only on hs, α and γb.

Divergent Stream flowing down a Cone-shaped bed with Negative Step Bot-
tom, γb = 0.05, α = 0.2

Fig. 3.43 reports the stream profile and features for the case of divergent flow down a
cone-shaped bed and negative step bottom of height 2hs = 0.2. Boundary conditions are
imposed at ξ0 = 3 in order to obtain the supercritical and subcritical height profiles y(ξ).
In particular, the following heights are imposed:

• the subcritical height corresponding to unitary stream head;

• an arbitrary supercritical height corresponding to a Stream Head greater than 1.
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The flow starts in supercritical condition. Then, immediately after the step position,
a hydraulic jump connects it with the subcritical profile, which continues indefinitely,
flowing on favourable slope.

Convergent Stream flowing down a Funnel-shaped bed with Negative Step
Bottom, γb = −0.05, α = −0.2

Fig. 3.44 reports the stream profile and features for the case of convergent flow down a
funnel-shaped bed and negative step bottom of height 2hs = 0.1. Boundary conditions
are imposed at ξ0 = 6 in order to obtain the supercritical and subcritical height profiles
y(ξ). In particular, the following heights are imposed:

• the subcritical height corresponding to unitary stream head;

• an arbitrary supercritical height corresponding to a Stream Head greater than 1.

The flow starts in supercritical condition. Then, immediately after the step position, a
hydraulic jump connects it with the subcritical profile, which continues until reaching
critical condition at the edge of a central hole draining the fluid, located at the minimum
radius.

Divergent Stream flowing along a Horizontal Bed with Negative Step Bottom,
γb = 0, α = 0.2

Fig. 3.45 reports the stream profile and features for the case of divergent flow along a
horizontal bed with negative step bottom of height 2hs = 0.2. Boundary conditions are
imposed at ξ0 = 3 in order to obtain the supercritical and subcritical height profiles y(ξ).
In particular, the following heights are imposed:

• the subcritical height corresponding to unitary stream head;

• an arbitrary supercritical height corresponding to a Stream Head greater than 1.

The flow starts in supercritical condition. Then, immediately after the step position,
a hydraulic jump connects it with the subcritical profile, which continues indefinitely
preserving the stream head which results from the energy boost given by the step.

3.5.3 On the Froude Number and the Validity of the Zero Lenght
Shock Approximation of Hydraulic Jump

It is immediate to observe, from Figures 3.43(b), 3.44(b), 3.45(b), that high Froude Num-
bers at the boundary are required for the supercritical profiles in order to be such ener-
getic to generate hydraulic jump. This is mostly due to the behaviour of the supercritical
trajectories, which experiment a rapid decrease in Stream Head while proceeding along
Divergent (for Cone-shaped and Horizontal Bed) or Convergent (for Funnel-shaped Bed)
direction in order to satisfy the Hydraulic constraint to reach critical conditions at, respec-
tively, the external edge of the bed (maximum radius) or a central hole (minimum radius).
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3.5 – Step Bottom Topography

Such values Froude Numbers (from 10 to 40) are not usual in open channel experiments,
but are documented and experimentally obtained, in the research topic of Cavitation (
See [24, 45]). However, such Froude Numbers are proper of Strong Hydraulic Jump ([36]),
which typically exhibit a roller of a certain length and is characterised by a significant
amount of air bubbles incorpored, due to the fluid-air interaction ([31, 12]). Therefore,
the theory adopted in this work of describing the hydraulic jump as a shock discontinuity
fails in describing such a situation, which needs more detailed description including in the
mass balance also lateral forces and bed friction ([29, 42]).
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(a) (b)

(c) (d)

(e)

Figure 3.43: ξ − y Divergent Stream flowing down a Cone-shaped Bed with Negative
Step Bottom, γb = 0.05, α = 0.2. Solution is obtained for hs = 0.1, σs = 100, ξs = 4. In
all of the figures, supercritical and subcritical reaches are respectively represented by red and
black line. Solid lines in Figures 3.43(a) (Height Profile) and 3.43(b) (Froude Number) represent
the jump solution, black and red dashed lines the solutions without jump. In Fig. 3.43(a),
brown dashed line represents bottom topography, while solid line separating supercritical and
subcritical reaches is the Critical Line. The blue arrow indicates the flow direction. Fig. 3.43(c)
reports the branches of the Specific Force. Fig. 3.43(d) reports the branches of the Stream Head,
along with jump discontinuity. Fig. 3.43(e) depicts the free surface of the fluid, along with the
step bottom.
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(a) (b)

(c) (d)

(e)

Figure 3.44: ξ−y Convergent Stream flowing down a Funnel-shaped Bed with Negative
Step Bottom, γb = −0.05, α = −0.2. Solution is obtained for hs = 0.05, σs = 100, ξs = 4.
In all of the figures, supercritical and subcritical reaches are respectively represented by red and
black line. Solid lines in Figures 3.44(a) (Height Profile) and 3.44(b) (Froude Number) represent
the jump solution, black and red dashed lines the solutions without jump. In Fig. 3.44(a),
brown dashed line represents bottom topography, while solid line separating supercritical and
subcritical reaches is the Critical Line. The blue arrow indicates the flow direction. Fig. 3.44(c)
reports the branches of the Specific Force. Fig. 3.44(d) reports the branches of the Stream Head,
along with jump discontinuity. Fig. 3.44(e) depicts the free surface of the fluid, along with the
step bottom.
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(a) (b)

(c) (d)

(e)

Figure 3.45: ξ − y Divergent Stream flowing along a Horizontal Bed with Negative
Step Bottom, γb = 0, α = 0.2. Solution is obtained for hs = 0.1, σs = 100, ξs = 4. In
all of the figures, supercritical and subcritical reaches are respectively represented by red and
black line. Solid lines in Figures 3.45(a) (Height Profile) and 3.45(b) (Froude Number) represent
the jump solution, black and red dashed lines the solutions without jump. In Fig. 3.45(a),
brown dashed line represents bottom topography, while solid line separating supercritical and
subcritical reaches is the Critical Line. The blue arrow indicates the flow direction. Fig. 3.45(c)
reports the branches of the Specific Force. Fig. 3.45(d) reports the branches of the Stream Head,
along with jump discontinuity. Fig. 3.45(e) depicts the free surface of the fluid, along with the
step bottom.
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Chapter 4

Comparison between Inviscid
and Viscous Profiles

Chapters 2 and 3 highlight that significant differences arise if turbulent friction, acting
in the direction opposite to the stream, is included into the model. Indeed, it introduces
a dissipative contribute which, interacting with gravity, alters the dynamics opening to
the possibility of having discontinuous transitions from supercritical to subcritical flows,
taking place through hydraulic jumps. Such differences are well evident, from a Dynamical
System point of view, by the presence of critical points in the Phase Portrait, particularly
focus and saddle points.
In this Chapter, two important features of the stream previously investigated are reported
to make a comparison between the Inviscid model (in which turbulent friction is neglected)
and the Viscous model (in which turbulent friction is included):

• the height profiles for the flat bottom, whose monotony reflects also on the overall
trend of that obtained for the sinusoidal and the stepped bottom topographies;

• the stream response to the sinusoidal bottom topography.

This comparison will be done by recalling the basic explanations, collected in tables re-
calling also the related figures.

4.1 Behaviour of the Trajectories for Flat Bottom To-
pography

As explained in Sec. 3.3.1, the introduction of friction alter the behaviour of the trajec-
tories, where, as expected:

• the subcritical trajectories appear governed by the basal slope γb;

• the supercritical trajectories appear instead governed by friction, by means of α.
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This depends on the behaviour of the Radiant Specific Discharge, whose relation with
the stream depth y is described by Eq. 3.32 and depicted in the q − y phase portrait in
Fig. 3.16, where it is evident that friction dissipation make a focus arise in the dynamical
system, attracting or repulsing the q(y) trajectories.
The difference in the behaviour of the height profiles is summarized in Table 4.1, where
one Froude Horizon and two Froude Horizons behaviours describe the situations in which
the trajectories collide with the Critical Line y = 3

ð
2/ξ2 respectively at the sole minimum

radius and at both minimum and maximum radii.
The same happens for the Sinusoidal Bottom Topography, which can be seen as a sinu-
soidal perturbation of the Flat Bottom Topography. This was already reported in Tab.
3.1.

Table 4.1: Comparison between Geometric Structure of the Trajectories in the Phase
Plane in the Inviscid (α = 0) and Viscous (α /= 0) cases for Flat Bottom Topography.
. The table highlights the dependence of the geometric structure of trajectories described by
Sys. 3.38 (equivalently, Eq. 3.37) on the main model parameters: basal slope γb and friction
coefficient α. The abbreviations "SUB" and "SUP" respectively stand for "Subcritical branch" and
"Supercritical branch", while "1 F.H." and "2 F.H." stand respectively for one Froude Horizon (i.e.
only a minimum radius where the stream meets Critical conditions) and two Froude Horizons
(i.e., both a minimum and a maximum radius where the stream meets Critical conditions).

Viscous (Sec. 3.3) Inviscid (Sec. 2.1, 2.2)

Fig. 2.3 Fig. 3.15

γb ≥ 0 γb < 0 γb ≥ 0 γb < 0

α > 0 α < 0 α > 0 α < 0 α = 0

SUB 1 F.H. 2 F.H. 1 F.H. 2 F.H.

SUP 2 F.H. 1 F.H. 2 F.H. 1 F.H. 1 F.H. 2 F.H.

4.2 Stream Amplitude Response to the Sinusoidal
Bottom Topography

Another significant difference between the Inviscid and the Viscous cases is the response
of the Stream Height to the Bottom Topography. Indeed, in absence of friction and
depending on the flow direction (convergent or divergent) and from its monotony , it
can be felt as "ascending" or "descending" by the stream, thus respectively opposing or
helping in terms of stream energy. Moreover, if the stream flows along favourable basal
slope γb then it provides additional energy, while if the flow is on opposite slope the
energy is subtracted. This explains the amplitude responses reported in Tab. 2.3 for
the Inviscid Case. However, when friction is considered, the new two Froude Horizons
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geometries in Tab. 3.1 give rise to non monotonic height profiles y(ξ), which reflect on the
amplitude response. The behaviour is summarized in Tab. 4.2. It is worth to notice that
the transition from the Dampening to the Amplifying behaviour (and vice versa), when
present, happens at the minimum or maximum point of the height profile: it appears
instead governed by the Radiant Specific Kinetic Height ks(ξ), as earlier explained in Sec.
2.3.2.

Table 4.2: Comparison of Flow Amplitude response to Sinusoidal Bottom Topogra-
phy, for the Inviscid (α = 0) and the Viscous (α /= 0) case. Here, "A", "D" and "S" stand
respectively for "AMPLIFYING", "DAMPING", "STABILIZING". For the Inviscid case α = 0,
the table must be read in the divergent flow direction (increasing ξ): for the convergent one,
it suffices to invert the flow and, consequently, "DAMP" with "AMP". For the Viscous case, if
α > 0 the table must be read in divergent flow direction, while if α < 0 it must be read in the
convergent flow direction (they cannot be inverted without changing the sign of α as for the
Inviscid case). The notation "D → A" and "A → D", present only in the two Froude Horizons
height profiles, indicates that a change in the amplitude response occurs at a stationary point
of the height profile. The notation "A → S" indicates that a stabilization occurs after an initial
amplification.

Viscous (Sec. 3.4) Inviscid (Sec. 2.3.2)

α < 0 α > 0 α = 0

γb > 0 γb < 0 γb = 0 γb > 0 γb < 0 γb = 0 γb > 0 γb < 0 γb = 0

SUB D A D A A → D A → S D D → A D

SUP A A A D → A D → A D → A A A → D A → S

Fig. 3.29 3.33 3.39 3.31 3.35 3.37 2.19
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Chapter 5

Linear Stability of de
Saint-Venant Equation

In this chapter, an equation to perform the Linear Stability Analysis of the de Saint-
Venant Equations 1.2 in radial simmetry is obtained, following a similar approach to that
in [4]. However, as will be seen, an important obstacle to the procedure is represented by
the singularities of the kind ξa, a < 0, that are exhibited by the equation. Although this
problem will not be solved in this context, the study carried out in this Chapter provides
an Equation and solution ideas that can be useful as a basis for future work.

5.1 Perturbations Equations
Let consider viscous, dimensional de Saint-Venant’s Equations 1.2, here reported again
already written in radial symmetry:∂u

∂t + u∂u
∂r = g cos ϕ

1
tan ϕ − ∂h

∂r − ∂zb

∂r

2
− Cf f(u, h)

∂h
∂t + 1

r
∂(rhu)

∂r = 0
(5.1)

where the generic closure term for friction is expressed as Cf f(u, h) 1.
Let call Us = U(r) and Hs = Hs(r) 2 a steady state solution of system 1.2 and consider
a sufficiently small perturbation of such solution, expressed by means of functions u′(r, t)
and h′(r, t) such that: I

|u′(r, t = 0)| << |Us(r)| ∀r > 0
|h′(r, t = 0)| << |Hs(r)| ∀r > 0

1In case of Chèzy closure term, one has Cf = 1/C2, where C is the Chèzy drag coefficient and
f(u, h) = u2 sgn u/h.

2The subscript "S" stands for "Steady".
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Linear Stability of de Saint-Venant Equation

Then the perturbed solution can be expressed as:I
u(r, t) = Us(r) + u′(r, t)
h(r, t) = Hs(r) + h′(r, t)

By plugging such expressions into Equations 5.1 and developing the radial derivative
involved in the second equation, one obtains:


∂u′

∂t + ∂Us

∂t + Us
∂Us

∂r + Us
∂u′

∂r + u′ ∂Us

∂r + u′ ∂u′

∂r = g cos ϕ

C
tan ϕ − ∂(Hs+h′+zb)

∂r

D
− Cf f(Us + u′, Hs + h′)

∂(Hs+h′)
∂t + 1

r

5
(Hs + h′)(Us + u′) + r(Us

∂Hs

∂r + u′ ∂Hs

∂r + Us
∂h′

∂r + u′ ∂h′

∂r + h′ ∂u′

∂r + h′ ∂Us

∂r + Hs
∂Us

∂r + Hs
∂u′

∂r )
6

= 0

(5.2)

Because of the limit of small perturbations, assuming the function f(·, ·) to be differen-
tiable with respect to its arguments, friction term can be approximated at first order as:

f(Us + u′, Hs + h′) ≈ f(Us, HS) + u′ ∂f

∂u′ |u′=Us + h′ ∂f

∂h′ |h′=Ys = f(Us, Hs) + u′fU + h′fH

Moreover, in order to linearize the system, terms of order higher than the first can be
identified by means of a simple dimensional analysis and neglected. Therefore, the system
can be written as follows:


∂u′

∂t + ∂Us

∂t + Us
∂Us

∂r + Us
∂u′

∂r + u′ ∂Us

∂r = g cos ϕ

C
tan ϕ − ∂(Hs+h′+zb)

∂r

D
− Cf (f(Us, Hs) − u′fU − h′fH)

∂Hs

∂t + ∂h′

∂t + 1
r

5
∂r
∂r (Hsu

′ + HsUs + h′Us) + rUs
∂Y
∂r + ru′ ∂Hs

∂r + rUs
∂h′

∂r + rh′ ∂Us

∂r + rHs
∂Us

∂r + rHs
∂u′

∂r

6
= 0

(5.3)

where the equality 1 = ∂r
∂r is used in order to recognize notable derivatives.

Now, remembering that steady state solutions satisfy:I
∂Us

∂t = 0
∂Hs

∂t = 0

together with the Continuity and steady Momentum Equations:
1
r

∂(rHsUs)
∂r = 0

Us
∂Us

∂r = g cos ϕ

3
tan ϕ − ∂Hs

∂r − ∂zb

∂r

4
− Cf f(Us, Hs)
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one can simplify system 5.3 as follows:
∂u′

∂t + Us
∂u′

∂r + u′ ∂Us

∂r = −g cos ϕ∂h′

∂r − Cf (−u′ ∂f
∂u′ |u′=Us − h′ ∂f

∂h′ |h′=Hs)
∂h′

∂t + 1
r

5
∂r
∂r (Hsu

′ + h′Us) + ru′ ∂Hs

∂r + rUs
∂h′

∂r + rh′ ∂Us

∂r + rHs
∂u′

∂r

6
= 0

(5.4)

Simple re-arrangement and usage of radial derivatives leads to the following dimensional
system for height and velocity perturbations:

∂u′

∂t + ∂(Usu′)
∂r = −g cos ϕ∂h′

∂r − Cf (−u′ ∂f
∂u′ |u′=Us − h′ ∂f

∂h′ |h′=Hs)
∂h′

∂t + 1
r

∂
∂r

5
r(Hsu

′ + Ush
′)
6

= 0
(5.5)

In order to write a non-dimensional form of System 5.5, proper reference scales for the vari-
ables must be taken into account. In particular, if Q is the constant discharge of the steady
solution, such reference scales can be individuated by the radius R = Q

2πH0
√

2gH0 cos ϕ
,

Stream Head H0 of the steady solution at the boundary, U0 =
√

2gH0 cos ϕ and t0 = R
U0

respectively for radial length, height and time.
The following non-dimensional variables can then be defined:

ξ = r
R , τ = t

t0
, v′ = u′

U0
, V = Us

U0
, y′ = h′

H0
Y = Hs

H0

where t0 = R/U0.
By plugging them into System 5.5, one obtains:

U2
0

R
∂v′

∂τ + U2
0

R
∂(V v′)

∂ξ = −g H0
R cos ϕ∂y′

∂ξ − Cf (−v′ ∂f
∂v′ |v′=V − y′ ∂f

∂y′ |y′=Y )
H0U0

R
∂y′

∂τ + H0U0
R

1
ξ

∂
∂ξ

5
ξ(Y v′ + V y′)

6
= 0

(5.6)

Dividing both members of the first equation by g H0
R cos ϕ and both members of second

equation by H0U0
R , the final form of Perturbation Equations is:

F 2
5

∂v′

∂τ + ∂(V v′)
∂ξ

6
= ∂y′

∂ξ − Cf R
gH0 cos ϕ

3
− v′ ∂f

∂v′ |v′=V − y′ ∂f
∂y′ |y′=Y

4
∂y′

∂τ + 1
ξ

∂
∂ξ

5
ξ(Y v′ + V y′)

6
= 0

(5.7)

where the Froude Number, denoted for all this chapter with F instead of Fr to simplify
the notation, is again:

F = U0√
gH0 cos ϕ

These equations represent the analogous of those obtained by [4], taking into account
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Linear Stability of de Saint-Venant Equation

radial symmetry. As can be seen, the second equation exhibit a fuchsian singularity
of order 1 in the variable ξ, which radically changes the dynamics of the perturbations
with respect to the cartesian one-dimensional case. Notice that, also in this case, the
Perturbation Equations do not depend on the bottom topography used.

5.2 Perturbation of Uniform Height Flow with flat
bottom

5.2.1 Problem Formulation
Let consider the steady state solution corresponding to uniform height flow, described in
Sec. 3.1.2 and which, in dimensional terms, correspond to:

h(r) = h0 (5.8)

Then, by remembering the continuity equation of system 1.2 and assuming steady state,
one has:

ur = const = Q

h0
(5.9)

where Q is the constant flow rate. By using the usual non-dimensional variables, the
previous relations turn into the following form for the non-dimensional solutions Y (ξ),
V (ξ): I

Y (ξ) = 1
V (ξ) = 1

ξ

(5.10)

Assuming again Chézy Parametrization for drag term, one obtains the following relations:I
∂f
∂u |(u,h) = 2u

h
∂f
∂h |(u,h) = −u2

h2

(5.11)

which, evaluated at steady state solution 5.10 in non-dimensional form, become:I
fU = 2

ξ

fH = − 1
ξ2

(5.12)

By plugging 5.10, 5.12 into Perturbations Equations 5.7, one has:
∂v′

∂τ + 1
ξ

∂v′

∂ξ − v′

ξ2 = 1
F 2

∂y′

∂ξ − Cf R
F 2gH0 cos ϕ

3
− 2v′

ξ + y′

ξ2

4
∂y′

∂τ + v′

ξ + ∂v′

∂ξ + 1
ξ

∂y′

∂ξ = 0
(5.13)

180



5.2 – Perturbation of Uniform Height Flow with flat bottom

Both the equations of the previous linear system of ordinary differential equations exhibit
fuchsian singularities at ξ = 0, derived from friction terms and the symmetry. In order to
derive a solution to the previous linear system, let assume separation between time and
space variables : I

v′(ξ) = ν(kξ) exp(στ)
y′(ξ) = η(kξ) exp(στ)

(5.14)

Here,

k = kr + iki (5.15)

represents the wavenumber, while:

σ = σr + iσi (5.16)

where σr and krσi respectively denote the growth rate and the phase speed.
By plugging 5.14 into 5.17 and simplifying the exponential terms which arise at each
addend involved the two equations, one has:σν + k

ξ
dν
dξ − ν

ξ2 = k
F 2

dη
dξ − Cf R

F 2gH0 cos ϕ

3
− 2ν

ξ + η
ξ2

4
ση + ν

ξ + k dν
dξ + k

ξ
dη
dξ = 0

(5.17)

where the partial derivatives descending from the original system can now be interpreted
as total derivatives, since the dependence on the time variable τ has been removed by
variable separation ansatz and the equation is extended to the Complex field C.
Such equation is non-autonomous (with respect to the space variable ξ) and exhibits a
Fuchsian singularity ([39]) at ξ = 0, thus requires a more accurate analysis to be solved
numerically, which can be part of a future work. A drastic simplification could be that
of solving for sufficiently large ξ by assuming that ν/ξ, ν/ξ2, η/ξ, η/ξ2, 1/ξ(dν/dξ) and
1/ξ(dη/dξ) are approximately 0, in order to obtain the following system:

d

dξ

η

ν

 =

 0 σF 2

k

−σ
k 0

η

ν

 = A

η

ν

 (5.18)

which is linear and homogeneous. The trace of the matrix A has null trace, while the
determinant is:

det A = σ2F 2

k2 (5.19)

so that the nature of the eigenvalues depends on both σ and k. In particular, if they are
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Linear Stability of de Saint-Venant Equation

real, the determinant is positive, while the discriminant ∆ = trA2 − 4 detA = − detA is
negative, thus the system exhibits a stable center at the origin, giving rise to oscillating
solutions for η(ξ) and ν(ξ).
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Circular Shallow water profiles, as well as Circular Hydraulic Jump, have been studied for
at least two centuries, starting from the early work of Giorgio Bidone in 1820 (Ref. [7]).
They can be observed in all day situations, including the case of a smooth jet impinging
a plate. They are employed in a variety of applications, including stilling basins (Ref.
[1, 28]) in River Engineering and in the context of Analogue Gravity (Ref. [18]), in order
to investigate complex cosmological phenomena by studying other simpler, well known
physical systems exhibiting the same properties (Ref. [40]).
Despite their usefulness, the related literature is currently partial and circumscribed to
specific cases, often coming from the application. In particular, there not exists a system-
atic classification of models able to describe all of the basic physical and mathematical
aspects of flows along radial, axially-symmetric channel, differently for the Open Channel
Flows (Ref. [36, 25]). The only exceptions in this sense are the studies on the Circular
Hydraulic Jump, including Ref. [8, 22, 23, 14, 11], while a first classification of Circular
Shallow Water profiles can be found in Ref. [42] and, more systematic, in Ref. [29].
In this framework, this work proposes a two-dimensional Shallow water model, described
by the set of de Saint-Venant equations with Chezy closure term for turbulent friction
([29]), with the aim of providing a systematic classification of the Circular Stream profiles
for an inclined channel in radial, axially-symmetric geometry. Depending on the inclina-
tion, expressed by a so called "basal slope", the bed appears as Horizontal, Cone-shaped
or Funnel-shaped. The bottom topography is then represented as a function describing
the departures from the flat bottom, as done in [4]. In particular, the stream profiles are
obtained for the flat, sinusoidal and stepped bottom topography.
A study of the dynamical system describing the height profiles for a generic bottom topog-
raphy allows to recover general properties on the corresponding phase portrait, including
the trajectories, which open to a variety of possible geometries. The presence of hydraulic
jump is then deduced by the presence of eventual critical points in the physical region of
the phase portrait, as described in [36] and is modeled as a shock discontinuity of zero
length, ignoring lateral components of the hydrostatic force (Ref. [29, 42]).
When turbulent friction is not included into the model (Inviscid model), the general
equation describing the height profile is symmetric under inversions of flow direction, pro-
vided that the sign of the basal slope changes coherently, generalizing what discussed in
[29]. Therefore, the stream profiles obtained can be interpreted on both convergent (i.e.,
along decreasing radii) or divergent (i.e., along increasing radii) direction. In particular,
those with negative basal slope start and end in critical conditions, showing a two Froude
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Horizons behaviour already documented in Ref. [29] for the viscous case and finding an
Analogue Gravity counterpart in Ref. [46] . When the sinusoidal bottom topography is
introduced, the stream amplitude response varies and appears governed by the behaviour
of the Radiant Specific Kinetic Height, which describes the distribution of the Kinetic
Energy along each radial distance, by means of Ineq. 2.43.
When turbulent friction is included (Viscous Model), it is possible to obtain bottom to-
pographies which, thanks to the balance with potential energy due to gravity and friction
dissipation, guarantee Constant Stream Head Flow, Critical Flow and Uniform Flow: in
this latter case, the transition from supercritical to subcritical regime is smooth and hy-
draulic jump does not form. When flat bottom topography is introduced, the monotony
properties of the stream profiles change significantly: the subcritical profiles appear influ-
enced mostly by basal slope, while the supercritical ones seem instead to be dominated
by friction. The same happens for sinusoidal bottom topography, where due to this the
amplitude response of the flow to the bottom topographies results different with respect
to the Inviscid model. Due to friction, the behaviour of the trajectories in the Phase
Portrait is more complex, being altered by critical points consisting of a single focus in
case of Flat Bottom and multiple focus followed by saddles in case of sinusoidal bottom.
The stepped bottom topography, for both Inviscid and Viscous model, serves instead as
a limit case to explore the validity of the hypothesis of gradually varied flow. For suf-
ficiently small values of step height, the model is able to reproduce the main physical
aspects, including the Hydraulic Jump and the energy jump (positive or negative) that
arises nearby the step due to its presence , provided that a suitable numerical model is
used to address the problem of stiffness. However, in the Viscous Model, the supercritical
stream profiles exhibit quite rapid variations, also for small step heights and hydraulic
jumps forms only for supercritical stream profiles starting with surprisingly high Froude
Numbers. The model then performs badly when the step height becomes considerable,
because of the violation of the hypothesis of gradually varied flow, so this cases has an
academic validity more than for practical applications.
The physically meaningful steady Circular Stream Profiles obtained for an Inclined Bed
with Flat Bottom topography are summarized in Tab. 5.1. In particular, while for the
horizontal bed all of the cases are reported, for the Cone-shaped and the Funnel-shaped
bed only profiles where water flows on favourable slope have been chosen. The results
then can be extended also to the sinusoidal bottom topography and the stepped bottom
topography, as they represent a fluctuation of the flat bottom which does not alter the
overall trend of the stream profiles. In particular, for the sinusoidal case, the results in
Tab. 5.1 can be integrated with the amplitude response of the flow in Tab. 4.2.
The model is able to capture the basic physics that governs the behaviour of the Circular
stream profiles in radial, axially symmetric geometry, particularly for the energetic as-
pects, in the hypothesis of gradually varied flow. In particular, it explains the monotony
properties without writing an explicit solution formula, by means of a detailed analysis
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from a dynamical system point of view that can be used for a wide range of bottom to-
pographies 3 and makes possible to obtain the radial position and the conjugate heights of
the hydraulic jump. Moreover, it provides a class of novel steady solutions with respect to
similar works including bottom topographies (Ref. [42, 4]) having a physical counterpart
so that they can be reproduced in laboratory and can be used as a basis for a Linear
Stability Analysis, particularly to investigate the stabiity of the Hydraulic Jump. In this
sense, the height and velocity perturbations are described by the set of equations 5.7 in
Chapter 5, which surprisingly result independent from the bottom topography chosen.
The procedure followed to obtain 5.7 is similar to that for the perturbation equations of
the Linear Stability Analysis performed in [4], which can be obtained by 5.7 by simply
changing from polar to cartesian coordinates. The only steady profile perturbed, again
similarly to [4], is that of uniform height. Despite the procedural simplicity to obtain
the corresponding set of partial differential equations 5.17 describing the perturbations,
its analytical or numerical solution is not discussed here, requiring more sophisticated
mathematical techniques to manage the Fuchsian singularities (Ref. [39]) and making
impossible to use the Floquet-Bloch Theory already seen in [4? ].

3It suffices they are C2(D), where D is the physical domain of the problem and that they make the
stream respect the hypothesis of gradually varied flows.
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Table 5.1: Physically significant Inviscid and Viscous Stream Profiles for an Inclined
Bed with Flat Bottom .. The table summarizes the physically meaningful stream profiles
that can be obtained for a bed of general inclination and flat bottom topography, along with the
respective figures and references (when present). The letters "H", "C", "F", respectively stand for
"Horizontal", "Cone" and "Funnel". The abbreviations "SUB", "SUP", "FH", "HJ" stand respec-
tively for "Subcritical", "Supercritical", "Froude Horizon" (i.e., a point where critical conditions
are attained), "Hydraulic Jump", while "Conv." and "Div." again stand for "Convergent" and
"Divergent" directions of the flow. Last, "Cons.", "Incr.", "Diss." stand for "Conservation", "In-
crease", "Dissipation". In the description, the symbol ">" means "followed by" and must be
interpreted in the flow direction.

Profile Bed Flow Dir. Flow Type Energy Figure Ref.

In
vi

sc
id

Inv. Drain H Conv. SUB (SUP) > FH Cons. 2.1 [29]

Inv. Spring H Div. FH > SUB (SUP) Cons. 2.1 [29]

Inv. Cone Spring C Div. FH > SUB (SUP) Incr. 2.8

Inv. 2 Horiz. F Conv. FH > SUB (SUP) > FH Incr. 2.7

V
is

co
us

Circular Jump H Conv. SUP> HJ> SUB > FH Diss. 3.17 [29]

Circular Jump H Div. SUP > HJ > SUB Diss. 3.17 [29]

Sub. (Sup.) Drain H Conv. SUB (SUP.) Diss. 3.17 [29]

Sub. Spring H Div. SUB Diss. 3.17 [29]

Cone Jump C Div. FH > SUP > HJ > SUB Diss. 3.19

Cone Spring C Div. FH > SUB Diss. 3.19

Sup. 2 Hor. C Div. FH > SUP > FH Diss. 3.19

Funnel Jump F Conv. SUP > HJ > SUB > FH Diss. 3.21

Sub. 2 Hor. F Conv. FH > SUB > FH Diss. 3.21
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Future Works

Future works possibly include a complete Linear Stability Analysis on the basis of the
results in Chapter 5, in order to investigate the stability of the Circular Hydraulic Jump
in presence of a bed slope and an uneven bottom, described by a given topography. Indeed,
while several works including [18, 11, 16, 44] are devoted to the stability of the Circular
Hydraulic Jump along a horizontal plate with flat bottom and the symmetry breaking,
no studies including bottom topography and bed inclination are found in this sense. The
results could be interesting, particularly for the sinusoidal bottom topography: indeed, it
can be conjectured, on the basis of [4], that for certain amplitudes and flow conditions
it is responsible, in combination with friction, for the onset of Roll Waves Instability.
In this sense, an exhaustive study should include an Instability Criterion involving the
local Froude Number, in order to be compared to the classical results for Open Channel
Flows (Ref. [21, 4]). Useful in this sense can be to change turbulent friction closure term,
as done in [37] and to study the response of the stream profiles with respect to several
drag parametrizations. The study of the Circular Hydraulic Jump in the laminar case,
which appears not to be significantly different for the flat bottom topography (Ref. [29]),
brings instead more significant differences for the sinusoidal bottom topography (Ref.
[4]), although more fascinating shapes due to instability (such as the polygonal ones) are
obtained by considering the problem at smaller scales in which gravity is progressively
less influencing and viscosity dominates (Ref. [16, 26]), thus it is not of interest in this
context.
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Appendix A

Intersection Points for the
Step Bed Including Friction

Let consider Eq. 3.49 and define the functions describing left and right hand side members
as:

L(ξ) = sech2[σs(ξ − ξs)] (A.1)

and

R(ξ) =
γb − α

2 + 2 1
3 ξ− 5

3

hsσs
(A.2)

Remembering that sech(ξ) = 1
cosh(ξ) and the Taylor Series of cosh(ξ), which converges for

all ξ, one has that:

L(ξ) = sech2[σs(ξ − ξs)] =
3 1q+∞

n=0
(σs(ξ−ξs))2n

2n !

42
(A.3)

Moreover, a re-arrangement allows to write:

R(ξ) = γb − α/2
hsσs

+ 2 1
3

hsσs
· 1

ξ
5
3

= As + 2 1
3

hsσs
· 1

ξ
5
3

(A.4)

where As is defined in 3.50. By definition, one has:

L(ξ = ξs) = 1

while:
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Intersection Points for the Step Bed Including Friction

R(ξ = ξs) =
γb − α

2 + 2 1
3 ξ

− 5
3

s

hsσs

Let consider σs > 0. Then R(ξ) defines a decreasing function with asymptotic lower
bound As.
Immediately, if As ≥ 1, Eq. 3.49 has no solutions because in this case L(ξ) ≤ R(ξ) ∀ξ > 0.
If instead 0 ≤ As < 1, three cases can be considered depending on R(ξ = ξs):

• Assume R(ξ = ξs) > 1. Then one cannot have intersections points for 0 < ξ ≤ ξs

because R(ξ) is strictly decreasing and R(ξs) > 1, hence suppose there exists an
intersection point ξ∗ > ξs. It means that, because of continuity, there exists a right
neighbourhood of ξs where R(ξ) ≤ L(ξ). However, having a look at A.3 and A.4, it
is easy to notice that if 0 ≤ As < 1, one has that L(ξ decays to 0, while R(ξ) decays
to As > 0, hence there exists a point ξ0 > ξs such that R(ξ) > L(ξ) definitely for
all ξ ≥ ξ0. The same happens if As = 0, since L(ξ) decays to 0 faster than R(ξ).
Therefore, in both cases there exists a point ξ0 > ξs such that R(ξ) > L(ξ) definitely
for all ξ ≥ ξ0. If ξ∗ ≥ ξ0, it means that an intersection arises within an interval where
R(ξ) > L(ξ) definitely, falling into a contradiction. If ξ∗ < ξ0, a monotony variation
of R(ξ) is necessary within (ξ∗, ξ0) in order to have R(ξ) > L(ξ) for all ξ > ξ0 as
required, but R(ξ) is strictly decreasing by definition. Therefore, if 0 ≤ As < 1 and
R(ξ = ξs) > 1), Eq. 3.49 has no solution.

• Assume R(ξ = ξs) = 1. Again, one cannot have intersections points for 0 < ξ < ξs,
but R(ξ = ξs) = L(ξ = ξs) = 1, therefore ξ = ξs is an intersection point. By
applying a similar argument as before, one can conclude that the presence of another
intersection point ξ∗ > ξs is subjected to a change of monotony of R(ξ), thus falling
into a contradiction. Therefore, if 0 ≤ As < 1, and R(ξ = ξs) = 1), Eq. 3.49 has the
only solution ξ = ξs.

• Assume R(ξ = ξs) < 1. Since R(ξ) and L(ξ) are both continuous and R(ξ) is
strictly decreasing, there exists one intersection point ξ1 < ξs. Since L(ξ) is also
symmetric with respect to ξ = ξs, there exists a second intersection point ξ2 > ξs,
which is non symmetric with respect to ξ1 because of the decrease of R(ξ). Similar
argument to those adopted previously allow to conclude that ξ1 and ξ2 are the only
two intersection points possible.

If instead As < 0, because of the monotony of R(ξ) and the continuity of both functions
within (0,1], there exists at least one intersection point ξ1. Moreover, since the lower
bound As of R(ξ) is lower than 0, which is the one of L(ξ), there exists a point ξ0 such
that L(ξ) > R(ξ). Let call ξF,1 and ξF,2 the two symmetric inflection points of L(ξ). If
the lowest intersection ξ1 is greater than ξF,2, than because of the strict decrease of R(ξ)
one can have only one intersection. In the other cases, one can have from one to three
intersection points, this last case when the first two intersections are located between the
two inflection points: the third arises because otherwise R(ξ) > L(ξ) definitely, thus falling
into a contradiction. For the same reason, one cannot have more than three intersections.
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Intersection Points for the Step Bed Including Friction

Let consider the case σs < 0. Then R(ξ) defines an increasing function with asymptotic
upper bound As. Immediately, if As ≤ 0, Eq. 3.49 has no solution. If As > 0, because of
the continuity of R(ξ) and L(ξ) one has at least one intersection point, until a maximum
of three intersection points (it can be proved with similar arguments to those already
adopted).

What discussed before is summarized in Table A.1. Notice that the results obtained
are coherent with the sign of the generalized slope t∗ defined in 1.44: solutions ξ∗ of Eq.
3.49, which is a particular case of Eq. 1.36, must satisfy the inequality t∗ > 0, which in
this case turns into the following two inequalities (depending on the sign of σs):

As ≷ sech2[σs(ξ∗ − ξs)] if σs ≶ 0 (A.5)

Indeed, if σs > 0 one has no solutions if As ≥ 1, that is, when:

As ≥ 1 = max
ξ∗>0

sech2[σs(ξ∗ − ξs)] ≥ sech2[σs(ξ∗ − ξs)] ⇒ t∗ < 0

On the contrary, if σs < 0 one has no solutions if As ≤ 0, that is, when:

As ≤ 0 = min
ξ∗>0

sech2[σs(ξ∗ − ξs)] ≤ sech2[σs(ξ∗ − ξs)] ⇒ t∗ < 0

Table A.1: Number of possible solutions of Eq. 3.49 depending on the parameters.

As ≥ 1 0 ≤ As < 1 As < 0

σs > 0 None From 0 to 3 From 1 to 3

σs < 0 From 1 to 3 From 1 to 3 None
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List of Variables

The following is a list of the variables, both dimensional and non-dimensional. First,
lower latin letters are reported in alphabetic order; they are followed by latin upper
letters and greek letters, in alphabetic order. The abbreviation "Dim." and "Non Dim."
stands for "Dimensional" and "Non Dimensional": if dimensions are not specified in the
third column, the variables are to be considered as non-dimensional. The dimensions
[L], [T ], [M ] respectively stand for length, time and mass.

Symbol Description Dimensions

a Amplitude of Sinusoidal Bottom Topography

f Function def. Chèzy Parametrization [L][T ]−2

j Turbulent Friction [L][T ]−2

g Gravity [L][T ]−2

h Dim. Fluid Depth [L]

h′ Dim. Fluid Height Perturbation [L]

hG Pressure at Baricentre of submerged Section [L]

hs Non dim. Half-Height of Step Bottom Topography

kb Wavenumber of Sinusoidal Bott. Top.

ks Radiant Spec. Kinetic Height

q Non dim. Radiant Specific Discharge

r Radius [L]

s Non dim. Parameter for Curve Parametrization

t Dim. Time [T]

t∗ Non dim. Generalized Slope

u Dim. Radial Velocity [L][T ]−1

u′ Dim. Velocity Perturbation [L][T ]−1
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List of Variables

x Dim. Cartesian longitudinal coordinate [L]

y Non dim. Fluid Depth

ycrit Non Dim. Critical Depth Line

y0 Non dim. Uniform Depth

y′ Non dim. Height Perturbation

zb Dim. Bottom Elevation [L]

A Slope ratio for Sinusoidal Bott. Top.

As Slope ratio for Step Bott. Top.

C Chèzy Coefficient

Cf Friction Coefficient

D Physical Domain

F Non dim. Specific Force

Fd Dim. Dynamic Force [M ][L][T ]−2

Fh Dim. Hydrostatic Force [M ][L][T ]−2

Fr Froude Number

H Dim. Stream Head [L]

Hs Dim. Height Steady Solution [L]

H0 Stream Head at the Boundary [L]

H̃ Non dim. Stream Head

H̃− Inf. branch of Stream Head for Step Bott.

H̃+ Sup. branch of Stream Head for Step Bott.

P Fluid Weight per mass unit [L][T ]−2

Q Total Volumetric Flowrate [L]3[T ]−1

Qr Dim. Radiant Specific Discharge [L]2[T ]−1

R Reference radius [L]

Us Dim. Velocity of Steady Sol. [L][T ]−1

U0 Torricellian Velocity [L][T ]−1

V Non dim. Steady State Velocity

Y Non dim. Steady State Height

α Non dim. Friction Coefficient
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β Momentum Coefficient

γb Basal Slope

γs Fluid Spec. Weight [M ][L]−2[T ]−2

ζ Non dim. Bed Elevation

ζCH Bottom Top. ensuring Const. Stream Head

ζCR Bottom Top. ensuring Critical Depth

ζUH Bottom Top. ensuring Uniform Depth

θ Central Angle of Circular Sector rad

ν Non dim. Velocity

ν ′ Non dim. Velocity Perturbation

ξ Non dim. radius

ξmax Non dim. Maximum radius for Critical Cond.

ξmin Non dim. Minimum radius for Critical Cond.

ξs Non dim. Step Position

ξ0 Non dim. Boundary Radius

ρ Fluid Density [M ][L]−3

σs Non dim. Steepness Param. of Step Bottom

τ Non dim. Time

ϕ Basal Angle of Bed rad

Ω Submerged Section [L]2
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