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Introduction

Credit risk, also known as counterparty risk or default risk, is a fundamental concept in the field
of finance, especially in the quantitative-related section of this macro-topic. It refers to the possi-
bility of default of a counterpart, called the borrower, that fails to meet the pre-specified financial
obligations by not repaying a loan or not meeting any other contractual obligation. The analysis
of this type of risk is a critical consideration for banks, financial institutions, investors, and busi-
nesses in the procedure of evaluating probabilities of default, pricing financial instruments, and
calibration of mathematical models to evaluate correctly the instruments they are proposing or
purchasing. To manage the previously explained type of risk in a useful and precise way, a lot of
mathematical models have been developed during the last years, especially following the advent
of necessary regulations in the financial sector. For example, the Basel III regulatory framework
outlines regulatory capital requirements based on quantitative credit risk measures. Quantitative
credit risk analysis provides a systematic and data-driven approach to understanding, managing,
and mitigating credit risk and is widely approached in the securitisation processes of, for example,
CDO, MBS, and other Asset Backed Securities.

In this thesis, following an initial exposition of the economic significance associated with the sub-
ject matter and the formulation of procedures governing the analysis of many financial assets, we
undertake an examination of a novel quantitative approach for credit risk assessment, based on
the article [3] authored by Cui H. et al., which aims to elucidate the asymptotic behavior of the
probability of large losses and the Expected Shortfall of a credit portfolio. This project involves
the introduction and the application of the LT-Archimedean Copulas, specific mathematical in-
struments well-suited for discerning the inter-dependencies and risk associations among obligors.
Subsequent to the rigorous specification of these mathematical formulations and the creation of
a rare-event simulation algorithm, the analytical procedure is applied on an ABS loan data tape
provided by Intesa Sanpaolo S.p.A. to find the pool’s loss tail probabilities and the relative CVaR.
Specifically, from the provided dataset two important parameters were esteemed and computed
for correctly evaluating the interdependence strength of the pool and its quality. The quantifica-
tion of interdependence strength among the constituent assets within the pool is achieved via an
adapted implementation of Kendall’s Tau concordance measure. Concurrently, the appraisal of
the credit quality of individual obligors is conducted through a novel methodology grounded in
spread-based analysis. Following an exhaustive sensitivity analysis, the loss tail probabilities will
serve as the basis for pricing the security that is sourced from the data. Subsequently, the resulting
price will be juxtaposed with the pricing outcomes generated through current market practices,
enabling to assessment of the reliability and precision of this innovative quantitative approach.

11
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Chapter 1

Economic background

The fixed-income market, often referred to as the bond market, is a segment of the financial mar-
kets primarily focused on the issuance, trading, and valuation of fixed-income securities. These
securities are characterized by their contractual obligation to pay a predetermined stream of cash
flows to investors over a specified period, for example, government or corporate bonds. It plays a
central role in capital allocation, risk management, and investment strategies, making it a corner-
stone of the broader financial landscape. In the new century, this market has undergone signifi-
cant transformations and adaptations in response to changing economic conditions, technological
advancements, and regulatory developments. Fixed-income securities have remained a funda-
mental component of global financial markets, serving as a key instrument for raising capital and
managing risk. To manage the various risks associated with fixed-income securities, numerous
credit-based financial instruments have been conceived and put into practice. The ones we will
analyze in this thesis, both descriptively and quantitatively, are Asset-Backed Securities, securities
similar to bonds with the difference that the notes are repaid through the cash flows generated by
the underlying pool’s assets themselves.

1.1 Asset-Backed Securities

Asset-Backed Securities (ABS) are a broad class of financial instruments backed by pools of underly-
ing assets, or receivables, which can include various types of loans, such as auto loans, credit card
debts, mortgages, or even revenue from specific projects. The history of ABS in the fixed-income
market can be traced back to the latter half of the XX century. The concept began to take shape
in the 1960s and 1970s as financial institutions, mostly banks, sought new ways to manage and
diversify risk. As a consequence, in the subsequent decades, the whole financial scenario saw a
significant expansion in the investments related to this type of securities, which brought a ”boom”
in the early years of the next century. This trend created a sort of ”financial bubble”, which ex-
ploded due to the famous subprime crisis in 2008, widely enhanced by the wrong and misleading
pricing and construction of a wide range of fixed income instruments, mostly the ones related to
residential mortgages (RMBS). In the aftermath of the financial crisis, regulators and policymakers
implemented a series of reforms to address the vulnerabilities in the ABS market, which changed
and enhanced the quality of the already present regulations in the Basel regulatory framework, as
better explained in Section 1.4.

13



14 CHAPTER 1. ECONOMIC BACKGROUND

Figure 1.1: Main asset classes in securitisation.

As it can be seen in Figure 1.1, ABS involves a large band of flexibility in terms of asset classes
and structures, ranging from the ones based on residential mortgages to the synthetic ones. As-
signing these credit instruments offers notable advantages to the banks. They enhance liquidity
by transforming illiquid assets, like mortgages and loans, into market-traded securities, which are
inherently more liquid. Moreover, through this mechanism, a portion of the credit risk associated
with these securities is shifted to investors, who are compensated for assuming it.

But why are these financial instruments a solid and convenient way to invest? First of all, they al-
low an investor to range over new types of financial instruments, which are extremely diversified
thanks to their granularity characteristic1. Secondly, these instruments offer a wide range of risk
classes, which can come to meet the necessities of each risk profile. Concurrently, from the point
of view of the issuer, the securitisation process helps to shift part of the credit risk to investors, con-
tributing to hedging procedures and acting as a sort of insurance towards the underlying lenders.

1.2 Securitisation process

The financial structure of an ABS is created following a securitisation process, such as a procedure
that involves different financial entities which contribute to transforming illiquid assets into liquid
ones2. The main structure of the process is briefly explained in Figure 1.2.

1In a real-world scenario, many of these instruments, especially the ones made by consumer receivables, are con-
structed on hundreds or thousands of fixed income underlying assets. As a consequence, despite the risk of insolvency
associated with each customer, the probability of default of all the underlying ones is exceedingly remote. At the same
time many others, for example, CMBS, are made up of few elements particularly because of the huge exposition each
of them takes.

2In Italy, the securitisation procedure is regulated by the law L. 130/99, entered into force on May 29, 1999. Many
upgrades have been made to this law, each of them listed in the act cited in [8].
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Figure 1.2: Basic securitisation structure.

To outline the securitisation process is important to introduce the main transaction parties:

• Originator: the starting owner of the receivables, for instance, banks, corporates, or gov-
ernments, which collects sets of fixed-income underlying, such as loans or mortgages, and
ensembles them to create a huge illiquid pool.

• Special Purpose Vehicle (SPV): also called Special Purpose Entity or Bankruptcy-remote
entity, is a subsidiary created ad hoc by a parent company to isolate the financial risk. Alter-
natively, the SPV may be a holding company for the securitisation of debt. Its objective in the
procedure is to sever the connection between the pool and the originator, thereby mitigating
counterparty risk and also accounting for tax-related considerations.

• Rating agencies: is a company that asses the credit quality of other companies or govern-
ments. Its aim in this process is to validate the credit structure of the financial instruments
proposed by the SPV. Examples of this type of companies are Moody’s Investors Service,
Standard & Poor’s Corporation, and Fitch Ratings.

Besides the parties listed above, a lot of other participants are involved in this process, which
can include for instance a Trustee, a Servicer, a Swap Counterparty, and many others. Ultimately,
when the financial instrument is made available on the market, potential investors, which could
include entities like funds, corporations, or other banks, have the option to purchase it. From their
perspective, the advantages of investing in such a financial instrument are associated with the
potential for diversification within a novel class of financial instruments.

The securitisation process involves careful specifications, including structuring, credit enhance-
ment, and investor communication to create securities with varying levels of risk and returns.
First of all, the originator selects loans, mortgages, or similar, which contractually generate cash
flows over time, then ”transfers” them to the SPV: this passage is structured as a sale, with legal
ownership of the assets passing from the originator to the SPV. In this starting phase, the securiti-
sation process is additionally equipped with quality-improving specifications, commonly known
as credit enhancement methods.

1.2.1 Credit enhancement

These techniques are mainly used to diminish the risk of insolvency of the underlying pool’s as-
sets, meanwhile trying to make the purchase of such securities more attractive. The choice of
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credit enhancement methods depends on the specific transaction, the nature of the underlying
pool’s assets involved, and the desired risk-return profile for investors. The most relevant tech-
niques exploitable in this context are:

• Overcollateralization: loans or mortgages are usually backed by tangible assets or collateral.
In this case, the originator may allocate more collateral than required to cover the debt’s
principal and interest payments, providing an additional cushion against potential defaults.

• Cash reserve: is a layer of protection that has to be exhausted before noteholders have to
bear any losses; it can act as a buffer against payment shortfalls.

• Excess spread: mathematically, is the difference between the yield on each underlying pool’s
asset and the interest paid by these notes3. It is an effective measure of how an ABS is risky;
specifically the higher an excess spread is, the higher the risk of default associated with
the debt instrument. It can also be expressed by calculating the difference between interest
payments derived from borrowers and the weighted average coupon paid on the securitized
notes.

• Credit derivatives: many financial credit-based derivatives can be used in the form of insur-
ance on these notes. Famous examples are the Credit Default Swaps (CDS), such as derivatives
used to transfer credit risk from the issuer to a third party. CDS contracts are primarily used
to hedge against the risk of default or a decline in the creditworthiness of a specific issuer;
in this case, the sensation of large losses of a debt-related instrument may cause the investor
to stipulate a CDS contract.

• Subordination or credit tranching: is a technique used for structuring different classes of
notes, known as tranches, subordinating the re-payments of the high-risky ones to the low-
risky ones. In such a way, the riskier tranches bear the largest quantity of losses and serve
as a ”cushion” for the higher-quality ones. Specifically, each tranche has to bear losses only
if all its subordinated ones are fully exhausted by losses.

The previously named tranches have different credit ratings given by credit rating agencies, which
usually base their response on both quantitative and qualitative analysis. Indeed, tranching allows
for the allocation of risk and return to different classes of investors. Tranches are structured such
that the highest-rated tranches receive priority in cash flows and have the lowest risk of default,
while lower-rated tranches offer higher potential returns, but also bear more risk. Specifically, the
tranches are named:

1. Senior tranche: is the highest-ranked4 and safest segment of an ABS structure. From an
investor’s point of view, it is more attractive when one’s financial profile is risk-averse.

2. Mezzanine tranche: the middle-level tranche offers the investors higher yields when com-
pared to the previous one. Specifically, they have a lower rating than the senior tranche,
typically AA or below.

3. Equity tranche: also known as the junior or subordinated tranche, is the riskiest tranche
involved in this type of security. This tranche is the most remunerative one in terms of yield
as well as the one that involves the highest risk. It is often unrated.

3Additional senior costs, such as rating fees and legal costs, must be added to this spread.
4In some cases, the could also be a higher tranche called Super-senior tranche, which is the most secure one among all

the others.
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As explained in the list above, the three sections differ both in risk quality and yield, generat-
ing different investment opportunities. Following this subdivision, the risk associated with each
tranche is linked peculiarly to its relative yield, reflecting the risk-premium associated with a po-
tential investment, as can be seen in Figure 1.3. Specifically, the discounted cash-flow methodology
is used to establish the prices and the fair interest rates to associate with each tranche. Moreover,
this categorization helps to satisfy the financial interests of different profiles, from those seeking
safety and stability to those seeking higher yields with greater risk.

Figure 1.3: Structure of an ABS divided in tranches, outlining the associated evolution of expected
losses, credit risk and yield.

For further in-depth settings, some important specifications have to be made on the repayment
structure. The payoff of a general Asset-Backed Security is regulated by a so-called waterfall struc-
ture, such as a repayment rule that involves sequential and subordinate payments, from which the
appellation waterfall. Specifically, the repayments are scheduled following a well-defined form
of protection. The main one is the Sequential repayment approach, according to which a tranche
receives all principal payments until it is fully paid off before the next tranche receives any prin-
cipal. Subsequently comes the Pro-Rata repayment approach, in which tranches receive principal
payments proportionally, ensuring that most of them receive a share of principal payments si-
multaneously. Despite that, in any case, the second structure cannot be referred to as the equity
tranche. In a practical real-world context, this last form of protection is associated with the advent of
predetermined trigger factors, such as the raising of the Cumulative Default Ratio (CDR). In such
cases, when any trigger event comes to light, a switch between the first and the second repayment
structures happens.
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In the final phase of the securitisation process, after the segmentation into tranches and the for-
mulation of the debt derivative instrument, the issuance is introduced to the market, transform-
ing it into an investable, therefore liquid, asset. Investors on this type of asset receive principal
and interest on tranches while paying a lower price in the acquisition. Consequently, they as-
sume a spectrum of risks inherent to this debt instrument. Hence, to build successful investment
strategies involving these instruments, is mandatory to make technical considerations on the risks
associated and subsequently decide how to manage them.

1.3 Risks in the ABS market

In the re-payment process of an Asset-backed Security, the underlying pool’s assets generate in-
terests and principal payments, as well as potential losses may occur when the obligors of those
receivables do not serve their obligations, for instance, payments are not delivered following the
pre-specified contractual agreements. Hence, investors in this type of financial instrument have
to bear numerous and different types of risk arising from either the structure, the underlying as-
sets of the securitised portfolio, or the contractual rules that determine the consequences investors
have to deal with. The primary categories of risk that investors encounter when engaging in
fixed-income securities investments, as delineated in the literature [4] and [14], include:

• Credit risk: this risk profile directly mirrors the creditworthiness of issuers or obligors, en-
compassing several facets, including default risk, which is the probability of an issuer failing
to meet its predetermined obligations. Credit-spread risk, which entails the necessity of a
higher interest rate spread due to a perceived increase in default risk. Downgrade risk, which
involves the perception of a reduced credit quality rating by the rating agencies mentioned
in Section 1.1.

• Interest-rate risk: split up into level-risk and yield-curve risk, is the risk associated with
adverse changes in the values of the interest rates.

• Reinvestment risk: the cash flows originating from fixed-income security are typically pre-
sumed to undergo reinvestment, making the variability in returns a crucial factor that sig-
nificantly impacts these types of obligations.

• Call/prepayment risk: as certain bonds, specifically designated as callable bonds, incorporate
an embedded option that grants the issuer the prerogative to redeem all or a portion of
the bond issue before its scheduled maturity date, it is pertinent to acknowledge that the
acquisition of such obligations from an investor’s standpoint entails a different type of risk.
Specifically, when observing the external market conditions, if the interest rates are lowering,
there is a high probability of an option exercise of these types of bonds. Characteristics of
callability are well outlined in the contract.

• Inflation, or purchasing-power, risk: This risk arises when the purchasing power of money
decreases. The variation of the inflation rate may diminish the reinvestment opportunity of
the generated cash flows too.

• Liquidity risk: by measuring the liquidity of a debt instrument with the bid-ask spread, this
risk is correlated to the possibility of selling a debt instrument at a lower price rather than at
its true value.

• Exchange-rate, or currency, risk: when the purchase of a security is carried out in a state
with a foreign currency, the exchange rate has a particular impact in evaluating the quality
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of an investment. Cash flows may be affected by exchange rate inaccuracies, thus their value
may be lowered both from a profit and a reinvestment perspective.

• Volatility risk: the expected volatility of interest rates may affect the value of a debt in-
strument, especially for callable bonds. A good measure of this type of risk is offered by
multi-factor risk models, and is referred to as Vega: it represents the price variation of a
security concerning its implicit volatility.

• Commingling risk: fixed-income cash-flows derived from borrowers are typically collected
by the Servicer, so they can be mixed in other internal accounts not securitised. In case of
insolvency of the Servicer, these cash-flows may undergo in its bankruptcy estate.

• Set-off risk: the risk associated with a set-off operation by a borrower about the securitised
loan.

During the ownership phase of a debt instrument, various other categories of risk may arise, albeit
in a predominantly qualitative context. For instance, Political or legal risk refers to alterations in
the legal framework governing a bond, consequently impacting its inherent characteristics such
as maturity, callability, tax implications, and so forth. Additionally, macroeconomic dynamics
and factors may affect the quality of a fixed-income investment. Event and Sector risks are the
ones that refer to the possible happening of critical events that can affect a specific investment.
Simultaneously, the likelihood of unfavorable divergent movements within specific market sectors
should also be taken into account as a risk factor when acquiring a debt instrument.

Although not all of the risks described in the list above are quantifiable, the primary risk factors
associated with any bond index and portfolio, for example, credit risk and interest-rate risk, can be
quantified within coherent evaluations. Credit risk can be quantified through probabilistic models,
based on credit scoring, feature importance, and interdependence structures. Interest-rate risk can
be evaluated by observing yield curves and predicting the temporal evolution of the referred rates,
for example taking into consideration and calculating risk-reflecting measures, commonly known
as credit spreads. Taking into consideration the totality of these risks is a fundamental prerequisite
for credit institutions, such as banks. To ensure that, during the last decades many regulatory
agreements have been emitted and internationally acknowledged.

1.4 Regulations in the fixed-income market

Another important topic to be outlined is the regulation conditions present in the Basel agreements.
The aim of the Basel Accords is to enhance the stability and integrity of the global banking system
by establishing minimum capital and risk management standards for banks. They are widely
adopted by countries and financial institutions around the world, although implementation may
vary from one jurisdiction to another. Specifically, Basel I, the first one outlined in 1988, introduced
risk-weighted assets and an 8% minimum Capital Adequacy Ratio (CAR)5, mainly focusing on
credit risk. Basel II, defined in 2004, expanded on Basel I, adding operational and market risk,
allowing internal risk models and requiring regulatory approval. Basel III responded to the 2008
financial crisis with stricter capital and liquidity rules, higher CAR, and buffers against losses,
addressing for instance leverage risks. In conclusion, Basel IV, which has not been established yet,
continues to refine Basel III, aiming for consistent and comparable risk-weighted asset calculations

5CAR is a measure that quantifies how much capital a bank has available, reported as a percentage relative to the
bank’s credit exposures subjected to risk-weighting.
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across banks, mostly focusing on a quantitative point of view. Summing up, the final objective is to
evaluate in the most possible correct way the risks associated with the fixed-income instruments,
thus characterizing and analyzing them quantitatively. As a consequence, in this thesis, we will
specifically concentrate on the quantitative analysis of the credit risk of bond portfolios or fixed-
income financial instruments based on the credit quality of the underlying assets. Furthermore,
the most emphasis will be put on the ABS instruments, which can be treated as collections of
fixed-income securities, each with the possibility of default.



Chapter 2

Mathematical model

Since the onset of the XXI century, the field of quantitative finance analysis and research has wit-
nessed numerous theoretical advancements. Given the substantial shifts in market dynamics and
conditions, the emergence of more sophisticated market participants, and the growing complex-
ity of investable assets, most of the research has focused on the quantitative pricing of corporate
debts. However, many of these models have failed to describe real-world phenomena. In the
rigorous quantitative analysis of fixed-income instruments, encompassing both pricing and risk
evaluation, it becomes virtually imperative to identify and quantify the entirety of the risks to
which an investor is susceptible. The mathematical modeling of these underlying factors serves
as a significant tool to enhance the precision of characterizing the attributes of the financial instru-
ments under examination.

In this chapter we will provide a concise overview of the key models used in quantitative credit
risk assessment, subsequently, we will concentrate on a new approach that deepens into the prob-
ability estimation of large losses arising from defaults in a credit portfolio, using the Archimedean
copulas. For the sake of organization and clarity, all the relative MATLAB codes can be found in
Appendix A.

2.1 Credit Risk quantitative modeling

Credit risk quantitative modeling is a specialized domain within quantitative finance that employs
mathematical and statistical techniques to assess and quantify the credit risk associated with forms
of debt instruments. It revolves primarily around the risk that the issuer of a bond may default on
its interest payments or, in the worst case, fail to repay the principal amount at maturity. This risk
is contingent on the creditworthiness of the issuer and a multitude of other variables, rendering
its comprehensive evaluation an indispensable facet within the quantitative landscape of finance.
As it holds paramount importance and impact, over the years a lot of derivative instruments have
been created and priced, for example, ABS, making the fixed-income market a crucial character in
global finance. This specialized topic is particularly essential for financial institutions, investors,
and portfolio managers who need to evaluate the creditworthiness of borrowers or issuers of debt
securities.

21
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As explained in [4], the literature highlights three quantitative approaches to analyzing credit risk:

• The structural approach: the basis goes back to Black and Scholes [2] and Merton [13], rely-
ing on the fact that corporate liabilities are contingent claims on the assets of a firm. Accord-
ing to this approach, a firm defaults if its assets are insufficient according to some measure.
It can be based on a classical approach, which involves only the final non-default threshold, or
on a first passage approach, which characterizes the default of the asset directly when its mar-
ket value goes at any time below a pre-specified threshold. As it can be inferred from the
specifications above, these models are also known as threshold models. The lack of concrete-
ness of these models hides in the unique source of uncertainty given by the asset’s market
value, for example letting space to ”pre-default” events.

• The reduced-form approach: built upon a negligible level of information about an as-
set’s market value, this approach defines the dynamics of default in an exogenous manner
through a default rate λ, also referred to as intensity, which can evolve through time. When
following this approach, it’s noteworthy that there is a one-to-one relation between the inten-
sity of defaults and the corresponding default probabilities. Reduced-form models provide
a flexible framework for modeling the dynamics of multiple-issuer credit risk. However,
calibration of the model to market variables is not trivial because of the scarcity of default
data and the need to model a large number of parameters simultaneously.

• Incomplete-information approach: combines the two previous approaches by selecting
their most noticeable features. On one side, it picks the intuitiveness of the structural ap-
proach, while on the other side picks the tractability and the empirical characteristic of the
reduced-form approach, as explained in [5]. What distinguishes this approach from a tradi-
tional first-passage time model is that it assumes that investors do not know the value of the
default barrier, so it can be modeled by the presence of uncertainty.

The primary objective of these models, whether in theoretical or empirical contexts, is to accurately
establish the probabilities of default associated with fixed-income securities. This determination
serves as the basis for establishing fair prices or spreads applicable to debt-derivative instruments.
In the particular process of default probability estimation, it is important to take into consider-
ation a dependence between defaults among different firms or assets in pre-determined pools.
To substantiate this claim, empirical evidence has revealed that financial institutions are affected
by common macroeconomic dynamics, such as systematic or sector-specific factors. Therefore,
obligors tend to exhibit stronger dependence in stressed scenarios, consequently resulting in more
likely simultaneous defaults.

To elucidate an approach grounded in mutual dependence among obligors, certain foundational
topics have to be made explicit. This entails a specific emphasis on the mathematical modeling of
a dependence structure that manifests robust interdependence, even within the tails of the under-
lying random variables. To correctly model those financial random variables, it is also necessary
that the tails should manifest non-negligible probabilities.

2.2 Copulas

As well explained in the literature [15], copulas are mathematical functions that join or ”couple”
multivariate distribution functions to their one-dimensional marginals. Copulas find applications
in various fields, including hydrology for modeling multivariate rainfall patterns, insurance for
modeling joint claims distributions, and finance. Copulas in finance aims to provide a robust
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framework for modeling and understanding the dependence relationships between financial vari-
ables, in the case of this thesis the obligors’ default. In mathematical details, a copula function, or
better a n-copula, is defined as follows.

Definition 1. An n-dimensional copula is a function denoted as C : In → I such as:

1. Its domain is In, where I represents the continuous real interval [0, 1], and its codomain is I.

2. For every n-dimensional vector u in I, the copula function applied in u equals to 0 if at least one
component of the previous vector is 0. At the same time, if all coordinates of u are equal to 1 except
for uk, it holds that C(u) = uk.

3. For all the vectors a and b in In such that a ≤ b element-wise, C has to be n-increasing. A n-copula
is n-increasing if VC([a, b]) ≥ 0, where VC is the volume of the hyper-rectangle defined as:

VC([a, b]) = ∆b
aC(t) = ∆bn

an
∆bn−1

an−1 ...∆b2
a2

∆b1
a1

C(t)

and where:

∆bk
ak C(t) = C(t1, ..., tk−1, bk, tk+1, ..., tn)− C(t1, ..., tk−1, ak, tk+1, ..., tn), ∀k = 1...n

It can be further proved that for any copula with n ≥ 3, each k-margin is a k-copula with 2 ≥ k ≥
n.

The link between copula functions and n-dimensional distribution functions is established by the
Sklar’s n-dimensional Theorem:

Sklar’s n-dimensional Theorem. Let H be an n-dimensional distribution function with marginals
F1, F2, ..., Fn. Then there exists an n-copula C such that ∀x ∈ R̄n:

H(x) = H(x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)) (2.1)

In addition to that, if each marginal cumulative distribution function is continuous then the copula is
unique, otherwise is uniquely determined on the Cartesian product of the ranges of each marginal.

From the Theorem 2.2 it follows that a copula structure is the restriction to the hypercube of a
cumulative distribution function of a vector with uniform marginals. As a consequence, it is also
possible to provide an equivalent stochastic representation for copulas using random vectors with
uniform marginals. We recall below the main families of copulas used to describe dependence
structures in applications.

• Independence copula: to formalize the concept of independence among n distinct random
variables, it is necessary to introduce a function that not only encompasses no links between
marginals but also upholds the essential prerequisites of a copula. This notion finds a well-
suited representation in the form of a multiplicative function:

C(u1, u2, ..., un) = u1 · u2 · ... · un (2.2)

• Fréchet-Hoeffding bounds: as explained in [15], each copula is bounded by two particular
functions, called FH-bounds. The lower bound, defined as Wn(u) = max(u1 + ...un − n +
1, 0), represents almost surely the strictly countermonotonicity linkage between one random
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variable and the other n − 1. The upper bound, denoted as Mn(u) = min(u1, ..., un), rep-
resents almost surely the strictly comonotonicity linkage between one random variable and
the other n − 1. It is important to notice that the lower bound Wn fails to be a copula for
n ≥ 2 but is the best possible choice for a range estimation.

• Elliptical copulas: they derive their name from their association with elliptical distributions,
particularly the multivariate Gaussian distribution, which serves as a cornerstone for this
category of copulas. Common examples of elliptical copulas include the Gaussian copula,
the t-copula, and the Clayton copula. Each family has its parameterization and characteristics,
making it suitable for specific types of data and dependence scenarios. They are particularly
valuable when the assumption of multivariate normality is reasonable or when focusing on
symmetric dependence patterns. However, they may not be well-suited for capturing more
complex or non-linear relationships between variables, such as extreme dependence in the
tails of the distributions.

• Archimedean copulas: Archimedean copulas are a versatile class of copula functions that
simplify the modeling of multivariate dependencies by reducing them to a one-parameter
family based on a generator function. They are chosen when the dependence structure be-
tween random variables can be described using a single, well-defined function. In addition,
these copulas can model tail dependence, which is the probability of extreme events occur-
ring simultaneously in multiple variables. This is crucial not only in risk assessment and
reliability analysis but also in the context of environmental science.

In this work, we use Archimedean copulas to model extreme events, formally introduced in the
next section.

2.3 Archimedean copulas

Archimedean copulas, introduced by C. H. Ling in 1965 [10], are named after the ancient Greek
mathematician Archimedes due to the mathematical properties of its elements, which are closely
tied to his work. In particular, a 2-dimensional Archimedean copula behaves like a binary oper-
ation on the interval I, making it possible to define an axiom similar to the Archimedean axiom for
positive real numbers. Archimedean copulas are particularly useful for simplifying the modeling
of multivariate dependencies by reducing them to a single-parameter family of copula functions.
They allow modeling dependence in arbitrarily high dimensions with only one parameter, de-
noted in this thesis as α, governing the strength of dependence. In the context of rare events, they
can effectively model tail dependence, which is the likelihood of extreme events in one variable
being associated with extreme events in another variable. An Archimedean copula is formally
defined as follows.

Definition 2. An n-dimensional Archimedean copula is defined by:

Cn(u) = ϕ[−1](
n

∑
i=1

ϕ(ui)) (2.3)

where ϕ is called the generator of the Archimedean copula and has to satisfy the following conditions:

1. ϕ has to be a continuous and strictly decreasing function from I to [0, ∞].

2. ϕ(1) = 0.
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3. The pseudo-inverse of ϕ, called ϕ[−1] : [0, ∞] → I is defined as:

ϕ[−1](t) =
{

ϕ−1(t) 0 ≤ t < ϕ(0),
0 ϕ(0) ≤ t ≤ ∞.

As a specification, if ϕ(0) = ∞, then ϕ[−1] = ϕ−1.

4. The inverse of the generator ϕ−1 is completely monotonic on [0, ∞], such as it has to satisfy:

(−1)k dk

dtk ϕ−1(t) ≥ 0, k = 0, 1, 2, ...

It means that the inverse of the function we are taking into consideration has to be positive, decreasing,
convex, and so on according to the mathematical constraint above1.

In the practical application of copulas to model specific scenarios, a fundamental requisite is the
selection of an appropriate generator function. For this purpose, a lot of copulas have been for-
mulated: among them stand out notable instances, including the Clayton copula, the Ali-Mikhail-
Haq copula, and the Gumbel-Hougaard copula. All these copulas fall under the umbrella of one-
parameter Archimedean copulas, wherein the specification of the intensity dependence parameter,
denoted as α, plays a pivotal role in determining several distinctive and characteristic properties
of the copula.

(a) (b) (c)

Figure 2.1: Bivariate Gumbel Archimedean copula representations, varying the dependence pa-
rameter α.

As it is noticeable in Figure 2.1, by varying the dependence parameter α, in the corners of the rep-
resentations the surface gets sharper, underlying a more evident relation of dependence between
variables.

A method for constructing Archimedean copulas involves leveraging the concept of convex sums,
which give rise to copulas derived from Laplace-Stieltjes transforms of distribution functions. In
particular define the convex sum, or mixture, as:

H(u) =
∫ ∞

0

(
n

∏
i=1

Fθ
i (ui)

)
dΛ(θ) (2.4)

1In the 2-dimensional case this condition is not explicit, but is a consequence of the fact that ϕ−1 is positive and
strictly decreasing.
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further assume that Λ(0) = 0 and let:

ψ(t) =
∫ ∞

0
e−θtdΛ(θ) (2.5)

It is possible to notice that by selecting Fi(ui) = exp(−ψ−1(ui)), ∀i = 1, ..., n the expression in
Equation 2.4 becomes H(u) = ψ

(
∑n

i=1 ψ−1(ui)
)
. Furthermore, since ψ−1(1) = 0, its marginals are

uniform and hence it is possible to see that a source of generators of Archimedean copulas consists
of inverses of Laplace transforms. Those particular types of copulas are also known as LT-Archimedean
copulas.

Definition 3. An Archimedean copula whose generator ϕ is the inverse of the LS-transform of a generic
mixing distribution Λ is called an LT-Archimedean copula.

Moreover, note that for a generic element i, reminding that an Archimedean copula generator ϕ is
a decreasing function, it is possible to define the ith-marginal conditional probability as follows.

Definition 4. Let i be a generic index of the random vector U = (U1, U2, ..., Un) defining an LT-
Archimedean copula structure. Then, the ith-marginal conditional probability is defined as:

pi(v) = P(Ui ≤ ui|Λ = v) (2.6)

where Λ is the mixing variable of the LT-Archimedean copula.

To have a reformulation of the joint distribution, from the specifications in Equation 2.4 it is no-
ticeable that the LT-Archimedean copula admits the following stochastic representation.

Proposition 1. The joint distribution of the random vector U = (U1, U2, ..., Un) defined by:

U =

(
ϕ−1

(
R1

Λ

)
, ..., ϕ−1

(
Rn

Λ

))
(2.7)

where Ri, i = 1, ..., n are independent exponential standard random variables, ϕ−1 is the LS-transform
function and Λ is a random variable, is an LT-Archimedean copula with generator ϕ and mixing variable
Λ.

Proof. Thanks to the relationship between an LT-Archimedean copula generator ϕ and its mixing
variable Λ, as proved in [12], it is possible to provide to the vector U a precise stochastic represen-
tation. Specifically, note that conditioning on Λ = v, the variables in the vector made explicit in
Equation 2.7 are independent. Following Definition 2.6, in this case, the i-th marginal conditional
probability can be reformulated as:

pi(v) = P(Ui ≤ ui|Λ = v) = P

(
ϕ−1

(
Ri

Λ

)
≤ ui|Λ = v

)
=

= P

(
Ri

Λ
≥ ϕ(ui)|Λ = v

)
= P(Ri ≥ Λϕ(ui)|Λ = v) = e−vϕ(ui)

(2.8)

From the result presented above, also remember that the inverse of the generator of an LT-
Archimedean copula ϕ−1 is set to be the LS-transform of the mixing variable Λ, as previously
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made explicit in Equation 2.5, is possible to make evident the underlying LT-Archimedean copula
structure:

P (U1 ⩽ u1, . . . , Un ⩽ un) =
∫ ∞

0
P (U1 ⩽ u1, . . . , Un ⩽ un | Λ = v)dΛ(v)

=
∫ ∞

0

n

∏
i=1

pi(v)dΛ(v)

=
∫ ∞

0
exp (−v (ϕ (u1) + · · ·+ ϕ (un)))dΛ(v)

= ϕ−1 (ϕ (u1) + · · ·+ ϕ (un))

(2.9)

As a necessity for the analytical manipulation of formulas and the next specifications, it is ex-
tremely useful to find the formulation of the mixing variable Λ in an explicit form. Mathemati-
cally arguing, the aim is to find a random variable whose LS-transform is in the form of the inverse
of the generator function of the pre-specified copula. As the article [17] explains, two important
random variables can be associated in the previous way to the Clayton and Gumbel copulas:

Generator ϕ(t) Mixing distribution Λ

Clayton t−α − 1 Γ( 1
α , 1)

Gumbel (−ln(t))α St( 1
α , 1, (cos( π

2α ))
α, 0)

Table 2.1: Table of the associations between Archimedean copulas, generators, and associated
mixing distribution.

In our approach, we focus on Gumbel’s. In this case, the mixing variable is the One-sided standard
Stable distribution whose parameters are explained in table 2.1. For a general stable distribution,
the density can be written as:

fΛ(x; α, β, c, µ) =
1

2π

∫ ∞

−∞
φ(t; α, β, c, µ)e−ixtdt (2.10)

where:

φ(t; α, β, c, µ) = exp (itµ − |ct|α(1 − iβ sgn(t)Φ(t))) , (2.11)

Φ(t) =
{

(|ct|1−α − 1) tan(πα
2 ) α ̸= 1,

− 2
π ln(|ct|) α = 1.

(2.12)
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In the treated specific case, after defining q = exp(−iπ
2α ), the density becomes:

fΛ(x;
1
α

, 1, (cos(
π

2α
))α, 0) = Lα(x) =

1
π
ℜ
[∫ ∞

−∞
eitxe−q|t| 1

α dt
]

=
2
π

∫ ∞

0
e−Re(q)t

1
α sin(tx) sin

(
− Im(q)t

1
α

)
dt

(2.13)

The Stable density in Equation 2.13 is not in closed form, but can be evaluated in any point x
using numerical methods, for example, the Gauss-Legendre Gaussian quadrature formula. In this
case, MATLAB computes the probability density function using the direct integration method, as
explained in Stable Distribution by MATLAB [9], with some precautions regarding the parameter
1
α .

(a) (b) (c)

Figure 2.2: Probability density function of a One-sided standard Stable random variable, varying
the values of the interdependence α.

As it is possible to infer from each of the sub-figures in Figure 2.2, by varying the value of the
dependence parameter α the probability density function gets sharper near zero, reaching higher
values, but maintaining its heavy tailed characteristic.

We conclude this section by observing that Archimedean copulas represent a powerful tool in the
world of statistics and probability theory, offering a concise and elegant means to model complex
dependence structures among random variables. However, while the utilization of Archimedean
copulas offers numerous advantages over alternative approaches, such as their straightforward
simulation procedures and analytical tractability, these copulas come with inherent limitations.
Specifically, all the k-margins of an Archimedean copula are identical, and typically only one,
or at best two, parameters can limit the nature of the dependence structure presented by this
family. Moreover, the intrinsic symmetry inherent in Archimedean copulas may not always align
seamlessly with the asymmetrical realities of real-world scenarios. In the following section, we
further introduce the risk measures used in our approach.

2.4 Risk measures

In the context of credit risk assessment, the main objective is to quantify large loss probabilities or
to evaluate, through a precise metric, the risk exposure in determinate cases. As a consequence,
many risk measures have been devised during the last decades, which have often led to long

https://www.mathworks.com/help/stats/stable-distribution.html
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debates on their quantitative correctness and applicability. For this purpose, it is necessary to
define the concept of loss.

Definition 5. Consider a portfolio made up of n different assets whose default can be expressed as Bernoulli
random variables X1, X2, ..., Xn. The loss of the portfolio can be defined as:

Ln =
n

∑
i=1

ciXi (2.14)

where ci ∀i = 1, ..., n are the different exposures of each asset in the portfolio.

In the context of tail loss probability estimation, an important measure of risk has to be taken
into consideration: the Value at Risk (VaR). This statistical risk measure quantifies the maximum
potential loss an investment or portfolio could experience over a specified time horizon at a given
confidence level. In practical details, it provides an estimate of the worst-case loss within a defined
probability.

Definition 6. Let Ln be the random variable relative to the loss of a portfolio expressed as 2.14 and FLn its
cumulative distribution function. The Value at Risk (VaR) at level γ of the portfolio loss is defined as:

VaRγ(Ln) = inf{x ∈ R : FLn(x) ≥ 1 − γ} (2.15)

It is important to notice that if the random variable relative to the portfolio loss is continuous, the
VaR can be also expressed as VaRγ(Ln) := F(−1)

Ln
(1 − γ), where F(−1)

Ln
denotes the inverse function

of the cumulative distribution function of the loss random variable Ln.

In this thesis, we are interested in estimating analytically the probability of large losses, better
explicit as P(Ln > nb), where b is a settable number indicating the total risk exposition assumable
on average. This consideration expresses a perfect link with the VaR measure: following Definition
6, the probability value expressed as P(Ln > nb) symbolizes the level 1 − γ.

The VaR risk measure is widely used in many finance sectors, such as risk management, finance
reporting, and financial control, but also finds space in other fields, for instance, environmental sci-
ences, insurance, and healthcare. However, it is a controversial risk management tool principally
because relatively considers extreme events, which often happen, and concurrently, in a quantita-
tive way, does not result in a coherent risk measure. To manage that, some other risk-evaluating
measures have been developed, one of which has a special relation with VaR: the Conditional Value
at Risk (CVaR). CVaR, also known as Expected Shortfall, goes a step further than VaR. While VaR
provides the expected loss at a specific confidence level, CVaR gives the expected loss given that
the loss exceeds the VaR. In essence, it provides a measure of the average loss that would be in-
curred if the portfolio performs worse than the VaR. In the context of risk assessment, CVaR is
a coherent risk measure, such as satisfying the properties of monotonicity, sub-additivity, homo-
geneity, and translational invariance beyond the one of normalization. Furthermore, it offers a
more comprehensive insight into the tail risk and the potential severity of losses in the worst-case
scenarios, making it a valuable tool for risk management and decision-making in financial and
investment contexts.
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Definition 7. Let Ln be the random variable relative to the loss of a portfolio as expressed in 2.14 and FLn

its cumulative distribution function. Furthermore, let γ be the minimum percentage level of exposure and
VaRγ(Ln) the relative Value at Risk of the loss. If the random variable Ln that defines the loss is continuous,
CVaR can be defined as:

CVaRγ(Ln) = E[Ln|Ln ≥ VaRγ(Ln)] =
1
γ

∫ +∞

VaRγ(Ln)
xdFLn(x) (2.16)

As inferable in Equation 2.16, CVaR pays more attention to the tails of the loss random variable
compared to VaR because it considers not just the probability of extreme events occurring but also
the severity of the losses in those extreme events. This focus on the tails of the distribution makes
CVaR a more robust and conservative risk measure, especially when dealing with the potential
impacts of extreme events or tail risk. In real-world scenarios, to overcome the shortcomings of
VaR, any asymptotic analysis is mainly conducted on the second outlined risk measure. In more
mathematical details, it is noticeable that Equation 2.16 can be also expressed as:

CVaRP(Ln>nb)(Ln) = E [Ln | Ln > nb] = nb + n

∫ +∞
b P (Ln > nx)dx

P (Ln > nb)
(2.17)

where b is a settable number indicating the total risk exposition assumable on average. Moreover,
especially in the context of simulation, the requirement for a systematic revision of the numerator
in Equation 2.17 becomes apparent. Consequently, a potential reconfiguration is elucidated in the
subsequent Proposition.

Proposition 2. Let CVaR be defined as in Equation 2.17. Then, the Expected Shortfall formula can be also
explained as:

CVaRP(Ln>nb)(Ln) = E [Ln | Ln > nb] = nb +
E
[
(Ln − nb)+

]
P (Ln > nb)

(2.18)

where the function (·)+ is the maximum between zero and its argument.

Proof. The reformulation in Equation 2.18 of the CVaR holds thanks to the following specifica-
tions. Define a := ∑n

i=1 ci and fLn as the probability density function of the total loss. Subse-
quently, denote as FLn(x) = P(Ln ≤ x) the cumulative distribution function of the total loss and
as F̄Ln(x) = P(Ln > x) the survival function of the total loss. As a consequence, the analysis of
the numerator of the fraction in the right part of the equation results in:

E
[
(Ln − nb)+

]
=
∫ a

0
[x − nb]+ fLn(x)dx =

∫ a

nb
(x − nb) fLn(x)dx =

=
∫ a

nb
x fLn(x)dx −

∫ a

nb
nb fLn(x)dx = [xFLn(x)]anb −

∫ a

nb
FLn(x)dx − nb [FLn(x)]anb =

= a − nb · FLn(nb)−
∫ a

nb
FLn(x)dx − nb + nb · FLn(nb) = (a − nb)−

∫ a

nb
FLn(x)dx =
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= (a − nb)−
∫ a

nb
(1 − F̄Ln(x)) dx =

∫ a

nb
F̄Ln(x)dx = n ·

∫ a
n

b
F̄Ln(ny)dy = n ·

∫ ∑n
i=1 ci

n

b
P (Ln > ny) dy

which gives the same formulation as in Equation 2.17.

Since VaR and CVaR look at the distribution of the loss’ tail, it is important to model the asymptotic
behavior of P(Ln > nb). In the next section, we introduce a class of functions with a convenient
asymptotic behavior that applies to Archimedean copulas.

2.5 Regular Varying functions

Regular varying functions are a category of functions that exhibit a particular asymptotic behav-
ior. These functions have broad-ranging applications across various domains: within the realm
of probability theory, they serve as instrumental tools for modeling heavy-tailed distributions, a
critical endeavor in comprehending sporadic events. Furthermore, these functions are employed
in extreme value theory to model the tails of probability distributions, which is crucial in fields
like hydrology, climatology, and insurance.

Intuitively, a positive Lebesgue measurable function f on (0, ∞) is a regularly varying function
(RV) if it behaves as a power law function near infinity. Regular varying functions are known for
their slow growth or decay as their argument becomes large. The characteristic of heavy-tailedness
is regulated by a parameter, in the case of this thesis called α, and assumed equal to the level of
dependence in the Archimedean copulas described in Sub-section 2.3.

Definition 8. A function f is said to be regularly varying at infinity with index α, generally ∈ R, but in
this case ∈ [1, ∞), if for x > 0:

lim
t→∞

f (tx)
f (t)

= xα (2.19)

Moreover, every f ∈ RVα can be expressed as f (x) = xαl(x), where l ∈ SV (Slowly varying
functions: a special case in which α = 0).

Over the course of the previous century, a substantial ensemble of theoretical frameworks and
precise definitions has been established, offering a valuable compendium for this subject matter,
as referenced in [1]. Among these, a particularly significant milestone is the Karamata’s Tauberian
theorem, which holds significant importance in the demonstration of specific concepts enunciated
in this approach and relative to Karamata’s theory of regular variation.

Karamata’s Tauberian Theorem. Let α > −1, l ∈ SV and c ∈ R. Let U be a non-decreasing right-
continuous function on R with U(x) = 0 for all x < 0. The following statements are equivalent:

U(x) ∼ cxαl(x)
Γ(1 + α)

, x → ∞ (2.20)

Û(s) ∼ cs−αl(
1
s
), s → 0+ (2.21)
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where Û(s) is the Laplace-Stieltjes transform of the function U:

Û(s) :=
∫ ∞

−∞
e−sxdU(x) =

∫
[0,∞)

e−sxdU(x) (2.22)

Is important to notice that the function U can represent the cumulative distribution function of a
random variable, thus rendering Equation 2.22 the Laplace transform of the probability density
function of the same random variable.

In the context of a credit risk model in which the interdependence relationship among assets is
structured as an LT-Archimedean copula, it is necessary to outline that the parameter α indicates at
the same time the interdependence between obligors and regulates the heavy-tailedness property
of the systematic factor Λ. Moreover, it is assumed a strict relationship between the random vari-
able Λ and the copula generator function, as better explained in Sub-section 2.3 in the context of
LT-Archimedean copulas. For further analysis, thanks to Karamata’s Tauberian theorem adapted
to this precise situation, it is possible to show that the generator of the associated Archimedean
copula is regularly varying to 1 with index −α, as better explained and proved by the following
Proposition.

Proposition 3. Let FΛ(v) be the cumulative distribution function of the mixing variable Λ outlined in
equation 2.5 and F̄Λ(v) = 1 − FΛ(v) its survival function. Furthermore, assume that F̄Λ(v) is a regular
varying function with index − 1

α , as its associated variable has to be heavy-tailed. Then, the generator ϕΛ of
the LT-Archimedan copula associated with the mixing variable Λ is regularly varying to 1 with index −α.

Proof. As a consequence of the assumptions of the proposition, it can be explained that:

F̄Λ(v) ∼ kv−
1
α , v → +∞

with k > 0 and:
FΛ(v) ∼ 1 − kv−

1
α , v → +∞

For the Karamata’s Tauberian Theorem 2.5, satisfied the condition − 1
α > −1, it results that:

ϕ−1
Λ (s) ∼ 1 − k̂s

1
α , s → 0+

with k̂ > 0. The meaning of the result above is that the inverse of the generator ϕ−1
Λ and the

cumulative distribution function have a sort of mirror behavior w.r.t. 0+ and ∞.
Now, by making the change of variable s → ϕΛ(1 − 1

t ), the relation above becomes:

ϕ−1
Λ (ϕΛ(1 −

1
t
)) ∼ 1 − k̂(ϕΛ(1 −

1
t
))

1
α , t → +∞

Specifically, the aforementioned outcome is accurate in the limit as t approaches infinity due to
the condition ϕΛ(1) = 0, given by the second generator’s property of an Archimedean copula. To
uphold this condition, the unique feasible recourse is to let t asymptotically approach infinity. As
the asymptotic equivalence is commutative, consequently to the previous relation results:

1 − k̂(ϕΛ(1 −
1
t
))

1
α ∼ 1 − 1

t
t → ∞
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(ϕΛ(1 −
1
t
))

1
α ∼ 1

k̄t
t → ∞

ϕΛ(1 −
1
t
) ∼ k̃t−α t → ∞

with k̃ > 0. From that it is inferable that ϕΛ ∈ RV−α.

Within the domain of credit risk analysis, the establishment of these mathematical structures
serves the purpose of laying the groundwork for a robust and reliable model. First and foremost,
the incorporation of a copula structure enables the precise technical representation for modeling
the interrelationships among variables. Secondly, the imperative need for a risk measure to assess
potential extreme scenarios and outcomes holds significant relevance, especially in practical ap-
plications. Lastly, the recognition of the existence of rare events necessitates the development of
a model that accounts for the heavy-tail property. It is through the incorporation of these model
assumptions that a comprehensive credit risk model can be constructed.

2.6 Credit risk model

To well introduce this approach it is necessary to make explicit the main objectives set in a credit
risk management scenario. First of all, many financial institutions’ exposure to credit risk is not
just confined to a single obligor, but to a large portfolio of multiple obligors, or in other cases un-
derlying debt instruments. Secondly, the default of a single obligor is not mandatory independent
from other defaults, so a sort of correlation structure is needed to model in a strongly dependent
way the succession of default events, for example in a stressed economic scenario. To accomplish
the two previous assumptions, the approach of this thesis follows a threshold model: in this scenario
a single default occurs when a certain variable, usually the firm’s debt, exceeds a pre-specified
threshold. To hold the previous assumptions, a certain correlation structure is needed to model
dependence among defaults. Indeed, when market conditions worsen, simultaneous defaults oc-
cur with non-negligible probability. To account for that, classical copula structures, like the Gaus-
sian one, cannot make evident the dependence of extreme events. As explained in Sub-section 2.3,
the family of Archimedean copulas fits very well in this context; in particular the Gumbel one has
been chosen for simulation purposes, but the model also accounts for interchangeability among
other Archimedean copulas.

First of all, it is necessary to consider n different obligors. Following the threshold model, each
obligor defaults if its latent variable Xi exceeds a pre-specified threshold xi. In particular, denoting
as ci the risk exposure, the total loss can be defined as:

Ln =
n

∑
i=1

ci1{Xi>xi} (2.23)

The loss function presented in Equation 2.23 can also expressed in terms of copulas, using
an equivalent threshold model. Initially, it can be noted that there is a pre-specified link be-
tween marginal default probabilities and portfolio default probabilities: since Ui = Fi(Xi) and
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pi = F̄i(xi), ∀i = 1, ..., n, the threshold models (Xi, xi)1≤i≤n and (Ui, 1 − pi)1≤i≤n are equivalent
threshold models2 as explained in [12]. Consecutively, it has to be noted that a single obligor de-
fault can be correlated in a specific way with the default of other obligors. Mathematically, this
fact exhibits the presence of an underlying copula structure, which is better explained in Defi-
nition 1. The underlying correlation structure can be furthermore reformulated in other terms:
thanks to Sklar’s n-dimensional Theorem 2.2, the joint distribution (X1, ..., Xn) ∼ F(x1, ..., xn) can
be expressed as (U1, ..., Un) ∼ C(u1, ..., un), where F is the joint cumulative distribution function
and C is the associated underlying copula. Furthermore, to reflect the theory of diversification, the
probability of large portfolio losses should diminish as the number of obligors increases. Hence,
each pi, which represents the singular probability of having a debt larger than xi, can be expressed
as li fn, where:

• fn: is an n-dependent function converging to zero as n approaches infinity. It reflects the
quality of the portfolio and the diversification effect when the number of obligors increases.
It also provides mathematical convenience in the analytical calculations.

• li: strictly positive constants associated with the credit quality of each obligor and account-
ing for variations among them. To characterize potential heterogeneity, some restrictions are
needed: the set {(ci, li) : i ≥ 1} takes values in a finite set W and, denoted by ni the occur-
rences of each element in the set, it is assumed that each fraction ni

n converges to a positive
value wi.

Furthermore, to model coherently the interdependencies among obligors, this approach intro-
duces the usage of Archimedean copulas in the credit risk estimation, in particular the LT-
Archimedean family introduced in Definition 3. Following this fact, also for analytical purposes, it
is possible to specify the vector U = (U1, U2, ..., Un) with an alternative stochastic representation,
as well explained in Proposition 1. As a consequence of its proof, particularly from Equation 2.8,
it is inferable that large portfolio losses are essentially determined by the outcome of the mixing
distribution Λ and by the associated LT-Archimedean copula generator ϕ. Following the previous
specifications, the modified loss function becomes:

Ln =
n

∑
i=1

ci1{Ui>1−li fn} (2.24)

where the joint vector U of the obligor’s variables Ui can be reformulated as in Equation 2.7.

For the forthcoming computations, it is imperative to maintain a clear focus on the ultimate ob-
jective of the approach. To elucidate, the primary goal is to discern the asymptotic characteristics
of the tail probabilities associated with the loss function Ln for the pool, as delineated in Equa-
tion 2.24, particularly as the number of obligors approaches infinity. In light of the compelling
need to systematically model the interdependencies among these obligors, it becomes necessary
to establish an underlying copula structure, with a specific emphasis on selecting a copula from
the LT-Archimedean family, as defined in Definition 3. Specifically, it is noteworthy to underscore
that the generator ϕ is instrumental in defining this chosen copula. Given the presence of this
foundational Archimedean copula structure, the reformulation of the vector U, as stipulated in
Equation 2.7, offers a constructive means to analytically explore the asymptotic characteristics of

2In particular, the default event {Xi > xi} is equivalent to {Ui > 1 − pi} ∀i = 1, ..., n for a generic obligor i. Indeed,
as Ui = Fi(Xi), if the event {Xi > xi} occurs: Ui = Fi(Xi) > Fi(xi) = 1 − F̄i(xi) = 1 − pi since Fi, as a cumulative
distribution function, is an increasing monotone function.
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loss tail probabilities. This analysis takes into account the inclusion of the mixing variable Λ, in-
troduced in Equation 2.4, which represents the unique exogenous source of market stress. As a
mathematical modeling consequence, its survival function must belong to the family of the regu-
lar varying functions, defined in Definition 8, with index − 1

α . In addition, Proposition 3 provides
a means to explicitly elucidate the unique heavy-tailed characteristic of the generator ϕ associated
with the mixing variable, which is precisely related to the model’s interdependence parameter α.
With these foundational suppositions in place, and given the assumption of a monotonic proba-
bility density function for the mixing variable Λ, it is possible to initiate explicit calculations about
the asymptotic properties of loss tail probabilities.

Taking into consideration the reformulation of the ith-marginal conditional probability pi(v) as
defined in Definition 4, it is possible to define the ith-modified marginal conditional probability as:

p̂i(v) := P

(
Ui > 1 − li fn | Λ =

v
ϕ (1 − fn)

)
=

= 1 − P

(
Ui ≤ 1 − li fn|Λ =

v
ϕ(1 − fn)

)
=

= 1 − pi

(
v

ϕ(1 − fn)

)
= 1 − e−v ϕ(1−li fn)

ϕ(1− fn)

(2.25)

As this approach aims to study asymptotic behaviors, we need to observe the limit when the
number of obligors tends to infinity 3. Therefore, the function resulting from the asymptotic limit
of the ith-modified conditional marginal probability outlined in Equation 2.25, as the number of
obligors grows to infinity, can be defined as:

p̃i(v) := lim
n→∞

p̂i(v) = 1 − exp(−vlα
i ) (2.26)

Furthermore, by defining the function r(v) as:

r(v) := ∑
j≤|W|

cjwj p̃i(v) = ∑
j≤|W|

cjwj(1 − exp(−vlα
j )), n → ∞ (2.27)

it follows that using Kolmogorov’s strong law of large numbers, the conditioned distribution of
the portfolio loss converges almost surely to:

Ln|Λ = v
ϕ(1− fn)

n
→ r(v), n → ∞ (2.28)

It is imperative to emphasize that the function r(v) exhibits strict monotonicity concerning the
variable v and possesses an upper bound denoted as c̄ = ∑j≤|W| cjwj. This upper bound can be in-
terpreted as the ultimate average loss incurred when all obligors default. For analytical purposes,
denote as v∗ the unique solution in (0, c̄) to r(v) = b: it represents the threshold value for the
random variable Λ so that the average portfolio loss is less than b. At this point, the asymptotic
behavior of the loss tail probability can be analytically explained.

3Observe that: limn→∞
ϕ(1−li fn)
ϕ(1− fn)

∼ (li fn)−α

f −α
n

= l−α
i
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Proposition 4. Let Ln be the loss function of a portfolio made up of n obligors as defined in Definition
2.24 and let fn be its quality function. Further assume that exp(−nβ) = o( fn), β > 0 and that the
interdependence parameter α is greater than 1. It follows that, for a fixed value of the threshold parameter
b, the probability of a portfolio large loss as the number of obligors approaches infinity results in:

P(Ln > nb) ∼ fn
(v∗)−

1
α

Γ(1 − 1
α )

, n → ∞ (2.29)

where v∗ is the unique solution of the equation r(v) = b and Γ(·) is the Gamma function.

The exact proof of this result is formally explained in the main article [3].

Some specifications about the result of Proposition 4 have to be made:

• The asymptotic probability is mostly dictated by the parameters α and fn. The larger the
value of α, the more obligors tend to default simultaneously; at the same time, the probability
of large losses is directly proportional to the sequence fn, symbolizing the fact that with a
higher credit quality of the pool, the probability of large losses diminishes. In particular, by
choosing different values for fn, portfolios will have different credit ratings. For example, a
portfolio equipped with fn = 1

n consists of high-quality obligors, while a portfolio equipped
with fn = 1

ln
1
2 (n)

has more risky ones.

• Another hidden role is played by the constants li, implicitly present in the specification of
v∗. They reflect the single quality of each obligor.

Besides that, for a correct evaluation and possible investment comparisons, a more comprehensive
measure of risk has to be explicit, possibly in a closed analytical form. As already said at the
beginning of Section 2.4, to have a correct measure of the risk associated with a precise portfolio
or pool of assets it is useful to explicit the Conditional Value at Risk. From the reformulation of
the CVaR presented in Equation 7, it is evident a possible explicit reformulation within the closed-
form probability sharp asymptotic presented in Equation 2.29:

CVaRP(Ln>nb)(Ln) = E [Ln | Ln > nb] ∼ nb + n

∫ ∞
v∗ r′(v)v−1/αdv

(v∗)−1/α
, n → ∞. (2.30)

where r′(v) is the first derivative of the function r(v), defined in Equation 2.27, with respect to the
variable v and v∗ is the unique solution of the equation r(v) = b. The explicit result in Equation
2.30 shows that asymptotically CVaR is linearly proportional to the number of obligors in the pool.

From the perspective of defining a rare-event simulation algorithm based on the asymptotic ana-
lytical findings, the subsequent section will highlight the outcomes and comparisons of the simu-
lations and their numerical counterparts.

2.7 Simulation and numerical results

The correctness of the asymptotic formulas obtained in Section 2.6 inspires the necessity of cre-
ating a rare-event simulation algorithm. For this purpose, we have developed the code for an
asymptotic simulation method for the estimation of the loss tail probability and the CVaR, which
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is reported in Appendix A Section A.2. Furthermore, we compared its results with the numerical
ones, obtained by the formulas in Section 2.6.

Since the context of this thesis involves the probability estimation of rare events, naive simulation
approaches, like the Monte Carlo one, are notoriously inefficient and can provide ambiguous re-
sults. To solve this problem, variance reduction rare event simulations are involved, in particular
within the Conditional Monte Carlo algorithm. As demonstrated in the article [3], this estimator has
a bounded relative error as well as it reflects algorithmic efficiency and variance reduction.

In addition to the general simulation, the most important parameters of the approach have been
varied to exhibit its robustness. By varying the parameter α it is possible to examine the variation
of the loss tail probability in the case of different interdependence intensities: extreme indepen-
dence is linked to the value 1 as well as its growth to infinity symbolizes the increase in the in-
terdependence strength. At the same time, by varying the parameter b is possible to analyze the
changes in the probabilities concerning the relative threshold of failure. Furthermore, by varying
the function fn it is possible to modify the quality of the considered pool of assets, with a specific
consideration of its number of obligors n. These simulation-related variation studies have been
performed and commented on in the next Section.

2.7.1 Loss tail probability estimation

To find the probability of large losses arising from rare events, two ways are generally used: nu-
merically, such as following analytical calculations, or via simulation. About the numerical results,
the estimation of the loss tail probability has been derived by substituting the specific values of v∗,
α, n, and b into Equation 2.30. Additionally, the computation of the integral contained in the de-
nominator of the equation’s second term was performed numerically. This integral computation
was executed through the utilization of the integral command within MATLAB, employing global
adaptive quadrature and default error tolerances. Conversely, regarding the simulation results,
this sub-section proposes a variance reduction algorithm to simulate efficiently and coherently
the loss tail probability, which is particularly necessary to compute the CVaR. Furthermore, the
results that arise from the simulation process are compared to the ones obtained numerically.

As can be seen in the following pseudocode, the probability simulation algorithm is articulated
into four steps that follow the previously explained approach.

Algorithm 1 Conditional Monte Carlo Algorithm (CMC)

1: Generate n independent standard exponential random variables Ri, i = 1, ..., n.
2: For each obligor, transform Ri to Oi =

Ri
ϕ(1−li fn)

, i = 1, ..., n.
3: Order the obtained values of O, then find O(k), such as the value of Oi which index satisfies

k = min{l : ∑l
i=1 c(i) > nb}.

4: Return the CMC estimator:

S(R) := P(Ln > nb|R) = P(Λ > O(k)|R) =
∑

nrep
j=1 1{|Λj>O(k)|R}

nrep

where nrep is the number of repetitions of the simulation process.
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Empirical results and comparisons are shown in Tables 2.2, 2.3 and 2.4, where the analysis is
conducted by changing respectively the values of α, n and b. The credit quality function is set
as fn = 1

n and the analysis is conducted following an homogeneous weighting (ci = c = 1, li =
0.5 ∀i = 1, ..., n). Furthermore, for reproducibility purposes, the seed of the RNG used is set to
300829.

P(Ln > nb) CMC Numerical results

α = 1.1 6.3000 · 10−5 6.1756 · 10−5

α = 2 4.8500 · 10−4 4.4472 · 10−4

α = 5 7.8900 · 10−4 7.8096 · 10−4

Table 2.2: Table of the differences in the probability estimation between simulation and numerical
results, after fixing the number of obligors to n = 500 and b = 0.8.

P(Ln > nb) CMC Numerical results

n = 100 2.2530 · 10−3 2.2236 · 10−3

n = 500 4.8500 · 10−4 4.4472 · 10−4

n = 1000 2.3100 · 10−4 2.2236 · 10−4

Table 2.3: Table of the differences in the probability estimation between simulation’s and numeri-
cal results, after fixing α = 2 and b = 0.8.
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P(Ln > nb) CMC Numerical results

b = 0.3 1.0160 · 10−3 9.4469 · 10−4

b = 0.5 7.3200 · 10−4 6.7766 · 10−4

b = 0.8 4.8500 · 10−4 4.4472 · 10−4

Table 2.4: Table of the differences in the probability estimation between simulation’s and numeri-
cal results, after fixing the number of obligors to n = 500 and α = 2.

In addition to the proximity of the two measurements, a concise examination of the outcomes
reveals a discernible trend: as the quantity of obligors rises, there is a notable reduction in the
likelihood of encountering significant losses. That explicitly manifests the diversification effect of
the portfolio. Concurrently, by increasing the dependence parameter α, the probability increases
too. Furthermore, an observable effect emerges when increasing the loss-threshold parameter b
by the underlying logic, leading to a corresponding decrease in the probability.

P(Ln > nb) CMC Numerical results

fn = 1
ln(n) 9.9304 · 10−2 8.9197 · 10−2

fn = 1√
n 1.0107 · 10−2 9.9443 · 10−3

fn = 1
n 4.8500 · 10−4 4.4472 · 10−4

Table 2.5: Table of the differences in the probability estimation between simulation’s and numeri-
cal results, after fixing the number of obligors to n = 500, α = 2 and b = 0.8.

Another noteworthy observation pertains to the examination of different credit quality functions,
the simulation outcomes of which are juxtaposed with their numerical counterparts in Table 2.5.
Beginning with the first entry in the table, it is conceivable that these ”features” exhibit varying
probability outcomes, with the initial one aligning more closely with the characteristics of a dete-
riorated pool, due to its higher probability results. All the MATLAB codes for the homogeneous
simulation and the general one can be found in Appendix A, Sections A.1, A.2 and A.4.
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2.7.2 Simulation of the Expected Shortfall and results comparison

Further considerations can be extended to the estimation of the Expected Shortfall, utilizing both
the asymptotic and simulation approaches. Specifically, in this instance, the Conditional Monte
Carlo algorithm is employed to assess not only the probability of encountering significant losses
but also the expected value of losses surpassing the threshold denoted as nb. In this context, the
supplementary step to be incorporated into the CMC algorithm for estimating the probability of
significant losses involves computing the difference between the estimated loss in a given scenario
and the threshold nb, specifically only in cases where the scenario’s loss exceeds said threshold.
Moreover, to compute the integral present in Equation 2.30, where obtaining a closed-form so-
lution is not feasible due to its complexity, a numerical technique is employed. The resolution
involves utilizing the MATLAB command integral to approximate the integral’s value within a
specified tolerance level. All the simulations are carried out with α = 2, b = 0.8, fn = 1

n and the
usual homogeneous weighting.

CVaR CMC Numerical results Relative discrepancy

n = 100 96.1820 96.3684 1.9378 · 10−3

n = 500 483.6165 481.8418 3.6696 · 10−3

n = 1000 964.4459 963.6836 7.9034 · 10−4

n = 5000 4815.8611 4818.4182 5.3098 · 10−4

Table 2.6: Table of the differences in the CVaR estimation between simulation’s and numerical
results, after fixing α = 2 and b = 0.8. In the last column, it is possible to observe a relative
discrepancy between the two results.

Table 2.6 illustrates the concordance between the two estimates, with the relative discrepancy,
defined as:

rel_disc =
|CMC − Numerical results|

CMC
(2.31)

diminishing as the portfolio’s obligor count increases, despite in the first line but probably as a
consequence of the seed of the RNG used. This observation underlines that increasing the number
of obligors enhances the accuracy of the analytical estimate, highlighting a convergence trend.
All the MATLAB codes for the homogeneous simulation and the general one can be found in
Appendix A, Sections A.3, and A.4. To be clear, another approach that can be followed in this
case is the Importance Sampling one, an important variance reduction technique that ensures more
precision in the valuation of expected values in the case of extreme events simulation.
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In a real-world context, the objective is to identify certain attributes of a portfolio and integrate
them into the previously elucidated methodology. The specific parameters of interest encompass
the interdependence index α and the values li for each obligor in the pool. These parameters can be
calibrated using the current pool’s data, historical behaviors, correlation with some other financial
instruments or deduced through credit ratings issued by Credit Rating agencies. Consequently,
to have a rigorous evaluation, the methodology will be implemented in the subsequent chapter
using a loan data tape generously provided by Intesa Sanpaolo S.p.A.
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Chapter 3

Application to a case of securitised ABS

To establish an efficacious testing protocol for the mathematical methodology previously delin-
eated, this chapter undertakes an exhaustive examination utilizing a loan data tape provided by
Intesa Sanpaolo S.p.A. More precisely, the primary objective of this chapter is to deliver a compre-
hensive dataset analysis, with a subsequent focus on the precise computation, estimation, and
selection of critical model parameters. The outcomes of this analysis will be compared to the cur-
rent market practice benchmarks, which will be consecutively briefly explained. The loan data
tape is updated to the first day of September 2023. It is important to notice that each feature con-
cerning the monetary value of a loan is expressed in euros (e), while the ones regarding coupons
or rates are expressed in percentages and not as decimal numbers.

3.1 Loan data tape description

To well present the totality of the data and to characterize the utility of each feature, some dataset
statistics are necessary. The original loan data tape taken into analysis is a pool made up of 4139
different loans, each of them identified by an ID number for privacy reasons and well presented
in the first column. Besides that, the dataset involves other 19 features, each of them providing
a useful characteristic of any loan presented. Since the beginning, it is important to notice that
the information given by each feature differs a lot, therefore in the next steps, there will be pre-
processing procedures to analyze coherently these data. As a consequence, it is coherent to list
and explain all these features.
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1. Amount Loan: is the total amount of the loan given by the bank to an obligor. This feature
involves the following data distribution and statistics:

Figure 3.1: Data distribution of the Amount Loan feature. On the left, data are presented in a
normal scale, while on the right data are presented in a logarithmic scale for better visualization
and comprehension.

Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

478.00 222724.76 17268366.80 5000.00 700591.14 3.15

Table 3.1: Statistics of the feature Amount Loan.

As it is inferable from the previous figures and tables, the amounts present in this feature
of the data tape are very heterogeneous: starting from a minimum loan valued 478e, the
loan with the maximum money request presents a value of nearly 17 million e. Aside from
that, the most frequent amount is 5000 e. In conclusion, to fully describe this attribute it is
important to notice that, concerning its measure scale, the standard deviation is a relatively
high value.
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2. Current Amount Loans: represents the quantitative of money that each borrower has to pay
updated since the current date (September 1, 2023). Specifically, it represents the exposition
parameter ci for each obligor i, as previously presented in Equation 2.23. Concurrently, a
clarification has to be made: since some types of loans might have a recovery rate R after de-
fault, in an ABS context this exposition parameter can be scaled by a factor of 1 − R to better
quantify the real exposure that an investor is facing. This feature involves the following data
distribution and statistics:

Figure 3.2: Data distribution of the Current Amount Loans feature. On the left, data are presented
in a normal scale, while on the right data are presented in a logarithmic scale for better visualiza-
tion and comprehension.

Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

0.80 144195.58 14199218.66 3175.56 543329.88 3.77

Table 3.2: Statistics of the feature Current Amount Loans.

As discernible from the preceding figures and tables, in this case, the feature exhibits pro-
nounced heterogeneity. Ranging from a minimum loan amount of 0.80 eto a peak value
nearing 14 million e, this feature spans a wide spectrum of values. In summation, a com-
prehensive characterization of this attribute warrants acknowledgment of the relatively ele-
vated standard deviation concerning its scale of measurement.
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3. Gross Coupon: this feature refers to the gross coupon given to each borrower concerning the
original amount of the requested loan. This feature involves the following data distribution
and statistics:

Figure 3.3: Data distribution of the Gross Coupon feature. On the left, data are presented in a
normal scale, while on the right data are presented in a logarithmic scale for better visualization
and comprehension.

Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

0 6.70 13.75 0 2.54 0.38

Table 3.3: Statistics of the feature Gross Coupon.

As it is noticeable from the table above, this feature ranges in the interval [0, 13.75], concen-
trating the main frequency on the value 0: this represents that many loans in this pool do
not have any interest rate fixed on them.

4. Rate type: the type of interest rate applied to each loan. In this data tape, each loan is
equipped with a fixed rate.
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5. Original Maturity Term: as each loan is contractually defined as an end date for the pay-
ments, this feature represents the maturity term of the loans in the pool. All the data repre-
sented in the following figure and table are expressed in months. This feature involves the
following data distribution and statistics:

Figure 3.4: Data distribution of the Original Maturity Term feature.

Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

12 71.56 186 120 34.55 0.48

Table 3.4: Statistics of the feature Original Maturity Term.

With specific regard to the table above, it is noticeable that every loan has a duration higher
than one year, with a maximum of fifteen years and a half. However, the most frequent du-
ration is ten years, quite distant from the average duration presented in the second column.

6. Remaining Term: concerning the month of September 2023, this attribute reflects the re-
maining number of months until the date of maturity of each loan. This feature involves the
following data distribution and statistics:

Figure 3.5: Data distribution of the Remaining Term feature.
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Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

0 44 168 11 32.77 0.74

Table 3.5: Statistics of the feature Remaining Term.

As it is inferable from the table above, some loans have already reached the maturity term,
while others will still be active, unless the default of the corresponding obligor, for 14 years.

7. IsBaloon: represents if the payment of the loan will be done in its integrity at maturity or
if it is amortized during the months of ”life” of the loan. In this specific case, every loan is
amortized over months.

8. Age: represents the months passed since the loan has been emitted. It is a measure of the
longevity of the loan. This feature involves the following data distribution and statistics:

Figure 3.6: Data distribution of the Age feature.

Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

12 27.60 182 26 15.93 0.58

Table 3.6: Statistics of the feature Age.

Following the statistics of the data presented above, each loan presented has been issued at
least one year ago, while some loan has a ”life” longer than 15 years.
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9. Issue Date: this feature refers to the date on which the loan has been emitted. It is of particu-
lar importance because often part of the interest rate associated with a loan is a consequence
of the market conditions at that precise time or at the same time could depend on some
other time-linked financial rates. This feature involves the following data distribution and
statistics:

Figure 3.7: Data distribution of the Issue Date feature. On the left, data are presented in a normal
scale, while on the right data are presented in a logarithmic scale for better visualization and
comprehension.

First date Mean date Last date Most frequent date

06/01/2008 04/13/2021 08/01/2022 06/01/2021

Table 3.7: Statistics of the feature Issue Date. The format of the date is MM/DD/YYYY.

As shown by the previous table some loans have been issued many years ago, with the first
one dating back to June 2008. Despite that, the majority of these loans have been emitted in
the last two years, and at the same time, 97% of all of them have been emitted after October
2018.

10. Next Paydate: represents the date on which the payment of each loan will be carried out. In
this specific case, each next loan payment will be carried out on October 1, 2023.

11. Frequency: the frequency of payments of each loan. In this case, every loan has a monthly
payment frequency.
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12. Delinquency: this attribute reflects the presence of some lack of payments that happened
during the life of a loan. In particular, it involves four different categories: Current, 30 Days,
60 Days or 90+ Days.

Figure 3.8: Data distribution of the Delinquency feature.

The majority of the loans in the pool (2677 out of 4139, such as almost 65% of the total) have
no lack of payments as described in the barplot above. This represents the fact that the total
pool has a good quality.

13. Months Delinquency: this attribute reflects the number of days passed from the last delin-
quency for each loan with the attribute Delinquency different from the category Current.

Figure 3.9: Data distribution of the Months Delinquency feature. On the left, data are presented in
a normal scale, while on the right data are presented in a logarithmic scale for better visualization
and comprehension.

As it is inferable from above, the majority of the loans have no delay in the payments, while
some of them have a delay in the order of 165.
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Minimum Mean µ Maximum Mode Standard deviation σ Coefficient of variation σ
µ

0 7.19 165 0 20.53 2.86

Table 3.8: Statistics of the feature Months Delinquency.

14. Maturity date: represents the maturity date of each loan, both for the already and not fin-
ished ones.

Figure 3.10: Data distribution of the Maturity Date feature.

First date Mean date Last date Most frequent date

09/01/2022 03/31/2027 08/10/2037 07/01/2024

Table 3.9: Statistics of the feature Maturity Date. The format of the date is MM/DD/YYYY.

The table above outlines the fact that some loan is already over, while others, in the absence
of obligors defaults, will persist until 2037.
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15. Amortization Schedule: the payment scheduling of each loan after the current date.

16. Direct Deal Group: represents the type of loan requested by each obligor. It involves five
different categories: Finalized, Furniture, New Vehicles, Personal Loans and Used Vehicles.

Figure 3.11: Data distribution of the Direct Deal Group feature.

As presented in the barplot above, almost half of the loans (1815) are referred to as personal
loans, while the other four types are almost uniformly distributed

17. Group Collateral Type: defines the collateral type associated to each loan. In this specific
case, each loan is associated with the class Personal/Auto Loans.

18. Defaulted: this feature represents whether a loan is defaulted or not during its ”life”, such
as if the loan has been interrupted by the bank.

Figure 3.12: Data distribution of the Defaulted feature.

The barplot above represents that the quality of the pool is high, with only 514 loans that
have defaulted (such as almost 12%) during their life.

19. Related Deal Type: defines if the loan is for consumers or commercial purposes. In this
specific case, each loan is associated with the class Consumer Loan.
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As succinctly delineated in the preceding list, the attributes encompass a diverse array of data
types, including numerical, categorical, and datetime formats. To enable effective data analysis,
the non-numerical variables have been subjected to conversion procedures, as will be better ex-
plained in the following sections. The datetime format has been harmonized using a date-ordering
approach, while the categorical format has undergone one-hot encoding. Furthermore, to ensure
the reliability of subsequent analyses, non-informative variables have been systematically pruned
from the dataset. In summation, following this comprehensive pre-processing phase, the dataset
now comprises 20 distinct variables, which will be harnessed for subsequent statistical assess-
ments and parameter estimation.

3.2 Parameters computation

To derive meaningful insights from the dataset within the context of the methodology expounded
in Chapter 2, it is imperative to engage in data manipulation. This necessary process focuses
on the computation or estimation of two critical variables: the parameter denoted as α and the
vector represented by l. In particular, it is important to remember the loss formulation made
explicit in Equation 2.24, for which the predefined underlying LT-Archimedean copula structure
is outlined in Equation 2.7. In this formulation, the parameter α has multiple roles: it reflects the
overall interdependence among obligors in the pool as well as it outlines the heavy-tailedness
property of the generator of the mixing variable Λ. Moreover, each element of the vector l reflects
the quality of the related loan. The subsequent part of this section is dedicated to elucidating
the intricacies of the parameters computation or estimation procedures for these aforementioned
variables, alongside a comprehensive exposition of the results stemming from the original dataset.
This comprehensive treatment seeks to provide a deeper understanding of the interplay between
data manipulation and the analysis of the vector l and the parameter α.

The computation of the vector l is necessary to give each obligor in the pool a sort of credit measure
that manifests its singular quality, based on both the provided database and another financial in-
strument. Particularly, this subsection aims to estimate each obligor’s quality based on the level of
interest rate given to each loan concerning another interest rate measure, such as the correspond-
ing Swap interest rate. After that, these values will be spanned into a proper range to overcome the
necessities of this thesis’ credit risk model. To well define a quality measure of each loan in the
pool, is necessary to evaluate the attributed riskiness given, in this case, by the bank. To this ex-
tent, is therefore necessary to introduce an important financial interest rate instrument: the Swap
interest rate. The Swap interest rate, often referred to simply as the Swap rate, is a fundamental
financial benchmark used in the realm of interest rate derivatives and fixed-income markets. It
represents the fixed interest rate that two counterparties agree to exchange periodically over a
specified period. Swap rates are instrumental in managing interest rate risk, as they enable enti-
ties to hedge against fluctuations in interest rates. As such, the swap interest rate is a cornerstone
in the world of finance, serving as a valuable tool for risk management, credit risk assessment,
and financial product creation. Furthermore, these interest rates are always related to maturity,
and as any other interest rate instrument are therefore related to their issuing date. For instance,
figure 3.13 shows the past evolution over time of the 2-year swap interest rate compared to the
5-year and the 15-year ones.
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Figure 3.13: Evolution over time of the Swap interest rates values. In blue the maturity is 2 years,
in red the maturity is 5 years and in yellow is 15 years.

As a particular specification, is necessary to note that these interest rates can go under the zero
threshold, symbolizing low general riskiness in that period. In more mathematical details, the
swap rate is the fixed interest rate that one party agrees to pay in a plain vanilla interest rate swap:
it is essentially the fixed rate that makes the two sets of cash flows, fixed and floating, have the
same present value. It can be mathematically formulated as:

S =
∑n

i=1 Floating Payment i · ζ (ti, r)
∑n

i=1 Year Fraction i · ζ (ti, r)
(3.1)

where n is the total number of payments 1, Fixed Payment represents cash-flow associated to the
the fixed rate exchanged at each payment date, Year Fraction represents the year fraction payment
associated to the floating rate exchanged at each payment date, and ζ (ti, r) is the discounting
factor used to discount cash flows to their present value at each payment date ti with respect to
the benchmark rate r. The relevance of this financial instrument in the computation of the vector l
stems from the prevalent practice of pricing loans in tandem with such financial instruments. The
interest rate values associated with these instruments are established as pivotal benchmarks to
gauge an initial risk threshold. Consequently, in the context of this analysis, they are employed as
foundational components for delineating the credit quality associated with the loans within each
asset pool.

To well analyze and associate these financial instruments we took into consideration the Swap
interest rates issued in the last five years, with a maturity spanning from one year to fifteen. With
this explanatory foundation in place, the subsequent aspect that warrants attention pertains to the
Gross Coupon feature, which delineates the percentage of payments allocated to interest. As briefly
explained in the features list present in the previous section, this attribute assumes percentage
values in the range [0, 13.75], outlining a great heterogeneity among different loans. As a conse-
quence, to conduct a reliable analysis, all the loans with the feature Gross Coupon value equal
to zero have been removed from the dataset2. This decision stems from the fact that generally
consumer loans are granted with interest rates relatively higher than zero.

1Generally, payments are homogeneously spanned through the year and mainly on a monthly basis. In this last case
it results ti =

i
12 .

2These loans were approximately 130, so their elimination doesn’t vary the overall analysis.
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Following these last specifications, the next part of the analysis is related to the calculation of the
credit spread of each loan, which is defined for each loan as:

spread = GC − Swap(ID, OMT) (3.2)

where GC is the percentage value of the gross coupon, ID is the issuing date, OMT is the original
maturity term and Swap is the swap rate corresponding to the relative issuing date and maturity
term. The calculation of this value yields a spectrum of diverse outcomes, which, in the context
of this analysis, are linked to an indicator of the inherent quality of each loan. Nonetheless, the
following points need to be addressed.

• It is essential to recognize that the value of each swap rate undergoes daily fluctuations,
resulting in recurring oscillations in its valuation.

• The maturity terms of individual loans do not invariably align with whole numbers of years;
quite often, they manifest as fractions thereof. Consequently, achieving an exact match be-
tween the maturity term of each loan and the corresponding Swap rate can be challenging.
To overcome this challenge, the approach adopted involves a criterion where each loan is
associated with the Swap rate having an annual maturity term higher than one year if the
loan’s maturity term, expressed in annual terms, exceeds the threshold of 0.5 years between
two consecutive years. Conversely, if the loan’s annualized maturity term falls below this
threshold, it is associated with the swap rate corresponding to one year less than its annual
maturity.

• Given that the entire set of swap rates under consideration originates from a five-year time
frame, certain loans issued before this period lack a coherent association with swap rates. To
address this challenge, our approach entails allocating the most recent available Swap rate
to such loans in cases where they exhibit no delinquency or defaults. Conversely, for loans
that are in default, the spread assigned to them is the highest among all cases. For loans
with no defaults but some days of delinquency, their associated spread is calculated as 5

6 of
the maximum spread. This choice is grounded in the recognition that older issues may carry
significantly greater risk than newer ones, necessitating a consistent approach to associating
them with potential failures.

• Given that the dataset may contain issuing dates that do not coincide with business days,
it becomes impractical to identify an exact match for assigning swap rates to these loans.
Consequently, for such cases, the approach involves associating the nearest available rate,
considering the proximity of the issuing date.

After all these specifications, a coherent spread measure for all the loans can be computed, but
a further post-processing operation has to be made. This consequence arises from the presence
of some negative spread values, which are in contrast to the general meaning of this instrument.
Specifically, the creation of this instrument must play a role in assessing positive risks and not
negative ones, which financially arguing will be suffered by the issuer. As a consequence, the post-
processing action needed is the removal of these loans from the total pool. This procedure makes
the dataset remain with 3972 different loans, which Gross coupon, spread, and associated Swap
rate values can be seen in figure 3.14.
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Figure 3.14: Percentages values within the spread calculation. In blue is the Gross Coupon, in
yellow is the Swap rate, and in blue is the Spread.

As it is noticeable from Figure 3.14, the associated Swap rates are quite lower than the Gross
coupon values, with the further characteristic that they sometimes go under the zero threshold.
All this procedure is well defined in the corresponding code present in Appendix A, Section A.6,
and is briefly explained by the following pseudocode.

Algorithm 2 Spreads-computing algorithm

1: Compute the Years to Maturity of each loan i.
2: Compute the Issuing date of each loan i.
3: Search for the related Swap rates for each loan i.
4: if The Issuing date is not present then:
5: Assign the nearest Swap rate concerning the Issuing date.
6: else
7: Assign to each loan the relative Swap rate.
8: end if
9: Calculate the spread for each loan as in Equation 3.2.

10: if The Issuing date is older than the first one present in the database then:
11: if The loan is defaulted then:
12: Assign the maximum spread.
13: else if The loan is not defaulted, but there are delinquency days then:
14: Assign 5

6 of the maximum spread.
15: else
16: Assign the nearest spread concerning the issuing date.
17: end if
18: end if

Consequently, for the quality risk measuring part, there is a necessity to link the singular values
of the spread to the ones of the vector l. The first specification to be made at this point stems
from an empirical consideration: to obtain a coherent result for the loss tail probabilities and
the CVaR, the vector l has to be well calibrated. Specifically, with this large quantity of loans,
it has been empirically shown that each value must not get lower than the value of 0.79. This
observation follows the fact that when calculating the value of v* in the original model, there is
the necessity to find the zero of a function numerically. Therefore, each element of the vector l
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represents an important factor in this evaluation. When the values considered for each element
of l are too low or too high, the zero-computing function, most of the time, leads to numerical
errors or early stopping of the calculation. As a consequence, we empirically observed that if each
element is under the value 0.79 the algorithm will not reach convergence, while if each element
exceeds the unitary threshold, it may achieve convergence, but results will not be coherent within
the application. Starting from the previous considerations, to obtain robust observations, it results
that each value must be spanned into the range [0.79, 1.00). For this purpose, in the l-computing
function, we have formulated many different methods to ”translate” the relevance of the already
calculated spreads into a precise value present in the pre-specified range. To achieve coherence
concerning the model specified in Chapter 2 Section2.6, especially concerning Equation 2.24, it is
necessary to make evident that high values for li reflect low-quality loans, while low values reflect
good quality ones. This necessity justifies some choices made in the following list of methods.

1. Uniform: this method associates to each element of the vector l the value 0.80.

2. Random: this method associates to each element of the vector l a random value between
0.80 and 1.00 (excluded).

3. Classical Swaps: this method represents a pioneering approach, establishing a direct cor-
respondence between the inherent significance of each spread value and a separate value
within the interval [0.80, 1.00). Upon the computation of the spread for each obligor, this
technique assigns to each element a value derived from the application of one of the follow-
ing functions: the Min-Max function, the Sigmoid function or the Rectified Linear Unit (ReLU)
function. These functions are meticulously crafted to systematically transform each spread
value into the predetermined target range. In particular:

• Min-Max function:

MM(spreadi) := 0.8 + 0.19 · spreadi − max(spread)
max(spread)− min(spread)

(3.3)

• Sigmoid function:

S(spreadi) := 0.8 + 0.19 · 1
1 + exp(−spreadi)

(3.4)

• ReLu function:

R(spreadi) := 0.8 + 0.19 · max(spreadi − 1, 0)
max(spread)

(3.5)

4. Swaps plus defaults: this method integrates and refines the concepts of the preceding ap-
proach. Primarily, it designates the maximum value, such as 0.99, to each previously de-
faulted loan, while introducing a distinct methodology for non-defaulted loans that takes
into account the duration of delinquencies. For precise elucidation, it employs a linear com-
bination of the Arctangent function applied to the count of days in delinquency and the Sig-
moid function applied to the spreads. This combination is meticulously configured to map
values into the aforementioned range, and its formulation is as follows:
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SPD(spreadi, daysDELi) := 0.79 +
1

5π
arctan(daysDELi) +

0.1
1 + exp(−spreadi)

(3.6)

where daysDEL is the number of days of delinquency for each obligor. As it can be noted,
this function spans loans with low spread and no days of delinquency into small values,
while loans with low quality are spanned into high values.

Thanks to these specifications, it is conclusively possible to compute the vector l in different ways,
whose results are expressed and compared in Table 3.103.

Method Minimum Maximum Mean µ Standard deviation σ

Uniform 0.80 0.80 0.80 0.00

Random 0.80 0.99 0.82 0.05

Classical Swaps (Min-Max) 0.80 0.99 0.89 0.03

Classical Swaps (Sigmoid) 0.89 0.99 0.98 0.01

Classical Swaps (ReLU) 0.80 0.97 0.88 0.03

Swaps plus defaults 0.84 0.99 0.92 0.04

Table 3.10: Results comparison for the l-computing methods.

As it is inferable from the table above, the most relevant results, in terms of coherence and vari-
ability, are obtained by the Swaps plus defaults method. As a consequence, this method will be
used in the final computation of the results. Nevertheless, a good alternative method might be the
Classical Swaps - ReLU one, which involves coherence of the results and variability. All the code
for this part can be found in Appendix A, Section A.5.

After the computation of the vector l, the remaining parameter to be estimated is the interde-
pendence parameter α. To accurately estimate this parameter, it is imperative to comprehend its
underlying significance. As expounded in Chapter 2, parameter α serves as a multifaceted indica-
tor, encapsulating both the heavy-tailed nature of the mixing variable Λ and the intricate web of
interrelationships that bind obligors within the analyzed asset pool. Notably, from this juncture
onward, it becomes indispensable to underscore that, in the context of the copula framework, this

3For reproducibility purposes, the associated seed for the RNG is 300829.
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parameter must capture the overarching interdependencies among all obligors within the pool.
This important characteristic lays the foundation for the forthcoming mathematical considera-
tions regarding the dataset. In particular, this section will describe a method that estimates the
value of the considered parameter initially for a single pair of variables, then it will be generalized
for the totality of them.

To meaningfully delve into the inference of this parameter, it is imperative to establish a-priori that
its admissible value range extends from 1 to +∞, encompassing the spectrum from mutual inde-
pendence to complete comonotonicity. This range inherently signifies that the behavior of obligors
is profoundly linked to the magnitude of this parameter, specifically about the mathematical for-
mulation of the one-parameter generator inherent to the Archimedean copula. To elucidate this
point further it is possible to analyze the first column of the Table 2.1: as the parameter α progres-
sively approaches infinity, a noteworthy trend emerges. This trend is characterized by the various
obligors’ features, symbolized by distinct variables, converging toward a uniform output pattern
within the predefined copula structure, thereby accentuating the paramount influence of α on the
emergent dynamics. To further enter into details within the estimation method, it is necessary
to introduce a measure of concordance: Kendall’s τ. This measure, often referred to as Kendall’s
Rank Correlation Coefficient, is a statistical measure used to assess the strength and direction of as-
sociation between two random variables. Specifically, it quantifies the degree of concordance or
discordance in the rankings of pairs of data points. Furthermore, it’s a non-parametric measure
of association, meaning it doesn’t rely on assumptions about the distribution of the data and is
robust to outliers. It can take values ranging from −1 to 1, well reflecting the characteristic of con-
cordance or discordance. In the case of two general random variables X1, X2 and an independent
copy of them X′

1, X′
2, it can be explicitly defined as:

τ1,2 = E
[
sign

((
X1 − X′

1
) (

X2 − X′
2
))]

(3.7)

where sign(·) is the sign function. As outlined before, to reflect a measure of concordance, it
involves the sign of a multiplication, measuring the concordant or discordant behavior of two
random variables. A positive value for τ indicates a positive association, suggesting that higher
values of one variable tend to be associated with higher values of the other and vice versa, while
a negative value indicates a negative association, meaning higher values of one variable tend to
be associated with lower values of the other. As well explained in [6], when dealing with data or
statistical calculations, Kendall’s τ has an obvious estimator, referred to as the Sample version of
Kendall’s τ. Based on the random sample Xi = (Xi,1, Xi,2), i ∈ {1, ..., n}, it is given by:

τ̂n,1,2 =

(
n
2

)−1

∑
1≤i1<i2≤n

sign ((Xi11 − Xi21) (Xi12 − Xi22)) (3.8)

Moreover, it is possible to extract a measure of concordance between two variables, even though
they are not normalized in the unitary range. Specifically, to lead back any variable to the range
[0, 1], it is possible to rank observations and then normalize their ranks concerning the total num-
ber of outcomes, to reconstruct a pseudo cumulative distribution function. Besides that fact, it is
necessary to find a useful link to connect the measure of concordance with the estimation of the pa-
rameter α of the copula. To reconcile this fact, it is noticeable that when dealing with Archimedean
copulas the measure τ can be rewritten in a closed analytical form concerning the generator ϕ of
the copula. Specifically, the reformulation can be expressed as:
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τ =P[(X1 − X′
1)(X2 − X′

2) > 0]− P[(X1 − X′
1)(X2 − X′

2) < 0] =

= 4E[C(U1, U2)]− 1 =

= 1 + 4
∫ 1

0

ϕ(t)
ϕ(t)′

dt

(3.9)

where ϕ(t)′ is the first derivative of the copula generator concerning the independent variable t
and C(·, ·) is selected as the copula function. It is also important to notice that when focusing on
the generator of the one-parameter copulas, it is evident that is also a function of the interdepen-
dence parameter α, as previously explained in Table 2.1. In the specific context of this thesis, two
families of Archimedean copulas have been taken into consideration: the Gumbel and the Clayton
families. For the first one, the measure of concordance τ results:

τ(α)Gumbel = 1 + 4
∫ 1

0

ϕ(t)
ϕ(t)′ = 1 + 4

∫ 1

0

tln(t)
α

dt =
α − 1

α
(3.10)

while for the second one:

τ(α)Clayton = 1 + 4
∫ 1

0

ϕ(t)
ϕ(t)′ = 1 + 4

∫ 1

0

tα+1 − t
α

dt =
α

α + 2
(3.11)

For coherence purposes, it can be noted that the value of τ in each of the two cases is spanned
in the correct range of definition. As a consequence, starting from the last calculations, the value
of the interdependence parameter α can be retrieved from the inverse formula relative to τ(α).
Particularly, after the estimation of τ(α) concerning the formula in Equation 3.8, the parameter α
can be obtained in a specific way using the inverse formula related to the relative Archimedean
copula. Nonetheless, when dealing with datasets comprising more than two variables, as com-
monly encountered in real-world datasets, the preceding computations are unsuitable, given their
intrinsic limitation to a bivariate context. Consequently, Kojadinovic and Yan, as delineated in
their article [7], introduced an unbiased estimator capable of accurately appraising the parameter
α across the entire dataset. This method entails the utilization of the mean pairwise estimation
of the interdependence parameter α, initially derived through the inverse of Equation 3.8. This
estimator can be succinctly articulated as follows:

α̂n =

(
d
2

)−1

∑
1≤j1<j2≤d

τ−1 (τ̂n,j1 j2
)
=

=

(
d
2

)−1

∑
1≤j1<j2≤d

τ−1

((
n
2

)−1

∑
1≤i1<i2≤n

sign
((

Xi1 j1 − Xi2 j1
) (

Xi1 j2 − Xi2 j2
))) (3.12)

where τ−1 is the inverse of Kendall’s Tau function expressed in the function of the interdepen-
dence parameter, n is the number of features of the dataset and d is the number of obligors in the
pool. Furthermore, it is possible to explicit the binomial factor as x(x−1)

2 for a generic number x.
Thanks to this reformulation it is possible to estimate the value of α for a generic, but coherent,
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dataset. In the empirical analysis of the dataset provided, the first thing to do is the pre-processing
of the variables: since the dataset also involves noninformative variables, there is a necessity to
maintain only the informative ones4. After that, datetime attributes will be transformed into whole
numbers using the MATLAB function datenum, which coherently transforms these data into nu-
merical ones in an ordered way. At last, the categorical attributes will be transformed with the
one-hot encoding technique. At this point, is important to notice that the dataset has dimension
n × denc, where n is the number of obligors in the pool, while denc is the number of features ob-
tained after the encoding procedures. Consolidated this last observation, the estimation of both τ
and α can be performed. Table 3.11 shows the results obtained for the two families of copulas.

n denc αGumbel αClayton

3972 20 1.5891 1.1782

Table 3.11: Results relative to the estimation of the parameter α.

All the code about the computation of this parameter has been incorporated into Appendix A
Section A.7, necessitating certain important clarifications. Firstly, the scarcity of the informative
features within the dataset might engender more uncertainty in this parameter’s estimation; thus,
enhancing the precision of the preceding analysis may be achievable by expanding the consid-
eration of additional variables. Secondly, it merits acknowledgment that alternative methods for
estimating this parameter have been well-documented, as expounded in the article [6]. These al-
ternative approaches encompass other types of concordance measures, such as Spearman’s ρ or
Blomqvist’s β, alongside likelihood-maximization techniques. Lastly, the previous way to calculate
the interdependence parameter does not take into consideration variations in the spreads, which
in real-world scenarios characterize extremely well the riskiness characteristic of an ABS. Notwith-
standing this alternative, this method is a good trade-off between execution time and precision.
Furthermore, it is expedient to recognize that the computational time involved is on the order of
approximately 7 seconds, rendering it particularly efficient, especially when contrasted with al-
ternative methodologies that necessitate certain assumptions that may not be tenable within the
present analytical context. Conclusively, it has to be outlined that the presence of a single param-
eter in the copula limits the interdependence modeling possibilities. It is a consequence of the fact
that the parameter α is an all-encompassing interdependence parameter, thus not considering sin-
gle relations between different obligors or groups of them. Regarding the code formulation, aside
from the previously elucidated estimation approach we have inserted the possibility to choose
which value of α has to be taken into consideration. This necessity arises to make more fluent the
computation in the case of stress-test simulations or the case of unique variations in other parame-
ters. As a consequence of the esteems presented above, to obtain important results we have chosen
the value of the parameter related to the Gumbel copula, which will be taken into consideration
in the estimation of the loss-tail probabilities and of the CVaR.

4Specifically, at the beginning of the following analysis, the only variables taken into considerations are Amount
Loan, Current Amount Loans, Gross Coupon, Original Maturity Term, Remaining Term, Age, Issue Date, Delinquency, Months
Delinquency, Maturity Date, Direct Deal Group, and Defaulted
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3.3 Results

In this section, the most important results regarding the application of the model presented in
Chapter 2, Section 2.6, will be presented, analyzed, and compared. The parameters computed and
estimated in the previous section will be used in the model to obtain the loss tail probabilities, the
value of CVaR, and the value of v*. The remaining parameters to be chosen are:

• The pool’s quality function fn: in the following experiments the function that will be used
is fn = 1√

n , while other functions could be tested, as presented in Table 2.5. This decision
is based on the fact that, since all these loans are consumer loans their quality is relatively
medium.

• The threshold parameter b: in the following calculations, the value of the relative threshold
parameter b has been chosen to represent 70% of the total value of the underlying loans,
divided by the total number of loans in the pools. Furthermore, in additional analysis, it
will be varied to observe the behavior of the loss tail probability following this change.

To clarify the results obtained in the previous section, is important to remember that the pa-
rameter α has been estimated to be 1.5891, following the reformulation given by the Gumbel’s
Archimedean copula. Moreover, the quality vector l has been computed with the Swaps plus de-
faults method. Based on these specifications, the results obtained by this thesis’ method are shown
in Table 3.12.

P (Ln > nb) CVaR v* Execution time

5.2553 · 10−3 542029965.6250 1.4413 111.15 seconds

Table 3.12: Final results relative to the loan data tape.

Several pertinent observations arise from these outcomes. Initially, the estimated probability is
notably low, a consequence of the assumption that occurrences of such substantial loss magnitudes
are exceedingly rare. Moreover, the Conditional Value at Risk exhibits a robust estimate of the
expected loss in the event of a default, nearing approximately 92% of the aggregate current pool
value. In conclusion, the value of v* aligns cohesively with the probability definition, explicitly
articulated in Equation 2.29, and the computational time remains under the two-minute threshold.
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3.4 Sensitivity analysis

Based on the findings elucidated in the previous section, distinct patterns emerge, especially when
altering selected parameters. To gain a precise understanding of the tail behavior in loss tail prob-
abilities and CVaR, a pivotal step involves generating a probability curve in response to variations
in the threshold parameter b. This step is performed by making b assume different percentage
values between 10% and 99%.

Figure 3.15: Loss tail probability with respect to the variation of the threshold parameter b.

Consistent with the model’s assumptions, the value of the probability decreases as the threshold
parameter b increases. Moreover, the trend does not reflect any particular linear behavior con-
cerning this variation. In real-world scenarios, non-linear patterns are frequently observed, un-
derscoring the need for comprehensive calculations to establish a robust scenario. Furthermore,
the same analysis has been conducted on the behavior of the Expected Shortfall.

Figure 3.16: CVaR with respect to the variation of the threshold parameter b.

As can be inferred by the chart in Figure 3.16, the CVaR becomes higher as the value of b grows,
also this time with non-linear behavior. Moreover, to demonstrate the model’s robust generaliza-
tion concerning the obligors’ interdependence, one can analyze the changes in the loss tail proba-
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bility and Conditional Value at Risk concerning variations in the parameter α, while maintaining
the fixed threshold parameter b = 70%.

Figure 3.17: Loss tail probability variation with respect to the variation of the parameter α.

As it can be seen in Figure 3.17, as the parameter α increases the associated loss tail probability gets
higher, manifesting in another particular way the coherence of the model concerning real-world
assumptions.

Figure 3.18: CVaR variation with respect to the variation of the parameter α.

Also in the scenario depicted in Figure 3.18, it is evident that the expected shortfall value rises in
tandem with an increase in the interdependence parameter α, illustrating the non-linear linkages
concerning the outcomes of this particular stress test.

At this point, the necessity of exhibiting the overall robustness of the approach arises. To general-
ize the quality of the pool, some other tests have been performed with respect to the variation of
the corresponding quality function. The results can be seen in the following table.
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1
n

1√
n

1
ln(n)

De f aulted_quantity
Total_quantity

P (Ln > nb) 8.3386 · 10−5 5.2553 · 10−3 1.1505 · 10−1 8.5072 · 10−3

Table 3.13: Probability results after the variation of the pool’s quality function.

To manifest the importance of the quality function, it is inferable from Table 3.13 that by reducing
its magnitude the probability of large losses increases, thus manifesting its correlation with the
overall quality of the pool. Moreover, in the last column is possible to analyze a data-based ap-
proach: by defining the quality of the pool as the percentage of the current amount of the defaulted
loans inside5 with respect to the current total quantity, it is possible to obtain a data-driven esteem
of its quality. In this case, the probability results take into evidence a possible middle overall qual-
ity characteristic of the pool. It is noteworthy that the Conditional Value at Risk and the v* values
do not exhibit analytical dependency on the quality function. This observation prompts a dual
perspective. On one hand, it presents a favorable aspect wherein the individual components of
the vector l serve as quality checkers, thereby enhancing the model’s robustness. Conversely, the
absence of interdependence between these values and changes in the quality function precludes
an unequivocal assessment of specific quantities based on overall quality considerations.

The only parameter remaining to be varied to assess the robustness of the approach is the parame-
ter α. Despite it can be esteemed directly by the data, the necessity of doing stress-tests by varying
this parameter arises. To better show the efficacy of these tests, 2-D and 3-D plots are subsequently
shown.

5If there are no already defaulted loans in the pool, the function is replaced by 1
n .
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(a) (b)

(c)

Figure 3.19: Loss tail probabilities, CVaR and v* by varying α and b - 2D representation.

As depicted in Figure 3.19, each of the three variables exhibits distinctive responses to variations
in both parameters. In Sub-figure 3.19(a), exemplified by the loss tail probability outcomes, a dis-
cernible trend emerges: an increase in the interdependence parameter α corresponds to elevated
probabilities, aligning consistently with the fundamental concept at the base of the approach’s def-
inition. Sub-figures 3.19(b) and 3.19(c) reveal that the behavior of these variables about alterations
in the parameter α aligns with real-world expectations. Specifically, heightened interdependence
results in progressively higher loss given default values.
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(a)

(b)

(c)

Figure 3.20: Loss tail probabilities, CVaR and v* by varying α and b - 3D representation.
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Within the three sub-figures presented in Figure 3.20, the behavior of the three examined variables
aligns harmoniously with the model’s specifications and the fundamental principles of credit risk
analysis, thus manifesting its robustness peculiarity. Notably, the probability of large losses in-
creases concomitantly with a growth in the interdependence parameter α and a reduction in the
threshold parameter b, signifying that a heightened obligor interdependence within the structure
is associated with an elevated risk of failure. Furthermore, it is evident that when α assumes a
low value, indicating a lack of obligor interdependence, the probability of substantial losses di-
minishes, demonstrating the detachment of defaults within the total pool. Moreover, the analysis
of the Conditional Value at Risk mirrors the model’s underlying assumptions, supporting the fact
that a higher probability of large losses corresponds to increased losses in the event of default. At
last, the systematic factor v* exhibits an upward trajectory as both analyzed parameters increase,
indicating a tendency for a broader spectrum of issuer failures. It is noteworthy that this factor
assumes higher values particularly when b assumes elevated values.

3.5 Pricing and comparison with the market practice results

The prevailing market pricing procedure for Asset-Backed Securities involves a methodical ap-
proach. As elucidated in Section 1.1, ABS encompasses a diverse spectrum of credit derivative in-
struments, giving rise to nuanced pricing considerations contingent upon the specific asset class.
In the context of this thesis, our focus is on the subset encompassing consumer and personal loans,
as delineated in the right portion of Figure 1.1. Within the pricing protocol for these instruments,
financial analysts amalgamate disparate financial modeling techniques to unearth pertinent in-
sights. The principal objective is the determination, for a given pool, of the prepayment rate and
credit spread for each tranche. To be precise, the credit spread measure serves as a metric charac-
terizing the inherent risk level of a financial instrument, denoted in basis points. As explained in
the literature [16] and [11], a different number of such measures exist and are commonly known
with the previously cited name since they attempt to measure the return of the credit asset relative
to some higher credit quality benchmark. For a comprehensive assessment of the aforementioned
financial metric, various characteristics of the pool are subjected to rigorous analysis. These at-
tributes include the issuance nation, along with an array of additional factors, encompassing the
issuance date, loan type, instrument rating, and, most notably, the tranche seniority requiring eval-
uation. Typically, these market data are sourced through management software. Furthermore, all
the historical data associated with the loan pool assume a crucial role within the pricing frame-
work. However, in the specific scenario of a recently introduced ABS within the tradable market,
there exists no historical data about prepayment rates. Consequently, rating agencies provide a
range for this parameter, grounded in historical analyses of analogous instruments. Given all these
specifications, the overall pricing process of an ABS involves the pricing of each tranche. At last,
the specific market practice pricing procedure of an Asset-Backed Security follows the discounted
cash-flow method. In particular, without the possibility of having the certainty of deterministic
cash flows deriving from the underlying loans, it is necessary to model them using their expected
value, obviously discounted by the appropriate discounting factor. It is further necessary to ex-
plain that each tranche of the total pool could have a different price as well as a different interest
rate premium.
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The general discounted cash-flow formula for each tranche t can therefore be expressed as:

Pt =
∑

Nt
f

i=Nt
0

ζ
( i

m , r + spread
)
· E[Ci]

Vt
· 100 (3.13)

where the apex t is the tranche index, Nt
0 is the starting index of refunding of each tranche, Nt

f is the
final index of refunding of each tranche, Vt is the outstanding of each tranche, Ci is the stochastic
cash-flow at time i, spread is the evaluated credit spread for the ABS and ζ

( i
m , r + spread

)
is

the discounting factor evaluated at the year fraction i
m with respect to the interest rate r and the

associated credit spread. To discount each cash flow coherently, the interest rate r considered for
the discounting factor is assumed to be the EURIBOR with a maturity of one month, fixed at the
date of the first of September, 2023. Moreover, its functional form is assumed to be the simple
discrete discounting:

ζ

(
i
m

, r + spread
)
=

1

1 + r+spread
m · i

(3.14)

with the further specification that the payments are related to a monthly basis, such as m = 12.
Following these specifications, the most important part of the pricing procedure is to establish in
a coherent way how to model the expected cash flows at each time. In addition to the estimate of
the probability of large and different losses of the pool and its prepayment rate, there is a necessity
to establish the temporary distribution of defaults. This need follows from the intention to under-
stand more precisely when large losses occur and therefore give a more time-accurate pricing. In
real-world scenarios, the two default functional forms most used involve a decreasing structure,
as it is assumed that a debtor who has been able to repay the majority of the loan manages to
complete the last payments, or a uniform structure, for which the estimated total defaults occur
uniformly throughout the duration of the loan. In some cases, losses are also assumed to hap-
pen at the first possible time. Moreover, it is necessary to specify that repayments happen every
month. Starting from all the previous specifications, the cash quantity available at each month i,
which determines the stochastic cash-flows, can be modeled in formulas as:

E[Ci] = CFi − CDi + Ri−1 (3.15)

where CFi is the total cash flow that theoretically is generated by the underlying loans, which
always theoretically has to be paid by obligors at time i, CDi is the cumulative gross default, such
as how much money has been lost since the issue of the security, and Ri is the recovered amount
of money at time i. Each expected cash-flow E[Ci] is composed of a capital part qi and an interest
part ri, which are highlighted in the loan data tape for each loan. Moreover, the theoretical cash
flows CFi could be increased by prepayments, thus symbolizing the necessity of searching for
prepayment rates.
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To best specify each element of Equation 3.13, it is imperative to notice that the values of Nt
0 and

Nt
f are not deterministic, because they depend on the time in which each tranche is fully exhausted

by capital payments. As a consequence, they have to be evaluated numerically by setting a system
of two equations:

N f
t

∑
i=N0

t

qi = Vt, t ∈ S, M (3.16)

It is possible to notice that each of the previous equations is not linear, thus they cannot be solved
in closed form, but only numerically. To do that, the usage of an exhaustive search algorithm to
find the extremes of the summation is necessary. Moreover, assuming that NS

0 = 1, notice that
the previously named research cannot be carried out in parallel, but only in series. Specifically,
the search can continue only when the final period of refunding of the senior tranche is found,
and so on with the other tranche extremes. Following all the previous model peculiarities, the
price of each tranche can be evaluated. The results that will be shown consecutively are referred
only to the senior tranche because it is the most important part of the ABS. Besides these spec-
ifications, the accurate pricing of the instrument under consideration in this thesis necessitates
a comprehensive set of model characterizations. Firstly, among the various waterfall structures
discussed in Sub-section 1.2.1, the Sequential repayment structure has been chosen. This structure
dictates that payments in each tranche are subordinate to the fulfillment of obligations in the su-
perior tranches. This defensive mechanism significantly mitigates losses for the senior tranche by
prioritizing repayments. As a consequence, a substantial shortfall is required to trigger any loss
resulting from loan defaults within the pool, thereby necessitating the derivation of tail loss prob-
abilities. Furthermore, several other credit enhancement mechanisms have been implemented.
For instance, this Asset-Backed Security incorporates overcollateralization of the loans, alongside
the establishment of a cash reserve within the pool to further mitigate potential losses and fortify
the lower tranches. Furthermore, an excess spread corresponding to the weighted interest rate of
7.0% is associated with the pool. This credit enhancement method serves as ”money trapping” for
the instrument, such as it helps investors bear fewer losses during the life of the instrument. For
specific calculations, the coupon given to this tranche is equal to the one-month EURIBOR rate
plus 70 basis points. Thanks to the calculations given by the management software, the market
practice result at the date of September 29, 2023, shows a price of 99.80.

The procedural framework we propose in this last part of the section unfolds as follows. Leverag-
ing the credit risk model expounded in Section 2.6, especially concentrating on Equation 2.29, we
facilitate the derivation of a vector comprising probability quantiles6. This is achieved by system-
atically varying the threshold parameter, denoted as b, spanning the entire spectrum of singular
percentage values between 10% and 99% concerning the outstanding of the underlying pool. The
resultant vector allows us to deduce singular quantile probabilities by taking the difference be-
tween consecutive elements of the previously named vector. To better specify, the useful values
that have to be taken into consideration for the parameter b are the percentage values of loss that
could impact the tranche to be priced; in our case, the corresponding value of the relative tranche-
impact threshold is b∗ = 47%. In addition to these quantile probabilities, we can compute loss
threshold exposures for the designated values of b, represented as the product n · b, where n de-
notes the number of obligors in the pool as elucidated in Table 3.11. Furthermore, drawing from

6For the calculation of these quantiles, the quality of the pool is set as medium quality, corresponding to the function
fn = 1√

n , while the parameter α and the vector l are computed as explained in Section 3.2
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the payment structure of the pool as defined by its monthly cash flows, we can compute theoret-
ical cash flows and subject them to the appropriate discounting methodology. To this extent, it is
noteworthy that the maximum payment date T corresponds to the point at which, assuming no
losses, the tranche attains full payment. Thanks to these specifications, the nonhazardous price can
be computed using the discounted cash-flow method:

Pnh =
T

∑
i=1

ζ

(
i

12
, r
)
· Ci (3.17)

where the discounting factor is expressed as in the first point of the list presented in this section
and T is the maximum payment date. The nonhazardous price value, in the case of the analyzed
pool, results to be 100.59. After that, our proposed methodology aims to find the no-loss price,
such as the risk-free price scaled by a factor corresponding to the probability of a loss lower than
the tranche-impact threshold:

Pnl = Pnh · P(Ln < nb∗) = Pnh · (1 − P(Ln > nb∗)) (3.18)

where b∗ is the relative tranche impact threshold. In our case, this value turns out to be 99.75. At
this juncture, for each value of b and, correspondingly, for each threshold n · b, the anticipated cash
flows can be meticulously assessed. Specifically, assuming a temporal framework where losses
are presumed to manifest at the earliest conceivable opportunity, cash flows will be meticulously
adjusted to the extent that they affect the senior tranche. In our case, the current affecting value is
in the order of 2.70 · 108, signifying that each loss surpassing this threshold will induce a sequential
reduction in the cumulative cash flows. Following this computation, each of these cash-flows
is subjected to pricing using the formula denoted in Equation 3.17, thereby yielding 53 distinct
prices, each denoted as Pj, j = 1, ..., 53. Conclusively, to derive an estimate of the issue’s price,
we augment the price computed through Equation 3.18 by the summation of the product of each
cash flow price Pj, previously determined, multiplied by the corresponding quantile probability.
The ultimate price is subsequently evaluated through the following formula:

Pf in = Pnl +
53

∑
j=1

Pj ·
(
P(Ln > nbj+46)− P(Ln > nbj+47)

)
(3.19)

where bj is the threshold parameter indicating the jth-percentage level. Note that this computation
is similar to a discretization of the CVaR formula expressed in Equation 2.17, relative to the price
of the analyzed issue. The application of this formula to the ABS analyzed in this thesis leads to
a final price of 100.10. As can be finally observed, this price is very similar to the one obtained by
the market practice procedure, with a relative discrepancy of only 3.0060 · 10−3.
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Conclusions

This thesis has presented an innovative approach for estimating loss tail probabilities and the
CVaR risk measure for a generic loan pool, which are further applied to a real-world loan data
tape provided by Intesa Sanpaolo S.p.A. By employing a stochastic representation of an LT-
Archimedean copula, the interdependence structure of the pool’s loss function was effectively
modeled. This modeling approach addresses the need to accurately represent rare events, which
are of paramount importance in real-world scenarios. Consequently, this approach finds analyt-
ical esteems of the asymptotic probability of large losses deriving from the pool as well as an
asymptotic estimation of CVaR. Based on the model’s assumptions, we also developed a variance
reduction algorithm, called Conditional Monte Carlo. Consecutively, the approach was rigorously
tested using real-world data. The dataset played a pivotal role in evaluating the interdependence
correlation parameter and the esteem of the pool’s overall quality. As a result, we successfully
derived a robust probabilistic structure for loss tail probabilities, which is integral to the pricing of
the pool itself. It is important to note that the explained approach while achieving good results in
terms of pricing, does make certain qualitative assumptions in the process. The significance of the
qualitative assumptions in the pricing procedure underscores the inadequacy of solely determin-
ing a singular probability of large losses or accurately estimating the timing of defaults. Instead, a
holistic analysis that takes both factors into account could be crucial and of certain interest in fu-
ture research. The utilization of advanced mathematical techniques, such as the LT-Archimedean
copula structure, which is increasingly gaining prominence in the realm of finance, has proven to
be a valuable and innovative tool for addressing the complex task of pricing a real Asset-Backed
Security. This complexity justifies the adoption of such mathematical techniques, especially when
compared to other financial instruments.

73
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Appendix A

MATLAB Codes

A.1 Asymptotic estimate’s code - special homogeneous case

1 %% Asymptotic probability estimate

2 % This code follows the approach presented in this thesis in the homogeneous

case

3 format long e

4 % Setting the seed of the RNG for reproducibility

5 rng(300829)

6
7 % Settable values

8 n = 500; % Number of different obligors in the pool

9 nrep = 10000; % Number of repetitions

10 alpha = 2; % Interdependence coefficient (Estimable parameter)

11 b = 0.5; % Percentage of maximum loss

12 c = ones(n,1); % Weights of the various assets

13 l = 0.5*ones(n,1); % Values of l_i, reflecting the quality of each obligor

14 f_n = @(x) 1/x; % Decreasing function simbolizing the quality of the pool

15
16 % Calculating vstar as in the article

17 vstar = l^(−alpha)*log(c/(c−b));
18
19 % Calculating the probability of large losses with the explicit analytic

20 % formula.

21 if alpha == 1

22 prob_asymp = f_n(n)*vstar^(−1/alpha);

23 else

24 prob_asymp = f_n(n)*vstar^(−1/alpha)/gamma(1−1/alpha);

25 end

26
27 fprintf('The estimated probability (with correlation) with n = %d and alpha = %d

is %0.7d. \n', n, alpha, prob_asymp);

75
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A.2 Conditional Monte Carlo - Algorithm for large losses’ probability
estimation

1 %% Conditional Monte Carlo estimator for portfolio losses

2 % Rare−event variance reduction technique used to estimate large losses'

3 % probabilities in the context of a credit portfolio.

4 % To conduct the simulations it is possible to change the values

5 % of the variables in the part of 'Settable values'.

6 clear all

7 close all

8 clc

9 format long e

10 % Setting the seed of the RNG for reproducibility

11 rng(300829)

12
13 % Settable values

14 n = 500; % Number of different obligors in the pool

15 nrep = 10000; % Number of repetitions

16 alpha = 2; % Interdependence coefficient (Estimable parameter)

17 b = 0.5; % Percentage of maximum loss

18 c = ones(n,1); % Weights of the various assets

19 l = 0.5*ones(n,1); % Values of l_i, reflecting the quality of each obligor

20 f_n = @(x) 1/x; % Decreasing function simbolizing the quality of the pool

21
22 % Useful functions

23 phi = @(x, alpha) (−log(x)).^alpha; % Copula generator

24 phival = phi(ones(n,1)−f_n(n)*l, alpha);

25 cs = (cos(pi/(2*alpha)))^(alpha);

26
27 % Making the probability distribution of the one−sided standard stable rv.

28 % IMPORTANT: the value of 'delta' has to be set different whenever the

29 % value of alpha is changed, because the distribution has to start in 0.

30 % alpha = 1.1 −−> 'delta' = 0.5

31 % alpha = 2 −−> 'delta' = 0.25

32 % alpha = 5 −−> 'delta' = 0.25

33 stable = makedist('Stable', 'alpha', 1/alpha, 'beta', 1, 'gam', cs, 'delta',

0.5);

34
35 % For plotting purposes of the one−sided stable standard rv

36 x = −1:.001:3;

37 pdf1 = pdf(stable,x);

38 figure

39 plot(x,pdf1,'b−');
40 title("One−sided standard Stable distribution with \alpha = " + alpha)

41 legend("\alpha =" + alpha,'Location','northwest')

42
43 %% Simulation's part start

44 Vtot = zeros(nrep,1);
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45 for step = 1:nrep

46
47 % First phase: simulating from independent standard exponential rvs and

48 % from the one−sided stable rv

49 V = random(stable, 1, 1); % Simulating from the one−sided stable rv

50 R = exprnd(1, n, 1); % Standard: lambda = 1

51
52 % Second phase: trasformation of the exponential outcomes in the vector O

53 O = R./phival;

54
55 % Third.one phase: ranking the values of O

56 [ordO, indexes] = sort(O, 'descend');

57 tot = 0;

58
59 % Calculating the correct index

60 for i=1:n

61 if tot >= n*b

62 break

63 else

64 tot = tot + c(indexes == i);

65 end

66 end

67
68 i = n*b;

69 reqO = ordO(n−i+1);
70 Vtot(step) = V > reqO;

71
72 end

73
74 % Third.two phase: estimating the probabilty of a loss greater than n*b

75 prob_est = sum(Vtot)/nrep;

76 fprintf('The estimated probability of a loss larger than %d is %0.8f. \n', n*b,

prob_est);
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A.3 Conditional Monte Carlo - Algorithm for Expected Shortfall in the
homogeneous case

1 %% CMC: Estimation of the expected shortfall

2 % Rare−event variance reduction technique used to estimate the CVaR

3 % in the context of a credit portfolio.

4 % To conduct the previous simulations it is possible to change the values

5 % of the variables in the part of 'Settable values'.

6 clear all

7 close all

8 clc

9 format long e

10 % Setting the seed of the RNG for reproducibility

11 rng(300829)

12 % Settable values

13 n = 1000; % Number of different obligors in the portfolio

14 nrep = 1000000; % Number of repetitions

15 alpha = 2; % Dependence coefficient (Estimable parameter)

16 b = 0.8; % Percentage of maximum loss

17 c = 1; % Weights of the various assets

18 l = 0.5; % Values of l_i, simbolizing variations effect among obligors

19 f_n = @(x) 1/x; % Decreasing function simbolizing the quality of the portfolio

20
21 % Useful functions

22 phi = @(x, a) (−log(x)).^a; % Copula generator

23 phival = phi(ones(n,1)−f_n(n)*l, alpha);

24 cs = (cos(pi/(2*alpha)))^(alpha);

25 rv = @(v) 0.5^(alpha) * exp(−v.*(0.5^(alpha))).*v.^(−1/alpha);

26
27 % Making the distribution of the one−sided standard stable rv.

28 % IMPORTANT: the value of 'delta' has to be set different whenever the

29 % value of alpha is changed, because the distribution has to start in 0.

30 % alpha = 1.1 −−> 'delta' = 0.5

31 % alpha = 2 −−> 'delta' = 0.25

32 % alpha = 5 −−> 'delta' = 0.25

33 stable = makedist('Stable', 'alpha', 1/alpha, 'beta', 1, 'gam', cs, 'delta',

0.25);

34
35
36 %% Simulation start

37 Vtot = zeros(nrep,1);

38 Loss = zeros(nrep,1);

39
40 for step = 1:nrep

41
42 % First phase: simulating from independent standard exponential rvs and

43 % from the one−sided stable rv

44 V = random(stable, 1, 1); % Simulating from the one−sided stable rv
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45 R = exprnd(1, n, 1); % Standard: lambda = 1

46
47 % Second phase: trasformation of the exponential outcomes in the vector O

48 O = R./phival;

49
50 % Third.one phase: ranking the values of O

51 [ordO, indexes] = sort(O, 'descend');

52 tot = 0;

53
54 i = n*b;

55 reqO = ordO(n−i+1);
56 Vtot(step) = V > reqO;

57 Loss(step) = sum(V>O);

58
59 end

60
61 % Third.two phase: estimating the probabilty of a loss greater than n*b

62 prob_est = sum(Vtot)/nrep;

63 fprintf('The estimated probability of a loss larger than %d is %0.8f. \n', n*b,

prob_est);

64
65 % Fourth phase: estimating the expectedvalue of losses larger than n*b

66 expectedvalue = sum(max(Loss − n*b*ones(nrep,1), 0))/nrep;

67
68 % Calculating the CVaR

69 CVaR = n*b + expectedvalue/prob_est;

70 fprintf('The estimated CVaR is %0.4f. \n', CVaR);

71
72 %% Asymptotic results

73 % Calculating vstar as in the article

74 vstar = l^(−alpha)*log(c/(c−b));
75
76 % Calculating the probability of large losses with the explicit analytic

77 % formula.

78 if alpha == 1

79 prob_asymp = f_n(n)*vstar^(−1/alpha);

80 else

81 prob_asymp = f_n(n)*vstar^(−1/alpha)/gamma(1−1/alpha);

82 end

83
84 % Calculating the asymptotic value of CVaR

85 asyCVaR = n*b + n*integral(rv, vstar, +Inf)/(vstar^(−1/alpha));

86 fprintf('The asymptotic CVaR is %0.4f. \n', asyCVaR);

87
88 %Calculating the relative discrepancy

89 reldisc = abs(asyCVaR − CVaR)/CVaR;

90 fprintf('The relative discrepancy is %0.8f. \n', reldisc);
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A.4 General computing function - loss tail probability, CVaR and v*

1 %% General function for estimating portfolio losses' characteristics

2 % Function that estimates the probability of large losses of a given bond

3 % portfolio as well as the relative CVaR.

4
5 % INPUTS

6 % n : number of obligors in the pool

7 % nrep: number of repetition for the Simulative method

8 % alpha: iterdependence parameter (heavy tailedness parameter). It admits

9 % values in [1,Inf).

10 % b : threshold for the loss

11 % c: vector of the expositions of the loss

12 % l: quality vector of the obligors

13 % f_n: quality function of the pool

14 % copula: copula function to be used in the Exact calculation. It admits

15 % the strings "Gumbel" and "Clayton"

16 % seed: seed of the RNG for reproducibilty of the results

17 % method: method to be used. It admits the strings "Simulative" or "Exact"

18
19 % OUTPUTS

20 % prob: probability of a default larger than n*b

21 % CVaR: expected shortfall

22 % vstar: threshold value of the systematic factor V. Only computed when

23 % method == "Exact"

24
25
26 function [prob, CVaR, vstar] = archest(n, nrep, alpha, b, c, l, f_n, copula,

seed, method)

27
28 % Setting the seed of the RNG for reproducibility

29 rng(seed)

30
31 % Copula function to be used

32 if copula == "Gumbel"

33
34 % Gumbel's copula generator

35 phi = @(x, a) (−log(x)).^a;
36 cs = (cos(pi/(2*alpha)))^(alpha);

37 if alpha < 2

38 delta = 0.5;

39 else

40 delta = 0.25;

41 end

42 % Mixing variable: one−sided Stable standard random variable

43 varb = makedist('Stable', 'alpha', 1/alpha, 'beta', 1, 'gam', cs, 'delta',

delta);

44
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45 elseif copula == "Clayton"

46
47 %Clayton's copula generator

48 phi = @(x, a) x.^(−a) − 1;

49 % Mixing variable: Gamma randoma variable

50 varb = makedist('Gamma', 'a', 1/alpha, 'b', 1);

51
52 end

53
54 % Simulative method

55 if method == "Simulative"

56
57 % Initializations

58 Vtot = zeros(nrep,1);

59 Loss = zeros(nrep,1);

60 phival = phi(ones(1,n)−f_n(n)*l, alpha);

61
62 % Simulation process

63 for step = 1:nrep

64
65 V = random(varb, 1, 1);

66 R = exprnd(1, 1, n);

67 O = R./phival;

68
69 % Ordering the obtained values

70 [ordO, indexes] = sort(O, 'descend');

71 tot = 0;

72
73 % Finding the ranked threshold value

74 for i=1:n

75 if tot >= n*b

76 break

77 else

78 tot = tot + c(indexes == i);

79 end

80 end

81 reqO = ordO(n−i+1);
82
83 % Evaluating the exceeding of the threshold

84 Vtot(step) = V > reqO;

85
86 % Evaluating the total loss

87 Loss(step) = (V > O)*c';

88 end

89
90 % Computing the probability of default

91 prob = sum(Vtot)/nrep;
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92 fprintf('The estimated probability of a loss larger than %d is %0.8f. \n', n

*b, prob);

93
94 % Computing teh excpected shortfall

95 expectedvalue = sum(max(Loss − n*b*ones(nrep,1), 0))/nrep;

96 CVaR = n*b + expectedvalue/prob;

97 fprintf('The estimated CVaR is %0.4f. \n', CVaR);

98
99 % For computational purposes, it is necessary to explicit vstar

100 % in another way

101 vstar = "ONLY for Exact method";

102
103
104 % Exact asymptotic method

105 elseif method == "Exact"

106
107 % Computing the frequency vector

108 w = zeros(1,n);

109 vals = [c;l];

110 couples = zeros(2,n);

111 count = 1;

112
113 % Finding the couples then the frequency of each couple

114 for i = 1:n

115 if vals(1,i) == 0

116 continue

117 else

118 ind1 = find(vals(1,:) == vals(1,i));

119 ind2 = find(vals(2,:) == vals(2,i));

120 int = intersect(ind1,ind2);

121 couples(:,count) = vals(:,int(1,1));

122 w(count) = size(int,2)/n;

123 count = count + 1;

124 vals(1,int) = 0;

125 end

126 end

127 couples = couples(:,1:count−1);
128 w = w(1:count−1);
129
130 % Expliciting some useful functions:

131
132 % r(v) function:

133 rv = @(v) sum(couples(1,:).* w.* (1−exp(−v.*(couples(2,:).^alpha))));
134
135 % Scaled r(v) function used to calculate the value of vstar numerically

136 rvminusb = @(v) rv(v) − b;

137 vstar = fzero(rvminusb, 1);

138
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139 % Derivative of r(v) multiplied by v^(−1/alpha) (used to calculate

140 % numerically the integral.

141 rvprime = @(v) (sum((couples(1,:).*w.*(couples(2,:).^alpha))*(exp(−v'*(
couples(2,:).^alpha)))',1)).*v.^(−1/alpha);

142
143 % Computing the asymptotic probability of losses larger than a

144 % threshold

145 if alpha == 1

146 prob = f_n(n)*vstar^(−1/alpha);

147 else

148 prob = f_n(n)*vstar^(−1/alpha)/gamma(1−1/alpha);

149 end

150 fprintf('The asymptotic probability of a loss larger than %d is %0.8f. \n',

n*b, prob);

151
152 % Computing the expected shortfall

153 CVaR = n*b + n*integral(rvprime, vstar, +Inf)/(vstar^(−1/alpha));

154 fprintf('The asymptotic CVaR is %0.4f. \n', CVaR);

155
156 end
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A.5 l-computing function

1 %% l computing function

2 % Function that computes the obligor's quality vector

3 % IMPORTANT: the vector must have each value under 1 and greater than 0.8

4
5 % INPUTS

6 % − BD: Basedati loan data tape

7 % − SW: Tassiswap dataset

8 % − method: method to be used to compute l. The choices are "Uniform",

9 % "Random", "ClassicalSwaps" and "Swapsplusdefaults".

10 % − n: number of obligors in the pool

11 % − arg: function to be used in the "Classicalswaps" method. The choices

12 % are "Minmax", "Sigmoid", "ReLu".

13 % OUTPUT

14 % − l: obligor's quality function.

15
16 function [l, spread] = compute_l(BD, SW, method, n, arg)

17
18 % Uniform assignment

19 if method == "Uniform"

20
21 l = 0.8*ones(1,n);

22 spread = l;

23
24 % Pseudo−Random assignment

25 elseif method == "Random"

26
27 rng(300829)

28 l = rand(1,n);

29 l(l < 0.8) = 0.8;

30 l(l > 0.99) = 0.99;

31 spread = l;

32
33 % Assignment using functions and swap rates

34 elseif method == "ClassicalSwaps"

35
36 % Recalling the classical_swaps function

37 % IMPORTANT: requires high computational time for the calculation

38 spread = classical_swaps(BD, SW);

39
40 if arg == "Minmax"

41 l = 0.8 + 0.19*(spread'−min(spread))/(max(spread)−min(spread));
42 elseif arg == "Sigmoid"

43 l = 0.8 + 0.19*(1./(1+exp(−spread')));
44 elseif arg == "ReLu"

45 l = 0.8 + 0.19*max((spread'−1), 0)/max(spread);

46 end
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47
48 % Assignment using Swap rates and defaults of single obligors

49 elseif method == "Swapsplusdefaults"

50
51 % Recalling the classical_swaps function

52 % IMPORTANT: requires high computational time for the calculation

53 spread = classical_swaps(BD, SW);

54
55 l = zeros(1,n);

56 % High value because they are already defaulted

57 l(BD.Defaulted == "Y") = 0.99;

58
59 % Rescaling w.r.t. the number of defaults during the issue's life

60 MD = BD.MonthsDelinq';

61 condN = BD.Defaulted == "N";

62 l(condN) = (1/(5*pi) * (atan(MD(condN)))) + ...

63 0.1*(1./(1+exp(−spread(condN)'))) + 0.79;

64 end

A.6 Spreads-computing function

1 %% Spreads computing function

2 % Function that calculates the spread of each loan

3 % INPUTS

4 % − BD: Basedati loan data tape

5 % − SW: Tassiswap dataset

6 % OUTPUT

7 % − spread: vector of spreads of each obligor in the pool

8
9 function [spread] = classical_swaps(BD, SW)

10
11 % 'BD' important data

12 c = BD.AmountLoan;

13 T = BD.OrigMaturityTerm;

14 Coup = BD.GrossCoupon;

15 Issues = BD.IssueDate;

16 MD = BD.MonthsDelinq;

17 Def = BD.Defaulted;

18
19 % 'SW' important data

20 BuD = SW.BUSINESS_DATE;

21 Val = SW.VALUE;

22
23 % Computing the years to maturity of each obligor

24 ytm = zeros(4139,1);

25 fl = floor(T/12);

26 ce = ceil(T/12);
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27 cond1 = ((T/12 − floor(T/12)) < 0.5) + (T/12 >= 15) > 0;

28 cond2 = ((T/12 − floor(T/12)) >= 0.5) + (T/12 < 15) == 2;

29 ytm(cond1) = fl(cond1); % Because ceil gives back 16 years loans too

30 ytm(cond2) = ce(cond2);

31
32 % Computing the relative indexes

33 ytmindex = zeros(length(c), 1);

34 for i = 1:length(T)

35 if ytm(i) == 1

36 ytmindex(i) = 10;

37 elseif ytm(i) < 12

38 ytmindex(i) = ytm(i)−2;
39 else

40 ytmindex(i) = ytm(i)−1;
41 end

42 end

43
44 % Searching for the correlated swap rates

45 corr_swap = zeros(length(T), 1);

46 for i = 1:length(T)

47 [y,m,d] = split(between(Issues(i),...

48 BuD((ytmindex(i)*1307 + 1):((ytmindex(i)+1)*1307))),...

49 {'years', 'months', 'days'});

50 timedistance = 365*abs(y) + 30*abs(m) + abs(d);

51 [~, diffind] = min(timedistance);

52 corr_swap(i) = Val(diffind + ytmindex(i)*1307);

53 end

54
55 % IMPORTANT: some issues cannot be correctly classified because their issue

56 % date is not present in the Swap table. Then the attribution is performed

57 % as follows:

58 % − if the issue is defaulted the spread assigned is the maximum of all the

59 % other spreads;

60 % − if the issue has MonthsDelinq ~= 0 the spread assigned is 5/6 of the

61 % maximum spread.

62 % Last date available in the Swap table

63 mindate = datetime(2018,10,1);

64 old_issues = Issues < mindate;

65 old_defaulted = old_issues & (Def == Y);

66 MDnotzero = (MD ~= 0) & (Def == N) & old_issues;

67 % Multiplying by 100 to obtain percetages

68 corr_rate = corr_swap*100;

69 % Computing the spread

70 spread = Coup − corr_rate;

71 max_spread = max(spread);

72 spread(old_defaulted) = max_spread;

73 spread(MDnotzero) = 5/6 * max_spread;
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A.7 α-computing function

1 %% Alpha computing function

2 % Function that computes the interdependence parameter alpha, between

3 % obligors

4 % INPUTS

5 % − U: uniform matrix with dimensions (w, h)

6 % − w: number of variales of U

7 % − h: number of obligors

8 % − method: method to be used. Available selections are "Tau" and "Select"

9 % − copula: copula function to be used

10 % OUTPUT

11 % − alpha: interdependence parameter

12
13 function [alpha] = compute_alpha(U,w,h, method, copula)

14 % Kendall's Tau method

15 if method == "Tau"

16
17 if copula == "Gumbel"

18 % Gumbel's copula parameter w.r.t. Kendall's Tau

19 theta = @(x) 1./(1−x);

20 elseif copula == "Clayton"

21 % Clayton's copula parameter w.r.t. Kendall's Tau

22 theta = @(x) 2*x./(1−x);

23 end

24
25 alpha = 0;

26 for j1 = 1:h

27 for j2 = j1+1:h

28 tot = 0;

29 for i1 = 1:w

30 for i2 = i1+1:w

31 tot = tot + sign((U(i1,j1) − U(i2,j1))*(U(i1,j2)−U(i2,j2)));
32 end

33 end

34 tau = (1/nchoosek(w,2))*tot;

35 alpha = alpha + theta(tau);

36 end

37 end

38 alpha = (1/nchoosek(h,2))*alpha;

39 end

40
41 % With this method to the user is asked to put as input the desired value

42 % IMPORTANT: if the value is high (e.g. alpha = 50) computation of prob and

43 % CVaR might fail due to numerical problems.

44 if method == "Select"

45 alpha = input("Insert the value of the interdependence parameter alpha: \n\n");

46 end
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