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Introduction

Causal relationships play a fundamental role in understanding the world around
us. The ability to identify and understand cause-effect relationships is critical
to making informed decisions, predicting outcomes, and developing effective
strategies. However, deciphering causal relationships from observational data
is a difficult task, as correlations alone may not provide definitive evidence of
causality. In recent years, the field of machine learning (ML) has emerged as
a powerful tool for causal analysis, offering new opportunities for uncovering
hidden causal mechanisms and better understanding complex systems. ML
algorithms can detect patterns and dependencies in data, enabling the dis-
covery of causal links between variables. By leveraging sophisticated models
and optimization techniques, ML approaches provide a data-driven and auto-
mated way to infer causal relationships. Causal analysis can be viewed from
two different angles: Intervention causality and Observation causality. Inter-
ventional causality focuses on examining the causal effects of interventions
or treatments. It aims to answer questions such as "What is the impact of
a particular intervention on a particular outcome of interest?" Observational
causality, on the other hand, is concerned with inferring causality from obser-
vational data where interventions or treatments are not explicitly controlled
for. The goal of this work is to explore various ML techniques and methods
to address the challenging task of causal analysis. The integration of machine
learning techniques into causal analysis offers exciting opportunities for un-
covering and understanding causal relationships from complex datasets. By
harnessing the power of ML algorithms, researchers and practitioners can ex-
pand our knowledge of cause and effect, enabling more accurate predictions,
better decision-making, and improved strategies in a wide range of domains.
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Chapter I

Linear Response Theory and FDR

I

Linear Response Theory

The theory of Linear Response, in statistical mechanics, is a powerful tool for
describing the evolution of a system away from or towards equilibrium when
perturbed by the application of an external field. The main goal of response
theory is to explain how the system responds to external conditions. When
the original theory of the phenomenon is deformed by an external source, it is
generally necessary to find another model. Instead, we can make progress with
linear response analysis if we can describe the source as a small perturbation
of the original system. For small perturbations, the changes in the properties
of the system that couple to the external field are proportional to it. This
constant of proportionality is called the Linear Response Function (or the
After-Effect Function) and provides important information about the system
[1]. By looking at the observable in a statistical way, there are many protocols
for analysing the above problem. The linear response of the system can be
studied in a static or dynamic description by going beyond the statistical
mechanics of equilibrium and considering the system’s time evolution.

Static Linear Response and FD Relation

In statistical equilibrium mechanics, the average value of thermodynamics ob-
servable and the magnitude of their fluctuations around their equilibrium val-
ues can be predicted. We consider a classical system described by a Hamilto-
nian H, (z), where x represents one of the possible microscopic configurations
of the system consisting of N degrees of freedom. The thermal equilibrium of
the system is given by the probability density function:

fo(z) = ;e—Ho(x)/kBT (1)

Z — ZefHO(ZC)/kBT (2)

xT
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A possible observable quantity (for example, in a paramagnetic system) is
M (z), the magnetic or dipole moment, whose macroscopic quantity is ob-
tained at equilibrium by the thermal average:

(M)ey = 5 M () f () = 3 2 f e bt (3)

If we apply to the system a small field or, more generally, a small pertur-
bation F' and wait a sufficiently long time, the system reaches a new ther-
mal equilibrium described by the new perturbed Hamiltonian: H (z, F) =
H, (z) — FM (x) (we assume that M (z) is the conjugate variable) and by the
new probability density function:

f(z, F) = () e*ﬂ[Ho(x)*FM(l“)] (4)
QF) =Y o~ B[ Ho(2)—FM(x)] (5)

In classical statistical physics, the perturbed system can be extended to include
the unperturbed system by using the expansion of the exponential factor. By
a first-order linear response, we obtain:

M@ — 1 4 BFM () + O (F?) (6)

Q(F) =X e 0] (1 4 BFM (2) + O (F?)) (7)
x _ e BlH @] (; x 2

[z, F) Q0F) (14 BFM (z) + O (F7)) (8)

and by exploiting the results of the equilibrium distribution:

f e, F) = (1= B{M)F + pFM (x)) fo (x) (9)

These equations contain the equilibrium value of the average (M). If we
now want to consider the average of any other observable B in the perturbed
system, we derive that:

<B>F = <B>0 +BF(<MB>0 - <M>0<B>0) (1O>



LINEAR RESPONSE THEORY 3

where the indices F' and o stand for the average performed in the disturbed
and undisturbed systems, respectively. It can also be written as:

(B)r = (B)o+ Fxusp (11)

where the coefficient x g represents the susceptibility:

XMB :6(<MB>0_ <M>0<B>0> :B<MB>OC (12)

The corresponding average change of a generic observable B, induced by the
perturbation, is:

(AB)p = (B)r — (B)o = Fxun (13)

The relevant instance of the Fluctuation Response Theorem is the relation-
ship that exists between the correlation function and susceptibility. This is a
Fluctuation Dissipation Relation, which in statistical equilibrium mechanics
relates the correlation functions to macroscopically measurable quantities such
as specific heat, susceptibility and compressibility [2].

Dynamic Linear Response and FD Relation

To describe the non-equilibrium response of a system, we need to analyse its
dynamic evolution. The non-equilibrium situation could be the result of the
application of a field at a certain point in time or the relaxation dynamics
after which this field was switched off (relaxation dynamics). To analyse this
situation, we consider a system in phase space characterised by the Hamilto-
nian H (p,q,t) = H, (p,q) — F (t) A(p, q), where H, is the time-independent
part and A is a general observable of the system.

H,(q,p) pert <o
H(p,q) = (14)
H,(¢,p) —A(g,p) pert>o
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The system, when described by H,, is in thermal equilibrium and its statistical
properties are described by fe, (p,q). The evolution of the system is given by
Hamilton’s equations:

do _ oH (15)
dt 8pz- ’
s (26)

In the phase space, the probability distribution evolves according to the Liou-
ville Equation [3]:

of (p,q.t)

o T {LAO + Lowt (t)] f(p,qt)=o0 (17)

I:O and L;xt are the Liouville operators associated with the unperturbed Hamil-
tonian and the perturbed Hamiltonian, respectively. By exploiting the linear
approximation, we obtain an approximate solution:

F(0,a,t) = feq (prg) =i /0 Cape )i, (t') feq (0, 9) (18)

where feq (p.q) = f (p,q,t = 0).
This equation allows us to calculate the ensemble average of any function

B (p,q), in linear order in F (¢):

(B(1)) = [ dpdg B (p,9) f (p,4.1) (19)

In this way, we can compute the difference with respect to the equilibrium
value:

(AB (1) = —i [ dpdg B (p,q) “at e OB L, (#) fg (ha) (20)

Following the calculation in [3], we obtain the result:

(AB (1)) = /Ot di'y (t — ') F (1) (21)
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where x (t, t/ ) is the susceptibility or response function, (it is assumed for sim-
plicity that it depends on the difference of its arguments) with the properties:

(a) Stationarity of unperturbed system (if the perturbation f () at time ¢
gives an output signal s (¢) then a perturbation f (¢1) will give an output
signal s (t1)).

(b) Causality (the system responds only after an external perturbation F' has
been switched on).

This is the general expression of the Fluctuation Dissipation Theorem, which
is the relationship between the spontaneous fluctuations and the response to
time-dependent external fields of a physical observable.

By considering similar calculations, we obtain the Kubo formula, which re-
lates the fluctuations of the observed quantity B at time ¢ to the related
equilibrium-time correlation function of B and M (also known as the Kubo
function Cyp (t)).

(AB(t)) = BF(B(t) M (0))oc = BFCrnp (1) (22)

Now we can establish a relationship between the two expressions and thus
obtain the classical Kubo expression [1]:

xu (t) = =4O (t) Cup () (23)
Thanks to the temporal translational invariance at equilibrium, we can write:
Cup (t) = (B (t) M (0))oc = —(B (t) M (0))oc (24)

Using the obtained results together, we can write the response function as
follows:

Xup (t) = =4O () (B (t) M (0))oc (25)

Properties of the Response Function

o Translational Invariance: If we assume that the response function is
invariant under time translations we can write it as

XMB (t) = _B@ (t) <B (t> M (O)>oc (26)
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It is useful to perform the Fourier transform to work in frequency space.
The Fourier transform for a generic function f (¢) is defined as:

Floy= [ def gy e (27)
f(t) = /;oo Cj:f(w) et (28)

If we consider the fluctuation relation for a generic observable B:

t
(AB; (1)) = /O dt'xij (t—t') ¢; () (29)
Next, we take the Fourier transform:

(0B; (w)) = xi5 (w) ¢; (w) (30)

It can be observed that the response in frequency space is "local": if we
perturb something at frequency w, the system responds at frequency w.
For more advanced analysis, we need to go into the realm of non-linear
response. If we consider the Fourier transform of the response function,
we can introduce the following notation for the real and imaginary parts:

X (w) = Re (x (w)) +ilm (x (w)) = X" (w) +ix" (w) (31)

Imaginary Part: This part is due to the part of the response function
that is not invariant under time reversal (hence its Fourier counterpart
is an odd function). It is called the spectral function and represents the
dissipative part of the response function:

¥ (w) = =4 [ dt et [y (6) — x (~1) (32)

2 —0o0

X' (—w) = =x" (w) (33)
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Real Part: It is called the reactive part of the response function and is
an even function of w. The arrow of time plays no role here in relation to
what happened in the case of the imaginary part.

¥ () =2 [t e [y (1) + x (1) (34)
X (—w) = x' (w) (35)

o Causality: We cannot have an influence on the past. This means that
any response function must satisfy:

x(t)=oforallt <o (36)

This requirement of causality in the frequency domain means that y (w)
is analytic for Im (w) > o. This means that there is a relationship be-
tween the real part x’ and the imaginary part x”: the Kramers-Kronig
Relationship.

I1

Onsager Regression

Onsager’s regression hypothesis is a special case of the Fluctuation-Dissipation
Theorem and states the following: "If a system is out of equilibrium at time
to, it is impossible to know whether this state out of equilibrium is the result
of an external disturbance or a spontaneous fluctuation. The relaxation of the
system back to equilibrium will be the same in both cases (provided the initial
deviation from equilibrium is small enough)" [4]. In his statement, Onsager
considers irreversible processes in which the relaxation of a macroscopic vari-
able A (t) is observed when a small perturbation AH is turned off at time o
(it can be considered to be applied from time —oo to time o).

Considering the results of the previous equation, we can write (if we consider

M =B = A):

(AA (1)) = BF(A(0) A(t))oc = BF(6A(0) 0A(t))0 (37)
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Physically, the variable A (t) fluctuates in time with spontaneous microscopic
fluctuations around its average value:

(AA(0)) = BF(0A(0)0A(0))o (38)

The regression hypothesis can thus be derived from the ratio between the two
equations:
(0A (1)) _ (0A(t)0A (o)) (39)
(0A(0)) (0A(0)0A(0)) |,

q

out—eq

If we analyse the equilibrium correlation fluctuations between 0 A (t) and an
instantaneous fluctuation at time zero Cya (t) = (JA (0) §A (t)),, We obtain
the following limits:

lim C.az () = (04 (0)%), (40)
lim Cla (1) = (5A(0))a(0A (1)), (41

At small times fluctuations are correlated, while at large times they are un-
correlated. Therefore, the decay of correlations is expressed as the regression
of spontaneous fluctuations. In general, this decay is exponential:

_ i

Can(t) = Caa(t)e ™ (42)

where 74 is the relaxation time of the observed quantity A. Thus, if a system
can be brought out of equilibrium by a small perturbation F' or by a sponta-
neous thermal fluctuation §A, its return to equilibrium will be characterised
by equilibrium fluctuations.
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Chapter 11

Different types of Causality

The philosophical concept of causality refers to the set of all particular "cause-
effect" relationships and this representation is a much debated argument in
mathematics and physics. The recognition and clarification of cause-effect re-
lationships between variables, events or objects are the fundamental questions
of most natural and social sciences [5]. In most disciplines, we need to quan-
tify the strength of a possible causal relation in order to explain past events,
control present situations and predict future consequences [3]. There are two
different ways of obtaining information about causal relations: the Interven-
tional approach and the Observational approach. Both provide information
about the presence or absence of cause and effect, but they differ in how this
information is expressed.

|

Observational Causality

It is based on the observation of the autonomous behaviour of a system.
Granger causality (GC) and Transfer Entropy (TE) are mainly based on this
type of approach.

Granger Causality

GC can be quantified and measured computationally and makes two state-
ments about causality: 1) the cause occurs before the effect and 2) the cause
contains information about the effect that is unique and does not occur in any
other variable. Consequently, the causal variable can help to anticipate the
effect variable after other data have been used first [6]. This is a regression-
based interpretation of past data that compares the statistical uncertainties
of two predictions. Considering the time series of two events x; (¢) and x; (¢),
the first prediction characterises the Restricted Model [6], where only the past
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history of x; is included to predict future values of itself:

T
Z [ kT (0 — k) + € (t)} (43)

where B is the autoregressive coefficient and ¢; is the prediction error. The
second prediction characterises the Full Model [6], in which the past of x; is
also included in the model for predicting future values of x;:

T
z_: { jikTi (8 — k) + Ajjpry (t — k) + €y, (tﬂ (44)

where, as before, the A’s are the autoregressive coefficients and ¢;; is the
prediction error on x; associated with the knowledge of variable x;. If we
register an improvement in prediction, i.e. a reduction in the variance of
prediction errors, we say that x; is a Granger cause of x;. GC is thus quantified
as:

Var (ej)

in—mj =In m (45)

So if this value is positive, we have an improvement in predictive accuracy.
GC can also be seen as a statistical hypothesis test.

Transfer Entropy

TE derives causality from an information theory interpretation. It is a non-
parametric statistic that measures the amount of information exchanged from
y to x. More specifically, it indicates the amount of uncertainty reduced in
future values of y given knowledge of the past values of x (given past values
of y) [5]. The TE from x to y is defined as:

K L
w0 o) L (y”H i@ ))
:Zf<yZ+Hayz y L; >1n
f< (K)>

(46)
yiJrH? yz
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where K and L are the numbers of time series for each embedded vector (z and
y), f is the joint probability density function and H is the prediction horizon.
The subscripts of x and y represent the first time series to be considered. The
causality measure of this procedure [6] is then calculated by considering the
difference between the influence of y given x and the influence of x given y:

Tx—>y = Ty|x - Tx\y (47)

It can also be written as a function of Shannon entropy H (z) and mutual
information:

Ty =H (Yelyt—1:0-1) — H Ye|Yt—14—1, Tt—1:-1.) (48)

Tx—>y =1 (yt; xt—1:t—L|yt—1:t—L) (49)

The uncertainty in these process measurements is a weak point because TE and
GC values are calculated even if there is no causal relationship. Consequently,
there is also the reverse problem that the actual causal relationships are not
captured. This type of causation is not satisfactory from a physical point of
view and for this reason, is discarded in some situations in favour of a more
interventional approach.

I1

Interventional Causality

It is based on the physical cause-effect relationship. The state of a variable
is changed to manipulate the system and see if there is a reaction. It states
that given a time series characterised by the vector x; consisting of n entries,
a perturbation of the variable () at time o, 1) — 20) 4+ §2U)| on average,
causes a change in another variable a:,E’f) with ¢ > 0. Mathematically speaking,
there is a causal relation if, given a smooth function F'(x), the relationship

holds:
OF (:13,@)
— L 4o (50)

) xéj
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which means that a perturbation of the variable zU) at the time o leads to a

(k)

non-zero average variation F' (wt ) (carried out over many realisations of the

experiment) with respect to its unperturbed evolution [7].

Pearl Approach

It relies on causal Bayesian networks and directed acyclic graphs (DAG) to
understand the representation of the causal organisation and the response
to external or spontaneous changes in variables [8]. According to Pearl’s
idea, causal models tell us how the probabilities describing the variables would
change as a result of an external disturbance. An important distinction is be-
tween the action do (x), which sets the random variable X to a certain value z,
and the observation X = x. To test whether a variable x; has a causal influ-
ence on another variable x;, the marginal distribution of z; is calculated under
the action do (Xj = xy) for all values z, of Xj. By analysing the sensitivity of
the distribution to different xy, the causal relationship can be established [g].
In this approach, causal relationships are explained using deterministic func-
tional equations, and the concept of probability is incorporated by assuming
that some variables within the equations cannot be observed [8].

Linear Response Approach

The connection to linear response theory is made when the system admits an
invariant distribution and the variation dz$) is small enough. In this case, the
response variables are related to the spontaneous fluctuation correlations in
the equilibrium dynamics by the Fluctuation-Dissipation Theorem. There is
a strong and strict connection between responses and correlations: if x; is a
stationary process characterised by an invariant probability density function
fs (x), the following relation can be proved under fairly general conditions:

; Sy dln fs (x)
kj _ 1: t .k s
R’ = lim — = —(z; B ) (51)

dxd—o (5%% o

where R; represents the linear response matrix of the system under consider-
ation at time ¢, and the average is calculated over the twice joint probability
distribution function fs (@, @,). The distribution characteristics are derived
from the data if they are not known [7].
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Chapter 111

Linear Stochastic System

I

Linear Response and Correlations

Determining causal relationships in a system cannot be done by analysing
correlations alone. To better understand the difference between correlations
and causal connections, we can draw on linear response theory. We consider, as
in the article [7], a three-dimensional vector & = (z,y, z) whose time evolution
is given by the system:

(z)

Tpyr = axy + €y + by, (52)
Y41 = aT¢ + ay; + bm(y), (53)
2ty = QAT + azy + bﬁgz)- (54)

This system represents linear stochastic Markov dynamics at discrete times,
where n’s are independent Gaussian processes with zero mean and unitary
variance. The parameters a, b and € are constant. To simulate this system, we
start from a generic random vector and evolve it over a sufficiently long period
of time to approach equilibrium and reach a stationary state. To understand
whether there is a causal relationship between two generic variables, we use an
interventional approach. We need to analyse whether the perturbation of one
variable at time o (for example dy,) implies the average variation (different
from o) of another variable at time ¢t > o (for example 0z;). In order to
obtain accurate results, the analysis was performed on 105 trajectories, since
there are different noise realisations and the variation of the variables must be
small enough, as required by linear response theory. By analysing the average
variation at each step for each variable, we get the response matrix. In this
case, we want to find out whether y has a causal relationship with z. So we
change the initial value of y by 1% and observe the average variation of z in the
following steps. The analysis was carried out for different values of € in order
to obtain a quantitative description of the causal relationships and over many
trajectories for avoiding the effects of the disorder. The parameters of a and b
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are fixed at 0.5 and 1, respectively. By performing the numerical experiment
and then graphing the outcomes, we obtain a series of diagrams. From these
diagrams, we can deduce that causal relationships cannot be derived from the
analysis of correlation functions alone. The two plots in Figure 1 give indeed
different information.

Standard Response Standard Correlations

1N
'S
S

0.06 -

I
W
v}

o
W
S

I
N
o

0.20 4

o

o

N
L

Normalized Response between y and z
o
o
w
Correlations between y and z

o
o
=

o
=}
S

0.0 2.5 5.0 7.5 100 125 150 17,5 20.0 ] 2 4 6 8 10 12
Discrete Time t Discrete Time t

Figure 1 Comparison between response and spurious correlations. The response has
been rescaled with respect to the initial perturbation. The initial covariances were
divided by the variance of y and z (calculated using a long series of data) to obtain
the correlations.

Since in this case, the system is linear, discrete-time and Markovian, we can
derive the response function by simple operations on the covariance matrix [7]
or by simple exponentiation of the propagator matrix A of the dynamics:

A=la a o R, = A =C,C (55)

where R; is the response matrix at time t, while C; and C, represent the
covariance matrix at time ¢ and time o respectively. To verify the previous
results in Figure 1, we calculate the response matrix for different times using
the last formula (see Figure 2). The result is completely equal to the precedent
one. This means that the two treatments are equivalent in this problem setting.
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Response for the Matrix A Theory

0.06 A

0.05 A

0.04 A

0.03 A

0.02 4

Rescaled Response Rzy

0.01 A

0.00 A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Discrete Time t

Figure 2 Response matriz at time t calculated with the exponentiation t of the matriz

I1

Reconstruction of Propagation Matrix

A helpful approach to understanding the causal relationships within the ex-
amined system is to reconstruct the propagation matrix. There are several
ways to reconstruct the propagation matrix of this linear system by assuming
a time series of the data. In particular, we rely on independent samples: we
thus wait, in each simulation, for the necessary time at each time series to
obtain decorrelated samples.

The first method is to use Multiple Linear Regression, a statistical technique
used to model the relationship between a dependent variable and multiple in-
dependent variables:

Tt Tt

Model
Yt a7

2t Zt+1
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The second method relies on the calculation of the correlations across different
variables of the system. More specifically, we turn our attention to the calcu-
lation of the mean value derived from the equations that capture the temporal
evolution of the system.

Elzitrvt] FElrityt] E T2t Elvixe] Elzey] Elrez]
V= Eyaz] Elyeraye]  Elyeraz] C=|Elyy] Elyeye] Elyezl (56)
Elzi1a2e]  Elzitayt]  Elze4121) Elzewe]  Elziye]  Elze2]
V=A-C reversingg V\C =A (57)

The third method is to use a neural network to learn the coefficients. We start
with the simple Multi-Layer Perceptron (MLP). A multilayer perceptron is
a class of artificial neural networks characterised by a layered structure with
multiple interconnected nodes or neurons. This neural network architecture
consists of an input layer, one or more hidden layers and an output layer. Each
layer consists of several neurons that are densely connected to the neurons of
the neighbouring layers. In this case, it is characterised by an architecture
with only two layers of three neurons each. The activation function is linear
and the regularisation function is not used in this first step.

Figure 3 Architecture of Multi-Layer Perceptron without hidden layers, three neurons
in the input layer and three neurons in the output layer.
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By observing the errors of the coefficients of the propagation matrix obtained
by the three previous methods, we will develop a better method to deal with
the problem. We start considering the absolute error over each coefficient of
the propagator matrix for a generic trajectory in Fig. 4

Absolute Error A(1,1) . Absolute Error A(1,2) Absolute Error A(1,3)
10

10° 4

—8— Linear Regression
—&— Correlations
—4— MLP Neural Network

—— Linear Regression
—&— Correlations
—4— MLP Neural Network

—8— Linear Regression
—o— Correlations
—4— MLP Neural Network

10-1 4

10714 10-14

10—3 4
1034 10724
10—4 4
- : . , T — 107 A T T r . — 107 A - - - T T
10t 102 103 104 10° 10° 10t 102 10° 104 10° 10° 10t 102 10° 104 10° 10°
Independent samples N Independent samples N Independent samples N
Absolute Error A(2,1) Absolute Error A(2,2) Absolute Error A(2,3)
100 4
—8— Linear Regression 10° 4 —8— Linear Regression —8— Linear Regression

—— Correlations
—4— MLP Neural Network

—&— Correlations —&— Correlations 10714
—4— MLP Neural Network —4— MLP Neural Network

10-1

Error
Error

10-2 4

10-3 1074
10t 102 10° 104 10° 10° 10t 102 10° 104 10° 10° 10t 102 10° 10* 10° 10°
Independent samples N Independent samples N Independent samples N
Absolute Error A(3,1) Absolute Error A(3,2) Absolute Error A(3,3)

100 4

—@— Linear Regression
—e— Correlations
—4— MLP Neural Network

—&— Linear Regression
—— Correlations
—4— MLP Neural Network

—&— Linear Regression
—e— Correlations
—4— MLP Neural Network

10-14

-1
10 1014
s S 10-2 s
g 210 g
& 1072 & & 1024
., 10-34
10 103 4
10t 10? 103 104 10° 10° 10t 10? 103 104 10° 10° 10t 10? 10° 104 10° 10°

Independent samples N Independent samples N Independent samples N

Figure 4 Plot of the absolute errors obtained over each coefficient of the matrix A us-
ing the methods of multiple linear regressions, correlations and multi-layer perceptron
as a function of different numbers of independent samples N .

The general error for the three methods, obtained by the square root of the
squared sum of the single error over each coefficient, is given in Fig. 5. The
method of Linear Regression and the one of Correlations give excellent results
and achieve better accuracy as the number of independent samples increases.
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General Behaviour of the Error
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Figure 5 Plot of the square error of the reconstruction of the matriz A for the three
different methods. The resulting error for each method was calculated for a different
number of training samples.

On the contrary, we can see from the data that, if we increase the value of
N for the MLP too much (in particular when we go over 10* independent
samples), there is a possibility of overfitting the training data, leading to an
increase in the prediction error. To mitigate this problem, we employ the
Lasso Regularization function, also known as L1, to learn the parameters.

Lasso and Sparse Regression

L1 Regularization, also called Lasso Regularisation, is a technique used in
machine learning and statistical modelling to introduce a penalty term that
encourages the model to select a sparse set of features. It is usually used to
prevent overfitting and to improve the generalization ability of the model. In
L1 regularization, the penalty term added to the loss function is proportional
to the absolute values of the coefficients of the model. Mathematically, it can
be expressed as follows:

LiPenalization = X _|w;| (58)

=1
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Where lambda () is the regularization parameter that controls the strength
of regularization, and Y.  |w;| denotes the sum of the absolute values of the
coefficients or weights of the model. By adding the L1 regularization term to
the loss function, the optimization algorithm attempts to minimize both the
loss and the size of the coefficients. As a result, L1 regularization forces many
coefficients to become exactly zero, effectively performing feature selection by
eliminating irrelevant or redundant features. Sparsity makes the model more
interpretable by highlighting the most important features for prediction [10].
In this way, we can use the sparse matrix to distinguish the variables that have
a causal effect on others and those that do not. In this way, we determine the
optimal lambda parameter for the optimization task: we identify the range in
which we can obtain good results and solve the problem by comparing different
values of the parameter, as shown in Fig. 6.

Cross-Validation Error as Function of Alpha
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1.00155 x 10°

107 10-° 10~4
Alpha

Figure 6 Plot of the computational process employed to determine the optimal value
of A used in Lasso reqularization for parameter calculation.

Once we have identified the variables that play a role in the cause-effect rela-
tionships of the systems, we can apply the aforementioned methods to achieve
higher accuracy in determining the parameters. In particular, we can ana-
lyze the problem a second time by assuming a situation where the coefficients
that play no role in causality are set to o. Alternatively, we can rely on
the coefficients obtained through the optimisation process performed with the
regularisation function. In this particular case, we have observed a significant
improvement in the accuracy of the determination of the quantitative coeffi-
cient that captures the dynamics of the system. This remarkable improvement
can be seen in the graphical representation in Fig. 7.
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General Behaviour of the Error
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Figure 7 Plot of the optimal error obtained by the Lasso reqularization method.

Of particular note is the significant improvement in accuracy seen in the con-
trast between the green and blue lines depicted in the Fig. 7, which is due
to the implementation of L1 Regularization. This method entails a particular
refinement in which the value o is deliberately and precisely assigned to those
variables that do not exert a causal influence on the prediction of future values
of other variables (as opposed to nominal or small values, as in the previous
methods). This strategic move leads to the emergence of a sparse matrix,
highlighting the importance and precision of the relevant features within the
data. So, according to the results, among the available methods, the last ap-
proach is the one with which we can achieve the best results compared to the
alternative techniques.
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Chapter IV

Non-Linear System

Now, let’s shift our focus to a non-linear system involving the consideration
of three interacting particles in one dimension. These particles, described
by variables z, y and z, are under the influence of a quartic potential, and
we assume a dynamics characterized by overdamping. The evolution of the
system state is determined by the following equations:

i =-U'(x) — k(x —y) + bn™, (59)
j=-U(y)—k(y—=z)—k(y—=z) +mn¥, (60)
t=—U'(2) —k(z—y) + b, (61)

with the potential
Ux)=(1—r)x*+rz? (62)

In this context, & and b are considered fixed constants, while n represents
Gaussian noise with o mean and variance equal to the used time step. The
parameter r serves as an indicator of the degree of non-linearity within the
dynamics. Specifically, when r is equal to o, the external potential U has a
harmonic nature. With values of r greater than 1, on the other hand, the
potential U takes on a pronounced double-well form, as shown in Fig. 8.

Potential Shape

3.0 — =25
— r=1

-10 -05 0.0 05 10

Figure 8 Plot of potential shape for different values of r.
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Our main focus is to identify and establish the causal connections that exist
among the variables involved. Additionally, we aim to evaluate the accuracy
and validity of the formula R; = C;C " used in the linear case in this particular
non-linear system. Consistent with the study conducted in the article [7], we
consider two different values of r for our analysis: 1 and 2.5. For each value,
we proceed to measure the response obtained by the theoretical formula and
the response obtained by multiplying the covariance matrix. As part of our
analysis, we set the constants b = 1 and k = 1, assuming a time step of 0.001
seconds and a total time span of 5 seconds. To observe the response in the
non-linear dynamics domain, we introduce a perturbation of 0.01 on variable
x at time o and then examine the effects on variable z at future time steps.
We used a stochastic Heun integrator to perform the numerical simulations.
Starting from the initial problem:

&= f(tz(t)+g ) T (to) = o (63)

where x (t) represents the state of the system at time ¢, f is a deterministic
function and g is the stochastic function. x, is the initial condition at time
t,: we obtain it by initialising the system in a random state and then bring-
ing it to equilibrium by simulating the system for a sufficiently long period.
The procedure for calculating the numerical solution is to first calculate the
intermediate value @;;, and then the final approximation x;,, at the next
integration point. It is described by the equations:

X, = x; +dt[f (ti, ;) + g (i, )] (64)

dt - dt -
Tipr = @+ [f (G @) + f (i, Bia)] + g (G @) + 9 (i, @iva)] (65)

We undertake and iterate this particular system numerous times over several
trajectories, assuming that the dynamics of the system under consideration
correspond to ergodicity. Fig. ¢ shows a comparison between the response
calculated by intervention measures (the true response, represented by a red
line) and the response obtained by correlation analysis (represented by a black
line). This analysis is done for both values of the non-linear parameter. When
r = 1, we get perfect results as in the linear case and can therefore use this
approach in this very weak non-linear regime. In the scenario where the non-



NON-LINEAR MULTIPLE REGRESSION 23

linear contribution is sufficiently small (as in the case of r = 2.5), the lin-
earized response (obtained by multiplying the covariance matrices) continues
to provide meaningful insights into the causal relationships among the system
variables.

r=1 r=25
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Figure g Plot of response function R, in the non-linear dynamics for different values
of r; each plot has been obtained by averaging over 10% trajectories.

However, as the non-linear contribution increases, the task becomes more diffi-
cult because there is some uncertainty in the approximation of the true curve.
Already for r = 2.5, we get some imperfections in the approximation of the
curve, which means that a more precise approach to the problem is necessary.

|

Non-Linear Multiple Regression

Non-linear multiple regression is a statistical technique used to model complex
relationships between multiple independent variables and a dependent vari-
able. Unlike linear regression, which assumes a linear relationship between
variables, non-linear multiple regression allows the modelling of non-linear re-
lationships between variables. This relationship is represented by a function
and can take various forms, such as polynomial, exponential, logarithmic, or
trigonometric functions. The choice of the non-linear function depends on the
underlying data and the problem at hand. This technique helps obtain a ro-
bust model whose predictions are reliable and in line with the trend that the
data have followed in the past. Our analysis involved the use of a training
data set consisting of approximately 10° independent trajectories. These tra-
jectories were carefully generated with the non-linear parameter r set to 2.5.
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Through the application of a non-linear regression approach, we formulated a
polynomial representation and estimated the coefficients for each polynomial
feature from degree o to degree 3. This gave a total of 20 coefficients, since in
this case, we are dealing with three variables up to degree 3. In the general
case, where we are dealing with n variables up to degree d, the number of
coefficients is given by the formula:

(n + d)!
n! d! (66)
1 2 3 4 5 6 | 7| 8 9 |10
const | x Y z x| xy |z | Yy | yz | 2°
11 12 | 13 | 14 | 15 | 16 |17 | 18 | 19 | 20
3 |2y | 2z | xy? | xyz | x2® | Y3 | vz | y2® | 23

Threshold Method

With this methodology, we can derive discrete results that provide information
about the causal relationships between the variables. By adjusting the thresh-
old, we can obtain excellent results. However, we must remember that we are
dealing with systems whose structures are not known a priori. Therefore, it
is advisable to move to a more comprehensive and integrative approach. In
this particular approach, we consider that the smaller coefficients contribut-
ing to the dynamics are of the order of 1073. Therefore, we set a threshold of
0.5 - 10~ 3 power, which corresponds to half the time step (0.001 seconds), to
eliminate coefficients that do not contribute to the dynamics and to obtain a
sparse matrix. In this way, we can calculate the error by evaluating the sum of
the squares of the differences between the coefficients of the obtained matrix
and those of the original matrix, which describe the dynamics in this higher-
dimensional space. This particular approach is suboptimal, and we have the
opportunity to apply a novel method based on the results of the linear system.

Lasso Regularization-Threshold Method

Similar to our approach in the linear case, we used different values of the
parameter lambda to perform this analysis by using the Li regularization
function, with the overall goal of obtaining a sparse matrix. We then created a
graphical representation, visually shown in the Fig. 10. Following the method
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discussed before, we set the threshold value to 0.5 1073, which is the same as
the approach used in the previous practice. Using this modified approach, we
found that the model exhibited a commendable level of accuracy in effectively
identifying all causal factors associated with each variable within the expanded
space.

1e—9+1.00114e—3 Cross-Validation Error as Function of Alpha
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Figure 10 Plot of the computational process employed to determine the optimal value
of A used in Lasso reqularization for parameter calculation in the non-linear system.

More precisely, the function establishes the value of zero for all variables that
do not contribute to determining the future state of the system and, of conse-
quence, the variables that play a central role in causality are emphasised. In
terms of quantitative analysis, the model has an average error rate of 3.4-1074
per coefficient. This result can be considered favourable for a system of this
nature, characterised by coefficients of such small magnitude.

Linear Response Connection

By persisting in this particular context in a high-dimensional space, we can
achieve another important result. In particular, we can compute the covari-
ance matrices at different time intervals: At the moment, we derive matrices
with dimensions 20x20, since the system is to be characterised by 20 different
features corresponding to polynomial features up to degree 3. Employing the
same method we used for the linear system, we calculate the response using
the given formula. To avoid a singular matrix, it is important to eliminate the
first row and column that correspond to the constant polynomial feature. In
this way, we obtain matrices with reduced dimensions that measure 19x19. By
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multiplication of covariance matrices, we obtain response matrices at time t,
where we can selectively focus only on the first three rows, which refer to the
variables x, y and z and ultimately define the state of the system. In this case,
capturing the response requires summing the variables that depend on z, thus
contributing to the dynamics of the system. In particular, the polynomial fea-
tures = and x3 play a central role and force us to aggregate the corresponding
response generated by their influence. As can be seen from Fig. 11, our careful
efforts have led to an accurate representation of the response curve, which,
thanks to our extended dimensional space, restores the deep connection to the
theory of statistical physics.

Response in the Extended Space
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Figure 11 Comparison between the reconstruction of the rescaled response in the ex-
tended space through the use of statistical physics formula (blue line) and real response

(red line)

This diagram has been carefully constructed by an extensive simulation involv-
ing an amount of more than 2.5 - 10% individual trajectories. It is imperative
to capture such a large amount of data when working in the extended spa-
tial domain, as it is essential to compensate for the inherent complexity and
subtleties that arise to achieve the same level of precision and statistical con-
vergence that mirrors the results that can be obtained in the conventional
spatial framework.
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I1
Machine Learning and Statistical Physics Method

In a broader context, when confronted with a generic non-linear system, we
have obtained remarkable results in determining the response function through
an extensive study of correlations and ML techniques. This methodology in-
volves the use of non-linear multiple regression to determine which variables
within the expanded parameter space exert an influence on other variables.
Then, the response is derived by performing matrix multiplications on the
covariance matrices within this expanded parameter space. Through this pro-
cess, we systematically derive the response of a variable at each successive
time step, that follows the change in another variable, even in scenarios where
the dynamics of the system are governed by a non-linear evolutionary law. In
this way, we can access the system and examine how it responds through a
numerical experiment based on its variables and relationships.

However, a limitation inherent in this approach becomes apparent when con-
fronted with systems characterized by hidden variables in their dynamics. In
such cases, this method becomes inaccurate and insufficient to decipher the
influence of a single variable in the face of change, necessitating the search for
the existence of alternative methods.

Low Variance Case
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Figure 12 Probability distribution of the variable x, y and z computed for different
values of non-linear parameter r

When we consider a system characterised by a bounded variance and values,
in particular in the range from o to 1, analogous to the system studied be-
fore whose probability distribution is shown in Fig. 12, we can leverage a
polynomial approximation strategy based on the principles of McLaurin’s De-
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velopment theory of evolution to elucidate each non-linear interrelationship
between the individual variables. Specifically, within this operational regime,
it is noteworthy that any non-linear relation or function can be carefully de-
scribed in terms of polynomial terms. In this context, conjecture about the
specific functional form underlying the data generation process is unnecessary,
since the comprehensive summation of polynomial terms effectively includes
the underlying mechanisms.

To ensure a high degree of prediction accuracy (which depends each time on
the particular problem we are analyzing), we perform an analysis in which the
power of each variable is examined up to the seventh degree, by assuming that
there are no mixed terms. In the context of a system with three variables,
this endeavour culminates in the derivation of a 22x22 matrix, accounting for
the constant variable as well. Subsequently, employing the Machine Learning
(ML) and Statistical Physics (SP) Methodology, we can reconstruct the sys-
tem’s evolution laws and thus extract the system’s response from the collected
data.

const | * | x

12 |13 |14 |15 |16 |17 |18 |19 | 20 | 21 | 22
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111
Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a special architecture in the field of ar-
tificial neural networks. They are widely used in the fields of machine learning
and natural language processing (NLP) and enable the modelling of sequen-
tial data. Such data can span different domains, from text sequences to time
series. RNNs are designed (as we can see in Fig. 13) to process data with
sequential structures where preserving the relationship in the information is
of significant importance. RNNs offer important advantages over their coun-
terparts, feed-forward neural networks:

Sequential Data Processing: RNNs perform well on tasks involving se-
quential data. They are able to process input data of varying lengths and
capture dependencies over time.

Recurrent Connections: RNNs use recurrent linkages, a mechanism in
which the output of a previous step serves as the input for the subsequent
step. This mechanism allows RNNs to maintain a hidden state that facilitates
the capture and storage of information from previous steps in the sequence,
enabling memory and reuse.

Elaboration New Results: When generating new results, RNNs incorpo-
rate both current and historical data, taking into account the entire temporal
evolution of the data.

£ ) () (@
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@ Unfold > »@* h(t+)
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Figure 13 Structure of a general one-layer RNN, where x corresponds to the input,
h to the hidden state and o to the output. The weighting matrices W are the same at
each time step.
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Nevertheless, there are some disadvantages associated with the use of this
particular class of neural networks. The computational requirements resulting
from the recurrent nature of RNNs lead to relatively long processing times. In
addition, training RNNs tends to be more complicated and resource-intensive
compared to feed-forward network models. Next, not all activation functions
can be used to process longer sequences of information effectively. There
are two important problems associated with RNNs: Gradient Exploding and
Gradient Vanishing. Gradient Exploding occurs when gradients become ex-
cessively large during backpropagation, resulting in unstable training. Con-
versely, Gradient Vanishing occurs when gradients decrease to the point where
the network has difficulty capturing long-term dependencies contained in se-
quential data. To overcome these challenges, advanced RNN variants such
as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)
networks have been introduced. LSTMs and GRUs incorporate gating mecha-
nisms designed to mitigate problems associated with gradients by allowing the
network to selectively retain or discard information from previous time steps.

LSTM (Long Short Term Memory)

Unlike conventional RNN, the hidden layers of LSTM consist of concrete mem-
ory cells, and the flow of data is controlled by computational units called
'gates". Within each cell, three different types of gates can be activated: the
first is responsible for resetting the state of the cell, the second updates the
state and the third is specialised in changing the hidden units.

GRU (Gated Recurrent Unit)

GRU represents a variant that features a relatively simplified architecture com-
pared to LSTMs and offers higher computational efficiency. Similar to LSTMs,
GRUs do not contain separate memory cells, which reduces architectural com-
plexity. GRUs consist of two gates: the reset gate and the update gate. The
reset gate controls which information from the previous time step should be
reset or forgotten. It takes into account the input from the previous hidden
state and the current input and ultimately returns values between o and 1
for each element in the hidden state. This mechanism enables the network to
recognise the relevance of information to the current time step. The update
gate determines the extent to which the previous hidden state should be pre-
served and combined with the new candidate state. Similar to the reset gate,
it considers the previous hidden state and the current input and generates
values between o0 and 1 for each element in the hidden state.
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Causality RNN Model

By using this particular neural network architecture, we have created an RNN
that consists of a GRU layer followed by a linear layer. The inclusion of a
linear layer adds flexibility to the structure of the model. After the GRU layer
has processed sequential information, the linear layer can identify complicated
relationships between the information output. This property proves particu-
larly valuable when dealing with non-linear or complicated relationships. The
neural network starts with an initialisation characterised by an input dimen-
sion of 3 and a hidden dimension of 3 within the GRU layer. A linear layer
is then used to transform the output into a 3-dimensional representation. As
a loss function, we chose the MSE (minimum squared error), which quantifies
the discrepancy between the model’s predictions and the target values, and
an Adam optimiser to serve as a tool to update the model weights throughout
the training process. During the simulation of the system, we observed the
phenomenon (the same as the non-linear system) for an approximate dura-
tion of 10 minutes. During this period, we recorded the positions of each of
the three particles at 1 millisecond intervals, keeping the non-linear parameter
r at a fixed value of 2.5. This observation generates a dataset of 5 - 105 se-
quences, each consisting of 250 time steps. For the purpose of cross-validation,
we reserved go% of the data for training and 10% for testing. It is important
to note that our dataset is structured as a 3D tensor (5- 105, 250,3). After
these preliminary steps, we start training the RNN and then evaluate its pre-
dictive capabilities over 100 different trajectories. The RNN model is able
to detect the causal link between variable x and variable z by examining the
response function. It is worth noting that the RNN model is sensitive to the
initial conditions, especially in terms of the magnitude obtained by averaging
the responses over the 100 trajectories. However, despite this sensitivity, the
RNN model reproduces the same qualitative response as the original system
(simulated without noise in this case). This consistency in the qualitative
output confirms the efficiency of the RNN in capturing the causal relationship
between the two variables of interest. Nevertheless, as we can see in Fig. 14
two important differences emerge when comparing the RNN model with the
original system:

o Quantitatively, the response produced by the RNN model differs from the
results obtained in the original system:;

o Temporally, the time interval in which the response is observed in the
RNN model is much shorter and is 0.2 seconds, as opposed to the 3.5
seconds of the original system.
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Figure 14 Comparison between the original response (blue line) and the response

computed by the trained RNN (red line)

The system is rather complex and finding the causality relation is a good
achievement, but it would be very useful to find a more accurate method
or network to achieve better precision in the quantitative description of the
response and in the temporal decorrelation of the initial intervention.
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Chapter V

Conclusions

In conclusion, this study has explored the integration of Linear Response The-
ory with the application of machine learning techniques (ML) in the area of
causality and offers insights into the potential and limitations associated with
the use of ML algorithms to infer causal relationships. We first presented
Linear Response Theory and the Fluctuation-Dissipation theorem to intro-
duce the response function and explain the concept of causality. Our com-
prehensive analysis included a thorough examination and discussion of the
two fundamental approaches to causality, namely interventional and obser-
vational. Subsequently, we turned our focus to a stochastic linear Markov
model, recognizing that mere correlations are not sufficient to elucidate causal
relationships. In this context, where the causal relationships are known, we
demonstrated the effectiveness of the methods of ML in identifying causal
factors and making accurate predictions based on observational data. In our
analysis, we employed three different methods: Linear Regression, a Correla-
tion mathematical approach, and a simple Multi-Layer Perceptron (MLP). It
is worth noting that using the Multi-Layer Perceptron resulted in an increased
error due to overfitting when we increased the number of independent samples
used for the cross-validation task. To address this problem, we successfully
solved it by applying Lasso Regularization, which led to very accurate results.
Thus, we have effectively addressed the challenge of establishing the causal
connection within the linear problem. Building upon the findings from the
linear response analysis, we have extended our study to investigate the dy-
namics of a non-linear system. We recognize that many real-world systems
exhibit nonlinear behaviour, and understanding their causal relationships is
crucial. Initially, we sought to ascertain the extent to which the linear re-
sponse analysis provides meaningful insights in the presence of nonlinearity.
Subsequently, we turned our attention to addressing this challenge by harness-
ing the power of ML, by trying and analyzing new techniques. To confront this
task, we have included non-linear regression models and RNN, to capture the
intricate interactions and identify non-linear cause-effect relationships within
the system. By applying these methodologies and integrating them with the
principles of statistical physics, we have been able to find out the response for
a non-linear system. In this direction, the work also discusses the limitations
and challenges in non-linear systems associated with applying machine learn-
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ing in causal analysis. The use of machine learning for causal analysis paves
the way for future research directions to enhance effectiveness and reliability
in establishing cause-effect relationships. Moving forward, our investigations
will extend beyond linear and nonlinear analysis to incorporate hidden vari-
ables into the causal modelling framework. This extension is crucial as hidden
variables can exert a substantial influence on the observed relationships be-
tween variables, offering a deeper comprehension of causal connections within
complex systems.
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