
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Offloading for Efficient Execution of AI
applications in Edge Computing

Supervisors

Prof. Jaya Prakash CHAMPATI (IMDEA)

Prof. Luca VASSIO (POLITO)

Candidate

Rishi TRIPATHI

September 2023

Summary

With the dawn of powerful and energy-efficient hardware in the low-power com-
puting space, there is the need to make a decision to go either for performance or
for efficiency. Although not completely exclusive to each other there is usually a
winner during practical applications. However, the chosen solution might not really
hold up once the energy constraints show up in the form of limited power sources
for mobile devices.

The performance capabilities of these edge devices are severely limited to thermal
and energy constraints. For the sake of improving efficiency and accuracy in machine
learning and running neural networks on board such portable devices we are faced
with the following simple yet brutal choice. The first option involves wasting local
resources in the form of energy and computational power for a low-accuracy output.
The second option is sending (offloading) the job to be processed onto a remote
server with high accuracy but incurring massive energy penalties on the local level
in the form of energy wasted for transmission and at the server in the form of the
energy used to compute the result.

This work deals with how to optimise that decision so that we can optimise for
accuracy and energy simultaneously with a sharper focus on energy. The Problem
Statement for this research project is to develop a regime or algorithm that can
help us make the optimum decision to offload the task from an edge device to a
server so that we can improve upon the energy budget and average accuracy across
all jobs.

In order to measure the performances and answer the research questions, e have
used two devices over a wireless [WLAN] network. The first device is a low-power
(6.5W) Raspberry Pi 4 which represents our local device or edge device. On this
device, a small version of the MobileNetV2 image classifier is running. The second
device is a computer as a server which is high power(120W) and it is running a
larger version of MobileNet V3 image classifier which is more accurate. We are
measuring the energy consumption of both these devices with the use of external
measuring devices. The Raspberry Pi has a set of images (jobs) on its local memory
that it has to classify. Before each image can be classified it must be reshaped into
224x224 pixels. We have an energy budget that is the sum of energy required to

ii

reshape all jobs and classify all jobs on the local device. The local device has three
options for each image, it can either reshape and classify itself paying the associated
energy costs, it can transmit to the server for reshaping and classification by paying
the transmission cost and finally it can reshape the image and then transmit to
pay the reshape energy cost to save on transmission energy costs for larger files.
Our goal is to somehow make the best decision out of the three to finally consume
less energy than our energy budget while simultaneously improving accuracy. This
decision is made based upon the expected values of these different energies for each
image, using lookup tables that have been created by data collection, essentially
making this a computing time(energy) to space trade-off.

The Implemented solution was run on three sets of data from the ImageNet
database and it allows us to improve upon the energy budget by 1.93 percent in
our best case and an accuracy gain of .42 percent in top 1 accuracy. The other two
sets that have been tried stand to gain .36 percent in accuracy and 1.26 percent
in energy budget for set 2 and .22 percent for accuracy and .89 percent in energy
budget in set 3. Since there is not much focus on research in the field of studying
energy consumption in general for networks and edge devices these results reveal to
us the possibility of squeezing water out of rocks when it comes to saving energy. If
the data being processed is favourable and more uniformly distributed in a certain
size range, more than 5-10 percent of energy savings can be made.

iii

Acknowledgements

I would like to express my deepest gratitude to my thesis guides Prof. Luca
Vassio and Prof. Jaya Prakash Champati for supporting me through the most
tumultuous time in my life, their guidance and wisdom and the ability to not give
up on me even when i was not sure of myself. I would like to also mention the
phenomenal guidance and help they provided me on every step of this research
project. Professor Champati helped me by suggesting me texts and courses to fill
gaps in my knowledge and providing continued guidance during the whole process
of experimentation, egging me on in the right direction whenever i wandered off
on a tangent. Professor Luca taught me some mathematical tricks that helped me
reduce computational complexity during the development of the algorithm. His
general help and support finally brought me back on track in my life and for that i
am forever grateful

I would also like to thank my brothers Sachit , Shashwat and my uncle Akhilesh
Kumar Tripathi for always being there in need.

I am lucky to have worked under and with these splending individuals and i will
be forever grateful for their contribution in my project and the impact they had on
my life.

iv

Table of Contents

List of Figures viii

List of abbreviations and symbols ix
Symbols used . ix

1 Thesis Objective and Contributions 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Thesis Structure . 3

2 Literature Review 4
2.1 Energy-Efficient Computing in IoT 4
2.2 Task Offloading Strategies . 5
2.3 Algorithms and Decision-Making for Offloading 5
2.4 Offloading in Resource-Constrained Devices (e.g., Raspberry Pi) . . 6
2.5 Gaps in Current Literature . 6
2.6 Conclusion . 6

3 Problem Modelling 8
3.1 What is a Queue Model . 8
3.2 History of Queue Model . 9
3.3 Usage of Queue Model . 10
3.4 The First Queue Model . 12
3.5 The problems with the Queue Model 15
3.6 Insights gained From the Queue Model 15
3.7 Redefining of the problem parameters in a Real World Scenario . . 15
3.8 The Final Model . 16

4 Data Description 19
4.1 Dataset description . 19
4.2 Image subset . 20

vi

5 Experimental Setup and Experimentation 23
5.1 Server side experimentation . 23

5.1.1 Server Specification . 23
5.1.2 Methods to measure the server side energy consumption . . 24
5.1.3 Comparability of energy measurement results 27

5.2 Local device side experimentation 28
5.3 Methodology . 30

5.3.1 Classification models . 32
5.3.2 The Algorithm . 35

6 Results and Observations 41
6.1 Data-Set 1 Energy Budget and Improvements 41
6.2 Data-Set 2 Energy Budget and Improvements 42
6.3 Data-Set 3 Energy Budget and Improvements 43

6.3.1 Compiled Results . 44

7 Conclusion 46

Bibliography 48

vii

List of Figures

3.1 Sequential flow of a standard Queue Model. 8
3.2 Model of the Problem Using Queues 12

4.1 Sample image 1 for set 1 . 20
4.2 Sample image 2 for set 1 . 20
4.3 Sample image 1 for set 2 . 21
4.4 Sample image 2 for set 2 . 21
4.5 Sample image 1 for set 3 . 22
4.6 Sample image 2 for set 3 . 22

5.1 Data from Powertop . 25
5.2 Device Used to Measure Server Energy 26
5.3 Device Used to Measure Raspi Energy 29
5.4 General Steps To Classification . 31
5.5 Algorithm flowchart 1. 36
5.6 Algorithm flowchart 2. 38
5.7 Reshape Energy Lookup Table Graph 39
5.8 Transmit Energy Lookup Table Graph 40

6.1 Results and Observations . 44
6.2 Graph for energy consumption comparison 45

viii

List of abbreviations and
symbols

Symbols used
j -> one job from the set of all available jobs J
i -> 0 for local machine, 1 for server
ai -> accuracy of model i
xj -> if job j is assigned to the local machine , xj = 1 and xj = 0 if job j is assigned
to the server
Eij -> energy required by machine i to perform job j
Rij -> energy required to reshape the job j on machine i
Tj -> transmission energy required to send job j to the server
T0 -> transmission energy required for a reshaped job
yj -> decision variable that is 0 if reshaping of the job is done locally, 1 if it is
done on the server
Nrg -> Max available energy/ Energy constraint
Ealg -> Energy consumed by the machine 0 to run the algorithm.
IOT -> Internet Of Things

ix

Chapter 1

Thesis Objective and
Contributions

1.1 Introduction

The problem of offloading computation is much older than one might think and
present at many levels of abstraction. There has always been the case of distributed
computing systems and as always there is the scheduling problem for multi-core
systems. At different levels of abstraction these problems are dealt with in very
different manners but at the end of the day all of these approaches are at their heart
similar because the system gets optimised for a certain attribute with a constraint
on other available parameters. This constraint in our case is twofold, one of energy
and the other of accuracy.

The problem that we have at hand requires us to optimise the energy consumption
and accuracy of an image classification model running at a resource-constrained
device with the option of offloading that task to a more powerful classifier running
on a server that is not resource-constrained.

The setup that we have chosen is one in which a set of N images present on
our remote resource-constrained device which has the capability to perform three
functions, (1) classification model (ml) which helps classify the incoming image
into its category, (2) a reshaping function on it which reshapes the current image
to a fixed size that is required as input by the classification model and (3) finally
it can send data to the server, all of these functions have associated energy costs
that vary from job to job. The server also has the same functionality as the
resource-constrained device albeit better. However, the caveat here is that though

1

Thesis Objective and Contributions

all the functions are costlier in terms of energy to perform at the server. The limited
energy at the local resource-constrained device is far more precious compared to
the server which does not draw power from an energy-constrained container like a
battery.

1.2 Motivation

The motivations behind developing such an algorithm are the following:

1. Extended battery life on mobile devices

• Heading Every mobile device has an energy limitation which is due to the
fact that it has a battery, which is a limited power source. Similar devices
like wireless sensors that are used to collect data run on batteries that are
usually solar-powered, energy management in these cases is of the utmost
importance. Every joule of energy that can be conserved for these types
of devices contributes greatly to the performance in the long term.

• Decreased Hardware Degradation - Batteries are usually rated for a certain
number of charges and recharges. Once you hit the limit on the number
of charge-discharge cycles the performance and charge-holding capacity of
the battery goes down. With the help of this algorithm, we can increase
the amount of work that can be done in the given battery capacity thereby
increasing the total amount of work done in the life cycle of the battery
by the device. If the amount of work to be done is limited every day the
frequency of the battery requiring a recharge will be lower and therefore
the life of the battery will go up depending upon the workload.

2. Benefits in other distributed computing systems

• By using a generalized version of this approach for other distributed
computing systems with resource-constrained nodes one can improve and
optimize the use of the constrained resource while saving energy in the
process.

3. Environmental Benefits

• The world is headed to an era of IoT (Internet of Things). Small devices
and sensors with batteries will be more and more common. For example,
devices like smartwatches can make use of similar algorithms for their
specific purposes like measuring body data.

2

Thesis Objective and Contributions

One device saving twenty joules is not a lot but the number of such devices
is bound to increase in the world over time as more and more people
begin to use more and more digital devices. Twenty joules per device for
a million devices adds up to a substantial number and compounding that
over the lifetime of the device it will be a net positive for the world. Since
the energy demands for the world are always rising this might add a drop
in the bucket of energy that we will need in the future.

1.3 Thesis Structure

This thesis is organized as follows. Section 2 illustrates the literature review done
for the project studying relevant work in the field. Section 3 formalizes the problem
also encapsulating the different approaches to modelling the problem some of which
panned out and others not so much. We delve into the why and how of different
approaches. Section 4 describes the data-sets that have been used and how the
data was prepared. Section 5 presents the methodologies, devices, models and other
things that were used in the setup for the experiment. Section 6 summarizes the
main experimental results. Finally, Section 7 draws conclusions and summarizes
the future research agenda.

3

Chapter 2

Literature Review

Energy efficiency is a paramount concern in the realm of (IoT) due to the prolifera-
tion of battery-powered and resource-constrained devices. The need to maximize
the lifespan of these devices while maintaining their functionality has prompted ex-
tensive research in the field of energy-efficient computing. One promising technique
to achieve energy savings is task offloading, which involves delegating computa-
tionally intensive tasks to more capable devices or cloud resources. This literature
review aims to provide an overview of energy-efficient computing in IoT and explore
the role of task offloading in addressing energy constraints.

To structure the literature review effectively, we will segment this section of the
chapter into distinct sections. These sections will provide insights into previous
research related to the following aspects: (1) Energy-Efficient Computing in IoT
(2) Task Offloading Strategies (3) Algorithms and Decision-Making for Offloading
(4) Offloading in Resource-Constrained Devices (5) Gaps in Current Literature (6)
Conclusion

2.1 Energy-Efficient Computing in IoT

Energy efficiency stands as a foundational principle in IoT design, as many IoT
devices rely on limited battery capacities. Dynamic voltage and frequency scaling
(DVFS)[1], low-power processors, and sleep modes are some of the techniques that
have been employed to reduce power consumption. These methods aim to strike
a balance between performance and energy efficiency, adapting device behavior
to the current workload. However, since we are focused on the implementation
of an offloading decision making algorithm, many of the tips and tricks that we

4

Literature Review

gain from the insight granted by studying this research would not be of much use
since we are not studying the running of a system for an extended period of time,
however some of the insights help us set up our remote device to be more efficient.

2.2 Task Offloading Strategies

Task offloading is a key strategy to improve energy efficiency in IoT and edge
computing environments[2]. It encompasses both computation offloading (offloading
parts of a computation) and data offloading (sending data to remote servers for
processing). One of the primary advantages of task offloading is its potential to
reduce energy consumption by allowing less capable devices to offload resource-
intensive tasks to more powerful devices or cloud servers . This approach can lead
to improved response times and better resource utilization. This insight allows us
to visualise what strategy might or might not work in our case. A key strategy that
comes to mind when is partial processing of the workload before it is completely
offloaded to the server for processing in order to save energy during the process of
transmission.

2.3 Algorithms and Decision-Making for Offload-
ing

The effective implementation of task offloading relies on sophisticated algorithms
and decision-making processes. Research has explored heuristic-based approaches[3],
machine learning algorithms, and optimization techniques for making informed
offloading decisions. These algorithms consider various factors, including task
characteristics, device capabilities, and network conditions, to determine whether
and what to offload. The performance of different offloading algorithms is evaluated
in terms of energy savings and latency reduction. Since we are solely focused on
optimising for energy we will concentrate on the energy aspect of the optimisation
techniques.

5

Literature Review

2.4 Offloading in Resource-Constrained Devices
(e.g., Raspberry Pi)

Resource-constrained devices, such as the Raspberry Pi, present unique challenges
and opportunities for task offloading. Researchers have investigated the trade-offs
between offloading tasks to more powerful devices or cloud resources in heteroge-
neous networks and executing tasks locally [4]. This balance is critical in scenarios
where device capabilities and network bandwidth are limited. We aim to explore
optimizations specific to IoT platforms like the Raspberry Pi, aiming to maximize
energy savings without compromising performance and for this purpose studying
such research is important in order to figure out things that we can try that others
have not. The setup and aim of each network and node configuration is different
so a mostly unique solution is required in every case. However it is better to know
the types of solutions that end up working most of the time.

In some studies the subject has been studied[5] but since tracking energy con-
sumption is a difficult task results are definitely present but rearely quantified. Key
findings from these studies, along with their methodologies and novel contributions,
provide valuable insights into the practical implications of offloading strategies.

2.5 Gaps in Current Literature

While substantial progress has been made in the field of energy-efficient computing
and task offloading in IoT, certain gaps and challenges remain. There is a need
for further exploration of unresolved research questions, including issues related
to network latency, security, and real-time offloading decisions. Additionally, the
scalability and adaptability of offloading strategies in complex IoT ecosystems
warrant continued investigation. In the arms race of computing power on edge
devices and the eventual death of Moore’s law it is time to start paying more
attention to energy consumption of such devices and how to optimise the situation
for every last joule of energy.

2.6 Conclusion

In conclusion, energy-efficient computing and task offloading are integral compo-
nents of IoT device management, enabling the conservation of valuable energy
resources. The literature reviewed in this section underscores the significance of task

6

Literature Review

offloading as a means to achieve energy savings while maintaining the functionality
and performance of IoT devices. This body of research informs the context and
motivation for the current study, emphasizing the relevance of energy-efficient
computing in IoT and the role of task offloading as a promising strategy.

7

Chapter 3

Problem Modelling

In this chapter, we will discuss the initial models along with their constraints.
Based on these constraints, we will outline the evolution of our approach to address
the limitations of the original model.

3.1 What is a Queue Model

Figure 3.1: Sequential flow of a standard Queue Model.

A queue model, often referred to as a queuing model, is a mathematical and
analytical framework used to study and understand the behavior of waiting lines
or queues in various systems. These systems can be found in a wide range of
applications, including customer service centers, manufacturing processes, computer
networks, transportation systems, and more. Queue models help in predicting and
optimizing the performance of such systems by analyzing the dynamics of entities
waiting for service or processing.

8

Problem Modelling

A standard queue model follows a sequential flow that involves several key
elements:

Arrivals: In a queue model, entities arrive at the system for some service or
processing. These entities can represent customers at a service center, packets in
a computer network, or any other relevant items. Arrivals can occur at random
intervals or follow a specific pattern. You can see Arrivals in the figure 3.1 as the
incoming service request.

Queue: When entities arrive at the system but cannot be immediately served or
processed, they join a waiting line or queue. This queue holds entities in the order
they arrived, following the "first come, first served" (FCFS) principle, although
variations like priority queues exist.

Service: Entities are served or processed by one or more service points or
servers. The service time for each entity can also vary; it may be constant or follow
a probability distribution.

Departures: After receiving service, entities leave the system and are considered
"departures." The departure rate is influenced by the service rate and the number
of servers available. The Departures are represented in figure 3.1 as output.

Queue Length: The queue length represents the number of entities waiting
in the queue at any given time. It is a critical metric for understanding system
performance.

Utilization: Utilization measures the fraction of time that servers are busy
serving entities. It is calculated as the ratio of the arrival rate to the service rate
and provides insights into the efficiency of the system.

Waiting Time: The waiting time for an entity in the queue is the time elapsed
from arrival until it begins to receive service. Minimizing waiting time is a common
goal in queue model analysis.

These basics will serve as a foundation for our purpose and we can build our
own setup in its image, easily facilitating the formation of equations.

3.2 History of Queue Model

The entire discipline of telephone traffic engineering as well as queuing theory were
both developed by the Danish mathematician, statistician, and engineer Agner
Krarup Erlang, who oversaw a technical lab at the Copenhagen Telephone Co.
in the early 20th century. Telephone companies widely accepted his substantial

9

Problem Modelling

research on wait times in automated telephone services and his recommendations for
more effective networks. In 1917, he solved the M/D/1 queueing model, and in 1920,
the M/D/k (Kendall Notation) queueing model used a Poisson process to simulate
the quantity of phone calls arriving at an exchange. Here, the letter M, stands
for "Markov" or "memoryless." D stands for "deterministic," meaning jobs entering
the queue require a definite quantity of service, and finally k denotes the number
of servers at the queueing node (k = 1, 2, 3,...) . Jobs will queue up and wait
for service if the node has more jobs than servers. Also in 1930, Felix Pollaczek’s
proposed the solution to the M/G/1 queue was later reformulated in probabilistic
terms by Aleksandr Khinchin, and is now referred to as the Pollaczek-Khinchine
formula.

Mathematicians started to become interested in researching queueing theory
after the 1940s. For example, in 1953, David George Kendall solved the GI/M/k
queue and developed what is currently referred to as Kendall’s notation, a modern
notation for queues. Pollaczek investigated the GI/G/1 in 1957 using an integral
equation. John Kingman provided what is now known as Kingman’s method to
calculate the average wait time in a G/G/1 line. Then in early 1970s, Leonard
Kleinrock worked on the application of queuing theory to message switching and
packet switching, respectively. His doctoral dissertation at the Massachusetts
Institute of Technology in 1962, which was later published as a book in 1964, was
his debut contribution to this discipline. His theoretical work, which was published
in the early 1970s, served as the theoretical foundation for packet switching on the
ARPANET, the predecessor to the Internet.

Subsequently, researchers began examining the utilization of queues featuring
inter-arrival and service time distributions modeled as phase-type distributions.
These investigations encompassed the application of both the matrix geometric
technique and the matrix analytical method. Now in the modern context of wireless
networks and signal processing, systems with linked orbits play a significant role
in queueing theory. The queueing theory is now widespread in other domains i.e.
product creation where (material) products have a spatiotemporal existence, in
which they have a volume and a duration for example food at restaurants. However,
performance measurements for the M/G/k queue is one unresolved issue.

3.3 Usage of Queue Model

If we look around us, we find an abundance of queues in our daily lives, from the
line at the bank to the line at the supermarket. The number of queues a person has
to deal with in a lifetime is staggering and no one really thinks about it. Whenever

10

Problem Modelling

there are not enough resources, queues can form. Every company can tolerate some
queues because a complete lack of queues would indicate an expensive overcapacity.
So the goal of queuing theory is to create efficient, cost-effective systems that can
serve customers promptly and effectively.

Queuing theory is used in supermarkets to speed up checkout procedures. By
taking into account elements like the time of day and season, they compile data
on client arrival rates and cashier service rates. Mathematical models, such the
M/M/1 queue model, can be used to forecast client wait times and line lengths.
The number of checkout lanes to open or close during the day is decided using
this information. Additionally, express lanes for speedy service and self-checkout
alternatives are available at supermarkets. A queue can be managed effectively by
using separators, clear signage, and displays of expected wait times. By matching
employee scheduling to demand patterns, over-staffing during calm times is avoided.
In order to provide a seamless and effective purchasing experience, constant process
changes are informed by customer feedback.

Similarly in the case of manufacturing and supply chain management Queue-
ing theory is applied extensively. It supports production scheduling, workstation
optimization, quality assurance, and inventory management in manufacturing. It
helps manufacturers manage inventory effectively while streamlining processes,
removing bottlenecks, and maintaining product quality. Queueing theory helps
with demand forecasting, supplier selection, logistics and transportation optimiza-
tion, warehouse management, and risk assessment in the context of supply chain
management. It guarantees that products are delivered from suppliers to clients
in an expedient manner, cuts down on transportation expenses, and optimizes
warehouse operations.

Additionally, it is essential for inventory management, assisting businesses in
determining reorder points and safety stock levels. This guarantees that goods are
accessible when needed without incurring excessive inventory costs.

Businesses can use queuing theory to make data-driven decisions, increase
operational effectiveness, cut expenses, and ultimately deliver goods to customers
quickly and affordably.

With these two examples it becomes abundantly clear that even though queuing
theory is applicable in both these scenarios they are not exactly the same in setup
and execution. This tells us that each use-case of the queuing theory requires
a slightly different approach and we get a different set of equations for different
situations.

11

Problem Modelling

3.4 The First Queue Model

Objective: The problem that we are discussing encompasses a distributed system
with a small less accurate system which is a local machine and an absolutely
accurate system which we refer to as the server. We have a slew of jobs that need
to be performed and the basic question here is how to allot the jobs to the machines
such that their individual input queues remain stable (which means they neither
blow up nor starve) and we receive an optimum scheduling that gives us the best
possible use of our computational budget.

Problem Formulation: To articulate the problem, we start with the first model,
we try to adopt was supposed to be purely mathematical and with a mathematically
obtainable solution, which would later be verified with experimentation.

For this first model, we decided to model the problem as follows. Since we had
a local machine and a server we used a probabilistic model to represent our case.
Some things to take note of are that the local machine has an accuracy of p and
therefore there is a chance that it will fail to do the job with the probability of
1 − p, the server is assumed to be capable of doing the job with a probability of
1. the only difference is the time required, the local machine can process the job
in a time of 1 and the server needs tf time to process the job where tf > 1. The
simplest explanation of the model is in the image.

Figure 3.2: Model of the Problem Using Queues

Where A(t) is a random process (a random process is a collection of random
variables usually indexed by time or sometimes by space) the random process A(t)
was supposed to be a representation of the jobs randomly arriving for processing
in the system. The queue Q1(t) is the place where all the arriving jobs are being
queued for processing on the local machine.

The queue Q2(t) is the place where all the arriving jobs are being queued for
sending to server.

12

Problem Modelling

A(t) =
I

1 k
2 1 − k

J
(3.1)

α(t) =
I

A(t) = 1 Q1 Q2
A(t) = 2 2Q1 2Q2 Q1, Q2

J
(3.2)

α(t) which can make one of the following 3 decisions which are to

1. Process Locally - In this cast the job would be forwarded to another indepen-
dent process s1(t) which would classify the job correctly with a probability of p1 if
the classification was wrong then it would feed the job to s2(t)

2. Send to server - this would entail invoking s2(t) which would then send the
job to queue Q2(t) which would be used to transmit the job to server. take note
that if a fail would happen in the process s1(t) the jobs from there would ultimately
end up here.

3. Idle - This would be invoked in case the queue Q1(t) is empty.

Q1(t + 1) = max[Q1(t) − b(t),0] + a(t) (3.3)

3.3 is the general equation for the next state of a queue where a(t) is arrivals in
the queue and b(t) is departures. Our specific cases are listed below. We are using
the Lyapunov function f to check our queues.

Q1(t + 1) = max[Q1(t) − p + f1(A(t), α(t))] (3.4)

Q2(t + 1) = max[Q2(t) − (1 − p)) + f2[(A(t), α(t)] + (1 − p)] (3.5)

Q1(1) = max(0 − 0) + f1(A(t), α(t)) (3.6)

for A(t) to be maxed we have 3 options 2Q1, 2Q2, Q1Q2

current policy → if 1 then send to Q2 if 2 send to Q1, Q2.

Q1(t) = 0 + f1(A(t), α(t)) (3.7)

Q1(t) = 0 + p (3.8)

Q1(2) = (p − 1,0) + f1(A(t), α(t)) (3.9)

its apparent that if f1(A(t), α(t)) = p Q1 can not build up

13

Problem Modelling

Q2(1) = 0 + 1 (3.10)

Q2(2) = (1 − 1) + 1 + (1 − p) (3.11)

Q2(3) = (1 + 1 − p − 1) + 1 (3.12)

in this case whenever there is a drop Q2 can’t stop blowing up

Queue State upon action

1) If queue 1 is populated and the action process locally is taken, the queue is
reduced by 1 in the current slot with probability p

2) If queue 1 is populated and sent server action is taken then q1 is reduced by
1 and queue2 is increased by 1

3) If queue 2 is populated and the action to transmit to the server is taken then
after tf amount of time the length of q2 is reduced by 1

4) If queue 1 is empty then idle is chosen

5) If queue 2 is empty idle is chosen

Now this model though appearing genius is riffled with flaws. For one, the
equations get complicated and monstrous as it involves Lyapunov optimisation for
the queues which refers to the the use of a Lyapunov function to optimally control
a dynamical system. Lyapunov functions are used extensively in control theory to
ensure different forms of system stability. The state of a system at a particular
time is often described by a multi-dimensional vector. A Lyapunov function is a
non-negative scalar measure of this multi-dimensional state. Typically, the function
is defined to grow large when the system moves towards undesirable states. System
stability is achieved by taking control actions that make the Lyapunov function
drift in the negative direction towards zero. In our case, we need to avoid the
queues getting filled so that the solution can be generated in a favorable amount of
time and the system does not drift to instability. Once we check for the Lyapunov
drift for both our queues we find that the problem if solved for a solution always
shows that the send to server option is never chosen by the process alpha and the
population of the q1 and q2 are always in the ratio of p: 1-p which is due to the
fact that the failed cases of the local machine end up on the server anyway. Thus
though we did a bunch of mathematics the verdict remains that the solution in
such a case is trivial and comprises of spamming the local machine with jobs with
the fails passing to the server.

14

Problem Modelling

3.5 The problems with the Queue Model

The most intriguing aspect of this model revolves around the notion that the
local machine is aware of its failures in a task, particularly in scenarios like
image recognition where the veracity of classification results remains uncertain.
Consequently, determining how to transmit these failures to the server without prior
verification poses a significant challenge. Furthermore, any necessary verification
must be carried out with absolute precision (100 percent), a quality only achievable
throughe the server.

3.6 Insights gained From the Queue Model

The insight that we gain from this sudden brick wall we have encountered will be
three-pronged.

1. . A remote system should have an energy budget which is a glorified version
of a computational budget but with far more real world significance than a
computational budget could convey.

2. The problem with accuracy of the local machine and server in doing the jobs
necessitates optimising for accuracy as well since we never know when a wrong
result is produced.

3. Energies for transmission and processing suddenly become relevant as we have
to take into consideration energy budget as well.

3.7 Redefining of the problem parameters in a
Real World Scenario

From what we understand here we need to be more realistic and practical with our
model. So we need to Redefine the problem itself so that we can be more precise
with our endeavors.

Our scenario therefore is going to be a set of two devices which are the server
and the local device. The local device is an independent computer with an attached
sensor/camera that sends it images periodically, these images are random in size and
shape and quality, these images need to be classified into their correct categories,
for this particular purpose the device will be running a small version of an image

15

Problem Modelling

classification ML(Machine Learning) model which is not too power intensive and has
a certain defined accuracy. This local device is under an energy budget limitation,
lets say it has a battery that is charged by solar panels and it does its job in the
night after a full day of data collection with the battery fully charged initially. The
images that the local device captures first need to be reshaped to a certain size so
that they can be fed to the classification model running on the device, this process
of reshaping also consumes energy. The process of transmitting the results to the
server also takes nominal energy but the process of sending images to the server
will cost energy too. The model that runs on the local machine will also consume a
certain amount of energy per classification. The server has no such energy restraints
and has a very high accuracy of prediction as the model running on it is not bound
by computational power and energy budgets like the local machine has. The server
can essentially do all the things the local machine can with no regards to power
consumed.

3.8 The Final Model

The model constitutes of a Low Power Device (referred to as the local device) with
an independent but limited power source and limited computation potential, A
server (referred to as the server) with a high computing power and no limit on
power, for our purposes this difference in computing power equates to a difference
in accuracy of the classifiers with the server having an average accuracy of a2 and
the low power device with an average accuracy of a1 these are linked up via a
dedicated network which is wireless between the low power device and the server.
There are N number of images that are present at the low power device which are
to be processed and classified, each of these images are referred to as jobs . The
low power device has a limited power supply which has a fixed amount of energy
Nrg) available.

There are three possible operations that can happen on the low power device,

• Reshaping

• Prediction

• Transmitting image

There are three possible operations on the server

• Reshaping

16

Problem Modelling

• Prediction

• Receiving image

Each of these operations have an associated energy cost. With Eij being energy
required by machine i to classify job j, Rij being energy required to reshape the job
j on machine i, Tj is the transmission energy required to send job j to the server.
Where i is a binary variable that assumes the value 1 for the local machine and 2
for the server. With these three possible operations available on both our devices
we need to meet our goal of classifying the image. Classifying the image requires it
to be reshaped into a dimension that can be fed to the classifier, Passing it through
the classifier and recording the result. Now with the operations that are available
to us we have 3 possible ways of getting the result,

• Reshape on Local -> Classify on Local,

• Reshape on local -> Transmit to server -> Classify on server

• Transmit to server -> Reshape on server -> Classify on server

With each image the reshaping and transmission energies depend upon the size
and data contained within the image,there are certain caveats associated with the
reshape function including the fact that it is cheaper in terms of energy to reshape
the image if it needs to be up scaled than down scaled. This leads to the reshape
function energy requirement to not scale linearly with the size of the file, The
energy consumed for transmission scales perfectly linearly with the increase in file
size. We have to increase the average accuracy of the classification while obeying
the energy constraint. To introduce a mathematical model for the above problem
we have to enlist the help of a couple of decision variables xj if job j is assigned
to the local machine , xj = 0 and xj = 1 if job j is assigned to the server. yj ->
decision variable that is 0 if reshaping of the job is done locally, 1 if it is done on
the server

2Ø
i=1

xj = 1∀j ∈ J (3.13)

2Ø
i=1

nØ
j=0

Ei.xj +
nØ

j=0
{(1 − yj)R1j + yjR2j}+

nØ
j=0

x2j (yj.Tj + (1 − yj)T0) ≤ Nrg (3.14)

nØ
j=0

E1x1j + R1jx1j ≤ Nrg (3.15)

17

Problem Modelling

xj ∈ {0,1} , yj ∈ {0,1} , ∀i ∈ {1,2} , j ∈ J (3.16)

A =
2Ø

i=1

nØ
j=0

aixj (3.17)

of course our goal here is to maximize A with respect to all constraints given
in equations 1,2,3,4 now we can see that in equation 2 we have a product of two
decision variables which makes this equations exponentially more difficult to solve
with increase in the number of jobs therefore to simplify equation 2 and arrange the
terms into a form that grants us more insight into the problem we will introduce a
new decision variable zj.

zj ≤ xj, zj ≤ yj, zj ≤ xj + yj − 1 (3.18)

xj, yj, zj ∈ {0,1} , ∀j ∈ J (3.19)

nE1 +
nØ

j=0
R0j +

nØ
j=0

(E1 + T0 − E0)xj + (Rij + Tj − Roj − T0j)zi ≤ Nrg (3.20)

Which can be further simplified as

nØ
j=0

(E1 + T0 − E0)xj + (Rij + Tj − Roj − T0j)zi ≤ Nrg − nE1 −
nØ

j=0
R0j (3.21)

Representing the problem in this form grants us certain insights The algorithm
that we are using is a simple comparison algorithm and the main steps to undergo
are as follows, order all the images based on increasing value of Rij +Tj -R0j -T0,
once this is done process all the images on the remote machine such that the energy
constraint is satisfied. However one thing to not is that the algorithm itself takes a
some energy to run so we should be mindful of the complexity of the algorithm.
We will subtract the algorithm energy from the energy budget to get the energy
compensated form of this equation 3.21 to get our final equation.

nØ
j=0

(E1 + T0 − E0)xj + (Rij + Tj − Roj − T0j)zi ≤ Nrg − nE1 −
nØ

j=0
R0j − Ealg (3.22)

18

Chapter 4

Data Description

In this chapter we are going to describe the data-set that we are using for experi-
mentation

4.1 Dataset description

The data used for the experiments comes from the ImageNet Large Scale Visual
Recognition Challenge, popularly known as the ImageNet dataset. ImageNet is
an image database organized according to the WordNet hierarchy (currently only
the nouns), in which each node of the hierarchy is depicted by hundreds and
thousands of images. The project has been instrumental in advancing computer
vision and deep learning research. The data is available for free to researchers for
non-commercial use.

ImageNet description: It is a project that was inspired by two important needs
in computer vision research. The first was the need to establish a clear North Star
problem in computer vision. While the field enjoyed an abundance of important
tasks to work on, from stereo vision to image retrieval, from 3D reconstruction to
image segmentation, object categorization was recognized to be one of the most
fundamental capabilities of both human and machine vision. Hence there was a
growing demand for a high-quality object categorization benchmark with clearly
established evaluation metrics. Second, there was a critical need for more data to
enable more generalizable machine learning methods. Ever since the birth of the
digital era and the availability of web-scale data exchanges, researchers in these
fields have been working hard to design more and more sophisticated algorithms
to index, retrieve, organize and annotate multimedia data. But good research

19

Data Description

requires good resources. To tackle this problem at scale (think of your growing
personal collection of digital images, or videos, or a commercial web search engine’s
database), it was critical to provide researchers with a large-scale image database
for both training and testing.

ImageNet is an image dataset organized according to the WordNet hierarchy.
Each meaningful concept in WordNet, possibly described by multiple words or
word phrases, is called a "synonym set" or "synset". There are more than 100,000
synsets in WordNet; the majority of them are nouns (80,000+). ImageNet aims to
provide on average 1000 images to illustrate each synset. Images of each concept
are quality-controlled and human-annotated. In its completion, we hope ImageNet
offers tens of millions of cleanly labeled and sorted images for most of the concepts
in the WordNet hierarchy.

4.2 Image subset

Figure 4.1: Sample image 1 for set 1 Figure 4.2: Sample image 2 for set
1

The dataset consists of training and test images. As ImageNet has only provided
the training images pre-labeled and categorized while the test images are not
labeled or categorized. This led us to use three subsets of only the training data to
run the experiments.

This data set is extremely varied with images of varying resolutions (the resolu-
tions don’t only vary in length and width of the image but also in picture count
and photo quality, with multiple images being noisy and out of focus). The primary
reason for picking ImageNet for the dataset in the experiment is its pre-labeled

20

Data Description

nature which allows us to test and verify the accuracy of the program without going
to the effort of classifying and then manually cross-referencing and confirming a
varied test set. So, we have selected three sets from ImageNet which allows us to
carry out the experiment to test the robustness of the algorithm with different sets
of images. The reason i did not use the test set even if i could handle the labelling
by downloading the solved labels was due to the fact that the train set was massive
compared to the test set and it allowed me to have a lot of data and study the
behaviour of the algorithm with varied data.

The first set is a collection of images of different types of canine animals i.e.
dogs of different breeds and canine adjacent animals. The data set consisted of
5000 images varying in resolution from 120 × 102 to 3264 × 2448 and thus occupy
from 2.94 KB from 1.07 MB.

The second set consists of a variety of images of different species of birds. The
second set was a collection of images of different types of birds. The data set
consisted of 5200 images varying from 150 × 150 to 3852 × 2724 and thus occupy
from 2.36 KB 5.35 MB.

Figure 4.3: Sample image 1 for set 2

Figure 4.4: Sample image 2 for set
2

21

Data Description

Figure 4.5: Sample image 1 for set 3

Figure 4.6: Sample image 2 for set
3

The third set consists of trains construction equipment and vehicles. The third
set consists of a variety of images of different species of birds. The third set was
a collection of images of different types of birds. The data set consisted of 5200
images varying from 100 × 100 to 1939 × 2681 and thus occupy from 3.05 KB to
4.46 MB.

22

Chapter 5

Experimental Setup and
Experimentation

To setup our experiment we have to do so at two ends, one being the server and
the other being the local machine. Since the two systems are extremely different in
nature we have to adopt radically different measurement approaches that work in
completely different ways. In this section we shall explore how and why we picked
these approaches and the merits and demerits of these approaches, also the specific
methods used and how the results are made comparable and to what degree.

5.1 Server side experimentation

This section details the server, its specifications and the server side setup of the
experiment

5.1.1 Server Specification

We first need to understand the setup of the experiment, the first of which is the
machine that is used as the server, It is a computer with the following specifications:

• Intel i7 6700HQ

• 16 GB DDR4 RAM

• GTX 960M graphics

23

Experimental Setup and Experimentation

• Max TDP 120W

5.1.2 Methods to measure the server side energy consump-
tion

We used two methods to measure energy at the server level, the main problem with
measuring energy consumption was to find a reliable method to measure energy this
would lead us to try to use two different methods both with their own shortcomings
and benefits.

Power Top

A computer’s electrical power usage can be measured, explained, and reduced using
the software tool PowerTOP. In 2007, Intel made it available under the GPLv2
license. It works with processors from Intel, AMD, ARM, and UltraSPARC.

On a machine running the Linux and Solaris operating systems, PowerTOP
examines the applications, device drivers, and kernel settings in use and calculates
the power usage as a result. The software that consumes excessive amounts of
power may be located using this information. Users of laptop computers who
want to extend battery life and owners of data centers whose electrical and cooling
expenditures are significant may find this to be very helpful.

Of course we are not going to optimise any processes however we are going to
use this particular tool to isolate our python script by process ID and monitor its
power usage and logging it every 2 seconds to get an idea about the consumption
of power for the entire duration of the classification. Here we run into our first
issue, there are a lot of processes created while running the classification script and
after a little analysis we figure out that the process id of the child processes are
nearly identical save the final few digits and the process user is always the same,
leveraging these details we can exactly filter out our script and log its wattage,
then-after there is an easy equation that is Energy = Power x Time. But since the
data points are discrete we have to take the area under the curve for the power vs
time graph that we can construct using this collected data. Once we have the area
under the curve we can finally say that we have found the energy required to run
our script using Power Top.

This however is not a perfect measure in any way, power top itself consumes
energy to run along with the script that is required to copy the data from Powertop,
the intensive polling done by the script also causes the power consumption to go

24

Experimental Setup and Experimentation

Figure 5.1: Data from Powertop

up. It is difficult to track the process ids of the polling script and distinguish
between the polling script and the classifier that is running since both of them
were on python. By using the logic of child processes having process ids in the
same ball park as the parent process we can only get so far and not guarantee that
the polling script did not get mixed up in the energy calculations.

Using An External device to measure the power

An external device which can measure the total energy going to the system at the
point of power supply is the best method to track the energy consumption of the
system as any other complicated estimate methods like using power top may incur
issues as seen above. However as we know any measurement is only as good as the
device used to make the measurement. Keeping this in mind we use the PZEM-022
measurement device to measure the energy consumption.

25

Experimental Setup and Experimentation

Figure 5.2: Device Used to Measure Server Energy

In this method we used an energy measurement device mainly the PZEM-022
which has the following specifications:

• Operating Voltage: 80 260V

• Current Rating:100A

• Operating Frequency: 45-65Hz

• Measurement Accuracy: 1.0 grade

• Rated Power: 100A/22000W

26

Experimental Setup and Experimentation

• Color: Black

• Wire length:190 mm

• Length: 90 mm

• Width: 50 mm

• Height: 25 mm

• Weight: 90 gm

Since we are operating in the 1-12 A range we have up to a 1 percent accuracy.
This is fairly accurate measurement tool but the problem is to measure the clas-
sification process and the classification process alone. Step one is to remove the
battery from the computer so that no energy is unaccounted for as the battery is
no longer a power source. The device is then connected to the power supply to
the computer. we run the computer idle for an hour with the same fan speed so
as to establish a baseline reading for the power consumption by the computer for
running the operating system and background tasks. Once the baseline reading is
established we run our script and let the power meter record the energy consumed.
Once we have recorded the consumed energy we subtract the baseline to find out
the amount of energy consumed by the classification process.

5.1.3 Comparability of energy measurement results

Now using both these methods what we find is there is a nominal difference of 2.6
percent in readings with the power meter measuring slightly more than that of the
power top method, therefore the different methods end up giving us results in the
same ballpark. This might be due to the problem previously mentioned i.e. the
process id for the polling script not being exactly isolated together with the fact
that if a process is created and destroyed between polls it will not register at all
in the log thereby getting sidelined and not included in the final calculation for
energy. This leads us tho the idea that though software might be more focused and
tighter in the net that it casts for data, there is a certain Heisenberg-uncertainty
thing that goes on in this case where the increase in polling frequency the energy
consumption goes up causing a distortion in the energy estimate. For these reasons
even though the results are comparable in both methods of measurement, We can
have more peace of mind in using the data from the power meter because we are
sure of two things, firstly there are no processes that fell through the cracks in
between the polling rate and secondly there are no processes that are actually
related to the polling script that are being also added to the final measurement.

27

Experimental Setup and Experimentation

5.2 Local device side experimentation

To emulate the Local Device we chose a raspberry pi-4 model B with the following
CPU specifications:

• Broadcom 2711 Quad-Core Cortex A72 (ARM V8-A) 64-bit SoC Clocked at
1.5GHz

• 8GB RAM

• 6.5W TDP

This raspberry pi will be running Ubuntu desktop which will be running a
smaller version of the ImageNet classifier MobilenetV2.

This side of the experiment we were limited by the ability of power top to run
properly on the watered down version of linux on the raspberry pi. Therefore we
employed the use of UM24C power measuring device with the following specifications

• Voltage range: 4.50 – 24.00V

• Voltage resolution: 0.01V

• Voltage accuracy: ±(0.2%+1 digit)

• Current range: 0.0 – 3.000A

• Current resolution: 0.001A

• Current accuracy: ±(0.8%+3 digit)

• Capacity accumulation range: 0 – 99999mAh

• Energy accumulation range: 0 – 99999mWh

• Load impedance range: 1.5 – 9999.9

• Temperature range: -10ºC 100ºC / 0ºF 200ºF

• Temperature error: ±3ºC/±6ºF

• Voltage graphing range: 4.5 – 24.0V

• Current graphing range: 0.0 – 3.0A

• Screen: 1.44 inch color LCD display

28

Experimental Setup and Experimentation

Figure 5.3: Device Used to Measure Raspi Energy

• Quick charge recognition mode: QC2.0/QC3.0

• Refresh rate: 2Hz

We connect the power supply of the raspberry pi through the UM24C device
which connects via Bluetooth to another machine and logs the energy ,voltage,
power and current data. We connect the Bluetooth on the device to another
machine because Bluetooth itself is a power consuming data transmission method
and it would impact the readings if we chose to log the data on the raspberry pi.

29

Experimental Setup and Experimentation

We then run our raspberry pi for an hour without any load or code executing
to estimate a baseline reading for for the power consumption by the computer for
running the operating system and background tasks. Once the baseline reading is
established we run our script and let the power meter record the energy consumed.
Once we have recorded the consumed energy we subtract the baseline to find out
the amount of energy consumed by the classification process. we repeat these
experiments for the reshaping and transmission processes as well.

5.3 Methodology

In this section we will detail our methods of setting up the experiment and The
steps we take to take measurements, we will outline the flow of data and our
decision making process.

We are also running our algorithm on the raspberry pi itself and the algorithm
also consumes a certain amount of power for its own computation. This would
prompt us to add the algorithm energy itself as a factor to consider in the process
of energy efficiency of the raspberry pi setup.

Using this insight we can make sure that our algorithm does not cause any extra
computation workload on the raspberry pi. This is done by making the algorithm
as bare-bones as possible. Apart from the necessary comparisons and look-ups, the
algorithm should not perform any unnecessary quality of life operations such as
sorting or searching.

30

Experimental Setup and Experimentation

Figure 5.4: General Steps To Classification

The above figure is a flowchart showing how the classification would occur given
an absence of any optimisation. The raw image would arrive on the raspberry pi
in the real world case that we have imagined it would be. For the purposes of this

31

Experimental Setup and Experimentation

experiment however we are using images from the ImageNet dataset as our input
images.

Once the raw image arrives it is then reshaped into 224x224 pixels to make it
suitable for feeding into the classifier. We will talk about the classifier used and its
parameters in the classification models section. This reshaping consumes energy
unless the image is already in 224x224. In case of an image any other size the
reshape function upscales or downsizes the image as required. More about the
reshaping models is covered in the Reshape Function Section.

Once the image is reshaped to the desired size it is then fed to the classification
model which takes the image as an input and produces a label that it thinks is
the most suitable for the image as output thereby in effect recognising the image.
Once the label has been recieved as output we verify the accuracy of the system by
matching the label to the actual label of the image and verifying if it is accurate or
not.

5.3.1 Classification models

Image classification models are a type of deep learning model designed to recognize
and categorize objects or patterns within images. These models are widely used
in various applications, including image recognition, content moderation, medical
imaging, autonomous vehicles, and more. Here are some notable image classification
models:

LeNet-5 : Developed by Yann LeCun in the early 1990s, LeNet-5[6] was one of the
first convolutional neural networks (CNNs) used for handwritten digit recognition.
While it may be considered basic by today’s standards, it laid the foundation for
modern CNN architectures.

AlexNet: Introduced by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
in 2012, AlexNet[7] significantly advanced the field of computer vision. It featured
deep convolutional layers and achieved a substantial reduction in error rates in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), helping to
popularize deep learning.

VGGNet: The Visual Geometry Group (VGG) at the University of Oxford
proposed VGGNet[8] in 2014. VGGNet is known for its simplicity and uniform
architecture, using small 3x3 convolutional filters throughout the network. It was
a runner-up in the ILSVRC 2014 competition.

GoogLeNet(Inception): Developed by Google in 2014, GoogLeNet[9] introduced
the idea of inception modules, which use multiple filter sizes in parallel and then

32

Experimental Setup and Experimentation

concatenate their outputs. This architecture demonstrated strong performance on
the ILSVRC dataset while being computationally efficient.

ResNet (Residual Network): Introduced by Kaiming He et al. in 2015, ResNet[10]
is famous for its deep residual learning approach. It uses skip connections (short-
cuts) to allow the training of very deep networks while avoiding the vanishing
gradient problem. ResNet architectures have become the standard for many image
classification tasks.

DenseNet: DenseNet[11], proposed by Gao Huang et al. in 2017, takes the skip
connections from ResNet to another level. In DenseNet, each layer is connected
to every other layer in a feedforward fashion, leading to highly parameter-efficient
networks.

EfficientNet: EfficientNet[12], introduced by Mingxing Tan and Quoc V. Le in
2019, focuses on optimizing both model accuracy and efficiency. It uses a compound
scaling method to balance the depth, width, and resolution of the network, achieving
state-of-the-art results with fewer parameters.

MobileNet: MobileNet [13], developed by Google in 2017, is designed for mobile
and embedded vision applications. It utilizes depthwise separable convolutions
to reduce computational complexity while maintaining good accuracy, making it
suitable for resource-constrained devices.

MobileNet

For our purposes we used MobileNet to classify the images

MobileNet is a family of convolutional neural network (CNN) architectures de-
signed for mobile and embedded vision applications. It was developed by researchers
at Google, specifically by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig
Adam. MobileNet is known for its efficiency, making it suitable for devices with
limited computational resources while maintaining reasonable accuracy in image
classification tasks. Here are the key features and components of MobileNet:

Depthwise Separable Convolution: MobileNet’s primary innovation is the use of
depthwise separable convolutional layers. Traditional convolutional layers perform
both spatial convolution (using a kernel/filter) and depth convolution (cross-channel
convolution) in a single step. In contrast, depthwise separable convolutions split
these operations into two separate layers:

Depthwise Convolution: In this step, a separate convolution is applied to each

33

Experimental Setup and Experimentation

input channel (depth dimension) independently, using a separate kernel for each
channel. This reduces the computational cost significantly, as it requires fewer
parameters and computations compared to traditional convolutions.

Pointwise Convolution: After the depthwise convolution, a 1x1 convolution
(pointwise convolution) is applied to combine the output channels from the depth-
wise step. This helps capture cross-channel dependencies and increase the model’s
expressiveness.

Width Multiplier and Resolution Multiplier: MobileNet introduces two hyper-
parameters, known as the "width multiplier" and "resolution multiplier," to allow
users to scale the model according to their specific requirements:

Width Multiplier (α): This hyperparameter controls the number of channels
(filter size) in each layer. A smaller value reduces the number of channels, leading
to a smaller model with fewer parameters and lower computational requirements.
A larger α value increases the model’s capacity at the cost of more computation.

Resolution Multiplier (ρ): This hyperparameter scales down the input image
resolution. Reducing the resolution lowers the computational demands further.
Typically, MobileNet models are designed to be efficient across a range of resolutions.

Architectural Variants: There are several architectural variants of MobileNet,
including MobileNetV1, MobileNetV2, and MobileNetV3. Each variant aims to
improve upon the previous one in terms of both efficiency and accuracy.

MobileNetV1: The original MobileNet[13] architecture, introduced in 2017, laid
the foundation for depthwise separable convolutions. It achieved good efficiency
but with some limitations in terms of accuracy.

MobileNetV2: Released in 2018, MobileNetV2[14] improved upon the original
by introducing inverted residual blocks with linear bottlenecks. It achieved better
accuracy while still being efficient.

MobileNetV3: MobileNetV3[15], introduced in 2019, further improved accu-
racy and efficiency through the use of a combination of depthwise and pointwise
convolutions and other architectural innovations.

Applications: MobileNet models are particularly well-suited for tasks like image
classification, object detection, and semantic segmentation on resource-constrained
devices, such as mobile phones, embedded systems, and IoT devices. They strike a
balance between model size, inference speed, and accuracy.

MobileNet has become a popular choice for various real-time computer vision
applications, thanks to its efficient design and adaptability. The choice of which

34

Experimental Setup and Experimentation

MobileNet variant to use (V1, V2, or V3) depends on the specific requirements of
the application and available computational resources.

This is the perfect model to run on small computers and edge devices with
limited computing potential. This is the model we will be using for the classification
process on the raspberry pi which is our remote device.

We chose Mobilenet V2 over V3 for our remote device for two basic reasons,

• It is easy to set up MobileNet V2 on a raspberry pi since it is an earlier
version. Most of the kinks in its implementation have been ironed out for
remote devices.

• The MobileNet V3 model is marginally more accurate as its main gains in
performance were about latency. We already have a handle on this because
we can modify the alpha value of MobileNet V2 but this work does not really
pertain to latency so those gains are not of much value to us.

We chose MobileNet V3 for the server because its more accurate than MobileNet
V2 and its easier to run on the specifications of our server.

5.3.2 The Algorithm

This section deals with the algorithm for the decision making process of the
offloading of task.

The Algorithm itself is very simple can easily be understood by the means of
these two flow charts Fig 5.5 and Fig 5.6

35

Experimental Setup and Experimentation

Figure 5.5: Algorithm flowchart 1.

36

Experimental Setup and Experimentation

Local Machine Side

From this figure we can follow all the step of the algorithm. At first the data is
collected from the sensors as input. This data is then stored on board the edge
device’s memory.

Then we find the size of each image. This is an important step as the size of the
image is the best identifier of the energy that will potentially be used to process it.

Next we use the lookup tables that we have on board the edge device to figure
out the different potential estimates of different energy values. The values that
are being looked at are from three separate lookup tables. The first lookup table
pertains to the reshaping energy of the server, the graph for which is found in
Figure 5.8. We find the closest value we have on the lookup table then we average
for our required value that best describes our case.

our next step is to find the value of the expression Rij + Tj - R0j-T0j which
is pretty straightforward as we have all the values for each of the terms from the
lookup table.

We find that sometimes this expression yields a negative value. This is the
golden window of offloading the data. Whenever this condition is met the image is
offloaded to the server.

This offload however take place at the cost of transmission energy. The trans-
mission energy intuitively scales with image size. Therefore it is extremely costly
in terms of energy to offload images over a certain size. The image offloading was
tested over WiFi so all the energy consideration and measurements are specific to
the 2.4 GHz 802.11ac Wi-Fi technology. The graph for the lookup table for the
same can be found in Figure 5.8

Once the image has been offloaded the server takes over and processes the image
according to the algorithm flowchart 2 in fig 5.6.

Server Side

The server receives the image. The first job it has to do is then to find out if the
image that has been received is already reshaped or not. If it is reshaped then the
server proceeds to use the image as it is, if it is not in the 224x224 required size
the server runs the reshape function on the image to reshape it to the required
specification.

Once the image is in the correct dimension, the server then proceeds to classify

37

Experimental Setup and Experimentation

Figure 5.6: Algorithm flowchart 2.

the image using the Mobilenet V3 image classifier.

After classifying the image we receive a label as an output, this label is then
matched with the original label for the image and the accuracy is established.

38

Experimental Setup and Experimentation

Why no Reshape and Transmit

The reason we don’t really have reshape and offload as a viable option here is
because the server reshape function is effectively cheaper in energy cost than
the local device due to difference is computing power. The local device has less
computational resources and almost no graphical processing capabilities that can
make the reshaping easier. Since reshaping is mostly matrix multiplication which
is in itself a bunch of multiply and accumulate expressions the graphical processors
onboard the server are far more efficient at reshaping than the CPU of the local
device. This causes the decision to reshape and transmit costlier than transmit
and reshape for our sweet spot. If we could shift the sweet spot we could unlock
more energy savings which brings us to our second reason. The second reason is
that in the problem statement we value the energy at the local device and server
equally which is to say that both the energy at the server and the energy at the
local device are equally valuable in the equation. There is a weighted version of this
problem that has been suggested to be worked on in the future and that version
has the option of assigning different weights to the local machine energy and the
server energy and even possibly dynamically changing the weights as the local
device energy depletes. since the server reshape is less energy consuming than local
reshape it is always the clearer choice in the case of transmission energy being
comparable to the reshaping energy.

Figure 5.7: Reshape Energy Lookup Table Graph

39

Experimental Setup and Experimentation

Figure 5.8: Transmit Energy Lookup Table Graph

40

Chapter 6

Results and Observations

We perform all the experiments to measure a baseline and calculate the minimum
energy budget required to do all jobs in a particular dataset. The first quantity we
have to measure is the Average power consumption when the raspberry pi is idle
to establish a baseline of power consumption. We ran the test for an hour using
the UM24C which logs voltage and current data as the pi runs with a frequency of
once every second. The power is calculated by multiplying the voltage and current
at each reading and then averaging it over the time the setup was running the
classification task. The Average power at idle is found to be 2.856935W. This
measurement is set as the baseline for all further measurements.

Here are the results for the energy budget of the raspberry Pi for all three sets
of data.

6.1 Data-Set 1 Energy Budget and Improvements

This section details the calculation of the energy budget for the first dataset.

Then by using a similar method to how we calculated the baseline power
consumption we found the average power while classifying images which was found
to be 4.205253W and this power was averaged over 1225 seconds. We took the
number of seconds it took to classify the entire data-set and multiply it with the
power figure to find the associated energy consumption.

P = W/T (6.1)

41

Results and Observations

where work done is equal to energy expended therefore.

W = P × T (6.2)

using 6.2 we get 1651.69 Joules of energy consumed.

1651.69 Joules is our energy budget for dataset 1.

After this We implemented our algorithm and re-run the classification to find out
the energy consumption while the algorithm was running. We found the average
power while classifying images which was found to be 4.177073 W and this power
was averaged over 1225 seconds. We took the number of seconds it took to classify
the entire data-set and multiply it with the power figure to find the associated
energy consumption.

Using equation 6.2 we get 1,619.81 Joules

We also find that during the course of this that 170 images were offloaded to the
server which had an average accuracy of 75 % for this set and an average gain in
accuracy of .42% due to this offloading. Initial accuracy for this set for the remote
device was 62.8% and after the algorithm it was 63.22%

This leads us to find that there was an improvement of 1.93 percent in energy
consumption and we are under budget.

Energy consumed by the server while the classification ran set 1= 887.34

6.2 Data-Set 2 Energy Budget and Improvements

This section details the calculation of the energy budget for the second data-set.

By using a similar method to how we calculated the baseline power consumption
we found the average power while classifying images which was found to be 4.280284
W and this power was averaged over 1275 seconds. We took the number of seconds
it took to classify the entire data-set and multiply it with the power figure to find
the associated energy consumption.

using 6.2 we get 1814.77 Joules of energy consumed.

1814.77 Joules is our energy budget for data-set 2

After this We implemented our algorithm and re-run the classification to find out
the energy consumption while the algorithm was running. We found the average
power while classifying images which was found to be 4.262346 W and this power

42

Results and Observations

was averaged over 1275 seconds. We took the number of seconds it took to classify
the entire data-set and multiply it with the power figure to find the associated
energy consumption.

using 6.2 we get 1,791.90 Joules

We also find that during the course of this that 144 images were offloaded to the
server which had an average accuracy of 76 % for this set and an average gain in
accuracy of .36% due to this offloading.Initial accuracy for this set for the remote
device was 64.1% and after the algorithm it was 64.47%

This leads us to find that there was an improvement of 1.26 percent in energy
consumption and we are under budget.

Energy consumed by the server while the classification ran set 2= 693.46

6.3 Data-Set 3 Energy Budget and Improvements

This section details the calculation of the energy budget for the Third data-set.

By using a similar method to how we calculated the baseline power consumption
we found the average power while classifying images which was found to be 4.239627
W and this power was averaged over 1263 seconds. We took the number of seconds
it took to classify the entire data-set and multiply it with the power figure to find
the associated energy consumption.

using 6.2 we get 1746.34 Joules of energy consumed.

1746.34 Joules is our energy budget for data-set 1.

After this We implemented our algorithm and re-run the classification to find out
the energy consumption while the algorithm was running. We found the average
power while classifying images which was found to be 4.177073 W and this power
was averaged over 1225 seconds. We took the number of seconds it took to classify
the entire data-set and multiply it with the power figure to find the associated
energy consumption.

using 6.2 we get 1730.78 Joules

We also find that during the course of this that 130 images were offloaded to
the server which had an average accuracy of 75 % for this set and an average gain
in accuracy of .22% due to this offloading.Initial accuracy for the remote device for
this set was 62% and after the algorithm it was 62.22%

43

Results and Observations

This leads us to find that there was an improvement of 0.891 percent in energy
consumption and we are under budget.

Energy consumed by the server while the classification ran set 3= 590.85

6.3.1 Compiled Results

With all of this data collected we can see improvements in the energy consumption
and accuracy compared to processing completely on the edge device. We can also
understand that the results vary from data-set to data-set. This has a correlation
with size of the images. Due to the nature of the reshaping function and its higher
cost on the edge device due to low computation capabilities, Therefore if the images
are easier to transmit than to reshape it makes sense to send the images to the
server this causes us to play around a sweet spot in the reshape function that
occurs when the reshape function switches from up-scaling to down-scaling. Every
image that fits this sweet spot can be offloaded without sacrificing any performance.
Therefore the results are limited by number of such images. If we come across
a data set with more of these sweet spot images we can expect anywhere from
5-10% boost in energy savings. Here is a graph showing the energy consumption of

Figure 6.1: Results and Observations

different data sets and comparing it to the case with the algorithm running.

44

Results and Observations

Figure 6.2: Graph for energy consumption comparison

45

Chapter 7

Conclusion

Based on the results obtained from our experiments, we can draw the following
conclusions:

1. Energy Efficiency with Offloading: When we implemented the algorithm
on the Raspberry Pi with the capability to offload certain tasks, we observed
an improvement in energy efficiency compared to without running the algorithm
offloading. This improvement was consistent across all three Pi sets, albeit to
varying degrees.

2. Energy Savings Vary: The degree of energy savings depended on the specific
Pi set and the nature of the tasks being offloaded. In our experiments, we achieved
energy savings ranging from 0.891% to 1.93% when compared to running the
algorithm without offloading. This demonstrates the potential benefits of task
offloading in energy-constrained environments.

3. Optimizing Offloading Strategies: To further enhance energy efficiency, future
work could focus on optimizing the offloading strategies, One such optimisation
might be general forms of the equations used here. Generalising such a concept for
all networks could work wonders because energy savings add up over time.

4. Future Prospects: There is a version of this problem which deals with weights
on energies. The server energy and the edge device energy are valued differently,
possibly even dynamically changing weights depending upon the situation. An
algorithm that can work for such a problem might be very useful in every device
that has a limited power source.

In summary, our research demonstrates the potential benefits of task offloading
for improving energy efficiency in Edge devices. By optimizing offloading strategies

46

Conclusion

and tailoring them to specific applications, we can save a lot of energy. This
is of great importance in resource-constrained environments and for achieving
sustainable computing solutions and of-course better for the world one joule at a
time.

47

Bibliography

[1] D Suleiman, M Ibrahim, and I Hamarash. «Dynamic voltage frequency scaling
(DVFS) for microprocessors power and energy reduction». In: 4th International
Conference on Electrical and Electronics Engineering. Vol. 12. 2005 (cit. on
p. 4).

[2] Ke Zhang, Yongxu Zhu, Supeng Leng, Yejun He, Sabita Maharjan, and Yan
Zhang. «Deep learning empowered task offloading for mobile edge comput-
ing in urban informatics». In: IEEE Internet of Things Journal 6.5 (2019),
pp. 7635–7647 (cit. on p. 5).

[3] Feng Wei, Sixuan Chen, and Weixia Zou. «A greedy algorithm for task
offloading in mobile edge computing system». In: China Communications
15.11 (2018), pp. 149–157 (cit. on p. 5).

[4] Sirine Bouhoula, Marios Avgeris, Aris Leivadeas, and Ioannis Lambadaris.
«Computational offloading for the industrial internet of things: A perfor-
mance analysis». In: 2022 IEEE International Mediterranean Conference on
Communications and Networking (MeditCom). IEEE. 2022, pp. 1–6 (cit. on
p. 6).

[5] Ying Chen, Ning Zhang, Yongchao Zhang, Xin Chen, Wen Wu, and Xuemin
Shen. «Energy efficient dynamic offloading in mobile edge computing for
internet of things». In: IEEE Transactions on Cloud Computing 9.3 (2019),
pp. 1050–1060 (cit. on p. 6).

[6] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 32).

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet Classifi-
cation with Deep Convolutional Neural Networks». In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira, C.J. Burges, L. Bot-
tou, and K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012. url:

48

BIBLIOGRAPHY

https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (cit. on p. 32).

[8] Karen Simonyan and Andrew Zisserman. «Very deep convolutional networks
for large-scale image recognition». In: arXiv preprint arXiv:1409.1556 (2014)
(cit. on p. 32).

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. «Going deeper with convolutions». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 1–9 (cit. on
p. 32).

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 33).

[11] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
«Densely connected convolutional networks». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 4700–4708
(cit. on p. 33).

[12] Mingxing Tan and Quoc Le. «Efficientnet: Rethinking model scaling for
convolutional neural networks». In: International conference on machine
learning. PMLR. 2019, pp. 6105–6114 (cit. on p. 33).

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «Mobilenets:
Efficient convolutional neural networks for mobile vision applications». In:
arXiv preprint arXiv:1704.04861 (2017) (cit. on pp. 33, 34).

[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. «Mobilenetv2: Inverted residuals and linear bottlenecks». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520 (cit. on p. 34).

[15] Andrew Howard et al. «Searching for mobilenetv3». In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, pp. 1314–1324
(cit. on p. 34).

49

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

	List of Figures
	List of abbreviations and symbols
	Symbols used

	Thesis Objective and Contributions
	Introduction
	Motivation
	Thesis Structure

	Literature Review
	Energy-Efficient Computing in IoT
	Task Offloading Strategies
	Algorithms and Decision-Making for Offloading
	Offloading in Resource-Constrained Devices (e.g., Raspberry Pi)
	Gaps in Current Literature
	Conclusion

	Problem Modelling
	What is a Queue Model
	History of Queue Model
	Usage of Queue Model
	The First Queue Model
	The problems with the Queue Model
	Insights gained From the Queue Model
	Redefining of the problem parameters in a Real World Scenario
	The Final Model

	Data Description
	Dataset description
	Image subset

	Experimental Setup and Experimentation
	Server side experimentation
	Server Specification
	Methods to measure the server side energy consumption
	Comparability of energy measurement results

	Local device side experimentation
	Methodology
	Classification models
	The Algorithm

	Results and Observations
	Data-Set 1 Energy Budget and Improvements
	Data-Set 2 Energy Budget and Improvements
	Data-Set 3 Energy Budget and Improvements
	Compiled Results

	Conclusion
	Bibliography

