
POLITECNICO DI TORINO
Master’s Degree in Embedded Computing Systems

Master’s Degree Thesis

Study and Development of Neural
Network Architectures on Rad-Hard

FPGAs

Supervisors

Prof. Luca STERPONE

Candidate

Mina Hauge NØSTVEDT

October 2023

Summary

This thesis investigates the use of radiation-hardened FPGAs for neural network
implementation in radiation-prone environments. For this purpose, the European-
based NG-Medium board is examined and compared to the non-radiation-hardened
Pynq-Z2. A UART communication system and a neural network for color classifi-
cation were designed to function on both boards without significant alterations to
ensure equal compatibility for a fair comparison.

The difference between the utilization and performance of the NG-Medium and
the Pynq-Z2 FPGA is interesting. The Pynq-Z2 demands more resources for code
execution, whereas the NG-Medium struggles with proper code functioning, possibly
contributing to its seemingly lower consumption. The Pynq-Z2 also performs better
in speed due to the faster clock frequency. The classifier works well with Pynq-Z2
but does not function properly on the NG-Medium. The cause of the improper
functionality is still unknown.

Integrating neural networks on radiation-hardened FPGAs is a complex task.
While the NG-Medium’s feasibility for neural networks remains unproven, this
study can still be helpful due to its insights into the utilization and architecture
between the two boards. The thesis helps bring forward the potential benefits of this
combination despite being unable to validate neural networks on the NG-Medium.

While working on this project, new challenges and insights have come forward,
which can help future researchers studying this topic. The use of the neural network
on radiation-hardened FPGAs needs further investigation, exploring different neural
network algorithms and training methods, addressing code issues on the NG-
Medium, and performing radiation testing on the entire system. While the study
could not determine if the NG-Medium is a good candidate for neural network
implementation on board spacecraft, the study lays the groundwork for advancing
intelligent systems in the future.

In conclusion, neural network implementation on radiation-hardened FPGAs
requires more research. However, despite the challenges and lack of proper results
in this thesis, the research sets the stage for further exploring this topic of deep
learning for space application.

ii

Acknowledgements

I would like to express gratitude to my supervisor, Professor Luca Sterpone, for
trusting me with this thesis, even if my prior knowledge of the topic was limited.
It has been a great learning experience for me. I am also grateful for the help and
guidance that Andrea Portaluri has provided while working on this thesis. His
insight and knowledge of the topic have been really valuable. Finally, I would like
to thank my family, friends, and boyfriend for their support and encouragement
throughout my whole academic journey.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Related work 3
2.1 Neural Networks Fundamentals . 4

2.1.1 Structure . 4
2.1.2 Training . 6

2.2 Field-Programmable Gate Arrays (FPGAs) 7
2.2.1 Architecture . 8
2.2.2 Programming and Design Flow 9

2.3 FPGA Implementations of Neural Networks 10
2.4 Radiation Effects and Mitigation Techniques 11

2.4.1 Effects on Electric Components 11
2.4.2 Radiation Mitigation Techniques 13

2.5 Radiation-Hardened FPGAs . 14
2.6 Deep Learning in Space . 14
2.7 Research Gap and Weaknesses . 16

3 Proposed methodology 17
3.1 The Design . 17

3.1.1 UART Implementation . 19
3.1.2 Neural Network Implementation 21

3.2 Data Collection . 25

4 Experimental Results 26
4.1 Hardware Characteristics . 26

v

4.1.1 Pynq-Z2 . 26
4.1.2 NG-Medium . 26
4.1.3 WITMOTION USB-UART Converter 28
4.1.4 Personal Computer . 28

4.2 Experimental Setup . 28
4.3 Results . 29

4.3.1 Neural Network Classifier 29
4.3.2 Board Utilization and Performance Differences 33

5 Conclusion 37

Bibliography 39

vi

List of Tables

3.1 Number of clock pulses required to send one bit via UART with a
baud rate of 115200 . 21

4.1 UART settings and configurations 28
4.2 Bit Utilization and percentage of total bits available 33
4.3 Ten longest paths timing . 34
4.4 Memory utilization for the full design 34
4.5 Memory utilization for different parts of the system 34

vii

List of Figures

2.1 Theoretical Roadmap. This roadmap shows the flow of the funda-
mental topics covered in this section, and how the different sections
build on each other. 3

2.2 The Architecture of an Artificial Neuron. This diagram illustrates the
building blocks of an artificial neuron and how inputs are combined,
weighted, and added with a bias before it is passed through an
activation function to produce an output. 5

2.3 Neural Network Structure. Demonstrates the interconnected layers
of a neural network, where input data flows through one hidden
layer to the final output layer. In this example three input nodes,
four hidden nodes, and two output nodes are present. 5

2.4 Radiation Effects Hierarchy. This schematic illustrates how the differ-
ent types of radiation effects are integrated and to which subcategory
they belong. 11

3.1 System Communication Cycle. Illustrating the internal processes
inside the FPGA and the communication from the computer to the
board. Internal processes inside the FPGA are marked with red. . . 18

3.2 Hardware Connections. Illustrating the hardware connections be-
tween the PC, the UART-to-USB adapter, and the board. 19

3.3 Neural Network Structure. The neural network structure includes
three input nodes, seven hidden nodes, and two output nodes. . . . 20

3.4 Data Decoding and Encoding. Illustrates how the input data is
decoded and encoded to be properly used by the UART and neural
network. 20

3.5 Neuron Structure. Showing necessary calculations that are performed
inside of a hidden neuron. A 12-bit address is derived from the
calculation’s 12 most significant bits. The address is used to access
a ROM, which returns the output. Output neurons follow the same
principle but have seven inputs, and not three. 22

viii

3.6 The Sigmoid Activation Function Graph. The sigmoid function’s
characteristic S-shaped curve with a steep middle portion and flat-
tened top and bottom is ideal for neural networks. Its nonlinearity
allows neural networks to model complex relationships between in-
puts and outputs, to see complicated patterns in large amounts of
data. 23

3.7 Training Image. Used for training the neural network by providing
different shades of yellow and blue. 24

3.8 Training labels. Each individual pixel represents a label for the
training image and is used when training the neural network. Gray
represents the yellow areas, white represents the blue areas, and
black represents everything else. 24

4.1 Pynq-Z2 board . 27
4.2 NG-Medium board . 27
4.3 Classification Training Output. Output from testing the training

image with the current weights shows that not all yellow areas are
classified correctly. 30

4.4 Training Image Analysis. Illustration showing how some colors might
be too similar for the system to categorize correctly, as colors are
subjective to the viewer, and individual pixels might, therefore, not
be categorized correctly. 30

4.5 Test image. Screenshot taken from Google maps [29] and converted
to PPM format. Demonstrates blue sky and water, with a yellow
stripe in the road. 31

4.6 Classification Result. Result from testing the neural network design
using a simulation tool. Demonstrating that the system is able to
correctly classify bright blue and yellow areas. 32

4.7 Placement on NG-Medium. Highlighted sections demonstrate the
utilized areas of the NG-Medium. 35

4.8 Placement on PYNQ-Z2. Highlighted sections demonstrate the
utilized areas of the Pynq-Z2. 36

ix

Acronyms

AI
Artificial Intelligence

BRAM
Block RAM

CLB
Configurable Logic Block

DFF
Delay Flip-Flop

DSP
Digital Signal Processing

FF
Flip-Flop

FPGA
Field Programmable Gate Array

HDL
Hardware Description Language

HPC
High-Performance Computing

IOB
Input/Output Block

xi

LUT
Look-Up Table

MSE
Mean Square Error

NN
Neural Networks

Rad-hard
Radiation-hardened

RAM
Random Access Memory

RGB
Red, Green, Blue

RHBD
Radiation Hardened by Design

ROM
Read Only Memory

SEE
Single-Event Effects

SET
Single-Event Transient

SEU
Single Event Upset

SoC
System-On-Chip

TID
Total Ionizing Dose

UART
Universal Asynchronous Receiver/Transmitter

xii

Chapter 1

Introduction

Any electrical system operating in space faces the constant threat of radiation-
induced errors that can compromise the system’s functionality and reliability. The
choice of electrical components plays a crucial role, necessitating the exploration of
radiation-hardened solutions that can withstand harsh conditions in space. This
thesis delves into radiation-hardened Field-Programmable Gate Arrays (FPGAs)
and Neural Networks (NN) and their role in paving the way for resilient and reliable
artificial intelligence (AI) in radiation-intensive environments.

In recent years, rapid advancements in technology have led to increasing de-
mand for sophisticated computational systems, artificial intelligence, and machine
learning. Neural networks have revolutionized various fields, from image processing
to computer vision, demonstrating incredible capabilities. However, neural net-
work implementation on standard electrical components poses major challenges for
radiation-prone environments like space. Neural networks often require high perfor-
mance and processing power, making FPGAs a good hardware choice. FPGAs are
widely used in digital circuit design due to their highly flexible and customizable
hardware. Global companies have already deployed FPGAs for AI and machine
learning to implement automatic spoken language recognition and autonomous
driving. However, the use of neural networks and AI in space is a new thing.
Unfortunately, standard FPGAs are not an exception from radiation-induced error,
and the performance and fault tolerance may be compromised in radiation-prone
environments. This challenge has motivated and driven the exploration of radiation-
hardened FPGAs specially designed to mitigate the radiation effects. A limited
number of FPGAs are currently qualified for space applications, even though they
could prove very usable, especially for earth observation. Now, data is sent from
satellites to Earth to be analyzed. However, it could be faster to have a neural
network classifier on board for cloud detection and detection of oil spills, wildfires,
tornadoes, and similar.

NanoXplore is a semiconductor company that offers a solution to this problem

1

Introduction

by providing radiation-hardened FPGAs. Notably, the NG-Medium FPGA stands
out as it has been radiation-hardened by design in configuration memories and
registers. Moreover, it is also the first European FPGA to be qualified for European
space missions, paving the future of European space missions.

As the use of neural networks on space-grade FPGAs has not been widely
reported, the goal of this research is to gain an understanding of how rad-hard
(radiation-hardened) FPGAs function with neural networks. The thesis will try to
determine whether or not it is feasible to use a space-grade FPGA for a small neural
network to detect colors. The performance, timing, and utilization are investigated
and compared to a similar non-rad-hard FPGA. The question is: What are the
performance trade-offs, such as power consumption, area utilization, and latency,
between a radiation-hardened FPGA and a non-radiation-hardened FPGA when
implementing neural networks in radiation-intensive environments?

This thesis will investigate how the NG-Medium compares to standard non-
radiation hardened FPGAs regarding performance and utilization. Implement-
ing the same neural network in both systems aims to understand the practical
implications and potential advantages radiation-hardened solutions can pose in
radiation-intensive environments.

The findings in this research could provide a deeper understanding of the field of
neural networks for space exploration. By highlighting how the two designs differ
in terms of performance, reliability, and fault tolerance, this thesis may provide
valuable insight for engineers and researchers working in the field.

This thesis aims to contextualize the need for neural networks and radiation-
hardened FPGAs in space activities. Firstly, a system is developed to communicate
with the NG-Medium board and a simple neural network to classify colors from
pixel input. The goal was to achieve a high-performance computing (HPC) design
on hardware (not as a software model) to have the possibility of extending the
research in the future by conducting radiation testing and seeing how the board
reacts to communication and classification. The design was tested on two boards,
the NG-Medium and a non-rad-hard FPGA, Pynq-Z2. The two boards have been
tested individually to compare the results, and while they have similar architecture,
the clock frequency differs, making some comparisons harder to conduct.

In the following chapters, you will find information regarding fundamental
theory, empirical research, and the methodology used for the study. I will also
present the design and the experimental setup, as well as the results and findings.
The goal of this thesis is to shed light on the neural network implementation of
radiation-hardened FPGAs, their advantages, and how they might be the gateway
to resilient artificial intelligence systems in space.

2

Chapter 2

Related work

This chapter serves to establish a theoretical background of FPGAs and neural
networks, along with their advantages and limitations in spacecraft operations.

A roadmap for the chapter is illustrated in Figure 2.1. Firstly, the fundamen-
tals of neural networks are introduced, providing an overview of their structure,
functionality, and components. Secondly, the architecture and design process of
FPGAs are explained, to enable readers to understand the application of neural
networks on FPGAs, and the existing literature in this field.

Figure 2.1: Theoretical Roadmap. This roadmap shows the flow of the funda-
mental topics covered in this section, and how the different sections build on each
other.

A section on radiation effects and mitigation techniques is present to build the
knowledge needed to dive into the existing research on radiation-hardened FPGAs.

3

Related work

Each section helps to build the fundamental knowledge required to understand the
current research on deep learning in space and the utilization of neural networks
in this field. By presenting the existing research and knowledge in this field, the
intention of this chapter is to identify and highlight the areas where current research
falls behind and where this thesis might contribute.

2.1 Neural Networks Fundamentals
The human brain contains billions of neurons [1], which communicate using electrical
signals in the form of impulses or "spikes". The neurons are interconnected and
are constantly receiving multiple input signals. All signals coming into the neuron
are processed in some way and if the resulting signal exceeds a threshold, the
neuron will fire or generate a voltage impulse, essentially sending information to
another neuron. These connections are mediated by electrochemical junctions
called synapses. This structure and functionality of an animal brain are the bases
of artificial equivalents of biological neurons, or artificial neuron networks. They
mimic the connections of neurons and synopsis inside the brain in order to create
robust models to analyze and predict outcomes from large amounts of data.

Neural networks are helpful for intelligent systems in order to map, model, and
recognize relationships in large amounts of data fast. These networks are used in
various applications, like pattern and speech recognition, language processing, and
image classification.

2.1.1 Structure
Each neuron cell can be regarded as a nonlinear transformation unit made up of
weights multiplied with input data from the previous layer. Weights are defined
during the training of the network. As shown in Figure 2.2, each weighted input
signal is summed up together with a constant input, called a bias, and the sum is
given to an activation function. Here, the sum is checked with a threshold, and if
the activation exceeds the threshold, the neuron "fires" by producing a high output;
otherwise, the output is low.

The entire network consists of interconnected neurons arranged in different
layers, with one input layer, one or more hidden layers, and an output layer, as
demonstrated in Figure 2.3. The input layer collects the data, while the output layer
provides the classification results. The hidden layer captures the information from
the input and transforms the information into a higher-dimensional representation.
This way, the system is able to learn very complex relationships and detect patterns.

The network may vary in structure and size depending on the system’s needs,
and the number of neurons in each layer varies depending on the need. The input
layer structure is typically determined by the dimensions of the input data, where

4

Related work

Figure 2.2: The Architecture of an Artificial Neuron. This diagram illustrates
the building blocks of an artificial neuron and how inputs are combined, weighted,
and added with a bias before it is passed through an activation function to produce
an output.

Figure 2.3: Neural Network Structure. Demonstrates the interconnected layers
of a neural network, where input data flows through one hidden layer to the final
output layer. In this example three input nodes, four hidden nodes, and two output
nodes are present.

each neuron represents one attribute of the input data. The number of output
nodes depends on the problem one hopes to solve. This could be the number of
classes in a classification or only one node for binary solutions. Determining the
number of hidden nodes is a bit more complex, and there is no correct answer.
There are multiple rule-of-thumb methods for determining the correct number:

5

Related work

• The number of hidden nodes should be between the number of input nodes
and output nodes.

• The number of hidden nodes should be 2/3 of the input nodes plus the number
of output nodes.

• The number of hidden nodes should be twice the size of the input layer.
However, the number of hidden nodes is often determined by experimentation

and tuning. Adding more hidden layers increases complicity, letting the network
learn more complex patterns. However, it can also increase the risk of overfitting.
It is ultimately the functionality, complexity, and accuracy of the network that
determines how many nodes are needed.

Neurons can be arranged in many different structures, but there are two main
categories: feed-forward structure, and recurrent structure [2]. The feed-forward
structure is the most used one and is recognized by having no feedback from the
output to the network’s inputs. If, however, there are connections from the output
of the network to the input, it is known as a recurrent neural network. In a
feed-forward structure, each signal on the input will pass through the layers to the
output. This structure is often used to detect patterns or for categorization. By
allocating one output node per class, the node corresponding to a particular class
will fire whenever the correct pattern is supplied on the input.

2.1.2 Training
The network itself is only able to process information through the weights. Training
of the weights allows the network to detect patterns and relationships between
data, to make accurate decisions.

Neural network training can be roughly divided into two categories; supervised
and non-supervised learning. Supervised learning is a learning model where the
network is trained using labeled data. This means that the input data is given to
the network together with the correct label to let the network create a model and
learn how to map the data correctly. Contrary to this, unsupervised learning is
not provided with any labels, and the goal of this algorithm is that the network
develops classification labels[3]. Unsupervised learning is valuable when searching
for patterns or finding correlations in large data sets.

Under the umbrella of supervised learning, there are many different learning
algorithms. One of the most used ones is the back-propagation algorithm, often
used for feed-forward neural networks. In essence, it works by computing the
gradient of the loss function, in this case, the mean square error (MSE), and
gradually adjusting the weights and biases to lower the error or loss through the
layers. Since the back-propagation algorithm requires labels, it is considered a
supervised learning algorithm.

6

Related work

The step size is named the "learning rate", and it is a scalar that determines
how much the weights and bias change in each iteration, and therefore how quickly
the network learns. The back-propagation algorithm can run until it reaches a
minimum error set by the user or for a certain amount of learning rounds, called
epochs.

MSE-based training aims to train the total weights matrix W [4], and the MSE
is calculated as shown in equation 2.1.

MSE = 1
2

NØ
k=1

(gk − tk)T (gk − tk) (2.1)

where gk is the predicted value, while tk is the target value. For a linear classifier g
is defined as the matrix multiplication between the input data x and the weights
matrix W , and adding a bias. For non-linear classification, the result goes through
the activation function f , as seen in equation 2.2.

g = f(Wx + bias) (2.2)

In the next learning round, the gradient is subtracted from the weights matrix W
by a step factor α, as shown in equation 2.3 in order to reduce the loss.

W (m) = W (m − 1) − α∆W MSE (2.3)

where m is the epochs and α is the learning rate that determines how fast the
solution is obtained.

2.2 Field-Programmable Gate Arrays (FPGAs)
Field programmable gate arrays are semiconductor devices comprising integrated
circuits that provide configurable and re-configurable hardware solutions for various
digital logic functions. FPGAs have gained wide popularity for their numerous
advantages, some of which include:

• Flexibility and adaptability

• High performance

• Parallelism

• Programmability

• Cost Efficiency

7

Related work

FPGAs are highly flexible and customizable, making them a good choice for
various applications. The user can create custom hardware for specific tasks,
allowing for optimized performance, low latency, and energy-efficient computations.
Additionally, it is a strong competitor to CPUs and GPUs, due to the lack of a
fixed instruction set and memory hierarchy, making them highly adaptable and
offering a fully customizable architecture. This benefit helps the FPGA break
through the performance limitations typically encountered in CPUs and GPUs.

Parallelism is a key feature in the FPGA architecture, enabling parallel compu-
tations in hardware, which has led to its popularity in various fields. These features
make the FPGAs excel in implementing and optimizing algorithms, delivering high
performance, and enabling real-time processing.

The programmability of FPGAs means that even after a circuit has been
implemented, the FPGA can still be modified and updated. This feature means
that designer can adapt their design by updating and improving it as they go,
without requiring complete hardware replacement. Ultimately, this feature reduces
both the effort and cost required for long-term use and maintenance of the chips
and makes the FPGA extremely cost-efficient.

2.2.1 Architecture
The flexibility of the FPGA is due to the configurable logic blocks (CLBs) [5] it
contains, which provide basic logic and storage capabilities.

CLBs are the fundamental building blocks of the FPGA. They consist of essential
logic elements like look-up tables (LUTs), flip-flops (FF), or delay flip-flops (DFF),
and other elements allowing logic implementation and data storage. The number and
arrangement of the components inside a CLB varies by device. The interconnected
structure enables signaling between the CLBs and other components, ultimately
enabling interaction between the internal architecture of FPGA and the outside
peripherals. While CLBs and interconnects care for the internal signals within the
FPGA, Input/Output Blocks (IOBs) serve as an interface between the internal
logic of the FPGA and external devices. FPGAs can be categorized into three
categories based on the programming technology used.

• SRAM-based FPGA

• Antifuse-based FPGA

• Flash-based FPGA

SRAM-based FPGAs are the most common type, and it is the kind that is
used when talking about re-programmability. SRAM-based FPGAs have a small
static random access memory (RAM) bit for each programming element, making it
re-programmable multiple times. The disadvantage is that they are also volatile,

8

Related work

meaning that power glitches can corrupt the device as they require continuous
power to keep the code. This thesis will focus on SRAM-based FPGAs; therefore,
antifuse-based and flash-based FPGAs will not be discussed or explained.

FPGAs typically contain multiple clock domains, and the design of the clock
networks is important [6]. If the clock network cannot supply the required number
of clock signals, some user circuits may be inefficient or impossible to implement.
The FPGA needs to have a clocking network that distributes the clock signals to
all components and manages the synchronous operations inside the chip. At the
same time, it is essential to keep the balance between flexibility, speed, area, and
power.

2.2.2 Programming and Design Flow
FPGAs contain no processor to run software and rely on user-designed circuits.
The design is written using hardware description languages (HDL), like Verilog or
VHDL, and is then synthesized into a bit file to configure the FPGA. In SRAM
FPGAs, the configuration file is stored in the RAM, making it volatile.

Hardware description language is used to express the FPGA’s structural, be-
havioral, and register-transfer-level architectures, meaning it can write executable
specifications for the chip. HDL is also an excellent tool for creating test benches
to simulate the circuit behavior. Designers can describe the logic and signal flow,
specify the timing, and define the routing of signals to different components within
the FPGA, letting them capture the desired functionality of the circuit and intercon-
nects. The ability to simulate the progression of time allows the designer to verify
the correctness and performance of the circuit before a physical implementation
takes place.

There are multiple steps that one needs to go through before the design is physi-
cally implemented on the FPGA. The first step is synthesis. The synthesis converts
the HDL into a netlist representation of the logic functions and interconnects in the
circuit. During the synthesis, the design is also mapped onto the available FPGA
resources, automatically or predefined by the designer. Placement is the next step
of the implementation, where the goal is to determine the physical locations of the
elements within the FPGA device. This involves mapping the synthesized elements
into specific locations, minimizing critical paths, optimizing performance, and
ensuring that resources are used efficiently. The last step before loading the design
onto the FPGA is routing. This step determines the interconnections between the
placed logic elements within the FPGA, in order to determine how signals should
flow. After these steps, the complete bitstream can be loaded onto the FPGA.

FPGAs are powerful platforms for custom design, with HDL playing a vital role
in expressing circuit behavior and structure. The FPGA’s reconfigurable nature
enables the implementation of various circuits, even though the implementation

9

Related work

process might be a bit tedious.

2.3 FPGA Implementations of Neural Networks
FPGAs are a good choice for implementing neural networks due to their high com-
puting power, parallel architecture, low power consumption, and custom algorithm
development. The parallel architecture in the FPGA allows for efficient parallel
computation and is well suited by preserving the parallel architecture of the neurons
in a layer. The high computing power of the FPGA can secure accurate results.
Furthermore, the ability to implement the network directly on the hardware can
also drastically increase the computations’ speed, compared to implementation on
software. With the flexibility of the FPGA, custom algorithms can be designed
and optimized to fit the needs of the neural network.

One study focused on the flexibility of implementing neural networks on FPGA
[7]. They found that even though the neural network classification reaches a slightly
lower accuracy than an implementation in an ASIC circuit, the FPGA is still
favorable. The reasoning for the conclusion is that the re-configurable FPGA
allows for much greater flexibility compared to the ASIC circuit. This ultimately
means that it allows for changing topology without the need for changing hardware,
allowing for improved test results in the long run.

In the paper "Reconfigurable FPGA implementation of neural networks", Zbig-
niew Hajduk showed that the FPGA implementation of a neural network could be
characterized as highly flexible[8]. It also has high calculation speed and reasonable
accuracy compared to software realization of neural networks. Some tests revealed
that even the most straightforward resource-saving implementations on FPGA
carry out the calculations faster than the RAM professor clocked with much higher
frequency.

A neural network designed directly on hardware, like on an FPGA, has multiple
advantages compared to when designed in software. The first advantage is speed.
For hardware devices that offer parallel computation, a significant increase in speed
can be gained compared to software-based solutions. Hardware implementation
can also reduce the total cost of the system[9], by lowering the total component
count and decreasing power requirements.

One limitation of any uni processor is the vulnerability to stop functioning due
to faults in the system, which is often due to a lack of proper redundancy in the
processor architecture. One study [10] suggests that even with the advancement
of multi-core PC processor architecture, efficient fault tolerance mechanisms are
needed. On the other hand, parallel and distributed architectures allow the
application to continue functioning, although a slight reduction in performance may
be present. This performance loss, called graceful degradation, will let the system

10

Related work

continue functioning, even if faults are present in some components. For neural
network applications, fault tolerance is extremely important as they often require
complete availability and can be safety-critical. Parallel hardware applications can,
therefore, offer a considerable advantage.

To summarize, neural network implementation on FPGAs can offer great flexibil-
ity when fine-tuning and testing the system due to the reconfigurability of FPGAs,
while still offering high computing power and speed. The FPGA design also offers
higher computing speed compared to design in software, due to the parallel nature
of the FPGA. While some limitations are also present, like lower accuracy, it is
still favorable due to the graceful degradation and high speed it offers.

2.4 Radiation Effects and Mitigation Techniques
Unlike most applications on Earth’s surface, space applications are subject to high
ionizing radiation. High levels of radiation might damage or upset the operation
of electrical devices, which can lead to short and long-term errors and even fully
dysfunctional devices. Luckily, several different radiation mitigating techniques can
be used to lower the chances of unfortunate effects.

2.4.1 Effects on Electric Components
Radiation can have both long- and short-term effects on electronic components and
can be categorized into single-event effects or cumulative effects [11]. This chapter
will discuss the different types of radiation effects, and Figure 2.4 shows how they
are connected.

Figure 2.4: Radiation Effects Hierarchy. This schematic illustrates how the
different types of radiation effects are integrated and to which subcategory they
belong.

11

Related work

Single-event effects (SEE) include single-event latch-up and single-event burnout,
as well as non-destructive single events that change the state of a digital memory
element without causing permanent damage to component [12]. SEEs occur through
the passage of a single charged particle through the device, and a charged particle
will ionize the atoms it hits on its way and free up both electrons and holes as
charged carriers. When this particle passes through the device, it can cause a spike
of charge that impacts the system in multiple ways.

Single event latch-up occurs when a transistor gets set to a permanent high or
low state [13]. What happens is that a high-energized particle can create electron-
hole pairs in the semiconductor material, which can cause a low-impedance path
between the supply rails. This can result in a drastic increase in current flow to the
limit of the supply or the destruction of the device. Once this error has occurred,
a power cycle might be able to recover normal operation, but there may still be
latent damage.

Single-event burnout results from charge collection in a high electric field region.
What happens is that the charged particle can initiate a second breakdown, which
can create a chain event of charge multiplication. The result is typically complete
failure of the device, caused by thermal runaway that causes local melding or
ejection of molten material, ultimately leading to a small-scale explosion.

Single-event effects that do not result in device failure are called non-destructive
single events. The most common are bit-flips or single event upset (SEU) in a
memory cell. What essentially happens is that when a charged particle hits a
cross-coupled transistor, the value of the memory cell will flip to the opposite value
as before. This results in a bit-change in the stored memory, but otherwise, the
circuit continues to function as expected.

The charge collected in a node can also appear as an analog signal, a voltage
spike, known as a single event transient (SET). Spikes may damage devices with
sensitive inputs, and if the signal passes through the combinational logic, it can
create a digital upset if it latches into a register or clock edge.

Accumulated total ionizing dose (TID) is a radiation effect that affects metal-
on-silicon transistors. When a positive charge is applied to the gate, the potential
barrier is lowered, allowing electrons to tunnel from the source to the drain. If
ionizing radiation passes through the device, electrons are liberated from the atom,
creating holes of missing charge that act as positive carriers. These holes can
eventually become trapped in the gate oxide, and the accumulation of trapped
charge is known as the total ionizing dose. The effects of TID can lead to the
transistor being stuck in a constant state.

Displacement damage effects are another form of cumulative damage that can
arise from large doses of radiation. This happens when a particle, typically a proton
or neuron, knocks an atom out of its position in a crystal, creating a void. This
leads to a change in the electronic band structure of the material, hindering the

12

Related work

free flow of charge across the device. The result of this can be a decrease in the
circuit’s performance.

As seen, radiation effects on electronic components range from single-event effects
to long-term cumulative damage. There is also a distinction between destructive
and non-destructive damage, which indicates whether or not the effect causes
permanent damage to the device. Understanding these effects is crucial when
creating strategies to mitigate the radiation effects.

2.4.2 Radiation Mitigation Techniques
To make electronics more resilient to the various radiation effects that can take place
in space, radiation mitigation techniques can be implemented. Techniques such
as shielding, redundancy, error detection and correction, and radiation hardening
by design can help to minimize or mitigate radiation effects in order to increase
performance, reliability, and the lifespan of the devices. This makes them more
suitable for applications in space missions and other radiation-prone environments.

Redundancy comes in different forms, but two main categories are logical
redundancy and physical redundancy. Logical redundancy involves using redundant
logic elements to provide alternative paths for performing computations or storing
data. This involves error detection and correction codes and triple modular
redundancy. Error detection and correction codes are logical techniques that
involve implementing codes to detect and correct radiation-induced errors in data
or instructions. Triple modular redundancy, on the other hand, involves employing
triplicated logic structures and comparing their outputs to detect and correct errors
caused by radiation [11].

Physical redundancy modifies the physical characteristics and structure of
electronic components in order to enhance their resistance to radiation-induced
effects [14]. One technique is to duplicate physical components, like transistors or
memory cells, to have redundant resources. The duplicated resources can work in
parallel or be used as a backup if an error is detected. Shielding is another physical
radiation hardening technique where the device is shielded to reduce exposure to
radiation. This is performed using materials with high atomic numbers to block
radiation and prevent it from reaching sensitive components in the system.

Radiation-hardened by design (RHBD) is an approach in which electronic
components are designed and optimized to withstand radiation-induced effects.
This involves incorporating different design techniques, logical and/or physical,
that enhance the device’s resilience to radiation.

Radiation mitigation techniques play a crucial role in enhancing the resilience
of electronic devices to radiation effects in space and mitigate the effects. These
radiation mitigation techniques are examples of making more robust and reliable
electronic systems for high-radiation environments.

13

Related work

2.5 Radiation-Hardened FPGAs
Increased interest in using FPGAs in space has led to a need for sustainable
and commercially available FPGAs for radiation environments [15]. Radiation
effects, together with satellite lifespans increasing far beyond the validity of telecom
standards, programmability and the need for radiation-hardened devices in flight
become a stringent requirement. Where software solutions are not possible, FPGAs
may be the only solution, and a rapid increase in the use of FPGAs in space
applications is expected.

FPGAs have been used in space for over a decade, with mixed results because
of the challenging environment above Earth’s atmosphere. Only a few devices
have been used on European spacecraft due to the sensitivity to involuntary
reconfiguration induced by radiation. The number of FPGAs in space is low; even
less for European chips. NanoXplore is a European-based company that crafts
state-of-the-art radiation-hardened components for FPGA devices to be used for
aerospace missions. The NanoXplore NG-Medium FPGA is an SRAM-based 64nm
RHBD chip using high-performance block RAMs (BRAMs) and DSP blocks. It is
the first entirely European FPGA to be approved for space missions.

2.6 Deep Learning in Space
Machine learning and AI have been used to analyze space data for decades. However,
mobile deep learning directly on space crafts is a new field. With the rapid
development in both space devices and the access to configurable devices like
FPGAs, deep learning in space could be the way to save energy, make quick
decisions, and increase automation and control of spacecraft.

Satellite data has traditionally been downloaded to a ground station before
machine learning or manual data processing occurs. Sending and receiving large
volumes of data daily is power-consuming and requires large data storage solutions.
[16] suggests that using deep learning directly on the spacecraft might save at least
half the power by restricting which data is transferred to Earth.

Transmitting image data to ground stations can be very expensive, and by
employing deep learning on board, a satellite can reduce the amount of data
transmitted. Pre-processing on board the spacecraft can discard images of no
interest, for example, images of poor quality or distorted view due to sun reflection
or cloud convergence. [17] estimated that the global annual cloud coverage is about
66%, meaning that if cloud observation is not the mission large amounts of image
data might be unwanted. By using different image processing techniques, images
can be classified and discarded. By only transmitting the regions of interest, it is
possible to save power and cost.

14

Related work

Deep learning and machine learning-based data-driven techniques have a lot of
potential and can be used in various areas, from ice monitoring to discovering new
objects in deep space. [18] suggests that using image classification in space, it is
possible to categorize ice and ice development with over 80% accuracy. The article
focuses on the monitoring of ice on the planet in terms of using image processing
to categorize the ice and monitor the change of the ice. Old image data was used
for training and testing the algorithms. While all classification was performed on
non-rad-hard FPGAs, on-board classification could be a possibility for the future
of ice monitoring. Similar techniques have also been tested for cloud detection
[19], greenhouse gas concentration estimations [20], and monitoring oil spills. Oil
spill monitoring can prove especially helpful because it could be possible to predict
a spill’s spread direction and flow rate. This could help the cleanup crew and
be used for monitoring the after-effects of the accident by monitoring shoreline
characteristics and severity.

Identifying objects in thousands of astronomical images is highly complex and
time-consuming. Here, neural networks can be used to help astronomers to detect
and classify phenomena of interest. The James Webb Space Telescope is one of
the first to use deep learning in data post-processing to detect galaxy clusters [21].
Onboard classification and learning could mean continuous searches, but for now,
it is only possible to use this technique post-data transfer.

Automation and control are other aspects of space flight that might benefit from
different machine-learning techniques. Automation is currently used in satellites
such as Rosetta and Venus [22], but with deep learning, the onboard control can be
improved by event detection and subsequent planning. When autonomous control
was first introduced, it showed that the autonomic control system was highly
reliable, even during extreme geophysical events [23]. Introducing machine learning
and artificial intelligence to spacecraft control would allow for great flexibility,
reduce lead time, and reduce risk for mission operations, as the spacecraft would be
able to automatically avoid crashes and incidents by giving it a better view of the
surroundings. [24] suggests that rovers can benefit from onboard deep learning for
control and path planning in uneven terrains. While this has not been implemented
yet, multiple test systems and algorithms are showing promising results to let a
neural network judge the navigability of the terrain to plan a safe path for the
vehicle.

In summary, using deep learning and AI directly in space can save energy, offer
fast decision-making, and increase automation and control in spacecraft operations.
Continued research and implementation of these techniques can pave the way for
advancement in space exploration, opening up new possibilities and improving our
understanding of the universe.

15

Related work

2.7 Research Gap and Weaknesses
While neural network implementation and radiation-hardened electronics are widely
researched, we have barely scratched the surface of what is possible with deep
learning in space. Radiation-hardened FPGAs have demonstrated remarkable
reliability and flexibility, offering the advantages of being configurable and recon-
figurable for system updates and improvements. Neural networks and artificial
intelligence in space also have many benefits, including power and storage savings
and increased control system flexibility. However, there is a notable lack of research
on using FPGAs and neural networks onboard space crafts. More research is
needed to fully understand and address the challenges of using neural networks on
radiation-hardened FPGAs in space environments and unlock their potential.

This chapter introduces the fundamentals of neural networks and FPGAs,
explaining the architecture and functionality behind these. Additionally, radiation
effects and mitigation techniques were presented briefly, as well as current research
on all topics. The findings show that while research on neural networks and
FPGAs is widely available, it is lacking in terms of FPGA implementation of neural
networks and the use of radiation-hardened FPGAs. This highlights the need for
further research on neural networks on FPGAs for space application and deep
learning.

16

Chapter 3

Proposed methodology

In this chapter, we present the methodology adapted to design and implement the
system, consisting of a universal asynchronous receiver/transmitter (UART) based
communication system and a neural network for color classification. The chapter
reviews the steps taken to design and collect data from the system, including
the development and limitations of each. The designed UART and the overall
communication system within and outside the board are presented. Additionally,
the design and optimization of the neural network is reviewed. By detailing the
methodology, the aim is to provide a clear understanding of the process and
techniques used to create the design and collect data for this project.

To explore how a rad-hard FPGA responds to neural networks, a quantitative
approach was used. There is not yet a lot of research available on neural networks
for rad-hard FPGAs, as this is a new field of research and there are limited boards
commercially available. To gain insight into how a rad-hard FPGA compares to
a non-hard-hard FPGA, the design was tested on two boards; The rad-hard NG-
Medium, and the non-rad-hard Pynq-Z2. By implementing the same neural network
for color detection on both boards, one can evaluate the differences between them, in
terms of performance and utilization, to determine if neural network implementation
on the NG-Medium is suitable.

3.1 The Design
The overall design comprises three main hardware components, a personal computer,
a UART to USB adapter, and an FPGA board containing the necessary inputs and
outputs. Figure 3.1 shows the high-level architecture of the system design, as well as
the communication between the different hardware. The figure also illustrates the
internal processes of the FPGA, including the UART and the neural network. For
each classification, the neural network required one set of pixel values, consisting of

17

Proposed methodology

red, green, and blue 8-bit values. When the FPGA receives the data, it is decoded
and manipulated, before the values are put on the neural network input. The aim
of the neural network is simple; get a pixel input, and try to determine if the pixel’s
color is yellow, blue, or neither. The output is then manipulated back into ASCII
characters before transmitting them to the computer by the transmitter.

Figure 3.1: System Communication Cycle. Illustrating the internal processes
inside the FPGA and the communication from the computer to the board. Internal
processes inside the FPGA are marked with red.

UART

The UART module is implemented to serve as the communication interface between
the FPGA and an external computer. The implementation enables the system to
receive input data from the computer and send back the results efficiently. The
UART is configured to operate at a baud rate of 115200 bits per second, and carries
eight data bits, making it suitable to send and receive ASCII characters. Addi-
tionally, the UART uses one start bit and one stop bit during the communication
process.

When an external computer intends to send data to the FPGA, it sends a start
bit, followed by the 8-bit data packet, using a serial communication interface. The
8-bit packet has to be ASCII characters representing numbers between 0-9, or
a space. On the FPGA side, the UART module continuously monitors the line
for incoming data. The UART will then validate the received data, and wait for
the stop bit before it extracts relevant information from the data pack for further
processing within the FPGA. Once a stop bit is received, the data is echoed back
to the computer to verify the correctness.

Figure 3.2 shows the connections between the personal computer and the board

18

Proposed methodology

when communicating with the FPGA. The computer is connected via USB to a
USB to UART adapter. This adapter has the receiver and transmitter connected,
as well as a common ground with the board. The device is also powered by 5V
from the board.

Figure 3.2: Hardware Connections. Illustrating the hardware connections between
the PC, the UART-to-USB adapter, and the board.

Neural Network

The neural network is implemented to classify received pixels as blue, yellow, or
other. It is based on a feed-forward structure that consists of three layers: one input
layer, one hidden layer, and an output layer. Figure 3.3 shows the organization of
the layers for the neural network. The NG-Medium has a relatively limited number
of bit carriers, and a smaller network is preferred. The network has three input
nodes, one for each color of the RGB (red, green, blue) pixel values, seven hidden
nodes, and two output nodes for classifying yellow and blue.

3.1.1 UART Implementation
The UART controller consists of a top-level, a receive module, and a transmit
module. The receiver takes in the raw serial data, reads it, and returns the data
packet to the top level as well as a signal indicating that a byte was received
successfully. The transmit module ensures the data is transmitted correctly de-
pending on the baud rate and will send the start bit, data, and stop bit correctly.
Additionally, it ensures the line is clear before sending data on the line. The
top-level guarantees a correct data flow in the system, and Figure 3.4 shows how
the data is manipulated going through the system. The ASCII data bytes from the
receiver are first converted to binary values and saved in a temporary array.

Each pixel on the computer is deconstructed into its three separate components:
red, green, and blue. When transmitting the data via the UART, the RGB values

19

Proposed methodology

Figure 3.3: Neural Network Structure. The neural network structure includes
three input nodes, seven hidden nodes, and two output nodes.

Figure 3.4: Data Decoding and Encoding. Illustrates how the input data is
decoded and encoded to be properly used by the UART and neural network.

are sent one digit at a time, starting with the hundreds component and ending
with the last digit. A space is sent between each element to indicate the number’s
end before the next element’s hundreds component is transmitted. For example, if
one wanted to transmit the color white (255, 255, 255), the order of transmission

20

Proposed methodology

would look like this:

2,5,5, space,2,5,5, space,2,5,5, space (3.1)

The FPGA top-level module saves all digits in an array until a space is received,
signifying the end of the number. Then, the digits will be concatenated to form a
single number representing values from 0 to 255. When the total RGB pixel value
is received, the values are passed through the neural network for classification. The
classifier’s output is then decomposed into decimal digits and converted into ASCII
characters before each digit is transmitted individually. Similar to receiving, the
end of each pixel element is indicated by a space.

The process ensures that the RGB pixel data can be accurately and efficiently
transmitted and received by the computer and the FPGA. Additionally, it ensures
that the values are correctly manipulated to be used by the neural network.

The two boards operate with different clock frequencies. The NG-Medium has
a clock frequency of 25GHz, while the clock frequency of the Pynq-Z2 is five times
as high at 125GHz. Because of this, a few code changes are required for the UART
on the two boards to operate identically. Clockpulses per bit sent by the UART
are decided by the clock frequency of the boards as well as the baud rate of the
UART. This is calculated by the formula:

ClockFrequency

BaudRate

Table 3.1 shows how many clock pulses are required for the two devices.

Device Clock Frequency Clocks per bit
NG-Medium 25MHz 217

Pynq-Z2 125MHz 1085

Table 3.1: Number of clock pulses required to send one bit via UART with a
baud rate of 115200

3.1.2 Neural Network Implementation
The neural network implementation consists of five parts: top-level, control system,
multipliers, neurons, and sigmoid functions. The network is inspired by the work
done by Marco Winzker [25], with alterations to account for timing and custom
memory initialization. The top level wires the inputs and outputs from the neurons,
monitors reset signals, and triggers classification by setting the "data enable" bit.
This module also manipulates the output pixels depending on the classification
outcome. The neural network control makes sure that the UART module is informed

21

Proposed methodology

when a classification is finished to make it start preparing the data for transmission.
Since the network contains seven hidden nodes with three inputs each and two
output nodes with seven inputs each, the system performs 35 multiplications and
additions per classification and uses nine sigmoid functions, one for each node that
is not an input.

Figure 3.5: Neuron Structure. Showing necessary calculations that are performed
inside of a hidden neuron. A 12-bit address is derived from the calculation’s 12
most significant bits. The address is used to access a ROM, which returns the
output. Output neurons follow the same principle but have seven inputs, and not
three.

Each neuron in the neural network undergoes a series of computations, demon-
strated in figure 3.5. Firstly, the inputs are multiplied with the corresponding
weights before they are summed up with a bias. The result yields a 16-bit signed
number converted to a 16-bit unsigned number by adding 32768. Using the output’s
12 most significant bits, a 12-bit address can be derived. The address is then given
to an activation function, which, in this case, is a sigmoid function.

h(x) = 1
1 + e−x

(3.2)

The nonlinearity of a sigmoid function is an advantage over linear functions as
it allows the network to model a more complex relationship between the inputs
and outputs. A generic sigmoid function is illustrated in figure 3.6; however, in our
case, it will have a y-axis varying from 0 to 255, and an x-axis to satisfy a 12-bit
unsigned memory address. It will therefore return a value between 0 and 255. The
return value from the function is put on the output from the neural network, where

22

Proposed methodology

the output from the two nodes is comprehended and evaluated. If the output value
is greater than 127, that label is chosen for the classification. If both are more
significant than 127, the highest return value is chosen for the classification.

Figure 3.6: The Sigmoid Activation Function Graph. The sigmoid function’s
characteristic S-shaped curve with a steep middle portion and flattened top and
bottom is ideal for neural networks. Its nonlinearity allows neural networks to model
complex relationships between inputs and outputs, to see complicated patterns in
large amounts of data.

Using two output nodes, the neural network is trained to categorize pixels into
three categories: yellow, blue, and other. As the network classifies pixel by pixel, it
is possible to train the network using only one large image seen in Figure 3.7. This
image is 1280*720 pixels large and gives a training dataset of 921600 samples.

As a supervised learning algorithm is chosen, each training sample also contains
a label indicating if the pixel is blue, yellow, or other. Labels are created by taking
the training image and marking the yellow and blue areas with a definite RGB
value; in this case, blue is indicated with white, and yellow is shown with gray, as
seen in Figure 3.8.

The network is trained using a backpropagation algorithm with 400 epochs with
a learning rate of 0.00001. A versatile memory initialization of a sigmoid function
was used in order for the same design to function across both boards, ensuring
independence from external packages. The read-only memory (ROM) is composed
of 8 data bits, and 12 address bits, giving it a depth of 4096 words. The ROM
stores the 8-bit sigmoid function lookup table.

23

Proposed methodology

Figure 3.7: Training Image. Used for training the neural network by providing
different shades of yellow and blue.

Figure 3.8: Training labels. Each individual pixel represents a label for the
training image and is used when training the neural network. Gray represents the
yellow areas, white represents the blue areas, and black represents everything else.

24

Proposed methodology

3.2 Data Collection
An experimental research strategy was chosen for this study. This is performed
by testing the design on both a commercial FPGA and a rad-hard FPGA, to look
at the physical differences between the boards and study the results. By doing
this, the commercial FPGA will act as a control to determine if the design can be
deemed efficient for rad-hard FPGAs.

Data were collected by analyzing log files and the design using Vivado and
NXMap, for Pynq and NG-Medium, respectively. After the results and data are
extracted, a comparison between the boards is performed in terms of performance
and utilization. Data is extracted for each part of the design, where the UART,
the ROM unit, and the neural network are all synthesized and analyzed separately
to get a fuller picture of which parts of the system are more resource-heavy.

It is important to note that this data collection type has flaws. Considering that
the data for each board are collected using different programs, the terminology
is not the same across the platforms. Both data about utilization and timing are
different. It’s also essential to note that the internal clock on the boards is different
by a factor of five, meaning that timing would not have an accurate comparison.
A drawback to separating the different parts for data synthesis and collection is
that it’s not always easy to know how the program will react and how to allocate
resources for the separate parts. This means that the estimation of resources used
for the remaining part is not 100% accurate.

This chapter has provided an overview of the methodology adapted for the design
and implementation of the system, consisting of a UART-based communication
system and a neural network for color classification. The steps taken to create
the system and how data collection was performed for the project have been
reviewed. Furthermore, the design and optimization of the neural network have
been briefly visited. The goal of providing the methodology and design is to offer
more understanding of the project and ensure readers can reproduce results.

25

Chapter 4

Experimental Results

This chapter presents the experimental setup needed to gather the results, including
a brief presentation of the hardware used. The experimental activity of my thesis
consists of developing the emulation platform of a neural network on Pynq-Z2 and
NG-medium. For this, the performance, utilization, and timing are analyzed and
discussed to highlight the differences between the non-rad-hard FPGA, and the
NG-Medium.

4.1 Hardware Characteristics
The system is tested using a computer, a USB-to-UART adapter, and two FPGAs;
the commercial Xilinx Pynq-Z2, and the rad-hard NanoXplore NG-Medium.

4.1.1 Pynq-Z2
The Pynq-Z2 board, shown in Figure 4.1, is a commercialized Xilinx Zynq-based
system-on-chip (SoC). It uses Python language and libraries to simplify the design
process while still letting the designer exploit the benefits of programmable logic
and microprocessors to build compatible electric systems. It consists of one 650MHz
dual-core Cortex-A9 processor. The programmable logic comprises 13300 logic
slices, each with 6-input LUTs and 8 flip-flops. It has fast block RAM, multiple
clock management tiles, DSP slices, and an on-chip analog-to-digital converter.

4.1.2 NG-Medium
NanoXplore is the leading European company in designing and developing SoC
FPGA technology. The NanoXplore Rad-hard BRAVE NG-Medium NX1H35S
SRAM-based FPGA, shown in Figure 4.2, is explicitly designed to survive radiated

26

Experimental Results

Figure 4.1: Pynq-Z2 board

environments like space. The FPGA is radiation hardened by design in configuration
memories and registers, making it suitable for aerospace industry use. The NG-
Medium is designed using 65nm STm C65-SPACE process technology, consists of
34272 4-input LUT tables, and has high-performance carry chains. It contains user
memories with variable width and depth, allowing custom memory initialization.

Since the NG-Medium has a generally limited memory capacity and fewer LUTs
than the Pynq-Z2. Deeper networks require more memory usage than smaller
networks, and due to the limited memory of the NG-Medium, only smaller networks
are suitable.

Figure 4.2: NG-Medium board

Using two different boards makes it possible to achieve valuable insight in
comparison. The non-radiation hardened board, Pynq-Z2, has been used for neural
networks in multiple studies ([26] [27] [28]) and has already established that it
has a high-performance and reliability in non-radiation environments. On the
other hand, the research on NG-Medium is lacking in terms of neural networks

27

Experimental Results

and could provide valuable data on how radiation-hardened FPGAs respond to
such applications. The comparative analysis can help researchers understand the
advantages and challenges of using radiation-hardened FPGAs for neural network
implementations for space applications.

4.1.3 WITMOTION USB-UART Converter
To be able to communicate between the computer and the boards using UART,
the Witmotion USB-UART converter was utilized. This is a 3.3-5V Serial Adapter
with a CH340 chip, making it a suitable solution for this project.

4.1.4 Personal Computer
A personal computer was used to transfer data and communicate with the boards.
The computer needs to be able to send serial data via USB and have the appropriate
synthesizing tools downloaded for both boards. NX-MAP was used for the NG-
Medium, and Vivado was used for Pynq-Z2.

4.2 Experimental Setup
The experimental setup consists of testing and comparing the performance of the
two boards.

The board is connected to a computer via the USB-to-UART adapter to send
and receive data. The communication was tested in multiple steps to ensure
everything was working correctly. Initially, a simple echo was used to ensure that
UART communication and the board initialization were set up correctly. The next
step was the test of a simple multiplier to ensure the boards could store inputs and
process them before returning the correct answer and number of digits. The last
step consisted of receiving a pixel value composed of red, green, and blue values
ranging from 0 to 255 and returning those correctly.

Baudrate 115200bps
Start bit 1 (high)
Stop bit 1 (low)

Indication of number ending space (0x20)

Table 4.1: UART settings and configurations

Table 4.1 shows the UART setting used for the setup. Single digits are trans-
mitted using a baud rate of 115200bps, with one (high) start and one (low) stop
bit. The end of the RGB value is indicated by sending a space after the last digit.

28

Experimental Results

When communicating with the board, a serial communication application was used
to send single-pixel values, and Python was used to send and receive larger amounts
of data. Each step was tested on both boards to ensure the results were equal.

The design running on the boards comprises multiple parts, as described in
Chapter 3.

1. The main state machine, is used to control the communication with UART
and the neural network.

2. Memory module, memory initialization of a sigmoid function.

3. Neural network, implementation, and neural network control.

The memory was tested sequentially, reading from all memory locations and
checking if the expected data was returned. The results were tested by altering the
UART to return the direct reading from the memory locations instead of the result
from the classification itself. Because of the relatively small neural network size, it
was possible to test it by returning the outputs from each neuron. By creating a
Python script that would do all the same calculations as the neural network and
print the predicted output from all eleven neurons, the output from the network
could be checked appropriately. Each neuron output was returned using the UART
to ensure that the expected result matched the output from the neural network.

The whole system with all its modules was tested by sending known pixel values
of different shades of yellow and blue, as well as other colors, and observing the
outcome of the classification.

4.3 Results
In this section, the results will be presented and discussed. First, a rough introduc-
tion to the classification training results will be presented and the results achieved
when running the classifier on the two boards. Next, the board’s performance
regarding utilization, efficiency, and area will be compared.

4.3.1 Neural Network Classifier
After training the neural network, the training image was tested to see what the
minimum expected error could be. The output resulted in a loss of 4%, which is
generally high, as one often aims for an error below 1 percent. By analyzing the
training image, it was revealed that the image only consists of 10% blue and 16%
yellow labels. This could mean the classifier might not have had enough data to
work with. Looking at the output image, Figure 4.3, it is possible to see that the
classifier is struggling with dark yellow colors.

29

Experimental Results

Figure 4.3: Classification Training Output. Output from testing the training
image with the current weights shows that not all yellow areas are classified
correctly.

Figure 4.4: Training Image Analysis. Illustration showing how some colors might
be too similar for the system to categorize correctly, as colors are subjective to the
viewer, and individual pixels might, therefore, not be categorized correctly.

This is most likely due to either not having an optimal training method or the
colors in the images overlapping too much. Figure 4.4 show that the dark yellow
spots might be too similar to several other points in the image and is therefore not
classified as yellow, even if the human eye perceives it as yellow. From these results,

30

Experimental Results

it could have been better to do area searches instead of single-pixel classification
to teach the network that connected areas are often the same color. However, the
classifier was not perfected as it still classified vibrant yellow and blue colors.

Figure 4.5 illustrates the image used to test the algorithm using a simulator, in
this case, Vivado. The image is a screenshot from Google Maps, chosen because it
has some different elements from the training images, while still containing clear
yellow and blue areas.

Figure 4.5: Test image. Screenshot taken from Google maps [29] and converted
to PPM format. Demonstrates blue sky and water, with a yellow stripe in the road.

Figure 4.6 shows the result when testing the algorithm using a simulator. It is
possible to see that it is able to correctly classify the ocean and sky as blue, as
well as the yellow stripe. It does however struggle with colors that are not bright.
One can see that the light blue areas of the sky are not classified, and some green
and gray areas are incorrectly classified as yellow or blue. The classification results
show that the algorithm needs more training and possibly more input data for
yellow and blue areas. However, minor classification mistakes are not a concern, as
it is not the main component of the thesis and only serve to be a proof of concept.

31

Experimental Results

Figure 4.6: Classification Result. Result from testing the neural network design
using a simulation tool. Demonstrating that the system is able to correctly classify
bright blue and yellow areas.

Pynq-Z2 Results

The result of the classifier on the boards was not calculated as the perception of
what a user would classify as yellow and blue differs. The Pynq-Z2 did, however,
manage to classify yellow and blue colors in a wide range correctly and returned
shades of gray when it was exposed to other colors.

NG-Medium Results

Currently, the neural network is not working correctly on the NG-Medium, and the
issue occurs on the neural network’s output. All input and hidden nodes were tested
individually and are working correctly; however, the output nodes are incorrect.
The cause of the issue is still unknown, and it is unknown if the radiation-hardened
capabilities of the NG-Medium cause the issue or if it is simply user error.

Besides the neural network, the board responds well to UART communication
and can retrieve correct information from the implemented ROM.

32

Experimental Results

4.3.2 Board Utilization and Performance Differences
The architecture of the two boards has been evaluated in terms of area, frequency,
performance, and working capabilities. Additionally, each module of the design
has been synthesized and evaluated separately. By doing this, it is possible to see
which parts of the design require the most resources. The parts that are evaluated
are the UART and the ROM module. Additionally, the resources needed for the
neural network have been roughly estimated by subtracting the two others from
the final design.

Table 4.2 shows the difference between the bit utilization between the two
boards, and it is possible to see that the NG-Medium uses a lot fewer bits than
the Pynq-Z2, not only in the total amount of bits but also in terms of the fraction
total bits available.

NG-Medium PYNQ-Z2
Total bits 6 189 616 25 697 632

Critical bits 57 975 260 939
Percentage used 0.93% 1.02%

Table 4.2: Bit Utilization and percentage of total bits available

This is possibly due to the different hardware architecture between the two
broads and them being synthesized and optimized using two different software
applications.

There exist both advantages and limitations to utilizing fewer bits. A few
advantages include the design consuming fewer FPGA resources, leaving more
for other functionalities. This will also allow for a smaller FPGA, reducing cost.
The design’s power consumption will also generally be smaller, as the fewer bits
consume less power, making the system more power efficient. Fewer bits might
also achieve higher operating frequencies and faster performance, making timing
closure easier to achieve.

Table 4.3 shows the shortest, average, and longest time taken from the 10 longest
paths. NG-Medium operates with a clock frequency of 25 GHz, while Pynq-Z2
operates at 125 GHz. These frequencies define the maximum rate at which signals
can be sampled or processed within their respective clock domains. It can be noted
that even though the clock of NG-Medium is five times slower than the opponent,
the path timing is only about three times longer. Since the difference between the
critical paths is less severe than expected, this indicates that the critical path is
not proportional to the clock frequency difference. And suggests that Pynq-Z2 is
experiencing some routing delays that are not present in NG-Medium. Nonetheless,
the Pynq-Z2 achieves a shorter timing delay than the counterpart, making it higher
in performance.

33

Experimental Results

NG-Medium PYNQ-Z2
Shortest 29.412ns 10.427ns
Average 29.426ns 10.611ns
Longest 29.444ns 11.057ns

Table 4.3: Ten longest paths timing

Table 4.4 shows some differences in the boards’ utilization of resources. It is
possible to see that the NG-Medium relies more heavily on 4-LUTs and DFFs, while
the Pynq-Z2 relies more on DSP blocks. For the NG-Medium, some of the arrays,
specifically the send and receive array used by the UART, were mapped from the
RAM to DFF blocks, to make them readable and writable from multiple places. It
is also possible to see that the Pynq-Z2 has more memory blocks available.

NG-Medium PYNQ-Z2
4-LUT 709/32256 3% 238/13300 1.79%

Flip-flops (DFF) 1246/32256 4% 574/106400 0.54%
DSP 4/112 4% 33/220 15%

BRAM 9/56 17% 5/140 3.57%

Table 4.4: Memory utilization for the full design

When isolating only the Sigmoid ROM module, it was discovered that both
boards utilized only one memory block.

NG-Medium Utilization of Isolated Models

Full design RAM UART and Top-Level NN (estimated)
4-LUT 709/32256 364/32256 354/32256
DFF 1246/32256 252/32256 994/32256

1-Bit carry 2923/8064 374/8064 2549/8064
Register file block 4/168 4/168 0

DSP 4/112 4/112 0
Memory block 9/56 1/56 9/56

Table 4.5: Memory utilization for different parts of the system

Table 4.5 shows the utilization of the full design on the NG-Medium, compared to
the isolated RAM, UART, and top-level, and the estimation of resources for the
neural network. From this it is possible to see that the neural network is clearly
the dominant user of resources, using magnitudes more DFFs and 1-bit carries

34

Experimental Results

than the other parts of the system. The number of memory blocks utilized was not
possible to estimate, as multiple models share parts of the memory.

Area Utilization

Figure 4.7: Placement on NG-Medium. Highlighted sections demonstrate the
utilized areas of the NG-Medium.

Figure 4.7 shows the area utilization on the NG-Medium. The first, third, and fifth
row consists only of clusters, which are made up of 408 LUTs and 384 DFFs each.
The second and fourth line consists of RAM and DSP blocks. The lit-up places
around the board represent used inputs and outputs, both simple and complex.

Figure 4.8 shows the area utilization of the PYNQ-Z2. The area on the board
that is lighting up, shows the utilized resources.

In conclusion, the NG-Medium utilizes fewer resources than the Pynq-Z2, despite
having the same design running on both boards. The Pynq-Z2 can classify bright
yellow and blue colors well and works on a higher frequency with fewer delays than
the NG-Medium. However, a fair comparison cannot be made due to the improper
functioning of the classifier on the NG-Medium.

35

Experimental Results

Figure 4.8: Placement on PYNQ-Z2. Highlighted sections demonstrate the
utilized areas of the Pynq-Z2.

36

Chapter 5

Conclusion

This thesis investigated how the NG-Medium compares to standard non-radiation
hardened FPGAs regarding performance, reliability, and fault tolerance. The goal
was to understand the practical implications and potential advantages radiation-
hardened solutions can pose in radiation-intensive environments.

For this purpose, a feed-forward neural network was trained using backpropa-
gation and implemented on the non-radiation-hardened FPGA Pynq-Z2 and the
radiation-hardened NG-Medium. A UART system was also developed to commu-
nicate with the boards and send and receive data digit by digit to and from the
network. The results of the classification, utilization of the FPGAs, and timing
analysis were compared, and potential advantages or implications were highlighted
in the results section.

Concluding this thesis, it is clear that exploring neural networks on radiation-
hardened FPGAs for space applications is complex but can prove very useful. While
this research failed to prove the usefulness of neural networks on the NG-Medium,
the study still sheds light on the potential advantages of combining neural networks
with rad-hard FPGAs.

The finding presented in this study gives initial insight into the performance and
utilization that can be expected when employing neural networks on a rad-hard
FPGA like the NG-Medium. The unique architecture of the NG-Medium presented
unforeseen challenges, where the system did not operate as expected. While the
cause is unknown, the hope is that it can motivate others to research the topic
further.

Furthermore, this developed system would need to undergo testing in simulated
radiation environments before any final conclusions could be made. While this
thesis aimed to lay out the groundwork for understanding the performance of neural
networks on rad-hard FPGAs, it remains to see how these systems perform under
real radiation conditions.

In conclusion, this thesis has opened the door for new possibilities and challenges

37

Conclusion

when combining neural networks and radiation-hardened FPGAs for space missions.
Through research, experimentation, and collaboration, neural networks on rad-
hard FPGAs might still be the future advancements needed in the space industry,
providing onboard detection and classification for space crafts and rovers.

38

Bibliography

[1] Berndt Müller, Joachim Reinhardt, and Michael T Strickland. Neural net-
works: an introduction. Springer Science & Business Media, 1995 (cit. on
p. 4).

[2] Murat H. Sazlı. «A brief review of feed-forward neural networks». In: Com-
munications Faculty of Sciences University of Ankara Series A2-A3 Physical
Sciences and Engineering (2006). doi: 10.1501/commua1-2_0000000026
(cit. on p. 6).

[3] Vladimir Nasteski. «An overview of the supervised machine learning methods».
In: Horizons. b 4 (2017), pp. 51–62 (cit. on p. 6).

[4] Tor A. Myrvoll, Stefan Werner, and Magne H. Johansen. Estimation, detection
and classification theory (cit. on p. 7).

[5] Shubham Gandhare and B. Karthikeyan. «Survey on FPGA Architecture and
Recent Applications». In: 2019 International Conference on Vision Towards
Emerging Trends in Communication and Networking (ViTECoN). 2019, pp. 1–
4. doi: 10.1109/ViTECoN.2019.8899550 (cit. on p. 8).

[6] Julien Lamoureux and Steven J. E. Wilton. «FPGA Clock Network Architec-
ture: Flexibility vs. Area and Power». In: Proceedings of the 2006 ACM/SIGDA
14th International Symposium on Field Programmable Gate Arrays. FPGA
’06. Monterey, California, USA: Association for Computing Machinery, 2006,
pp. 101–108. isbn: 1595932925. doi: 10 . 1145 / 1117201 . 1117216. url:
https://doi.org/10.1145/1117201.1117216 (cit. on p. 9).

[7] Leonard Rockett, Dinu Patel, Steven Danziger, Brian Cronquist, and J.J.
Wang. «Radiation Hardened FPGA Technology for Space Applications». In:
2007 IEEE Aerospace Conference. 2007, pp. 1–7. doi: 10.1109/AERO.2007.
353098 (cit. on p. 10).

[8] Zbigniew Hajduk. «Reconfigurable FPGA implementation of neural networks».
In: Neurocomputing 308 (2018), pp. 227–234. issn: 0925-2312. doi: https:
//doi.org/10.1016/j.neucom.2018.04.077. url: https://www.science
direct.com/science/article/pii/S0925231218305393 (cit. on p. 10).

39

https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.1109/ViTECoN.2019.8899550
https://doi.org/10.1145/1117201.1117216
https://doi.org/10.1145/1117201.1117216
https://doi.org/10.1109/AERO.2007.353098
https://doi.org/10.1109/AERO.2007.353098
https://doi.org/https://doi.org/10.1016/j.neucom.2018.04.077
https://doi.org/https://doi.org/10.1016/j.neucom.2018.04.077
https://www.sciencedirect.com/science/article/pii/S0925231218305393
https://www.sciencedirect.com/science/article/pii/S0925231218305393

BIBLIOGRAPHY

[9] Janardan Misra and Indranil Saha. «Artificial neural networks in hardware: A
survey of two decades of progress». In: Neurocomputing 74.1 (2010). Artificial
Brains, pp. 239–255. issn: 0925-2312. doi: https://doi.org/10.1016/j.
neucom.2010.03.021. url: https://www.sciencedirect.com/science/
article/pii/S092523121000216X (cit. on p. 10).

[10] Donald L. Hung and Jun Wang. «Digital hardware realization of a recurrent
neural network for solving the assignment problem». In: Neurocomputing 51
(2003), pp. 447–461. issn: 0925-2312. doi: https://doi.org/10.1016/S0
925-2312(02)00627-6. url: https://www.sciencedirect.com/science/
article/pii/S0925231202006276 (cit. on p. 10).

[11] Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. «Mitigation
of Radiation Effects in SRAM-Based FPGAs for Space Applications». In:
ACM Comput. Surv. 47.2 (Jan. 2015). issn: 0360-0300. doi: 10.1145/2671181.
url: https://doi.org/10.1145/2671181 (cit. on pp. 11, 13).

[12] Michael J. Wirthlin. «FPGAs operating in a radiation environment: lessons
learned from FPGAs in space». In: Journal of Instrumentation 8 (2013)
(cit. on p. 12).

[13] Jeffrey S. George. «An overview of radiation effects in electronics». In: AIP
Conference Proceedings 2160.1 (Oct. 2019), p. 060002. issn: 0094-243X. doi:
10.1063/1.5127719. eprint: https://pubs.aip.org/aip/acp/article-
pdf/doi/10.1063/1.5127719/14196223/060002_1_online.pdf. url:
https://doi.org/10.1063/1.5127719 (cit. on p. 12).

[14] Raoul Velazco, Pascal Fouillat, and Ricardo Reis. Radiation effects on embed-
ded systems. Springer Science & Business Media, 2007 (cit. on p. 13).

[15] R. Katz, K. LaBel, J.J. Wang, B. Cronquist, R. Koga, S. Penzin, and G.
Swift. «Radiation effects on current field programmable technologies». In:
IEEE Transactions on Nuclear Science 44.6 (1997), pp. 1945–1956. doi:
10.1109/23.658966 (cit. on p. 14).

[16] Miguel Ángel Vázquez, Pol Henarejos, Irene Pappalardo, Elena Grechi, Joan
Fort, Juan Carlos Gil, and Rocco Michele Lancellotti. «Machine Learning for
Satellite Communications Operations». In: IEEE Communications Magazine
59.2 (2021), pp. 22–27. doi: 10.1109/MCOM.001.2000367 (cit. on p. 14).

[17] Jacob Høxbroe Jeppesen, Rune Hylsberg Jacobsen, Fadil Inceoglu, and
Thomas Skjødeberg Toftegaard. «A cloud detection algorithm for satellite
imagery based on deep learning». In: Remote Sensing of Environment 229
(2019), pp. 247–259. issn: 0034-4257. doi: https://doi.org/10.1016/
j.rse.2019.03.039. url: https://www.sciencedirect.com/science/
article/pii/S0034425719301294 (cit. on p. 14).

40

https://doi.org/https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/https://doi.org/10.1016/j.neucom.2010.03.021
https://www.sciencedirect.com/science/article/pii/S092523121000216X
https://www.sciencedirect.com/science/article/pii/S092523121000216X
https://doi.org/https://doi.org/10.1016/S0925-2312(02)00627-6
https://doi.org/https://doi.org/10.1016/S0925-2312(02)00627-6
https://www.sciencedirect.com/science/article/pii/S0925231202006276
https://www.sciencedirect.com/science/article/pii/S0925231202006276
https://doi.org/10.1145/2671181
https://doi.org/10.1145/2671181
https://doi.org/10.1063/1.5127719
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5127719/14196223/060002_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5127719/14196223/060002_1_online.pdf
https://doi.org/10.1063/1.5127719
https://doi.org/10.1109/23.658966
https://doi.org/10.1109/MCOM.001.2000367
https://doi.org/https://doi.org/10.1016/j.rse.2019.03.039
https://doi.org/https://doi.org/10.1016/j.rse.2019.03.039
https://www.sciencedirect.com/science/article/pii/S0034425719301294
https://www.sciencedirect.com/science/article/pii/S0034425719301294

BIBLIOGRAPHY

[18] C. O. Dumitru, V. Andrei, G. Schwarz, and M. Datcu. «MACHINE LEARN-
ING FOR SEA ICE MONITORING FROM SATELLITES». In: The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences XLII-2/W16 (2019), pp. 83–89. doi: 10.5194/isprs-archives-
XLII-2-W16-83-2019. url: https://isprs-archives.copernicus.org/
articles/XLII-2-W16/83/2019/ (cit. on p. 15).

[19] H. G. Lewis, S. Cote, and A. R. L. Tatnall. «Determination of spatial and
temporal characteristics as an aid to neural network cloud classification».
In: International Journal of Remote Sensing 18.4 (1997), pp. 899–915. doi:
10.1080/014311697218827. eprint: https://doi.org/10.1080/014311697
218827. url: https://doi.org/10.1080/014311697218827 (cit. on p. 15).

[20] Ryoichi Imasu et al. «Greenhouse gases Observing SATellite 2 (GOSAT-2):
mission overview». In: Progress in Earth and Planetary Science 10.1 (2023),
p. 33 (cit. on p. 15).

[21] Matthew C Chan and John P Stott. «Deep-CEE I: fishing for galaxy clusters
with deep neural nets». In: Monthly Notices of the Royal Astronomical Society
490.4 (Oct. 2019), pp. 5770–5787. issn: 0035-8711. doi: 10.1093/mnras/
stz2936. eprint: https://academic.oup.com/mnras/article-pdf/490/
4/5770/30820714/stz2936.pdf. url: https://doi.org/10.1093/mnras/
stz2936 (cit. on p. 15).

[22] Massimo Ferraguto, Tim Wittrock, Mark Barrenscheen, Matti Paakko, and
Ville Sipinen. «The On-Board Control Procedures Subsystem for the Herschel
and Planck Satellites». In: 2008 32nd Annual IEEE International Computer
Software and Applications Conference. 2008, pp. 1366–1371. doi: 10.1109/
COMPSAC.2008.218 (cit. on p. 15).

[23] W Wimmer. «Remote control of satellites and applied automation». In: IFAC
Proceedings Volumes 14.2 (1981), pp. 2323–2328 (cit. on p. 15).

[24] P. Blacker, C. P. Bridges, and S. Hadfield. «Rapid Prototyping of Deep
Learning Models on Radiation Hardened CPUs». In: 2019 NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS). 2019, pp. 25–32. doi:
10.1109/AHS.2019.000-4 (cit. on p. 15).

[25] Marco Winzker. NN RGB FPGA. https://github.com/Marco-Winzker/
NN_RGB_FPGA. 2021 (cit. on p. 21).

[26] Yahia Said. «Pynq-YOLO-Net: An embedded quantized convolutional neural
network for face mask detection in COVID-19 pandemic era». In: International
Journal of Advanced Computer Science and Applications 11.9 (2020) (cit. on
p. 27).

41

https://doi.org/10.5194/isprs-archives-XLII-2-W16-83-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W16-83-2019
https://isprs-archives.copernicus.org/articles/XLII-2-W16/83/2019/
https://isprs-archives.copernicus.org/articles/XLII-2-W16/83/2019/
https://doi.org/10.1080/014311697218827
https://doi.org/10.1080/014311697218827
https://doi.org/10.1080/014311697218827
https://doi.org/10.1080/014311697218827
https://doi.org/10.1093/mnras/stz2936
https://doi.org/10.1093/mnras/stz2936
https://academic.oup.com/mnras/article-pdf/490/4/5770/30820714/stz2936.pdf
https://academic.oup.com/mnras/article-pdf/490/4/5770/30820714/stz2936.pdf
https://doi.org/10.1093/mnras/stz2936
https://doi.org/10.1093/mnras/stz2936
https://doi.org/10.1109/COMPSAC.2008.218
https://doi.org/10.1109/COMPSAC.2008.218
https://doi.org/10.1109/AHS.2019.000-4
https://github.com/Marco-Winzker/NN_RGB_FPGA
https://github.com/Marco-Winzker/NN_RGB_FPGA

BIBLIOGRAPHY

[27] Thang Viet Huynh. «FPGA-based acceleration for convolutional neural net-
works on PYNQ-Z2». In: International Journal Of Computing and Digital
System (2021) (cit. on p. 27).

[28] Xiaoying Hou, Meixia Fu, Xifang Wu, Zhongiie Huang, and Songlin Sun.
«Vehicle license plate recognition system based on deep learning deployed to
PYNQ». In: 2018 18th International Symposium on Communications and
Information Technologies (ISCIT). IEEE. 2018, pp. 79–84 (cit. on p. 27).

[29] Google Maps. Location on google maps, RV555, Sotra bridge. Accessed July
6th, 2023. 2023. url: https://www.google.com/maps/@60.3725788,5.
1688432,3a,75y,92.9h,82.97t/data=!3m6!1e1!3m4!1srwiDZZBuuPrN51
mf51t8mg!2e0!7i16384!8i8192?entry=ttu (cit. on p. 31).

42

https://www.google.com/maps/@60.3725788,5.1688432,3a,75y,92.9h,82.97t/data=!3m6!1e1!3m4!1srwiDZZBuuPrN51mf51t8mg!2e0!7i16384!8i8192?entry=ttu
https://www.google.com/maps/@60.3725788,5.1688432,3a,75y,92.9h,82.97t/data=!3m6!1e1!3m4!1srwiDZZBuuPrN51mf51t8mg!2e0!7i16384!8i8192?entry=ttu
https://www.google.com/maps/@60.3725788,5.1688432,3a,75y,92.9h,82.97t/data=!3m6!1e1!3m4!1srwiDZZBuuPrN51mf51t8mg!2e0!7i16384!8i8192?entry=ttu

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Related work
	Neural Networks Fundamentals
	Structure
	Training

	Field-Programmable Gate Arrays (FPGAs)
	Architecture
	Programming and Design Flow

	FPGA Implementations of Neural Networks
	Radiation Effects and Mitigation Techniques
	Effects on Electric Components
	Radiation Mitigation Techniques

	Radiation-Hardened FPGAs
	Deep Learning in Space
	Research Gap and Weaknesses

	Proposed methodology
	The Design
	UART Implementation
	Neural Network Implementation

	Data Collection

	Experimental Results
	Hardware Characteristics
	Pynq-Z2
	NG-Medium
	WITMOTION USB-UART Converter
	Personal Computer

	Experimental Setup
	Results
	Neural Network Classifier
	Board Utilization and Performance Differences

	Conclusion
	Bibliography

