

Politecnico di Torino

Master’s degree in computer engineering

October 2023

Sniffnet
A cross-platform network monitoring

tool developed in Rust.

Candidate: Relator:
Giuliano Bellini Giovanni Malnati

 II

 III

Un pensiero va a Giacomo, Martina, mamma e papà
(ed anche al Tatolo, ovviamente)

 IV

 V

Abstract

One of the peculiar facets of the modern world is to be characterized by the constant
and ubiquitous presence of Internet connectivity.
In such a context, the activity of network traffic monitoring is assuming increasing
relevance and is at the foundation of different processes: from detecting potential
cybersecurity attacks to troubleshooting usability issues or performing lawful
interception.

During the Master’s degree at the Polytechnic University of Turin, I had the chance to
be involved in an academic project to develop a network analyzer, namely software
to gather incoming and outgoing data from a computer device and able to help inspect
the nature of the exchanged traffic.

The tool went much further than the initial plans, as I fell in love with the development
process to the point of working on the application full-time for almost a year straight.
What was born as a toy project is today called Sniffnet and is one of the most popular
network monitoring tools on GitHub, the renowned code hosting platform for version
control and collaboration.

Sniffnet is a cross-platform application, compatible with all the major operating
systems, that stands out for its ease of use in allowing whoever to grasp a
comprehensive, high-level view of their network activity.
A further distinctive feature of the tool is to be entirely written in Rust, a modern
programming language to build efficient and reliable software.

The dissertation aims at describing not only the development process of the
application but also the management activities behind proper software
documentation, maintenance, and distribution.

Last but not least, the disquisition includes the main lessons learned during the GitHub
Accelerator, a program to pioneer new ways for developers to sustainably work on
open-source, which Sniffnet had the luck of being part of.

 VII

Table of contents
Abstract ... V

Table of contents ... VII

List of figures .. XI

List of code snippets ... XV

Acronyms and abbreviations .. XVII

1. Introduction .. 1

1.1. Computer Networks .. 2
1.1.1. Nodes, links, and communication protocols .. 3
1.1.2. Network packets .. 4

1.2. Network monitoring tools ... 5
1.2.1. Wireshark ... 6
1.2.2. Tcpdump... 7

1.3. The Rust programming language ... 8
1.3.1. History .. 8
1.3.2. Main features ... 9
1.3.3. The state of GUIs in Rust ..11

2. The idea .. 13

2.1. How it started ... 14

2.2. The desire for a modern, simple, and intuitive tool 16
2.2.1. The unsatisfaction with the project outcome ..16
2.2.2. The drive toward a more comfortably usable tool ..17
2.2.3. Purposes, peculiarities, and target users ...19

3. The development process ... 21

3.1. From the beginning up to version 0.5: the command line interface 22
3.1.1. Command line options ...22
3.1.2. User interactions during the execution ...23
3.1.3. The network traffic analysis ...24
3.1.4. The program output ...26

3.2. Version 1.0: the graphical user interface .. 31
3.2.1. The choice of the GUI library ...31
3.2.2. GUI architecture ...34
3.2.3. The start page ..37
3.2.4. The overview page ...39
3.2.5. GUI styling ..42

3.3. Version 1.1: notifications, IP geolocation, and further configurations 43

Table of contents

 VIII

3.3.1. Custom notifications ..43
3.3.2. Interface translations ...45
3.3.3. Configuration management ...47
3.3.4. IP geolocation ...48
3.3.5. Keyboard shortcuts ..49
3.3.6. Further additions and improvements ..50

3.4. Version 1.2: host-based traffic analysis .. 51
3.4.1. Host-related information ...51
3.4.2. The new overview page ...53
3.4.3. The inspect page ..55

4. Project management ... 57

4.1. Documentation ... 58
4.1.1. The README file...58
4.1.2. Release notes and the CHANGELOG file ..60
4.1.3. Other documentation resources ..61

4.2. GitHub repository management ... 62
4.2.1. Issues ..62
4.2.2. Pull requests ...64
4.2.3. Automation with GitHub bots ..65
4.2.4. Automation with GitHub Actions ...67

4.3. Application packaging .. 69
4.3.1. Cargo crate ...69
4.3.2. Windows Installer ..70
4.3.3. Apple Disk Image ..72
4.3.4. Linux packages ...74

5. Sniffnet’s adoption by the community ... 75

5.1. The project publication ... 76
5.1.1. The first announcement ...76
5.1.2. The announcement of the graphical user interface ..77

5.2. Evaluation of the project’s adoption .. 78
5.2.1. Why is the measure of popularity relevant? ...78
5.2.2. GitHub Stars ...79
5.2.3. Downloads ..81

5.3. Sniffnet’s official website .. 84

6. Participation in the GitHub Accelerator Program ... 87

6.1. Call for applications and selection process ... 88

6.2. Announcement of the selected applicants ... 89

6.3. The GitHub Accelerator Program.. 92
6.3.1. Open practices (introduction to the program by Abby Cabunoc Mayes)......................................92
6.3.2. Licensing (introduction to the program by Abby Cabunoc Mayes) ...93
6.3.3. Getting sponsors and fundraising (with Caleb Porzio) ..94
6.3.4. Sustainable Open Source (with Evan You) ...96
6.3.5. Finding contributors to hire (with Brian Douglas) ...98
6.3.6. Working with enterprises (with Dawn Foster and Duan O’Brien) ...100

Table of contents

 IX

6.3.7. Project governance (with Shauna Gordon-McKeon) ...103

7. Conclusions ... 105

7.1. Next steps ... 106

7.2. Wrap up .. 108

Appendix A: The project CHANGELOG .. 113

Appendix B: Articles and mentions ... 119

Bibliography .. 121

 XI

List of figures

Figure 1.1 - Representation of the nodes connected by ARPANET, the first public
packet-switched computer network. .. 2

Figure 1.2 - The typical structure of a network packet. .. 4

Figure 1.3 - Wireshark default view. ... 6

Figure 1.4 - Tcpdump, a command-line network monitoring tool. 7

Figure 1.5 - Logo of the Rust programming language. .. 8

Figure 1.6 - Rust as the most loved programming language of 2022, with 87% of
developers saying they want to keep using it. Source: Stack Overflow 2022 Annual
Developer Survey. [9] .. 9

Figure 2.1 - The original outline for the network analyzer optional project. 15

Figure 2.2 - A fragment of the original textual report generated by the program. 16

Figure 2.3 – SVG chart about the traffic rate, generated as output of the ongoing
analysis. .. 17

Figure 2.4 - Elementary sketches representing the initial idea around Sniffnet GUI. 18

Figure 3.1 - Logo of Iced, a GUI library for Rust. ... 32

Figure 3.2 - Visual representation of The Elm Architecture’s principle. 32

Figure 3.3 - Sniffnet start page (v1.0.0) ... 37

Figure 3.4 - Sniffnet overview page (v1.0.0) ... 39

Figure 3.5 - Application page dedicated to logging the received notifications (v1.1.3)
 ... 43

Figure 3.6 - Settings page to customize notifications (v1.1.3) 45

Figure 3.7 - Sniffnet overview page (v1.2.0) ... 53

Figure 3.8 - Sniffnet inspect page (v1.2.0) ... 55

Figure 3.9 - In-app pop-up with details about the clicked network connection 56

file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302638
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302644

List of figures

 XII

Figure 4.1 - SVG badges on top of the README file, powered by shields.io. [39] 59

Figure 4.2 - A successful workflow run of the rust.yml GitHub Action 67

Figure 4.3 - Sniffnet disk image for installation on macOS ... 73

Figure 5.1 - The very first public announcement of Sniffnet [68] 76

Figure 5.2 - Cover of the article about Sniffnet published on heise.de, a popular
German journal about technology [69] ... 77

Figure 5.3 - The number of GitHub stars of Sniffnet from August 2022 to July 2023 . 80

Figure 5.4 - GitHub stars over time of Sniffnet compared to other popular network
monitoring tools .. 80

Figure 5.5 - Pie chart reporting the download count of Sniffnet for the different OSs
(from GitHub releases) .. 83

Figure 5.6 - Table featuring the top 10 most used languages by the visitors of the
domain (data gathered by Google Analytics) .. 85

Figure 6.1 - Tweet about Sniffnet by GitHub itself (2.5 million followers on Twitter).
[71] ... 89

Figure 6.2 - Email from GitHub announcing Sniffnet’s election for the first GitHub
Accelerator cohort. .. 90

Figure 6.3 - My public announcement about Sniffnet’s selection for the Accelerator
program, shared with the Rust community of Reddit. [82] .. 90

Figure 6.4 - Abby Cabunoc Mayes ... 92

Figure 6.5 - Caleb Porzio, creator of Livewire. .. 94

Figure 6.6 - Tweets by Caleb Porzio announcing the sponsorware and its open
publication. .. 95

Figure 6.7 - Evan You, creator of Vue.js. ... 96

Figure 6.8 - Brian Douglas, creator of Open Sauced ... 98

Figure 6.9 - Dawn Foster.. 100

Figure 6.10 - Duan O'Brien .. 100

Figure 6.11 - Indeed GitHub organization, monthly sponsor of tens of open-source
developers. .. 101

file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302659
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302659
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302661
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302661
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302665
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302666
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302668
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302669
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302670
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302671

List of figures

 XIII

Figure 6.12 - Shauna Gordon-McKeon .. 103

Figure 7.1 - Iced roadmap of the upcoming releases [92] .. 107

Figure 7.2 - One of Sniffnet's most recent achievements: 10 thousand stars on GitHub
 ... 108

Figure 7.3 - Sniffnet's official logo: it depicts an investigator focused on examining
Internet traffic. His four-dotted hat is a reference to the notation used to represent
IPv4 addresses, and the prominent nose allows him to better sniff network packets.
 ... 109

Figure 7.4 - GitHub merchandise sent as a welcome kit in the occasion of the kick-off
of the GH Accelerator Program (April 2023). .. 110

Figure 7.5 - Sniffnet stickers, thought and printed with love by Martina. 111

file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302673
file://///Users/giulianobellini/Desktop/GitHub/sniffnet-cfg/thesis/TESI_SNIFFNET.docx%23_Toc144302674

 XV

List of code snippets

Code snippet 2.1 - Command line instruction to launch the first version of the app with
some arguments. ... 16

Code snippet 3.1 - Function to wait for user inputs and update the app status

accordingly. .. 23

Code snippet 3.2 - Definition of the AddressPortPair struct. 25

Code snippet 3.3 - First version of the struct encapsulating statistics related to a
connection. .. 26

Code snippet 3.4 - The use of a BufWriter to improve report update performance.

 ... 28

Code snippet 3.5 - Strategy used to rewrite, on the report file, only the changed
entries. ... 29

Code snippet 3.6 - Implementation of the new method of the Application trait

 ... 34

Code snippet 3.7 - Implementation of the title method of the Application trait

 ... 34

Code snippet 3.8 - Structure of the Application::update method................. 35

Code snippet 3.9 - Original implementation of the Application::view method

 ... 35

Code snippet 3.10 - Original override of the Application::subscription

method... 36

Code snippet 3.11 - Widget definition and logic to update the transport protocol filter.
 ... 38

Code snippet 3.12 - Command used to open the report file on the different OSs. ... 40

Code snippet 3.13 - Definition of the Palette data structure. 42

Code snippet 3.14 - The LoggedNotification enum, used to represent the

different notifications .. 44

Code snippet 3.15 - Reproduction of a sound with Rodio .. 44

List of code snippets

 XVI

Code snippet 3.16 - Example of function used to translate the UI sentences............ 45

Code snippet 3.17 - Code fragment to retrieve the country code only in case of new

network connections ... 48

Code snippet 3.18 - Subscription to capture Keyboard events and produce proper

messages .. 49

Code snippet 3.19 - Pseudo code to handle the possible different states of the reverse

DNS lookup of an IP address .. 52

Code snippet 3.20 - The Host struct identifying a network host 53

Code snippet 3.21 - The DataInfo struct, encapsulating details about the amount of
exchanged data and used to store cumulative statistics related both to network hosts

and application protocols .. 54

Code snippet 4.1 - Content of the dependabot.yml file ... 66

Code snippet 4.2 - Sniffnet's manifest [package] section ... 69

Code snippet 4.3 - Command to install the WiX toolset on the GitHub action runner
 ... 71

Code snippet 4.4 - Content of wrapper.sh, used to launch Sniffnet with admin
privileges on macOS. .. 72

Code snippet 4.5 - Command to set up the disk image for macOS 73

Code snippet 4.6 - Post-installation script used to set network inspection capabilities
to the Linux executable. .. 74

Code snippet 5.1 - Bash script to retrieve the number of downloads related to artifacts

uploaded on GitHub releases .. 82

Code snippet 5.2 - Script to retrieve the cumulative download number from GitHub
releases .. 82

Code snippet 5.3 - Script to count the downloads of artifacts with a given extension
(.dmg in the example), useful to verify the level of adoption among users of the
different Oss .. 82

 XVII

Acronyms and abbreviations

API — Application Programming Interface

ARPANET — Advanced Research Projects Agency Network

AS — Autonomous System

ASCII — American Standard Code for Information Interchange

AWS — Amazon Web Services

CEO — Chief Executive Officer

CI/CD — Continuous Integration and Continuous Delivery

CLI — Command Line Interface

CNAME — Canonical Name

COSMIC — Computer Operating System Main Interface Components

CPU — Central Processing Unit

CSS — Cascading Style Sheets

CSV — Comma-Separated Values

CTO — Chief Technology Officer

DNS — Domain Name Service

DPI — Deep Packet Inspection

FOSS — Free and Open Source Software

FQDN — Fully Qualified Domain Name

GH — GitHub

GIMP — GNU Image Manipulation Program

Acronyms and abbreviations

 XVIII

GNOME — GNU Network Object Model Environment

GNU — GNU’s Not Unix!

GTK — GIMP ToolKit

GUI — Graphical User Interface

HCI — Human-Computer Interaction

HTML — HyperText Markup Language

IANA — Internet Assigned Numbers Authority

ICMP — Internet Control Message Protocol

IP — Internet Protocol

IT — Information Technology

JS — JavaScript

JSON — JavaScript Object Notation

MAC — Media Access Control

MMDB — MaxMind Data Base

OS — Operating System

OSPO — Open Source Program Office

OSS — Open Source Software

PCAP — Packet Capture

PID — Process Identifier

PR — Pull Request

SEO — Search Engine Optimization

SSL — Secure Sockets Layer

Acronyms and abbreviations

 XIX

SVG — Scalable Vector Graphics

TCP — Transmission Control Protocol

TOML — Tom’s Obvious, Minimal Language

UDP — User Datagram Protocol

UI — User Interface

URL — Uniform Resource Locator

UX — User Experience

VM — Virtual Machine

 XX

 1

1. Introduction

Before diving into the Sniffnet development process, I think it’s necessary to have a
more complete view of the scenario in which it was conceived.

For this reason, the next sections will introduce the subject of computer networks
from a theoretical point of view, with a focus on some of the already existing network
monitoring tools, and will present Rust, the programming language that has been
chosen for the development of Sniffnet.

1 - Introduction

 2

1.1. Computer Networks

Nowadays people are connected to the Internet almost all-day long: from reading their
favorite news website early in the morning to chatting with their friends, navigating
social media, or watching the latest TV series on Netflix before going to sleep.
All these activities, which are now taken for granted, are possible thanks to a silent
and well-organized underlying infrastructure in charge of transporting chunks of
information from all around the globe.
The underlying infrastructures which do all the “magic” and allow us to be
permanently online are the computer networks.

A computer network is a system made of two or more computing devices (often
referred to as “nodes”) interconnected one with the other transmitting and sharing
information [1].

In the late 1960s, the U.S. Department of Defense provided funding for the
development of the first packet-switched operational network, known as ARPANET.
ARPANET connected the first four computers between four different American
Universities in 1969 and managed to link 23 different nodes in 1971.

Figure 1.1 - Representation of the nodes connected by ARPANET, the first public packet-switched computer

network.

Today, we have advanced much from that basic network prototype and we have come
up with the Internet: a network of networks that connects billions of devices
worldwide and which is the center of the contemporary era.

1 - Introduction

 3

1.1.1. Nodes, links, and communication protocols

The basic blocks at the foundation of a computer network are nodes, links, and
communication protocols.

A node can be a device of any kind: a computer, a smartphone, a smart TV, a
smartwatch, or even a server or router.

A link is responsible to connect nodes with each other and to transport information
according to the rules defined by a communication protocol.
Links can be of two main types:

• Wired, such as coaxial cables and optical fibers

• Wireless, such as communication satellites and cellular networks

A communication protocol is a set of rules that must be followed by all involved nodes
to exchange data in a properly structured way.
One of the most used standards nowadays is TCP/IP (Transmission Control Protocol /
Internet Protocol), which is a suite of communication protocols [2].
The TCP/IP protocol suite serves as an abstraction layer between the
routing infrastructure and internet applications.
TCP/IP rules end-to-end communications specifying how data should be divided into
packets, addressed, transferred, routed, and received at the destination.
TCP/IP defines four layers, each of which consists of specific protocols and is
responsible for a given functionality:

• Data Link layer: defines the protocols and hardware required to connect a host
to a physical network and to deliver data across it. This layer is restricted to the
physical layer boundary which is frequently determined by a router or other
similar equipment.

• Network layer: also known as the Internet layer, deals with network packets to
be transmitted across network boundaries.

• Transport layer: responsible for creating and managing end-to-end
communications services for applications across the network.

• Application layer: defines how high-level applications can access the network
to transfer data.

1 - Introduction

 4

1.1.2. Network packets

Information is exchanged across the network as formatted units of data, commonly
referred to as “packets”.

A packet is a small portion of a larger amount of data and consists of user data and
control information.
The former, also known as payload, corresponds to the actual data being exchanged.
The latter, most known as header, is a sort of label used to provide details about the
packet’s content, its origin, and its destination; a network packet usually has more
than one header, each attached by a specific protocol and carrying different kinds of
auxiliary information [3].

Figure 1.2 - The typical structure of a network packet.

The best path is then chosen for each packet to get to its destination, according to a
routing algorithm.
Different packets, part of the same message, aren’t forced to follow the same path
and the network becomes more effective as a result.
In this way, packets can also be routed around an issue to ensure that the complete
message is delivered if a piece of network hardware malfunctions while a message is
being sent.

Everything we send or receive via the Internet is exchanged as a long series of packets:
every web page we visit, every file we download, and every picture we upload on our
social media is shared as groups of transmitting units which are the network packets.

1 - Introduction

 5

1.2. Network monitoring tools

A packet-switched network like the Internet lends itself very well to being monitored
through tools called packet sniffers or packet analyzers.
A packet sniffer is a utility in charge of gathering, logging, and monitoring in real-time
the transmitted data.
With packet sniffing we refer to the activity of detecting and observing a flow of
packets across the network [4].

Packet sniffing has many practical applications: network troubleshooting, detection
of intrusions, statistical analysis of the data in transit, identification of suspect
contents, network usage monitoring, reverse engineering of proprietary protocols,
and lots of other purposes, including malicious use.
One of the most common applications is for the monitoring of bandwidth and traffic,
to examine whether a service is using abnormally high resources.
Networks often incur in issues that need troubleshooting: in these scenarios, sniffers
are useful for network administrators to find out where the root of the problems
resides.
Packet analyzers may also be involved in penetration testing. A penetration test is an
authorized and simulated cyber-attack, in which a sniffer could be helpful to expose
the possible weaknesses of the network’s defense system.
While there are several legitimate applications for packet sniffers, hackers frequently
use them as well. Cyber-criminals can effectively spy on a network through packet
sniffing, and in some situations, they can steal sensitive data like usernames and
passwords.

There exist two main types of packet sniffers [5]:

• Hardware packet sniffers, which are designed to be manually plugged into a
network, directly store the intercepted packets or forward them to a collector
for further analysis.

• Software packet sniffers, which are pieces of software able to configure a
network interface in promiscuous mode, capturing in this way all the traffic
flowing through it.

The great majority of the packet sniffers available today are software-based, including
the application subject of this thesis and the tools mentioned in the next section.
As anticipated, software sniffers use a dedicated network adapter put in promiscuous
mode, analyzing each packet, and writing to disk the relevant information for further
inspection.
Other devices in the same network are not aware of nor affected by this kind of
activity.

1 - Introduction

 6

1.2.1. Wireshark

When talking about network monitoring tools, it’s impossible not to mention
Wireshark [6].
Wireshark is by far the most popular network protocol analyzer and it’s the standard
across many commercial and non-profit organizations.
Wireshark, formerly known as Ethereal, is a free and open-source tool that allows to
examine the details of traffic at a variety of levels, ranging from connection-level

information to the bits that make up a single packet.

Three panels are commonly used by Wireshark to present information.
Individual packets are presented one per line in the top panel.
The middle panel of the tool provides further information about any single frame that
is selected in the top panel.
The raw frame is then shown in Wireshark's bottom pane, with a representation in
hexadecimal on the left and the matching ASCII values on the right.

Figure 1.3 - Wireshark default view.

1 - Introduction

 7

1.2.2. Tcpdump

Another worth-to-mention network analyzer is Tcpdump [7], a powerful tool that,
instead of coming with a graphical user interface, is in the form of a command-line
tool.

Figure 1.4 - Tcpdump, a command-line network monitoring tool.

As default, if launched without additional options, Tcpdump prints out the summary
of the captured packets.
If further parameters are passed to Tcpdump via the command line, it’ll be able to log
the intercepted packets in an output file or filter traffic according to some user-defined
rules.

The major limitation of this tool is that it’s not as immediate to use as a GUI application,
but in some cases, it can also be considered a point of strength: being a CLI means to
be more portable, making it possible for network administrators to access devices
even from remote locations.

1 - Introduction

 8

1.3. The Rust programming language

Rust is the programming language used to develop Sniffnet in its
entirety, from its business logic aspects to its graphical user
interface.
It’s not so common to use Rust also for frontend development:
GUI libraries written in Rust are not many and most of the
existing ones are not in their stable release yet (including Iced,
the library I decided to use).

Many reasons brought me to this choice; I’ll try to summarize them
in the next paragraphs, introducing the language and its main
distinctive features.

1.3.1. History

Rust is a modern, general-purpose programming language originally designed by
Mozilla Research employee Graydon Hoare in 2006.
As part of the ongoing development of the Servo experimental browser engine,
Mozilla started financing the project in 2009 and officially announced it one year later.
[8]

The language rapidly evolved between 2010 and 2014: its type-system underwent
major changes with the release of classes, and traits were added as a means of
inheritance shortly after.
The first stable release of the language, Rust 1.0, was then published in May 2015.

Some months before the stable release, Andrew Binstock, the editor-in-chief of Dr.
Dobb’s Journal, commented on Rust saying that it was “widely viewed as a remarkably
elegant language” and that it had good chances of becoming the successor of C++.

In February 2021, the Rust Foundation was born as a joint effort of Google, Microsoft,
Huawei, AWS, and Mozilla.
Two months later, Google announced its support for Rust within the Android project,
together with C++.

As of today, the chat platform Discord uses Rust to speed up its system, Dropbox
uses it to sync files, and Cloudflare uses it to process about 20% of the total internet
traffic, just to name a few practical applications of the language.

Figure 1.5 - Logo of the Rust
programming language.

1 - Introduction

 9

To highlight Rust’s adoption even more, we just need to consider that the language
has been elected as the most loved programming language by the annual Stack
Overflow developer survey [9] for seven years straight, from 2016 to 2022.

Figure 1.6 - Rust as the most loved programming language of 2022, with 87% of developers saying they want

to keep using it. Source: Stack Overflow 2022 Annual Developer Survey. [9]

1.3.2. Main features

One of Rust's most interesting features is its management of memory and the absence
of a garbage collector.
Many programming languages, including Java, use a garbage collector to ensure that
unnecessary items will disappear from memory sooner or later at a certain point in
time.
Garbage collectors are often appreciated because they don’t leave the burden of
managing memory to the programmer, but they have different drawbacks.
One of the disadvantages is the possibility of memory leaks: situations in which there
are objects allocated in the heap that are no longer used, but the garbage collector is
unable to deallocate them; memory leaks should be avoided because they block
memory resources and degrade system performance over time.

Instead, Rust guarantees memory safety by leveraging the concept of ownership:
memory space is owned by variables and can be temporarily borrowed by other
variables.
A part of Rust’s compiler, the borrow checker, ensures that references are always
valid.

1 - Introduction

 10

The borrow checker can detect where data needs to be initialized and where it needs
to be released (or dropped, in Rust terms), by monitoring where variables are utilized
throughout the program and by adhering to a set of criteria. [10]

Another interesting feature of the language is the possibility of having zero-cost
abstractions.
This characteristic means that using higher-level programming concepts does not
come up with a run-time cost, only affecting the compile-time.
Rust compiler is capable of translating statements to the most optimized form of
assembly code possible, hence not encumbering the program’s execution speed or its
memory usage.

Rust is a strongly typed language, requiring each variable to be statically typed: there
are fewer potential ways for the program to fail at runtime when more checks happen
at compile-time.
Rust makes things easier for users thanks to a powerful type-inference system, which
automatically detects the type of an expression and consequently allows to work with
fewer or no type annotations at all.

Rust also provides an advanced pattern matching feature, to give more control and
flexibility over the program’s execution flow.
Rust’s pattern syntax allows to match against literals, named variables, ranges of
values and permits the destructuring of enums, structs, and tuples.
The match condition, part of the language, takes care that a pattern covers every
possible value, making it impossible to compile a program otherwise.

What further distinguishes Rust from most programming languages is its capability to
obtain fearless concurrency.
We speak about concurrent programming when different pieces of a program execute
independently.
Concurrent programming is becoming more and more relevant as many computers
nowadays have multiple processing units, but at the same time it has historically been
error-prone due to its difficult management.
Moreover, errors related to concurrency are often difficult to reproduce, since it’s not
trivial to recreate the same exact circumstances when two or more threads are
running in parallel.
Many concurrency issues in Rust are compile-time errors rather than run-time faults
thanks to the concept of ownership and strict type checking.
As a result, programmers can fix their programs while developing rather than after
they have already been shipped to production and are able to write code that is free
of subtle bugs.

1 - Introduction

 11

1.3.3. The state of GUIs in Rust

Graphical User Interfaces are intuitive, visual front-ends for interacting with
programs.
Because of its expressiveness and high-level abstractions, Rust is theoretically a good
candidate for creating sophisticated and complex user interfaces.
Unfortunately, there isn't much agreement on the ideal abstractions to use, and most
of the existing GUI libraries for Rust have not reached version 1.x yet. [11]

Most of the times, programmers tend to use Rust just to implement their application’s
backend, while they are more inclined to use well-established frameworks such as
React, Angular, or Vue to develop their front-ends.

This is made possible by frameworks like Tauri:
“Tauri is a framework for building tiny, blazingly fast binaries for all major desktop
platforms.
Developers can integrate any front-end that compiles to HTML, JS, and CSS for building
their user interface.
The backend of the application is a Rust-sourced binary with an API that the front-end
can interact with”. [12]

While this is of course a reasonable solution, since most of the application’s logical
complexity often resides in its back-end, I didn’t like the idea of losing Rust stability
and safety guarantees while implementing my user interface.
For this reason, I ended up searching for a library that could satisfy my needs, allowing
me to entirely develop my application in Rust.

Despite, as previously anticipated, most of the available options are not so mature yet,
libraries like Dioxus, Egui, and Iced are actively maintained, rapidly evolving, and
complete enough for my use case.
After having considered all the possibilities, I decided to use Iced, a cross-platform GUI
library for Rust which will be better discussed later.

 13

2. The idea

How was Sniffnet born?
What are the ideas behind it?
What makes this application unique?
What are its purposes?

This chapter will answer such questions, trying to reconstruct the stream of ideas at
the foundation of the application’s conception.

“Let your ideas and thoughts give you inspiration. All creativity comes from your
imagination: you first imagine and then you create” - Catherine Pulsifer.

2 - The idea

 14

2.1. How it started

Sniffnet, originally simply called packet_sniffer, was born as an academic project in the
scope of the course of System and Device Programming, which I had the luck to follow
during the first year of my Master’s degree at the Polytechnic University of Turin.

The System and Device Programming course accounts for 10 CFUs and is split into two
modules: one about the design principles of operating systems and the other
describing the interfaces for system programming and resource management.
The latter is held by Professor Malnati, the relator of the thesis, who introduced us to
the Rust programming language.
Rust was chosen over C++ for the first time since the establishment of the course, and
I consider it a very lucky coincidence, since one of the main reasons I kept developing
Sniffnet, and one of the most likely motivations for its success, is exactly because it’s
written in Rust.

The professors of System and Device Programming propose every year optional
projects on advanced topics about either of the two parts of the course.
One of the available projects was about developing a command line interface with the
functionalities of a simple network analyzer and this option immediately caught my
interest.
I’ve always wondered how analyzers such as Wireshark work under the hood, and
developing a networking tool was the best way to finally discover it.
After having talked to my friend and colleague Cristiano Canepari, we agreed that it
would have been cool to spend some time on this project during the summer, so we
decided to dive into it.

More precisely, the chosen project’s goal was to develop a command line tool able to
intercept network data flowing through the interfaces of a computer and generate a
textual output summarizing the collected information.
Such a program was required to receive different parameters from the command line
to let the user choose a defined network adapter or specify filters to apply to the
observed traffic.

2 - The idea

 15

Figure 2.1 - The original outline for the network analyzer optional project.

The first commit on the GitHub repository of the project is dated back to the 5th of
August 2022, and it took Cristiano and me about two weeks of programming to
produce the first functional version of the program, which was originally published on
crates.io (the Rust package registry) on August the 17th.
We spent the next few days applying some more minor improvements and patches
until we finally presented the project to Professor Malnati during the first week of
September.

After the project was discussed, we were basically done with it and could move on,
but I wasn’t fully satisfied with the outcome and decided to keep developing it on my
own.
I had a lot of fun implementing the first version of the command line application and I
saw in it some potential: “If this project is so fascinating to me, maybe other people
could find it interesting as well” I thought.

2 - The idea

 16

2.2. The desire for a modern, simple, and intuitive tool

2.2.1. The unsatisfaction with the project outcome

My partial unsatisfaction with the delivered project and the feeling it was still
incomplete mainly derive from the fact that, despite the tool features being indeed
interesting, in practice it was boring and cumbersome to use.

If, for example, a user wanted to inspect the network adapter ‘en0’, filtering data by
IP version 4 and TCP transport protocol, this command had to be used:

Code snippet 2.1 - Command line instruction to launch the first version of the app with some arguments.

It’s not comfortable for an average end user to open a terminal interface and type the
desired arguments to pass to the program and, even if it was, the information was
presented in an unfriendly way, in the form of a long textual report that didn’t make
details easy to be grasped.

Figure 2.2 - A fragment of the original textual report generated by the program.

Being a technical guy with a strong passion for computer science, I was able to partially
appreciate what the tool did produce and gain some interesting information from its
output, but I was conscious that the whole process had a lot of room for improvement.
Data available from the intercepted network packets are extremely valuable and carry
a lot of particulars, but those data must be presented in a meaningful way in order to
be better analyzed and to get the most out of them.
Using a raw textual file to summarize such a rich collection of data was definitely not
the most appropriate choice for a tool I wanted to use directly, without involving
external data parsers.

2 - The idea

 17

2.2.2. The drive toward a more comfortably usable tool

Basically, I was interested in exploring the collected network packets in an immediate,
comfortable, and visually pleasing way.
Since I had some spare time available in the following months, I decided it was the
perfect occasion to build a tool to satisfy my curiosity while gathering network
statistics.

During that period, I also had the chance to follow the Human-Computer Interaction
(HCI) course held by Professor Luigi De Russis, which gave me a solid background about
the concepts of usability and user-centered design.
One of the goals of the HCI course was to explain how to design suitable interfaces and
interactions so that people can use a given technology with pleasure rather than
frustration.
Particularly interesting was to learn that considering the users’ needs, wants, and
limitations is a crucial phase during the development of a system, even if it’s often
neglected.
Adopting such an approach can bring several different benefits to the resulting system,
in terms of:

• usability, the extent to which the system can be used to achieve goals with
effectiveness, efficiency, and satisfaction in a specific context of use.

• usefulness, the system’s ability to provide functionalities that users really need.

• learnability, the overall ease of use of the system.

Driven by those principles, I wanted to expand and improve Sniffnet to create an
application that wasn’t just functional but also comfortably usable and effectively
used.
One of the first steps in this direction has been thinking of a possible graphical
representation of the already available data.
For this purpose, I decided to produce an SVG picture of the observed traffic rate in
addition to the textual report.
Even if it was a minor change with respect to the original version, I felt like it was a
revolution: I was finally able to see and touch what I just imagined during the previous
weeks of work on the project.

Figure 2.3 – SVG chart about the traffic rate, generated as output of the ongoing analysis.

2 - The idea

 18

The excitement I had from this small improvement made me think about the
limitations of having structured the program as a command line interface.
Arrived at that point, it’s been natural for me to start considering a complete
restructuring of the application, consisting of the development of a whole graphical
user interface, which would have made it possible to obtain a significant enhancement
of the program’s expressiveness and flexibility.
A graphical user interface, in addition to allowing a more immediate and natural
representation, is also more suitable to build an application in which the user is free
to move, act, and perform more complex interactions.

In the following are reported the very first raw and basic sketches of what I had in
mind, which will later become the GUI for the first stable release of Sniffnet:

Figure 2.4 - Elementary sketches representing the initial idea around Sniffnet GUI.

2 - The idea

 19

2.2.3. Purposes, peculiarities, and target users

Having in mind a possible visual representation, the problem of defining what the tool
wanted to achieve in practice was still open.

One element that played an important role in defining Sniffnet’s purposes is that
nowadays a considerable fraction of the Internet traffic exchanged is encrypted:
Google reports that 95% of traffic to its search engine is encrypted since 2018. [13]
The same data from Google also state that just four years prior, in 2014, the amount
of encrypted traffic was just 50%.

Encryption is a modern way of protecting electronic information; it consists in
converting the data to protect into an unintelligible form – called ciphertext – such
that it can only be translated back into an interpretable form – referred to as plaintext
– with the use of a key. [14]
Depending on the scenario, different kinds of encryption are usually applied:

• encryption in transit, to protect data from an end user and a third-party server
(for example in the case of an e-commerce website).

• end-to-end encryption, to make confidential the information exchanged
between two or more end users (such as in the case of instant messaging
services).

• encryption at rest, to preserve the secrecy of information when not in transit
(used for instance by hard disks to protect the stored data).

Putting in place these practices is important to avoid that unintended recipients can
intercept and manipulate stored information or messages traveling across the
network: the possible consequences deriving from access to private information can
span from identity theft to financial fraud or personal harm.

How is encryption related to the development of Sniffnet?
As anticipated, the considerable growth in the adoption of cryptography techniques
makes most of the network packets’ content not understandable.
Therefore, performing Deep Packet Inspection (or DPI – the practice of analyzing a
packet’s content) didn’t seem a viable solution.
What appeared more meaningful was to monitor and categorize traffic at a higher-
level: instead of inspecting every single packet, it’s convenient to analyze the flow of
data by adopting a connection-oriented approach.

A connection is what identifies a link between two endpoints involved in a network
data exchange, and it’s usually characterized by 5 parameters (usually referred to as
5-tuple): source and destination IP addresses, source and destination transport ports,
and transport protocol in use.

2 - The idea

 20

This information alone is enough to determine several characteristics about the
observed stream of data, such as the host geolocation, domain name, and
administrative entity behind it.

Another key aspect in defining the application behavior is that I had in mind to create
a tool that could be easily understood and used by everyone, not just network experts
and technical people.
My ultimate goal was to implement a software based on two main pillars:

• satisfy the curiosity of those people for whom other network monitoring tools
are not comfortable to be used.

• provide technical features that more experienced users could find valuable.

Most network analyzers available consist of advanced tools aimed at troubleshooting
network issues and they don’t fit well with the average user's need for software that
is simple, quick, and painless to use.

Guided by these intuitions, I ended up designing an application with higher-level
features, such as real-time charts, custom notifications, and a fresh look, that could be
appreciated by tech enthusiasts as well as the general public.

 21

3. The development process

This chapter is thought to be the core of the thesis, as it describes the implementation
of the app from a technical point of view, delving into the programming strategies
adopted and the code’s most relevant modules.

The latest version of the application is made of almost 20 thousand lines of code and
many changes were introduced from the previous versions: despite it’s not possible to
dive into every single detail, the chapter will try to cover all the main code-related
aspects.

The dissertation is organized in chronological order, with each subchapter being
dedicated to the functionalities introduced in specific versions of the software.

3 - The development process

 22

3.1. From the beginning up to version 0.5: the command line
interface

3.1.1. Command line options

As previously stated, the application initially consisted of a CLI producing a textual
report about the observed network traffic, as required by the academic project
specifications.

Different options were available to setup parameters useful for the analysis and to
customize the configurations.
Such options came in the form of command line arguments to be supplied by the users
via the terminal interface and they were parsed by Sniffnet with clap.
Clap [15] is a command line argument parser for Rust that easily permits to specify
short and long names, type, default value, and further constraints for each of the
available options.

The list of the possible arguments is reported in the following:

• -a, --adapter: specifies the name of the network adapter to be inspected;
if omitted the default adapter is chosen.

• --app: filters packets based on the provided application layer protocol.

• -d, --device-list: prints list of the available network interfaces.
Immediately terminates the program.

• -h, --highest-port: specifies the maximum port value to be considered;
if omitted there is no port higher bound.

• -i, --interval: sets the interval of time between report updates (value

in seconds).

• -l, --lowest-port: specifies the minimum port value to be considered;
if omitted there is no port lower bound.

• -m, --minimum-packets: sets the minimum value of transited packets
for a connection to be printed in the report.

• -n, --net: filters packets based on the provided IP address version (IPv4 or

IPv6).

• -o, --output-file: specifies the name of the output file containing the

textual report; if omitted the file name is sniffnet_report.txt

• -t, --trans: filters packets based on the provided transport layer protocol
(TCP or UDP).

Several constraints had to be met by the user-provided options for the application to
correctly start, otherwise a proper informative error message was generated.
Sniffnet, supported by clap, had to make sure that each argument respected its type,
that the supplied adapter existed in the PC, and that the specified filters were valid.

3 - The development process

 23

3.1.2. User interactions during the execution

Following the project requirements, the program had to offer the possibility to be
temporarily paused and allow users to later resume the sniffing process.

The application originally consisted of three different threads and, to pause an
ongoing analysis, it was necessary to properly coordinate all the execution flows.
To make it possible, an enum Status was defined to track the current condition of

the application (running, paused, or stopped).
Defining a status was not sufficient since to correctly share it between the various
threads, auxiliary primitives were needed: for this reason, the application state was
associated with a Mutex and a Condvar.
The Mutex is a construct to guarantee that a certain resource is only accessed by one
thread at a time, while the Condvar is a variable that makes it possible for a thread

to block without consuming CPU cycles until a given condition occurs.
Changes of status were defined by user inputs and were captured by Sniffnet putting
the terminal in raw mode and creating a synchronous reader.

In this way, it was possible for the main thread to update the application status when
specific inputs were supplied and to inform all the execution flows that they had to
pause, resume, or stop.

fn set_status_by_key(status_pair: Arc<(Mutex<Status>, Condvar)>) {

 let _raw = RawScreen::into_raw_mode();

 let mut reader = input().read_sync();

 let cvar = &status_pair.1;

 loop {

 if let Some(event) = reader.next() { // Blocking call

 let mut status = status_pair.0.lock().unwrap();

 match event {

 InputEvent::Keyboard(KeyEvent::Char('p')) => {

 if *status == Status::Running {

 *status = Status::Pause;

 }

 }

 InputEvent::Keyboard(KeyEvent::Char('r')) => {

 if *status == Status::Pause {

 *status = Status::Running;

 cvar.notify_all();

 }

 }

 InputEvent::Keyboard(KeyEvent::Char('s')) => {

 *status = Status::Stop;

 cvar.notify_all();

 return;

 }

 _ => { /* Other events */ }

 }

 }

 }

}
Code snippet 3.1 - Function to wait for user inputs and update the app status accordingly.

3 - The development process

 24

Before entering the function to wait for user inputs, the main thread oversaw
generating the two other execution flows: the first was dedicated to parsing network
packets, while the second had the task of constantly updating the textual report.

3.1.3. The network traffic analysis

The thread in charge of parsing packets from the network can be considered the heart
of the application since it’s responsible to collect and organize the material on which
all data structures and modules of the program rely.
Its implementation evolved over time, being integrated with new features and
capabilities, but the original skeleton from the earlier versions remained stable.

As previously anticipated, due to modern encryption techniques, I decided to focus
the analysis more on the packets’ header than the packets’ payload, and this is exactly
the module with the task of intercepting every packet, reading its header, and
collecting information in ad-hoc structures.

Two Rust crates are particularly useful for reading and interpreting network data: Pcap
[16] and Etherparse. [17]
The former is a cross-platform packet capture library that supports the creation and
configuration of capture contexts, while the latter is intended to provide parsing
functionalities to easily permit accessing specific portions of a packet.

More specifically, Pcap lets accessing PC network devices and putting them in
promiscuous mode to examine all the incoming and outgoing flows of data.
Additional options can be specified before starting a capture session; in Sniffnet’s case,
a snaplen equal to 256 is specified (defining the maximum length of each captured
packet) because I was only interested in the headers, and immediate_mode is
turned on, allowing to deliver packets as soon as they arrive, without batching them.

After having set up the capture, it’s sufficient to invoke the next_packet()
method, which blocks the caller until a packet is returned from the capture handle.
This function is called inside a loop, to keep receiving packets as they arrive; Pcap
places the captured packets into a buffer of finite length and it’s therefore important
to make the process efficient, to avoid discarding data in presence of high traffic loads.

As soon as a packet is captured, it is decoded into the different headers by the
from_ethernet_slice(...) method offered by Etherparse.
The returned value consists in a struct whose fields correspond to the headers of the
packet (link, IP, and transport), each with its relevant attributes.

3 - The development process

 25

The following headers’ parameters are checked by Sniffnet: source and destination
MAC addresses (from the data link header), payload length, source and destination IP
addresses (from the network header), source and destination ports (from the
transport header).
Furthermore, Sniffnet relies on headers to determine the IP version of the packet and
the transport protocol used.

Based on the transport ports, Sniffnet also tries to guess the upper layer service
involved: application layer protocols are inferred from the port number following the
convention maintained by IANA, the Internet Assigned Numbers Authority. [18]
Despite the IANA is responsible for defining the official assignments of port numbers
for specific use cases, it must be kept into account that this is just a convention and
that many unofficial uses of well-known ports occur in practice.
I decided to include, in the list of supported application layer protocols, the most
common services to let users have an idea about the possible kind of exchanged traffic.

The collected information is used to decide if the packet respects all the filters
specified: if affirmative, the statistics related to the packet are saved for further
examination by the user.

More specifically, each packet’s data are aggregated with data from the corresponding
connection.
A unidirectional network connection is defined by the transport protocol used and
the pair of sender and receiver, each identified by a specific IP address and transport
port.
To adequately store information related to a network connection, proper data
structures are needed: to this purpose, I defined the AddressPortPair struct,

representing a unique unidirectional connection, and the InfoAddressPortPair
struct, which encapsulates statistics related to a specific connection.

pub struct AddressPortPair {

 /// Source IP address.

 pub address1: String,

 /// Source port number.

 pub port1: u16,

 /// Destination IP address.

 pub address2: String,

 /// Destination port number.

 pub port2: u16,

 /// Transport layer protocol (TCP or UDP).

 pub trans_protocol: TransProtocol,

}
Code snippet 3.2 - Definition of the AddressPortPair struct.

3 - The development process

 26

pub struct InfoAddressPortPair {

 /// Amount of bytes transmitted between the connection.

 pub transmitted_bytes: u128,

 /// Amount of packets transmitted between the connection.

 pub transmitted_packets: u128,

 /// First occurrence of information exchange.

 pub initial_timestamp: String,

 /// Last occurrence of information exchange.

 pub final_timestamp: String,

 /// Application layer protocol carried by the connection.

 pub app_protocol: AppProtocol,

}
Code snippet 3.3 - First version of the struct encapsulating statistics related to a connection.

The two structures were used respectively as key and as value of a HashMap
associated with a Mutex to be shared between threads without incurring in race

conditions.

An additional map (HashMap<AppProtocol, u128>) was also defined to save
the number of captured packets divided by application layer protocol.

Other helper functions were designed to carry out supplementary tasks, such as
determining the local address of a connection, recognizing multicast addresses, and
converting IPv6 addresses from a decimal format to the normal hexadecimal notation,
to make them conformant to the best practices of representation.

3.1.4. The program output

Up to version 0.3.2, the output of the program consisted of a textual report listing all
the observed connections with the related statistics: the source and destination
addresses and ports, the number of transmitted bytes and packets, the carried
protocols, and the initial and final timestamps of information exchange.
The Display trait was implemented for both the structs previously reported, to
allow for a human-readable representation of such data.

By default, the output file, named sniffnet_report.txt, was placed in the same

directory from where Sniffnet was launched, but the location and file name could be
customised via CLI options.
The report was updated every five seconds to include the latest network data, but the
user was able to specify an additional argument to arbitrarily change the update
frequency.

3 - The development process

 27

An additional thread was designed to exclusively operate on the report file, creating
and periodically updating it.

The thread responsible for this task operated inside a loop made of the following
steps:

1. The execution flow is put into sleep for an amount of time corresponding to the
report update frequency; during this phase, the thread is blocked without
consuming CPU time.

2. As soon as the thread wakes up, it requests for the acquisition of the Mutex

encapsulating the shared map related to the gathered network traffic; until this
thread will hold the lock, the flow in charge of parsing network data cannot
proceed and new packets are stored inside the Pcap buffer.

3. In the earliest releases of the program, the connections contained in the map
were sorted following a decreasing order of exchanged packets.

4. Each connection present in the map is printed in a formatted way on the output
file.

5. The lock is released to permit the other thread resuming its activity.
6. The application status is checked, and different actions are taken accordingly:

• If the program is running, the thread re-enters the loop from step 1.

• If the program has been paused, the thread blocks on the corresponding
condition variable until the main execution flow will notify it to wake up.

• If the program has been stopped, the thread returns and will be joined
in the main thread that waits for it (this is essential to avoid killing the
program while the report is being written).

What is particularly critical in this context is minimizing the time elapsed between
steps 2 and 5: if the lock on the map of network connections is held for too long, the
Pcap buffer would saturate, and new incoming or outgoing packets would not be
recorded by the program (they would be dropped, to say it in the networking slang).

The first version of the software used a very basic approach to update the report, since
the file was rewritten from scratch at every round of the loop.
This strategy was adopted to avoid appending data to the previous output, which
would have made the overall size of the file blow.
However, this approach was not efficient and scalable at all: as the map grows during
a run of the program, to include new connections, printing all its content obviously
takes longer and longer.
With this concern in mind, I decided to measure the time needed to update the report
and it was sadly confirmed that my worries were tangible: the program took about 600
milliseconds to update the output corresponding to a map of 3500 entries. [19]
Even if for a human it’s a negligible amount of time, I was aware that from the point
of view of a CPU it’s like ages: millions of operations could be performed, and
thousands of packets could be exchanged in such a time frame.

3 - The development process

 28

The first optimization of this process was introduced using a BufWriter.
The initial version of the report was updated inside a for cycle iterating on each of
the map entries, and the write was directly performed on the File object: every

single write operation triggered a system call, and this is highly inefficient considering
the large number of possible connections.
Conversely, a BufWriter can wrap a writer and buffer its output: it keeps an in-
memory buffer of data and writes it to the underlying writer in large, infrequent
batches, making it an extremely valuable solution in cases where small and repeated
write calls are performed on the same file.

// define the buffer encapsulating the file to be written

let mut buf = BufWriter::new(File::create(output_file).unwrap());

...

for (key, val) in map.iter() {

 // invoke a write operation on the buffer

}

...

// ensure that all buffered contents reach their destination

output.flush().unwrap();
Code snippet 3.4 - The use of a BufWriter to improve report update performance.

Buffering data instead of directly writing them to the file made the process about 6
times faster, but it was not enough to guarantee that packets weren’t dropped in
presence of elevated network throughputs.

To find a definitive solution to this concern, a totally different approach had to be
considered: it didn’t make sense to completely rewrite the report even if only a few
entries had changed.
I needed a mechanism to track only the changed entries in each time interval and to
update the file by changing just the corresponding lines.

Tracking the changed entries is not particularly difficult: it was enough to define a new
collection of AddressPortPair in which elements are inserted when data are
exchanged from the respective connection.
Such a collection of elements, implemented as a HashSet, is then emptied once the
file is updated.

What has been more challenging was to correctly identify the portion of the file to
update (i.e., the line corresponding to a given entry).
Two problems existed:

1. Entries were sorted by decreasing number of packets, thus making their
position on the report file not stable over time.

2. File operations support the ability to be performed from a given offset

(Seek) which can be expressed as a number of bytes, but not as quantity of

lines.

3 - The development process

 29

Problem 1 was solved by using an IndexMap for the collection of the network
connections: this structure consists of a hash table that preserves insertion order,
allowing entries to be in a fixed position known a priori.
In this way, it’s sufficient to save the indexes of the changed connections, and the
index of an entry inside the map corresponds to the line of the output file where the
same entry is printed.

The second problem was solved by structuring the file with lines of fixed length, so
that the seek position (expressed in number of bytes) of a specific entry is given by
LINE_LENGTH * entry_index.

Adopting such a strategy allows to only rewrite the changed connections, making the
update time hundreds of times lower than that of the initial version.

// acquire the lock

let mut info_traffic = info_traffic_mutex.lock().unwrap();

// iterate only on the changed entries

for index in &info_traffic.addresses_last_interval {

 let (key, val) = info_traffic.map.get_index(*index).unwrap();

 // compute the seek position

 let seek_pos = LINE_LENGTH * (*index) as u64;

 // update the corresponding line of the file

 buf.seek(SeekFrom::Start(seek_pos)).unwrap();

 writeln!(buf, "{}{}", key, val).unwrap();

}

// empty the set of changed entries

info_traffic.addresses_last_interval = HashSet::new();

// release the lock

drop(info_traffic);

// flush the buffer content

buf.flush().unwrap();
Code snippet 3.5 - Strategy used to rewrite, on the report file, only the changed entries.

From version 0.4 up to the introduction of the graphical interface, the program also
produced an additional output made of SVG charts aimed at visually presenting the
traffic rate registered during the analysis.
The charts reported on the vertical axis the amount of incoming and outgoing data
(per second and cumulative), together with the respective timestamps on the
horizontal axis.

Consequently, the program output consisted no more of a single file, but of a folder
containing both the textual report and the SVG pictures corresponding to the line
charts.

3 - The development process

 30

A Rust drawing library named Plotters was used to generate the illustrations:
“Plotters is a drawing library designed for rendering figures, plots, and charts, in pure
Rust. Plotters supports various types of back-ends, including bitmap, vector graph,
piston window, GTK/Cairo and WebAssembly.” [20]

Plotters provides a high-level, easy-to-use API for data visualization and it’s designed
to be highly flexible and extensible.
Furthermore, it comes with a handy developer’s guide [21] and a lot of ready-made
examples featuring practical use cases.

The first step to build a chart is to define a drawing area by specifying its destination
path and dimensions.
Given a drawing area, a ChartBuilder is used to create a chart context
characterized by several parameters, such as a caption, a mesh, a label formatter, a
legend, and a series of points to plot.
Finally, the pending changes are published to the backend for the final rendering.

Plotters allows to choose from several of the most common chart types to represent
the specified series of points, including area charts (used in the case of Sniffnet),
histograms, scatter plots, or even three-dimensional surfaces.

I consider the introduction of charts a milestone for the project since this feature put
the foundations for the idea of a complete graphical user interface.
The choice of Plotters as a rendering library has also been determinant in the
subsequent decision of the GUI library of the application, as explained in the next
section.

3 - The development process

 31

3.2. Version 1.0: the graphical user interface

After the introduction of charts, I thought that one final step would have been to
include them, together with other information, in a dashboard-like view to see the
updates in real-time, without the need of closing and reopening the SVG pictures and
the textual report.

It was natural at this point to consider the use of a GUI library, to permit an integrated
and user-friendly experience of the program.

3.2.1. The choice of the GUI library

Before implementing the ideas I had in mind, it was first necessary to decide on the
GUI library to make use of.
I was sure about one thing: I wanted to develop the interface in Rust due to its
performance and safety guarantees and because I liked the idea of exercising my front-
end programming skills in a new language.

As anticipated in the first chapter, Rust GUI libraries are not so mature yet compared
to other languages, but different alternatives seemed to me complete enough to be
considered: Slint [22], Dioxus [23], Egui [24], and Iced [25] to name a few.
In particular, I was interested in Egui and Iced, two of the most popular options,
constantly maintained and regularly updated.
Their reputation and large user base were an assurance to me that such libraries
weren’t projects that could have been abandoned from one day to another.

The most important difference between the two alternatives is the kind of graphics
APIs used: Egui is immediate-mode based, while Iced uses retained-mode.
Immediate-mode APIs are procedural: each time a new frame is drawn, the
application directly issues the respective drawing command.
Conversely, retained-mode APIs are declarative: the graphics library stores a model
of the scene in memory, and it transforms the scene into a set of drawing commands.
[26]

Egui's documentation carefully reports the main advantages and drawbacks of
immediate mode: on the bright side, immediate mode is extremely easier to deal with
from a programmer's perspective and it has lower memory requirements, while one
of its main disadvantages is that it tends to have a higher CPU usage, since it does a
complete layout each frame.
None of the API modes is definitively better than the other, so I had to consider more
elements to choose between the two alternatives.

3 - The development process

 32

Egui is more focused on web development, while Iced has stronger attention towards
native applications, and this made me more prone to consider the second option for
Sniffnet.
What finally brought me to opt for Iced is the fact that it has a working integration with
Plotters, the plotting library I was already using for Sniffnet’s charts.

Iced is a cross-platform GUI library for Rust focused on simplicity
and type safety, characterized by a reactive programming
model, responsible layout, and built-in widgets. [25]

The library is inspired by Elm, a functional language to develop web applications. [27]
The language is based on a well-defined pattern, namely The Elm Architecture, which
is based on top of four main concepts:

• State: an object or a collection of objects storing the application state.

• Messages: data structures to represent user interactions and other meaningful
events that may occur.

• View logic: the mechanism to display the application state in the form of
widgets that may produce messages on user interaction.

• Update logic: the set of procedures that make it possible to react to messages
updating the application state accordingly.

Figure 3.2 - Visual representation of The Elm Architecture’s principle.

Figure 3.1 - Logo of Iced, a
GUI library for Rust.

3 - The development process

 33

I immediately liked the pattern, and the idea of learning a completely different
framework was exciting to me.

Iced was still in its 0.4 version when I started using it for Sniffnet in October 2022, but
I judged the available features enough for my development use case.
However, having not reached its stable release yet, the library came with some
limitations:

• The documentation is not complete, and a developer guide currently doesn’t
exist; this made the learning curve a lot steeper, at least in the first period of
usage.

• Some advanced widgets are not integrated yet and require additional libraries
or the developer defining its own custom components.

• The text handling strategy is basic and doesn’t support features like text
shaping or font fallback (essential for rotating and scaling text, and displaying
glyphs from different languages without the need of specifying a font file).

• The graphical renderer is fixed in phase of development instead of being
chosen at run-time and this is cause of incompatibilities with the underlying
hardware in some circumstances.

Luckily, these and other minor limitations are being worked on and some have already
been fixed, as will be explained in the following.

Another plus point in favor of Iced came short before I started using it: in early October
2022, System76 announced that the library will be used over GTK for the interface of
Pop!_OS [28], a Linux distribution based on Ubuntu.

One of the System76 engineers involved in the development of COSMIC, the GNOME-
based desktop environment which will be used by Pop!_OS, commented:

“The UX team has been carefully designing widgets and applications over the last year.
We are now at the point where it is critical for the engineering team to decide upon a
GUI toolkit for COSMIC.
After much deliberation and experimentation over the last year, the engineering team
has decided to use Iced instead of GTK.
Various COSMIC applets have already been written in both GTK and Iced for
comparison.
The latest development versions of Iced have an API that's very flexible, expressive, and
intuitive compared to GTK.
It feels very natural in Rust, and anyone familiar with Elm will appreciate its design.”
[29]

3 - The development process

 34

3.2.2. GUI architecture

Evolving from the previous version of the program, since version 1.0 on, the main
thread is no longer in charge of waiting for user inputs via the terminal interface but
it’s instead responsible for setting up and operating the GUI (after having spawned
the threads responsible of secondary tasks).

The state of the application is encapsulated in a struct made of all the relevant fields
needed to construct a graphical representation of the information of interest.
The data structure, named Sniffer in this scenario, includes the active traffic filters,
the selected network adapter, different kinds of capture statistics, and other useful
configurations.

The creation of an interface with Iced starts with the implementation of the
iced::application::Application trait, which allows configuring an
interactive application based on the Elm architectural pattern.
Such a trait is implemented for the Sniffer struct, allowing the GUI to respond to
changes of the application state.

The Application trait requires the implementation of different methods:

• new, which setups the application with the provided initial state.

fn new(flags: Sniffer) -> (Sniffer, Command<Message>) {

 (flags, iced::window::maximime(true))

}
Code snippet 3.6 - Implementation of the new method of the Application trait

The method receives the initial state from the main thread, which passes the
corresponding flags to the Application::run method (used to create the
app instance).
The new method can also optionally produce a command useful to perform
asynchronous action in the background on start-up.

• title, a method specifying the application name to be reported on the
respective window.

fn title(&self) -> String {

 String::from("Sniffnet")

}
Code snippet 3.7 - Implementation of the title method of the Application trait

Such a method can also be used to produce a dynamic title, in the case it’s
appropriate to have a different window name depending on the currently
displayed page of the app.

3 - The development process

 35

• update, in charge of handling messages and changing the application state
accordingly. It defines the update logic of the program.

fn update(&mut self, message: Message) -> Command<Message> {

 match message {

 Message::TickRun => {…}

 Message::AdapterSelection(name) => {…}

 Message::IpVersionSelection(version) => {…}

 Message::Reset => {…}

 …

 }

}
Code snippet 3.8 - Structure of the Application::update method

• view, the method responsible for returning the widgets to be displayed. Such
widgets will produce messages when interacted with by the user.

fn view(&self) -> Element<Message> {

 let body = match *self.status_pair.0.lock().unwrap(){

 Status::Init => {

 initial_page(self)

 }

 Status::Running => {

 run_page(self)

 }

 };

 Container::new(

 body

)

 .width(Length::Fill)

 .height(Length::Fill)

 .center_x()

 .center_y()

 .style(self.style)

 .into()

}
Code snippet 3.9 - Original implementation of the Application::view method

It’s important to note that the update method receives &mut Sniffer, while

view receives &Sniffer: the update logic oversees mutating the application state,
while the view logic can only respond to such changes — the two mechanisms are
decoupled, each one with its distinct task, but at the same time they cooperate in the
definition of the interface.

Every time the update method is called, changing the app state, the view method
will be automatically invoked in its turn to reflect the new conditions.

3 - The development process

 36

Beyond these mandatory members, other optional methods can be overridden.
That’s the case of subscription, a method useful to be notified when specific

events happen, which means the ability to generate a message when a determined
event takes place.
The events captured by the subscription don’t correspond to widgets interactions but
rather to other (possibly asynchronous) events occurring at runtime.

Sniffnet overrides the subscription method to produce asynchronous messages

to periodically update the application screens.

fn subscription(&self) -> Subscription<Message> {

 match *self.status_pair.0.lock().unwrap() {

 Status::Running => {

 iced::time::every(Duration::from_millis(PERIOD_RUNNING))

 .map(|_| Message::TickRun)

 }

 _ => {

 iced::time::every(Duration::from_millis(PERIOD_INIT))

 .map(|_| Message::TickInit)

 }

 }

}
Code snippet 3.10 - Original override of the Application::subscription method

This is essential to constantly update charts and other displayed information, typically
once per second, even in absence of user interactions.

Other optional methods of the trait are scale_factor, which can be used to

dynamically control the zoom of the UI at runtime, and theme, in charge of returning

the current application Theme if more than one is available.

After the Application trait is implemented, the run method can be invoked to
spawn the application window, specifying attributes to set the window's initial size,
position, icon, as well as the initial state, the default text size, and other useful options.

3 - The development process

 37

3.2.3. The start page

When starting Sniffnet, it opens displaying a page that features, on the left, a scrollable
column containing all the available network adapters and, on the right, checkboxes
and a picklist reporting the applicable filters.

The header and footer, common among all the pages, respectively contain a button to
switch the app style and a button linking to the GitHub repository of the project.

To correctly start the analysis is sufficient for the user to set the desired network
adapter and, after having optionally defined some filters, click on the “Run!” button in
the lower portion of the page.

Figure 3.3 - Sniffnet start page (v1.0.0)

The list of network adapters is retrieved through the Device::list() method
offered by Pcap, which includes the adapter name, its description, and the set of active
IPv4 and IPv6 addresses.
On macOS the adapter’s description is often unavailable, while on Windows the
adapter name is verbose and displaying its description is preferable: for this reason, a
logic has been set up to conditionally include or exclude some parameters depending
on the operating system and on the parameter availability within the specific machine.

The user can easily set filters on the observed network traffic, choosing the IP version,
the transport protocol, or the application protocol desired for analysis.
By default, none of the filters is active because most of the users are generally
interested in monitoring all the exchanged traffic.

3 - The development process

 38

The original version of the application included a total of 13 different kinds of
messages, represented through the Message enum.

Several new message categories were introduced with the subsequent development
of new features and is therefore not possible to describe the update logic behind each
of them in detail.

To exemplify the mechanism that allows to update the application state, in the
following are reported the relevant code fragments used to change the transport
protocol filter, accessible to users from the start page.

// Definition of the widget.

let mut transport_filters = Column::new();

for option in [TransProtocol::TCP,

 TransProtocol::UDP,

 TransProtocol::Other] {

 transport_filters = transport_filters.push(

 Radio::new(

 option.get_radio_label(), // label

 option, // value

 Some(active), // currently selected

 Message::TransportProtocolSelection, // message to produce

)

);

}

// Update logic of the corresponding message.

pub fn update(&mut self, message: Message) -> Command<Message> {

 match message {

 …

 Message::TransportProtocolSelection(protocol) => {

 self.filters.transport = protocol;

 }

 …

 }

}
Code snippet 3.11 - Widget definition and logic to update the transport protocol filter.

The defined widget, in this case consisting of a collection of radio buttons, specifies
the message to be produced when the user interacts with it; the corresponding
message is then received by the update logic which takes care of updating the
transport protocol filter, and immediately after the view is re-rendered.

Despite this being a simple example, it clarifies how the Elm pattern works in practice.
Excluded the messages generated via the subscription, all the remaining ones are
produced in a way like that shown — what changes from one message kind to another
are mainly the update logic and the fact that each message can be associated with one
or more different typed parameters, thanks to Rust enum’s expressiveness.

3 - The development process

 39

3.2.4. The overview page

Whenever the user wants to start the analysis, pressing the “Run!” button, a
Message::Start is produced.
The update logic handles such a message by creating a new thread responsible for
parsing packets exchanged from the network adapter chosen by the user.

If an error occurs opening a capture on the specified adapter, a proper message will
be displayed; the causes of error can be various: the user doesn’t have the required
privileges to inspect the selected adapter, the adapter doesn’t have active addresses
and therefore it cannot exchange any traffic, or a different problem is raised by the
underlying Pcap library.
In other circumstances, configurations are correct, but the chosen adapter simply
doesn’t receive/send any packet from/to the network.
All the possible different scenarios are managed by the application, informing the user
about possible countermeasures to take.

In case everything goes smoothly, the analysis is started, and the user can see live
statistics about network data in transit.

Figure 3.4 - Sniffnet overview page (v1.0.0)

As in the previous version of the app, the thread parsing packets insert them into
shared data structures associated with a Mutex.
The same structures are also accessed, in mutual exclusion, by the thread in charge of
periodically updating the textual report and by the main thread in the view logic of the
GUI, to display the corresponding information.

3 - The development process

 40

The charts are realized with Plotters and are integrated with Iced using a backend
named plotters-iced [30], which has been created by a Chinese developer.

To correctly render a chart with plotters-iced, it’s necessary to implement the

Chart trait for a struct representing the chart object.
The trait requires implementing a method named build_chart responsible for
defining parameters required by Plotters (i.e., the series of points, their label, a legend,
and so on).
Finally, to render the chart, a method view must be defined for the chart object,

featuring the code necessary to embed it into an Iced widget with defined dimensions,
alignment, and padding.

Sniffnet offers the possibility for the user to choose which unit of measure to adopt
for the chart, between bytes per second and packets per second; in both cases, the
real-time chart reports the last 30 seconds of data, stored inside a VecDeque on

which every second it’s performed a pop_front() followed by a push_back(…)
operation to make the representation shift as time passes.

The lower section of the page displays a report about the most relevant connections,
that can be ordered by timestamp, number of packets or bytes exchanged.
Only the top 15 connections are shown in the view because Iced doesn’t support yet
the possibility of computing only the visible portion of a scrollable, and therefore
building a widget with different thousands of entries could’ve been inefficient.

However, the complete report of network connections remains available in a textual
file that can also be opened via the graphical interface.
This is possible using a resource opener command, which is a command used by an
operating system to open a file, a directory, or an URL.
Due to the cross-platform nature of the project, I had to make sure of carefully
selecting the resource opener command depending on the target OS: luckily Rust
offers an easy way of conditionally including or excluding from compilation specific
fragments of code, and using the target_os attribute it’s possible to determine the
operating system of the machine running the program.

Message::OpenReport => {

 #[cfg(target_os = "windows")]

 let command = "explorer";

 #[cfg(target_os = "macos")]

 let command = "open";

 #[cfg(target_os = "linux")]

 let command = "xdg-open";

 std::process::Command::new(command)

 .arg(r"./sniffnet_report/report.txt")

 .spawn()

 .unwrap();

}
Code snippet 3.12 - Command used to open the report file on the different OSs.

3 - The development process

 41

Differently from the previous version of the program, since the introduction of the GUI
Sniffnet supports the possibility of stopping the ongoing analysis and later starting
another analysis targeting a different adapter, without the need of quitting the
program.
This option would’ve been uncomfortable in a command line interface, but it’s
straightforward and intuitive in a graphical interface.

A user can now easily interrupt the current sniffing process simply by coming back to
the initial screen of the application: in correspondence with this event, a
Message::Reset is produced.
When said message is received by the update logic of the program, the data structures
containing information about the preceding analysis are re-initialized.

Furthermore, an additional variable representing the analysis identifier is
incremented; it was in fact necessary to introduce a monotonically increasing ID to
execute, in the secondary threads, proper actions when a new sniffing process is
created:

• The thread parsing packets, unique for each analysis, checks if the analysis
identifier is changed with respect to that assigned to it; in this case, it
immediately returns.

The thread needs to be unique for each analysis because this execution flow
blocks on the next_packet() method offered by Pcap: if an adapter not

exchanging packets is selected, the call to this method will block indefinitely
making it impossible to re-use the same thread for a different adapter.

From this observation also derives that the analysis ID is needed to be checked
after a packet is received, to be sure that the respective sniffing process wasn’t
killed and then a different one was created in the meantime.

• The thread writing report, which remains the same for the whole duration of
the application instance, checks the ID to decide if updating the file with data
from the last time interval or rewriting the file from scratch to accommodate
information related to a distinct sniffing process.

3 - The development process

 42

3.2.5. GUI styling

Similarly to HTML, whose elements are styled via CSS, Iced widgets can be customised.

This is done by implementing the StyleSheet trait of a certain widget; every kind
of widget has its own theming rules which are specified in the definition of the
respective trait (button::StyleSheet for buttons, slider::StyleSheet for

sliders, and so on).

Each StyleSheet takes care of defining peculiar methods based on the widget's

nature (e.g., active(), hovered(), and disabled() for buttons).
Iced automatically recognizes the current state of a widget and displays the element
according to the rules defined in the corresponding method of the StyleSheet.

During Sniffnet development, I didn’t only want to specify a style for each of the
application components, but I also wished to let users decide from different themes:
for this reason, two different color palettes were used in version 1.0 (representing
respectively day-mode and night-mode), and additional themes were made available
in the following release.

To improve the code modularity, a Palette struct was defined to encapsulate all the
needed information about a specific application theme:

pub struct Palette {

 /// Main color of the GUI (background, hovered buttons)

 pub primary: Color,

 /// Secondary color of the GUI (incoming connections, header, footer)

 pub secondary: Color,

 /// Color of outgoing connections

 pub outgoing: Color,

 /// Color of buttons

 pub buttons: Color,

 /// Color of header and footer text

 pub text_headers: Color,

 /// Color of body and buttons text

 pub text_body: Color,

}
Code snippet 3.13 - Definition of the Palette data structure.

To style a given widget, take for example a Container, it’s necessary to specify both

the widget type (i.e., if the Container is intended to be a header, a box, or the
application main scene) and the current application theme (i.e., day-mode, night-
mode, and similar).
Consequently, the styling traits were implemented for a struct made of two fields: the
widget type referred to a specific element and the global application theme chosen by
the user.

3 - The development process

 43

3.3. Version 1.1: notifications, IP geolocation, and further
configurations

3.3.1. Custom notifications

Several new features and improvements were introduced with version 1.1.
One of the main changes consisted of the introduction of custom notifications, namely
the possibility for users to set alerts when defined network events occur.

Sniffnet can warn the user by sending a notification whenever a data threshold is
exceeded, or new data is exchanged from one of the favourite connections.

At every Message::TickRun, produced by a periodic subscription once per

second, the conditions for a new notification are checked: if necessary a short sound
effect is reproduced and the respective event is logged for additional examination by
the user.

Figure 3.5 - Application page dedicated to logging the received notifications (v1.1.3)

Different information is collected based on the notification kind: in case a bytes or
packets threshold has been exceeded, the amount of incoming and outgoing data is
reported, while in case a favourite connection was involved, details about the
connection are shown.
For each instance, the respective timestamp of occurrence is also displayed.

The log can optionally be emptied by the user at any moment, to clean the screen
from previous notifications.

3 - The development process

 44

The different types of notifications are internally represented as an enum, each of
whose variants is associated with a struct encapsulating information relative to the
corresponding notification instance.

/// Enum representing the possible notification events.

pub enum LoggedNotification {

 /// Packets threshold exceeded

 PacketsThresholdExceeded(PacketsThresholdExceeded),

 /// Byte threshold exceeded

 BytesThresholdExceeded(BytesThresholdExceeded),

 /// Favorite connection exchanged data

 FavoriteTransmitted(FavoriteTransmitted),

}
Code snippet 3.14 - The LoggedNotification enum, used to represent the different notifications

When the conditions for an alert arise, a new instance of a notification is created, and
it’s pushed to the front of a list which is displayed in the log page of the UI.

Besides logging the event, a sound alert is played to make the notification perceptible
by the user even if the Sniffnet window is not on top of the screen.
This is possible thanks to Rodio [31], a playback library for Rust that allows to
reproduce audio by defining a source consisting in the sound to play and getting an
output stream handle to a physical device.

// Get a output stream handle to the default physical sound device

let (_stream, stream_handle) = OutputStream::try_default().unwrap();

let sink = Sink::try_new(&stream_handle).unwrap();

// Load sound from memory

let data = std::io::Cursor::new(mp3_sound);

// Decode sound file into a source

let source = Decoder::new(data).unwrap();

// Set the desired volume

sink.set_volume(f32::from(volume) / 200.0);

// Play the sound directly on the device

sink.append(source);

// Block current thread until the sink has finished playing queued sounds.

sink.sleep_until_end();
Code snippet 3.15 - Reproduction of a sound with Rodio

The thread invoking the reproduction of the sound effect sleeps until the audio is
terminated; for this reason, it’s necessary to execute the code above in a new thread
(spawned for this specific purpose), otherwise the main thread would result busy,
causing the loss of possible user interactions with the interface.

Individual notifications can be enabled, disabled, and customized from the new
settings page of the application, which permits to specify the event for which it’s
desired to be notified and additional parameters such as the specific data threshold of
activation, the sound effect to play, and its volume.

3 - The development process

 45

Figure 3.6 - Settings page to customize notifications (v1.1.3)

3.3.2. Interface translations

Sniffnet settings are not limited to the choice of user-defined notifications, but also
allow to set an application colour scheme (based on the modalities described in
paragraph 3.2.5 — GUI styling) and permit to select a language different from English.

In version 1.1, support for the translation of the interface text was added.
A new function, receiving the selected language as a parameter and returning the
corresponding translation, was created for each of the UI sentences.

pub fn start_translation(language: Language) -> &'static str {

 match language {

 Language::EN | Language::DE | Language::RO | Language::KO =>

"Start!",

 Language::IT => "Avvia!",

 Language::FR => "Commencer!",

 Language::ES => "¡Empieza!",

 Language::PL => "Rozpocznij!",

 Language::UK => "Почати!",

 Language::ZH => "开始!",
 Language::TR => "Başla!",

 Language::RU => "Начать!",

 Language::PT => "Começar!",

 Language::EL => "Ξεκίνα!",

 Language::FA => " عورش !",

 Language::SV => "Starta!",

 Language::FI => "Aloita!",

 }

}
Code snippet 3.16 - Example of function used to translate the UI sentences

3 - The development process

 46

To have a higher degree of confidence about the translation quality, the process is not
performed using external services but requires the translated phrases to be manually
included in the code base.
Each of the supported languages was in fact introduced by a native speaker through a
pull request and, thanks to community support, Sniffnet rapidly went from supporting
only English and Italian to being translated into 17 different languages.

Introducing new languages, a problem came out: Iced doesn’t support font fallback
and consequently a font file must be included to make specific Unicode characters
available.
This is especially crucial when adding languages that don’t use ASCII characters, such
as Chinese, Korean, and Russian.

However, font files covering all the existing characters are very large in size: just
consider that Simplified Chinese is composed of thousands of glyphs.
The file I ended up using contains all the languages of interest, but its size alone was
three times the size of the whole binary.

For this reason, after searching for some solution, an idea came to my mind: the
characters actually in use are a very small fraction of the full set, and to solve the
problem it’d be sufficient to only include them.
Luckily, there exists a mechanism called font subsetting which allows to select a
specific set of characters from a font file.
First of all, it’s necessary to retrieve all the used characters and I performed this task
using the grep command line utility against the src folder of the project.

The collected characters are stored in a file which is then given as input to
pyftsubset [32], a font subsetting program that creates a new, reduced font file

from the complete one.
In this way, the size of the font file decreased from 13 MB to 100 KB, allowing to
include the font in the app binary without bloating its dimension.

One more problem due to Iced text handling is the missing support for right-to-left
languages, such as Arabic and Persian.
A Persian translation of Sniffnet is available, but the interface displays it left-to-right,
making it impossible to read correctly.
However, the text-handling strategy of Iced is rapidly evolving and a new release of
the library will soon fix most of the related issues.

3 - The development process

 47

3.3.3. Configuration management

The addition of application settings led to the need for a mechanism to save the
configuration parameters set during a run of the program.

Let’s suppose that a user wishes to be notified when more than 2 MB per second are
exchanged, using a color palette different from the default one, and operating the app
using the French language.
If no mechanism to save the app settings is used at all, our user would need to set his
desired configurations every time the application is restarted.

To make configurations persistent across different executions of Sniffnet, it’s needed
to store them somewhere, typically in the form of a JSON or TOML file.
I decided to use Confy [33], a zero-boilerplate configuration manager for Rust, to
handle in an easy and robust way the read and write of such information.
Confy takes the burden to figure out where to place configuration files based on the
given operating system and the environment paths.

A configuration file is the serialized version of a struct encapsulating the
corresponding parameters.
When Sniffnet is run after a fresh installation, the configuration file doesn’t exist yet
but that’s not a problem because Confy uses the Default trait implemented by the
struct to create a new configuration: this means the developer can assume that a
configuration already exists, without taking care of any special logic to handle its
creation.

Every time the configuration file needs to be changed, it’s sufficient to invoke
confy::store, which saves the changes applied to the configuration object passed

as a parameter.

To avoid collisions between different configuration files of the same program or
configurations related to different applications, every read/write operation performed
with Confy requires to specify the name of the app and, optionally, the identifier of
the file that must be unique in the scope of a given app.

Sniffnet relies on two configuration files: one to store the settings selected by the user
and the other to save the last successfully sniffed network device, so that both the
information will be automatically set when reopening the app.

Since version 1.1, the path chosen by Confy to store the configurations is also used to
host the output report of the program.
This is useful to avoid the presence of multiple reports in the system, since previously
the output location was not fixed but coincident with the running path of the program.

3 - The development process

 48

3.3.4. IP geolocation

Another feature added in version 1.1 is the geolocation of remote IP addresses.
IP-based geolocation is the mapping of an IP address to the geographical location of a
device.

To perform such mapping, a proper database is needed; there are many providers
offering such databases, whose accuracy is claimed to be about 95% for what concerns
IP-to-country resolutions.
Initially, during development, I started using a CSV database, but I soon realized that
there exists a better format tailored for this kind of usage: the MaxMind DB (MMDB)
file format. [34]

The MMDB file format is a database format that maps IPv4 and IPv6 addresses to data
records using a binary search tree.
The format is optimized to perform lookups on data indexed by IP network ranges
quickly and efficiently: thanks to this high performance, Sniffnet is potentially able to
execute hundreds of different lookups in a matter of a few milliseconds.
Not only the MMDB format allows more performant read operations, but it also
permits to largely reduce the binary size, being about 4 times smaller than the
corresponding CSV file.

Given a network connection, the address subject of a lookup is the remote one since
it wouldn’t make sense to try resolving the private address of the sniffed device (such
a resolution would result in an unknown location).

To further improve the efficiency of the geolocation process, IP lookups only occur in
presence of new network connections, to avoid repeating duplicated resolutions that
would happen if lookups were performed at every exchanged packet.

let len = info_traffic.map.len();

let index = info_traffic.map.get_index_of(&key).unwrap_or(len);

let country = if index == len {

 // first occurrence of this connection => retrieve country code

 get_country_code(traffic_type, &key, country_db_reader)

} else {

 // this connection was already featured

 String::new()

};
Code snippet 3.17 - Code fragment to retrieve the country code only in case of new network connections

3 - The development process

 49

3.3.5. Keyboard shortcuts

With the aim of improving the application’s efficiency of use and the overall user
experience, some keyboard shortcuts were introduced.

A keyboard shortcut, or hotkey, is a combination or sequence of keys on a computer
keyboard that triggers a command.
Hotkeys allow for a quicker execution of certain tasks and are especially appreciated
by more experienced people who frequently make use of the software.

Iced offers a family of events, including Touch, Window, Mouse, and Keyboard
related events.
Keyboard events can be related to the pressure or the release of some keystrokes,
and in both cases, they consist of a key and a set of modifiers (e.g., ctrl, alt, or

shift).

Such events can be captured by the application subscription, which will send a
proper message that in its turn will be handled by the update logic to perform specific
actions.

let hot_keys_subscription =

 iced_native::subscription::events_with(|event, _| match event {

 // ctrl+Q => quit the app

 Event::Keyboard(iced_native::keyboard::Event::KeyPressed {

 key_code: iced_native::keyboard::KeyCode::Q,

 modifiers: iced_native::keyboard::Modifiers::COMMAND,

 }) => Some(Message::Quit),

 // tab => switch to next page

 Event::Keyboard(iced_native::keyboard::Event::KeyPressed {

 key_code: iced_native::keyboard::KeyCode::Tab,

 modifiers: NO_MODIFIER,

 }) => Some(Message::SwitchPage(true)),

 // shift+tab => switch to previous page

 Event::Keyboard(iced_native::keyboard::Event::KeyPressed {

 key_code: iced_native::keyboard::KeyCode::Tab,

 modifiers: iced_native::keyboard::Modifiers::SHIFT,

 }) => Some(Message::SwitchPage(false)),

 // ctrl+, => open settings

 Event::Keyboard(iced_native::keyboard::Event::KeyPressed {

 key_code: iced_native::keyboard::KeyCode::Comma,

 modifiers: iced_native::keyboard::Modifiers::COMMAND,

 }) => Some(Message::OpenLastSettings),

 // ...

 _ => None,

 });
Code snippet 3.18 - Subscription to capture Keyboard events and produce proper messages

All the available hotkeys are documented in a dedicated section of the project’s
README and are based on the most popular conventions.
A specific issue [35] was also opened to allow the community to suggest new shortcuts
or changes to the existing ones.

3 - The development process

 50

3.3.6. Further additions and improvements

Several other minor features and improvements were released between versions
1.1.0 and 1.1.4.

• Implemented the possibility of marking a group of connections as favorites and
added a favorites view to the report in the main page of the app.

• Added a modal to ask the user for confirmation before interrupting the ongoing
analysis.

• Aesthetic improvements to create a more modern and minimal UI, as
described in a dedicated issue. [36]

• Made the most complex widgets lazy to improve the app’s efficiency.
Lazy widgets are interface elements that specify a set of dependencies and call
the view logic lazily only when one or more dependencies have changed.
If all the dependencies have remained unchanged between consecutive
invocations of the view method, a previously cached instance of the widget

will be rendered instead of recomputing it from scratch.

• Added feature to warn users when a newer release of the software is
available.
This is done by instantiating a dedicated thread to make a call to the GitHub API
and checking if the latest published version of the app is different from the
running one (available in the manifest file of the project).
In case of errors the call is repeated after 30 seconds and if a newer version is
found to be available, a warning button linking to the latest release page is
displayed in the application footer.

3 - The development process

 51

3.4. Version 1.2: host-based traffic analysis

The original version of the GUI only showed IP addresses to identify senders and
receivers, but this kind of information consists of a series of numbers that are not very
meaningful at a first sight for a human being.

With version 1.2, I wanted to provide a way to discover more details about the network
host behind an IP address.

3.4.1. Host-related information

A network host is a device connected to a computer network, which may work as a
server providing resources to other nodes of the network.
Each host is associated with one or more IP addresses, a name, and is usually managed
by a defined administrative entity.

Given an IP address, it’s possible to determine additional information about the
corresponding host.
For instance, hostname and address are tightly linked one with the other and this bond
is at the basis of the DNS resolution, i.e. the process of mapping human-readable
domains to machine-readable IP addresses.

IP addresses are collected from the packets’ headers and are available in Sniffnet since
its very first release; additional host-related attributes have been obtained simply by
making wise use of the already available information:

• Host names are retrieved performing reverse DNS lookups (i.e., the inverse
process of DNS resolution, useful to obtain a human-readable name from an
Internet address).

• Autonomous Systems names and numbers are obtained through lookups
against an MMDB file, in the same way described for IP geolocation in section
3.3.4.

These apparently minor changes required a considerable redesign of the application
workflow as well as the introduction of proper data structures to accommodate and
adequately organize the newly collected details.

Reverse DNS lookups are subject to varying latencies depending on the presence of
the entry in a local cache, the location of the DNS server, network congestions, and
they can take up to some seconds in case of reachability issues: therefore, it’s not
possible to perform this kind of resolutions directly in the thread in charge of parsing
packets and a new execution flow must be created for the purpose.

3 - The development process

 52

The possible latency of reverse DNS lookups led to two main concerns:
1. Due to timing constraints, it’s not convenient to instantiate a single

thread responsible for all the resolutions.
2. To save computational resources, it’s important to minimize the number

of lookups but it’s not immediate to determine if the resolution of a
specific address has already been invoked or not.

The first problem can be fixed by instantiating a dedicated thread for each of the
addresses to resolve, but again this leaves open the second problem: when is it really
necessary to perform a lookup?

If a reverse DNS lookup has already been completed for address A, it’s easy to realize
to not perform it again since the respective domain name is already present, but what
if new data is exchanged from A while waiting for the result of a previously invoked
resolution of the same address?
To avoid looking up the same IP address multiple times, it’s not enough to have a
collection of the already resolved hosts but it’s also needed to maintain the set of
addresses waiting for a resolution.
Addresses are inserted in such set right before invoking their resolution and when the
result of the lookup is delivered, the address is removed from the set in which it was
temporarily put and is finally inserted in the collection of network hosts.

In this way, the thread responsible for parsing packets can check the status of an
address and it acts accordingly:

Code snippet 3.19 - Pseudo code to handle the possible different states of the reverse DNS lookup of an IP

address

match (r_dns_waiting_resolution, r_dns_already_resolved) {

 (false, false) => {

 // rDNS not requested yet (first occurrence of this address)

 // Add the address to the map of addresses waiting for a resolution

 // Launch new thread to resolve host name

 }

 (true, false) => {

 // Waiting for a previously requested rDNS resolution

 // Update the statistics related to the waiting address

 }

 (_, true) => {

 // Reverse DNS already completed

 // Update the statistics related to the already identified host

 }

}

3 - The development process

 53

The created thread launches a reverse DNS resolution using the lookup_addr
method provided by the dns-lookup crate [37], which blocks the execution until a
valid result or an error is returned.
In case of problems, the IP address itself is used in place of the domain name.

Once the address is resolved, the thread also takes care of retrieving, from MMDB
files, its geographic location and details about the Autonomous System (AS) managing
it.

At this point, all the information to define the corresponding network host is available
and a new Host is created.

pub struct Host {

 /// Hostname (domain). Consists of the last portion of the reverse DNS.

 pub domain: String,

 /// Autonomous System (name and number) which operates the host

 pub asn: Asn,

 /// Country

 pub country: Country,

}
Code snippet 3.20 - The Host struct identifying a network host

3.4.2. The new overview page

The newly integrated features are reflected on the graphical interface of the app,
whose main page is now characterised by a section assigned to the presentation of
host-related details.

Figure 3.7 - Sniffnet overview page (v1.2.0)

3 - The development process

 54

The upper section of the page remains similar, except for the addition of the number
of dropped packets, namely the amount of discarded packets because there was no
room for them in the Pcap buffer when they arrived.

The lower portion of the page has completely been renewed to show the amount of
data transmitted grouped by network host and by application protocol.
Information exchanged by a given entry is represented as a horizontal bar whose
length is proportional to the number of packets or bytes transmitted and whose
colours represent the directionality of the exchange (incoming or outgoing).

pub struct DataInfo {

 pub incoming_packets: u128,

 pub outgoing_packets: u128,

 pub incoming_bytes: u128,

 pub outgoing_bytes: u128,

}
Code snippet 3.21 - The DataInfo struct, encapsulating details about the amount of exchanged data and

used to store cumulative statistics related both to network hosts and application protocols

Hosts are sorted by decreasing number of packets or bytes and can be marked as a
favourite to be notified when a new data exchange will occur.

Each network host is associated with a flag representing the respective country, even
if in some circumstances it’s not possible to determine the location of a host because
the corresponding entry is not available in the MMDB file.
Most of the times this happens when the host is in the same network as the sniffed
network card (and has therefore a private IP address) or when the IP address is a
multicast or broadcast one.

To limit the number of circumstances in which it’s not possible to associate a host with
a country flag, some countermeasures were taken:

• Multicast addresses recognition has been implemented for both IPv4 and IPv6
addresses.

• Broadcast addresses identification has been added for IPv4 addresses,
including directed broadcast recognition.

• Local addresses, namely addresses in the same network of the analyzed
adapter, are identified through operations involving the subnet mask of the
sniffed device, provided by Pcap.

In such cases, instead of showing a country flag, a proper icon is displayed to make
clarity about the nature of the traffic.

3 - The development process

 55

3.4.3. The inspect page

Individual network connections, identified by IP addresses and transport ports, remain
available and are now reported in a dedicated page of the interface.

Figure 3.8 - Sniffnet inspect page (v1.2.0)

Having a whole page hosting the network connections allows to display them more
comfortably, without being limited to showing a reduced number of entries as in the
previous release.
More precisely, all connections are now shown in the UI through a paging mechanism
developed ad hoc, which lets the user easily switch between pages either by pressing
a button or via a keyboard shortcut.

Connections can be filtered to display only the entries of interest according to various
criteria: carried application protocol, country of provenience, domain name, or
Autonomous System of the correlated network host.

What’s even more interesting is that this page can also be reached directly by clicking
on a network host or application protocol listed in the main page of the app: in this
case, appropriate filters will be automatically set to display only the connections
related to the clicked object.

Additionally, each connection is clickable in its turn to open a pop-up reporting further
details about the item.

3 - The development process

 56

Figure 3.9 - In-app pop-up with details about the clicked network connection

Beyond including information already available in the general screen, the pop-up
dedicated to a specific connection displays the first and last timestamp of data
exchange, MAC addresses of the sender and the receiver (i.e., unique identifiers
assigned to a network interface), and the fully qualified domain name (FQDN) of the
remote node.

 57

4. Project management

A software project not only requires efforts directly related to writing code, but also
needs proper management in terms of documentation, packaging for different
platforms, and support to users who incurred in some issues, just to name a few.

If in the early stages of the project most of the time was dedicated to programming,
as Sniffnet is growing and its features becoming stable, an increasing amount of effort
is dedicated to non-coding tasks, most of which have to do with the GitHub repository
management.

Given that these aspects are essential and require a considerable amount of
dedication, I believe it’s unavoidable to dedicate an entire chapter to better describe
them.

4 - Project management

 58

4.1. Documentation

Code documentation is an essential phase in the lifecycle of software.
It consists of textual or visual representations aimed at describing what a codebase
does and how it can be used, improving user productivity and the overall software
usability.

In the case of libraries, code documentation mainly consists of the description of the
library’s APIs and usually targets other developers.
In the case of applications such as Sniffnet, documentation is usually done at a higher
level to be understandable by all the end-users and can come in various forms, some
of which are described in the following sections.

4.1.1. The README file

Including a README is in general the first step to take to properly document a project.
The README file is often the first item to be seen when visiting a GitHub repository
and its goal is to expose what the project does, why it’s useful, how can users get
started with it, and other potentially useful information. [38]
The README file on GitHub is usually written in Markdown, a lightweight markup
language for creating formatted text that also allows displaying pictures.

The presence of this file is crucial not only to document the already interested users
but also to attract new potential users.
To this purpose, it’s essential for a README to be useful as well as aesthetically
pleasing.
I honestly think that part of Sniffnet's success derives from having created a good-
looking README since the early stages of the project: of course, this file’s primary goal
is to be helpful for the users, but the reality is that most people will never even read it
if it’s just a high wall of text.
When reading a newspaper or articles on the Internet, people don’t want to go
through the whole content of the page, but rather focus on what are the most
interesting sections: if I wanted my README to be noticed, I knew I had to make it in
a way such that it could capture the attention of the users.

Since the first section of the README to be seen is the upper one, I made sure to put
there the most relevant pictures together with the project’s value proposition, while
keeping the most helpful yet “boring” content below.

4 - Project management

 59

A good practice is to include in the upper part of the file also some little SVG badges
reporting concise information about the project (e.g., license type, download count,
and latest version tag).

Figure 4.1 - SVG badges on top of the README file, powered by shields.io. [39]

The main body of Sniffnet’s README, below the top-most part, consists of different
sections, each one reporting different kinds of information as described in the
following.

• Installation: this section describes how the application can be downloaded for
use. It includes various install methods for the users to choose which one they
prefer, depending on their machine’s configuration, architecture, and operating
system.

• Required dependencies: portion of the README reporting, for each operating
system, the needed dependencies to install and other precautions to take to
correctly build and run the application.

• Features: list of the main features and functionalities, to make it clear what the
application does and how it can be helpful for the users.

• Keyboard shortcuts: section aimed at documenting the hotkeys available to
make the user experience faster and more efficient.

• Troubleshooting: part reporting the most common problems that may occur
and how they can be solved. It also reports, for each kind of problem, a link to
the respective solved issues which already happened to other users.

• Acknowledgments: final section dedicated to shout-outs to Sniffnet’s
contributors.

Other minor sections, not mentioned in the list above, are also included in the
README to document how more specific features of the applications work under the
hood.

4 - Project management

 60

4.1.2. Release notes and the CHANGELOG file

Another important aspect is to document all the new features, changes,
improvements, and fixes made to the software in the time.
After some changes are made to the codebase, it could be necessary to publish a new
version of the application including such changes.

First of all, when a new version is released, there is the need to choose a proper and
unique name for it.
Software versioning is the process of assigning version names or numbers to a specific
state of a program, library, or application. [40]
Different numbering schemes exist to track software versions, and one of the most
adopted is Semantic Versioning.
Semantic Versioning, also known as SemVer, is the scheme I choose for Sniffnet
version numbers.
It encodes a version identifier into three different numbers separated by a ‘.’ (dot)
character: Major.Minor.Patch (e.g., 1.2.1).
In this versioning scheme, functionality and risk are the measure of an update’s
importance.
An update may introduce breaking changes (highest relevance) or may just patch
minor bugs (lowest importance): based on the relevance of the introduced changes,
the respective number of the version identifier is incremented.

Every release should list which changes it introduces and GitHub offers a way to
automatically generate release notes based on the commit history.
However, it’s suggested to write release notes by hand for them to be more engaging
and interesting to read.
I personally write Sniffnet’s release notes dividing them into distinct sections (new
features, improvements, and fixes) and adding screenshots of the latest functionalities
when applicable; this approach contributes to maintain the user base interested in
following the evolution of the application.

Alongside the release notes there is the CHANGELOG file, usually placed in the root
directory of the project.
The CHANGELOG (i.e., a log of the changes) lists every version of the software with its
date of publication and all the apported modifications, and it can be considered as a
history book about the software itself.

Beyond serving for documentation purposes, the CHANGELOG helps in debugging
production bugs introduced in each software update, and immediately shows the
cadence of such updates, without the need to search for every release page.

4 - Project management

 61

4.1.3. Other documentation resources

A project’s documentation can also appear outside the boundaries of GitHub, to reach
people who are not directly involved in the FOSS ecosystem.
With this idea in mind, I created a website and registered a domain name (sniffnet.net)
to reach a possibly wider and more heterogeneous audience.

One thing to always keep into account is to adjust the documentation according to the
platform on which it’s hosted and the corresponding target population: on GitHub, it’s
more likely to find people with a high level of technological expertise and as a
consequence it’s possible to include computer engineering aspects, while a website is
virtually accessible by any kind of users and therefor it should carry content which is
more straightforward and easy to understand.
For this reason, I included in the website a less technical overview of the application,
together with a greater variety of screenshots that could be appreciated by most of
the public.

Another documentation resource is the CONTRIBUTING file on GitHub, whose purpose
is to facilitate other developers contributing to the project.
This file contains guidelines to communicate how people can use their expertise to
help a project maintainer, including submitting patches, developing new features, or
simply opening a well-formed issue for a bug they found. [41]

GitHub also provides repositories with the possibility to set up wikis, a kind of
extended documentation to share long-form content about the project: how it has
been designed, which are its core principles, and additional information which are
usually not reported in the project’s README. [42]
I’ve not published wikis for Sniffnet yet, but I’m definitely considering doing it,
including more extensive and detailed descriptions of the application.

Finally, it’s important to note that GitHub issues and pull requests themselves are an
extremely valuable sources of documentation that derive from the cooperation
between the repository owner and the community.
To make issues and PRs even more helpful, GitHub gives access to mechanisms to
properly manage them.
Some of such mechanisms are described more in detail in the next sections.

4 - Project management

 62

4.2. GitHub repository management

One of the consequences of Sniffnet’s increasing adoption and popularity is the
considerable amount of people seeking for help or willing to support the project
themselves, and GitHub provides several ways of managing a community that is
growing around software.
The following sections report my experience in managing the activity on Sniffnet
GitHub repository.

4.2.1. Issues

GitHub issues are used to keep track of feedback, bugs, or tasks, related to a software
project. [43]
Each issue has a title and is in the form of a discussion in which problems and ideas
can be shared by anyone.
Issues allow to organize and prioritize the work to do and can be opened either by the
project maintainer or by an end user to receive support or to suggest new features.
An issue is not only helpful for the person who directly opened it but can also be
consulted by other users who will incur in the same problem at a different point in
time.

The various issues flied to a repository can be labeled with one or more tags, each one
with its color and short description, to easily categorize problems and feedback.
By default, GitHub provides several labels, such as ‘bug’ to indicate something that’s
not working, ‘duplicate’ to mark an issue that already exists, or ‘enhancement’ to
indicate a request for a new feature or improvement.
A project maintainer is free to create additional labels to satisfy his project-specific
needs; in the case of Sniffnet, some custom labels were created for instance to
recognize issues related to needed dependencies not being installed (‘missing
dependency’) or associated with the graphical renderer used by the GUI library
(‘renderer’).

Navigating issues of a repository can be done by filtering them with the corresponding
tag, by specifying its creator, or the issue state.
At a given point in time, an issue is in one of the following states:

• Open, if the corresponding problem or feature request is not solved/completed
yet.

• Closed as complete, in case the issue was solved.

• Closed as not planned, in the eventuality that the project maintainer is not
planning to integrate the request into the project.

4 - Project management

 63

Each issue can also be assigned to a person in charge of solving it, and this is
particularly useful in case of projects with more collaborators.

In the scope of the Sniffnet repository, most of the issues are about problems related
to missing or incorrect installation of the required dependencies.
In such circumstances, it’s just a matter of linking the users to the respective section
of the documentation where it’s explained in detail how to set them up.
To make it even easier for users to solve this kind of issues, I created a Missing
Dependencies section below the Troubleshooting part of the README, where a link to
the issues tagged with the respective label has been included. [44]
Since each operating system has its own peculiarities and required dependencies, I
thought it was a good idea to add labels categorizing issues by the major OSs
(‘Windows’, ‘macOS’, ‘Linux’), so that users can immediately find problems related to
their specific execution environment.

Another frequently raised problem is about incompatibilities with the wgpu graphical
renderer adopted by Iced, the GUI library used for Sniffnet development.
Rendering issues usually cause widgets to display in a way they aren’t supposed to, the
whole screen blinking, and in the worst case they can make the application crash on
start.
Iced set wgpu as the default graphical renderer because it’s in general the most
compatible one, but it also provides the glow renderer as an alternative.
After some time struggling with this category of issues, a secondary branch for Sniffnet
(glow-renderer) was set up and it turned out that building the app using the alternative
renderer was able to solve almost every issue related to graphical adapter
incompatibilities.

Some GitHub issues were also opened directly by me to gather feedback and help.

An issue [45] that received particular attention was about the request for Sniffnet
translations: I wanted the app to be available in more languages, but at the same time
I didn’t like the idea to translate it with automated tools that could potentially make
the translation less reliable.
For this reason, an issue was opened asking native speakers to translate the graphical
user interface; thanks to that request, today the application features 17 different
languages, including German, French, Spanish, and Chinese.

Examples of other issues used to collect feedback are about tips for aesthetic
improvements [36] and suggestions for new keyboard shortcuts [35] to include.

4 - Project management

 64

4.2.2. Pull requests

Pull requests (PRs) make it possible for everyone to apport modifications to a project
codebase. [46]
Once a PR is opened, it’s possible to discuss and review its modifications, as well as
add follow-up commits before merging the changes in the base branch of the
repository.

Pull requests can be labeled and filtered in the same way, with the same set of tags,
as issues do.
PRs not only allow updates to the code itself but can also involve any other file existing
in the repository, including documentation text and configuration assets.

Similarly to issues, also PRs have different possible states:

• Open, if the pull request is ready to be evaluated or is undergoing a discussion.

• Draft, when the apported changes are not yet ready for a deeper evaluation.

• Closed, in case the project maintainers don’t want to integrate the
modifications into their software for any reason.

• Merged, if after being evaluated by the repository owners, the PR changes are
included in the project.

Pull requests are particularly helpful for project maintainers because they clearly show
every modified file, permitting owners to add comments to each of the changed lines.
The process of a PR review can be more or less articulated, depending on the entity of
the change.
The modified files can be singularly marked as viewed, so that a review can proceed in
different steps, and it can be terminated in more than one working session.
After all the modifications have been considered, the repository maintainer can
approve and merge the PR or request further changes before it can be reviewed again.
This process guarantees that the code quality of the submitted PRs is high enough to
be incorporated without introducing bugs or vulnerabilities.

Since I’m the only long-term contributor behind Sniffnet evolution, most of Sniffnet
PRs are generated by automated tools, described in the next section, to maintain the
repository in a healthy state.
Another considerable fraction of the submitted pull requests came from the
introduction of new translations for the applications. [47]
A particular mention goes to a PR by a guy who gave me substantial help in automating
the app packaging strategy: the relative changes were merged after being long
discussed with a review made of more than 50 messages. [48]

4 - Project management

 65

Issues and pull requests, together with the software source code, are the core of a
GitHub repository.
Issues and PRs aren’t two separate entities: a PR can specify a list of issues that could
be solved by its merge, while an issue can refer to PRs to indicate that a particular bug
or feature request is being considered.
A maintainer can also provide one or more templates to facilitate the creation of issues
and PRs by the users, and each issue/PR is uniquely identified, inside a given
repository, by a sequence number that can be used to immediately refer to it.

Finally, GitHub provides a way to group issues and PRs in the so-called milestones. [49]
Milestones are used to track the progress of a given set of tasks inside a repository,
and each milestone usually refers to a future release of the software.
In this way, it’s possible to easily keep an eye on the remaining work to do before
publishing a new version of the application.

4.2.3. Automation with GitHub bots

Some of the tasks to manage a repository are repetitive jobs that can be automated.

One of such jobs is keeping dependencies up to date: each software project depends
on some libraries, which in their turn depend on other ones, each coming with a
specific version.
Maintained libraries will be updated sooner or later, introducing support for new
features, or simply fixing bugs.
It’s of key importance to make sure that a project’s dependencies are not outdated,
since software that is not renewed for a long time is more susceptible to faults and
security vulnerabilities.

Performing a check on the version of every dependency by hand is not efficient at all
and is very likely to be permanently postponed.
GitHub offers therefore the possibility to configure Dependabot [50], which as the
name suggests is a bot to manage dependencies.
Dependabot will automatically generate a pull request when it detects an outdated
dependency and can also be enabled to produce security alerts in case a vulnerability
has been identified in one of the project dependencies.

4 - Project management

 66

In order to receive support from Dependabot, a file named dependabot.yml must be
created inside the .github folder under the project root.

Maintain dependencies for GitHub Actions

- package-ecosystem: "github-actions"

 directory: "/"

 schedule:

 interval: "daily"

Maintain dependencies for cargo

- package-ecosystem: cargo

 directory: "/"

 schedule:

 interval: "daily"

 target-branch: "main"
Code snippet 4.1 - Content of the dependabot.yml file

Dependabot can be configured to check for dependencies updates with a custom
frequency, targeting a specified branch of the repository, and including dependencies
from different ecosystems.
In the case of Sniffnet repository, Dependabot is set to open pull requests to update
the version of Rust libraries present in the manifest file and to renew the version of
tools used for GitHub Actions (discussed later).

There is a variety of other bots, available in the form of third-party applications, that
can facilitate additional tasks; two of them, used for the maintenance of Sniffnet
repository, are ImgBot [51] and AllContributors. [52]

• ImgBot is a tool that can be installed from the GitHub marketplace to
automatically open PRs optimizing all the images present in a repository.
This bot can detect if the size of one or more of the available images is
unoptimized and will perform compression in case of need; by default, ImgBot
compresses images using lossless compression, which allows to reduce the
image size while causing no harm to the original quality.

• AllContributors is a project born to recognize every single contributor to a
software project, not only those who directly apport modifications to the
source code (as the GitHub interface does).

Acknowledging every single contributor can be tedious; to simplify this process,
the AllContributors team created a bot that can be tagged from any issue or
pull request to add a user to the list of project contributors.

Every contributor can be associated with one or more contribution types, and
the AllContributors bot will take care of producing a dedicated section in a
predefined file reporting every contributor's profile picture and the associated
kind of effort made to support the project.

4 - Project management

 67

4.2.4. Automation with GitHub Actions

GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform
to automate workflow runs. [53]
An Actions workflow can be configured to activate every time predefined events
happen in a repository, such as a new commit being pushed, or a PR being opened.
Each workflow is made up of one or more jobs that are run sequentially or in parallel
by a virtual machine (runner) hosted on GitHub servers.

The workflows to be executed and the events that trigger them are defined by the
repository owner in the .github/workflows folder, which may contain multiple
workflows, each performing a different set of tasks.
For what concerns Sniffnet repository, two different workflows have been set up:
rust.yml and package.yml.

The first one oversees that the project compiles successfully and that the code follows
the most opinionated guidelines.
More specifically, the rust.yml workflow performs a build of the project, followed by
a check on the code format and patterns used, and finally runs all the available tests.

Particularly interesting are the Cargo subcommands used to control the code format
and patterns:

• cargo fmt [54], which allows formatting Rust code according to stylistic
guidelines and raises warnings in case some pieces of the code aren’t properly
formatted.

• cargo clippy [55], a powerful code linter for Rust to make sure that the project
under evaluation follows the most idiomatic programming patterns.
Clippy can identify common semantic and syntactic imprecisions from a
collection of more than 600 code lints, and it suggests possible improvements.

The rust.yml workflow is triggered at every commit on any of the repository branches
and every opened pull request.

Figure 4.2 - A successful workflow run of the rust.yml GitHub Action

4 - Project management

 68

Each workflow job is executed on three different runner VMs (windows-latest, macos-
latest, and ubuntu-latest) to ensure that parts of the code that compile conditionally
only on a specific operating system don’t contain flaws.

In case one of the workflow steps raises a warning or an error, an alert is shown near
the respective triggering event, and a notification is sent via e-mail to the repository
maintainer.
Putting in place such a process contributes to making the codebase maintenance more
scalable, robust, and secure.

The second workflow of Sniffnet repository, whose configuration is specified in the
package.yml file, takes care of creating application packages for the different existing
architectures and OSs.
More details about the app packaging strategy are described in the next dedicated
section, since I consider it to be a topic that requires a more in-depth explanation.

4 - Project management

 69

4.3. Application packaging

Distributing an application, making it available for other users (packaging), is an
essential part of a software life cycle.
Particularly important in this context is to provide more than just one single method
of distribution, assuring that more people, possibly using different architectures and
operating systems, can benefit from the use of the application.

4.3.1. Cargo crate

In the early stages of the project, Sniffnet was only available to download via Cargo,
the Rust package manager. [56]
Cargo is responsible for compiling a package, making it distributable, and uploading it
to crates.io, the Rust community’s package registry. [57]
Managing and distributing packages, commonly known as crates in the Rust
ecosystem, is extremely straightforward thanks to Cargo: after having obtained an API
token for crates.io, it’s just necessary to add some metadata in the [package] section
of Cargo.toml, the manifest file of the project. [58]
Sniffnet’s relevant metadata used for packaging the crate are reported below.

[package]

name = "sniffnet"

version = "1.2.1"

authors = ["Giuliano Bellini"]

edition = "2021"

description = "Application to comfortably monitor your network

traffic"

readme = "README.md"

repository = "https://github.com/GyulyVGC/sniffnet"

license = "MIT OR Apache-2.0"

keywords = ["filter", "network", "packet", "sniffer",

"gui"]

categories = ["visualization", "gui", "network-programming"

]

include = [

 "src/**/*",

 "LICENSE-*",

 "README.md",

 "CHANGELOG.md",

 "resources/countries_flags/**/*",

 "resources/DB/*",

 "resources/palettes/*",

 "resources/fonts/subset/*",

 "resources/sounds/*"

]
Code snippet 4.2 - Sniffnet's manifest [package] section

4 - Project management

 70

The name field specifies the identifier of the Rust crate and must be unique, while the
version field reports the package version tag.
Other fields include the author of the project, the Rust edition used to compile the
package, a brief description of what the project does, references to the package
README, repository, and license files, as well as the categories assigned to the crate
and the list of files to include when packaging it.

After having included these parameters in the manifest of the project, it’s enough to
launch the cargo publish subcommand to upload it to the package registry.

This approach has the advantage of being fast and painless for the developer, but it
also carries a huge limitation: the generated crate can only be compiled and installed
by users who already have Rust available on their machine.
To overcome this restriction, I decided to package Sniffnet with additional and more
widespread mechanisms.

In order to package software for a given operating system, it’s necessary to build a
version of the binary compatible with the specific OS: an application binary built on
macOS is not compatible with Windows, for instance.
To solve this problem, I initially built manually a different version of the application for
each of the main operating systems, using Virtual Machines to generate compatible
binaries.
However, I later realized that packaging the app manually at every release was
cumbersome and time-consuming: for this reason, I decided to set up an automated
GitHub workflow to do it.
The workflow to package the application, differently from the workflow to check code
correctness, doesn’t activate at every commit but is set up to be triggered on demand,
and this typically happens when a new version of the app is released.

4.3.2. Windows Installer

A Windows Installer is the main component used for the installation, maintenance,
and removal of software on Windows operating systems.
Providing such an installation method, allows Windows users to easily download the
application even if they have not installed Rust on their machine.

Luckily, there exists the cargo wix subcommand, whose goal is to help Rust developers
create Windows Installers for their projects. [59]

4 - Project management

 71

To correctly work, the cargo wix subcommand needs the WiX toolset [60], which is
installed on the GitHub action runner with the following instruction:

- name: Install dependencies

 shell: powershell

 run: |

 Write-Host "::group::WiX Toolset"

 Invoke-WebRequest `

 -Uri

"https://github.com/wixtoolset/wix3/releases/download/wix3112rtm/wix311-

binaries.zip" `

 -OutFile "$env:TEMP\wix-binaries.zip" -Verbose

 Expand-Archive -LiteralPath "$env:TEMP\wix-binaries.zip" -

DestinationPath "$env:TEMP\wix" -Verbose

 Set-Item -Path env:Path -Value "$env:Path;$env:TEMP\wix"

 Write-Host "::endgroup::"
Code snippet 4.3 - Command to install the WiX toolset on the GitHub action runner

By default, cargo wix generates a very basic version of the installer; to produce a more
complex and customized installer, it’s necessary to write an XML formatted document,
characterized by the .wxs extension, containing instructions to set the application icon,
create shortcuts to the executable, specify the license file, and to perform other useful
custom actions.

One of the main problems that occurred during this process is that to correctly
function on Windows, Sniffnet needs Npcap [61] as an external dependency, but it’s
not possible to download it through a custom action of the installer because the free
version of the library doesn’t allow its installation in silent mode (that is the ability
to install Npcap from the command line).
The reasons behind this choice by the Npcap team were clearly explained in a Sniffnet
GitHub issue by one of the library maintainers:
“Npcap is a commercial project developed by full-time paid programmers.
We fund this work by selling two types of license: the Npcap OEM redistribution license
[62] (for redistributing Npcap within other software or hardware products) and the
internal-use license (for using Npcap within an organization beyond the limits of the
free version).
These license sales are critical to pay our expenses so Npcap remains viable and does
not meet Winpcap's fate.
While we wish we could allow every person and organization to use and redistribute
unlimited copies of Npcap, we would go out of business and it would end up abandoned
like WinPcap was.”

Considering that Npcap paid licenses are quite expensive, I ended up including in the
final page of the installer a warning for the users to manually install this required
dependency, together with a checkbox to optionally open the Npcap download page.

4 - Project management

 72

4.3.3. Apple Disk Image

Apple Disk Image is a disk image format commonly used to mount volumes in the
macOS operating system.
A disk image is a compressed copy of the contents of a folder and the process of
mounting is what allows an OS to make files and directories on a storage device
available for users through the file system.

Apple disk images can be useful to mount different kinds of content and usually have
the .dmg file extension.
A disk image can also be used to install applications and in such cases, it contains a
.app file.
A .app file is recognized by macOS as a package bundle, which is a special directory
containing an executable and other useful resource the binary may need.
More specifically, the bundle requires an Info.plist (information property list), which
is a structured file containing configuration information about the app, and the
executable itself, that includes the application entry point.
Beyond these two required artifacts, the package may contain other support files: this
is the case of Sniffnet’s bundle, whose content is reported in the following:

Sniffnet.app
└── Contents/
 ├── Info.plist
 ├── MacOS/
 │ ├── sniffnet
 │ └── wrapper.sh
 └── Resources/
 └── sniffnet.icns

The main executable binary consists of the sniffnet file, but in the case of this package
the real entry point of the bundle is the file wrapper.sh.
In fact, Sniffnet needs administrator privileges to monitor network adapters on
macOS and therefore it’s necessary to launch the app as a superuser, which wouldn’t
be possible if the sniffnet file was called directly.
For this reason, it’s been necessary to create a thin wrapper able to spawn a system
window prompting for a password: if the password inserted by the user corresponds
to that of the admin account, the application will be started with elevated privileges.

#!/usr/bin/env zsh

osascript -e "do shell script \"/*/Sniffnet.app/Contents/MacOS/sniffnet

>/dev/null 2>&1 &\" with administrator privileges"
Code snippet 4.4 - Content of wrapper.sh, used to launch Sniffnet with admin privileges on macOS.

4 - Project management

 73

The Info.plist file is where it’s specified that the bundle entry point is wrapper.sh and
that the icon of the package corresponds to the file located in the Resources folder.
The information property list also specifies the app short version string, directly taken
from the version field of the project’s manifest, and the long version string, assigned
in this case to the hash of the GitHub commit against which the workflow runner is
triggered.

Once the application bundle is built, it must be included inside the disk image for
distribution.
This last step has been achieved with the help of create-dmg [63], a shell script to build
good-looking disk images for macOS which can receive several parameters:

create-dmg \

 --volname "Sniffnet Installer" \

 --background "resources/packaging/macos/graphics/dmg_bg.png" \

 --window-pos 200 120 \

 --window-size 900 450 \

 --icon-size 100 \

 --app-drop-link 620 240 \

 --icon "Sniffnet.app" 300 240 \

 --hide-extension "Sniffnet.app" \

 "artifacts/sniffnet-${target%%-*}.dmg" \

 "target/${target}/release/bundle/osx/"
Code snippet 4.5 - Command to set up the disk image for macOS

The resulting .dmg also contains a link to the Applications folder of the target machine,
so that it’s possible for the users to easily drag and drop Sniffnet into the list of their
apps.

Figure 4.3 - Sniffnet disk image for installation on macOS

4 - Project management

 74

4.3.4. Linux packages

For what concerns Linux, the matter of packaging the application is slightly more
complex, due to the variety that characterizes its environment.
Linux is an open-source operating system kernel on the top of which several different
distributions are built; a Linux distribution is typically made of a Linux kernel, GNU
tools and libraries, a window system, a window manager, and a desktop environment.
[64]

The different distributions, commonly referred to as distros, can be divided into two
main classes:

• Red Hat-based: including Linux Fedora, which use the .rpm file format.

• Debian-based: including Ubuntu, Mint, BackBox, and Kali, which use the .deb
package format.

With the purpose to cover the main distributions of these two classes, I included the
creation of the .deb and .rpm packages in the automated GitHub workflow.
Two Rust crates, respectively cargo-deb [65] and cargo-generate-rpm [66], have been
used in the workflow to build the packages.
Both utilities permit specifying various parameters in the project manifest to enrich
the generated package, including the application category and description, its
dependencies, the license file, the icons to use, and other assets.

The first versions of these packages didn’t allow to launch the app directly but instead
opened a terminal asking the user to insert a password.
This was required for reasons like macOS: on Linux, the app needs administrator
privileges as well to inspect a network adapter.
However, the most recent packages are built in a way that makes it possible to launch
Sniffnet without needing the sudo command.
To permit this behavior, a short post-installation script has been introduced; the task
of the script consists in modifying the executable capabilities to allow it to perform
various network-related operations.

#!/bin/sh

set -e

setcap cap_net_raw,cap_net_admin=eip /usr/bin/sniffnet
Code snippet 4.6 - Post-installation script used to set network inspection capabilities to the Linux executable.

Many other classes of distributions do exist, comprising Pacman-based that include
Arch Linux.
I didn’t personally package Sniffnet for the Pacman package manager, but it has been
kindly done by a folk who takes care of maintaining packages for Arch Linux.

 75

5. Sniffnet’s adoption by the
community

I’ve already mentioned how Sniffnet was originally born as an academic project.
After the project delivery and discussion, I thought it was a good idea to share the
code with the community to get feedback.
Since the first public announcement, Sniffnet unexpectedly raised a lot of interest and
this motivated me to keep developing it in my spare time, until it was elected for the
GitHub Accelerator Program.

This chapter contains a discussion about the stunning growth of Sniffnet, which led the
project to reach more than 10 thousand stars on GitHub and 50 thousand cumulative
downloads. (*)

(*) Data are updated to the month of July 2023

5 - Sniffnet’s adoption by the community

 76

5.1. The project publication

I wanted as many people as possible to see the project, in order to get multiple points
of view about my work.

Gaining some early adopters would have made it possible to notice the presence of
eventual bugs, and to get opinions about new features to include.

5.1.1. The first announcement

With this idea in mind, I decided to share Sniffnet with the Rust community of Reddit,
one of the most frequented resources among Rust programmers.
Reddit [67] is a network of communities where people can follow their interests and
it’s based on content rating, that is the practice of letting users vote positively or
negatively each post, which will become more or less popular as a consequence.

Two reasons brought me to choose Reddit to spread the project:

• Sharing Sniffnet with a specific community mostly made of Rust programmers
was the best way for me to learn from more experienced people.

• Reddit’s rating system would’ve automatically told me if people were
interested in what I was doing.

The first public announcement ever [68] (made on the 11TH of September 2022) got a
surprisingly high amount of appreciation, receiving a hundred upvotes on Reddit and
several thousand views, after being featured on the community front page.
The announcement was about the 0.4.0 release of Sniffnet, which at that point was in
the form of a CLI.

Figure 5.1 - The very first public announcement of Sniffnet [68]

The program was liked despite its features were still very limited and simple, and this
made me realize it had a high potential that could’ve been better exploited with the
addition of further functionalities.

5 - Sniffnet’s adoption by the community

 77

5.1.2. The announcement of the graphical user interface

Motivated by the success of the first shared version of the program, I started
developing a GUI for the application, which took about a month of development
before being finally published on the 21st of November, tagged as version 1.0.0.

I was so thrilled to share the first stable version of the app that I posted the
announcement not only on the Rust subreddit, but also in other communities focused
around open-source, programming, and software in general.

The appreciation for the new release was even bigger than the support received by
the previous version.
The day after the announcement, a popular German IT website (heise.de) published
an article about Sniffnet [69], putting it under the spotlight of even more readers.

Figure 5.2 - Cover of the article about Sniffnet published on heise.de, a popular German journal about

technology [69]

In that occasion, Sniffnet’s repository was visited by an incredible quantity of
developers, to the point of being featured twice on the overall GitHub trending page,
a daily updated space to host 25 of the most exciting open-source projects on the
platform.
The GitHub trending page [70] is consulted every day by thousands of programmers,
and being featured is a unique opportunity for a project to be known by the world.

Shortly after, Sniffnet has also been the subject of a tweet by GitHub itself [71] and of
several additional articles, that are listed in Appendix B of this thesis.

5 - Sniffnet’s adoption by the community

 78

5.2. Evaluation of the project’s adoption

The popularity or adoption of software is intended as the number of people that use,
have contributed to, or are interested in a specific application or program.

There exist multiple ways to evaluate the level of adoption of an open-source project,
some of which are discussed in the following paragraphs.

5.2.1. Why is the measure of popularity relevant?

Different motivations justify the importance of doing such an evaluation before
deciding to make use of an application:

• Software that is widely used has more chances of being constantly maintained
over time.
Constant maintenance guarantees a faster bug-fixing process, as well as a more
frequent introduction of new features and prompt support to the users.

• A program used by nobody has no assurance of being free of malware or other
security vulnerabilities that could lead to data corruption or the disclosure of
sensible information.
Conversely, a popular application is unlikely to contain code intentionally
written to harm the users, even if it’s not possible to exclude the presence of
unintentional vulnerabilities that could also be due to one of the software
dependencies.

• Last but not least, one must consider that given a specific need or field of use
there are many applications available, each with its peculiarities but all
performing similar tasks.
If a software is popular (say for example Wireshark) in its belonging context (say
for example network monitoring), this means that a considerable number of
people has chosen it over its competitors.
If an application has been selected instead of another one to carry a task, in
turn this is a signal that the app has unique features or does something better
than the competitors.

Despite the level of adoption being a good indicator of the health of a codebase, these
motivations don’t want to point out that a popular project is always preferable with
respect to a less famous one, or that the goodness of an application is strictly
proportional to its popularity.

Another factor that must be considered to have a more comprehensive view is for
instance the project’s maturity, since it’s obvious how younger applications have less
chances of being as popular as a more dated one.

5 - Sniffnet’s adoption by the community

 79

5.2.2. GitHub Stars

Starring a GitHub repository is a way to easily find it again later in a personal collection
thought to host the favorite projects of a user.
Leaving a star to a project also shows appreciation and support to the repository
maintainers for the work they are doing.

When starring a repository, a user becomes a stargazer of the project and can decide
to save it in a dedicated list related to a specific topic, to organize different liked
projects by their nature or functionalities.

The only requirement to star a repository is to have an active GitHub account and this
means that stargazers aren’t necessary users of the application/library.
A GitHub star can in fact assume different meanings: the star could have been given
by an active user of the project, by someone who plans to use it in the future, or maybe
by a person who finds the idea cool but will end up never trying it directly.
Therefore, a star can be interpreted as a signal analogous to “likes” in the context of
social media, which is nothing less and nothing more than a form of positive feedback
by a user of the platform.

Despite being “just” an indicator that someone cared enough to click on a button,
GitHub stars are by far the most influential metric to immediately create a good first
impression about a repository.
Rapidly looking at the number of stars is the first thing that most of the visitors of a
repository do, including myself.
A research study [72] dated back to 2018 surveyed more than 700 developers and
confirmed the relevance of this metric: “We report that three out of four developers
consider the number of stars before using or contributing to a GitHub project”.

The quantity of GitHub stars is influential to the point of determining not only the
possible adoption of software, but also the willingness of contributing to it and its
overall public image.

For these reasons, while repositories with lots of stars are appraised positively,
projects with few stars are extremely less likely to be considered.
Every new project starts of course with a star count of zero and this makes it a
challenge for it to be noticed at first.
The vast majority of GitHub repositories don’t break the wall which stops them from
gaining a sufficient amount of initial traction: in this sense, it can be asserted that stars
create a vicious circle for which popular projects become even more renowned, while
unpopular repositories are meant to remain so.

5 - Sniffnet’s adoption by the community

 80

It was a huge surprise and pleasure for me to see that, following the first publication
of the project, Sniffnet was appreciated by several early adopters and gained the first
hundred stars.
This allowed the application to obtain initial credibility before the most important
releases happened shortly after, which definitively made the project explode in
popularity.

Figure 5.3 - The number of GitHub stars of Sniffnet from August 2022 to July 2023

The chart above, realized with the help of Star History [73], reports the growth of
Sniffnet GitHub stars over time (updated to the month of July 2023).
It can be observed how there are certain spikes in the chart, corresponding to citations
of the project in articles from blogs and websites (the list of such mentions is available
in Appendix B).
Particularly notable was the rise in popularity after the project was featured, in two
different occasions, on the front page of Hacker News [74], a social news ICT website
visited by millions of people every day.

One additional chart,
displayed on the right,
compares the star growth
of the repository with that
of other popular network
analyzers, underlining
even more the exceptional
escalation of Sniffnet on
GitHub.

 Figure 5.4 - GitHub stars over time of Sniffnet compared to other popular

network monitoring tools

5 - Sniffnet’s adoption by the community

 81

5.2.3. Downloads

While, as previously discussed, GitHub stars can have different nuances, the number
of downloads of a library or an app is a much more direct indication about the actual
quantity of users of the software.

In section 4.3 — Application packaging — it’s been talked over the multiple channels
of distributions of Sniffnet and some of these channels allow for an easy tracking of
the corresponding download number.

That’s the case of crates.io for example, whose interface shows the daily downloads
over the past 90 days as well as the total number of installations of a given crate.
Sniffnet’s source binary, published on crates.io, received 7 thousand downloads in the
11-months period after its first release.
For a user to download a binary in the form of a crate, it’s necessary to have a working
installation of Rust on the target machine: this tends to limit the reachable audience
and is the reason why more popular installation methods were considered.

One of the said methods is GitHub releases, which permits the upload of one or more
artifacts hand in hand with the publication of the respective code version.
Every time a new release is made public, I take care of including multiple packages,
each related to a different platform or architecture: packages for Windows, macOS,
Red-Hat based Linux, and Debian based Linux are currently available, both for 32-bit
and 64-bit architectures.
Each uploaded artifact can be downloaded by directly clicking on the highlighted link
in the release page and is accessible from a URL whose structure is known a priori, so
that it can be easily shared and linked to from different places.

GitHub provides a long and comprehensive list of APIs to access data of various kinds,
including detailed information about all the releases of a repository, which can be
consulted altogether or singularly by providing a specific release tag.
In particular, the endpoint to get details about all the releases of a repository is
https://api.github.com/repos/OWNER/REPO/releases, where OWNER and REPO must
be replaced respectively with the name of the project owner and of the repository.
The returned value is in the form of a complex JSON object composed of a numerous
set of fields specifying the releases’ URLs, the dates of creation, information about the
authors, the name and body of each release, and many more parameters.

Among the different attributes, it’s featured the download count for each of the
releases’ artifacts, along with their names.

5 - Sniffnet’s adoption by the community

 82

To clean up the output obtained from the endpoint, I wrote a simple bash script that
makes it possible to keep only the information needed to determine the number of
downloads divided by release and by artifact.

Code snippet 5.1 - Bash script to retrieve the number of downloads related to artifacts uploaded on GitHub

releases

The script simply filters the original JSON object keeping only the lines that start with
specific strings, and the result looks like the following:

After having played with additional scripts, I also managed to obtain:

• The total number of downloads considering all the artifacts and all the releases.

Code snippet 5.2 - Script to retrieve the cumulative download number from GitHub releases

• The total number of downloads related to artifacts with a specific file extension.

Code snippet 5.3 - Script to count the downloads of artifacts with a given extension (.dmg in the example),

useful to verify the level of adoption among users of the different Oss

5 - Sniffnet’s adoption by the community

 83

The returned values, updated to the end of July 2023, confirm that GitHub releases
are the most common channel for Sniffnet users to install the app, with more than 32
thousand downloads.
The partition of downloads based on the different OSs is reported in the pie chart
below.

Figure 5.5 - Pie chart reporting the download count of Sniffnet for the different OSs (from GitHub releases)

The lower prevalence of macOS can be explained by considering that Sniffnet is also
available for installation from Homebrew [75], a popular package manager for macOS
from which the application was installed more than 9 thousand times.

Considering the data available from crates.io, GitHub releases, and Homebrew, it turns
out that Sniffnet was installed almost 50 thousand times in a period of 11 months,
with an average of 150 downloads per day.

The application can also be installed from other distribution channels which don’t
seem to have a feature to track the exact number of downloads, including the official
package managers for FreeBSD, NetBSD, and Arch Linux.

Overall speaking, these numbers give an esteem about the amount of users of the
software, but don’t say anything about the frequency of use of the app.
Furthermore, it must be considered that the real number of distinct users is for sure
lower, since the previously cited count is cumulative and refers to all the different
versions of the application.

It’s also interesting to consider that the growth in terms of GitHub stars is not a well-
defined function of the size of the actual audience: to make an example, Sniffnet has
many more stars than Wireshark, but Wireshark has millions of users, a number that
probably won’t be ever reached by Sniffnet.

18622
57%

8121
25%

5711
18%

Downloads from GH releases, divided by operating system
(Updated to the month of July 2023)

Windows Linux macOS

5 - Sniffnet’s adoption by the community

 84

5.3. Sniffnet’s official website

At the end of May 2023, I started thinking about setting up an official website for the
project, to reach an even broader public.

The motivations for this choice are multiple:

• The documentation on GitHub is limited to being displayed as a Markdown
document, without allowing more articulated layouts.

• The repository README on GitHub is displayed after the list of files and
directories of the project, and as the size of this list grows it’s more and more
difficult for a visitor to immediately notice the README.

• A website is generally more user-friendly than a GitHub repository and has
more chances of being seen by non-programmers.

• Having an official website contributes to building a stronger and more trusted
brand image for the application.

I finally decided to publish the website after the recommendations received during the
GitHub Accelerator Program [76] — discussed in the next chapter — in which experts
reminded us how having a website is essential to highlight the project’s qualities and
distinctive functionalities.

GitHub provides free access to GitHub Pages [77], a static site hosting service that
builds HTML, CSS, and JavaScript files from a repository and publishes the resulting
website.
Pages dedicates, to each GitHub account, a special repository for this purpose, whose
name must be in the form username.github.io, where username is the GitHub account
handle.
By default, the generated website is available at https://username.github.io, and
additional steps are required to use a custom domain name for the site:

1. A proper name must be first registered at a web hosting company; in the
case of my project, I bought the domain from Aruba [78], an Italian company
managing domain registration businesses.

2. A CNAME file must be added to the root of the repository, in which it’s
reported the name of the chosen domain.

3. A CNAME DNS record pointing from the custom domain to the standard one
must be set by navigating to the website’s DNS provider.

Having a website without a dedicated domain name is like making a paint without
putting a signature on it: an adequate name makes the site more credible,
recognizable, and helps improve SEO, which is the set of practices guaranteeing a high
exposure of the website in the scope of search engines.
After having considered some alternatives and having discarded some options
because already taken, sniffnet.net was chosen as the official domain of the project.

5 - Sniffnet’s adoption by the community

 85

Despite having set up the website late, about 9 months after the first publication of
the app, a non-negligible amount of traffic was registered, with 13 thousand unique
visitors in the first 60 days of activity.

Since the website publication, a notable rise in the download count has been observed
and that’s probably because making the installation links clearly visible helps reach
more users, as opposed to simply having the links in the release pages of the
repository.

Furthermore, enabling a web analytics service it’s possible to get statistics and insights
about the traffic to the domain.
This is useful for instance to discover how users learned about the application, which
are the most visited pages inside the domain, what’s the average time per visit, and
other details potentially interesting from a marketing perspective.
I chose Google Analytics [79] for this purpose because it’s simple, fast to configure,
and free of charge.

Among the most useful information offered by Google Analytics, there are the traffic
sources, the country of the visitors, and attributes about the device used to connect
to the domain.

The metric about the visitors’ mother
tongue, for example, has been helpful
to verify that Sniffnet was translated
into the most common languages.
The table on the right features the top
10 languages by number of visitors,
each of whom is today available in the
application.

Figure 5.6 - Table featuring the top 10 most used
languages by the visitors of the domain (data gathered by

Google Analytics)

 87

6. Participation in the GitHub
Accelerator Program

The GitHub Accelerator [76] is an initiative to help software developers sustainably
work on their projects full-time.
More specifically, it consists of a 10-week program in which 20 open-source teams
from all around the world receive an initial sponsorship to work on their personal
projects, paired with guidance and workshops from open-source leaders.

As Sniffnet was selected to participate in the first cohort of this program, from middle
April to late June 2023, I had the incredible opportunity of getting precious insights
and mentorships about working in the open-source ecosystem.

This chapter includes the most interesting takeaways about the Accelerator program
itself.

6 - Participation in the GitHub Accelerator Program

 88

6.1. Call for applications and selection process

The Accelerator program was first announced in November 2022 during GitHub
Universe, the annual event dedicated to developers in which new features and
initiatives are made public. [80]

Any maintainer or contributor of a GitHub repository was called to participate in the
selection process for the Accelerator before the application deadline set on December
31st, with the possibility to apply also as a team composed of a maximum of 3 people.
The only requirements to be met were not to be employed by GitHub itself and to be
located in one of the 68 countries supported by GitHub Sponsors.

The application form included general questions about the repository under
evaluation and required all the applicants to submit a one-minute video presenting
themselves and their projects.

More than a thousand total applications were submitted and thoroughly evaluated by
a selection committee composed of some of the most influential open-source
representatives:

• Daniel Stenberg, founder and lead developer of cURL, a popular command line
tool for transferring data with URLs

• Duan O’Brien, director of open-source at Indeed.com

• Ezra Olubi, cofounder and CTO at Paystack, a tech company with the aim of
solving payments problems for ambitious businesses in Africa

• Mike Perham, author and maintainer of Sidekiq, a background job framework
for Ruby

• Dawn Foster, director of the open-source community strategy at VMware

• Erica Brescia, an investor at Redpoint Ventures and board member at the Linux
Foundation

• Kailash Nadh, CTO at Zerodha, India’s largest stockbroker

• Viral Shah, cofounder and CEO at JuliaHub, the platform to accelerate the
development and deployment of programs written in the Julia programming
language

I got to know about the Accelerator through a blog post by GitHub summarizing the
most relevant news from GitHub Universe, and I decided to apply with Sniffnet on the
29th of December, just two days before the final deadline.
To be completely honest, I discovered about the Accelerator program some weeks
before, but I was unsure to apply because I believed that Sniffnet had few chances of
being selected, since it was still in its very early stages of development.

6 - Participation in the GitHub Accelerator Program

 89

What made me finally apply is the fact that GitHub published on its Twitter account a
post [71] about Sniffnet a few days before Christmas:

Figure 6.1 - Tweet about Sniffnet by GitHub itself (2.5 million followers on Twitter). [71]

6.2. Announcement of the selected applicants

The Accelerator website reported that a public announcement about the results of the
application process would have taken place on February 15th, 2023.
Due to some internal delays, they ended up shifting the date more than once, and I
started forgetting about my application.
I didn’t even have so high expectations about it, since I know that there are a bunch of
valuable open-source projects that probably deserved to be elected far more than
Sniffnet.

On March 22nd, right before going to bed for the night, I received an unexpected email
from GitHub and the message object was pretty clear: “Congrats! You have been
selected for the GitHub Accelerator”.

6 - Participation in the GitHub Accelerator Program

 90

Figure 6.2 - Email from GitHub announcing Sniffnet’s election for the first GitHub Accelerator cohort.

At first, I thought it was a joke.
After realizing it was real, I was both amazed and incredulous at the same time.

They recommended us to hold on sharing the news until the formal announcement
on their blog, which took place on April 12th:

“Today, we’re thrilled to announce GitHub Accelerator’s first cohort! The 2023 cohort has
20 projects, with 32 participants from all over the world, including Argentina, Australia,
Colombia, Denmark, France, Germany, India, Italy, Luxembourg, Pakistan, South Africa,
Spain, Sweden, Turkey, the UK, and the US.” [81]

I didn’t delay in sharing my excitement with the Rust community on Reddit, the place
where I first publicly posted about Sniffnet some months before.

Figure 6.3 - My public announcement about Sniffnet’s selection for the Accelerator program, shared with the

Rust community of Reddit. [82]

6 - Participation in the GitHub Accelerator Program

 91

The post [82] received a huge amount of support and appreciation and was linked to
a discussion [83] on Sniffnet’s GitHub repository in which I expressed my enthusiasm
for having such a unique opportunity:

“Sniffnet has grown a lot during the past months, and it’s been a pleasure for me to
spend most of my spare time on its development.
I'm not gonna lie: passing hours and hours on this project has become my favorite
hobby lately.
I can’t deny that sometimes it’s been hard to balance Sniffnet’s development with the
daily University routine, made of never-ending lectures, group projects, deliveries, and
home study.
I often ended up coding late (I mean very late) at night or skipping meals/lectures, since
24 hours a day never seemed enough.
Seeing Sniffnet getting traction and evolving, improving day after day, motivated me
to keep pushing despite the obstacles along the way.
Long story short: having more time to dedicate to open-source was one of my primary
wishes (and needs).
Today, the 12th of April 2023, it’s such a joy for me to announce that Sniffnet has been
selected for the GitHub Accelerator Program.
[…]
This means that during the next few months I’ll be able to work on Sniffnet full-time,
with the aspiration to bring it to the next level.
I’ve lots of ideas for new features and improvements and I’m looking forward to
implementing them all.
Turning such a huge passion into a full-time job is the best thing I could’ve ever asked
for.
I truly wish that this journey will continue even after the 10 weeks of the program, with
the hope of working on open-source for my entire career.
I believe that more and more programmers deserve to have opportunities like this one,
and I hope the Accelerator will pave the way to a brighter perspective for the open-
source community.
I can’t wait to see what the future has in store, and I feel blessed to have such an
amazing occasion.
I’ll do my best to get the most out of this experience.”

6 - Participation in the GitHub Accelerator Program

 92

6.3. The GitHub Accelerator Program

During the 10 weeks of the program, we had the chance of getting mentored by some
of the most relevant open-source exponents; this section aims at summarizing the
main outcomes of their talks and what it means for them to work
on what they love doing.

The first lectures of the program were given by Abby Cabunoc
Mayes, one of the organizers of the Accelerator and founder of
Mozilla Open Leaders, an initiative to mentor open-source
teams on how to lead their projects.

6.3.1. Open practices (introduction to the program by Abby Cabunoc Mayes)

Open practices can be defined as the methods through which an organization
programmatically collaborates with external groups to share knowledge, work, and
influence, with the aim of obtaining a specific business goal.
Open-source software largely depends on this kind of practices and can obtain
concrete benefits from their use. [84]

In the following, it’s reported a list of the most common open practices and their
related advantages.

• Gifting: consists of no-strings-attached giving of products, which in simpler
words means to give away a service for free without carrying special conditions
or restrictions for the users.
This practice usually comes along with more permissive licenses and has the
advantage of incentivizing adoption and driving a standard.
Gifting is usually adopted by software companies where development and
distribution costs are low; such companies will in the end be able to make a
profit from the consequent installed base.

• Soliciting ideas: to develop a product tailored to the people’s needs, this open
practice uses its own community to generate ideas and solutions.
In this case, end users are directly involved in the development process playing
an active role.

• Learning through use: by carefully examining usage patterns, companies can
provide added value improving their products.
In the era of Big Data and constant connectivity, goods built on such a practice
are more common and valuable than ever.

• Creating together: consists in sharing with the community the tasks needed to
achieve a set of pre-established goals.

Figure 6.4 - Abby Cabunoc Mayes

6 - Participation in the GitHub Accelerator Program

 93

Inviting others to contribute permits to have access to more potential talent
and can lower operating costs in terms of time and effort put in by single
individuals.

• Networking common interests: different teams can coordinate to ensure that
their activities achieve more towards a shared mission, while working each one
on their own project.
This practice enables separate groups to help each other, creating a more solid
and scalable ecosystem and allowing their products improvement by learning
from partners.

This list of open practices is not exhaustive and open-source projects usually don’t rely
just on a single practice but are rather based on a mix of them.
The common ground of all these practices resides in the fact that they’re able to create
some added value: it can be in the form of an overall better product, increased market
share, or lowered operating cost.

6.3.2. Licensing (introduction to the program by Abby Cabunoc Mayes)

For what concerns open-source code, the possibility to put in place the
aforementioned practices is natural and immediate thanks to the definition of open-
source software itself:
“Open-source software is software that can be freely used, modified, and shared (in
both modified and unmodified form) by anyone.”

However, when making a creative work, including code, that work is under exclusive
copyright by default.
Consequently, if not stated otherwise, nobody would be able to use, edit and share
the work without being at risk of lawsuits.
What makes it possible for others to use and redistribute open-source code are
licenses, namely documents listing what it’s permitted to do with the code they refer
to. [85]
Open-source licenses are today standardized and easy to use: it’s in fact sufficient to
copy-paste an existing license text in the root folder of the project to be licensed.
There exist various kinds of open licenses, each one granting different permissions.

I decided to release Sniffnet under both MIT and Apache 2.0 licenses, since they are
recommended by the Rust API guidelines to have the highest level of compatibility
within the Rust ecosystem.
The MIT license is a very short, easy to understand, and permissive license that allows
anyone to do anything as long as they keep a copy of the license.
The Apache 2.0 license is also permissive, despite having a few more restrictions
regarding trademark use, liability, and warranty.

6 - Participation in the GitHub Accelerator Program

 94

6.3.3. Getting sponsors and fundraising (with Caleb Porzio)

We were given an insightful speech by Caleb Porzio
on how to find sponsors and build trust with our
users.

Caleb is a developer currently working on open-
source full-time.
He has worked on many different projects,
including Livewire, a full-stack framework for
Laravel that makes building dynamic interfaces
simple, and AlpineJS, a minimal framework for
composing JavaScript behavior in your markup.

Before dedicating to open-source, he was working
as a developer at Tighten.
In 2018, he decided to take a break from his job to work on his personal projects.
Since open-source software doesn’t pay the bills, in this initial period he also gave code
mentorships to different clients to earn some money, and this choice costed him a 70%
salary reduction in 2019 with respect to his previous full-time job.

GitHub Sponsors was initially a place where devoted and generous users, who wanted
to support Caleb’s work, could donate.
Regardless of how virtuous these people are, they are few compared to the number
of overall users of the product.
Due to the nature of open-source, individuals already receive the full software for free,
so this approach is severely constrained because it doesn’t add any value to the users’
experience.

He was initially earning about 500$ a month from his GitHub sponsors, but it wasn’t
enough to make a living out of it.
To raise his income, Caleb decided to launch a sponsorware: it consists of a piece of
software exclusively distributed to personal sponsors until a predefined number of
sponsors is hit, and after the threshold is reached the software is made open.

Figure 6.5 - Caleb Porzio, creator of
Livewire.

6 - Participation in the GitHub Accelerator Program

 95

Figure 6.6 - Tweets by Caleb Porzio announcing the sponsorware and its open publication.

This strategy worked extremely well for Caleb, allowing him to increase his yearly
revenue of 11k$ in a few days.
However, sponsorware requires a continuous stream of innovative ideas and the
constant development of new projects, which is something not scalable and affordable
in the long run.

To build a more durable stream of funding, Caleb opted for sponsored screencasts,
consisting of video tutorials about how to use his frameworks, made available to his
sponsors only.
This ended up being the path that definitively changed the game for Caleb: his yearly
revenue went up from 40k$ to 100k$ in about three months, overcoming his previous
wage as a full-time developer at Tighten. [86]
Finally, to differentiate sources and build more robust incomes, he started selling
Livewire sticker packs and published an eBook course about how to personalize Visual
Studio Code to make it more aesthetically pleasing.

Hearing Caleb’s journey has been really inspiring and is a good example of how full-
time open-sourcing is viable under certain circumstances.
Despite such an opportunity isn’t for everyone, Caleb showed us that passion,
versatility, and hard work can make a huge difference.
One thing to especially keep in mind from his experience is that being able to adapt is
crucial to have success in open-source: a key aspect in Caleb’s path is that he’s been
capable of covering several different roles, from programmer, to screencaster, video
editor, writer, public speaker, and financial planner.

6 - Participation in the GitHub Accelerator Program

 96

6.3.4. Sustainable Open Source (with Evan You)

Evan You is an independent open-source software
developer based in Singapore who shared with us his
experience with supporting his open-source
development work full-time.
Evan is the creator of Vue.js, a progressive framework
for building web interfaces, and Vite, a front-end build
tool for JavaScript.

Vue is the project Evan is currently most focused on and it started as a side-project
when he was working at Google in 2013.
He kept dedicating himself to Vue as a side-project even after leaving Google for
Meteor, and it finally became his main occupation in 2016, when he decided to work
on it full-time sustained by his sponsors through Patreon.

As the project grew, Vue got several corporate partnerships that allowed Evan to form
a loosely structured team around the project: the involved people have no hard
responsibilities, varying levels of involvement, and the contributions don’t come just
in the form of code, but also in the form of communication and moderation on the
channels used by Vue community.
During the team-formation phase, it’s important to give capable people autonomy and
ownership: “Trust them and give them the freedom to do what they are good at;
amazing things will happen as a consequence”.

Another key point that Evan highlighted for us to build a sustainable project is to grow
a community of active users around the customer segment which is more interested
in the product, organizing offline meetups and conferences to form stronger bonds
with the members.

Sustainable open-source software has no universal formula since different languages
in different ecosystems involve people at different levels of the stack.
Evan suggested us that to better understand which model could fit each of us, we must
first think what our real motivations behind open-source development are.
To this purpose, he described what he thinks are the two main kinds of people
working on open-source:

• Lifestyle entrepreneurs, a category including people whose priority is working
on something they really love doing and that give great value to the freedom of
determining their own pace and balance. In such a case, one should also keep
in consideration that there could be significant pay cuts with respect to an
ordinary job.

Figure 6.7 - Evan You, creator of Vue.js.

6 - Participation in the GitHub Accelerator Program

 97

• Business minded, category describing people that want to grow a business and
believe that open-source is a strategic choice that will give their product an
edge to succeed (for example by benefiting from the wider reach and lower
adoption barriers, or by using the community to crowdsource feedback to help
iterate on the project faster).

For the first class of people Evan sees sponsorships as a possible funding model, but
he warned us that it’s feasible in the long term only if the project has a horizontal reach
(i.e., it’s widely used in a broad category of scenarios) or if it’s something the users
closely interact with.
Sponsorship sources can either be individuals, even if they typically have very low
conversion rates, or enterprises whose business success largely depends on the open-
source project or that are simply looking for advertisement and exposure.

For the business-minded category, he suggests instead to consider selling a product,
for example in the form of a freemium (i.e., a free software with paid features) or using
open-source as a gateway to a paid product.
Conversely to the previous funding model, selling a product is more likely to be
successful if the project solves a vertical / niche problem.

6 - Participation in the GitHub Accelerator Program

 98

6.3.5. Finding contributors to hire (with Brian Douglas)

Since, as mentioned before, two of the main open advantages are soliciting ideas and
creating together, it’s fundamental for an open-source project to find long-term
contributors outside of the core team of the project itself.

Having more contributors working on your project is obviously a valuable asset for a
number of reasons, but getting hands dirty in an open-source project can have lots of
benefits for the contributors as well.

Diving in the open-source scenario can in fact help new contributors to learn in a
practical way from more advanced developers.
More experienced programmers can also largely benefit from contributing, as it not
only allows them to grow as a developer but can also improve communication
effectiveness in exposing technical issues, possible solutions, or simply giving
feedback.
In addition to learning from others and building self-confidence, contributors love
helping because they feel they are doing something important for the community:
after all, the open-source community heavily depends on its volunteers and
contributing is a way to make sure that this cycle continues indefinitely.

GitHub itself helps project maintainers to signal their interest in embarking new
contributors by providing dedicated issue labels such as “good first issue” or “help
wanted”, but often this is not enough to create a high level of interaction.

Brian Douglas, past leader of Developer Advocacy at
GitHub, gave us a talk about how to find possible
contributors to hire.
Brian is the founder and CEO of Open Sauced [87], a place
to help people get involved in the open-source
community beyond what GitHub provides.

Open Sauced is a platform for people to discover active projects, getting
recommendations based on their interests and followed topics or developers.
It lets contributors create customizable widgets reporting sharable insights about their
work, with the goal of linking them with companies in the open-source industry,
turning meaningful connections into opportunities.

Figure 6.8 - Brian Douglas,
creator of Open Sauced

6 - Participation in the GitHub Accelerator Program

 99

Open Sauced also aims at helping organizations find the most suitable contributor for
their needs based on developer-first metrics, claiming that the typical green-squares
contribution graph shown by GitHub is only a surface-level indicator of how capable a
developer is.

Brian suggested us that to find intermediate and high-level programmers for
contribution, it’s important to showcase the most difficult technical challenges of our
projects, to attract folks who would like to solve harder problems.
He stated that open-source projects that are successful and have lots of contributors
do marketing well: it’s therefore a good habit to focus on documentation beyond
code, including proper changelog, readme, and release notes.

Brian then shared with us how he experimented with different models of funding
contributors for their work, saying he initially started a “bank” of issues, each with his
monetary reward for whoever solved it.
However, he later realized that this approach wasn’t very much scalable and what’s
more valuable are people who contribute consistently over the long term and are paid
on retainer.

6 - Participation in the GitHub Accelerator Program

 100

6.3.6. Working with enterprises (with Dawn Foster and Duan O’Brien)

Dawn Foster is the Director of open-source Community Strategy within VMware’s
Open Source Programs Office, while Duan O’Brien is the Director of open-source for
Indeed, where he built out the FOSS Contributor fund framework to invest in Indeed’s
open-source infrastructure.

Both Dawn and Duan served on the GitHub Accelerator advisory committee and have
decades of wisdom around corporate relationships with open-source projects.

Dawn Foster started the talk introducing Open Source Program Offices (OSPOs).
The OSPO consists, within a company, of the department that makes the decisions
about how the company behaves with respect to open-source: the team behind this
department takes care of funding choices, which projects to contribute to, and makes
sure that the overall relationship between the business and the ecosystem is healthy
and sustainable. [88]
When a company uses open source software projects, they must be aware of licenses,
compliance requirements, confirm that the project has no vulnerabilities, and, in some
circumstances, find qualified community members for future employment processes.
Conversely, in case the company releases and maintains open source projects, OSPOs
are accountable for assuring community growth and involvement, verifying there are
no intellectual property conflicts, ensuring the company retains its footprint and
leadership, and possibly attracting fresh talent to the organization.

Nowadays, OSPOs are quite common among big tech companies, and we have been
warned that in case we’d like to work with a corporate it’s important to understand
how their open-source department is structured and who works in it.

Dawn also shared with us the delicate topic of barriers to corporate use, namely the
circumstances that might prevent companies from working with open-source.
As a director at VMware, Dawn is often in the position of assessing the viability of
open-source projects, asking herself whether incorporating an emerging technology
into a bigger and well-established product is a smart move or not.

Figure 6.10 - Duan O'Brien Figure 6.9 - Dawn Foster

6 - Participation in the GitHub Accelerator Program

 101

With these concerns in mind, she listed what are in general the biggest barriers
between a corporate and the open-source ecosystem:

• Security: determining if a project could have exploitable vulnerabilities is a key
aspect from a company standpoint; for this purpose, it’s useful for a repository
to include a security.md file stating a way of privately reporting eventual
vulnerabilities to the project maintainer.

• Adoption: software with more companies depending on it is more likely to be
considered positively, since it’s a signal that the project will be maintained and
developed in the long term.

• Governance: projects governed by a solo maintainer are at risk of death since
they rely uniquely on one person.
What happens if the owner is not able to maintain the project anymore?
For instance, Denis Pushkarev, creator of the popular core-js library, went to
prison and wasn’t allowed to fly updates to the project different millions of
people depend on. [89]
Having a larger pool of contributors, a code of conduct, and establishing an
organization automatically makes the project more robust and long-lived,
assuring it can keep up with all the issues and PRs.

After her speech, Dawn left the floor to Duan O’Brien, who most recently built the
OSPO at Indeed, which is now one of the biggest public sponsors on GitHub (currently
supporting, on a monthly basis, the work of more than 200 individual OSS developers).

Figure 6.11 - Indeed GitHub organization, monthly sponsor of tens of open-source developers.

Duan introduced himself with a very meaningful quote: “Your fans love you. The people
using your software love you. The problem is that sponsors are not your fans”.
End users of the software have so many projects they could support that it’s unlikely
for an open-source maintainer to make a living just out of donations by individuals.

Corporate partnerships are a more sustainable way of getting funding for FOSS, and
usually happen because of one of the following kinds of engagement:

• Individual: someone at the company directly advocates for the sponsorship.
This typically happens when the maintainer asks his community for support and
a fan working at the company escalates the request to his manager, who uses
an existing funding program to make the sponsorship happen.

6 - Participation in the GitHub Accelerator Program

 102

• Support contract: someone at the company engages directly with the OSS
maintainer for extended support or services.
In this case, the company needs a professional service or a priority bug fix, and
a representative reaches out to the project to negotiate for paid support.

• Programmatic: the company uses an automated tool or process to identify and
select its sponsorships.
This is the most modern way to find projects to sponsor and is based on various
parameters, one of the most relevant being dependency analysis.

Different lessons for OSS maintainers came out from Duan’s talk: open-source
developers should ask often for what they need (more than they feel comfortable to),
have a support contract ready to be prepared for certain kinds of agreement, they
should assume automation and use machine-readable funding info.

One final yet important thought from Duan was about simply expressing gratitude:
Indeed sponsored tens of projects over the years, but the number of people saying
“thanks” was really low - personally reaching out to your own sponsors to thank them
is also a great opportunity to stick out from everyone else.

6 - Participation in the GitHub Accelerator Program

 103

6.3.7. Project governance (with Shauna Gordon-McKeon)

Shauna Gordon-McKeon is an open-source member
and maintainer since 2013.
She spent the past 6 years facilitating projects
governance transitions, providing consultations,
hosting workshops, and sharing resources and best
practices at governingopen.com. [90]

Trying to provide an exhaustive description of what governance really looks like from
the perspective of FOSS, Shauna listed some of the most common misconceptions
around it:

• Misconception #1: Governance is just about who is in charge.
Governance not only establish who does what but includes all kinds of decisions
around what to work on, what to change, who are the participants and how
to involve them.
Governance can be in the form of roadmaps, codes of conduct, release
management, and more.

• Misconception #2: Governance is another word for bureaucracy.
Governance is more a way to prevent bureaucracy stuckness, making the
whole process adaptable and designing conflict resolution mechanisms.

• Misconception #3: My project doesn’t have governance.
Even if a project doesn’t have formally defined its governance, there is always
someone in charge of making decisions and planning; however, formalizing
governance is highly suggested to let everyone know how the community
works and to avoid a possible “tyranny of structurelessness”. [91]

• Misconception #4: There is a right way to do governance.
Governance is highly context-dependent: sometimes a democratic system is
preferable, but in other circumstances a benevolent dictator may work better.
What’s important is to keep into account the kind of user base, the size of the
project, its origin story, and other factors before defining rules, which are not
fixed but can change over time.

Shauna summarised the role of governance with an impactful metaphor: “Governance
processes are like a test suite to catch governance bugs”.
In the same way as tests, governance evolves with a project over time and requires an
effort in the present to save time and resources in later stages.

Figure 6.12 - Shauna Gordon-McKeon

 105

7. Conclusions

Spending the last year almost full-time on the development and management of
Sniffnet taught me a lot.

I learned a new programming language, started appreciating a new framework to build
UIs, understood how coding is just the tip of the iceberg in the context of a software
project, and met a wonderful community of people always ready to get involved
without demanding anything in return.

But most importantly… I did all of this with passion and found out that I enjoy
programming and solving problems even more than I thought.

7 - Conclusions

 106

7.1. Next steps

Despite all the features introduced over the past few months, Sniffnet is still very far
from being a complete network analyser.

The main idea for the upcoming development is to keep the application comfortably
usable by everyone without sacrificing additional, more advanced functionalities.

The list of purposes I have in mind for the future is long and includes:

• Identification of the PIDs generating a specific data exchange.
This is by far the most requested feature and one of the most difficult to
implement, because it’s heavily platform dependent.
The inclusion of this functionality would allow to identify the processes
responsible for each of the network connections.

• Read and write PCAP files.
PCAP is a widespread file format containing packet-level evidence; supporting
this format would mean permitting interoperability with other network
analyzers, as well as the possibility of offline inspections.

• Inspection of certain packets’ payload.
Particularly useful in the case of non-encrypted services, to read the content of
single packets.

• Alerts based on the IP addresses’ reputations.
Several services provide a way of determining if a specific IP address has been
flagged as abusive or spammer based on a set of blacklists.
In this case, it’d be useful to warn the users of the app, allowing them to
possibly block the corresponding connections.

• Details about unassigned IP addresses (bogon tag).
Bogons are IP addresses that are not in any range assigned by an official entity
for public Internet use.
As of today, in case a connection with a bogus address is established, Sniffnet
tags it as coming from an unknown location, even if it’s possible to determine
more about it (for example if the address is reserved for future use or belongs
to the private space).

• Support for ICMP.
ICMP is a supporting protocol particularly used by routers to communicate
errors or diagnostic information to other network nodes.

• New filtering capabilities.
To permit a more fine-grained traffic sieve, new filter mechanisms must be
added, comprehending regular expressions involving addresses and ports.

• More complete details about each notification event.
The current notification page of the app cannot be interacted with by the user
and is limited to displaying general information about network events; more
useful details should be collected and shown.

7 - Conclusions

 107

• Performance benchmarking.
Needed to assess how much data per second can be handled by the app without
dropping packets.

• Improvements to the overall structure of the app packages.
Including the fix of some minor problems and the signature of the packages
with an SSL certificate.

• Additional configurations and settings.
As the tool supports more functionalities, additional configurations are needed:

o Option to define the path to a local JSON file with custom theme colors.
o Definition of the MMDB files path, to allow using the commercial

distributions of such databases.
o Settings to personalise font size and scale factor of the UI.

Most of such functionalities have been long requested directly by the users of the tool
and this will motivate me even more to find the time and energy to implement them.

Additionally, new capabilities
related to the GUI will be
added every time Iced gets
updated.
The maintainer of the library
published a clear roadmap
[92] defining several features
that will benefit Sniffnet and
other interfaces realized with
Iced.

It’s also very likely that more new ideas will come along the way because, even if I
thought to be done 9 months ago, as time passes the to-do list is getting longer and
longer.

Moreover, while writing the thesis I’ve realized how many things I have to say about
the processes behind Sniffnet maintenance and I’m thinking about setting up the wiki
section on the GitHub repository of the project, to share more in-depth analysis about
every aspect related to the application.

Figure 7.1 - Iced roadmap of the upcoming releases [92]

7 - Conclusions

 108

7.2. Wrap up

I’d like to conclude the dissertation with the content of a discussion I opened on the
GitHub repository in the occasion of the first anniversary of Sniffnet.

I’m excited to share with y’all that Sniffnet is one year old today!
The last 365 days of my life have been almost totally dedicated to this project and I’ve
learned a lot along the way.

On August 1st 2022, I’d have never imagined this project would have become what’s
today.
Sniffnet was originally started in the scope of an academic course and went much
farther than that: I fell in love with the project and countless additional features and
improvements came to my mind.

It’s an unspeakable good feeling to have made software people use and appreciate,
giving something back to this awesome community.
Sometimes it still feels unreal that Sniffnet is now one of the most popular network
analysers on GitHub, having passed 10k stars just a few days ago and being in the top
100 most starred Rust repositories ever made.

Figure 7.2 - One of Sniffnet's most recent achievements: 10 thousand stars on GitHub

What have I learned during this journey?

I cannot say to have drastically improved my coding skills, but what I can assert with
certainty is to have understood how developing software isn’t just programming: it
requires providing an adequate documentation, user support, packaging, distribution,
and opens the possibility for exchange of ideas with other folks, that is one of the most
interesting and stimulating parts.

I had the one-in-a-life opportunity to be part of the first GitHub Accelerator cohort,
which not only gave me important insights about open-source but also allowed me to
work full-time on Sniffnet during the past months.

7 - Conclusions

 109

I’d also like to mention the little yet heart-warming individual donations I’ve received
on PayPal, Patreon, and GitHub Sponsors: generous people do really exist, often they’re
hidden just out there.

However, after the sponsorship by GitHub, the financial support has not been enough
to permit me to keep working on this project full-time.
It’s unfortunate not because of the stream of money itself, but because I truly love
developing Sniffnet, and I’d like to be able to spend more and more time on it.
Despite this, I can guarantee that Sniffnet will be constantly updated and maintained
in the future, even if not at the pace of the past months.

I was suggested by some friends to make Sniffnet a freeware, introducing features
reserved for paid users, and I was really tempted to do it with the functionalities
introduced in v1.2.
On the other hand, the open-source ecosystem gave me a lot and it didn’t feel right to
turn away.
Eventually, I decided to listen none other than my heart: Sniffnet is and will remain
forever and ever completely open-source software.

Passion is the engine that pushes us forward, that fills us with motivation, satisfaction,
enthusiasm, and hope.
Listen to your heart, do what you enjoy, and enjoy what you do: this is an
outstanding method to spend life to the fullest.

Figure 7.3 - Sniffnet's official logo: it depicts an investigator focused on examining Internet traffic.

His four-dotted hat is a reference to the notation used to represent IPv4 addresses, and the prominent nose
allows him to better sniff network packets.

7 - Conclusions

 110

Figure 7.4 - GitHub merchandise sent as a welcome kit in the occasion of the kick-off of the GH Accelerator

Program (April 2023).

7 - Conclusions

 111

Figure 7.5 - Sniffnet stickers, thought and printed with love by Martina.

 113

Appendix A: The project CHANGELOG

This appendix reports Sniffnet’s Changelog, which is the file listing all the software’s
releases and changes over time.

Changelog

All Sniffnet releases with the relative changes are documented in this

file.

[1.2.2] - 2023-08-08

- Added option to set different shades of color gradients for each of the

available themes

- Added new application themes: Dracula, Gruvbox, Nord, and Solarized

(#330)

- Other aesthetic improvements (see #119 for more info):

 - redesigned page tabs

 - highlighted headings with different colors

 - simplified scrollables style

 - improvements to Deep Sea and Mon Amour color palettes

- Added Finnish translation 🇫🇮 (#310)
- Added support for `--help` and `--version` command line arguments (#272)

- Migrated to Iced 0.10, that is now able to select the graphical renderer

at runtime: a fallback one (`tiny-skia`) will be used in case the default

one (`wgpu`) crashes (#324)

- Added app `id` in order to correctly show the icon and app name on Linux

Wayland (fixes #292)

- Restructured issue templates to let users open issues in a more efficient

and effective way (#285)

- Updated French translation to v1.2 (#279)

- Color palettes in settings page are now built as `Rule` widgets, without

involving the use of external SVGs anymore

- Fixed `alt`+`tab` shortcut issue (#298 — fixes #262)

- Fixed problem that didn't allow opening links and the report file on

operating systems different from Windows, macOS, and Linux

- Use scrollable to make active filters visible when the selected adapter

name is long (overview page)

- Ensure no colored pixel is shown if the respective packets or bytes

number is zero

- Minor fix to Chinese translation (#271)

- Where is Sniffnet heading next? See the new roadmap of the project.

[1.2.1] - 2023-06-08

- Considerably refined the app packaging strategy (see #246 for more

details), fixing various related issues (#199, #220, #223, #224, #225,

#242)

- Added button to clear all the current search filters quickly in inspect

page

- Added Swedish translation 🇸🇪 (#213)
- Updated most of the existing translations to v1.2:

 - German - #191

 - Spanish - #203

Appendix A: The project CHANGELOG

 114

 - Persian - #193

 - Korean - #205

 - Polish - #244

 - Romanian - #241

 - Russian - #187

 - Turkish - #192

 - Ukrainian - #216

 - Chinese - #214

- Renamed "Administrative entity" to "Autonomous System name" to avoid

confusion

- Improved filter columns relative width to avoid the "Application

protocol" label being cut when displayed in Swedish

- Footer URLs have been updated to include links to Sniffnet's official

website and GitHub Sponsor page

- Updated docs including installation instruction for Aarch Linux (#185)

- Minor improvements to packets and bytes number format

- Minor improvements to:

 - code readability (#248)

 - docs (#235)

- Solved a minor problem that caused flags to be slightly misaligned in

inspect page table

[1.2.0] - 2023-05-18

- Introduced host-based analysis: instead of just showing IP addresses, now

host names and network providers are available for a quicker and more

meaningful traffic interpretation

 * Added rDNS (reverse DNS) lookups to find out network host names

 * Added ASN (Autonomous System name and number) lookups to find out the

entity managing a given IP address (fixes #62)

- Individual connections identified by IP addresses remain available and

can now be filtered and further inspected through a simple click

- Support for identification of addresses in the local network

- Support for data link layer MAC addresses

- Full support for broadcast traffic recognition (added directed broadcast

identification)

- Added dropped packets number (fixes #135)

- Changed favorites management: instead of referring to single IP

addresses, favorites are now related to network hosts

- Added Greek translation 🇬🇷 (#160)
- Added Persian translation 🇮🇷 (#158)
- Do not open terminal window when starting the application on Windows

(fixes #85)

- Do not open terminal window when starting the application on macOS

- Changed macOS application icon to be consistent with standard icons

dimension (fixes #177)

- Made available RPM package for Linux and automated packaging process for

Windows, macOS, and Linux (#180 - fixes #20)

- Keep the active addresses of the selected network adapter up to date

during analysis

- Changed shortcut to interrupt analysis from `backspace` to

`ctrl+backspace`

- Images have been replaced with SVGs

- Added unit tests for `chart` and started unit tests for `gui` modules

(#132)

- Fixed problem that let users switch page pressing the tab key even if no

packets were received

[1.1.4] - 2023-04-18

Appendix A: The project CHANGELOG

 115

- Added new translations of the GUI:

 * Portuguese 🇵🇹 (#134)
 * Russian 🇷🇺 (#151)
 * Korean 🇰🇷 (#128)
 * Turkish 🇹🇷 (#139)
 * ...the total number of supported languages is now 13 🎉
- Changed adapter buttons format and improved volume slider layout (see

#119 for more details or to give me further suggestions)

- Scrollbars are now highlighted when hovering on the respective scrollable

area

- Set up `iced_glow` feature on branch `glow-renderer` to overcome

unsupported graphics (#155)

- Modified `dependabot` configuration to update GitHub Actions as needed

(#141)

- Fixed problem causing a crash on macOS when starting Sniffnet's Homebrew

package or building from source in release mode (#109 - #137)

[1.1.3] - 2023-04-04

- Added Romanian translation 🇷🇴 (#113)
- Added feature to warn you when a newer version of Sniffnet is available

on GitHub 🆕 (#118)
- Added badge on tab bar to show unread notifications count 🔉
- Introduction of `lazy` widgets to improve the application efficiency

(#122)

- Aesthetic improvements to create a more modern and minimal UI (#119)

- Changed keyboard shortcut to open settings from `ctrl+S` to `ctrl+,`, as

suggested in #97

- Fixed problem that was causing a switch to the initial page when back

button was pressed with settings opened on running page and with no packets

received

- Fixed problem that was causing application logo to be partially hidden

when resizing the window to a lower dimension

- Show `-` option in app protocol picklist only when a filter is active

- Refactored and cleaned code modules (#123)

- Fixed header alignment

[1.1.2] - 2023-03-18

- Added new translations of the GUI, bringing the total number of supported

languages to 8!

 * German 🇩🇪 (#87)
 * Simplified Chinese 🇨🇳 (#89 - #93)
 * Ukrainian 🇺🇦 (#94)
- Added keyboard shortcuts to make the whole experience more enjoyable and

efficient: check out issue #97 to see all the available hotkeys or to

suggest new ones!

- Changed GUI font to `sarasa-gothic-mono` to support the introduction of

Simplified Chinese language

- Minor improvements to Overview page proportions and paddings

[1.1.1] - 2023-02-25

- Added new translations of the GUI!

 * French 🇫🇷 (#64 - #67)
 * Spanish 🇪🇦 (#70)

Appendix A: The project CHANGELOG

 116

 * Polish 🇵🇱 (#78)
- The last successfully sniffed network adapter is now remembered on

application closure, so that users don't have to manually select it again

when restarting Sniffnet (implementing a feature requested in #77)

- Implemented possibility to quit the application pressing crtl+Q keys, as

requested in #68

- The last opened settings page is now remembered within a given session

- Fixed bug that caused settings configuration not to be permanently saved

across different sessions when closing settings from the 'x' button in the

top right corner (fixes #77)

- Textual report is now saved in a fixed directory, instead of using the

directory where the execution was started. The output is now saved in the

same folder containing configuration files storing Sniffnet settings. The

directory is automatically chosen by confy depending on your architecture,

and can be seen hovering on the "Open full report" button. (fixes #51)

- When multiple favorite connections are featured per time interval, now

it's possible to receive more than one favorite notification referred to

the same timestamp

- Fixed problem that was causing the Application Protocol picklist

placeholder not being translated

[1.1.0] - 2023-02-07

- Added Custom Notifications to inform the user when defined network events

occur:

 * data intensity exceeded a defined packets per second rate

 * data intensity exceeded a defined bytes per second rate

 * new data are exchanged from one of the favorite connections

- Added Settings pages to configure the state of the application

(persistently stored in a configuration file):

 * customise notifications

 * choose between 4 different application styles

 * set the application language (this release introduces the Italian

language 🇮🇹, and more languages will be supported soon)
- Added Geolocation of the remote IP addresses (consult the README for more

information)

- Implemented the possibility of marking a group of connections as

favorites and added favorites view to the report

- Added modal to ask the user for confirmation before leaving the current

analysis

- Added Tooltips to help the user better understand the function of some

buttons

- Partially implemented support for broadcast IP addresses (still missing

IPv4 directed broadcast)

- The application window is now maximized after start

- All the GUI text fonts have been replaced with 'Inconsolata'

- Fixed issue #48 adding a horizontal scrollable to the report view

[1.0.1] - 2022-11-30

- Substituted command `open` with command `xdg-open` on Linux systems to

solve the problem described in issues #13 and #23

- Introduced a constraint on minimum window height to avoid problem

described in issue #12

- Added some tests on `AppProtocol` and improved GitHub workflows

[1.0.0] - 2022-11-21

Appendix A: The project CHANGELOG

 117

- The application is no longer just a command line interface: Sniffnet has

now a whole graphical user interface!

 * Charts and traffic statistics are now constantly updated and shown

interactively in the GUI

 * Users don't have to worry about command line options anymore: it is now

possible to comfortably specify adapters and filters through the GUI

 * Sniffnet is now more accessible, available in real-time, easy to use

and aesthetically pleasing thanks to its new interface

- In order to reach out as many people as possible, I created installers

for Windows, macOS and Linux, to make it easier to install Sniffnet for

those that still doesn't have Rust on their machines

[0.5.0] - 2022-10-02

- Optimized textual report updates: only changed entries are rewritten

(file `report.txt`)

- Textual report elements are now ordered by timestamp instead of number of

packets

- Report header with statistics is now written on a separate textual file

(file `statistics.txt`)

- Removed command line option `--verbose` because considered redundant

- Removed command line option `--minimum-packets` because not meaningful

anymore

[0.4.1] - 2022-09-27

- Changed the default textual report representation

- Added command line option `-v` to set the textual report representation

to the former one (verbose mode)

- Sniffnet now also considers the transport layer protocol to define

textual report elements (now defined by the network 5-tuple)

[0.4.0] - 2022-09-11

- Added feature to produce a graphical report with the number of packets

per second and the number of bits per seconds, incoming and outgoing

- Added multicast addresses recognition

- Reports are not updated if the application is paused

[0.3.2] - 2022-09-07

- Changed output report structure: each element now corresponds to a couple

of network [address:port]

- When application is resumed after pause, the buffer containing packets is

reinitialized

[0.3.1] - 2022-08-31

- Added devices' description when application is launched with the `-d`

option

- Introduced feature to measure write timings and added a BufWriter to

improve write performance

- Fixed standard output colors for Windows systems

Appendix A: The project CHANGELOG

 118

[0.3.0] - 2022-08-29

- Added global statistics: number of [address:port] pairs and sniffed

packets

- Added statistics on the number of packets for each application layer

protocol

- Fixed application layer protocols filtering

[0.2.1] - 2022-08-26

- Removed img folder and uploaded pictures on cloud

[0.2.0] - 2022-08-24

- Added command line option `--app` to filter application layer protocols

- Added feature to recognize local vs remote addresses

- Added function to parse IPv6 addresses

- Fixed secondary threads panics

- Changed the way application layer protocols are retrieved

- Improved textual report format

[0.1.2] - 2022-08-18

- Added video tutorial about the application

[0.1.1] - 2022-08-17

- Fixed README errors

[0.1.0] - 2022-08-17

- Sniffnet first release

 119

Appendix B: Articles and mentions

In the following, it’s reported a collection of the main articles and mentions featuring
Sniffnet, published by organizations, blogs, and online newspapers (ordered by date).

Published on / by Date Reference
Heise, a popular German ICT newspaper 22 November 2022 [69]

TrishTech, website about computer
technology with a focus on Windows

22 November 2022 [93]

MajorGeeks, a platform hosting
software tutorials and download links

23 November 2022 [94]

Softpedia, a website reporting reviews
about software for different platforms

23 November 2022 [95]

GitHub Twitter account 21 December 2022 [71]

TechViewLeo, a website about
programming news

29 December 2022 [96]

Korben, a French blog about technology 6 February 2023 [97]

Trend Oceans, a Linux web portal 25 March 2023 [98]

Console, a portal featuring interviews
with open source maintainers

23 April 2023 [99]

Linux Magazine, a monthly newspaper
featuring in-depth analysis about
technology

May 2023 [100]

Hacker News, an ICT social news
website

19 May 2023 [101]

ilSoftware, an Italian website about
software of all kinds

19 May 2023 [102]

Caschys Blog, a German blog about
technology

19 May 2023 [103]

GeekNews, a Korean technology news
website

20 May 2023 [104]

CodeZine, a Japanese website focused
on software releases

23 May 2023 [105]

It’s FOSS, a portal about open source
with a focus on Linux

29 May 2023 [106]

KeepItTechie, a YouTube channel diving
into the world of Linux and open-source

13 June 2023 [107]

Linux China, a Chinese blog focused on
Linux news

14 June 2023 [108]

OSTechNix, a website focused on tech
and Unix

4 July 2023 [109]

Appendix B: Articles and mentions

 120

Hacker News, an ICT social news
website

14 July 2023 [110]

Zhang Xuan on his Twitter account, a
famous Chinese freelance developer

16 July 2023 [111]

Behind The Mutex, a weekly newsletter
with a focus on open-source

18 July 2023 [112]

Ruan Yifeng, a Chinese blogger 21 July 2023 [113]
MacBed, a website about macOS
software

21 July 2023 [114]

365TIPŮ, a Czech ICT portal which
publishes daily tips and weekly articles

23 July 2023 [115]

unknowNews, a Polish blog issuing IT
news articles weekly

28 July 2023 [116]

The table is updated to the month of July 2023

 121

Bibliography

[1] R. Mohanakrishnan, “What Is a Computer Network? Definition, Objectives,
Components, Types, and Best Practices,” spiceworks, 2023. [Online].
Available: https://www.spiceworks.com/tech/networking/articles/what-is-
a-computer-network/.

[2] M. E. Shacklett, “What is TCP/IP?,” TechTarget, 2021. [Online]. Available:
https://www.techtarget.com/searchnetworking/definition/TCP-IP.

[3] “What is a packet? | Network packet definition,” CLOUDFLARE, [Online].
Available: https://www.cloudflare.com/en-gb/learning/network-layer/what-
is-a-packet/.

[4] “What is packet sniffing?,” Paessler, [Online]. Available:
https://www.paessler.com/it-explained/packet-sniffing.

[5] “What is Packet Sniffing and How Does It Work,” Sangfor Technologies,
2022. [Online]. Available:
https://www.sangfor.com/glossary/cybersecurity/what-is-packet-sniffing-
and-how-does-it-work.

[6] “Wireshark: The world's most popular network protocol analyzer,”
Wireshark, [Online]. Available: https://www.wireshark.org.

[7] “Tcpdump: a powerful command-line packet analyzer,” Tcpdump, [Online].
Available: https://www.tcpdump.org.

[8] C. Thompson, “How Rust went from a side project to the world’s most-loved
programming language,” MIT Technology Review, 2023. [Online]. Available:
https://www.technologyreview.com/2023/02/14/1067869/rust-worlds-
fastest-growing-programming-language/.

[9] “Stack Overflow 2022 Developer Survey,” Stack Overflow, 2022. [Online].
Available: https://survey.stackoverflow.co/2022/.

[10] T. Heartman, “Understanding the Rust borrow checker,” LogRocket, 2020.
[Online]. Available: https://blog.logrocket.com/introducing-the-rust-borrow-
checker/.

[11] “Are we GUI Yet? The state of building user interfaces in Rust.,”
areweguiyet, [Online]. Available: https://areweguiyet.com.

Bibliography

 122

[12] “tauri-apps/tauri,” tauri-apps, [Online]. Available: https://github.com/tauri-
apps/tauri.

[13] “Rapporto sulla trasparenza: Crittografia HTTPS sul Web,” Google, [Online].
Available: https://transparencyreport.google.com/https/overview.

[14] “Domande frequenti sul protocollo HTTPS,” Google, [Online]. Available:
https://support.google.com/transparencyreport/answer/7381231#zippy=%
2Cwhat-is-encryption.

[15] “clap,” clap-rs/clap, [Online]. Available: https://github.com/clap-rs/clap.

[16] “Crate pcap,” Docs.rs, [Online]. Available:
https://docs.rs/pcap/latest/pcap/index.html.

[17] “Crate etherparse,” Docs.rs, [Online]. Available:
https://docs.rs/etherparse/latest/etherparse/index.html.

[18] “IANA,” IANA, [Online]. Available: https://www.iana.org.

[19] G. Bellini, “Faster way to write textual report file,” GyulyVGC/sniffnet, 2022.

[Online]. Available: https://github.com/GyulyVGC/sniffnet/issues/3.

[20] “plotters,” plotters-rs/plotters, [Online]. Available:
https://github.com/plotters-rs/plotters.

[21] “Plotters Developer Guide,” Plotters, [Online]. Available: https://plotters-

rs.github.io/book/intro/introduction.html.

[22] “slint,” slint-ui/slint, [Online]. Available: https://github.com/slint-ui/slint.

[23] “dioxus,” dioxuslab/dioxus, [Online]. Available:
https://github.com/dioxuslabs/dioxus.

[24] “egui,” emilk/egui, [Online]. Available: https://github.com/emilk/egui.

[25] “iced,” iced-rs/iced, [Online]. Available: https://github.com/iced-rs/iced.

[26] “Retained Mode Versus Immediate Mode,” Microsoft, 2019. [Online].
Available: https://learn.microsoft.com/en-
us/windows/win32/learnwin32/retained-mode-versus-immediate-mode.

[27] “Elm: A delightful language for reliable web applications.,” Elm-lang,
[Online]. Available: https://elm-lang.org.

[28] “Welcome to Pop!_OS,” System76, [Online]. Available:
https://pop.system76.com.

Bibliography

 123

[29] “Is Iced replacing GTK apps for the new COSMIC desktop?,” Reddit, 2022.
[Online]. Available:
https://www.reddit.com/r/pop_os/comments/xs87ed/comment/iqjc35b/?u
tm_source=reddit&utm_medium=web2x&context=3.

[30] “plotters-iced,” Joylei/plotters-iced, [Online]. Available:
https://github.com/Joylei/plotters-iced.

[31] “rodio,” RustAudio/rodio, [Online]. Available:
https://github.com/RustAudio/rodio.

[32] “Font subset,” FontTools, [Online]. Available:
https://fonttools.readthedocs.io/en/latest/subset/index.html.

[33] “confy,” rust-cli/confy, [Online]. Available: https://github.com/rust-
cli/confy.

[34] “MaxMind DB File Format Specification,” MaxMind DB, [Online]. Available:
https://maxmind.github.io/MaxMind-DB/.

[35] G. Bellini, “Suggest me keyboard shortcuts to add,” GyulyVGC/sniffnet,
2023. [Online]. Available: https://github.com/GyulyVGC/sniffnet/issues/97.

[36] G. Bellini, “Suggest me aesthetic improvements,” GyulyVGC/sniffnet, 2023.
[Online]. Available: https://github.com/GyulyVGC/sniffnet/issues/119.

[37] “dns-lookup,” keeperofdakeys/dns-lookup, [Online]. Available:
https://github.com/keeperofdakeys/dns-lookup/.

[38] “GitHub Docs: About READMEs,” GitHub, [Online]. Available:
https://docs.github.com/en/repositories/managing-your-repositorys-
settings-and-features/customizing-your-repository/about-readmes.

[39] “Concise, consistent, and legible badges,” Shields.io, [Online]. Available:
https://shields.io.

[40] “Software Versioning,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Software_versioning.

[41] “Setting guidelines for repository contributors,” GitHub, [Online]. Available:
https://docs.github.com/en/communities/setting-up-your-project-for-
healthy-contributions/setting-guidelines-for-repository-contributors.

[42] “About wikis,” GitHub, [Online]. Available:
https://docs.github.com/en/communities/documenting-your-project-with-
wikis/about-wikis.

Bibliography

 124

[43] “About issues,” GitHub, [Online]. Available:
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-
issues.

[44] G. Bellini, “Issues - missing dependency,” GyulyVGC/sniffnet, 2023. [Online].
Available:
https://github.com/GyulyVGC/sniffnet/issues?q=is%3Aissue+label%3A%22
missing+dependency%22.

[45] G. Bellini, “Help me translating Sniffnet in your native language,”
GyulyVGC/sniffnet, 2023. [Online]. Available:
https://github.com/GyulyVGC/sniffnet/issues/60.

[46] “About pull requests,” GitHub, [Online]. Available:
https://docs.github.com/en/pull-requests/collaborating-with-pull-
requests/proposing-changes-to-your-work-with-pull-requests/about-pull-
requests.

[47] G. Bellini, “Pull requests - translation,” GyulyVGC/sniffnet, 2023. [Online].
Available:
https://github.com/GyulyVGC/sniffnet/pulls?q=is%3Apr+label%3Atranslatio
n.

[48] 4r7if3x, “Fixed build and packaging issues,” GyulyVGC/sniffnet, 2023.
[Online]. Available: https://github.com/GyulyVGC/sniffnet/pull/246.

[49] “About milestones,” GitHub, [Online]. Available:
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-
work/about-milestones.

[50] “Dependabot,” GitHub, [Online]. Available: https://github.com/dependabot.

[51] “ImgBot,” ImgBot, [Online]. Available: https://imgbot.net.

[52] “Recognize All Contributors, including those that don't push code,” All
Contributors, [Online]. Available: https://allcontributors.org.

[53] “Understanding GitHub Actions,” GitHub, [Online]. Available:
https://docs.github.com/en/actions/learn-github-actions/understanding-
github-actions.

[54] “rustfmt,” rust-lang/rustfmt, [Online]. Available: https://github.com/rust-
lang/rustfmt.

[55] “rust-clippy,” rust-lang/rust-clippy, [Online]. Available:
https://github.com/rust-lang/rust-clippy.

Bibliography

 125

[56] “The Cargo Book,” Rust, [Online]. Available: https://doc.rust-
lang.org/stable/cargo/.

[57] “The Rust community’s crate registry,” Rust, [Online]. Available:
https://crates.io.

[58] “The Manifest Format,” Rust, [Online]. Available: https://doc.rust-
lang.org/cargo/reference/manifest.html.

[59] “Crate cargo_wix,” volks73/cargo-wix, [Online]. Available:
https://volks73.github.io/cargo-wix/cargo_wix/index.html.

[60] “WIX TOOLSET,” WiX Toolset, [Online]. Available: https://wixtoolset.org.

[61] “Npcap: Packet capture library for Windows,” Npcap, [Online]. Available:

https://npcap.com.

[62] “Npcap OEM Edition—Redistribution License,” Npcap, [Online]. Available:
https://npcap.com/oem/redist.html.

[63] “create-dmg,” create-dmg/create-dmg, [Online]. Available:

https://github.com/create-dmg/create-dmg.

[64] “Linux distribution,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Linux_distribution.

[65] “cargo-deb,” kornelski/cargo-deb, [Online]. Available:

https://github.com/kornelski/cargo-deb.

[66] “cargo-generate-rpm,” cat-in-136/cargo-generate-rpm, [Online]. Available:

https://github.com/cat-in-136/cargo-generate-rpm.

[67] “Reddit,” [Online]. Available: https://www.reddit.com.

[68] G. Bellini, “Announcing Sniffnet v0.4.0 - A multithreaded, cross-platform
network analyzer,” Reddit, 2022. [Online]. Available:
https://www.reddit.com/r/rust/comments/xbn5o6/announcing_sniffnet_v0

40_a_multithreaded/.

[69] M. Förster, “Netzwerkmonitoring mit Sniffnet: Open Source und komplett in
Rust geschrieben,” Heise, 2022. [Online]. Available:
https://www.heise.de/news/Netzwerkmonitoring-mit-Sniffnet-Open-
Source-und-komplett-in-Rust-geschrieben-7349019.html.

[70] “GitHub Trending: See what the GitHub community is most excited about

today.,” GitHub, [Online]. Available: https://github.com/trending.

Bibliography

 126

[71] GitHub, Twitter, 2022. [Online]. Available:
https://twitter.com/github/status/1605652851245649931.

[72] M. T. V. Hudson Borges, “What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform,” Department of
Computer Science, UFMG, Brazil, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S016412121830196
1.

[73] “Star History: The No.1 GitHub star history graph on the web,” [Online].
Available: https://star-history.com/blog.

[74] “Hacker News front page,” [Online]. Available:
https://news.ycombinator.com/news.

[75] “Homebrew: The Missing Package Manager for macOS (or Linux),”
Homebrew, [Online]. Available: https://brew.sh.

[76] “GitHub Accelerator: Jumpstarting new careers in open source,” GitHub,
2022. [Online]. Available: https://accelerator.github.com.

[77] “GitHub Docs: About GitHub Pages,” GitHub, [Online]. Available:
https://docs.github.com/en/pages/getting-started-with-github-
pages/about-github-pages.

[78] “aruba.it,” Aruba, [Online]. Available: https://www.aruba.it/.

[79] “Google Analytics,” Google, [Online]. Available:
https://marketingplatform.google.com/intl/it/about/analytics/.

[80] T. Dohmke, “Everything new from GitHub Universe 2022,” GitHub, 2022.
[Online]. Available: https://github.blog/2022-11-09-everything-new-from-
github-universe-2022/.

[81] K. Sowles, “GitHub Accelerator: our first cohort and what’s next,” GitHub,
2023. [Online]. Available: https://github.blog/2023-04-12-github-
accelerator-our-first-cohort-and-whats-next/.

[82] G. Bellini, “My Rust project has been selected for the GitHub Accelerator
Program and I’ll be working on it full-time!,” Reddit, 2023. [Online].
Available:
https://www.reddit.com/r/rust/comments/12jqvwy/my_rust_project_has_
been_selected_for_the_github/?utm_source=share&utm_medium=web2x&
context=3.

Bibliography

 127

[83] G. Bellini, “Sniffnet has been selected for the GitHub Accelerator Program,”
GyulyVGC/sniffnet, 2023. [Online]. Available:
https://github.com/GyulyVGC/sniffnet/discussions/133.

[84] A. Klepel, “A Framework of Open Practices,” Medium, 2017. [Online].
Available: https://medium.com/mozilla-open-innovation/a-framework-of-
open-practices-9a17fe1645a3.

[85] “The Legal Side of Open Source,” Open Source Guides, [Online]. Available:
https://opensource.guide/legal/.

[86] C. Porzio, “I Just Hit $100k/yr On GitHub Sponsors! (How I Did It),” 2020.
[Online]. Available: https://calebporzio.com/i-just-hit-dollar-100000yr-on-
github-sponsors-heres-how-i-did-it.

[87] “OpenSauced: Your next open source journey starts here,” OpenSauced,
[Online]. Available: https://opensauced.pizza.

[88] J. M. L. d. l. Fuente, “A guide to setting up your Open Source Program Office
(OSPO) for success,” opensource.com, 2020. [Online]. Available:
https://opensource.com/article/20/5/open-source-program-office.

[89] T. Claburn, “What happens when the maintainer of a JS library downloaded
26m times a week goes to prison for killing someone with a motorbike?
Core-js just found out,” The Register, 2020. [Online]. Available:
https://www.theregister.com/2020/03/26/corejs_maintainer_jailed_code_r

elease/.

[90] “Governing Open: Come learn about governance with us!,” Governing Open,
[Online]. Available: https://governingopen.com.

[91] J. Freeman, “The Tyranny of Structurelessness,” 1970. [Online]. Available:
https://www.jofreeman.com/joreen/tyranny.htm.

[92] H. Ramón, “Roadmap — Iced,” whimsical, 2023. [Online]. Available:
https://whimsical.com/roadmap-iced-7vhq6R35Lp3TmYH4WeYwLM.

[93] “Sniffnet : Real-Time Network Traffic Monitoring,” TrishTech, 2022. [Online].
Available: https://www.trishtech.com/2022/11/sniffnet-real-time-network-
traffic-monitoring/.

[94] “Major Geeks - Sniffnet,” Major Geeks, 2022. [Online]. Available:
https://www.majorgeeks.com/files/details/sniffnet.html.

Bibliography

 128

[95] “Sniffnet,” Softpedia, 2022. [Online]. Available:
https://www.softpedia.com/get/Network-Tools/Network-
Monitoring/Sniffnet.shtml.

[96] A. Kamau, “Monitor Network Traffic on Linux / Windows using sniffnet,”
TechViewLeo, 2022. [Online]. Available: https://techviewleo.com/monitor-
network-traffic-using-sniffnet/.

[97] “Sniffnet – Surveillez votre trafic réseau en temps réel,” Korben, 2023.
[Online]. Available: https://korben.info/sniffnet-surveiller-trafic-
reseau.html.

[98] G. Mishra, “Sniffnet: Application to Comfortably Monitor your Network
Traffic,” TREND OCEANS, 2023. [Online]. Available:
https://trendoceans.com/sniffnet-to-monitor-your-network-traffic/.

[99] A. Mogul, “Console #154 - An Interview with Giuliano of Sniffnet - Rust app
to easily monitor network traffic,” Console by CodeSee.io, 2023. [Online].
Available: https://console.substack.com/p/console-154.

[100] E. Bärwaldt, “Analyze network traffic with Sniffnet,” Linux Magazine, 2023.
[Online]. Available: https://www.linux-
magazine.com/Issues/2023/270/Sniffnet.

[101] thunderbong, “Sniffnet: Open-source, cross platform application to monitor
network traffic,” Hacker News, 2023. [Online]. Available:

https://news.ycombinator.com/item?id=35991811.

[102] M. Nasi, “Sniffer open source per analizzare e monitorare le connessioni di
rete: come funziona Sniffnet,” ilSoftware, 2023. [Online]. Available:
https://www.ilsoftware.it/focus/sniffer-open-source-per-analizzare-e-
monitorare-le-connessioni-di-rete-come-funziona-sniffnet_26058/.

[103] V. Caschy, “Sniffnet: Software zur Überwachung des Netzwerkverkehrs,”
Caschys Blog, 2023. [Online]. Available: https://stadt-
bremerhaven.de/sniffnet-software-zur-ueberwachung-des-
netzwerkverkehrs/.

[104] xguru, “ Sniffnet - 오픈소스 네트워크 트래픽 모니터링 도구,” GeekNews,

2023. [Online]. Available: https://news.hada.io/topic?id=9224.

[105] “オープンソースのネットワーク監視ツール「Sniffnet 1.2.0」がリリー

ス,” CodeZine, 2023. [Online]. Available:

https://codezine.jp/article/detail/17808.

Bibliography

 129

[106] S. RUDRA, “Sniffnet: An Interesting Open-Source Network Monitoring Tool
Anyone Can Use,” It's FOSS News, 2023. [Online]. Available:
https://news.itsfoss.com/sniffnet/.

[107] J. L., “Master Your Network Monitoring with Sniffnet | Open-Source Tool for
Linux,” KeepItTechie, 2023. [Online]. Available:
https://www.youtube.com/watch?v=4b5i8XLhZq0&t=12s.

[108] geekpi, “Sniffnet：任何人都可以使用的有趣的开源网络监控工具,” Linux

China, 2023. [Online]. Available: https://linux.cn/article-15904-1.html.

[109] S. Palani, “How To Effortlessly Monitor Your Internet Traffic Using Sniffnet
Network Monitoring Tool In Linux And Unix,” OS Tech NIX, 2023. [Online].
Available: https://ostechnix.com/sniffnet-network-monitoring-tool/.

[110] kristianpaul, “Sniffnet – Comfortably monitor your internet traffic (like
Wireshark),” Hacker News, 2023. [Online]. Available:
https://news.ycombinator.com/item?id=36728672.

[111] Z. Xuan, Twitter, 2023. [Online]. Available:

https://twitter.com/vikingmute/status/1680389881607094272?s=20.

[112] O. Danshyn, “#10: Rust - gping, Sniffnet, Iced and Mountpoint-S3,” Behind
The Mutex, 2023. [Online]. Available: https://themutex.substack.com/p/10-
rust-gping-sniffnet-iced-and-
mountpoint?r=3fc3a&utm_campaign=post&utm_medium=web.

[113] R. Yifeng, “科技爱好者周刊（第 263 期）：开源软件如何赚钱？,” 2023.

[Online]. Available: https://www.ruanyifeng.com/blog/2023/07/weekly-
issue-263.html.

[114] “Recently Popular Mac Apps (Issue #11),” MacBed, 2023. [Online]. Available:
https://www.macbed.com/recently-popular-mac-apps-issue-11/.

[115] “Python pro vylepšení fotek. Linkedin a autorské právo ~ 23. července,”
365TIPŮ, 2023. [Online]. Available: https://365tipu.substack.com/p/python-
pro-vylepseni-fotek-linkedin.

[116] J. Mrugalski, “unknowNews: 28 lipca 2023,” unknowNews, 2023. [Online].
Available: https://news.mrugalski.pl/post/724036431766601728/28-lipca-
2023.

	Abstract
	Table of contents
	List of figures
	List of code snippets
	Acronyms and abbreviations
	1. Introduction
	1.1. Computer Networks
	1.1.1. Nodes, links, and communication protocols
	1.1.2. Network packets

	1.2. Network monitoring tools
	1.2.1. Wireshark
	1.2.2. Tcpdump

	1.3. The Rust programming language
	1.3.1. History
	1.3.2. Main features
	1.3.3. The state of GUIs in Rust

	2. The idea
	2.1. How it started
	2.2. The desire for a modern, simple, and intuitive tool
	2.2.1. The unsatisfaction with the project outcome
	2.2.2. The drive toward a more comfortably usable tool
	2.2.3. Purposes, peculiarities, and target users

	3. The development process
	3.1. From the beginning up to version 0.5: the command line interface
	3.1.1. Command line options
	3.1.2. User interactions during the execution
	3.1.3. The network traffic analysis
	3.1.4. The program output

	3.2. Version 1.0: the graphical user interface
	3.2.1. The choice of the GUI library
	3.2.2. GUI architecture
	3.2.3. The start page
	3.2.4. The overview page
	3.2.5. GUI styling

	3.3. Version 1.1: notifications, IP geolocation, and further configurations
	3.3.1. Custom notifications
	3.3.2. Interface translations
	3.3.3. Configuration management
	3.3.4. IP geolocation
	3.3.5. Keyboard shortcuts
	3.3.6. Further additions and improvements

	3.4. Version 1.2: host-based traffic analysis
	3.4.1. Host-related information
	3.4.2. The new overview page
	3.4.3. The inspect page

	4. Project management
	4.1. Documentation
	4.1.1. The README file
	4.1.2. Release notes and the CHANGELOG file
	4.1.3. Other documentation resources

	4.2. GitHub repository management
	4.2.1. Issues
	4.2.2. Pull requests
	4.2.3. Automation with GitHub bots
	4.2.4. Automation with GitHub Actions

	4.3. Application packaging
	4.3.1. Cargo crate
	4.3.2. Windows Installer
	4.3.3. Apple Disk Image
	4.3.4. Linux packages

	5. Sniffnet’s adoption by the community
	5.1. The project publication
	5.1.1. The first announcement
	5.1.2. The announcement of the graphical user interface

	5.2. Evaluation of the project’s adoption
	5.2.1. Why is the measure of popularity relevant?
	5.2.2. GitHub Stars
	5.2.3. Downloads

	5.3. Sniffnet’s official website

	6. Participation in the GitHub Accelerator Program
	6.1. Call for applications and selection process
	6.2. Announcement of the selected applicants
	6.3. The GitHub Accelerator Program
	6.3.1. Open practices (introduction to the program by Abby Cabunoc Mayes)
	6.3.2. Licensing (introduction to the program by Abby Cabunoc Mayes)
	6.3.3. Getting sponsors and fundraising (with Caleb Porzio)
	6.3.4. Sustainable Open Source (with Evan You)
	6.3.5. Finding contributors to hire (with Brian Douglas)
	6.3.6. Working with enterprises (with Dawn Foster and Duan O’Brien)
	6.3.7. Project governance (with Shauna Gordon-McKeon)

	7. Conclusions
	7.1. Next steps
	7.2. Wrap up

	Appendix A: The project CHANGELOG
	Appendix B: Articles and mentions
	Bibliography

