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Abstract

Multiple Sclerosis (MS) is an autoimmune-mediated neuro-degenerative disease
of the central nervous system (CNS), involving most motor symptoms such as
spasticity, weakness, language disorders and dysphonia; also, fatigue is often
considered one of the most debilitating symptom of MS patients. An acoustic
analysis of MS is performed with the use of vocal material supplied by the speech
therapy and rehabilitation department of Don Gnocchi hospital (Milan). The data-
set includes the voice recordings of two balanced subgroups of identical dimension
(i.e., sixteen subjects) correspondent to healthy subjects (HS) and MS patients.
Speech material consists in the vocalization of the sustained vowel /a/, the reading
of a phonetically balanced speech (Notturno) and approximately one minute of free
speech for each subject. Additionally, long-term recordings are carried out with VH
device only, covering a maximum period of four hours of subjects’ daily activities.
About the signals acquired with the microphone in air, the phases of pre-processing
and harmonic frame selection are executed in Matlab (R2022b) environment and
then, the extraction of parameters is operated. With the use of a Logistic Regression
(LR) model, data are classified comparing the probability p (returned by the model)
to a fixed threshold set to 0.5 and dividing them into two classes (HS and MS).
The LR model is trained using a single and a combination of 2, 3, 4 features and
the combinations exhibiting the best performance in terms of accuracy and Area
Under The Curve (AUC) are selected; then, for these combinations the 5-fold cross-
validation is implemented. Best performance in terms of classification are obtained
for the reading task (accuracy equal to 92.3%) by selecting 3 features, which are
gender, 5° percentile of Cepstral Peak Prominence Smoothed, and harmonic frames
ratio V/uV . The expanded uncertainty U(p) of the probability p for each task
is evaluated, thus providing a confidence interval; when the confidence interval
includes the discrimination probability set to 0.5, the classification of the subject is
considered "non-classifiable" and new classification metrics are defined, such as the
Realistic Accuracy and the Fraction of Classified (FoC). The implementation of
this procedure to the feature combination showing the best performance during
cross-validation (gender, CPPS5,prc and V/uV ), results in FoC of 92.3% and an
higher accuracy.
With the aim of validating VH device, considered a valuable aid for long-term
monitoring of fatigue, the parameters extracted from the microphone in air are
compared to the ones from VH by calculating differences ∆ between these measures.
Considering sustained vowel /a/ task, the analysis is performed on the parameters
local jitter (%), local shimmer (%), CPPSmedian (dB) and CPPSstd (dB); for balanced
and free speech task these differences are carried out for all descriptive statistics of



fundamental frequency f0 (Hz) and CPPS (dB). For the parameters local jitter,
CPPSmedian and CPPSstd the validation can be considered passed, while for the
others, such as local shimmer, significant differences in terms of ∆ values are noted.
Since the two devices have different characteristics, i.e. in terms of bandwidth,
and they receive as input different signals (the vibration induced by vocal folds
for the VH device and the air-pressure signal for the in-air microphone), the use
of the VH device requires the definition of specific cut-off values for the extracted
parameters. Additionally, the VH device is preferable both for convenience in
conducting acquisitions and for its insensitivity to other possible sound sources.
A proposal to assess fatigue is conducted with the use of differences δ between
the parameters extracted from the long-term and the short-term monitoring; this
comparison is carried out considering the parameters fundamental frequency f0,
CPPS (dB), Background Noise Level (90° percentile) in dBA and Sound Pressure
Level (dB). No significant difference in the behavior of the classes with regard to the
fatigue experienced is found; however, limitations can be overcome through both an
increase in the data-set and in the time interval of the records, being the considered
acquisitions too short (between 95 and 200 minutes) to demonstrate fatigue. The
parameters acquired with VH for the long-term evaluation are visualized over time
and a compensation on the speech intensity value with respect to the noise level is
operated.
Eventually, an evaluation of five vocal dose measures as indicators of long-term vocal
folds tissue exposure to vibration is provided, which are Time Dose, Cycle Dose,
Distance Dose, Energy Dissipation Dose and Radiated Energy Dose. Unless vocal
effort is significant among the other subjects, there is the problem of comparing
the vocal doses. To compute an assessment at consistent times, a minimum time
interval duration common to all subject is considered. Since the limit concerning
time interval duration too short for long-term assessment is found, this study is
conducted by increasing the time interval and by eliminating the subjects with a
short duration.

ii



i



Acknowledgements

Alla mia famiglia, che mi ha sempre sostenuto in tutto.
Ringrazio le mie amiche Martina e Nicholle per non essere mai lontane.

Grazie a tutti i miei amici e persone vicine
che mi vogliono bene e mi accettano nonostante i difetti.

Infine, ringrazio i miei due compagni di questo viaggio, Geronimo e Beatrice,
che anche se distanti siete stati un punto di riferimento

con cui condividere sfide e successi.

ii





Table of Contents

List of Figures vi

1 Introduction 1
1.1 Acoustic analysis of MS patients’ voice . . . . . . . . . . . . . . . . 1

2 Materials and methods 3
2.1 In-air microphone system . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Feature-extraction . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Classification-based feature selection . . . . . . . . . . . . . 16
2.1.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Expanded uncertainty analysis of the LR model . . . . . . . 18

2.2 Vocal Holter (VH) device . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Comparison of parameters extracted from the microphone in

air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Other parameters acquired with VH device . . . . . . . . . . 25
2.2.3 Intra-class and inter-class evaluation of VH parameters in

long-term assessment of fatigue . . . . . . . . . . . . . . . . 27
2.2.4 VH as aid to quantify vocal exposure . . . . . . . . . . . . . 35

3 Results 42
3.1 Logistic Regression results . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Feature-selection results . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Best performance of validation phase . . . . . . . . . . . . . 46

3.2 Realistic classification performance based on uncertainty evaluation 48
3.3 Validation in the use of VH . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Assessment of vocal fatigue . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Vocal doses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Conclusions 85

iv



A Appendix 90
A.1 Anatomy of the Phonatory system . . . . . . . . . . . . . . . . . . . 90
A.2 "Notturno" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 95

v



List of Figures

2.1 Flow-chart showing the various steps performed in the analysis . . . 4
2.2 Extracted features for balanced and free speech task . . . . . . . . . 8
2.3 Extracted features for sustained vowel /a/ task . . . . . . . . . . . 8
2.4 Number of combinations for all three tasks . . . . . . . . . . . . . . 17
2.5 Example of confidence intervals for both healthy and pathological

classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Parameters used to perform the comparison between the two devices

for sustained vowel /a/ task . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Parameters used to perform the comparison between the two devices

in the case of balanced and free speech task . . . . . . . . . . . . . 22
2.8 Example of delta values between the parameters extracted from

in-air and VH for each subject in the case of sustained vowel /a/ task 24
2.9 Example of delta values between the parameters extracted from

in-air and VH for each subject in the case of free speech task . . . . 24
2.10 Parameters extracted from VH device for the short-term evaluation,

used to perform the comparison with the long-term assessment . . . 27
2.11 Parameters extracted from VH device (every 75 s) for the long-term

evaluation, used to perform the comparison with the short-term
assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Parameters extracted from VH device (every 46 ms) for the long-
term evaluation, used to perform the comparison with the short-term
assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 Example of delta values between the parameters extracted from the
long-term and the short-term assessment for each subject in the case
of balanced and free speech task . . . . . . . . . . . . . . . . . . . . 29

2.14 Example of CPPSmedian parameter over time with reference to the
BNLLAF90 value present in the environment for one patient . . . . . 31

2.15 Example of correlation between the SPLmean and the BNLLAF90
parameter for one patient . . . . . . . . . . . . . . . . . . . . . . . 32

vi



2.16 Example of correlation between the f0,mean and the BNLLAF90 pa-
rameter for HS class . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 Example of SPLmean compensation with respect to the BNLLAF90
over time for one patient . . . . . . . . . . . . . . . . . . . . . . . . 34

2.18 Representation of the extracted slope values (dB/min) of the re-
gression line modelling the SPLmean parameter compensated with
respect to the BNLLAF90 over time for each subject . . . . . . . . . 34

2.19 Example of the mean value of SPLstd parameter for each subject
for long-term monitoring . . . . . . . . . . . . . . . . . . . . . . . . 35

2.20 Accumulation of the energy dissipation dose and the correspondent
voicing/unvoicing parameter over a 214-minutes segment of speech
for a male patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.21 Example of distance dose values at the minimum time interval of 95
minutes for each subject . . . . . . . . . . . . . . . . . . . . . . . . 40

2.22 Example of cycle dose values weighted with respect to the time dose
at the minimum time interval of 95 minutes . . . . . . . . . . . . . 41

3.1 Classification performance obtained without validation in sustained
vowel /a/ task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Classification performance obtained without validation in balanced
speech task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Classification performance obtained without validation in free speech
task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Classification performance obtained after computing 5-fold cross
validation in sustained vowel /a/ task . . . . . . . . . . . . . . . . . 46

3.5 Classification performance obtained after computing 5-fold cross
validation in balanced speech task . . . . . . . . . . . . . . . . . . . 47

3.6 Classification performance obtained after computing 5-fold cross
validation in free speech task . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Probabilities returned by the LR validated model without the im-
plementation of the expanded uncertainty for sustained vowel /a/
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for sustained vowel /a/ case
before the removal of "non-classified" . . . . . . . . . . . . . . . . . 50

3.9 Confusion matrix for sustained vowel /a/ with CPPSskewness as se-
lected feature before the removal of "non-classified" . . . . . . . . . 50

3.10 Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for sustained vowel /a/ case
after the removal of "non-classified" . . . . . . . . . . . . . . . . . . 51

vii



3.11 Confusion matrix for sustained vowel /a/ with CPPSskewness as se-
lected feature after the removal of "non-classified" . . . . . . . . . . 51

3.12 Classification performance obtained for sustained vowel /a/ with
CPPSskewness as selected feature after the removal of "non-classified" 52

3.13 Probabilities returned by the LR validated model without the im-
plementation of the expanded uncertainty for balanced speech task 52

3.14 Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for balanced speech task
before the removal of "non-classified" . . . . . . . . . . . . . . . . . 53

3.15 Confusion matrix for balanced speech task with gender, CPPS5,prc
and V/uV as selected features before the removal of "non-classified" 53

3.16 Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for balanced speech task
after the removal of "non-classified" . . . . . . . . . . . . . . . . . . 54

3.17 Confusion matrix for balanced speech task with gender, CPPS5,prc
and V/uV as selected features after the removal of "non-classified" . 55

3.18 Classification performance obtained for balanced speech task after
the removal of "non-classified" . . . . . . . . . . . . . . . . . . . . . 55

3.19 Probabilities returned by the LR validated model without the im-
plementation of the expanded uncertainty for free speech task . . . 56

3.20 Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for free speech task before
the removal of "non-classified" . . . . . . . . . . . . . . . . . . . . . 56

3.21 Confusion matrix for balanced speech task with HNRstd, CPPS5,prc
and V/uV as selected features before the removal of "non-classified" 57

3.22 Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for free speech task after the
removal of "non-classified" . . . . . . . . . . . . . . . . . . . . . . . 57

3.23 Confusion matrix for balanced speech task with HNRstd, CPPS5,prc
and V/uV as selected features after the removal of "non-classified" . 58

3.24 Classification performance obtained for free speech task after the
removal of "non-classified" . . . . . . . . . . . . . . . . . . . . . . . 58

3.25 Results of delta shimmer values for each subject in the case of
sustained vowel /a/ task . . . . . . . . . . . . . . . . . . . . . . . . 60

3.26 Results of delta jitter values for each subject in the case of sustained
vowel /a/ task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.27 Results of delta CPPSstd values for each subject in the case of
sustained vowel /a/ task . . . . . . . . . . . . . . . . . . . . . . . . 62

3.28 Results of delta shimmer values for each subject after the outliers
removal in the case of sustained vowel /a/ task . . . . . . . . . . . . 63

viii



3.29 Results of delta CPPS5,prc values for each subject in the case of
balanced speech task . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.30 Results of delta SPLmean values in the comparison between long-term
and short-term evaluation . . . . . . . . . . . . . . . . . . . . . . . 65

3.31 Results of delta f0,mean values in the comparison between long-term
and short-term evaluation . . . . . . . . . . . . . . . . . . . . . . . 65

3.32 Representation of f0,mean parameter over time with reference to the
BNLLAF90 value present in the environment in the case of one patient 66

3.33 Representation of SPLmean parameter over time with reference to
the BNLLAF90 value present in the environment in the case of one
healthy subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.34 Representation of SPLmean-BNLLAF90 correlation in the case of one
patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.35 Representation of SPLmean-BNLLAF90 correlation in the case of an
healthy subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.36 Representation of SPLmean-BNLLAF90 correlation for MS class . . . 69
3.37 Representation of SPLmean-BNLLAF90 correlation for HS class . . . 69
3.38 Representation of SPLmean-f0,mean correlation for HS class . . . . . 70
3.39 Representation of SPLmean compensation in respect to the BNLLAF90

over time for one patient . . . . . . . . . . . . . . . . . . . . . . . . 70
3.40 Representation of the extracted slope values (dB/min) of the regres-

sion line modelling the SPLmean parameter compensated in respect
to the BNLLAF90 over time for each subject . . . . . . . . . . . . . 71

3.41 Representation of SPLmean compensation in respect to the BNLLAF90
over time for an healthy subject . . . . . . . . . . . . . . . . . . . . 72

3.42 Representation of the mean value of SPLstd for each subject for the
long-term monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.43 Representation of the mean value of f0,std for each subject for the
long-term monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.44 Accumulation of the time dose and the correspondent voicing unit
step function in the case of one patient . . . . . . . . . . . . . . . . 74

3.45 Accumulation of the cycle dose and the correspondent voicing unit
step function in the case of one patient . . . . . . . . . . . . . . . . 75

3.46 Accumulation of the distance dose and the correspondent voicing
unit step function in the case of one patient . . . . . . . . . . . . . 76

3.47 Accumulation of the distance dose and the correspondent voicing
unit step function in the case of an healthy subject . . . . . . . . . 76

3.48 Accumulation of the energy dissipation dose and the correspondent
voicing unit step function in the case of one patient . . . . . . . . . 77

3.49 Accumulation of the radiated energy dose and the correspondent
voicing unit step function in the case of one patient . . . . . . . . . 77

ix



3.50 Time dose values at the minimum time interval of 95 minutes for
each subject under analysis . . . . . . . . . . . . . . . . . . . . . . . 78

3.51 Energy dissipation dose values at the minimum time interval of 95
minutes for each subject under analysis . . . . . . . . . . . . . . . . 79

3.52 Radiated energy dose values at the minimum time interval of 95
minutes for each subject under analysis . . . . . . . . . . . . . . . . 79

3.53 Energy dissipation dose values weighted in respect to the time dose
at the minimum time interval of 95 minutes . . . . . . . . . . . . . 80

3.54 Cycle dose values weighted in respect to the time dose at the mini-
mum time interval of 95 minutes . . . . . . . . . . . . . . . . . . . . 81

3.55 Distance dose values weighted in respect to the time dose at the
minimum time interval of 95 minutes . . . . . . . . . . . . . . . . . 81

3.56 Radiated energy dose values at the minimum time interval of 156
minutes for each subject under analysis . . . . . . . . . . . . . . . . 82

3.57 Radiated energy dose values weighted in respect to the time dose at
the minimum time interval of 156 minutes . . . . . . . . . . . . . . 83

3.58 Distance dose values at the minimum time interval of 200 minutes
for each subject under analysis . . . . . . . . . . . . . . . . . . . . . 84

3.59 Distance dose values weighted in respect to the time dose at the
minimum time interval of 200 minutes . . . . . . . . . . . . . . . . 84

A.1 Anatomical description of the larynx . . . . . . . . . . . . . . . . . 91
A.2 Example of ROC curve computed by the Classification Learner App

in Matlab (R2022b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x





Chapter 1

Introduction

This chapter provides an overview of the Multiple Sclerosis (MS) disease, which
involves a subgroup of the data-set analyzed in this work. In particular, the MS
pathology is exposed and then, vocal symptoms and acoustic changes occurring in
the affected people are described. The objective in this presentation is to offer a
comprehensive view of the main vocal features characterizing the speech material.
The physiological systems and mechanisms deputed in the production of human
voice are reported in the Appendix A.1.

1.1 Acoustic analysis of MS patients’ voice
Multiple Sclerosis (MS) is an autoimmune-mediated neuro-degenerative disease of
the central nervous system (CNS), distinguished by inflammatory demyelination
with axonal transection. The destruction of myelin sheaths of neurons results
in multiple lesions of the brain white matter, brainstem and spinal cord. The
diagnosis of MS is based on a combination of clinical findings, imaging and by
the demonstration of dissemination of MS disease characteristics in space and
time. As a result of lesions throughout the CNS, symptoms involving most motor
functional systems may be present. The management of symptoms, such as
spasticity, pain, weakness, tremor, cognitive impairment and gait dysfunction, is
integral in treatment. Current treatment for MS consist of a multidisciplinary
approach, including pharmacological therapies (i.e., disease-modifying therapies
(DMTs)), symptomatic treatment, lifestyle modifications, physiological support, and
rehabilitation intervention. Since speech is controlled by many areas in the brain,
MS lesions can cause several types of voice disorders, ranging from mild difficulties to
severe problems. Speech symptoms include alterations such as, language disorders,
dysphonia and dysarthria. One pattern that is commonly associated with MS is
scanning speech; scanning dysarthria produces speech in which the normal pattern
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Introduction

is disrupted, with abnormally long pauses between words or individual syllable of
words. Sometimes, the result of weakness and/or incoordination of the muscles of
the tongue, lips, cheeks and mouth led difficulties in being understood and also,
speech volume can be affected. Many patients with dysarthria also have dysphagia,
which is the difficulty of swallowing; speech therapists and language pathologists are
trained to evaluate, diagnose and relieve these problems [1]. Dysphonic symptoms
are explained based on the alterations in the neuronal concentration and projection
in the periaqueductal gray matter, a finding commonly seen in patients with MS [2].
In order to extrapolate relevant clinical information, an experienced physician may
evaluate the phonatory characteristics of an impaired patient; unfortunately, vocal
changes in patients with MS are not always perceived even by professional listeners,
either due to the intermittency of these changes or on their subtle presence. In this
sense, acoustic analysis can assist the physician’s perceptual assessment in the early
detection of these vocal symptoms or vocal changes. In addition, fatigue is the most
common symptom and 40% of patients describe it as the most debilitating one,
leading to loss of employment and impairment of activities of daily living. Fatigue
can be both, a direct effect of MS or due to secondary causes, such as depression or
sleep-related disorders. A proposal to assess this symptom is conducted evaluating
long-term acquisitions compared to short-term ones (the last considered as a sort
of "baseline"), since fatigue is expected as the recording progresses.

2



Chapter 2

Materials and methods

This work is carried out in collaboration with the speech therapy and rehabilitation
department of Don Gnocchi Hospital in Milan. Don Gnocchi Foundation was
established in 1945 under the will of don Carlo Gnocchi and today conducts its
activities by relying on the Italian Nation Health Service in twenty-five residential
facilities and twenty-seven clinics organized in territorial areas. The mission of the
Foundation is to provide for the health and care needs of those in conditions of
suffering and fragility, taking care of the patients and the persons called to be there
for them, such as family members, health-care professionals and volunteers. The
multidisciplinary team of caregivers and health-care professionals of the Foundation
provides cures for children with all forms of disabilities, treat with rehabilitation
patients of all ages, take care of non-self-sufficient elderly people and terminally
ill patients. The speech therapy and rehabilitation department of Don Gnocchi
Hospital treats patients with Multiple Sclerosis (MS), which are the class of
subjects involved in this thesis work. In particular, the effects of MS disease on
voice performance are investigated by analysing a data-set that includes voice
recordings of thirty-two subjects: sixteen healthy adults (HS) (mean age 42 years,
standard deviation approximately 12 years) and sixteen patients with MS (mean
age 44 years, standard deviation approximately 14 years). With the objective of
providing a more complete view of the work, the diagram presented in figure 2.1
submits a general outline of all the steps and data treated in different tasks.

3



Materials and methods

Figure 2.1: Flow-chart showing the various steps performed in the analysis

The voice recordings of the involved subjects are simultaneously performed with
a microphone in air and with a contact microphone-based device, hereafter named
Vocal Holter (VH). About the speech material, subjects are asked to perform: three
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repetitions of the vowel /a/ at a comfortable pitch, level and duration; the reading
of a phonetically balanced speech ("Notturno"); an approximately one-minute of
free speech. "Notturno", which is reported in Appendix A.2, has the property of
being a continuous speech, consisting of phonemes that occurs approximately the
same frequency at which they occur in normal conversation in that specific language
(that in this case, corresponds to Italian language) [3]. In addition to the mentioned
material, long-term monitoring data is also acquired with VH device, comprising
the acquisition of a maximum period of 4 hours of subjects’ daily activities. About
the signals acquired from the microphone in air, the phases of pre-processing and
harmonic frame selection are executed in Matlab (R2022b) environment and then,
the extraction of parameters is operated. The number of extracted features varies
depending on the task under consideration: for the balanced and free speech task
47 features are evaluated, while in the case of sustained vowel /a/ there are 56
available features. Then, with the use of a Logistic Regression (LR) model, data
are classified comparing the probability p (returned by the model) of belonging
to the positive class to a fixed threshold, which is typically set at 0.5 for binary
classifiers. The elements displaying a p higher than the threshold, are assigned to
the positive class which corresponds to MS patients, otherwise are attributed to
the negative class of HS subjects. The LR model is trained using a single feature
and a combination of 2, 3, 4 features and the combinations exhibiting the best
performance in terms of accuracy and Area Under The Curve (AUC) are selected;
then, for these combinations, the 5-fold cross-validation is implemented with the use
of the Classification Learner App in Matlab. In addition, the expanded uncertainty
U(p) of the probability p provided by the LR model for each task is evaluated, thus
providing a confidence interval for each probability value. When the confidence
interval includes the discrimination probability set to 0.5, the classification of the
subject is questionable and it is considered "non-classifiable". As a consequence of
this decision, new classification metrics are defined, such as the Realistic Accuracy
and the Fraction of Classified (FoC).
The main aim of the thesis is to validate the use of VH device as an aid for long-
term monitoring of fatigue and vocal dysfunctions. To achieve this purpose, the
parameters extracted from the microphone in air are compared to the ones returned
from VH by calculating differences ∆ between these measures. These comparisons
are carried out for the short-term assessment, being the long-term evaluation
conducted with the contact microphone-based device only. Considering the three
repetitions of sustained vowel /a/, the analysis is performed on the parameters local
jitter (%), local shimmer (%), CPPSmedian (dB) and CPPSstd (dB); for balanced
and free speech task these differences are carried out for all descriptive statistics of
fundamental frequency f0 (Hz) and CPPS (dB). Additionally, a proposal to assess
fatigue is conducted with the use again of differences δ between the parameters
extracted from the long-term and the correspondent short-term monitoring (i.e.,
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balanced and free speech task)), the last considered as a sort of "baseline" (i.e., the
parameters during the first instants of the evaluation); this comparison is carried
out considering the parameters fundamental frequency f0, CPPS (dB), Background
Noise Level (90° percentile) in dBA and Sound Pressure Level (dB). In this analysis,
a difference in the behavior of the two classes with respect to the fatigue is expected.
The parameters acquired with VH for the long-term evaluation are visualized over
time and a compensation on the speech intensity value with respect to the noise
level is operated. The main limitations derive from the number of subjects involved
that is low, and in the time time interval of the acquisitions, too short (between
95 and 200 minutes) to compute an assessment on vocal fatigue. Eventually, an
evaluation of five vocal dose measures as indicators of long-term vocal folds tissue
exposure to vibration is provided, these are the time dose, the cycle dose, the
distance dose, the energy dissipation dose and the radiated energy dose. Since the
limit concerning time interval duration too short for long-term assessment is found
also in the evaluation of the doses, this study is conducted by increasing the time
interval and by eliminating the subjects with a short duration.

2.1 In-air microphone system
For the present study, the voices of the involved subjects are recorded using an in-air
microphone system placed at a distance from the mouth of 30 cm, characterized
with a resolution of 16-bit and setting the sampling rate at 44.1 kSa/s. The in-air
microphone records are available in .wav format. The purpose in this first part
of the analysis concerns the description of the method used to determine vocal
parameters and the identification among these of the most representative ones,
leading to the discrimination between the two classes of pathological and healthy
subjects.

2.1.1 Pre-processing
The pre-processing phase is performed in parallel for all three tasks (sustained
vowel /a/, balanced and free speech). First, all the records are initially listened
and analysed with the support of the software Audacity (version 3.2.5), in order
to remove the sections at the beginning and at the end of the vocal pieces, which
can be considered not relevant for the aim of this work. After that, each signal
(which corresponds to one subject) is loaded and re-sampled in Matlab (R2022b)
environment at 44.1 kSa/s, which is a value commonly used in literature. Then,
the control of the mean value for the entire signal is done. When the mean value is
higher than 20% of the root mean square RMS (a.u.) value, it is removed. This
step is followed by normalization with the respect to the amplitude: the signal is
normalized to the absolute value of the maximum of the analysed signal. After
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this stage, a subdivision according to the precise task under analysis is performed:
in the case of balanced and free speech, signal samples are grouped into frames of
1024 samples, i.e., a time interval of 23 ms, which is of the same order of magnitude
of inter-syllabic pauses. While in the case of the three repetitions of the vowel
/a/, signal samples are grouped into pseudo-periods, which are identified through
an auto-correlation algorithm. An important operation is implemented removing
silence frames and, to enable this, the idea is to use a fixed threshold equal to
half of the RMS value of the whole signal. In more detail, frames of 1024 samples
are shifted over the signal and if the RMS value of each frame is above the set
threshold, then it is considered as a non-silence frame (voiced) and it is saved in
an array to perform subsequent processing. Otherwise, if the result is negative
then it is a silence frame and can be discarded. The following control is performed
selecting harmonic frames according to a specific criterion. This criterion consists in
extracting the parameters HNR and f0 value (the description of the determination
of these two measures will be exposed later in this chapter) of each voiced frame
and selecting only the frames that exhibit a value of HNR greater than 0 dB and
that have a frequency jump between adjacent frames not lower than -25% and not
higher than +50%. Thanks to this check, only frames that are characterized by
harmonic content not lower than the noise energy in each frame will be promoted
to the next part of this study, that corresponds to the feature extraction step.

2.1.2 Feature-extraction
The extraction of the parameters coming from the spectral, cepstral and time
domain, is performed for each block signal selected during the pre-processing phase.
As already stated in the previous section, two different operations are used for the
three cases under analysis: in the case of balanced and free speech, the signal is
evaluated with a window length of 1024 samples, while in the case of sustained vowel
/a/ is preferable to use pseudo-periods as frames. Only the parameters related to the
harmonic frames of the whole signal, are saved and considered to implement feature
extraction. In this way, the collected sequences of the extracted parameters are
transformed into a statistical distribution, which can be described with statistical
metrics, in order to reduce the size of the collected data and, to achieve a more
representative observation. In particular, the nine descriptive statistics of mean,
median, mode, 5-th percentile, 95-th percentile (as indices of central tendency),
range, standard deviation (as measures of variability) and skewness and kurtosis
(as shape parameters) are calculated. For all three tasks, the distribution of
four acoustic parameters (i.e., Harmonic to Noise Ratio, fundamental frequency,
Root Mean Square and Cepstral Peak Prominence Smoothed), represented with
the already mentioned statistics are evaluated; only in the case of the sustained
vowel /a/ task, nine perturbation parameters are considered. Furthermore, three
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extracted parameters have been added for all the tasks. The figures 2.2 and 2.3
summarize the extracted parameters according to the task under observation. The
description of the perturbation parameters and their implementation in Matlab
scripts refers to the software instruction manual of MDVP, Model 5105 [4]. For the
other recorded metrics and the acoustic parameters, their definition is presented in
the section that follows.

Figure 2.2: Extracted features for balanced and free speech task

Figure 2.3: Extracted features for sustained vowel /a/ task
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Acoustic parameters

Harmonic to Noise Ratio HNR and fundamental frequency f0

Harmonic to noise ratio is the average ratio of the harmonic spectral energy and it
is evaluated in dB. The determination of the HNR and the fundamental frequency
f0 is computed with the method of the auto-correlation (AC) [5]. Considering a
stationary (i.e., its statistics are constant) time signal x(t), the auto-correlation
function of the lag τ is defined as:

AC =
Ú

x(t)x(t + τ) dt (2.1)

This function has a global maximum at zero lag, which corresponds to the power
of the signal. To evaluate the harmoniousness of the voice signal, the parameter
HNR is calculated as:

HNR = 10 log10
AC(T )

AC(0) − AC(T ) (2.2)

where AC(T ) is the auto-correlation function at lag T and AC(0) is the auto-
correlation function at zero lag. Performing a normalization of AC of the signal to
the maximum value of AC at zero lag, follows that, at the numerator the relative
power of harmonic components is expressed, while at the denominator the relative
power of noise is derived. The normalized HNR formula can be rewritten as:

HNR = 10 log10
AC(T )/AC(0)

1 − AC(T )/AC(0) (2.3)

The evaluation of HNR is computed on non-silent frames only, to discriminate valid
(harmonic) from non-valid (unharmonic) signal frames. The fundamental frequency
f0 of a periodic signal of period T , is defined as f0 = 1/T . While for healthy voices,
the HNR value is in most of the cases above 0 dB, pathological voices can sometimes
lead to negative values of HNR, i.e., the energy of the harmonic component is
lower than the noise level. In this work, only frames that exhibited an HNR value
higher than 0 dB were selected. As previously mentioned, an additional condition
on frequency jumps is set, considering frames as invalid if they differ more than
half an octave. The fundamental frequency f0 of a periodic signal of period T ,
is defined as f0 = 1/T . Regarding the voice signal, f0 represents the number of
cycles produced by the vocal folds per second. Being the vocal folds of men and
women different both in size and vibration, this results in different phonation (see
the Appendix A.1 for more details). Several studies report that male’s vocal tract
is longer than female’s, and their vocal folds are thicker and larger; consequently,
they vibrate at approximately one-half the frequency of women’s during phonation,
thus producing a lower fundamental frequency [6] [7]. The gender in this work is
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considered along with the other extracted parameters as a feature for each signal
under analysis in all three tasks, and a sub-division between frequency ranges is
performed: from 75 Hz to 300 Hz for males and from 100 Hz to 400 Hz for females.

Root Mean Square RMS

The RMS value xRMS of a set of n signal samples {x1, x2, ..., xn} is defined as the
square root of the arithmetic mean of the squares of the samples:

xRMS =

öõõô 1
N

NØ
n=1

x2
n (2.4)

Being the operation of square root, computed only after the normalisation in
amplitude of the signal, the RMS parameter is expressed in "arbitrary units" (a.u.).
The RMS value is employed in the pre-processing phase to discriminate the silence
frames. As previously mentioned, silence frames are removed from the signal
throughout the use of a threshold, equal to half of the RMS value of the entire
signal. A 1024-samples window is shifted over the recorded signal, to verify if the
RMS value of each window is above the threshold. If the result is negative, then it
is considered a silent frame and it is removed, otherwise voiced frames are saved in
an array.

Cepstral Peak Prominence Smoothed CPPS

To obtain a complete overview of the parameter, it is first important to expose what
the Cepstrum is and how it is obtained. The term derives from the anagram of the
word spectrum, and mathematically is the spectrum of a logarithmic spectrum of a
time waveform. With more detail, to produce a cepstrum, a Fourier transformation
of an acoustic signal is performed first to create a spectrum, and the voice signal
is transformed from the time domain to the frequency domain. The first power
spectrum shows the frequency distribution of the signal energy. Subsequently,
performing a Fourier transformation of the spectrum, produces the cepstrum. In
doing so, the signal is transformed from the frequency domain to the quefrency
domain (which is equal to 1/frequency), and the second spectrum offers a better
understanding of how periodic the harmonic components are [8] [9]. The Cepstrum
is represented in Eq. (2.5):

Cp(τ) = |F{log(|F{x(t)}|2)}|2 (2.5)

where x(t) is the voice signal, F is the Fourier transformation, |F{x(t)}|2 is the
signal power spectrum and, τ is the quefrency (that is the anagram of the word
frequency) and it is a measurement of time, but in the cepstrum domain. The
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rhamonics (i.e., the cepstrum peaks in the domain of quefrency) occur at the
quefrency at which the original time waveform has the fundamental frequency.
While the parameters in the time domain (e.g., jitter and shimmer, presented later
in this chapter), whose limitation is to depend on the accurate identification of
cycle boundaries (i.e. where a cycle of vocal folds vibration starts and finishes) and
thus, they become unreliable with highly perturbed signals, by switching the signal
in the quefrency domain attempts to circumvent this problem [10]. Taking a step
back on the production of the human voice, the speech signal x(t) can be defined
as the convolution in time of the following components; g(t) that is related to the
glottal pulses (modelled as a long train of glottal pulses), v(t) that represents the
impulse response of the vocal tract and lastly, r(t) which is associated to the effect
of the acoustic wave radiation at the lips (modelled as an impulse response):

x(t) = g(t) ∗ v(t) ∗ r(t) (2.6)

Performing the Fourier transformation of the quasi-periodic signal x(t) and therefore,
by switching to the frequency domain, the operation of convolution becomes a
product. Then, the power spectrum can be obtained:

X(f)2 = G(f)2 · H(f)2 (2.7)

where H(f) represents the combined result of vocal tract and lip radiation [11].
The logarithm, which can be easily isolated through a filter, allows to convert the
product of the Eq. (2.7) into a sum and thus, become an aid in separating the
two components of the speech signal. Hence, the concept of liftering (i.e., linear
filtering) of the log spectrum, as a way of emphasizing the periodic component of
the log spectrum, is applied to enhance the ability to detect echoes from a signal.
The cepstrum can be used in the analysis of voice signal for pitch detection, in
fact the quefrency at which the cepstral peak occurs, provides information on the
fundamental frequency of the considered frame, whereas, the prominence with
respect to the level of “background” noise indicates the harmoniousness of the
signal. In addition to this, the cepstrum is also useful for obtaining information
on the spectral envelope of the signal for speech analysis. From cepstrum two
important parameters to assess the quality of voice can be defined, namely the
cepstral peak prominence (CPP) and, its smoothed version (CPPS). The CPP is
the difference in amplitude between the cepstral peak and the corresponding value
on the linear regression line directly below the peak. CPP is, thus, a measure of
the degree of harmonic organization. An healthy voice, which has a well-defined
harmonic structure, has a strong cepstral peak, while signals lacking a well-defined
harmonic structure (i.e., in the case of a pathological voice) have small CPPS. CPPS
considers two smoothing steps before calculating the cepstral peak prominence.
Both parameters are expressed in dB and they show to correlate with perception
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of breathiness, with CPPS being the best predictor. Being both CPP and CPPS
based on a peak-to-average calculation of the fundamental frequency and, not
relying on the accurate determination of it, tend to be more reliable than other
measures of periodicity. For the implementation of the CPPS algorithm, a Matlab
(R2022b) script is developed. Signals are sampled at a frequency of 22050 Hz and
CPPS is computed every 2 ms frame length, using a 1024-point Hanning-type
analysis window (of duration 46 ms). For each window, a series of steps lead first
to the cepstrum domain and, then, to the peak prominence estimation. Starting
from the signal in the time domain, the Fast Fourier Transform (FFT) algorithm
is computed on the windowed signal, in order to obtain the spectrum amplitude
and lastly, the FFT algorithm is performed again on the log power spectrum to
reach the cepstrum domain. Furthermore, two smoothing steps are implemented
on the obtained cepstra: the cepstra of each considered window are smoothed in
time using a 14 ms (which corresponds to seven frames); then, the smoothing in
quefrency is performed using a 7-bin averaging window. In the following step,
the regression line is calculated between 1 ms and the maximum quefrency value.
The first millisecond is excluded, since a property of the cepstrum is that at low
quefrencies is more affected by the spectral slope, than by the spectrum periodicity.
As already mentioned, the CPPS is evaluated as the difference (in dB) between
the peak in the cepstrum and the corresponding value at the same quefrency on
the regression line. Since the quefrency at the cepstral peak generally corresponds
to the inverse of the fundamental frequency, the cepstral peak is searched between
3.3 ms (which corresponds to 300 Hz) and 16.7 ms (i.e., 60 Hz); this is performed
in order to include the typical fundamental frequency range of female and male
adults [12].

Other recorded metrics

In a first part of the work, the signal is analysed for the detection of voiced and
unvoiced frames. As mentioned before, silent and non-silent frames are identified
with the use of the RMS value, in this case the number of silent frames is taken
into account, and finally, they are removed. The second step is the selection of
harmonic and non-harmonic frames: this is achieved by verifying the HNR value of
the considered frame and then, checking frequency jumps. Based on this analysis,
it is possible to obtain three other metrics that will be considered as classification
parameters:

• Non-silent frame ratio (%):

V/S = 100 · nvoiced

nvoiced + nunvoiced

(2.8)

where the number of voiced frames (nvoiced) includes both harmonic and
non-harmonic frames, and (nunvoiced) indicates the number of silent frames.
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• Harmonic frame ratio (%):

V/uV = 100 · nharmonic

nharmonic + nnon−harmonic

(2.9)

• Length: the number of harmonic (valid) frames after the pre-processing phase.

Period and amplitude parameters

In contrast to balanced and free speech tasks, in the case of the repetitions of
three /a/ phonemes, nine stability parameters in period and amplitude are also
derived. These parameters provide an assessment of the stability in period and in
amplitude of the vocal signals by measuring the variations in these quantities from
cycle-to-cycle.

Absolute Jitter Jita

It is an absolute measure in microseconds (µs) of the period-to-period variability
of the pitch period with the exclusion of voice breaks.

Jita = 1
N − 1

N−1Ø
i=1

|T (i)
0 − T

(i+1)
0 | (2.10)

where T
(i)
0 , i = 1,2, ...N are the extracted pitch period data and N the number of

extracted pitch periods.

Jitter Percent Jitt

It is a relative evaluation of the period-to-period variability of the pitch.

Jitt =
1

N−1
qN−1

i=1 |T (i)
0 − T

(i+1)
0 |

1
N

qN
i=1 T

(i)
0

(2.11)

where T
(i)
0 , i = 1,2, ...N are the extracted pitch period data and N the number

of extracted pitch periods. Both Jita and Jitt represent the measurements of the
same type of pitch perturbation. While Jita is an absolute measure, which makes
it strongly related to the fundamental frequency of the voice signal (i.e. higher
pitch results into lower Jita, thus, normative values for males and females differ),
in the case of Jitt this dependency is significantly reduced.
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Relative Average Perturbation RAP

It is a relative measurement of the irregularity of the pitch period of the voice with
a smoothing factor of 3 periods.

RAP =
1

N−2
qN−1

i=2 |T
(i−1)
0 +T

(i)
0 +T

(i+1)
0

3 − T
(i)
0 |

1
N

qN
i=1 T

(i)
0

(2.12)

where T
(i)
0 , i = 1,2, ...N are the extracted pitch period data and N the number of

extracted pitch periods.

Pitch Period Perturbation Quotient PPQ

It is a relative evaluation of the period-to-period variability of the pitch within the
signal with a smoothing factor of 5 periods.

PPQ =
1

N−4
qN−4

i=1 |1
5
q4

r=0 T
(i+r)
0 − T

(i+2)
0 |

1
N

qN
i=1 T

(i)
0

(2.13)

where T
(i)
0 , i = 1,2, ...N are the extracted pitch period data and N the number of

extracted pitch periods. Jita, Jitt, RAP, PPQ are parameters used to quantify
the frequency variation from cycle-to-cycle within the vocal signal (stability in
frequency). Cycle-to-cycle irregularity can be related with the inability of the vocal
cords to support a periodic vibration with a defined period, typical of hoarse and
breathy voices.

Coefficient of Fundamental Frequency Variation vf0

It represents the relative standard deviation of the fundamental frequency and
reflects any variation of f0 within the voice signal.

vf0 = σ

f0
=

ñ
1
N

qN
i=1( 1

N

qN
j=1 f

(j)
0 − f

(i)
0 )2

1
N

qN
i=1 f

(i)
0

(2.14)

where f0 = 1
N

qN
i=1 f

(i)
0 and f

(i)
0 = 1

T
(i)
0

are the period-to-period fundamental

frequency values, T
(i)
0 , i = 1,2, ...N are the extracted pitch period data and N the

number of extracted pitch periods.
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Shimmer ShdB

It measures in dB the very short term (cycle-to-cycle) irregularity of the peak-to-
peak amplitude of the voice.

ShdB = 1
N − 1

N−1Ø
i=1

|20 log(A(i+1)

A(i) )| (2.15)

where A(i), i = 1,2, ...N are the peak-to-peak amplitude data and N the number
of extracted impulses.

Shimmer Percent Shim

It is a relative measure of the period-to-period variability of the peak-to-peak
amplitude within the voice signal.

Shim =
1

N−1
qN−1

i=1 |A(i) − A(i+1)|
1
N

qN
i=1 A(i) (2.16)

where A(i), i = 1,2, ...N are the peak-to-peak amplitude data and N the number of
extracted impulses. Although Shim and ShdB use different measures for the result
(i.e., percent and dB), both are relative evaluations of the same type of amplitude
perturbation.

Amplitude Perturbation Quotient APQ

It is a relative evaluation of the period-to-period variability of the peak-to-peak
amplitude within the analysed voice sample at a smoothing of 11 periods.

APQ =
1

N−10
qN−10

i=1 | 1
11
q10

r=0 A(i+r) − A(i+5)|
1
N

qN
i=1 A(i) (2.17)

where A(i), i = 1,2, ...N are the peak-to-peak amplitude data and N the number
of extracted impulses. ShdB, Shim and APQ are measures of shimmer by showing
the irregularity of the peak-to-peak amplitude of the voice.

Coefficient of Amplitude Variation vAm

It reveals any variations in the cycle-to-cycle amplitude of the voice.

vAm =

ñ
1
N

qN
i=1( 1

N

qN
j=1 A(j) − A(i))2

1
N

qN
i=1 A(i) (2.18)

where A(i), i = 1,2, ...N are the peak-to-peak amplitude data and N the number
of extracted impulses. Either random or regular short-term or long-term variations
increase the value of vAm.
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2.1.3 Classification-based feature selection
The feature selection (FS) process is based on the evaluation of the performance of
a Logistic Regression (LR) model (described in Appendix A.3), which is trained
in Matlab R2022b environment, using a different number of input features. The
number of features employed, varies depending on the task under consideration:
while in the case of balanced and free speech task there are 47 available features,
for the three repetitions of the vowel /a/ the number of features become 56 (see
section 2.1.2 for more details). However, it is valuable to report that only the ones
with low correlation and deemed to be statistically significant are considered [13].
The LR algorithm implemented in this study uses the Matlab built-in function
fitglm, which receives as input the data to be classified, the real class (0 or 1)
and other model specifications to define the distribution of the response variable
as binomial (‘Distribution’, ‘binomial’) and to set the logit function (shown in
Eq. (A.1)) as the link function (‘Link’, ‘logit’). The function returns the LR
model, the probabilities and an evaluation of the coefficient standard errors and
covariances, useful to estimate the regression model’s performance. The algorithm
first selects the number of k features to be combined and, subsequently, creates the
combinations through the binomial coefficients of the Eq. (2.19). About the features
combinations, in this step of the work, the Matlab (R2022b) function nchoosek is
used, which returns both the binomial coefficients and all the combinations. The
function receives as input the number k of features considered (which can be 1,
2, 3 and 4) and the total number of features n (previously mentioned as 47 for
the balanced and free speech task and 56 for the vowel /a/). A summary of the
number of non-repeated feature combinations obtained is presented in figure 2.4 for
all three tasks. As shown, when the number of considered features k rises, also the
computational cost of the algorithm in the Matlab environment becomes higher,
which is why the number of features chosen is set to range from 1 to 4.A

n

k

B
= n!

k!(n − k)! (2.19)

Before proceeding in the training of the LR model with a single feature or a
combination of 2, 3 or 4 features, a check on the ρ2 values of each combination
of features and their p-values is computed. The coefficient of determination ρ2

is calculated for each feature as the square value of the correlation, performed
with the use of the Matlab function corr which also returns the p-values of the
correlations. First, if the value of correlation coefficient is between 0 and 0.5 and
the corresponding p-value is lower than 0.05, then the combination of features is
accepted. This first check is done for all possible combinations of features and if
the condition is satisfied, then the pair, triplet or quadruplet is considered valid,
and it is sent as input to the LR model. When the model is obtained, a second
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check is performed on the p-value of the identified parameters βi: in this case a
fixed threshold higher than the previous one is used, since it is noted that with
a p-value equal to 0.05 no combination of features is selected [14]. The model
returns for each observation a probability value between 0 and 1, which with the
use of a fixed threshold set at 0.5, is converted into a binary value 0/1 which
represents the membership (predicted by the model) of an element to one of the two
classes. The elements characterized by p higher than the threshold (i.e., p > 0.5)
are assigned to the positive class (Class 1), otherwise if the probability is lower,
to the negative class (Class 0). In this work, the negative class is associated
with the healthy control group (HS) and the positive Class 1 with the group of
patients with Multiple Sclerosis (MS). To obtain the confusion matrix (see the
Appendix A.3 for more detail), the probabilities returned by the built-in function
predict are compared to the real responses. Also, with the confusion matrix the
typical metrics of classification performance for each combination are derived, these
are Accuracy, Specificity, Sensitivity, Precision and AUC (their definition is reported
in the Appendix A.3). Lastly, at the end of the FS algorithm a combination of
features (for each k) with the best performances (which will be used later during
the validation phase) are selected; to allow this, the combination of features with
the highest accuracy value is chosen and in the case there are more than one with
the same maximum accuracy value, the one with the highest AUC value is taken,
being the latter a good indicator of the prediction capability of each trained model.

Figure 2.4: Number of combinations for all three tasks

2.1.4 Model validation
The validation of the logistic regression model is performed after FS process with
the use of the Classification Learner App, within the Matlab (R2022b) environment.
k-fold cross validation with k = 5 is implemented in order to avoid overfitting
errors and it is most often used when the data-set is not very large in size. This
algorithm consists of partitioning the data into five subsets of equal size, using
one subset at a time in rotation to validate the model and the other four subsets
to train the model; being repeated five time, at the end all five subsets are used
once as validation set. The steps performed during the validation phase consist of,
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first, loading the input data matrix containing the features and their class in the
Classification Learner App: the matrix of healthy subjects HS and the matrix of
patients MS are combined together, and each subject HS/MS has assigned a label
0/1 that corresponds to their class of membership; after that, the combination of
features with the highest performance previously selected, is manually inserted in
the interface and the validation of the LR model is performed. The App allows
to choose different classification models from several available, including Logistic
Regression. The Classification Learner App returns as output the confusion matrix
relative to the validation phase of the model and within this information it is
possible to obtain the values of all the classification metrics, since the App provides
only Accuracy, ROC curve and the relative AUC value. In addition, there is the
possibility for each feature combination to recreate the validated model in Matlab
environment with the command “Generate Function” in the Export section.

2.1.5 Expanded uncertainty analysis of the LR model
Eventually, the final step of the work regarding the vocal analysis from in-air
microphone system, is the evaluation of the expanded uncertainty U(p) of the
probability p returned by the LR model in the Classification Learner App in
Matlab (R2022b). The performance metrics described in section 2.1.3 were obtained
comparing the probability expressed by Eq. (A.2) to the default threshold equal
to 0.5. However, the standard uncertainties of the regression coefficients βi and
their mutual covariances can be taken into account to provide a more realistic
performance evaluation. With this method, the variance u2(p) can be estimated
according to the approach proposed in [15]:

u2(p) =
NØ

i=1
( ∂p

∂βi

)2 · u2(βi) + 2 ·
N−1Ø
j=1

·
NØ

k=j+1
( ∂p

∂βj

) · ( ∂p

∂βk

) · u(βj, βk) (2.20)

where u(βi) is the standard uncertainty of each regression coefficient, u(βj, βk) is
the covariance of each couple of coefficients βj and βk. The sensitivity coefficients
of p are obtained by computing partial derivatives with respect to the regression
coefficients βi as expressed in:

( ∂p

∂β0
) = p · (1 − p)

( ∂p

∂βi

) = Fi · p · (1 − p); i ≥ 1
(2.21)

where Fi represent the selected features [16] [14]. The expanded uncertainty U(p) is
obtained by multiplying the positive square root of Eq. (2.20) by a coverage factor
of 2; this allows the creation of confidence intervals [p − U(p) ÷ p + U(p)] for each
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probability value returned by the LR validated model. The expanded uncertainty is
graphically represented by vertical error bars as shown in figure 2.5. Observing this

Figure 2.5: Example of confidence intervals for both healthy and pathological
classes.

example, there are subjects whose confidence interval includes the discrimination
probability threshold set at 0.5, thus making questionable their involvement in
the binary classification. In these cases, the decision is made to tag these subjects
as “non-classifiable” and therefore, a third class is introduced. Subsequently, in
order to have an objective evaluation of the effect of “non-classified” subjects
on previously obtained classification performance, new metrics are introduced
such as the Realistic Accuracy (AccuracyR) and the Fraction of Classified (FoC).
The Realistic Accuracy is nothing different but the calculation of the accuracy as
performed in Eq. (A.3) by excluding the elements belonging to the third class of
“non-classified”. A further parameter defined to evaluate the significance of realistic
performance, is the Fraction of Classified which is the faction of classified elements
with respect to the total number of elements.
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2.2 Vocal Holter (VH) device

The Vocal Holter (VH) device is a monitoring system that allows a relationship
between daily voice use and voice disorders to be assessed. The VH kit is composed
by three elements, which are: the Data Acquisition and Processing (DAP) unit,
which embeds a microphone in air and a spacer in order to maintain the subject’s
mouth at a fixed and known distance from in-air microphone during calibration;
the contact microphone (model hx-505-1-1); the power adapter with its cable. The
contact microphone measures the skin vibrations caused by the vocal folds’ activity
[17]. It is important to place the device around the subject’s neck, making sure that
the ending parts of the collar adhere as much as possible to the skin area above
vocal cords; moreover, once the device is placed, it should be comfortable for the
user because it can not be moved for the entire duration of the recording. Since each
subject has different body characteristics, VH device is also equipped with a pin
allowing to widen or tighten the collar depending on the size of the neck. The device
samples the signal induced by vocal folds’ activity at a rate of 44.1 kSa/s using 16
bit of resolution. It is noted that, with respect to the microphone in air, the use of
a contact microphone-based device allows to minimize the effects of sound sources
different from the signal of interest. The samples acquired with VH are grouped
into frames of approximately 46 ms and only voiced frames are processed [18]. In
addition, it is reported that VH device uses the same method of the microphone
in air for the harmonic frames selection (presented in section 2.1.1). In order to
correctly use the VH device, the subsequent steps are followed: connect the contact
microphone to the DAP unit and make sure the subject wears the collar arund the
neck; turn on the DAP unit and connect the PC to Wi-Fi access point created by the
device; open the web interface on the PC and select the operation to be performed;
once the vocalization is completed, the DAP unit returns the data and as a result,
a message window is shown with the value of the estimated parameters. Data
stored in the internal memory of the DAP unit are rendered available in .txt format.
Either short-term or long-term vocal quality assessment can be performed with
the VH device. Regarding short-term assessment, this consists in the same vocal
material that is used with the microphone in air; three repetitions of the vowel /a/
at a comfortable pitch, level and duration; the reading of a phonetically balanced
speech ("Notturno"); an approximately one-minute free speech. The VH device
can measure vocal and environmental parameters; regarding the vocal parameters,
these are the Sound Pressure Level (SPL) in dB, the fundamental frequency f0 in
Hz, the Voicing Time Percentage PPT (%), which is defined as the percentage of
time spent phonating during the total monitoring period, the Smoothed Cepstral
Peak Prominence in dB and, the local jitter and shimmer both expressed in %
(the last two concerning only the uttering of a continuous vowel). In order to
estimate the speech SPL of the speaker at a fixed distance d0 of 22 cm in front of
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the mouth, each subject has to perform a preliminary calibration, which consists in
the repetition of the vowel /a/ at increasing levels in front of the in-air microphone
integrated in the DAP unit. As environmental parameters the Background Noise
Level (BNL) in dB, the air temperature (θ) in °C and the air relative humidity, are
derived. All these parameters vary depending on the task under analysis or on the
type of assessment undergoing (short-term/long-term evaluation). With respect
to in-clinic recording of voice, in-field long-term monitoring can offer insight into
fatigue assessment and can help to identify vocal dysfunctions; in this work, with
the use VH device long-term vocal quality evaluation is considered, comprising the
records of a maximum period of 4 hours of subjects’ daily activities. After the
subject vocally performs either short-term or long-term assessment, the data are
processed by the DAP unit of VH and can be downloaded with the implementation
of a proper script in Matlab (R2022b) environment. In addition, the same data-set
of subjects already used for the in-air microphone evaluation, is employed with
VH device. The main aim of the investigation is to validate the use of VH as
a tool, which on the same level as the in-air microphone, is useful in providing
distributional parameters that are able to characterize vocal health. This objective
is carried out through the calculation of differences ∆ between the parameters
extracted from the in-air microphone and the device VH.

Another study that is undertaken is to measure the fatigue reported by subjects
during long-term monitoring with respect to short-term (i.e., balanced and free
speech task); this comparison is carried out with the use of differences δ, between
the parameters extracted from the two types of assessments. In addition to this,
voice parameters over time in relation to the environment are visualized for each
subject and finally the differences between the two classes of HS and MS are
considered. Eventually, efforts are focused on the evaluation of vocal dose measures
as indicators of the long-time exposure of the vocal folds tissue to vibrations (i.e.,
vocal load).

2.2.1 Comparison of parameters extracted from the micro-
phone in air

In this part of the work all the various steps aimed at validating the use of VH
for monitoring voice quality are presented. The concept behind this evaluation
is that, if acquisitions does not only take place during in-clinic consultation, but
are performed during subjects’ daily activities, it is important to use a device
that can exclude the background noise, which normally occurs in an uncontrolled
environment; a contact microphone-based device can accomplish this task. Based
on this assumption, the question arises whether VH provides comparable (or at
least congruent) information to the one obtained from the microphone in air. With
this purpose, the analysis is performed by calculating the differences, indicated with
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greek capital letter ∆, between the extracted parameters (obtained in section 2.1.2)
from the microphone in air (which will be simply called in this study as MIC in
order to differentiate it) and the parameters that are stored inside the DAP unit
acquired with VH. To better clarify this concept, the figures presented in this
section derive from the application of the Eq. (2.22) to all the parameters available
for a certain task:

∆ = MIC − V H (2.22)

These comparisons are carried out for the short-term assessment (being the long-
term evaluation conducted with VH only), which includes the three repetitions of
sustained vowel /a/, the balanced and free speech task.
Considering the three repetitions of sustained vowel /a/, the parameters available
to operate this comparison are: local jitter (%), local shimmer (%), CPPSmedian
(dB) and CPPSstd (dB) (listed in figure 2.6). In the case of balanced and free speech
task these differences are carried out for all descriptive statistics of fundamental
frequency f0 (Hz) and CPPS (dB) (as shown in figure 2.7). It is valuable to highlight
the fact that, while in the case of sustained vowel /a/ only deltas relative to median
and standard deviation of the parameter CPPS are calculated, considering reading
and free speech task all the nine descriptive statistics of the extracted parameters
are involved (i.e., mean, median, mode, 5-th percentile, 95-th percentile, range,
standard deviation, skewness and kurtosis). This difference is indicated with a red
asterisk ∗ in the figure relative to the sustained vowel /a/ task.

Figure 2.6: Parameters used to perform the comparison between the two devices
for sustained vowel /a/ task

Figure 2.7: Parameters used to perform the comparison between the two devices
in the case of balanced and free speech task
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Sustained vowel /a/

Being considered only the parameters summarized in figure 2.6, which are in
common with the two devices, their number is low. Generally, the following steps,
carried out to obtain deltas, are the same for all the short-term evaluation tasks.
The matrix relative to the parameters extracted with the in-air microphone and
the one relative to the contact microphone-based device are loaded, these four
matrices (two corresponding to healthy subjects and two relative to patients with
MS) contain the mean value of the three repetitions for each subject. To provide a
better coordination between the two classes, the matrices are concatenated resulting
in one matrix for all the subjects relative to MIC and one matrix relative to VH.
Then for each parameter, deltas are determined, and also their mean and standard
deviation are considered. Deltas for each subject are graphically represented (see
an example in figure 2.8), where red elements are related to MS class and the blue
ones correspond to HS class. In order to have more tangibility of the dispersion of
the values of deltas, the standard deviation of the mean value, or standard error
(indicated as σ), is obtained as a ratio between the standard deviation and the
root square of the total number of subjects in the experiment. Also, the confidence
interval chosen for each parameter is set to ±1∗σ, which is more significant, since
the number of subjects involved is low (i.e., the variability is reduced if the number
of subjects is higher). The correspondent values associated with the black line
(representing the mean value of delta of the considered parameter) and with
the green lines (which define the confidence interval) are reported in legend (in
figure 2.8). Deltas provide information on how much the parameters extracted from
the in-air microphone differ from those processed by the contact microphone-based
device (i.e., the variability in the estimation of the parameters between the two
devices).

Balanced and free speech task

Regarding the balanced and free speech task, the various steps performed to achieve
delta parameters are the same already presented in the case of the sustained vowel
/a/ task. Also in this case, the two matrices correspondent to the parameters ex-
tracted after the pre-processing phase for the microphone in air and the parameters
provided by the VH device are loaded (figure 2.7). Subsequently, the metrics in
common with the two devices are selected, and after having obtained two matrices
relative to MIC and two relative to VH, differences (and their mean value and
standard deviation) are calculated for each parameter. What previously said for
the legend description in the case of sustained vowel /a/ task, also applies to deltas
considered in this investigation.
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Figure 2.8: Example of delta values between the parameters extracted from in-air
and VH for each subject in the case of sustained vowel /a/ task

Figure 2.9: Example of delta values between the parameters extracted from in-air
and VH for each subject in the case of free speech task
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2.2.2 Other parameters acquired with VH device
In this part of the thesis the definitions of the vocal parameter Sound Pressure Level
(SPL), and the environmental one, Background Noise Level (BNL), are provided.
These two parameters are rendered available by VH device, but are not used for
its validation (presented in section 2.2.1). Concerning the sustained vowel /a/
task, the SPL and BNL parameter are not returned by the device; regarding the
balanced and free speech task, these two measures are downloadable from VH,
however the validation of this device can be performed with the data in common
with both microphones, and only f0 and CPPS parameters (returned by both)
can be compared. Furtheremore, a calibration of the in-air microphone (used to
record the subjects in this study) can be performed, in order to create a function
that converts the RMS values of the .wav files (from the in-air microphone) into
the amplitude in dB corresponding to the SPL parameter resulting from the VH
device. By means of this characterization for the in-air microphone, it follows that
in the case of balanced and free speech task, the comparison between the RMS
value (extracted from the microphone in air) and the SPL parameter (returned by
VH) can be achieved. The difference between these parameters is not introduced
in this work, since the calibration of the microphone in-air is not conducted. To
better enable the visualization of the different parameters treated in this thesis, a
reference is made to the diagram introduced in figure 2.1.

Background Noise Level BNL

Changes in voice production can be induced by environmental factors, such as noise
level. The Background Noise Level (BNL), also called residual noise, is defined as
an unwanted sound, emitted from outside the building where the recordings take
place and those generated directly inside it. Most environmental sounds are made
up of a complex mix of many different frequencies. The audible frequency range is
normally considered to be (20÷20000) Hz for young listeners with unpaired hearing.
However, human hearing systems are not equally sensitive to all sound frequencies
and, to compensate this, various types of filters or frequency weighting are used to
determine the relative strengths of frequency components making up a particular
environmental noise. The A-weighting is most commonly used and weights lower
frequencies as less important than mid- and higher- frequencies [19]. The VH
device returns four descriptive statistics for the background noise level parameter,
all expressed in dBA, which are: BNLLAF50, BNLLAF75, BNLLAF90, BNLLeq. In
this analysis the background noise activity level is measured at the same time as
the subjects’ voice recording and, is evaluated as the A-weighted level that exceeds
for 90% the considered time (BNLLAF90 in dB). In addition, intelligibility is the
percentage of words correctly understood by the listener, compared to the total
number of sentences emitted by the speaker. Noise and poor acoustic characteristics
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contribute to reduce intelligibility; the presence of an high background noise level
in an environment, where communication is the key, often triggers the Lombard
effect, which is the involuntary tendency of speakers to increase their voice level
as the noise level increases in order to improve intelligibility of the speech signal
while speaking in loud noise. The typical slope for the Lombard Effect is expected
in the range (0.3 ÷ 0.6) dB in voice increase for each dB of increase in the mean
value of the A-weighted noise level distribution above 50 dBA [20].

Sound Pressure Level SPL

The VH device evaluates the speech Sound Pressure Level SPL parameter, which
represents the local deviation from the ambient air pressure caused by a sound wave.
The SPL is a logarithmic measure of the effective pressure of sound relative to a
reference value; the commonly used reference sound pressure in air is 20 µPa, which
is considered the threshold of human hearing. ISO 1999 defines sound pressure
level (Lp) by the following formula:

Lp = 10 log( p

p0
)2 (2.23)

where, p is the sound pressure in Pascal and reference sound pressure p0 is 20 µPa,
in accordance with ISO 1683. The same Eq (2.23) can be used to determine the
A-weighted sound pressure level LpA where instead of p, the A-weighted sound
pressure pA in Pascal is used. Because of large sound pressure amplitude changes,
the sound pressure level in decibels (Lp) is used rather than Pascal units. In the
decibel scale, audible sounds range from 0 dB, the threshold of hearing, to over
130 dB, which is the threshold of pain. With more detail, a range of 0 to 40 dB is
considered quiet to very quiet, while 60 to 80 dB is generally described as noisy.
The SPL parameter returned by VH device is initially referred to a distance d0
of 22 cm, which is the distance with respect to the subject’s mouth set by the
spacer inside the DAP unit of VH. With the objective of obtaining a value more
comparable to the data in literature, the SPL value is expressed at a distance d
equal to 1 m. The following expression is used to transform the SPL value:

SPLd = SPLd0 + 20 log10(
d0

d
) =

= SPLd0 + 20 log10(
0.22

1 ) = SPLd0 − 13,15
(2.24)

The SPL value at a distance of 1 m is calculated with the SPL value at a distance
of 22 cm and by operating a subtraction with a constant value equal 13,15 dB.
Although, VH device returns five descriptive statistics for the sound pressure
level parameter all measured in dB, which are SPLmean, SPLmedian, SPL5,prc and
SPL95,prc and SPLstd, in this analysis only SPLmean, SPLmedian and SPLstd are
considered.
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2.2.3 Intra-class and inter-class evaluation of VH parame-
ters in long-term assessment of fatigue

The diffusion of long-term monitoring, instead of in-clinic short-term measurements,
has provided significant parameters that, differently from average measures, are
able to detect patients with abnormal vocal behavior related to voice disorders
[12]. In this part of the study, other methods that lead to the discrimination
between pathological and healthy subjects are described. Effort is focused on
assessing the fatigue experienced by subjects during long-term acquisition rather
than short-term (i.e., balanced and free speech task which last approximately
one minute), the last considered as a sort of "baseline" (i.e., first instants of the
monitoring). This comparison between the two classes is important especially when
fatigue is often considered the most debilitating symptom for patients with MS,
leading to loss of employment and impairment of activities of daily living [21]. As
highlighted in Chapter 1 (section 1.1), in MS patients vocal fatigue and vocal breaks
are more common than hoarseness [2]. To achieve this goal, only data acquired
with VH are used in the current analysis; in particular, the data from the short
term-assessment and the data from long-term monitoring are downloaded. The
length of the long-term assessment is not fixed, but varies between the subjects;
a minimum duration of 95 minutes is observed among all subjects (both MS and
HS). The short-term data are the same already used during the validation of VH
(presented in section 2.2.1) for the balanced/free speech task, but in this case also
BNLLAF90 and SPL are added to fulfil this comparison (as reported in figure 2.10).
Regarding the parameters estimated by VH device for long-term assessment, two
types of files (which are downloadable through a proper script in Matlab (R2022b)
environment) are rendered available. In one case, the parameters summarized in
figure 2.11 are updated with a time interval of approximately 75 s (this file will be
referred to as tab file). In the other type of file, the estimated parameters are only
two (in figure 2.12) and are updated with a time interval of approximately 46 ms
(that is referred to as 46ms file). For this experiment, the tab file is used, since
(as indicated in figure 2.11) it provides the same parameters in common with the
short-term evaluation (figure 2.10).

Figure 2.10: Parameters extracted from VH device for the short-term evaluation,
used to perform the comparison with the long-term assessment
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Figure 2.11: Parameters extracted from VH device (every 75 s) for the long-term
evaluation, used to perform the comparison with the short-term assessment

Figure 2.12: Parameters extracted from VH device (every 46 ms) for the long-term
evaluation, used to perform the comparison with the short-term assessment

After downloading the data for both types of assessment, 75 s intervals that are
characterized by a Voicing Time Percentage (%) value lower than 5% are removed,
since the value of the parameters in this condition is considered not reliable. The
idea is to compute the mean of the parameters (which is performed per column, since
each column represent a parameter) for each subject under analysis. Four matrices
are obtained (two for the long-term assessment relative to HS and MS, and two for
the short-term evaluation relative to HS and MS) consisting of one row (i.e., mean
value) for each subject under analysis. A proposal to assess fatigue is conducted
with the use of differences, indicated with the greek small letter δ, between the
parameters extracted from the long-term and the short-term monitoring. As a
result, delta values for each of the metrics (columns) are obtained. To better clarify
this concept, an example is shown in figure 2.13 that derives from the application
of the Eq. (2.25) for all the parameters in common with the two assessments:

δ = Long term recording − Short term recording (2.25)

Having obtained delta values for each parameter, also their mean and standard
deviation is considered. Red elements are related with patients with MS and
blue ones are correspondent to healthy subjects. In addition, to better detect the
dispersion of the values of delta, the standard errors of the mean are obtained, as
a ratio between the standard deviation and the root square of the total number
of subjects in each class and ,at the end, the value of the confidence interval is
set to ±1 · σ. In this sense, the two classes of subjects (HS and MS), their mean
value of delta (reported as a black line for both classes) and confidence interval
(indicated as the two red lines and the two blue lines for MS and HS respectively)
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are kept separated. If the red band is lower than the blue band, it demonstrates
that patients have a delta value (i.e., the difference between long-term and short-
term monitoring) of the parameter considered, that is lower than that of healthy
subjects. Moreover, it is important to assert that, if the two bands do not appear
well separated, then, there is no significant difference in the behavior of the two
classes with regard to the fatigue experienced. To better differentiate these bands,
a suggestion proposed is to increase the data-set so as to narrow and make these
intervals more distinguishable.

Figure 2.13: Example of delta values between the parameters extracted from the
long-term and the short-term assessment for each subject in the case of balanced
and free speech task
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In the second part of this investigation, a qualitative analysis of the long-term
monitoring is carried out using the tab files for all the involved subjects. These files,
processed by VH device, are downloaded using a specific script in Matlab (R2022b)
environment, and the parameters of interest are selected. Then, a selection of voiced
and unvoiced frames is computed, and when the PPT results in the considered
frame is lower than 5%, the parameters are set to zero, with the only exception of
BNLLAF90 parameter; it is important to preserve the value of BNLLAF90, regardless
of whether the subject is talking or not, since the noise level is always present
in any environment. In addition, being the SPL parameter initially referred to a
distance from the subject’s mouth d0 of 22 cm (as reported in section 2.2.2), in
order to operate the conversion at the distance of 1 m (which is most widely used
in literature), the Eq (2.24) is used.

The extracted parameters are represented over time (as shown in the example
in figure 2.14). In the existing literature, several works deal with in-field long-
term monitoring of voice, but there is a lack of longitudinal studies that assess
voice parameters modifications accounting for environment background noise level
[12]. Since a strong correlation of data with the noise level in the environment is
expected, these parameters are graphically presented with reference to BNLLAF90.
Having obtained these representations, a removal of unvoiced frames (which have
been previously set to zero value) is carried out for all the parameters, in order to
create different maps. An example is shown in figure 2.15 where the correlation
between SPLmean and BNLLAF90 parameter is depicted. In this sense, the idea is
that, if the environment is characterized by a loud background noise level, then,
one strategy that subjects usually perform in order to prevail, is to raise their
speech intensity of voice (i.e., the SPL parameter). Three different correlations
are represented at this point, that are SPLmean-BNLLAF90, f0,mean-BNLLAF90 and
SPLmean-f0,mean. Red elements are always related with MS patients and blue ones
are associated to HS group. Additionally, using the Matlab command polyfit (which
returns the coefficients for a polynomial of degree n that is a best fit for the data)
and polyval (which evaluates the polynomial), a linear model (i.e., the degree
of the polynomial is 1) that fits the data is plotted (as reported in figure 2.15).
Referring to the example for SPLmean-BNLLAF90 correlation, the regression line
allows to observe the subject’s ability to raise the intensity of voice depending on
the noise level. For each map, along with the regression model, the correlation
coefficient R2, which expresses the goodness of the model, is also determined. An
inter-class (i.e., among the two classes) and an intra-class (i.e., within the class)
analysis is done; these three different types of correlation maps are computed
both for each subject (in order to observe a difference inside each group) and
by class (to describe the difference between MS and HS classes). Regarding the
comparison conducted within the class, for each subject the three parameters
of interest (BNLLAF90, SPLmean and f0,mean) are saved, and two matrices are
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created, containing all the data of the two groups. Finally, the already mentioned
maps (SPLmean-BNLLAF90, f0,mean-BNLLAF90 and SPLmean-f0,mean) are plotted,
reporting all the data available for each class (as shown in figure 2.16 in the case of
the HS class for the f0,mean-BNLLAF90 correlation). By acquiring the same map, it
is possible to make a comparison between individual subjects inside their class or
between the two classes, e.g., given that MS patients suffer from hypophonia, it
is expected that, in the long-term acquisition, while an healthy person is able to
increase the level of SPL as the BNL increases, in the case of a pathological subject,
this either does not occur or occur less markedly. Also, the SPLmean-f0,mean map
present a specific trend for the healthy class: if the speech intensity increases, then,
the fundamental frequency also usually increases (for HS group) and the map is
characterized by an asymmetrical shape with a tip toward the upper right corner.
Before obtaining these maps, it is important to report that, the search and the
subsequent elimination of outliers is performed; with more detail, subjects with a
BNLLAF90 value equal 0 dBA (i.e., the acquisition does not occur correctly) and
a fundamental frequency value higher than 300 Hz or lower than 60 Hz (i.e., not
significant), are not considered in this analysis.

Figure 2.14: Example of CPPSmedian parameter over time with reference to the
BNLLAF90 value present in the environment for one patient

In addition, considering the SPLmean-BNLLAF90 correlation (shown in figure 2.15),
a model can be derived, with the idea of compensating the speech intensity level
for the effect of noise in the environment. Changes in voice production can be
induced by environmental factors, such as the noise level; considering that, subjects
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Figure 2.15: Example of correlation between the SPLmean and the BNLLAF90
parameter for one patient

Figure 2.16: Example of correlation between the f0,mean and the BNLLAF90
parameter for HS class

raise the speech intensity level of voice, as a function of the noise present in the
environment, a correction of the SPLmean value with respect to the BNLLAF90 can
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be performed. This compensation is done by performing a difference between the
SPLmean parameter and the angular coefficient of the regression line (that models
the SPLmean-BNLLAF90 correlation), multiplied by the BNLLAF90 parameter. The
example (in figure 2.15) shows that the SPLmean value increases by 0.07 dB each
dBA of noise (i.e., 0.07 dB/dBA). As a result of the correction, the SPLmean
parameter over time is plotted (in figure 2.17), before (indicated in red) and after
(in magenta) the BNLLAF90 correction. The patient shows an initial value of
SPLmean over time (i.e. the intercept at time zero) before BNLLAF90 correction,
equal to about 58.0 dB and increases the speech intensity by 0.01 dB/min. The
initial value of SPLmean over time is corrected by subtracting the effect of noise
and, as result, in an hypothetical condition without noise, the subject vocalizes at
an initial SPLmean value of about 54.4 dB and the slope (i.e. the angular coefficient
of the regression line modelling SPLmean over time) does not change over time,
demonstrating that the subject does not show fatigue.

Eventually, to better observe differences in the slope values of the SPLmean
corrected between all the subjects, another analysis is performed. For each subject
(HS and MS), the values of slope of the regression line (that models the SPLmean
corrected over time), are extracted and represented (figure 2.18). In addition,
for each class the mean value (associated with the black horizontal line) and the
standard deviation of the slope values are calculated. To better understand the
dispersion of the slope values, the standard errors of the mean are obtained for
both classes and the resulting value of the confidence interval is set to ±1 · σ. The
confidence intervals (i.e., the two red lines and the two blue lines) correspond
respectively to MS patients and HS. By observing a separation between these two
bands, a significant difference with respect to the slope values between the groups
is found.
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Figure 2.17: Example of SPLmean compensation with respect to the BNLLAF90
over time for one patient

Figure 2.18: Representation of the extracted slope values (dB/min) of the
regression line modelling the SPLmean parameter compensated with respect to the
BNLLAF90 over time for each subject

In addition, to assess the variability of the SPLmean parameter over time (not
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considering BNLLAF90 correction in this case) and to notice differences between
the classes, the SPLstd parameter in dB (measured by VH device) for each subject
is extracted and the mean value of this measure for the long-term monitoring, is
calculated. For each class the mean and the standard deviation of the SPLstd
parameter is obtained (these types of representations have already been presented
for different parameters); also, in this case, the mean value of the SPLstd parameter
is indicated (for both classes) with an horizontal black line, while the confidence
interval (which is set to ±1 ·σ) is associated with the two red lines and the two blue
lines for MS and HS respectively. The example (shown in figure 2.19) expresses
the speech intensity variability for each subject. Similarly, the same steps can be
performed on the f0,std parameter in order to evaluate the fundamental frequency
variability between the classes.

Figure 2.19: Example of the mean value of SPLstd parameter for each subject
for long-term monitoring

2.2.4 VH as aid to quantify vocal exposure
In order to investigate the effects of prolonged or excessive voice use, it is important
to properly quantify the amount of vocalization and three factors can be considered
determinants that are the duration of voicing, vocal intensity and fundamental
frequency. Vocal load is defined as a combination of prolonged voice use and
additional factors, such as elevated phonation frequency and high sound pressure
level [12]; while, vocal effort is a physiological magnitude that accounts for changes
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in voice production induced by the distance from the listeners, noise and the
physical environment [22]. In recent years, effort is focused in measuring the
amount of voicing performed by speakers over time and devices, designated as
voice accumulators, are used to determine parameters, such as speech intensity
(measured as sound pressure level, SPL), fundamental frequency f0 and phonation
time. Prolonged vocal use can be considered as a problem of exposure of vocal folds
to vibration, and although this vibration is self-induced, it resembles exposure to
sun rays or chemicals. The term of “vocal dose” has been introduced by Titze, Švec
and Popolo [23] and is adopted for measures quantifying the amount of voicing. In
this section, the definitions of five vocal doses and the factors that can potentially
contribute to abnormal vocal behavior are provided.

Time dose Dt

The simplest vocal dose is the time dose expressed in seconds, often called “voicing
time” or “vocal accumulation time”, which quantifies the total time during which
the vocal folds vibrate and it is defined as:

Dt =
Ú tm

0
kv dt (2.26)

where tm is the total measurement time and kv is the voicing unit step function
(which is 1 when the frame is voiced and 0 if unvoiced). It is possible to relate
the time dose to the Voicing Time Percentage (PPT), which can be calculated
operating a ratio between the time dose and the total measurement time and then,
multiplying it by 100.

Cycle dose Dc

It quantifies the total number of oscillatory periods in cycles, completed by the
vocal folds over time and it can be expressed by Eq. (2.27):

Dc =
Ú tm

0
kvf0 dt (2.27)

where f0 is the fundamental frequency of the vocal folds oscillation (Hz).

Distance dose Dd

In order to account also for amplitude vibration, the distance dose is introduced,
which measures the total distance accumulated by the vocal folds in a cyclic path
during vibration. Its definition is expressed in meters as indicated in:

Dd = 4
Ú tm

0
kvAf0 dt (2.28)
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where A is the amplitude of the vocal folds. The number four in Eq. (2.28) is
explained because the vocal folds theoretically travel at a distance of four times the
amplitude within a cycle. Since the amplitude of the vocal folds changes with the
vocal intensity, Dd accounts for both the intensity and the fundamental frequency
in voicing. In addition, the amplitude of the vocal folds is very difficult to measure
and in order to overcome this problem, an approximation using existing normative
data is performed. The amplitude A can be calculated using the empirical rules in
Eq. (2.29):

A = 0.05L0[(PL − Pth)/Pth] 1
2 (2.29)

where L0 is a reference vocal folds length (which is 0.016 m for males and 0.01 m
for females), PL is the lung pressure and Pth is the phonation threshold pressure.
The rule for the definition of Pth is presented in Eq. (2.30):

Pth = 0.14 + 0.06(f0/f0N)2 (2.30)

where f0 is the fundamental frequency and f0N is a nominal fundamental frequency
(which is 120 Hz for males and 190 Hz for females). The empirical expression for
the lung pressure PL needed to determine the distance dose is calculated as:

PL = Pth + 10(SP L−78.5)/27.3 (2.31)

The Eq. (2.31) is derived for the SPL parameter measured at the distance of 50
cm from the mouth.

Energy dissipation dose De

It takes into account the factor of thermal agitation of tissue inside the vocal
folds and measures the amount of heat produced during vibration as calculated in
Eq. (2.32):

De = 1
2

Ú tm

0
kvη(A/T )2ω2 dt (2.32)

The energy dissipation dose is measured in joules/m3 and in Eq. (2.32) η is the
shear viscosity of the vocal folds tissue evaluated in Pascal · s, T is the vertical
thickness of the vocal folds expressed in meters and ω = 2πf0 is the angular
frequency of the vocal folds vibration in rad/s. Both shear viscosity η and vertical
thickness T are approximated from the frequency f0 of voice using the empirical
rules:

η =

5.4/f0 for males

1.4/f0 for females
(2.33)

T =


0.0158

1+2.15(f0/120)1/2 for males
0.01063

1+1.69(f0/190)1/2 for females
(2.34)

37



Materials and methods

Radiated energy dose Dr

The fifth dose presented is not a measure of exposure to the vocal folds, but rather
a potential sound exposure to a listener and it quantifies the total energy radiated
from the mouth in joules over time as expressed in Eq. (2.35):

Dr = 4πR2
Ú tm

0
kv10(SP L−120)/10 dt (2.35)

where R is the distance from the mouth (that in this case corresponds to 0.5 m)
at which the SPL of voice is recorded. Using these definitions and empirical rules,
all the doses can be derived for a specified measurement time tm, by extracting
three basic parameters of speech, that are kv (i.e., voicing/unvoicing parameter),
f0 and SPL. The time, cycle and radiated energy doses are the true doses for the
person measured, whereas the distance dose and the dissipated energy dose are
approximations based on typical data for male and female vocal folds amplitudes,
thickness and viscosities [24].
To perform this investigation, the long-term acquisition (performed with VH device)
indicated as 46ms file is used. This file for each subject is downloaded through
a specific script in Matlab (R2022b) environment and returns the values (two
columns) respectively of f0 and SPL parameter with a time interval of 46 ms. As
already mentioned, the SPL parameter is referred to a distance from the subject’s
mouth of 22 cm. Considering the 46ms file, the already seen Eq. (2.24) used to
refer the SPL parameter to a distance of 1 m is considered. Then, having obtained
the SPL value at a distance of 1 m with the use of Eq. (2.24) the SPL at 50 cm as
indicated in [24] by Titze, Švec and Popolo is determined. The voicing unit step
function is created searching for voiced or unvoiced frames (i.e., frames having an
SPL or f0 value equal to zero). The SPL, f0 and kv values of each 46 ms frame
length, are used for calculating the vocal doses for each subject under analysis.
Also, the equivalent SPL value at 1 m from the speaker’s mouth (i.e. SPLeq,1m) is
estimated for each subject, which expresses the speaker’s vocal effort according to
ANSI S3.5-1997 standard [25]. SPLeq,1m is calculated as the average of the voiced
energy over all the frames, including the unvoiced ones, as indicated by Švec et al.
[26] as follows:

SPLeq,1m = 10 log10

A
1
N

NØ
n=1

[kv10SP L1m/10]
B

(2.36)

where N is the total number of frames in the analyzed segment of speech and, with
inclusion of the kv factor the energy in the unvoiced frames is set to zero, while for
voiced frames is set to one. The accumulation of the different doses is calculated
(figure 2.20 for the energy dissipation dose case) and, it is possible to observe that
the dose values increase during the voiced passages, whereas they stay constant
during unvoiced segments, as expected.
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Figure 2.20: Accumulation of the energy dissipation dose and the correspondent
voicing/unvoicing parameter over a 214-minutes segment of speech for a male
patient

These results led to the difficulty that, unless during the acquisition, vocal effort
is significant among the other subjects, then, there is the problem of being able
to compare the five vocal doses. All subjects under analysis performed long-term
monitoring ranging from 95 minutes up to 326 minutes. Therefore, in order to
compare different subjects and compute an assessment at consistent times, a
minimum available duration lasting 95 minutes common to all is considered. For
each subject a matrix with a dimension of 1x5 is extracted containing the five vocal
doses at the minute 95 (i.e., Dt at 95 min, Dc at 95 min, Dd at 95 min, De at 95
min and Dr at 95 min). Each matrix is then concatenated in order to perform a
discrimination between the two groups of HS and MS. Then, the value of each dose
at the minimum time chosen for each subject are represented (as in the example of
the distance dose in figure 2.21); red elements are related to MS and blue ones to
HS. Also, in this case, to better detect the dispersion of the vocal doses between
the HS and MS subjects, the standard errors of the mean are obtained as a ratio
between the standard deviation and the root square of the total number of subjects
in each class and at the end, the value of the confidence interval is set to ±1 · σ.
In this sense, the two classes of subjects (HS and MS), their mean value of delta
(reported as a black line for both classes) and confidence interval (indicated as the
two red lines and the two blue lines for MS and HS respectively) are kept separated.
If, in the example relative to the distance dose, the red band is lower than the blue
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band, it demonstrates that patients present a distance dose mean value (i.e., the
total distance travelled by the vocal folds in an oscillatory path) that is lower than
that of healthy subjects. Moreover, it is important to assert that if the two bands
do not appear well separated, then, there is no significant difference in the behavior
of the two classes regarding fatigue.

Figure 2.21: Example of distance dose values at the minimum time interval of 95
minutes for each subject

The time dose can be used for quantifying the duration of voicing, and the voicing
percentages among various vocal activities or occupations. Furthermore, it can
also be used as a normalization factor to obtain doses per second of vocalization.
In this sense, another analysis performed is to weight the vocal doses with respect
to the time dose. However, being all the vocal doses extracted for a time interval
of 95 minutes, the result is the same if the doses are referred to the time dose,
instead of the PPT (since the considered interval of time is the same). An example
of the cycle dose represented in function of time dose is shown in figure 2.22: a
strong correlation is expected between Dc and Dt, since the only variability is
introduced by f0 parameter and a lower correlation between Dd and Dt doses, the
latter motivated by the fact that, in the definition of distance dose empirical rules
are introduced. Moreover, in vocal doses where no significant dependence with the
time dose is observed, then, data can be represented without operating a weighting
with respect to the interval of phonation. Additionally, it should be noted that, a
limiting factor in this analysis is having reduced the monitoring to a time interval
of 95 minutes as the minimum available interval common to all subjects. This
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choice, is also motivated by the fact that the data-set is not wide. The effect of
fatigue experienced by subjects is better observable in long-term monitoring, and
the objective is always discriminating between healthy and patients. With this
purpose, the same investigation is performed by eliminating those subjects that
presented a long-term evaluation which lasts less than the minimum time interval
of duration and increasing the time interval to 156 and then to 200 minutes of
duration, in the latter case removing from the study a total of four subjects.

Figure 2.22: Example of cycle dose values weighted with respect to the time dose
at the minimum time interval of 95 minutes
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Chapter 3

Results

In this chapter, the results obtained are presented and discussed. The findings
resulting from the in-air microphone proposed procedure are shown; the figures
in the subsequent sections summarize the combination of features with the best
accuracy obtained in the training phase of Feature Selection (FS) and the best
accuracy values obtained after the 5-fold cross-validation of the Logistic Regression
(LR) model. In addition, a procedure based on the confidence level of the probability
returned by the LR model is proposed, in order to provide a more realistic evaluation
of the classification performance. The last steps characterize the Vocal Holter
(VH) device intended as a useful tool for assessing vocal health and validating
its application in in-clinic consultation in comparison with the microphone in air.
This comparison is carried out by calculating differences ∆ between the parameters
extracted from the two microphones. In addition, a proposal to assess fatigue is
conducted with the use of differences δ between the parameters extracted from the
long-term and the correspondent short-term monitoring. The parameters acquired
with VH for the long-term monitoring are visualized over time and an analysis
considering the effect of the background noise level in respect to voice production
is executed. The final phases investigate five vocal doses as indicators of long-term
vocal folds tissue exposure to vibration.

3.1 Logistic Regression results
A LR model is used to provide the most significant features that are good descriptors
for the classification of subjects’ voices as pathological or healthy. The LR algorithm
provides a continuous probability p of belonging to the positive class; this probability
is compared to a fixed threshold, which in binary classification, is equal to 0.5. The
elements displaying a p higher than the threshold are assigned to the positive class,
otherwise, are attributed to the negative class. The data-set provided is subdivided
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between the negative class of healthy control group of subjects (HS, 16 subjects)
and the positive class which is associated with the group of patients with Multiple
Sclerosis (MS, 16 patients).

3.1.1 Feature-selection results
Feature Selection process is based on the evaluation of the performance of the LR
model, which is trained using a different number of input features. The algorithm
is developed in order to select a combination of k features (which ranges from
1 to 4) out of the number of features available for the task under consideration;
as previously exposed in section 2.1.3, for the balanced and free speech task 47
features are evaluated, while in the case of sustained vowel /a/ there are 56 available
features. About the combination of two, three or four features, only the ones that
exhibited a correlation lower than 0.5 and a p-value of the evaluated correlation
lower than 0.05, are accepted as input of the LR model. The algorithm, during the
training phase, automatically indicates multiple combinations of features with the
best classification performances which are used to validate the LR model. This
research is conducted checking carefully for the combination of features with the
highest accuracy value; in the cases where multiple feature sets provided the same
maximum accuracy value, the validation is conducted for all sets, by selecting
the combination with the highest AUC values among the ones with the highest
accuracy. The figures in this section are relative to the training phase of the
LR model and the results for all three tasks are presented. In order to better
differentiate, the tables reporting the instruction "no validation" are related to the
training phase of the algorithm; if in the tables indicate "5-fold cross validation",
these are associated with the validation phase (covered in section 3.1.2). In the
upper left corner of the tables the two classes involved in this work are presented;
the negative class is associated with the healthy subjects and the positive class
is related to the MS patients. Also, all tables provide the information about the
analyzed task (sustained vowel /a/, balanced speech task and free speech task) and
the "Features" consist in the outcomes of feature selection. As performance metrics,
Area Under the Curve (AUC), Precision, Sensitivity, Specificity and Accuracy are
exposed (their definition is reported in Appendix A.3).

Sustained vowel /a/

In figure 3.1 the combinations of features providing the best classification perfor-
mance in the case of sustained vowel /a/ are listed. It is possible to notice that,
in this task, the algorithm is not capable of performing the combination of four
features together. In this case the highest accuracy value and AUC value in the
training phase of the model is obtained with a combination of three features; in
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particular as far as concerns the repetition of sustained vowel task the accuracy
values do not exceeds the value of 85,2% by selecting the features Coefficient
of Amplitude Variation (vAm), Harmonic to Noise Ratio (standard deviation)
and Cepstral Peak Prominence Smoothed (skewness). It proves to be interesting
the fact that in the case of vowel /a/ task, it’s more evident the presence of
perturbation parameters (described in section 2.1.2), such as vAm and Relative
Average Perturbation. Generally looking at the selected parameters, it should be
noted the recurrence of the parameter CPPSskewness for all the possible number of
combinations. Also, it is important to highlight the fact that in all the reported
cases, the results are lowered during 5-fold cross validation of LR model (as shown
in section 3.1.2).

Figure 3.1: Classification performance obtained without validation in sustained
vowel /a/ task

Balanced speech task

For balanced speech task the metrics for classification performance are shown in
figure 3.2. Looking at the selected parameters for this task, the most common ones
are the harmonic frame ratio (V/uV ), which express the percentage of harmonious-
ness over the voiced frames and the number of harmonic frames. In addition, CPPS
(mode, 5° percentile, kurtosis) and HNR (mean, mode, 5° percentile) parameters are
selected many times in the different combinations of features. Also, the first more
evident difference in respect to the previous task of sustained vowel /a/ is the high
number of selected combinations of features, in particular for combinations of three
features. Moreover, it should be noted that, regarding the balanced speech case,
the accuracy values exceed 90% and the best situation is trained with CPPSmode
and V/uV . Another unusual characteristic highlighted in this task if compared to
the others, is the presence of gender (i.e., "male" or "female") as selected parameter.
In fact, gender in this work is considered a significant feature along with the other
extracted parameters for classification and, together with CPPS5,prc and V/uV
parameters, shows to be the combination offering the best performance also during
validation phase of the LR model (as reported in the section 3.1.2). This result,
drive the analysis toward the employment of fundamental frequency f0 (instead
of gender) in the above-mentioned feature combination; moreover, during the
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validation phase, a test is conducted by selecting the parameters f0,mean, CPPS5,prc
and V/uV and the classification metrics of this combination is evaluated. The
choice in using f0,mean is derived by considering that fundamental frequency (which
is perceptually highly correlated with pitch), notably differs in men and women
mainly due to anatomical variations [6].

Figure 3.2: Classification performance obtained without validation in balanced
speech task

Free speech task

Concerning the results for free speech task, it is immediately noticeable the simi-
larities with the just mentioned balanced speech task; although, the descriptive
statistics in some cases are different, a recurrence of the same parameters selected in
the reading case is evident, these are V/uV , CPPS (mode, 5° percentile, skewness
and kurtosis) and HNR (standard deviation, range and 5° percentile). The number
of combinations is slightly lower if compared to the balanced speech case. As far
as concerns free speech task, the highest accuracy value is reached by selecting the
features CPPSmode and V/uV , but there are also other cases where the accuracy
exceeds 90%.

Figure 3.3: Classification performance obtained without validation in free speech
task

By looking at the AUC and accuracy values exposed in this section, it is possible
to ascertain that the LR model performs satisfactorily during training phase and
moreover, best results are obtained for balanced and free speech task in comparison
with sustained vowel /a/ case, in both tasks by selecting the features CPPSmode
and V/uV .
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3.1.2 Best performance of validation phase
This section summarizes the best accuracy values obtained after the 5-fold cross
validation of the LR model in the Classification Learner App in Matlab (R2022b).
As described in section 2.1.4, the k-fold cross validation is aimed in avoiding
over-fitting errors, by sub-dividing the data-set into subsets (five in our case) of
equal size, and in using each subset at time in rotation to validate the model. The
validation outcomes of the models presented in the previous section, related to the
training phase of the LR model, are reported. Since the App returns for each model
the confusion matrix relative to the validation phase, the performance metrics for
all three tasks are obtained.

Sustained vowel /a/

The situations with the same highest accuracy value, up to 77,8% for the sustained
vowel /a/ task are reported; these are obtained by selecting CPPSskewness parameter
and feature combination comprising the parameters vAm, HNRstd and CPPSskewness.
In the following tables, the rows (i.e., the combination of features) with the highest
classification performances are highlighted in yellow. Since there are multiple
combinations of features with the same highest accuracy and AUC values, the
model consisting of the lower number of selected features is considered; in this
task, the highest classification metrics are obtained with by choosing CPPSskewness
feature. In addition, in all three task the LR validated model of the combination
of features showing the best performance (i.e. the combination highlighted in
yellow) is saved with the use of "Generate Function" command (in the Classification
Learner App), gaining the possibility to recreate the same model later in Matlab
environment.

Figure 3.4: Classification performance obtained after computing 5-fold cross
validation in sustained vowel /a/ task

Balanced speech task

The combination of features with the highest accuracy value is obtained by selecting
gender, CPPS5,prc and V/uV , reaching up to 92.3%. This situation is considered the
one returning the best classification metrics between all three task. The outcomes
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of the investigation (anticipated in section 3.1.1), regarding the correlation between
the parameters f0,mean and gender are described (figure 3.5); the f0,mean parameter
(instead of gender) is considered together with CPPS5,prc and V/uV . The results
obtained, are lowered in respect to the previous feature combination (gender,
CPPS5,prc and V/uV ), but still express how much this combination of features is
significant in distinguishing between positive and negative classes.

Figure 3.5: Classification performance obtained after computing 5-fold cross
validation in balanced speech task

Free speech task

It is noticeable (in figure 3.6) that, in free speech task the same best accuracy and
AUC values are obtained in two cases with a combination of three features; these
consist respectively in HNRstd, CPPS5,prc, V/uV and f0,5,prc, CPPS5,prc, V/uV .
Both features combinations reach the accuracy value of 89.3%, which is slightly
lower than the previous in balanced speech case.

Figure 3.6: Classification performance obtained after computing 5-fold cross
validation in free speech task

It jumps to the eye the fact that, regarding the vocalizations performed in natural
conditions (i.e., balanced and free speech task), both the models, achieving best
performances in terms of discriminating healthy from pathological voices, are
characterized by selecting the features CPPS5,prc and V/uV ; the parameter that
changes in the two task, in the case of the balanced speech task is gender, whereas,
in the free speech case is HNRstd (as reported in figures 3.5 and figure 3.6).
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The accuracy values for sustained vowel task are more than ten percentage points
lower than those of balanced and free speech task. These results are in accordance
with those reported in literature [14] [27]. It has been argued that asking subjects
to produce sustained vowel seems to be somehow artificial and for that reason
clinicians prefer running speech monitoring (i.e., balanced/free speech task) when
they evaluate voice quality perceptually.

3.2 Realistic classification performance based on
uncertainty evaluation

In this part of the chapter the results obtained with the method (described in
section 2.1.5) relative to the Expanded Uncertainty U(p) of the probability p
returned by the LR model are exposed. As already mentioned, for each task the LR
validated model is recreated by the command "Generate Function" in the Export
section from the Classification Learner App. The generated Matlab (R2022b)
code returns the classification model validated in the App, which can be used to
extract predictors and responses in order to compute new performance metrics;
this function receives as input the data-set with features and classes and as output
a structure containing various fields with information on the trained classifier.
The standard uncertainty u(p) of the LR validated model is estimated through
the uncertainty propagation formula, which is implemented on the probability p
returned by Eq. (A.2) (see in the Appendix A.3). All the β coefficients of the
Eq. (A.1) are associated by an uncertainty (SE) value and a covariance value, both
returned by the above-mentioned function. The formula is presented in Eq. (3.1):

u(p) =
ñ

Jβ · COVβ · JT
β

Ji,j(β) = ∂pi

∂βi

; j ∈ [1...NF + 1]; i ∈ [1...NS]
(3.1)

where NF is the number of considered features, NS is the number of samples in
the data-set, Ji,j(β) is the Jacobian matrix of the model coefficients and COVβ

is the variance-covariance matrix of the coefficients. In this analysis, the decision
to pursue the computation of the expanded uncertainty only on models achieving
best accuracy values during validation phase, is taken; these models (reported in
section 3.1.2) are highlighted in yellow.

Sustained vowel /a/

Concerning the three repetitions of vowel /a/ task, the LR validated model with the
highest accuracy value is obtained by selecting the parameter CPPSskewness. Since
(in this case) the number of selected features k is equal to one, the uncertainty
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formula in (3.1) is applied with the contribution of two sensitivity coefficients and
two covariances. The probabilities, returned by the LR validated model, without
considering yet the expanded uncertainty from the Classification Learner App are
shown (in figure 3.7) using blue squares for the negative class of healthy patients,
and red circles for the positive class of MS patients.

Figure 3.7: Probabilities returned by the LR validated model without the imple-
mentation of the expanded uncertainty for sustained vowel /a/ case

The expanded uncertainty U(p) is obtained by multiplying the uncertainty u(p)
by a coverage factor of 2; the confidence interval for each probability value of the
model is obtained and graphically represented with the use of errors bars (figure
3.8). The discrimination probability threshold, equal to 0.5, is indicated as a thick
green line; since subjects with p > 0.5 are assigned to the MS class, the total
number of wrong classification is six (two false positive and four false negative) as
reported in the confusion matrix (in figure 3.9).

It is noted that, for six subjects of the negative class and four subjects of
the positive class, the confidence interval includes the discrimination probability
threshold, thus making questionable the classification of these subjects. Hence,
the decision to tag these subjects as "non-classifiable" is taken, and the subsequent
estimation of the classification performance metrics (by excluding them), is per-
formed. In the considered case, the "non-classified" subject are eleven out of a
total number of subject equal to twenty-seven. In order to better understand, the
effect of the "non-classified" subjects on the overall performance of the classifier,
new classification metrics such as Realistic Accuracy (AccuracyR) and Fraction of
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Figure 3.8: Probabilities returned by the LR validated model with the implemen-
tation of the expanded uncertainty for sustained vowel /a/ case before the removal
of "non-classified"

Figure 3.9: Confusion matrix for sustained vowel /a/ with CPPSskewness as selected
feature before the removal of "non-classified"

Classified (FoC) are introduced; the definition of these two measures is offered in
section 2.1.5. By excluding the elements belonging to the "non-classified" class, the
new realistic confusion matrix and the new results of the evaluation metrics are
presented (figures 3.11 and 3.12).
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Figure 3.10: Probabilities returned by the LR validated model with the implemen-
tation of the expanded uncertainty for sustained vowel /a/ case after the removal
of "non-classified"

Figure 3.11: Confusion matrix for sustained vowel /a/ with CPPSskewness as
selected feature after the removal of "non-classified"

Balanced speech task

The situation considered as the one with the best performance metrics between
all three tasks is obtained with gender, CPPS5,prc and V/uV as selected features,
returning an accuracy value equal to 92.3%. Being the number of selected features
k equal three, the uncertainty formula (3.1) is applied taking into account four
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Figure 3.12: Classification performance obtained for sustained vowel /a/ with
CPPSskewness as selected feature after the removal of "non-classified"

sensitivity coefficients and four covariances. Similar considerations to the ones
reported in the sustained vowel /a/ task, are performed. The probabilities returned
by the LR validated model are presented (figure 3.13). Since the performance of
the classifier are high, the cases of wrong classification are only two; one subject
belongs to Class 0, but is assigned by the LR classifier to Class 1 creating a FP
and, in the other case, the subject belongs to Class 1 but it is classified as healthy
(i.e., Class 0) so it becomes a FN.

Figure 3.13: Probabilities returned by the LR validated model without the
implementation of the expanded uncertainty for balanced speech task
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The figure 3.14 shows the probabilities having obtained the expanded uncer-
tainties. Being the uncertainty directly related to the sensitivity coefficients; these
increase for probability values around 0.5, and decrease for probabilities near 0 and
1.

Figure 3.14: Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for balanced speech task before the removal
of "non-classified"

Figure 3.15: Confusion matrix for balanced speech task with gender, CPPS5,prc
and V/uV as selected features before the removal of "non-classified"

After the removal of the "non-classified" subjects (represented in figure 3.16),
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the total number of subjects is reduced from twenty-six to twenty-four. As it is
possible to notice from the new confusion matrix (figure 3.17), by eliminating the
two critical subjects from both classes, the number of FP and FN is remodeled
equal to zero, which means that the classifier always predicts the correct label. In
this case, the fraction of classified subjects is higher than in the previous task (FoC
= 92.3%) and the other realistic metrics are exposed in figure 3.18.

Figure 3.16: Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for balanced speech task after the removal
of "non-classified"
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Figure 3.17: Confusion matrix for balanced speech task with gender, CPPS5,prc
and V/uV as selected features after the removal of "non-classified"

Figure 3.18: Classification performance obtained for balanced speech task after
the removal of "non-classified"

Free speech task

The implementation of the expanded uncertainty to the free speech case, is computed
taking into account the feature combination consisting of HNRstd, CPPS5,prc and
V/uV . Also, in this task the SE values and the covariance values of the β coefficients
are extracted from the exported function in the Classification Learner App in Matlab
and, the same steps in order to obtain the probabilities of the model are executed
(as shown in figure 3.19).

As result having obtained the expanded uncertainty (figure 3.20), the vertical
bars coupled to the probability values represent the confidence intervals.

In the case of four healthy subjects and three patients, the confidence interval
includes the thick green line of the discrimination probability threshold at 0.5.
These elements marked as "non-classified" are removed (in figure 3.22) and, then,
the classification performance are updated taking into account this exclusion (see
figures 3.23 and 3.24).
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Figure 3.19: Probabilities returned by the LR validated model without the
implementation of the expanded uncertainty for free speech task

Figure 3.20: Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for free speech task before the removal of
"non-classified"
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Figure 3.21: Confusion matrix for balanced speech task with HNRstd, CPPS5,prc
and V/uV as selected features before the removal of "non-classified"

Figure 3.22: Probabilities returned by the LR validated model with the imple-
mentation of the expanded uncertainty for free speech task after the removal of
"non-classified"

3.3 Validation in the use of VH
This section has the objective of justifying the use of the VH device as comparable
tool with the in-air recording system and, at the same time, to characterize a certain
group of subjects. VH has the ability to analyze vocal loading changes during a
working day and to identify a person’s risk of vocal dysfunctions; moreover this
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Figure 3.23: Confusion matrix for balanced speech task with HNRstd, CPPS5,prc
and V/uV as selected features after the removal of "non-classified"

Figure 3.24: Classification performance obtained for free speech task after the
removal of "non-classified"

portable analyzer, can be considered as an aid for monitoring vocal health and vocal
quality of subjects showing abnormal vocal cord vibration (thus, abnormal pitch
and loudness). To investigate the equivalence between the contact microphone-
based device and the in-air microphone (MIC), differences between the parameters
extracted from MIC (obtained in section 2.1.2) and the ones stored inside the DAP
unit of VH are computed. These differences ∆ (as already exposed in section 2.2.1),
refer to the application of the Eq. (2.22) for all the parameters considered in this
part. Recalling that, the long-term monitoring is performed with VH only, this
delta analysis is executed for short-term assessment (i.e., sustained vowel /a/,
balanced and free speech task), common to both the microphones. It is valuable to
emphasize that, the total number of subjects do not change during the evolution
of this thesis work; the involved subjects are thirty-two (sixteen healthy subject
and sixteen MS patients). Whether in a certain investigation the total number
of subject is different, this can be attributed to the fact that, for some subjects
(both HS and MS), the files needed to compute this comparison are not available
or exhibited non-significant values (e.g., CPPS value equal zero) dissuading, in this
case, their inclusion in the investigation.
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Sustained vowel /a/

Considering the repetitions of vowel /a/ task, the parameters in common with the
in-air microphone and VH are: local jitter (%), local shimmer (%), CPPSmedian (dB)
and CPPSstd (dB) (listed in figure 2.6 in section 2.2.1). From this investigation four
figures are derived as output, being four in number the parameters on which the
comparison between MIC and VH is carried out. The subjects are twenty-three, of
which the first eleven are MS patients (indicated as red elements), while the healthy
subjects are twelve (associated with blue color). Delta values for each subject, are
indicative of how comparable (or at least congruent) the parameters extracted from
the MIC and the ones processed by VH device are to each other. The differences,
obtained between the two microphones, are not negligible, but delta values equal
zero are not expected, since the two input signals for each subject are not the same.
For the VH, the input signal consists in the vibration (mechanical signal) induced
by the vocal folds at the neck, the latter considered as a low-pass filter; while an
in-air pressure signal, modulated by the vocal tract, is the signal acquired with the
the in-air microphone; in addition, the two devices present a different measurement
chain (i.e., the bandwidth). Since the devices have different characteristics, the
use of VH device (as an aid for assessing vocal health) requires the definition of
specific cut-off values for the extracted parameters. With more detail, according
to the following rules expressed in [28], voice recordings are classified as healthy,
pathological or "not reliable" in dependence on the values of the aforementioned
parameters.

• A local jitter value < 0.31% identifies an healthy voice, > 0.43% a pathological
voice and if is comprised between (0.31 − 0.43)%, then it is considered not
reliable.

• If local shimmer value is < 2.37% identifies an healthy voice, > 2.55% a
pathological voice and if is in the range (2.37 − 2.55)%, then it is considered
not reliable.

• If CPPSmedian value is > 19.7 dB identifies an healthy voice, < 18.0 dB a
pathological voice and if is comprised between (18.0 − 19.7) dB, then it is
considered not reliable.

• A CPPSstd value < 0.9 dB identifies an healthy voice, > 1.3 dB a pathological
voice and if is in the range (0.9 − 1.3) dB, then it is considered not reliable.

Additionally, VH device is preferable both for convenience in conducting acquisitions
(i.e., the subject is free to move, without the need to worry about the distance
between the mouth and the microphone) and, for its insensitivity to other possible
sound sources in the environment. It is particularly meaningful to examine the
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results of deltas relative to the amplitude and period stability parameters (i.e.,
local shimmer and local jitter respectively), that are available only in this task. In
the case of local shimmer measure (figure 3.25) significant differences, between the
parameters extracted from MIC and VH, are founded. Having a positive (above
zero) mean value of delta shimmer, means that the measure of shimmer in air is
higher than the one extracted from VH; this result is reliable, since the stability
in amplitude of MIC can be worse in respect to the contact microphone-based
device, being the latter a more stable analyzer, less affected by possible sources
of noise in the environment. The black line, representing the mean value of delta
shimmer, (equal to 4.38%) is significantly higher if compared to the cut-off values
already mentioned (for local shimmer) and, it provides information on the average
difference between MIC and VH between all the subjects. The delta shimmer
value of the subject 17 (in figure 3.25) is highly negative if compared to the mean
value of delta shimmer (i.e., the black horizontal line); this result, suggest that an
error may have occurred during the acquisition of that subject with the VH device
(for e.g. a displacement of the collar, which should not be moved for the entire
duration of the recording) and this case, can be considered as an outlier. Generally,

Figure 3.25: Results of delta shimmer values for each subject in the case of
sustained vowel /a/ task

a worsening in the value (i.e., an higher value) of shimmer in air is expected, which
represents the stability in amplitude, compared to a less evident delta jitter value
(and thus, a value more near zero), which indicates that the in-period stability
(i.e. jitter) is less affected by background noise sources (as reported in figure 3.26).
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This result is corroborated by looking at the mean value of local jitter (the black
line), being just above the unreliable range (relative to the mentioned cut-off
values), which allows to classify a subject as healthy or pathological. In the case of

Figure 3.26: Results of delta jitter values for each subject in the case of sustained
vowel /a/ task

CPPSstd (as for local jitter), no significant delta values are observed. The mean
value of delta CPPSstd is negative (figure 3.27), which means that the CPPSstd
value measured in air is slightly lower than the one provided by VH. This results is
reliable, since the signal recorded by the microphone in air can be compromised
by noise sources, therefore, it is strongly related to the background noise level of
the environment in which the acquisitions take place (e.g. in-clinic). In addition,
the measurement chains’ bandwidth of the two microphones are different: while
the contact microphone-based device has a frequency content of approximately
3.5 kHz, for the in-air microphone case, this is 10 kHz. Referring to the results
exhibited in [10], CPPS5,prc and CPPSstd change when they are estimated from
devices characterized by different bandwidths. Since the devices have different
characteristics, it is important to assert that a mean value of delta equal to zero
cannot be expected.
For the parameters local jitter, CPPSmedian and CPPSstd the validation can be
considered passed, while for the others, such as local shimmer, significant differences
in terms of ∆ value is noted. An attempt to improve the mean value of delta
shimmer, is applied by removing elements showing abnormal behavior in respect
to the delta mean value (e.g. subject 17) and, among the subjects that remain, a
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Figure 3.27: Results of delta CPPSstd values for each subject in the case of
sustained vowel /a/ task

new mean value of delta shimmer is calculated. Outliers are selected as subjects
exhibiting a value of delta shimmer exceeding three times the confidence interval
set to ±1 · σ (i.e., ±3 · σ, indicated with yellow lines in figure 3.28). As result, the
mean value of delta shimmer (indicated with magenta line) remains high (equal to
4.15%), especially if compared with the unreliable range applied to this parameter
(i.e., (2.37 − 2.55)%); even removing the outliers from the calculation of the mean
value of delta shimmer, the validation of the VH for this parameter, can not be
considered achieved.

Balanced/free speech task

In the balanced and free speech case, the examined comparisons are available for
all nine descriptive statistics of fundamental frequency f0 (Hz) and CPPS (dB)
(as displayed in figure 2.7 in section 2.2.1). In the balanced speech task, the total
number of subjects involved is twenty-five (1-11 MS patients as red elements and
12-25 healthy subjects as blue ones), while in the case of free speech they become
twenty-seven (which are 1-13 MS and 14-27 HS); these differences in the number
of subjects, derive from the availability (for each subject) of both, the file returned
by VH device and the .wav acquisition from the in-air microphone. Although, the
sustained vowel /a/ is considered an unnatural vocalization if compared with the
reading and free speech, for these tasks congruent results are obtained regarding
the validation of VH device. The mean value of delta CPPS5,prc is not zero (as
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Figure 3.28: Results of delta shimmer values for each subject after the outliers
removal in the case of sustained vowel /a/ task

expected), since the bandwidth of the measurement chains of the two microphones
are different, but it is negative (figure 3.29); this could derive from the presence of
noise sources in the in-air microphone acquisition, leading to a worsening in the
value (i.e., a lower value) of CPPS in air.

3.4 Assessment of vocal fatigue
The method proposed to assess fatigue is presented in section 2.2.3 and, in this
case, only data acquired with VH device are considered. Differences δ between the
parameters extracted from the long-term and the correspondent short-term moni-
toring (i.e., the balanced and free speech task) are calculated, the last considered as
a sort of "baseline" (i.e., the parameters during the first instants of the evaluation).
This comparison is carried out considering the parameters Sound Pressure Level
(dB), fundamental frequency f0 (Hz), CPPS (dB), and Background Noise Level
(90° percentile) in dBA (as shown in figures 2.10 and 2.11). It is expected that,
while performing the baseline, no difference between the two classes (HS and MS)
is noted, as the time proceeds, a distinction between healthy subjects and patients
will emerge, being fatigue one of the most obvious and debilitating symptoms of
Multiple Sclerosis. To perform this investigation, a mean value of each parameter is
extracted for both the acquisitions (long-term and short-term monitoring), for each
subject; then, delta values are calculated, but no significant differences in terms
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Figure 3.29: Results of delta CPPS5,prc values for each subject in the case of
balanced speech task

of fatigue experienced between the two classes is noted. Considering the SPLmean
parameter, both HS and MS show a positive mean value (as reported in figure 3.30),
which means that there is an increase in speech intensity in long-term evaluation,
if compared to baseline (the latter being an in-clinic monitoring performed under
comfortable conditions). Actually, this result is consistent with the discussion
exhibited in [29], where an increase in fundamental frequency and sound pressure
level after long periods of voice usage is reported (whether for professional use
or not). The red band and the blue one (the confidence intervals set to ±1∗σ for
MS and HS respectively) are not well separated and, as a consequence, it is not
possible to distinguish a significantly different behavior of MS patients compared to
healthy subjects. In addition, it is reported that, two strategies during vocalization
are used in order to increase vocal intensity; these are, using more energy (i.e.,
air) or raising the fundamental frequency through compensatory strategies (e.g.,
using different muscles of vocal tract with reference to the Appendix A.1); the
latter, being less advantageous, but more typical of subjects developing dysphonia
or fatigue. An effect of this phenomenon is reported (in figure 3.31), where the MS
class presents a mean value of f0,mean slightly higher in respect to HS and a gap
between the two confidence intervals is noted.
It is important to express the fact that, the results obtained for different parame-
ters depend on the environment in which the acquisitions are carried out, since a
strong correlation of the data with the background noise level is expected. The

64



Results

Figure 3.30: Results of delta SPLmean values in the comparison between long-
term and short-term evaluation

Figure 3.31: Results of delta f0,mean values in the comparison between long-term
and short-term evaluation

parameters acquired with VH for the long-term evaluation, are visualized over time
with reference to the background noise level (as shown in figures 3.32 and 3.33).
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The red colour is associated with the MS class, while the blue one with HS group.
It is clear, that, a more complete analysis of the trends of these parameters can
be done only with the use of diaries, reporting both the environment where the
acquisitions take place and the activity performed by the subject. To conduct

Figure 3.32: Representation of f0,mean parameter over time with reference to the
BNLLAF90 value present in the environment in the case of one patient

this investigation, a removal of unvoiced frames is carried out for all parameters,
except for BNLLAF90 parameter, being its value significant regardless of whether
the subjects is talking or not. Observing the figures, it is possible to notice that
where the parameter becomes zero, it means that, in that frame, the subject is not
speaking.
It is interesting to observe the correlations between the parameters SPLmean-
BNLLAF90, f0,mean-BNLLAF90 and SPLmean-f0,mean. The regression line (which fits
the correlation between these parameters) and the correlation coefficient R2 (which
expresses the goodness-of-fit of the model) are calculated with the idea of perform-
ing an inter-class and an intra-class analysis. If the environment is characterized by
a loud background noise level, then one strategy that subjects usually perform in
order to prevail, is to raise their speech intensity of voice (i.e., the SPL parameter).
This effect, is represented in the map SPLmean-BNLLAF90 as an increase in the
regression line. Additionally, considering that MS patients suffer from hypophonia,
it is expected that they are unable (or less able than healthy people) to increase
their speech intensity level as noise increases. Observing the subjects (both MS
and HS) taken individually, it is not possible to notice any significant difference in
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Figure 3.33: Representation of SPLmean parameter over time with reference to
the BNLLAF90 value present in the environment in the case of one healthy subject

respect to the values of slope of the regression model; in fact, the angular coefficient
of the regression line in the case of MS patients (figure 3.34) does not assume lower
values if compared to the one of healthy subjects (figure 3.35).

However, with reference to the same map (i.e., SPLmean-BNLLAF90), considering
no longer the individual subject, but the entire MS/HS class, then the results are
in accordance with what expected. The MS patients (in red) show a negative slope
for the regression model in the speech intensity-noise level correlation, in contrast
to the healthy subjects (in blue) that present a positive angular coefficient; this
means that, if there is an increase in the BNLLAF90, generally the MS patients
decrease their speech intensity over time (as shown in figures 3.36 and 3.37).

Observing the SPLmean-f0,mean correlation in the case of healthy subjects, this
map (figure 3.38) has a definite pattern; if HS increase the speech intensity, they
also increase their fundamental frequency value and in the map, this results in an
asymmetrical shape characterized by a peak in the upper right corner.
In order to observe fatigue in the representation of the SPLmean parameter over
time (i.e., a decrease in the value of speech intensity over time), it is important
to exclude the effect of the background noise level; since an increase in the noise
level, can lead the subject to increase (even unintentionally) the intensity of the
voice and thus, to hide the effect of fatigue. To perform this analysis, the angular
coefficient of the regression line modeling the SPLmean-BNLLAF90 correlation is
used (figure 3.34). In this case, the MS patient is able to increase the speech
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Figure 3.34: Representation of SPLmean-BNLLAF90 correlation in the case of one
patient

Figure 3.35: Representation of SPLmean-BNLLAF90 correlation in the case of an
healthy subject

intensity level in order to cope with an increase of BNLLAF90 parameter in the
environment (since the slope of the regression model is positive and equal to 0.06
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Figure 3.36: Representation of SPLmean-BNLLAF90 correlation for MS class

Figure 3.37: Representation of SPLmean-BNLLAF90 correlation for HS class

dB/dBA). The initial SPLmean value before performing the BNLLAF90 correction
(represented in red) is equal to 60.31 dB (i.e., the intercept at time zero) and it
increases of approximately 0.005 dB/min over time (as shown in figure 3.39). This
compensation is executed by operating for each frame a difference between the
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Figure 3.38: Representation of SPLmean-f0,mean correlation for HS class

original SPLmean value and the BNLLAF90 parameter, multiplied by the angular
coefficient of the SPLmean-BNLLAF90 regression line (which, as already mentioned,
is equal to 0.06 dB/dBA). The "corrected" SPLmean value over time (represented in

Figure 3.39: Representation of SPLmean compensation in respect to the
BNLLAF90 over time for one patient
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magenta) indicates that, in absence of noise in the environment, the subject starts
speaking at 57.04 dB and the speech intensity increases of approximately 0.004
dB/min over time. Also in this case, the subject does not show fatigue since the
value of the angular coefficient is positive. To observe differences between HS and
MS class, the value of the angular coefficient of the regression line (modeling the
parameter SPLmean corrected over time) for each subject is extracted and plotted
on a graph; on the y-axis the value of the slope in dB/min is reported, while on
the x-axis there are the MS patient (in red) and the healthy subjects (in blue).
An higher value of slope is expected for healthy subjects in respect to MS, since
the patients should show an higher fatigue. In this case, a difference between the
two classes is not observed (figure 3.40). It is possible that, the mean value of
the slope of the regression line for the healthy subjects (equal to 0.0032 dB/min
in figure 3.40) is lower in respect to MS, since the time interval of the long-term
recordings for the healthy group is longer and therefore, they show more fatigue.
In addition, this hypothesis is confirmed by observing that, the MS group exhibits
a time interval duration for the long-term monitoring, ranging from a minimum of
95 to a maximum of 247 minutes, while in the HS case, this ranges from 202 to 311
minutes. With the aim of exposing more comparable results in terms of fatigue
in future acquisitions, it is important that all subjects (included in the data-set)
display approximately equal time intervals duration for the long-term monitoring.

Figure 3.40: Representation of the extracted slope values (dB/min) of the
regression line modelling the SPLmean parameter compensated in respect to the
BNLLAF90 over time for each subject
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Observing the results obtained by extracting the SPLmean parameter over time, it
is possible to notice that, MS patients exhibit lower variability in respect to healthy
subjects. In particular, the elements (i.e., the SPLmean values measured by VH
in each 75-s frame) in the case of MS patients, seem to be more centered on the
regression model fitting the data (as shown for MS and HS in figures 3.39 and 3.41
respectively). From these results, it is expected that MS patients show lower ability

Figure 3.41: Representation of SPLmean compensation in respect to the
BNLLAF90 over time for an healthy subject

to vary both speech intensity level (SPL) and fundamental frequency (f0), and
furthermore, exhibit a significantly lower range of variability than healthy subjects.
To assess the variability of speech intensity level over time without BNLLAF90
correction (since it is not necessary to consider the parameter SPLmean corrected
over time), the value of the SPLstd parameter for each subject is extracted and
plotted on a graph. The results (shown in figure 3.42) show that MS subjects
have a mean value of SPLstd equal to 2.53 dB, compared to healthy subjects
showing a mean value of 2.91 dB; this means that MS subjects present slightly
reduced variability in intensity if compared to healthy subjects. Similarly, an
analysis on the ability of different subjects in varying their fundamental frequency
f0 is conducted. The procedure to extract f0,std parameter is the same, as already
performed for SPLstd. The results (expressed in figure 3.43) show that the blue
band, representing the ability of healthy subject in varying their frequency f0,
is slightly higher (reporting a mean value of f0,std equal to 34.35 Hz). However,
limitations in this experiment can be overcome through an increase in the data-set,
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Figure 3.42: Representation of the mean value of SPLstd for each subject for the
long-term monitoring

so as to narrow these bands and to observe significant differences between the
classes.

Figure 3.43: Representation of the mean value of f0,std for each subject for the
long-term monitoring
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3.5 Vocal doses
Excessive vibration of vocal fold tissues, due to loud or prolonged vocalization,
is assumed to contribute to the development of voice disorders and present a
significant health concerns. The five vocal doses measures the vocal load and can
be used for studying the effects of vocal fold tissue exposure to vibration, which is
experienced by subjects in long-term assessment. Having defined the vocal doses
(in section 2.2.4), their accumulation for each subject is demonstrated for the entire
duration of the long-term acquisition (i.e., the total measurement time, tm); in
addition, each dose is referred to the parameter kv, defined as the voicing unit step
function. All the doses tend to increase when the voicing function is equal to 1
(voiced frame) and, remain constant when kv assumes the value of 0 (unvoiced
frame). The dose measures allow different vocalizations to be compared and, can
be used in studying different factors potentially harmful for the vocal folds. The
examples of accumulation of all five vocal doses are shown for the case of one MS
patient (in red). The time dose (figure 3.44), although sensitive to neither frequency
nor loudness, can be used for quantifying the duration of voicing percentages among
various vocal activities or occupations. The cycle dose (figure 3.45) is found to

Figure 3.44: Accumulation of the time dose and the correspondent voicing unit
step function in the case of one patient

contribute to the correlation of the larger number of cycles with the larger number
of vocal complaints, deriving from the potentially harmful effect of collisions of
the vocal folds. The distance dose measures the total distance accumulated by the
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Figure 3.45: Accumulation of the cycle dose and the correspondent voicing unit
step function in the case of one patient

vocal folds during vibration; two examples (figures 3.46 and 3.47) show the cases
of distance dose (Dd) for a male patient in red and an healthy male subject in blue.
Dd in the MS case reaches a value just above 350 m after a total time interval
for long-term monitoring of approximately 98 minutes; while, in the HS case, it
reaches a value above 400 m in a total measurement time of about 223 minutes.

The energy dissipation dose calculates the total amount of heat generated in
a unit volume of vocal fold tissues; however the amount of heat generated in the
vocal folds is smaller than expected [23] (as presented in figure 3.48). The radiated
energy dose can be used for studying the efficiency of the voice production, relating
the energy radiated out the mouth to the total energy dissipated in the vocal folds;
however this is only a crude estimate (figure 3.49), since a proper quantification of
the total dissipated energy would require the knowledge of the length, the thickness
and the depth of the vocal fold vibration for each subject.
From here, it is possible to understand that the extracted doses exhibit orders of
magnitude comparable with values found in literature [24]; however, an important
limitation is presented, which is the total measurement time for the long-term
monitoring, since it is not fixed, but varies for each subject (as it is possible to
observe from the time axis in figures 3.46 and 3.47). All subjects under analysis
performed long-term monitoring ranging from 95 minutes up to 326 minutes. Unless
during the acquisition, vocal effort is significant among the other subjects, then,
there is the problem of being able to compare the five vocal doses. To compute
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Figure 3.46: Accumulation of the distance dose and the correspondent voicing
unit step function in the case of one patient

Figure 3.47: Accumulation of the distance dose and the correspondent voicing
unit step function in the case of an healthy subject

an assessment at consistent times, a minimum time interval duration common to
all subject is considered. In this case, the minimum time interval duration chosen
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Figure 3.48: Accumulation of the energy dissipation dose and the correspondent
voicing unit step function in the case of one patient

Figure 3.49: Accumulation of the radiated energy dose and the correspondent
voicing unit step function in the case of one patient

is 95 minutes. For each subject, the five vocal doses at minute 95 are extracted
and represented. Observing the results in the case of the time dose as a function
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Figure 3.50: Time dose values at the minimum time interval of 95 minutes for
each subject under analysis

of the subjects (figure 3.50), similar Dt values between HS and MS are founded.
Regarding a minimum time interval of 95 minutes, the time dose for different
subjects ranges from 244 to 1815 seconds; healthy and pathological subjects are
mixed and, no conclusions as to whether the patients speak less than HS can
be performed; thus, no differences, in this case, are noticed and the time dose
parameter is not significant in distinguishing the two classes.
Considering the other doses (i.e., Dc, Dd, De and Dr), a slight difference between
the classes can be noted (as reported in the cases of the energy dissipation dose and
radiated energy dose in figures 3.51 and 3.52 respectively); with a minimum time
interval of 95 minutes, the energy dissipation dose ranges from 18.379 to 331.77
J/m3; while, the radiated energy dose varies from 0.12 to 18.8 mJ . Although, the
subjects within a certain class do not seem to show a common trend, a gap between
the two bands (HS and MS) is observed. The blue band corresponding to the
confidence interval of HS is above the red band of MS patients; this means, that
healthy subjects demonstrate both, an amount of heat produced in the vocal folds
during vibration (De) and an energy radiated out of mouth (Dr), that is slightly
higher in respect to patients.

In addition, it is possible to notice that subjects often exceed the confidence
interval (set to ±1∗σ); moreover, to conduct this investigation subjects (both MS
and HS) displaying abnormal doses values are removed (since they are considered
outliers) and, among the ones remained, the mean value and standard deviation
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Figure 3.51: Energy dissipation dose values at the minimum time interval of 95
minutes for each subject under analysis

Figure 3.52: Radiated energy dose values at the minimum time interval of 95
minutes for each subject under analysis

are calculated. Also, in this analysis, the two main limitations for the long-term
recordings are found, which are the limited data-set (i.e., low number of subjects)
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and the time interval too short to assess fatigue.
Furthermore, another analysis performed, consist in weighting the other doses in
respect to the time dose, used as a normalization factor to obtain doses per second
of vocalization; however, being all the vocal doses, extracted for a time interval of
95 minutes, then, the result is the same if the doses are referred to the time dose
instead of the Voicing Time Percentage (PPT) (since the considered interval of time
is the same). The idea, in this investigation, is to find a correlation between time
dose and the other doses. If no correlation is observed, such as in the case of De

as a function of Dt (figure 3.53), it means that the value of the energy dissipation
dose, among different subjects, at minute 95 is similar. If no significant dependence
with respect to the time dose is demonstrated, then, data can be observed without
performing normalization (with respect to Dt). A strong correlation between the

Figure 3.53: Energy dissipation dose values weighted in respect to the time dose
at the minimum time interval of 95 minutes

cycle dose and the time dose is expected, since the only variability is introduced
by f0 parameter (as reported in their definition in section 2.2.4). Similarly, a
correlation between the distance dose and the time dose is also found (in this
case, slightly less in respect to Dc), since variability is introduced from both the
parameters f0 and SPL (this latter defined in the empirical rules of the parameters
A, Pth and PL).

It is clear, that, when observing the cycle and the distance dose (figures 3.54
and 3.55), the parameter Dt enters directly into their definition and correlation is
found; while for other parameters, such as the energy dissipation dose (figure 3.53)
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Figure 3.54: Cycle dose values weighted in respect to the time dose at the
minimum time interval of 95 minutes

Figure 3.55: Distance dose values weighted in respect to the time dose at the
minimum time interval of 95 minutes

or the radiated energy dose, no correction (normalization) is needed.
Since the limit concerning time interval duration too short for long-term assessment
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is found, the same study is conducted by increasing the time interval and by
eliminating the subjects with a short duration. Considering a minimum time
interval of 95 minutes, the total number of subjects in the study are twenty-seven
(1-13 MS and 14-27 HS). The data-set comprises the long-term acquisitions of thirty
subjects; however, three subjects are considered outliers and therefore, removed.
The same analysis conducted with a minimum time interval of 95 minutes, is
performed, choosing a minimum time interval equal to 156 and 200 minutes. This
choice is motivated by the fact that, the effect of fatigue experienced by the subjects,
is most visible as the time interval duration for the long-term monitoring increases.
As it is expected, by considering a minimum time interval of 156 min, the classes
show a different behavior in the values of vocal doses; observing the results (in
figure 3.56), it is clear how much the confidence interval associated with HS is
significantly higher in respect to MS patients, as reported in the case of the radiated
energy dose (at minute 156). As already mentioned, this dose is related with the
efficiency in voice production, which seems much higher in the healthy group.
Similarly, weighing Dr as a function of the time dose, an higher trend in the case of
HS group in respect to the red elements is shown (as represented in figure 3.57).

Figure 3.56: Radiated energy dose values at the minimum time interval of 156
minutes for each subject under analysis

Then, increasing the minimum time interval up to 200 minutes, different behavior
between classes is observed, as reported for the example of the distance dose
(figure 3.58). The total number of subjects in the 200’ evaluation are 25 (1-11
MS and 12-25 HS). Eventually, although these measures (i.e., the distance dose
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Figure 3.57: Radiated energy dose values weighted in respect to the time dose at
the minimum time interval of 156 minutes

and the time dose) are correlated, MS patients show a value of total distance
accumulated by the vocal cords during vibration, always lower if compared to the
healthy subjects (figure 3.59).

83



Results

Figure 3.58: Distance dose values at the minimum time interval of 200 minutes
for each subject under analysis

Figure 3.59: Distance dose values weighted in respect to the time dose at the
minimum time interval of 200 minutes
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Chapter 4

Conclusions

In this work, different studies are conducted on voice recordings of two balanced
subgroups of identical dimension (i.e., sixteen subjects), correspondent to healthy
subjects (HS) and patients with Multiple Sclerosis (MS). For each subject, speech
material consists in three vocal tasks (vocalization of the sustained vowel /a/,
reading of a phonetically balanced text and performing approximately one minute
of free speech), simultaneously acquired using an in-air microphone system and
a contact microphone-based device (Vocal Holter, VH). In addition, long-term
recordings are carried out with VH device only, covering a maximum period of four
hours of subjects’ daily activities. The available vocal material recorded with the
microphone in air is pre-processed according to the Harmonic-to-Noise Ratio (HNR)
method, in order to select the harmonic frames used to extract vocal parameters
in the time, spectral and cepstral domains. The subjects are classified comparing
the probability, returned by a Logistic Regression (LR) model, to a fixed threshold
(set to 0.5) and dividing them into the classes of HS and MS. The LR model is
trained using a single and a combination of 2, 3, 4 features, and the combinations
of features (or single feature) providing the best classification performance (in
terms of accuracy) are selected. Then, the selected features are used to validate
the LR model with 5-fold cross-validation, in the Classification Learner App in
Matlab (R2022b). If there are multiple features with the same maximum accuracy
value, validation is performed with both the features selected by the algorithm and
the features with the largest Area Under The Curve (AUC), among those with
the highest accuracy. The best classification results achieved, demonstrate that
the balanced speech task is the most suitable vocal material for discriminating
between healthy and pathological voices; by selecting 3 features, which are gender,
5° percentile of Cepstral Peak Prominence Smoothed, and harmonic frames ratio
V/uV , an accuracy value equal to 92.3% is reached. An unusual result that is
found in this investigation, is the presence of the gender parameter, considered
(among the other parameters) a significant feature for classification. As a result, a

85



Conclusions

test is conducted by selecting and evaluating the classification performance for the
feature combination f0,mean (instead of gender), CPPS5,prc and V/uV , since an high
correlation between these parameters is expected; the results obtained, are lowered
(showing an accuracy equal to 88.5%), but still express how much this combination
of features is significant in distinguishing between the classes. In the other cases of
sustained vowel /a/ and free speech task the classification performance are lower
in respect to the reading task; with more detail, the selected features in these
tasks are: for sustained vowel the CPPSskewness parameter alone (accuracy equal
to 77.8%) and in the case of free speech task the feature combination consists of
HNRstd, CPPS5,prc and V/uV (accuracy equal to 89.3%).

The expanded uncertainty U(p) of the probability p for each task is evaluated,
thus providing a confidence interval, which is created by applying a coverage factor
of 2 to the standard uncertainty. When the confidence interval exhibited values that
intersect the discrimination probability set to 0.5, the classification of the subject
is considered too doubtful, hence the third class of "non-classified" is introduced.
In order to get objective feedback on the effect of "non-classified" subjects on
overall classification performance, new classification metrics, such as the Realistic
Accuracy and the Fraction of Classified (FoC), are defined. The implementation of
this procedure to the feature combination showing the best performance during
cross-validation (gender, CPPS5,prc and V/uV ), results in FoC of 92.3% and an
higher accuracy.
With the aim of validating VH device, considered a valuable aid for long-term
monitoring of fatigue, the parameters extracted from the microphone in air are
compared to the ones from VH by calculating differences ∆ between these measures.
Considering sustained vowel /a/ task, the analysis is performed on the parameters
local jitter (%), local shimmer (%), CPPSmedian (dB) and CPPSstd (dB); for balanced
and free speech task these differences are carried out for all descriptive statistics of
fundamental frequency f0 (Hz) and CPPS (dB). For the parameters local jitter,
CPPSmedian and CPPSstd the validation can be considered passed, while for the
others, such as local shimmer, significant differences in terms of ∆ values are noted.
Since the two devices have different characteristics, i.e. in terms of bandwidth,
and they receive as input different signals (the vibration induced by vocal folds
for the VH device and the air-pressure signal for the in-air microphone), the use
of the VH device requires the definition of specific cut-off values for the extracted
parameters. Additionally, the VH device is preferable both for convenience in
conducting acquisitions and for its insensitivity to other possible sound sources. In
addition, an attempt to improve the results of ∆ is applied by removing subjects
showing abnormal behavior (i.e., outliers), and among these remained, a new mean
value is calculated; however, also in this analysis, the differences performed between
the values of delta shimmer, returned by the two devices, remain high.
A proposal to assess fatigue is conducted with the use of differences δ between the
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parameters extracted from the long-term and the short-term monitoring, the last
considered as a sort of "baseline"; this comparison is carried out considering the
parameters Sound Pressure Level (dB), fundamental frequency f0 (Hz), CPPS (dB),
and Background Noise Level (90° percentile) in dBA. No significant difference in
the behavior of the classes with regard to the fatigue experienced is found; however,
the main limitations derive from the number of subjects involved that is low, and
in the time interval of the acquisitions, too short (between 95 and 200 minutes) to
compute an assessment on vocal fatigue. It is expected that, as the time proceeds,
a distinction between healthy subjects and patients will emerge, being fatigue one
of the most obvious and debilitating symptoms of Multiple Sclerosis. Although
the values of δ do not exhibit important differences among the two recordings,
the results are consistent, since an increase in fundamental frequency and sound
pressure level after long periods of voice usage is found. Additionally, the parameters
acquired with VH for the long-term evaluation are visualized over time and for each
subject an analysis on the changes in vocal production caused by environmental
factors is performed. The correlations between the parameters SPLmean-BNLLAF90,
f0,mean-BNLLAF90 and SPLmean-f0,mean are observed by performing an inter-class
and an intra-class comparison, and for each of these maps, the regression line and
the correlation coefficient R2 are considered. While in the case of subjects taken
individually, no significant difference is noticed, considering the entire HS/MS
class, the results are in accordance with what expected; in fact, the MS class
demonstrate lower ability than healthy subjects to increase their speech intensity
level, as the background noise increases. Since an increase in the noise level, can
lead the subject to increase the speech intensity of voice and thus, to hide the
effect of fatigue; a compensation on the SPLmean value over time with respect to
the noise level is operated by means of the angular coefficient of the regression line
modelling the correlation between these parameters. A difference in the value of
slope of the regression line, that fits SPLmean "corrected" over time, between the
two classes is not observed; also, this result can be explained by observing that
the MS group exhibits a time interval duration for the long-term evaluation that is
lower in respect to the HS case. Furthermore, MS patients show a lower ability
to vary both speech intensity level and fundamental frequency than HS; to assess
the variability of SPLmean and f0 for each group, the standard deviation of these
parameters is considered, demonstrating in the MS a lower range of variability.
Eventually, an evaluation of five vocal dose measures as indicators of long-term
vocal folds tissue exposure to vibration is provided, which are time dose, cycle dose,
distance dose, energy dissipation dose and radiated energy dose. Unless vocal effort
is significant among the other subjects, there is the problem of comparing the vocal
doses. To compute an assessment at consistent times, a minimum time interval
duration common to all subject is considered. Considering a minimum time interval
of 95 minutes, while the time dose is not significant in distinguishing the two classes,
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in the case of the other doses a slight difference is noted. All the other doses are
weighted in respect to the time dose, used as a normalization factor in order to
find a correlation. If no correlation is observed, such as in the case of the energy
dissipation dose as a function of the time dose, it means that the value of that
dose among the subjects at minute 95 is similar and data can be observed without
performing a normalization (with respect to the time dose). However, a strong
correlation between the cycle and the time dose and also, the distance and the time
dose, is found, since the time dose enters directly in the definition of these doses
(i.e., cycle and distance dose). Since the limit concerning time interval duration too
short for long-term assessment is found, this study is conducted by increasing the
time interval and by eliminating the subjects with a short duration. Considering a
minimum time interval duration equal to 156 minutes and 200 minutes, different
behavior between the classes is shown for all the doses. In the case of the radiated
energy dose, the healthy group exhibits significantly higher values in respect to
MS, demonstrating that the efficiency in voice production is lower in patients. Also
in this investigation, limitations can be overcome through both an increase in the
data-set and in the time interval of the records, being the considered acquisitions
too short to demonstrate fatigue.
To clarify, this thesis work is performed with the objective of validating the use
of VH as a tool, which on the same level as the in-air microphone, is useful in
providing distributional parameters able to characterize vocal health and, at the
same time, in computing an assessment for long-term monitoring of fatigue.
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A.1 Anatomy of the Phonatory system

Understanding voice production and voice control, requires an integrated approach,
in which physiology, vocal fold vibration, and acoustics are considered as a whole,
instead of disconnected components. There are three systems acting together
to produce voice, that are, the Respiratory system, the Phonatory system (also
know, as "voice box") and the Resonatory system [30]. The lungs are the main
organs of the Respiratory system and they are considered as the "power" behind
voice production, since they cause the airflow to pass through the vocal folds;
as a consequence, their vibration occur and the sound source is created. Vocal
folds (or vocal cords) are layered muscles (about 11–15 mm long in adult women
and 17–21 mm in men) located in the larynx (i.e., the Phonatory system) at the
top of the trachea. The vocal folds stretches across the larynx along the anterior-
posterior direction, attaching anteriorly to the thyroid cartilage and posteriorly to
the anterolateral surface of the arytenoid cartilages (figure A.1). The vocal cords
are part of the glottis, which are a portion of the laryngeal cavity formed by the
vocal folds and the rima glottidis (i.e., an opening between them). The phonation
cycle is divided into an opening phase (in which the glottis opens), determining
the separation of the vocal folds, and the closing phase (i.e., the glottis closes),
in which the space between the vocal folds reduces. When the airflow (produced
by the lungs) creates pressure below the glottis, the vocal folds are in complete
adduction and it coincides with the closing phase. The vocal cords remain closed
until a negative intra-glottical pressure is produced, then they are pulled back and
thus, opened. The Resonatory system includes the vocal tract from the trachea to
the mouth and it is responsible in shaping the tone of the voice; in addition, all
the organs in the oral and the nasal cavity play an active role in the generation of
consonants and in the production of human voice.
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Figure A.1: Anatomical description of the larynx

The speech signal is a complex signal, that has two main components: one related
to the glottal pulses and another related to the vocal tract. In vocal production,
sounds can be distinguished in voiced and unvoiced sounds. For voiced sound
production, vocal fold vibration modulates airflow through the glottis and produces
sound, which propagates through the vocal tract; these sounds are characterized
by the fundamental frequency, determined by the opening and closing of the vocal
folds, and other frequencies (i.e. formants) generated by resonant cavities. Typical
examples of voiced sounds are originated by vowels, such as /a/ and /i/. In contrast,
unvoiced (or voiceless) sounds, are produced without vocal fold vibration (e.g.,
sounds generated by airflow through constrictions in the vocal tract or other sound
producing mechanisms such as whispering) [31]. In Italian language, unvoiced
sounds can be produced by the consonants /k/, /f/ or /t/.

A.2 "Notturno"

Notturno. Vi è un profondo silenzio nel buio della notte. Vincino al pozzo, nella
cui acqua si specchiano la luna ed una scia di stelle, la magnolia stende i suoi rami,
cespugli di rose olezzano nell’aria. Il temporale è cessato e la pioggia, ormai, non
cade più. Solo le rane gracidano nei fossi oltre quel prato.
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A.3 Logistic Regression
Logistic regression (LR) is a non-linear statistical model, belonging to the class
of Generalized Linear Models, used to separate binary variables as in the case of
a pathological group in respect to a healthy control one. Unlike linear regression
model, which returns values belonging to the set of real numbers, LR model provides
a probability range bounded between 0 and 1. The LR model implements the
logistic function to model a binary dependent variable, this function transforms
a linear combination into the desired target function and for this reason is called
link function. The logarithm of the odds (log-odds) for the positive class is a linear
combination of independent variable Xi called predictors and regression coefficients
βi, where β0 is the intercept and i = 1,2, ...N with N the number of observations.

log( p

1 − p
) = ΘT · x

ΘT · x = β0 + β1x1 + β2x2 + ... + βNxN

(A.1)

The probability p returned by the model is a continuous function that can be
described with the sigmoid function in Eq. (A.2), which is obtained by inverting
the Eq. (A.1).

p = exp(ΘT ·x)

1 + exp(ΘT ·x) = 1
1 + exp−(ΘT ·x) (A.2)

The aim of the LR in binary classification problems, is to reduce the distance
between the sigmoid function, defined by the regression coefficients β0, β1, ...βN

and the ideal step function between 0 and 1. During the phase of the model
training, the best coefficients or weights are calculated: this can be done by solving
a minimization problem on the log-likelihood through the use of deterministic
or stochastic mathematical approaches, such as the least square differences, the
gradient descent and the Newton method [14]. The learning algorithm performs
the search of the best regressed coefficients and also, gives an estimate of the
coefficients’ variances and covariances which can be used in order to evaluate the
goodness of the regression model. The model provides a continuous probability p
of belonging to the positive class. To obtain a binary classification, the probability
is compared to a fixed threshold typically equal to 0.5. LR is a powerful supervised
Machine Learnine (ML) algorithm, very popular for binary classification problems.
The algorithm is trained in order to produce predictions with a dataset of known
features and responses. The probabilities returned by the model are compared
with the known responses (the true class) to obtain the quantities described by a
confusion matrix. A confusion matrix, also known as a contingency table or an
error matrix, is a specific table layout that allows visualization of the performance
of a classifier when supervised training is applied. Confusion matrices may be used
with any number of classes, but when the classifier deals with only two classes
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(positive and negative), the following quantities are derived. True Negatives (TN)
is the number of negative elements correctly classified. True Positives (TP) are
the number of positive elements correctly classified. False negatives (FN) are the
number of positive elements misclassified (i.e., assigned to the negative class). False
Positives (FP) are the number of negative elements misclassified (i.e., assigned to
the positive class). These quantities are useful to evaluate metrics to assess the
performance of the classifier. The following metrics are the most common:

• Accuracy:
TP + TN

TP + TN + FP + FN
(A.3)

it is the most important parameter in classification models and it provide an
assessment of the proportion of elements correctly classified.

• Precision:
TP

TP + FP
(A.4)

it represents the probability of an element being positive, when it is classified
as positive and it indicates the model’s ability to classify positive elements.

• Sensitivity:
TP

TP + FN
(A.5)

also known as true positive rate (TPR), it measures the fraction of positive
elements correctly classified. According to the aim of this work, a high TPR
corresponds to a low number of FN (i.e., pathological subjects classified as
healthy), which means that the classification model has a good ability to
identify patients.

• Specificity:
TN

TN + FP
(A.6)

also called true negative rate (TNR), it expresses the proportion of negative
elements correctly classified. For a classifier, a high specificity translates into
a good ability to recognise healthy subjects. As a result, another metric can
be introduced, which is False Alarm = 1 – Specificity.

• Area Under the ROC Curve (AUC): it is another effective measure of a
classifier accuracy. The receiver operating characteristic (ROC) curve is a
graphical plot which illustrates the performance of a binary classifier system
as its discrimination threshold is varied. The ROC curve shows the Sensitivity
(TPR) against the False Alarm (FPR) at various threshold settings (figure A.2).
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AUC can be interpreted as the average value of sensitivity for all the possible
values of specificity and it is estimated in Matlab environment throughout
the built-in function perfcurve. AUC values vary from 0, which means test
incorrectly classify all elements, to 1, which is the maximum and it means that
the diagnostic test is perfect in the differentiation between the two classes;
when the AUC is 0.5, means random discrimination.

Figure A.2: Example of ROC curve computed by the Classification Learner App
in Matlab (R2022b)
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