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Abstract

Sign language is a structured form of hand gestures involving visual motions

and signs. For the deaf and speech impaired community sign language serves as

useful tool for daily interaction, enabling them to participate fully in society. Sign

language is not widely understood or used by hearing people, creating a significant

communication barrier between the deaf community and the rest of society.

In the academic context, regarding deaf students, both parents and teachers play

an important role by assisting them since childhood in learning sign language.

In recent years, the use of Virtual Reality (VR) as a teaching tool for sign lan-

guage has been on the rise. This technology has been shown to offer various benefits,

including enhanced empathy, improved communication skills, a better understand-

ing of diversity, and the creation of inclusive learning environments. Additionally,

VR has been proven to enhance retention, memory, and attention during the sign

language learning process, making it a valuable tool for both deaf and hearing indi-

viduals seeking to bridge the communication gap.

The objective of this thesis is the development of an application for Spanish

and Italian sign language recognition that exploits the VR environment to create a

database of signs quickly and easily. Additionally, it aims to provide an educational

tool for learning sign language and a skill assessment mechanism, all integrated with

artificial intelligence-based software (AI) to classify and recognize signs.

This effort is an integral component of the ISENSE project, financed by the

European Union, which aims to support students with deafness throughout their

academic journey by introducing various technological tools for teaching sign lan-

guage to the hearing community within academic settings. Notably, the application

has been entirely constructed using Unity 3D and is deployed on Oculus Meta Quest
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1 Introduction
Sign language is a visual-based form of communication that consists of stable hand
movements and postures that convey concepts [1]. Nowadays according to Ethno-
logue [2], there are 157 living sign languages and 24 million first language speakers
in the world.

Sign language is essential for daily interaction within the deaf and speech-impaired
community, because the structured signs help to reinforce communication and con-
vey information in everyday conversations. However, sign language is rare among
hearing people, and fewer are capable of understand and use it: this poses an impor-
tant communication barrier between the deaf community and the rest of society [3].
Sign language has seen technological advancements in recent years, with Virtual
Reality (VR) emerging as a powerful learning tool.

In this context has been demonstrated that VR has several benefits including en-
hanced empathy, improved communication skills, increased understanding of diver-
sity, and the creation of inclusive learning environments. [4]. By providing immersive
experiences, VR allows students to step into the perspectives of others, fostering em-
pathy and promoting a sense of belonging. Additionally, technological applications
leveraging AI and computer vision have been developed to facilitate sign language
learning. These applications utilize computer vision algorithms to track and ana-
lyze hand and body movements, enabling real-time recognition and interpretation
of sign language gestures. Learners can receive instant feedback, engage in interac-
tive lessons with virtual avatars or characters, and track their progress over time.
Through the integration of VR, AI, and computer vision, these technological appli-
cations aim to make sign language learning more accessible, engaging, and inclusive,
empowering individuals to communicate and connect with the deaf community.

This thesis presents a standalone VR and AI-based recognition system for the
Spanish and Italian sign language learning.

The system concerns the realization of specific and progressive training paths
to learn the sign language and communication skills needed to interact with deaf
students. In particular we created a tool for the hearing community (students, pro-
fessors, technicians, relatives and friends of deaf students), that could facilitate and
increase the learning of sign language and communication skills needed to interact
with deaf students in the academic context. The advantages and benefits of VR
applications were exploited, in particular the hand tracking done by the four cam-
eras integrated into the Oculus Meta Quest 2 [15] to carry out an on-the-fly sign
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recognition. In the application, there are different VR scenarios by which users can
add new signs to the database, learn new signs and test the acquired skills.

The software has been developed under the training program on national sign
language for social inclusion through Virtual and Augmented Reality in ISENSE, an
European project that aims at implementing supporting services to assist students
with deafness during their academic life, with a particular focus on the enrolment
phase, to increase the accessibility of deaf students in the academic context.

During the development of this thesis we wrote a paper for the IEEE MetroX-
RAINE congress that will take place in Milan at the end of October 2023. The
title of the article is "Training program on sign language: social inclusion through
Virtual Reality in ISENSE project".

In the upcoming sections, we will delve into the core topics of this thesis: sign
language, virtual reality, and artificial intelligence. we will begin by exploring the
history and geographical context of sign language, providing insights into its devel-
opment and regional variations. Subsequently, we will explain the virtual reality
technology, examining its fundamental principles and applications. Moreover, we
will analyze the state of the art about virtual reality for social inclusion purposes,
sign language recognition systems and machine learning algorithms applied to this
field. Moving forward, the framework and primary objective of this thesis will be
presented, outlining the methodologies employed for movement tracking and imple-
menting artificial intelligence algorithms for the recognition of signs. Furthermore,
we will share the obtained results from the application’s testing phase and offer
conclusive insights, followed by a discussion on potential future research directions.
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2 Sign Language and technologies
2.1 Sign language: historical and geografical background

Sign language encompasses a rich historical background that has had a profound im-
pact on the education and communication of deaf individuals. Interestingly, there
is evidence to suggest that visual language predates the development of auditory
language in human evolution. This implies that the ability to communicate through
visual gestures, expressions, and movements may have emerged before spoken lan-
guage evolved. Indigenous sign languages and ancient cultures across different parts
of the world recognized the vital role of visual communication and incorporated it
into their societies [5].

During the 17th and 18th centuries, sign language gained recognition as a com-
plete language with its own unique syntax; educators and scholars began to realize
that sign language provided a natural and effective means of communication for deaf
individuals, allowing them to express their thoughts, feelings, and ideas in a com-
prehensive and structured manner. This recognition marked a significant milestone
in the history of sign language, as it solidified its position as a legitimate language
deserving of academic study and inclusion in educational settings.

According to Ethnologue [2], there are 157 living sign languages with ISO-639-3
codes, representing approximately 24 million first language speakers. Sign language
is independent of spoken language and it can develop independently in different deaf
communities, even if differences in spoken languages can contribute to the variation
between sign languages, in finger spelling, grammar, sintax and lexicon.

Figure 1: «Abecedario demonstrativo» de Reducción de las letras y arte para enseñar
a hablar los mudos (1620), Spanish National Library, by Juan Pablo Bonet
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This thesis project focuses specifically on Italian and Spanish sign languages:
Italian sign language (Lingua dei Segni Italiana - LIS) was officially recognized as
an official language in 2021; in Spain, each autonomous community has its own
legislation pertaining to sign language, but it was recognized as an official language
of the state (Lengua de Signos Espanola - LSE) in 2007 (Fig.1). These milestones
underscore the growing recognition and significance of sign languages in embracing
linguistic and cultural diversity.

Sign language, as said before, is essential for daily interaction within the deaf and
speech-impaired community, because the structured signs help to reinforce commu-
nication and convey information in everyday conversations. Since few hearing people
are able to understand and use sign language to communicate with the deaf, is very
important to bridge this gap, facilitating smoother interactions, improving the in-
clusivity, indipendence and autonomy of deaf individuals. To do this, technologies
can be a very useful tool, by providing real-time feedback, supporting interactive
lessons, and enabling teachers and students to communicate effectively, enhancing
the overall learning experience. They can be very useful for parents and teachers
of deaf students too, because they play an important role by assisting them since
childhood in learning sign language to communicate with others [6].

Some common examples of systems that can be used as a support tool for deaf
people are online video platforms (such as YouTube or dedicated sign language
learning websites), mobile applications, digital sign language dictionaries, gesture
recognition systems, wearable devices, humanoid robots and Virtual and Augmented
Reality.
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2.2 Virtual Reality technology

Virtual reality (VR) refers to a computer-generated, interactive virtual environment
that users can explore and interact with using specialized equipment such as head-
mounted displays (HMDs). It can be categorized into non-immersive and immersive
VR. Non-immersive VR uses screens surrounding the user to present virtual infor-
mation, while immersive VR provides a fully immersive experience through wearable
displays that track users’ movements. Augmented reality (AR) overlays computer-
generated imagery onto the real world, and mixed reality (XR) combines elements
of both AR and VR.

The concept of VR originated in the 1960s with early prototypes, but it gained
significant attention in the 2010s with the development of more accessible and
consumer-friendly VR devices, such as Oculus. While initially popular in gaming,
VR has expanded into various sectors, including education, training, simulations,
and healthcare. However, challenges such as discomfort, cost, and technical limita-
tions still exist and require further research and advancements to overcome [7]

The adoption of virtual and augmented reality (VAR) technology in higher edu-
cation is still in its early stages, with STEM disciplines leading the way due to indus-
try demands. VAR offers immersive learning experiences through augmented reality
projections, virtual 3D realities, and interactive 360° videos. It enables students
to explore physically restricted locations and interact with 3D models, fostering
competencies such as spatial visualization, problem-solving, and critical thinking.
However, successful adoption requires hands-on experience and the development
of high-quality teaching content. Universities face challenges in investing in VAR
infrastructure without a confirmed user base and ensuring the right technology se-
lection and implementation.

Virtual reality (VR) technology has some limitations. Technological limitations
include the lack of standardization, high hardware and software requirements, dis-
comfort and potential health issues such as headaches and eye strain, as well as
lag between user movements and visual display. Cybersickness, a form of motion
sickness induced by VR, is another significant issue. It can occur due to the sensory
conflict between visual perception and physical movement. Accessibility is also a
concern, as the cost of VR headsets and VR-ready computers can be a barrier for
many people. However, augmented reality (AR) and mixed reality (XR) applications
on mobile devices offer a more accessible entry point to virtual experiences [8].
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2.3 Virtual Reality for Social Inclusion

VR systems have emerged as promising tools for promoting social inclusion among
various populations. With their immersive and interactive capabilities, VR applica-
tions offer unique opportunities to create inclusive environments and bridge social
barriers. The VR for Good program [9] by Meta is an initiative aimed at utilizing
virtual reality technology for positive social impact. The program offers resources,
mentorship, and funding to participants, enabling them to leverage VR as a powerful
storytelling medium. Through this initiative, VR experiences have been created to
enhance education, support healthcare and mental well-being, raise awareness about
important social topics, aid individuals with disabilities, preserve cultural heritage,
and build virtual communities. In this way, users experience different perspectives
and drive empathy.

In recent years, there has been a growing interest in leveraging VR technology
to foster social inclusion, particularly among diverse groups such as neurodiverse
individuals, marginalized communities and individuals with disabilities, that include
hearing impaired people too. An interesting field of application of Virtual Reality is
the treatment of Social Anxiety [10]. This study explores the effectiveness of Virtual
Reality Exposure Therapy (VRET) as a therapeutic tool for Social Anxiety Disorder
(SAD). Social anxiety is characterized by excessive fear of negative evaluation and
rejection, and traditional therapies like cognitive-behavioral therapy (CBT) face
challenges in replicating real social situations. VRET, by simulating these situations
in virtual worlds, provides a unique opportunity for patients to confront and cope
with their fears in a controlled environment. Virtual Reality Exposure Therapy
(VRET) has shown promise in the treatment of Social Anxiety Disorder (SAD),
while its effectiveness as a stand-alone treatment remains a subject of investigation.
The study presented in [11] has as main purpose to create virtual reality (VR) games
that cater to the diverse sensory needs and preferences of neurodiverse individuals,
considering factors such as audio, visual, and haptic stimuli. The goal is to enhance
the gaming experiences and inclusivity for neurodiverse children, allowing them
to engage and interact with VR games in a way that accommodates their unique
sensory profiles.

Another interesting application is the use of VR for speech-language pathology,
focusing on two main types: non-immersive and immersive VR [12]. Non-immersive
VR environments examples are Second Life®, were participants immersed them-
selves in virtual simulations of various scenarios, including social interactions, job
interviews, conflict resolution, and making financial and social decisions, and EVA
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Park, that provides a virtual world where individuals with aphasia and their thera-
pists can interact, receive therapy, and enhance their communication skills through
practice. On the other hand, immersive VR, such as CAVE system [13] presented
in the cited review, has demonstrated greater engagement and potential for promot-
ing communication skill development, particularly for individuals with autism. The
goals of using VR in speech-language pathology are to enhance communication in-
terventions, improve real-world interactions, and provide training opportunities for
both individuals with communication disabilities and their communication partners.

In various social contexts (not only schools and universities, but also cinemas,
theaters, museums, job places, public offices, supermarkets) individuals who are deaf
or hard of hearing often face barriers that hinder their full participation and enjoy-
ment. To enhance social inclusion of deaf people, many applications are developed
for both young and adult targets.

An interesting example is the Toc-Tum mini-games [14], a novel medical expert
system based on virtual reality, designed to make basic concepts of music accessible
to the deaf culture. The main goals of the game are to provide an interactive and
engaging platform for deaf children to learn about music and to validate the system’s
effectiveness through testing with the target audience and professionals in the field.

In [15] they discuss about the potential of VR as a tool to provide real-time
captioning and sign language interpretation during theater shows, thereby improving
the theater experience for the target audience.

Important aspects are also the ones that concern security of people with dis-
abilities in general, and with hearing disability too. The work presented in [16]
discusses the use of Immersive Virtual Reality and Serious Games (IVR SGs) as
a training tool to enhance the preparedness of individuals, particularly deaf and
hard-of-hearing (DHH) children that are not able to access audio information and
warnings, for earthquake emergencies.

Then, many others works in this field focuses on application to teach sign lan-
guage, the most useful and direct way to communicate with deaf people. For this
reason in the next section I will present some related works that underline the im-
portance of sign language detection and recognition exploiting different technologies.
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2.4 Sign Language Detection

In the past years, most works related to sign language recognition did not exploit
Virtual Reality (VR), but only simple acquisition systems and Artificial Intelligence
(AI) based algorithms for sign classification.

2.4.1 Kinect and AI-based systems

An example of automatic sign language recognition is presented in [17]. With a
dataset of 20 different Italian gestures captured using a Microsoft Kinect (Fig.2),
the model comprises two Convolutional Neural Networks (CNNs) for hand and up-
per body feature extraction, followed by concatenation and classification using an
Artificial Neural Network (ANN) with LCN and ReLU activation. In [18] the au-
thors employed the Kinect sensor to capture depth data of 25 signs of German Sign
Language, then they implemented a two-step classification approach: first, they
used a depth-based feature extraction method to extract relevant features, then a
k-nearest neighbors (k-NN) for gesture classification, evaluating the performance of
their approach using cross-validation techniques.

Figure 2: Example of kinect-based system: detection of human body using Microsoft
Kinect and extraction of skeleton information.

2.4.2 VR-based systems

In the last years, instead, the use of VR for teaching purposes has increased, also
for learning sign language. Recent studies confirmed that VR improves retention,
memory, attention and motivation during learning, because the immersive nature
of VR allows the interaction with the virtual world and the creation of a creative
and engaging learning environment. Most of the works regarding sign language
learning using VR exploit external acquisition systems to acquire videos of the signs
and AI algorithms to perform the recognition in a VR environment. In [19] they
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combine the avatar’s hand and body movements recorded using motion capture
devices with a synchronized video of the face captured by a head-mounted camera.
The avatar’s movements are then reconstructed in the VR environment and used
to teach sign language, but live sign recognition is not performed. A study on the
recognition of American Sign Language (ASL) gestures in a VR environment using
the Leap Motion controller with two IR cameras to track hand gestures in real-time
is presented in [20]. A combination of Hidden Markov Models (HMMs) and Support
Vector Machines (SVMs) is used to classify signs. In this case, the different gestures
correspond to the letters of the language.

Unlike the works presented so far, the VR-based recognition system object of this
thesis is scalable in terms of the number of gestures required to define a specific sign,
allowing for the recognition of both static signs, such as letters, and dynamic signs,
such as words or phrases. The system achieves this scalability while utilizing only
a single device, making it more accessible and cost-effective for users. Additionally,
thanks to the integrated approach of the application, users have the capability to
add new signs to the database of the system while "playing", it’s all real-time.
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2.5 Machine Learning algorithms for Sign Language recogni-
tion

There exist various Machine Learning (ML) algorithms suitable for hand gesture
recognition in sign language, with several notable options for gesture classification
including:

1. Convolutional Neural Networks (CNN): well-suited for gesture recogni-
tion thanks to their hierarchical representation (from simple to more complex
patterns in subsequent layers). This algorithm seek to optimize an objective
function or loss function; by minimizing this function through iterative param-
eter updates, the CNN learns to make accurate predictions and extract relevant
features from the input data [21].

2. Support Vector Machine (SVM): a supervised learning algorithm that has
good generalization capability (can handle complex decision boundaries) is ef-
fective in cases where the data is not linearly separable and is robust to noise
and outliers [23,25]. which main advantages for sign language recognition and
classification are its good generalization capability (can handle complex decision
boundaries), its effectiveness in high-dimensional spaces (gestures are often rep-
resented by a large number of features, such as joint angles or image descriptors:
SVMs can effectively handle these high-dimensional feature spaces), robustness
against overfitting, versatility in handling different data types, ability to work
with limited training data, capability for non-linear classification using kernel
functions, and interpretable results.

3. k-Nearest Neighbour (kNN): it classifies objects based on their feature
space and uses a supervised learning algorithm [23]. KNN is easy to understand
and implement; it works well with small training sets and does not make strong
assumptions about the underlying data distribution; if new sign gestures are
added to the training ser, it doesn’t require the retraining of the entire model, as
it compares new instances with existing labeled data; kNN can handle noisy or
imperfect data as it considers local patterns rather than global trends (outliers
or mislabeled data points have less impact on the classification results).

4. Decision Tree (DT)-based algorithms: it can be a simple Decision Tree or
a Random Forest, an ensemble learning method that combines multiple decision
trees [23,24]. This model is particularly useful for this application because it of-
fers an intuitive and easy-to-understand representation of the decision-making
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process; it has fast training and prediction times compared to many other clas-
sification algorithms, thanks to the efficient splitting of feature values based on
specific criteria; DTCs can also handle missing values, outliers and noisy data,
making decisions based on majority voting; DTCs inherently perform feature
selection by evaluating the importance of features in the classification process:
important features are placed closer to the root of the tree, while less signif-
icant features are placed deeper in the tree. This feature selection capability
helps in identifying relevant attributes for classification. Other advantages of a
DT-based model are the ability to capture nonlinear relationships, versatility
in handling different data types, and scalability to large datasets [26].
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3 Materials and methods
3.1 Head-mounted device

The Oculus Quest 2 (Fig. 3), produced by Oculus Meta, is the chosen device for this
sign language recognition application due to its advanced features and versatility.
It’s equipped with a four-camera internal tracking system strategically placed on
the headset, allowing precise detection of hand and body movements.

Being a wireless and standalone device it does not require an external hardware
(computer, cables or sensors), neither additional installation and setup. It’s easy
to use and allow higher mobility, enabling users to interact with the application
naturally and without hindrance

Its high-resolution display and head movement tracking ensure clear and realistic
representation of sign language gestures.

Figure 3: Oculus Meta Quest 2.

All information generated and saved within the application is securely stored in
the internal storage of the Oculus headset. This data is readily accessible and can be
directly retrieved from the internal storage whenever necessary, ensuring a seamless
and efficient experience for users.
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3.2 Conceptual implementation of the project: pseudocode

The methods employed in this study aim to accurately detect and interpret hand
gestures in real-time. In this section, we will first present the pseudocode that
summarizes all the steps that we followed for the conceptual implementation of the
project.

The pseudocode presented in Algorithm 1 aims to perform real-time hand gesture
recognition for sign language using multiple hand positions. The algorithm consists
of different steps:

1. Obtain the number of poses involved in the sign gesture by capturing the sign
pose for the specified type of gesture. Signs can be static, represented with a single
pose, or dynamic, represented with the translation between two or more static poses.

2. Iterate over each pose in the poses list and collect the position data of finger
bones for each hand.

3. Save the hand gestures captured into a defined structure.
4. Load the previously saved hand gestures from the database, considering the

specific poses involved in the sign gesture.
Learn Mode:
5. Initialize the data structure to store the current hand positions recorded in

real-time for each pose involved in that specific sign gesture.
6. Iterate over each pose in the poses list and collect the position data of finger

bones for both hands and save the current hand position.
7. Calculate the hand features based on the collected hand positions for each

pose of the current sign gesture reproduced.
8. If the current hand features match the saved hand features, validate the hand

pose. Otherwise, consider it as not validated and give a feedback to the user.
Test Mode:
5. Calculate the hand features based on the collected hand positions for each

pose involved in the sign gestures previously loaded.
6. Create a decision tree classifier using the loaded hand gestures as training

data.
7. Initialize the data structure to store the current hand positions recorded in

real-time for each pose involved in that specific sign gesture.
8. Iterate over each pose in the poses list and collect the position data of finger

bones for both hands and save the current hand position.
9. Calculate the hand features based on the collected hand positions for each

pose of the current sign gesture reproduced.
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10. Initialize a dictionary to store the prediction results, associating each gesture
with its confidence level.

11. Perform real-time classification for each saved gesture by utilizing the decision
tree classifier and the calculated hand features.

12. Based on the predicted gesture, take appropriate actions or responses.

3.3 Overview of all methods employed

We will now provide a comprehensive overview of the methods used, including data
collection, preprocessing, feature extraction, and the utilization of a decision tree
algorithm for gesture classification. You can see a brief graphic resume in (Fig. 4).
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Algorithm 1: Real-Time Hand Gesture Recognition for Sign Language
(Multiple Positions)

posesList = CaptureSignPose(typeOfGesture)
foreach pose in posesList do

foreach bone in fingerBonesList do
handsDataToSave.Add(bone.position)

end
end
SaveDataToJson(handsDataToSave, posesList, filePath)
listOfSavedSigns = LoadHandGestures(filePath, posesList)
savedHandsFeatures = CalculateFeatures(listOfSavedSigns, posesList)
if LearnMode then

currentHandsData = new HandsData(posesList)
foreach pose in posesList do

foreach bone in fingerBonesList do
currentHandsData.Add(bone.position)

end
end
currentHandsFeatures = CalculateFeatures(currentHandsData, posesList)
if currentHandsFeatures = savedHandsFeatures then

ValidateHandPose;
end
else

NotValidateHandPose;
end

end
else if TestMode then

decisionTree = CreateDecisionTree(savedHandsFeatures)
currentHandsData = new HandsData(posesList)
foreach pose in posesList do

foreach bone in fingerBonesList do
currentHandsData.Add(bone.position)

end
end
currentHandsFeatures = CalculateFeatures(currentHandsData, posesList)
prediction = new Dictionary<Gesture, Confidence>()
foreach savedGesture in listOfSavedSigns do

prediction[savedGesture] =
decisionTree.Classify(currentHandsFeatures, savedGesture)

end
PerformAction(prediction)

end
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Figure 4: Overview of the sign detection system.

3.3.1 Hand Tracking: data collection

For the hand pose tracking, the Oculus device’s hand tracking feature was leveraged
using the Oculus Integration SDK package. Within this package, a 3D model of the
human body, specifically the hand, is provided known as OVRSkeleton. This model
encompasses all the various bones that constitute the hand (from the wrist to the
fingers).

To generate and display the animated 3D model of hands, the OVR Mesh Ren-
derer combines the data obtained from both OVR Skeleton and OVR Mesh. OVR
Skeleton provides crucial information such as the bind pose, bone hierarchy, and
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capsule collider data. On the other hand, OVR Mesh loads a specified 3D asset
from the Oculus runtime and presents it as a Unity Engine mesh.

By utilizing this integration, the system is able to accurately track and represent
the hand poses, enabling users to interact with the virtual environment using their
own hands instead of relying on Touch Pro or Touch controllers. This not only
enhances the immersion and naturalness of the VR experience but also simplifies
the user interface by eliminating the need for additional hardware.

To save hand pose data, a process known as serialization [27] has been imple-
mented in C#. This means that the intricate details of hand movements and skeletal
data are converted into a structured format that can be easily stored, transferred,
or retrieved as needed. Serialization plays a pivotal role in ensuring that the dy-
namic and complex information related to hand poses can be efficiently preserved
and utilized within virtual reality applications.

To save gestures, four nested structures are created. The innermost structure is
used to store information about the ID, position, and rotation of each bone in every
finger of the hand. The second structure is used to save the name of the gesture
associated with that hand pose, the corresponding language, the hand’s position
and rotation relative to the base of the wrist, and the list of finger positions and
rotations. The third structure is used to store the list of poses that define a single
gesture, and the last structure is used to save all the gestures.

struct FingerBone
{

public OVRSkeleton.BoneId BoneId;
public Vector3 fingerBonePositions;
public Quaternion fingerBoneRotations;

}

struct HandData
{

public string Sign;
public string Language;
public OVRHand.Hand handedness;
public Vector3 handPosition;
public Quaternion handRotation;
public List<FingerBone> fingerBone;

}
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struct SerializableHandDataList
{

public List<HandData> handDataList;
public SerializableHandDataList(List<HandData> list)
{

handDataList = list;
}

}

struct SerializableSignsDataList
{

public Dictionary<string, List<HandData>> allSignsData;
public SerializableSignsDataList(Dictionary<string,

List<HandData>> data)
{

allSignsData = data;
}

}

3.3.2 Dataset

To test the application, a custom dataset was created, trying to have a quite sign
variation per language, with alphabet letters, words, and short sentences. The
dataset specifically focuses on capturing static signs representing each letter of the
alphabet, as well as two key pose signs for general concepts such as colors, mea-
surements, emotions, characteristics, and more. Additionally, it incorporates three
crucial pose signs for phrases, encompassing commonly used idiomatic expressions,
greetings, questions, and popular phrases.

To ensure the dataset’s accuracy and diversity, extensive efforts were made to
compile a variety of sign examples. These examples were sourced from an array
of videos, extensively referenced from the vast collection available at [28]. This
methodology ensured that the dataset encompassed a wide range of sign variations,
including variations in hand shape, movement and orientation.

To enrich the dataset comprehensively, the future plan includes recording each
sign with contributions from multiple users, ideally aiming for a total of 10 instances
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for each sign. This approach acknowledges the significance of accommodating natu-
ral variations arising from diverse signing styles and hand sizes, ultimately resulting
in a more inclusive representation of the sign language system.

However, it’s important to note that, at present, due to time and resource con-
straints, the opportunity to collaborate with experts in sign language has not been
realized. Nonetheless, this remains an important consideration for future dataset
enhancements.

The following lines report an example of the data’s structure saved.

{
"Signs": [

{
"SignName": "Sign 1",
"HandPoses": [

{
"Sign": "Sign 1",
"Language": "italiano",
"handedness": 0,
"handPosition": {

"x": 0.12247300148010254,
"y": 1.054595947265625,
"z": 0.38368916511535645

},
"handRotation": {

"x": 0.5421946048736572,
"y": -0.3408283591270447,
"z": 0.565093994140625,
"w": -0.5201248526573181

},
"fingerBone": [

{
"BoneId": 0,
"fingerBonePositions": {

"x": 0.12247300148010254,
"y": 1.054595947265625,
"z": 0.38368916511535645
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},
"fingerBoneRotations": {

"x": -0.565093994140625,
"y": -0.5201248526573181,
"z": 0.5421946048736572,
"w": 0.3408283591270447

}
},
{

"BoneId": 1,
"fingerBonePositions": {

"x": 0.12247300148010254,
"y": 1.054595947265625,
"z": 0.38368916511535645

},
"fingerBoneRotations": {

"x": -0.565093994140625,
"y": -0.5201248526573181,
"z": 0.5421946048736572,
"w": 0.3408283591270447

}
},
{

"BoneId": 2,
"fingerBonePositions": {

"x": 0.10742449015378952,
"y": 1.0742690563201904,
"z": 0.38753214478492737

},
"fingerBoneRotations": {

"x": -0.1114569902420044,
"y": -0.36529383063316345,
"z": 0.8845242261886597,
"w": 0.26787084341049194

}
},
{
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...
}

]
}

]
},
{

"SignName": "Sign 2",
"HandPoses": [

{
"Sign": "Sign 2",
"Language": "italiano",
"handedness": 0,
"handPosition": {

"x": 0.10343188047409058,
"y": 1.0496784448623657,
"z": 0.3553816080093384

},
"handRotation": {

"x": 0.02808574214577675,
"y": -0.03404608741402626,
"z": 0.7097265124320984,
"w": -0.7030933499336243

},
"fingerBone": [

{
"BoneId": 0,
"fingerBonePositions": {

"x": 0.10343188047409058,
"y": 1.0496784448623657,
"z": 0.3553816080093384

},
"fingerBoneRotations": {

"x": -0.7097265124320984,
"y": -0.7030933499336243,
"z": 0.02808574214577675,
"w": 0.03404608741402626
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}
},
{

...
}

]
}

]
}

]
}

3.3.3 Feature Extraction

For each pose a set of 22 features were calculated, including the euclidean distances
among all the key joints of the hand skeleton’s bones, represented in (Fig. 5): dis-
tance tip-base of a finger, distance between tips of different fingers and distance
tip-intermediate or tip-proximal. The base point considered in this case is the wrist.
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Figure 5: Key joints of the hand skeleton used to calculate distances.

The calculated features calculated are then saved in a .csv file, one for each sign.
Distances are expressed in meters (see Table 1 and Fig. 6).
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Sign Name A B C
distThumb_Tip_Base 0.1060115 0.1064453 0.1075459
distIndex_Tip_Base 0.02585451 0.08317278 0.07978263
distMiddle_Tip_Base 0.03570991 0.09374061 0.09015281
distRing_Tip_Base 0.03219215 0.08861843 0.08596274
distPinky_Tip_Base 0.03196969 0.115004 0.1138574

distThumb_Tip_Meta 0.08596187 0.08625998 0.08877967
distThumb_Tip_Prox 0.05658751 0.05746192 0.05682051
distIndex_Tip_Inter 0.03793553 0.04585715 0.04589488
distMiddle_Tip_Inter 0.04385133 0.0515397 0.05177172
distRing_Tip_Inter 0.04191453 0.05018418 0.05010041
distPinky_Tip_Prox 0.02354414 0.07163912 0.07078069
distPinky_Tip_Inter 0.03466668 0.04160359 0.04154292

distThumb_Index_Tip 0.04551007 0.06303235 0.07990404
distThumb_Middle_Tip 0.05836258 0.07722645 0.09629998
distThumb_Ring_Tip 0.07062545 0.07742485 0.1049438
distThumb_Pinky_Tip 0.08108458 0.07757652 0.1082926
distIndex_Middle_Tip 0.0161744 0.01535455 0.02310537
distIndex_Ring_Tip 0.0312202 0.02573554 0.03999139
distIndex_Pinky_Tip 0.04501838 0.05138646 0.06483769
distMiddle_Ring_Tip 0.01529026 0.017779 0.01987761
distMiddle_Pinky_Tip 0.02946576 0.04895451 0.04996758
distRing_Pinky_Tip 0.01441556 0.03184233 0.0322117

Table 1: Example of numerical features calculated on poses of three signs.
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Figure 6: Example of euclidean distances computed on three signs. "A" - distances
between the tip of one finger and the other key points of the same finger; "B" -
distances between the tip of each finger and the base of the wrist of the hand; "C"
- distance between the tips of different fingers.

3.3.4 Real-time hand matching: learn mode

Our application employs a unique and engaging learning method. When users enter
the learning mode, the application randomly selects a sign from our sign language
dataset. It then presents the corresponding hand gesture, which users are tasked
with replicating in real-time. To enable this process, we’ve implemented a crucial
method called "displayHand." This method retrieves the sign’s pose from the stored
JSON data and seamlessly applies it to the game object equipped with the Hand
Geometry component, essentially rendering the virtual hand within the immersive
virtual reality environment.

The matching mechanism then compares the position and rotation of each finger
of the user’s real-time hand (represented in black in Fig. 7) with that of the saved
reference hand (shown in green), allowing for a correct match if the discrepancies fall
within a specified threshold. This approach ensures a dynamic and interactive sign
language learning experience within the application and an immediate feedback.
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Figure 7: Real time hand matching: current hand pose has to match the saved hand
pose and the system validates the sign.

3.3.5 Machine Learning algorithms for Sign Language classification: test
mode

Based on the literature review presented in the introduction chapter of this thesis,
the algorithm implemented and used for testing the recognition system is a Decision
Tree Classifier (DTC).

To do this, the dataset was firtsly divided into two sets: a training set and a test
set with a 70%-30% distribution.

The ultimate goal of the experimentation is to achieve the optimal decision tree
model and configuration for real-time prediction of a given sign (whether it is an
alphabet letter, word, or sentence) in a virtual reality (VR) setting. Prior to the
classification process, a careful selection of the best parameters has been conducted,
including the criterion, maximum depth, minimum samples split, and minimum
samples leaf.

To assess the performance of the final decision tree model, it will be compared
across different outputs based on accuracy and F1-Score rate metrics. To ensure
a fair comparison, the experimentation results for each output and configuration
will be obtained using a 10-fold cross-validation approach. This technique involves
dividing the dataset into ten subsets, training and evaluating the model ten times
using different combinations of training and testing data, and then averaging the
results to provide a comprehensive evaluation of the model’s effectiveness.

In the construction of a DTC there are different factors and criteria taken into
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account. In our work, in particular, we set the stopping criteria to determine when
to stop growing the tree and the splitting criterion for selecting the best attribute
to split the data at each node. The algorithm uses information gain or entropy as
the criterion for selecting the best attribute: the one with the lowest entropy and
the highest information gain is selected as it provides the most significant reduction
in entropy and maximizes the information gained about the class labels.

The algorithm was implemented and trained offline using Python library scikit
learn; the resulting tree was then saved as a json model.

In a future upgrade of this project, the idea is to implement a k-Nearest Neighbour
(kNN) algorithm to, in order to compare results and understand which method is
more suitable for this kind of application.
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3.4 Implementation of the project in Unity

To implement the application, the Unity 3D (2021.3.4f1) software was used. The
steps taken for implementation are as follows:

1. The building settings were adjusted, particularly the platform and operating
system to build for. Since the Oculus Quest 2 device was chosen, the OS used
is Android. It’s worth noting that with minor modifications, the project can be
compiled for other devices as well (the project is scalable in this regard), such
as Windows, Mac, Linux, WebGL, etc. Some of the parameters set include
Texture Compression (ASCT) and Minimum API Level (Android 10.0 - API
level 29).

2. The Oculus Integration package [reference to the download site] was imported,
which contains key components for creating immersive VR experiences, includ-
ing input controls, head and hand movement tracking, stereoscopic graphics,
and other Oculus-specific features.

3. The scenes of the virtual environment were created. The application that I
developed presents 3 different scenarios, through which the user can perform
different actions. In (Fig. 8) you can see the workflow of the scenes.
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Figure 8: Workflow of the scenes into the application.

(a) Main scene. The initial scene where the user can choose the language
(Italian or Spanish).

(b) Start scene. An introductory scene where the user can select one of the
game modalities previously described. There is a spanish and an italian
version of all the scenes from now on.

(c) Database scene. The user can add new signs to the database. This
function is intended to be used by expert sign language speakers. Both
static and dynamic signs are saved.

(d) Learn scene. Users can reproduce the sign and learn new signs by putting
their hands to fit inside the virtual hands of the avatar rendered into the
scene.

(e) Test scene. Finally, users can test the learned skills, by trying to sign a
word from the dictionary without the help of the avatar. The application
will give feedback according to the quality of the reproduced sign.

The main elements used to create these scenes were Game Objects and Canvas
with Button UI to allow the user to call functions and trigger actions in the
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virtual environment, as well as simple TextMeshPRO screens for debugging the
executed actions.

4. The C# codes were written to implement all the methods described before and
then tested.
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4 Results and Discussion
This chapter unveils the outcomes of our study, focusing on two primary aspects.
Firstly, we present the results of the sign recognition tests, which scrutinize the
accuracy and proficiency of our virtual reality application in recognizing sign lan-
guage gestures. Subsequently, we delve into the qualitative assessments conducted
to evaluate the usability of the virtual reality application designed for sign language
learning by individuals. These evaluations encompassed inquiries aimed at under-
standing users’ willingness to utilize the application, their interest in its features,
and the underlying reasons driving their enthusiasm.

4.1 Signs database

The development of the virtual reality application for sign language recognition in
Italian and Spanish has yielded promising results thus far.

Firstly, a comprehensive dataset of signs was captured directly using the four
cameras of the VR device, specifically the Oculus Meta Quest 2, which was utilized
for the development and testing of the project. This dataset serves as a valuable
resource for sign language recognition research and further advancements in the
field.

To create the dataset we focused initially on the letters of the alphabet. We have
compiled a dataset of 20 signs, each with a single pose representing a specific letter.
We obtained a json file with letters A, B, C, D, E, F, G, I, K, L, M, N, O, P, Q, T,
U, V, W, Y.

Additionally, We have devised a method to accommodate signs with multiple
poses, for example dynamic letters of the alphabet, single words or short sentences
and expressions, although this feature has not been fully implemented at this stage.
Instead, We plan to collaborate with deaf or sign language speakers in the future,
particularly when distributing the application to universities, to ensure the accuracy
and completeness of signs with two or more poses. These achievements mark a
significant milestone in this project’s development, laying the groundwork for more
extensive sign language recognition capabilities in the future.

In this context, the creation of the sign language dataset represents a significant
achievement, distinguishing itself by its direct implementation through virtual re-
ality, setting it apart from the majority of existing literature, which predominantly
relies on alternative devices such as Kinect.
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4.2 Signs recognition: evaluation offline and developed meth-
ods

In the context of our application, another notable result we achieved is the recog-
nition of signs in learning mode. The learning mode employs a real-time matching
algorithm that performs a match between the virtual hand’s current position and
the saved pose, as elucidated in the preceding sections, conducted within the Oculus
headset. This approach enables learners to receive immediate feedback on their sign
language gestures, promoting an interactive and engaging learning experience. We
conducted trials of our application in learn mode using simple signs, the same ones
that we successfully incorporated into our dataset as previously mentioned. These
trials yielded promising outcomes, demonstrating the effectiveness of our system in
recognizing and matching these signs. However, it’s worth noting that the matching
process often required more time, particularly for signs in which certain fingers and
key points of the hand were obscured or overlapped. We observed that the Oculus
Quest 2’s tracking system struggled to accurately associate these points, resulting
in longer recognition times and distance calculation. Despite these challenges, our
application exhibited robust performance.

Figure 9: Sign language gestures categorized: alphabet signs, words and sentences.
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Figure 10: Performance metrics for alphabet signs.

On the other hand, in the test mode, we undertake the evaluation of sign recog-
nition using a machine learning algorithm, specifically the Decision Tree Classifier.
Due to challenges posed by outdated or non-functional libraries included inside Unity
environment, we opted for an offline evaluation approach. To assess the performance
of this recognition system, we employed RStudio, a powerful integrated development
environment (IDE) for R, a programming language and environment used for sta-
tistical computing and data analysis. RStudio provides a user-friendly interface and
tools for data visualization, making it an essential tool for evaluating the effective-
ness of our sign language recognition algorithm.

To bring this functionality into the virtual reality environment, the people in-
volved in the ISENSE European project have decided to collaborate with a special-
ized company with expertise in virtual reality development. This partnership will
ensure a seamless integration of the recognition process within the VR environment:
this part of the work will be done next year.

Figs. 10 show the classification results for the alphabet signs stored in the dataset.
The performance metrics considered are Accuracy as a measure of the overall model
precision in correctly classifying instances and F1-Score as a single measure of the
model’s performance by balancing both false positives and false negatives. Results
are summarized in Table 2.

Dataset Metric Mean Train Mean Test

Alphabet
Accuracy 0.991 0.890
F1-Score 0.991 0.873

Table 2: Classification Results

The analysis of sign classifications highlights a notable distinction in performance
when considering alphabet signs exclusively. In this context, the model demonstrates
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significantly higher Accuracy and F1-Score, underscoring its exceptional precision
and overall effectiveness in classifying alphabet signs, due to their simplicity and
static gesture.

Remarkably, both classifications, including the broader set of sign variations,
consistently exhibit strong performance across the training and validation sets, sur-
passing the 85% threshold for both Accuracy and F1-Score for test set and 91% for
train set. These findings underscore the model’s ability to generalize effectively to
unseen data and maintain consistent performance, showcasing its reliability across
diverse sign variations.
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4.3 Inclusive usage evaluation: results of the questionnaire

In the context of this thesis, during our pre-development assessment of the proposed
application, we recognized the importance of obtaining insights from a diverse demo-
graphic, including individuals of varying ages, educational backgrounds, familiarity
with sign language, and experience with virtual reality (VR). To gain a deeper
understanding of opinions, expectations, doubts, and suggestions regarding the ap-
plication we were developing, we designed a questionnaire that what submitted to a
small selected population of people who belong to the deaf community, or have con-
tacts with deaf people. The questionnaire was thoughtfully crafted by our project
team, aiming to keep it simple with questions focused on key areas of interest and
potential concerns related to the application’s usability.

Participation in the questionnaire was entirely voluntary and anonymous, with
respondents’ input playing a crucial role in shaping the future development of the
application to better cater to the needs and preferences of the target user community.
In this section, we present the results of the questionnaire.

To provide context, we begin with a brief overview of the demographic informa-
tion collected from the 31 people that filled out the questionnaire (see Fig.11).

Figure 11: Demographic overview of the population involved in the study.
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The questionnaire primarily consisted of two key inquiries: firstly, it sought to
gauge respondents’ interest in using the application and the reasons behind their
choice, and secondly, it explored the potential impact of implementing such an
application in secondary schools or universities. Specifically, we examined whether
it could stimulate students to learn sign language and improve the social inclusion
of deaf students in educational settings.

The response to the first question is summarized in Fig.12. Histogram in figure a)
represents the response statistics to the question regarding what might capture the
attention and drive the usage of a virtual reality application for learning sign lan-
guage. Figure b) provides insights into the negative aspects, capturing the doubts,
reservations, and concerns that individuals may harbor when considering the use of
the application.
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Figure 12: Results of questionnaire. a) Responses about aspects that might drive
the usage of the VR application, b) Responses about doubts and negative aspects
of the application.

The aspect that interests people the most in using this type of application is the
flexibility in terms of time and space, precisely because a virtual reality headset can
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be taken anywhere, allowing for great flexibility in learning sign language without
the need for a confined space. Furthermore, another response selected by more than
64% of respondents to the questionnaire is the interactivity and dynamism of the
proposed application. This means that people appreciate the possibility of active
engagement and the variety of experiences offered by the application, making the
learning process more engaging and effective.

What is less convincing, however, are primarily the high costs associated with
the technological equipment, the inexperience with VR headsets, and the lack of
human feedback, which is an ethical topic that merits substantial discussion.

The objective of the ISENSE project is the social inclusion of deaf people into
the academic environment, so we asked people what about the idea of insert this
kind of application into that specific context. Regarding the distribution of the ap-
plication in schools and universities, over 80% of respondents to the questionnaire
have a highly positive view of using virtual reality for learning sign language. They
see it as a valuable technology applied to this specific field, offering both practical
utility and the potential to stimulate curiosity in comparison to traditional class-
room instruction. The main reasons supporting these findings are depicted in the
Fig.13 Undoubtedly, the use of VR headsets is the primary reason why people would
recommend the use of this application for teaching sign language in educational set-
tings.
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Figure 13: Results of questionnaire: opinion of respondents about distribution of
the application into schools and universities.

In addition to exploring people opinion about distributing the application into
schools and universities, respondents expressed diverse motivations for contributing
to the creation of a sign language database in a VR application. Their primary
reasons included a commitment to support the deaf community professionally, the
importance of raising awareness and promoting inclusivity, a desire to bridge com-
munication gaps, and a belief in the convenience and innovation of using technology
to make sign language more accessible. Many also emphasized the civic duty and
the stimulating aspect of building something useful for the community. In summary,
these motivations collectively revolved around the idea of leveraging technology and
shared knowledge to enrich society and facilitate the learning and understanding of
sign language.

42



5 Conclusion and Future Works
In conclusion, the developed sign language recognition algorithm has shown promis-
ing performance in accurately recognizing simple signs, by utilizing the distances
between joints of the skeleton’s bones as features. This achievement highlights the
potential of incorporating VR technology and AI in sign language education, pro-
viding an immersive and interactive learning experience.

However, it is important to acknowledge certain limitations and challenges en-
countered during the implementation of the algorithm. One such difficulty is the
reliance on the Oculus device for accurate hand tracking. The algorithm requires a
clear and unobstructed view of the user’s hand, imposing restrictions on the testing
environment (in terms of light and obstacles). Further optimizations and advance-
ments are needed to ensure robust performance in various real-world scenarios.

Moving forward, several areas can be explored to enhance the functionality and
applicability of the sign language recognition application. One potential avenue is
the implementation of a mirror effect, allowing the application to recognize the hands
of another person facing the user or the user’s own hands while touching his/her face.
This extension would facilitate interactive communication and learning between sign
language users and non-users.

Another important aspect for future development is the continual expansion of
the sign language database within the application.

As we look forward to the future development of this application, there are several
key enhancements to be done. First and foremost, we’re eager to integrate an in-app
machine learning algorithm, a critical step in advancing the real-time sign language
recognition capabilities of the application. It’s important to note that the C#
programming language, which we have used for the application, is not well-suited for
this purpose due to the presence of outdated or non-functional libraries. Therefore,
we need to find a more suitable programming language or framework to implement
real-time machine learning within the application.

Simultaneously, we plan to elevate the immersive experience by modifying the
default background in our virtual reality environment, providing users with a more
personalized and engaging learning space. Until now we just used the background
that came integrated in the Oculus Integration SDK package. Furthermore, we
aim to empower users by allowing manual input of sign names through a virtual
keyboard within the VR scene, enhancing their control and customization options.
These future works signify our commitment to continuous improvement, ensuring
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that the application remains at the forefront of accessible and effective sign language
learning tools.
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