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ABSTRACT

Prostate cancer is the second cancer with the highest incidence worldwide in men

and is characterized by the excessive proliferation of cells in the prostate gland. Due to

this incidence, this pathology’s correct and timely identification has become important.

Currently, the accurate diagnosis of prostate cancer is made through biopsy, however,

performing a biopsy on each suspected person entails discomfort and can even trigger

health problems in patients. For this reason, other methods that are based on clinical

variables are seeking to be implemented, which could avoid unnecessary biopsies. In this

thesis work, the main objective was to develop an artificial intelligence-based algorithm

that allows the correct prediction of prostatic cancer using MATLAB. In consequence,

a dataset of 1621 patients with different types of variables was used: categorical, nu-

merical, and binary. Initially, modifications were made to these data (e.g., completeness

and correctness verification, merging of variables), and after carrying out an analysis

of missing values, it was decided to implement imputation of variables using k-Nearest

Neighbors (kNN) and see what the influence of the classifier would be depending on its

performance. The classifier chosen for cancer prediction was kNN. In addition, the influ-

ence of two more important parameters in the classifier was analyzed: the distance and

the number of k. The distances evaluated were the Hamming distance, the default of

MATLAB when the input is a table and which compares string sequences, and the Gower

distance, which calculates different distances depending on the type of variable and for

which a respective function was designed. For the number of k, the square root of the

number of subjects was originally chosen, and subsequently 75%, 50%, and 25% of its

initial value. The performance of the classifiers was evaluated based on some descriptive

parameters which were calculated after training the predictors with a training set and

validating them through k-fold cross-validation (where 10 different groups were gener-

ated). In this study, it was found that the imputation of variables did not really have

a great influence on the results of the dataset, which can be explained by the fact that

almost all the fields were imputed with the same value, except for a small percentage

that corresponded to less than 3% of total patients. Additionally, appreciable differences

were found when changing the distance: the one corresponding to Hamming managed
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to have more generalized results and with less classification error (balanced accuracy of

closely 71%). The combination of the parameters that gave the best results were: use of

the dataset only with the patients that had not missing values (dataset 3), normalizing,

using Hamming distance and chosing k as the root square of the number of patients.

Finally, it could be seen that the results obtained were partially encouraging: although

the classifiers did not have optimal performance, this research would help in the future

for the development of better tools in the field of prostate cancer, especially when there

is a dataset as heterogeneous as the one used in this project.
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1 INTRODUCTION

1.1 Prostate cancer and the aim of the project

The prostate (also known as the prostate gland) is a male reproductive system organ.

It is situated in front of the rectum, inside the pelvic body cavity, beneath the urine

bladder. Its size is comparable to the dimensions of a walnut, but as time passes, it

tends to get larger. Seminal vesicles, or glands that create a substantial portion of the

fluid that constitutes semen, are located posterior to the prostate, and the urethra passes

throughout the prostate, as represented in Figure 1.1 [1].

Figure 1.1. Representation of the prostate anatomy [2].

Several zones can be distinguished in the prostate, as defined by McNeal [3], which

are of high clinical importance:

• Pheripheral zone: this zone makes up more than 70% of the glandular prostate

and is where cancer most frequently spreads. Between the verumontanum, or the

area where the ejaculatory ducts enter the urethra, and the urinary bladder, this

area houses the proximal urethral segment of the prostate.

INTRODUCTION 1



• Central zone: comprises approximately 25 % of the prostate gland. It’s described

as a vertical wedge of glandular tissue lateral to each ejaculatory duct with its base

cephalad at the gland capsule, and it differs from the peripheral zone in terms of

stroma and the glandular architecture. This zone is less predisposed to anormal

growth of tissue.

• Transitional zone: this zone just takes up a 5% of the prostate’s overall volume, it

is situated in the preprostate area and lies in the convexity of the peripheral zone.

A schematic representation of this zones is shown on Figure 1.2.

Figure 1.2. Detailed illustration of prostate areas [4].

The prostate may be exposed to a variety of benign pathologies that lead to a change

in its size, including prostatitis and benign prostatic hyperplasia (BPH). Young men are

more likely to get prostatitis than older men, which can be caused by bacterial or non-

bacterial infections. As men age, BPH becomes increasingly prevalent in them, and even

if it is not life-threatening, it can have a substantial impact on quality of life. This en-

largement causes the urethra to narrow and places pressure on the base of the bladder,

which produces obstruction or blockage in the flow of urine [5].

Prostate cancer, on the other hand, is a malignant condition characterized by an un-

controlled proliferation of the prostate gland’s cells that results in an increase in prostatic

volume. The main risk factor for this disease is age, which is typically directly correlated

with cancer, i.e. the higher the age, the higher the risk. Other risk factors include famil-

iarity, the presence of gene mutations in particular genes, and the components associated

with an unhealthy lifestyle [6].

Given the possibility of multiple pathologies causing prostate gland enlargement, it

is crucial to correctly diagnose the illness by considering different variables. For this
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diagnosis, a rectal examination is typically carried out, which sometimes enables the

presence of any nodules at the prostate level to be identified by touch, and the PSA

(Prostate Specific Antigen), a protein synthesized by the cells of the prostate gland, is

checked by drawing blood. The serum concentration of this protein, which is typically

between 2.5 and 6.5 ng/ml, is a specific marker of the organ but not of the pathologies

affecting it. To unequivocally identify the disease, it is necessary to perform a prostate

biopsy, which consists of taking a piece of suspicious tissue and carrying out the relevant

analyses. Before performing this biopsy, it is essential to use Multiparametric Magnetic

Resonance Imaging (mpMRI) in which the lesion can be better appreciated graphically

and from which various data can be taken to help make this decision [7].

When a tumor is found, it is classified via two categories: grade, which describes how

aggressive the disease is, and stage, which describes how far it spreads. The so-called

Gleason Score (GS), a number between 1 and 5, is given for the tumor by the pathologist

who examines the tissue obtained by biopsy. It describes how similar or dissimilar the

appearance of the tumor glands is from that of normal glands; the more similar they are,

the lower the Gleason Score will be. The first and second most frequent ratings assigned

to biopsy specimens are put together to form the Gleason Score. Low-grade tumors are

those with a Gleason Score of six or less, intermediate-grade tumors are those with a

score of seven, and high-grade tumors are those with a score between eight and ten.

Typically, "clinically significant" cancer (csPCa) is defined as having a Gleason Score of 7

or higher. These situations raise the likelihood that the cancer will advance and spread

to other organs. A new grading system has recently been created, based on the ISUP

(International Society of Urological Pathology), which stratifies prostate tumors into five

grades based on malignant potential and aggressiveness [8].

According to GLOBOCAN [9], prostate cancer is estimated to account for 1,414,259

new cases and 375,304 deaths (9.5% of all deaths by cancer in males) in 2020, making it

the second most common malignancy in men worldwide (after lung cancer). Although

only 1 in 350 males under the age of 50 will receive a prostate cancer diagnosis, the

incidence rate rises to 1 in 52 men between the ages of 50 and 59. Men over the age of

65 have an incidence rate of around 60% [10]. Figure 1.3 provides an in-depth diagram

of the prevalence of this disease.

INTRODUCTION 3



Figure 1.3. Estimated crude incidence rates in 2020 of prostate cancer, all ages [9].

The incidence has become the reason why a correct and timely diagnosis, not only

of the carcinoma but also of the degree of progression of the pathology, has become

indispensable. In fact, to meet this objective, over the years, a considerable number of

unnecessary biopsies have been performed, which are uncomfortable for the patient and

can also have complications such as infections or bleeding, especially in elderly people.

To maximize the effectiveness of early detection and the clinical benefit derived, unnec-

essary biopsies can be avoided by constantly focusing on the development and valida-

tion of refined strategies that can establish prostate cancer risk based on noninvasively

available clinical information [11]. Traditional statistical models, however, cannot eas-

ily handle the complexity of real-world problems; instead, machine learning techniques

should be used because they can process the data provided to them, learn how to handle

it, and automatically improve their performance.

In this thesis project, a dataset provided by the Hospital San Luigi of Orbassano

which contains quite heterogeneous variables with different typologies and ranges is

taken, a series of changes which include various imputations of the missing values are

applied, and the parameters present in the dataset are given as input to a k-Nearest

Neighbor (kNN) classifier to which some parameters are modified, to finally evaluate

the performance of the different classifiers and compare the results.

1.2 State of the art

Before starting to work with the dataset, time was spent on literature research and

subsequent analysis of several scientific articles related to data mining and big data. The

articles were found using some free search engines for biomedical scientific literature
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such as PubMed, Scopus, and Web of Science by selecting the command urology AND

(’data mining’ OR ’big data’) as the search parameter. In this first part, 89 articles were

found, and afterward, depending on the author keywords of each and the content of the

abstract, 24 were chosen.

Finally, after reading the remaining articles, some were selected as important to the

definition of the significative variables, others as important to the context of decision

support systems, and the remaining articles were removed after realizing that there were

no significant or pertinent.

1.2.1 Gravina et al. (2022)

This article by Gravina, Spirito, Celentano, et al. [12] focuses on the analysis of pa-

tients with a PIRADS classification of 3 because this represents a state of doubt regarding

the tumor and the need for a biopsy. More specifically, different machine-learning ap-

proaches are evaluated using clinical and radiological data.

The dataset, available at the Urologic Unit of AOU Federico II in Naples, consisted of

109 patients who underwent trans-rectal prostate biopsy from January to March 2022

and included the following variables: patient weight and height, body mass index (BMI),

suspect area, prostate volume, prostate-specific antigen (PSA), Psa density, free PSA,

ratio, blood glucose, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein

(LDL), triglycerides, creatinine and variables derived from the multiparametric magnetic

resonance and histological examinations.

The performance of four machine learning models was compared: classification tree

(Ctree), random forest (RF), support vector machines (SVM), and feedforward neu-

ral network (NN). Random forest showed the best performance with a sensitivity that

reached 81.69% and a specificity of 71.05%, resulting in a good ability to recognize

the malignant class. Although the SVM and the Ctree models showed the highest sen-

sitivity (73.68%), we chose RF as the best model as it outperformed the other models

in all other metrics, whilst maintaining a good value for specificity (2.63%). The main

limitation specified by the authors was the amount of data involved in the training and

validation of the models so further studies with larger datasets are needed to better

implement machine learning approaches and AI technology.

1.2.2 Chen et al. (2022)

On the methodology suggested by Chen, Jian, Chi, et al. [13] the initial sample

consisted of 789 male patients who underwent transrectal ultrasound-guided prostate
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biopsy at the First Hospital of Jilin University between January 2013 and January 2021.

A final total of 551 patients were included in the study. All patient data were collected

through electronic medical records, including age, BMI, hypertension, diabetes, total

PSA (tPSA), free PSA (fPSA), the ratio of serum fPSA to tPSA (f/tPSA), prostate volume

(PV), PSA density (PSAD), neutrophil-to-lymphocyte ratio (NLR), and pathology reports

of prostate biopsy. All examinations were completed within one week before the prostate

biopsy.

Four supervised machine learning algorithms were used to build five PCa prediction

models: tPSA univariate logistic regression (LR), multivariate LR, decision tree (DT),

random forest (RF), and support vector machine (SVM). Three-quarters of the dataset

was used for training, and the remaining observations served as the test set. The five

prediction models were compared based on model performance metrics, such as the area

under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity,

calibration curve, and clinical decision curve analysis (DCA).

The findings demonstrated that the RF, DT, and multivariate LR models showed bet-

ter discrimination in the training set than the tPSA univariate LR and SVM models, with

AUCs of 1.0, 0.922, and 0.91, respectively. Additionally, the multivariate LR model had

the best discrimination in the test set (AUC=0.918). With no difference in performance

between the training and test datasets, the multivariate LR model and SVM model ex-

hibited greater extrapolation and generalizability. The other four models showed better

net clinical benefits when compared to the DCA curves of the tPSA LR model.

1.2.3 Wang et al. (2022)

Regarding the study done by Wang [14], the Prostate Cancer dataset from the Popu-

lation Health Data Archive (PHDA) was used, which included 1000 male patients with

427 prostate cancer cases and 573 prostatic hyperplasia cases. For modeling and predic-

tion, different types of data were used: demographic information, prostate indicators,

serum enzymes examinations, blood biochemical indicators and electrolyte indicators.

Random forest (RF), support vector machine (SVM), back propagation neural net-

work (BP), and convolutional neural network (CNN) were used to predict the risk of

PCa, among which BP and CNN were used on the enhanced data by SMOTE. The per-

formances of models were compared using area under the curve (AUC) of the receiving

operating characteristic curve. After the optimal model was selected, Shiny was used to

develop an online calculator for PCa risk prediction based on predictive indicators.

Among the four models, RF had the best performance in predicting PCa (accuracy:

96.80%; AUC: 0.975, 95% CI: 0.964-0.986). Followed by BP (accuracy: 85.36%; AUC:
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0.892, 95% CI: 0.849-0.934) and SVM (accuracy: 82.67%; AUC: 0.824, 95% CI: 0.805-

0.844). CNN performed worse (accuracy: 72.37%; AUC: 0.724, 95% CI: 0.670-0.779).

1.2.4 Checcucci et al. (2021)

A total of 1447 patients were included in the dataset used in the study carried out by

Checcucci, Rosati, De Cillis, et al. [15], of whom 623 were classified as "negative" (class

0, no risk of PCa), and 824 as "positive" (class 1, risk of PCa). The dataset includes

the values for each patient’s PSA, PSA density, previous prostate biopsies, number of

suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score together

with data from eight pre-bioptic factors.

A Fuzzy Interference System (FIS) was built with one output variable—the class—and

eight input variables—corresponding to the eight pre-bioptic variables—that were each

described by two triangular membership functions.

The results showed that 484 patients, or 33% of the total, were not classified, whereas

963 patients, or 67% of the total, were successfully classified. This ratio of unclassified

patients is the biggest drawback of the study. Sensitivity (90.8%), specificity (59.2%),

PPV (76.6%), NPV (81.3%), and AUC (0.77) were used to evaluate the performance

of the classifier (for classified patients). Focusing on the most severe cases of prostate

cancer, i.e., those with ISUP scores above 3, the model was also capable of accurately

predicting the results of the biopsy in 98.1% of cases (accuracy).

1.2.5 Yu et al. (2021)

The study by Yu, Tao, Dong, et al. [16] included a sample of 688 patients with tPSA

values less than 50 ng/ml who had never had a biopsy before. Of these patients, 480

(70%) were included in the Training set, while the remaining 208 patients (30%) were

included in the Validation set. Age, PSA derivatives, prostate volume (PV), and mpMRI

data were used as the patients’ input variables. An analysis was conducted to see whether

the available variables were positively or negatively influential.

The performance of four alternative machine learning techniques as Artificial Neu-

ral Network (ANN), Support Vector Machine (SVM), Classification And Regression Tree

(CART), and Random Forest (RF) is evaluated in the study and compared with the re-

sults of Logistic Regression (LR) in the prediction of prostate cancer (PCa) and clinically

significative prostate cancer (csPCa).

The various classifiers’ diagnostic accuracy was assessed using the AUC calculation

and Decision Curve Analysis (DCA). SVM, RF, and LR all achieved higher AUC values
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for PCa prediction than ANN and CART (AUC = 0.891 and 0.834, respectively). SVM

(AUC = 0.925), LR (AUC = 0.917), RF (AUC = 0.916), ANN (AUC = 0.911), and CART

(AUC = 0.867) all show similar results when attempting to predict csPCa. However, it

is remarkable to see that the CART technique outperforms all others and gives excellent

concordance between projected and actual risk from the calibration plots for PCa and

csPCa.

Finally, net-benefit curves were used to evaluate each model’s clinical usefulness.

From these curves, it can be shown that RF, SVM, ANN, and LR all exhibit similar tenden-

cies and are, in any case, always more effective than CART, with probabilities between

0.05 and 0.4.

1.2.6 Takeuchi et al. (2019)

The aim of the prospective study by Takeuchi, Hattori-Kato, Okuno, et al. [17] was to

compare the performance of Logistic Regression (LR) and Multilayer ANN in the predic-

tion of prostate cancer. The dataset comprises 334 patients, each undergoing mpMRI,

from which 232 patients (70%) were included in the Training set, validated by five-fold

cross-validation, while the remaining 102 patients (30%) were included in the Test set.

All 22 original input variables (clinical variables) were used to train the classifier,

whereas 12 were chosen using Lasso regression analysis and 9 were chosen using step-

wise logistic regression analysis. The output variable makes a distinction between the

presence of csPCa, any degree of PCa, and the lack of PCa. The Multilayer Artificial Neu-

ral Network (ANN) algorithm was trained for a range of hidden layer values (between

2 and 5, with each layer comprising 5 neurons) and step cycle values (1000, 2000 and

5000). The performance of the models was evaluated using the accuracy, the AUC the

percentage of missing cancer, the Negative Predicted Values (NPV) and the Decision

Curve Analysis (DCA).

The findings demonstrate that ANN performs best when 9 variables chosen by step-

wise logistic regression, 5 hidden layers, and 2000 step cycles are used. The imple-

mented model offers an accuracy value of 70.6%, which is 5–10% higher than the LR’s,

and an AUC value of 0.76, which is also higher than the LR’s. The missed cancer rates

are greater for LR (18% for any PCa and 9% for csPCa) than they are for ANN (16%

for any PCa and 6% for csPCa). Next, the ANN displays NPV values of 76% (any PCa)

and 94% (csPCa), as opposed to the LR’s values of 72% (any PCa) and 91% (csPCa). In

addition, the net-benefit curves built demonstrated that ANN is able to deliver greater

net clinical benefit than LR.
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2 THE DATASET

The dataset utilized for this project includes information gathered at the San Luigi

hospital in Orbassano, which at the beginning had 1621 patients. These data were com-

pletely anonymous, with an ID code serving as the only way of identification.

In terms of the columns, there were 24 variables (including the first column, which

was the patient ID) relevant to the investigation of prostate cancer:

• Age (col. 2): age of the subject at the time of the study.

• TURP (col. 3): Trans-Urethral Resection of the Prostate. Corresponds to a binary

variable that determines whether a patient had a portion of the prostate surgically

removed or not (1 indicates yes, 0 indicates no).

• PSA (col. 4): Prostate-Specific Antigen [ng/ml].
• PSA density (col. 5): calculated as the division between PSA and prostate volume,

the units used were [ng/ml/cc].
• DRE (col. 6): Digital Rectal Examination. This is a categorical variable resulting

from the rectal examination intervention. A value of 0 indicates that the examina-

tion was negative, 1 that it was positive and therefore abnormalities were found,

and 2 that the result is uncertain.

• DRE abnormality lobe (col. 7): categorical variable that is taken into account only

when the DRE was positive or uncertain, as it corresponds to the site where the

abnormality is located. The possible values of the variable are: 0 for left lobe, 1

for right lobe, 2 for both lobes and finally, X if not applicable.

• Previous prostate biopsies (col. 8): number of biopsies the patient has previously

undergone.

• Result of I-II-III biopsy (col. 9-11): categorical variable that reflects the result of

the last 3 biopsies performed on the patient, if applicable. The values that can be

taken are: 0 for normal prostate tissue, 1 for prostatitis, 2 for High-Grade Pro-

static Intraepithelial Neoplasia (HGPIN), 3 for Atypical Small Acinar Proliferation

(ASAP), 4 for tumour, and X if not applicable as the patient had not performed the

biopsy.
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• Number of suspicious lesions (col. 12): number of lesions found.

• Prostate volume (col. 13): prostate volume presented in [cc].
• I-II-III lesion volume (col. 14-16): volume of the different lesions found pre-

sented in descending order according to their volume. That means that lesion

I corresponds to the largest lesion, while lesion III refers to the smallest one, if

applicable.

• Lesion location (col. 17): area of the prostate in which the suspected lesion is

located. The possible values that can be assumed by the variable are: 1 for the

peripheral zone, 2 for the transitional zone (between the peripheral and the central

zone), and 3 for the central zone.

• Lesion side (col. 18): prostate side in which the suspicious lesion is located. Pos-

sible values are: 0 for the right side, 1 for the left side, and 2 if the lesion was

located bilaterally.

• Lesion diameter (col. 19): diameter of the largest lesion determined by MRI

[mm].
• PIRADS (col. 20): score from 1 to 5 indicating the likelihood of clinically signifi-

cant cancer.

• Gleason Score I (GS I, col. 21): Gleason grade of the most predominant pattern

(can take values from 1 to 5).

• Gleason Score II (GS II, col. 22): Gleason grade to the second most predominant

pattern (can take values from 1 to 5).

• Gleason Score total (GS tot, col. 23): sum of the two partial Gleason Scores (can

take values from 2 to 10).

• ISUP (col. 24): system for grading prostate cancer between 1 and 5 depending

on the Gleason Score.

The last 5 variables mentioned (col. 20-24) can assume the value of ’X’ when it is

not applicable, i.e. when the lesion is not associated with cancer.

2.1 Analysis of the dataset

Based on the dataset provided, it was decided to analyze the variables according to

descriptive statistics. The dataset contained quite heterogeneous and different variables,

so dividing the variables by type was necessary; based on this division, 3 different meth-

ods were adopted: estimation of the median, estimation of the mean, and computation

of the frequency tables.
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2.1.1 Computation of the median

This type of analysis was carried out with continuous integer and categorical ordinal

variables, which correspond to the following:

• Age (continuous integer)

• Previous prostate biopsies (ordinal)

• Number of suspicious lesions (ordinal)

• Lesion diameter (continuous integer)

• PIRADS (ordinal)

• Gleason Score I (ordinal)

• Gleason Score II (ordinal)

• Gleason Score tot (ordinal)

• ISUP (ordinal)

The results for each variable are shown in the Table 2.1.

Table 2.1. Statistical description for continuous integer and ordinal input variables

Variable Median

Age (col. 1) 70

Previous biopsies (col. 8) 0

Number of suspicious lesions (col. 12) 1

Lesion diameter (col. 19) 10

PIRADS (col. 20) 4

Gleason Score I (col. 21) 3

Gleason Score II (col. 22) 4

Gleason Score total (col. 23) 7

ISUP (col. 24) 2

2.1.2 Computation of the mean

In this section, the analysis was carried out based on the calculation of the mean and

standard deviation, which applied only for real continuous variables, corresponding to

those presented below:

• PSA

• PSA density

• Prostate volume
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• I lesion volume

• II lesion volume

• III lesion volume

The values computed of these variables are represented in Table 2.2.

Table 2.2. Statistical description for continuous real input variables

Variable Mean Standard deviation

PSA (col. 4) 8.392 7.290

PSA density (col. 5) 0.174 0.170

Prostate volume (col. 13) 56.139 28.499

First lesion volume (col. 14) 0.968 1.839

Second lesion volume (col. 15) 0.381 0.413

Third lesion volume (col. 16) 0.762 1.060

2.1.3 Computation of the frequency tables

The third and final method consisted of analyzing the categorical and binary variables

according to the frequency of each of their possible values. The variables that were taken

into account are:

• TURP (binary)

• DRE (categorical non ordinal)

• DRE abnormality lobe (categorical non ordinal)

• Result of I biopsy (categorical non ordinal)

• Result of II biopsy (categorical non ordinal)

• Result of III biopsy (categorical non ordinal)

• Lesion location (categorical non ordinal)

• Lesion side (categorical non ordinal)

The frequency tables of every variable mentionated above are shown on the following

Tables, from 2.3 to 2.10.
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Table 2.4. Frequency table for the variable "DRE"

DRE (col. 6)

Value Frequency

"0" 1350
"1" 194
"2" 76

"NaN" 1

Table 2.5. Frequency table for the variable "DRE abnormality lobe"

DRE abnormality lobe (col. 7)

Value Frequency

"0" 103
"1" 151
"2" 10
"X" 1357

Table 2.3. Frequency table for the variable "TURP"

TURP (col. 3)

Value Frequency

"0" 1318

"1" 97

"NaN" 206

Table 2.6. Frequency table for the variable "result of the I biopsy"

Result of I biopsy (col. 9)

Value Frequency

"0" 398
"1" 12
"2" 35
"3" 40
"4" 193
"5" 0
"X" 1357

THE DATASET 13



Table 2.7. Frequency table for the variable "result of the II biopsy"

Result of II biopsy (col. 10)

Value Frequency

"0" 158
"1" 4
"2" 9
"3" 10
"4" 14
"5" 0
"X" 1426

Table 2.8. Frequency table for the variable "result of the III biopsy"

Result of III biopsy (col. 11)

Value Frequency

"0" 39
"1" 0
"2" 3
"3" 4
"4" 2
"5" 0
"X" 1573

Table 2.9. Frequency table for the variable "lesion location"

Lesion location (col. 17)

Value Frequency

"0" 0

"1" 1282

"2" 311

"NaN" 0
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Table 2.10. Frequency table for the variable "lesion side"

Lesion side (col. 18)

Value Frequency

"0" 842

"1" 768

"2" 0

"NaN" 11

2.2 Verification and modification of the dataset

After statistically analyzing the dataset given, it was necessary to make some ver-

ifications and modifications in order to have a corrected and reduced dataset, which

would be used from now on. In order to compare the two datasets (the original and the

modified one), the decision was taken to base the comparison on the missing values of

each of the variables, because this number constitutes an important factor when apply-

ing a classifier to the data available. The results found for the first dataset are shown in

Table 2.11.
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Table 2.11. Number of missing values for each variable on the original dataset

Variable Number of missing values

Age 0

TURP 206

PSA 5

PSA density 15

DRE 1

DRE abnormality lobe 1

Previous prostate biopsies 0

Result of I biopsy 0

Result of II biopsy 0

Result of III biopsy 0

Number of suspicious lesions 0

Prostate volume 9

I lesion volume 8

II lesion volume 0

III lesion volume 0

Lesion location 0

Lesion side 11

Lesion diameter 117

PIRADS 87

Gleason Score I 0

Gleason Score II 0

Gleason Score total 0

ISUP 0

As a first step, it was necessary to verify that the data for the variables I-II-III lesion

volume (col. 14-16) were correct, which means that the order of these variables was

checked, since, as mentioned in the explanation of the variables, the first one should

correspond to the lesion with the largest volume. After performing this procedure, 40

patients were found to have the wrong order, so the order was corrected.

Subsequently, taking into consideration that PSA density can be calculated as the

division between PSA and prostate volume, all those patients who had 2 of the 3 variables

were taken and the missing variable was calculated. In this case, only 1 patient was

found to be eligible for the above.

Finally, it was decided to merge the variables "Result of I-II-III biopsy" (col. 9-11) to

16 CHAPTER 2



create a new variable called "Biopsies result" with the following specifications:

• 0: no biopsy done (to take the place of ’X’).

• 1: at least one positive biopsy.

• 2: all biopsies negative.

After the modifications made to the dataset, the missing values for each variable were

again calculated and are shown in Table 2.12.

Table 2.12. Number of missing values for each variable on the modified dataset

Variable Number of missing values

Age 0

TURP 206

PSA 5

PSA density 14

DRE 1

DRE abnormality lobe 1

Previous prostate biopsies 0

Biopsies result 0

Number of suspicious lesions 0

Prostate volume 9

I lesion volume 8

II lesion volume 0

III lesion volume 0

Lesion location 0

Lesion side 11

Lesion diameter 117

PIRADS 87

Gleason Score I 0

Gleason Score II 0

Gleason Score total 0

ISUP 0

When comparing the amount of missing values before and after the modifications, it

is evident that these are minimally reduced, and continue to have a high value, especially

for the variables "TURP", "Lesion diameter" and "PIRADS". However, changes to the

dataset are an important step before performing any procedures, because they can help

ensure correct results later.
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3 IMPUTATION OF THE VARIABLES

Missing values can result from data loss, participant dropouts, and nonresponses,

among other things. Missing values result in a smaller sample size than expected, which

eventually compromises the validity of the study’s findings. When conclusions about a

population are made based on such a sample, it can also lead to skewed results, weak-

ening the validity of the data. Elimination and imputation are typically applied when

missing values are present in a dataset, but deleting data is not recommended because it

can lead to a loss of important parameters; instead, to create a more complete dataset,

imputation entails substituting values using different methods such as statistic, regres-

sions or predictors [18].

Due to the high number of missing values found in the dataset provided for this

project, before applying a classifier, it was decided to implement a variable imputation

using the k-Nearest Neighbors (kNN) algorithm, which is a machine learning technique

based on supervised learning. Basically, the working principle of this technique consists

of calculating the distance between an observation and the rest of the dataset, taking the

"k" closest elements, and from the majority voting, determining which class it belongs

to. The metric to calculate the distance between the data must be chosen appropriately,

evaluating the type of variables available. In addition, the configuration of the param-

eter k is crucial: if k is chosen too small, the class is assigned on the basis of the few

neighboring elements, and thus the classification may be influenced by data noise; if, on

the other hand, k is chosen too big, the element will be classified in the most numerous

class in the entire population, thus underestimating the concept of proximity between

the data [19].

In this case the patients were divided into 6 different groups according to the specific

value of the ISUP before implementing the imputation, in order to only delivering to the

classifier values associated with the patient’s condition, i.e. for a patient with an ISUP of

2, values of variables in accordance with his condition would be predicted. These groups

were:

• Group 1: ISUP equal to 1
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• Group 2: ISUP equal to 2

• Group 3: ISUP equal to 3

• Group 4: ISUP equal to 4

• Group 5: ISUP equal to 5

• Group 6: ISUP equal to ’X’ (non applicable)

Furthermore, from each of the groups it was decided to calculate a new subgroup,

which was necessary for the imputation, and that contained only those patients who

did not have any missing values. These generated groups had different numbers of

components, and it was determined to make two classifiers for each group of subjects,

one with k=5% of the number of patients per group, and the other with k=10%. The

imputations made were organized in the following order:

• Imputation 1: k=5 % of the total number of patients in each group.

• Imputation 2: k=5 % of the reduced groups (only patients without missing values

in each group).

• Imputation 3: k=10 % of the total number of patients in each group.

• Imputation 4: k=10 % of the reduced groups (only patients without missing val-

ues in each group).

Detailed information of the number of people per group and the respective value of

k is presented in Table 3.1.

Subsequently, the kNN for the imputation was used for the variables that showed off

missing values, which are shown in Table 2.12, so that a different model was generated

for each of them, thus generating 10 different models per k value, for a total of 40

models.

Table 3.1. Description of the different models used for the imputation of variables

Value of ISUP
Number of subjects k=5% k=10%

Total Without missing Total Without missing Total Without missing

1 120 94 6 5 12 9

2 420 346 21 17 42 35

3 214 185 11 9 22 18

4 109 97 5 4 10 9

5 50 46 3 2 6 4

X 708 574 35 28 70 57

20 CHAPTER 3



3.1 Boxplot

In order to evaluate the imputations previously carried out, boxplots were made for

each variable, in which the dispersion of only the imputed data, only the original data,

and finally, the original data together with the imputed data for each of the 6 groups

created from the ISUP were shown in the same figure. All these graphs are reported in

the appendix.

The most important thing found at this point was that of the 10 variables that con-

tained missing values, only 6 could be boxplotted, as the others had a few fields to be

imputed . The information on the excluded variables and those that were taken into

account are shown in Table 3.2.

Table 3.2. Variables taken into account for the boxplot

Variables boxplotted Variables excluded

-Lesion diameter

-Lesion side

-PIRADS

-Prostate volume

-PSA Density

-TURP

-DRE

-DRE abnormality lobe

-First lesion volume

-PSA

Additionally, through this graphical representation, it could be corroborated that the

imputed values did not strongly influence the statistical characteristics of the original

groups and what they generated in some cases was a displacement of the median, which

is a positive factor when using the dataset as input to a classifier.

3.2 Exclusion of variables and creation of new datasets

Based on the results of the imputation and the behaviour of the graphs presented,

the decision was taken to definitively exclude from the imputation some variables that

were divided into 2 types:

1. Variables that had less than 5 imputed values, which corresponded to:

• DRE

• DRE abnormality lobe

• PSA
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2. Clinical variables that are determined by a doctor on the basis of pre-established

criteria:

• Lesion side

• PIRADS

• TURP

In the case of the first type of variables, the patients with missing values were directly

eliminated, which led to the removal of 7 rows from the dataset, while when taking into

account the variables belonging to the second type, it was decided to opt for two different

paths (which led to the creation of two different datasets: "Dataset 1" and "Dataset

2") in order to subsequently see how the behaviour of the classifier would change. In

"Dataset 1" what was done was to eliminate exactly the 3 variables in consideration, and

in "Dataset 2" an analogous procedure to the one done with the first type of variables was

carried out, i.e. only eliminating the patients who had missing values in these variables

instead of removing the whole variables, leading to the suppression of 249 subjects from

the dataset.

After carrying out these procedures, Dataset 1 was left with 1614 patients and 19

variables, while Dataset 2 was finally established with 1365 subjects with 22 variables

available.
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4 CLASSIFICATION

Prior to the application of the classifier, the outcome variable or ’class’ was created by

assigning a value of 0 (negative class) to all subjects who had a negative prostate biopsy

result and are considered cancer-free subjects (all those for whom the ISUP measurement

did not apply, i.e. who had a value of ’X’), while all subjects who had a positive biopsy

were assigned a class value of 1 (ISUP with a numerical value, between 1 and 5). The

datasets were distributed as follows:

• : Dataset 1 : 705 subjects in class 0 and 909 in class 1.

• : Dataset 2 : 584 subjects in class 0 and 781 in class 1.

It can be seen that the data are slightly unbalanced because class 1 has a higher

representation (approximately 60% of all patients) but this does not really lead to a

significant compromise in classifier performance, which should not cause a class bias.

4.1 kNN description

Having already defined the outcome variable, the kNN was implemented again, this

time as a classification method. This algorithm is normally trained using a subset of

the dataset, called the training set, which contains all the relevant variables including

the class to which each of the patients present belongs, and then, from this, a test is

performed with the observations that were not part of the training set, finally giving an

estimate of the classifier’s ability to predict the outcome of the unlabelled data.

Besides, as previously anticipated, the decision of which distance to use when imple-

menting the classifier is a critical step that can have a great influence on its performance.

As far as our dataset is concerned, it is evident that we are in the presence of very het-

erogeneous variables, which fall into different types. The use of a standard distance

(or similarity) measure, such as the Manhattan, the Euclidean or the Chebyshev, is not

recommended in these circumstances, while the use of different distances that take into

account other specific parameters can be effective. More specifically, from intermediate
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tests, it was concluded that it was convenient to use 2 distances and evaluate how the

results could change. These distances will be explained below.

4.1.1 Gower distance

The Gower distance was developed in 1971, especially for use when in possession

of mixed data, i.e. a dataset that may contain a combination of numerical, categorical

or binary information. This similarity index substantially unifies Jaccard’s coefficient

which is used for binary variables, the simple matching coefficient used for multistate

categorical variables and normalized city block distance used for quantitative variables.

More specifically, given two p-dimensional vectors zi and z j, Gower’s similarity coef-

ficient is defined as:

si j =

∑p1

h=1(1−
�

�zih − z jh

�

�/Rh) + a+α

p1 + (p2 − d) + p3
, 0≤ si j ≤ 1 (4.1)

where p = p1 + p2 + p3 is the total number of variables, p1 is the number of continuous

variables, a and d are the number of positive and negative matches, respectively, for

the p2 binary variables, α is the number of matches for the p3 multi-state categorical

variables, and Rh is the range of the h-th continuous variable [20].

As can be seen from the above expression, for continuous variables, the size of the

gap between two values assumed by the variable has a bearing on the calculation of the

overall distance, whereas for categorical and binary variables it matters whether the two

values are a match or not.

In this case, as MATLAB was used as the software to carry out the calculations and

as it does not have Gower’s distance among those that are included in the tool for the

function ’fitcknn’, a new algorithm had to be created. Basically, it calculates the Gower

distance between a vector X and a matrix Y, taking into account the type of variable of

each input. These input arguments could be of matrix type or table type. For elements

delivered in table form, a vector had to be added to determine the type of variable: 1

for quantitative, 2 for binary and 3 for categorical, while, if they were delivered in array

form, the algorithm was able to predict the type of variable of each of the elements, so

the aforementioned vector was not necessary. The creation of this function was based

on a similar algorithm present in the MATLAB FSDA Toolbox [21].
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4.1.2 Hamming distance

Hamming distance is a distance metric that measures the number of mismatches

between two vectors. It is mostly used for nominal data, string and bit-wise analyses,

and also can be useful for numerical data [22]. This is the default distance used by

MATLAB when given a table as input argument, containing several types of variables

and calculated as :

Hamming(x , y) =
n
∑

i=1

1x i ̸=yi
=

n
∑

i=1

|x i − yi| (4.2)

Analyzing this expression, it can be noted that the Hamming distance method looks

at the whole data and finds when data points are similar and dissimilar one to one, and

at the end it gives the result of how many attributes were different.

4.2 kNN implementation

As previously introduced, 2 different global datasets were taken, containing the 4

specific datasets for each of the imputations performed, to which the kNN algorithm

with the 2 chosen distances (Hamming and Gower) would be applied. It was decided

to select a third dataset, whose results would be used for purely comparative purposes,

in which only the subjects who did not present any missing value in any variable were

taken.

In addition to this, the classifier was implemented with the data in two different

modes: taking them as originally reported and normalising them using min-max scaling.

The normalisation was selected because it was necessary to avoid that the size of the

ranges influenced the calculation of the distance between two elements, resulting in an

incorrect classification of the elements. For the min-max scaling, the following equation

is used:

xnorm =
x −min(x)

max(x)−min(x)
(4.3)

Where x corresponds to the vector containing all the data of a given variable. This

means that the operation had to be repeated i times, where i is the number of variables

to be taken into account as input for the classifier.

It is important to highlight that some of the available observations directly deter-

mined the presence of cancer because they took the value of ’X’ (non applicable) when

there was no cancer, while if any numerical value was taken, this indicated that the sub-
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ject under consideration had a tumor. As a result, these variables could not be used as

input to the classifier in the case of our interest. These variables were removed from

each dataset and corresponded to:

• Gleason Score I

• Gleason Score II

• Gleason Score total

• ISUP

As mentioned, this decision was made precisely because the objective of the classifier

was to directly predict whether the person had cancer or not, however, these removed

variables can be very useful if we want to evaluate other conditions or other types of

output, such as clinically significant cancer, where a multiclass classifier could be used.

In terms of model validation, k-fold cross validation was selected, which consists of

dividing the dataset into k different subgroups of approximately the same dimension

and then applying the classifier: folds are used for model construction and the hold-out

fold is allocated to model validation [23]. In this case, the dataset was divided into 10

subset.

On the other hand, speaking about the value of k chosen for the kNN, it was originally

decided to take it as suggested in the literature k =
p

N to the nearest odd number,

where N is the number of subjects present in the dataset. However, 3 other values of

k, corresponding to 75 %, 50 % and 25 % of the initial value of k, were subsequently

tested to evaluate if there were changes on the performance. All of the above led to the

training and application of 144 different classifiers, varying the datasets, imputations,

distances and k values.

Finally, in order to adequately evaluate and compare the performance of the various

models, the confusion matrix was defined for each classification made, obtained by com-

paring the predicted output with the original output and calculating the number of true

positives (values classified in class 1 and belonging to class 1), true negatives (values

classified in class 0 and belonging to class 0), false positives (values classified in class 1

and belonging to class 0) and false negatives (values classified in class 0 and belonging

to class 1). Based on these values, a certain number of descriptive parameters were then

calculated, which were useful for the interpretation of the results. These parameters are

[24]:

• Specificity: percentage of items correctly classified as negative out of the total of

truly negative items.
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speci f ici t y =
T N

T N + F P
∗ 100% (4.4)

• Sensitivity: percentage of items correctly classified as positive out of the total of

truly positive items.

sensi t ivi t y =
T P

T P + FN
∗ 100% (4.5)

• Positive Predicted Value (PPV): percentage of items correctly classified as positive

out of the total of items classified as positive.

PPV =
T P

T P + F P
∗ 100% (4.6)

• Negative Predicted Value (NPV): percentage of items correctly classified as neg-

ative out of the total of items classified as negative.

N PV =
T N

T N + FN
∗ 100% (4.7)

• Balanced accuracy: is a metric used to evaluate how well classification models

perform on imbalanced datasets. It guarantees that both minority and majority

classes are given equal weight when being evaluated because it represents the

arithmetic mean of sensitivity and specificity [25].

Balanced accurac y =
1
2
(

T P
T P + FN

+
T N

T N + F P
) ∗ 100% (4.8)

Balanced accurac y =
1
2
(sensi t ivi t y + speci f ici t y) ∗ 100% (4.9)
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5 RESULTS AND ANALYSIS

The appendix reports the confusion matrix of the implemented classifiers, divided

according to the global dataset used ("Dataset 1" and "Dataset 2"). It should be clarified

that these figures show a class denoted as 1 that actually corresponds to the negative

classification (absence of cancer) and another class expressed as 2 that is actually the

positive class (presence of cancer).From now on and to avoid confusions, there will be

reference only to class positive and negative, not with numbers.

To better demonstrate the results obtained and to be able to make a more effective

comparison, some graphs of the specificity, sensitivity, NPV, PPV and balanced accuracy

behavior were made, which can be seen in Figures 5.1, 5.2, 5.3, 5.4 and 5.5, respectively.

In the case of specificity (Figure 5.1), it should be highlighted that practically all clas-

sifiers, with the exception of 3 of the 4 classifiers constructed using the Gower distance,

attained values above 55%. This low specificity value suggests that the classifiers had

a difficult time identifying negative patients, which suggests that they frequently made

positive predictions about subjects that had been provided to them as input; this can also

be corroborated by looking at the confusion matrix shown in the appendix. In addition

to this, analyzing the behavior of these 3 classifiers through the different imputations

and k values, it can be seen that practically this constitutes a straight line, which means

that the modifications made did not present any minimally significant change, result-

ing in almost the same number of patients in the different classes and a quite similar

classification error.

Now when discussing sensitivity (Figure 5.2), it is evident that it behaves in a manner

that is practically the opposite of that which was previously described when it comes

to specificity, supporting the claims made. In this instance, we can see that the three

classifiers mentioned had a fairly high sensitivity (between 65% and 92%), standing out

among those performed with Datasets 1 and 2 without normalization, indicating that for

these predictors, normalization is crucial [26] because they were unable to generalize the

classification and determined that almost all subjects were positive, which is not useful

for our objective because it would be precisely in line with the methods currently used
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Figure 5.1. Specificity values calculated for each of the classifiers.

where many unnecessary biopsies are performed. On the other hand, it is noteworthy

that Dataset 2 performed well when using the Hamming distance, both normalized and

unnormalized, as they demonstrated an important level of specificity and this is paired

with a high value of sensitivity, in addition to emphasizing that the change between the

various imputations and the values of k chosen differences are found.

Here it could be seen that the classifier performed with the Gower distance that was

not mentioned yet, that is, the normalized Dataset 1, presented the lowest sensitivity of

all, being below 50 %, which is corroborated by appreciating its corresponding confusion

matrix, where, for all the imputations and all the values of k, more preference was given

to the negative class, classifying 966 patients out of 1611 in this class (approximately

60 % of the whole dataset) and thus being the only classifier with Gower’s distance that

behaved in the opposite way to the others.

On the other hand, referring to the NPV values (Figure 5.3), it was found that in

general the classifiers performed with the Hamming distance for both datasets had a

higher performance in this area, taking values ranging from approximately 60 % to 68

%, which also applies to the PPV results (Figure 5.4), with the highest values being those

predictors that used Dataset 2 with Hamming distance, and those that were considerably

farther from the ranges presented by the other classifiers.

Finally, speaking of the balanced accuracy (Figure 5.5), a parameter that refers to the

general performance of the classifiers and that allows to express the accuracy presented
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Figure 5.2. Sensitivity values calculated for each of the classifiers.

Figure 5.3. NPV values calculated for each of the classifiers.
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Figure 5.4. PPV values calculated for each of the classifiers .

in identifying both classes, it is found that again the classifiers that used Dataset 2 with

Hamming distance presented the highest values (between 67% and 72%), while those

with the lowest performance corresponded to those of Dataset 2 and Gower distance

(between 52% and 54%).

As was already said, the main objective of this thesis project and the development

of the classifiers is to achieve a completely non-invasive diagnosis based solely on clin-

ical characteristics while simultaneously reducing the number of unnecessary biopsies.

Because of this, it was decided to give the accurate classification of negative subjects

more importance in order to prevent positive subjects who did have the pathology from

being classified as negative, which would have a negative impact on the patient’s quality

of life and possibly jeopardize their survival. NPV and balanced accuracy are the two

metrics that, based on these assumptions, may provide more insight into the classifiers:

the value of the former is inversely proportional to the number of FNs, and thus, by

preferring models with high NPV, it is possible to minimize the percentage of FNs, while

the latter gives an average indication of the model’s ability to correctly classify items

belonging to both classes, considering that the dataset in our possession is not perfectly

balanced, but has a greater representation of the positive class.

Taking into account the considerations previously made, it is clearly observed that

there are 2 classifiers that stood out over the others, which corresponded to those per-

formed with Hamming distance using Dataset 2, which consisted in the elimination of
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Figure 5.5. Balanced accuracy values calculated for each of the classifiers .

patients with missing values in the variables "Lesion side", "PIRADS" and "TURP", which

shows that for this type of distance, the permanence of these variables in the dataset

was of vital importance. On the other hand, it is evident that, in contrast, if the Gower

distance is taken, the performance improves slightly using Dataset 1, in which the pre-

viously mentioned variables were directly eliminated.

Now that the classifiers with the best performance have been chosen in general, it is

necessary to analyze which imputation showed the best results and for which k value. If

we take into account that we are giving more importance to the performance evaluated

by NPV and balanced accuracy, we can see that the predictor represented by the brown

line (Dataset 2 normalized with Hamming distance) presented slightly higher values,

the values found for all its modifications are presented in Table 5.1, where the 3 best

performances that entail quite similar results are presented in bold, this implies that

in reality the different imputations that were carried out were quite similar, which was

corroborated by comparing the predicted values, where it was found that the highest

percentage of discrepancies between the groups was less than 3%. Additionally, when

analyzing these classifiers that presented the best results, it was found that the value of

k corresponding to that reported in the literature (square root of N, which was the initial

value) is the most appropriate to use in the classifier.

Finally, taking into account the last dataset employed, Figure 5.6 and Figure 5.7 re-

port the confusion matrixes that corresponded to the results of the classifiers made for

Dataset 3 which represented purely patients with no missing values, hence no impu-
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Table 5.1. Performance of the global best classifier between Datset 1 and Dataset 2: the
one made with Dataset 2 normalized and Hamming distance. Values are reported in
percentage (%).

Classifier Specificity Sensitivity NPV PPV Balanced accuracy

Imputation 1

k=100% 66,88 74,34 67,99 73,36 70,61
k=75% 66,56 74,34 67,89 73,17 70,45
k=50% 66,07 73,27 66,83 72,60 69,67
k=25% 63,78 73,80 66,50 71,43 68,79

Imputation 2

k=100% 66,72 74,60 68,17 73,33 70,66
k=75% 66,56 74,47 68,00 73,20 70,51
k=50% 66,23 73,27 66,89 72,69 69,75
k=25% 63,78 74,20 66,84 71,54 68,99

Imputation 3

k=100% 66,72 74,47 68,05 73,30 70,59
k=75% 66,56 74,34 67,89 73,17 70,45
k=50% 66,23 73,27 66,89 72,69 69,75
k=25% 63,62 74,20 66,78 71,45 68,91

Imputation 4

k=100% 66,88 74,47 68,11 73,39 70,68
k=75% 66,56 74,07 67,66 73,10 70,31
k=50% 66,23 73,27 66,89 72,69 69,75
k=25% 63,78 74,20 66,84 71,54 68,99

tations were made. In addition, Table 5.2 shows the performance results in terms of

specificity, sensitivity, NPV, PPV and balanced accuracy. These results reaffirm that the

Gower distance did not perform well as it practically classified most of the patients as

positive for cancer, and finally that Hamming distance with the normalized dataset was

shown to perform the best.

When talking about the preferences chosen for the classifier (high values of balanced

accuracy and NPV), it is evident that "Dataset 3" presented the highest percentages,

especially in NPV, which indicates that, in this case, to obtain better results it was enough

to eliminate the patients with missing values and keep all the variables. Finally, this

ratified that the most convenient k for the classifier corresponded to the initial one, i.e.

the square root of the number of patients.

34 CHAPTER 5



Figure 5.6. Confusion matrixes of the classifiers done with Gower distance, original and
normalized, respectively.

Figure 5.7. Confusion matrixes of the classifiers done with Hamming distance, original
and normalized, respectively.
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Table 5.2. Performance of the classifiers implemented with Dataset 3. Values are re-
ported in percentage (%).

Classifier Specificity Sensitivity NPV PPV Balanced accuracy

Gower

k=100% 25.48 84.49 58.52 56.90 54.99
k=75% 25.32 84.49 58.36 56.85 54.91
k=50% 25.48 84.49 58.52 56.90 54.99
k=25% 25.48 84.49 58.52 56.90 54.99

Gower normalized

k=100% 36.60 76.00 58.31 56.66 56.30
k=75% 36.45 76.29 58.50 56.69 56.37
k=50% 36.45 76.14 58.35 56.64 56.30
k=25% 36.60 76.14 58.46 56.70 56.37

Hamming

k=100% 68.87 72.85 68.54 73.16 70.86
k=75% 68.55 72.16 67.89 72.77 70.35
k=50% 68.55 72.99 68.55 72.99 70.77
k=25% 64.52 72.58 66.89 70.43 68.55

Hamming normalized

k=100% 68.07 73.71 70.37 71.57 70.89
k=75% 67.91 72.86 69.65 71.23 70.38
k=50% 67.60 74.00 70.45 71.35 70.80
k=25% 64.95 75.00 70.44 70.00 69.98
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6 CONCLUSIONS

When it comes to prostate cancer, the developed project is positioned as a non-

invasive diagnostic solution that can help in the identification of malignant tumours

without exposing healthy patients to the discomfort and possible side effects of a biopsy.

Initially, the identification of the different types of variables within the dataset was

helpful in highlighting the heterogeneity of the observations present, which was useful

in deciding which of the possible distances to choose for the kNN algorithm. Later, in

the development of this algorithm, the fact of making changes and verifications in the

variables allowed the data that were then delivered to the different classifiers to be com-

plete and without mistakes, so that better results were achieved in terms of performance.

Then, the analysis of the missing values of each of the variables allowed the identifica-

tion of a major problem in the dataset in possession, which effectively corresponded to

the presence of several fields denoted as NaN.

In the second part of the project, attention was focused on how to handle these miss-

ing values and the decision was taken to perform an imputation through a neighbourhood-

based algorithm (kNN), in order to generate a much more complete dataset. In this step

it was decided to take different values of k to see what the influence on the final pre-

dictor would be. Here it was of crucial importance to separate the patients according

to their ISUP value, as this would allow the imputation of the variables to be more in

line with the actual state of the patient. After imputation, the statistical analysis of the

generated values was of great help as it allowed to observe whether the created data

changed the characteristics of the different groups, which resulted in parameters such

as median, mean and quartiles being minimally affected or not modified. In the final

stage of this part, the variables that did not make medical sense to impute were identi-

fied as "lesion side", "PIRADS" and "TURP", and 3 global datasets were generated, which

differed in the way the variables were handled: eliminating the 3 variables (Dataset 1),

eliminating the patients with missing values in these variables (Dataset 2) and keeping

only the patients who in general had no missing values (Dataset 3).

Regarding the last part of the project, after defining the outcome variable, 2 differ-
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ent distances were used for the kNN predictor (Hamming distance and Gower distance),

both normalised and unnormalised datasets were taken and, additionally, 4 different val-

ues of k were taken into account for the neighbourhood, thus allowing a much broader

analysis of the classifier. Looking at the results delivered after implementing the classi-

fiers with the indicated parameter changes (144 classifiers in total) and evaluating their

performance mainly in terms of NPV and balanced accuracy, it became evident that the

Hamming distance using the normalised dataset delivered the best results, mainly when

using datasets 2 and 3, showing that the best value of k corresponded to the initial value

(square root of the number of patients) and showing that in fact the different imputations

did not have a major effect on the classifier.

In conclusion, this research has shown how challenging it is to create a comprehen-

sive decision-aid system that can accurately identify, among a large population of men at

risk, those who actually have prostate cancer and thus require a biopsy.The findings were

fairly encouraging: even though the classifiers’ performance was not ideal, this research

would be useful in the future for the development of better prostate cancer diagnostic

tools, particularly when a dataset as heterogeneous as the one utilized in this project is

present.
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APPENDIX

Boxplot, statitstical characterization of the imputation
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Confusion Matrix of the classifiers

DATASET 1
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