POLITECNICO DI TORINO

Department of Mechanical and Aerospace Engineering
Master’s Degree in Aerospace Engineering

Master Thesis

Enabling fuel system component placement on the
basis of geometric and certification requirements
within a semantic knowledge-based engineering
framework

Academic supervisor: Candidate:
Prof. Dr. Marco FIORITI Matheus Henrique PADILHA

DLR supervisors:

Dr. Brigitte BODEN

Tim BURSCHYK

Carlos CABALEIRO DE LA HOZ

Academic Year 2022/2023

Success is not final, failure is not fatal:
it is the courage to continue that counts.
— Winston Churchill

Aos meus pais,

que me ensinaram a sempre sequir os meus sonhos,
cujos ensinamentos e orientacao tém sido

o alicerce da minha jornada académica,

e gragas a eles sou a pessoa que Sou.

A minha familia,
pelo apoio continuo e incentivo
ao longo dos meus estudos.

A Stefan,

che ¢ stato sempre al mio fianco

e che ha creduto nel mio potenziale.
Grazie per avermi aiutato a raggiungere
1 miet obiettivi e per avermi sostenuto
m ogni momento.

To my friends,
for the support and friendship
during my time in Germany.

Abstract

The aerospace industry is in a constant state of evolution, encountering fresh challenges amid techno-
logical advancements and shifting economic landscapes. To maintain a competitive edge, aerospace
companies must continually foster innovation and adaptability. In response to a more competitive
market and heightened customer expectations, the aerospace sector is directing its investments toward
pioneering technologies capable of curbing project development costs. The early phases of aircraft de-
velopment hold paramount significance, exerting great influence on overall project outcomes, and thus
stand to gain immensely from novel processes and design methodologies. The accurate and compre-
hensive definition of aircraft geometry constitutes a critical requirement for a multitude of analyses,
profoundly impacting the final aircraft design. Unfortunately, these detailed descriptions are often
elusive during the initial project stages. Among the array of methodologies available, Knowledge-
Based Engineering (KBE) emerges as an interesting approach for streamlining product development
timelines and cost structures by capitalizing on pre-existing knowledge drawn from analogous projects.
Harnessing DLR’s innovative KBE framework, known as Codex, a set of geometric verification rules
have been crafted to bolster early-stage fuel system design. Codex, facilitated by semantic-web tech-
nologies, empowers the development of domain-specific languages and tools and seamlessly integrates
them into the framework. In conjunction with a suite of geometry creation rules aimed at enriching
the geometric information accessible to designers during the initial phases, the GeoVerification tool
equips engineers with valuable data concerning the correctness of the fuel system’s geometry. In addi-
tion, a series of airworthiness requirements and guidelines have been implemented, demonstrating the
potential for automating the usage of this knowledge. An important feature, seamlessly integrated
into the tool, resides in its capacity to evaluate diverse scenarios of uncontained engine burst failures
(UERFSs) and provide remedial design actions. Efforts have culminated in the development and inte-
gration of 25 verification rules within the GeoVerification Tool. To illustrate the tool’s capabilities,
a fuel system architecture for a twin-engine small-medium range aircraft was designed. Leveraging
existing geometric data pertaining to the aircraft’s structure, detailed geometric characterizations of
the fuel tanks were achieved. Moreover, spar-mounted and bottom-mounted fuel boost pumps, supply
lines, fuel valves, and a simplified crossfeed subsystem were designed. Over 500 requirements’ checks
were executed in under four minutes using a standard personal computer for the fuel system archi-
tecture. By embracing a parametric design approach and leveraging the developed geometry creation
rules, including additional rules aimed at supporting component placement automation, geometric
incompatibilities were minimized. Furthermore, the tool’s results, stored within the knowledge graph,
facilitate the efficient management of design anomalies and the provision of corrective actions.

Contents

1 Introduction

1.1 Background and motivation e
1.2 Related work oL
1.3 Problem statement and objectives L Lo

2 Aircraft fuel systems

2.1 Fuel system functions
2.1.1 Fuelstorage
2.1.2 Fuel provision to the engines and APU, .
2.1.3 Fuel transfer between tanks and fuel jettison
2.1.4 Refueling and defueling Lo
2.1.5 Fuel measurement and managemento
2.1.6 Venting and pressure management oL oL
2.2 Fuel system components oL e e e
221 Fueltanks L
2.2.2 Fuel pumps e e
223 Fuellines e
224 Fuelvalves
2.2.5 Other parts and subsystems L oL Lo
2.3 Fuel system design
3 Knowledge Based Engineering
3.1 Imtroduction
3.2 Basicconceptsof KBE
3.2.1 Traditional design method vs. knowledge-based design
3.2.2 Knowledge managemento L Lo
3.2.3 KBE and the design process e
3.2.4 KBE methodologies
3.25 KBE approaches
3.3 KBE in the aerospace industry Lo
3.3.1 Examples of KBE applications
3.4 The KBE rationale L
3.4.1 Benefitsofusing KBE o
3.4.2 Challenges and limitationsof KBE 0.
3.5 The Codex framework
4 Methodology
4.1 Knowledge capturing
4.2 Knowledge formalization L oL
4.3 Validation oL e
5 Implementation
5.1 Codex’s production rules L
5.2 Geometry creation
5.2.1 Boost pumps
5.2.2 Valves L e
523 Fueltanks

17
17
18
19
20
22
24
29
30
30
34
34
36
37

41
41
44
44

Contents

5.2.4 Additional production rules 55

5.3 Geometry verification 55
5.3.1 Tank volumes e 55

5.3.2 Components inside tanks oL Lo 56

5.3.3 Connection between components and lines 57

5.3.4 Boost pump attachment to tank’s bottom surface 60

5.3.5 Intersection between pumps and ribs Lo 62

5.3.6 Tank opening geometry L 64

5.3.7 Intersection between supply lines and tanks, 64

5.3.8 Center of gravity shift o oo 65

5.4 Certification and guidelines verification oL oL 66
5.4.1 Available fuel mass 66

5.4.2 Minimum distance between pipes and fuel tanks 68

5.4.3 Redundant components 70

5.4.4 Shutoff valves before engine adapter 72

5.4.5 Relative position between valves and lines 73

5.4.6 Rotorburst 75

6 DLR-D150: Fuel system modeling, verification and results 88
6.1 Geometry modeling 91
6.2 Geometry verification 98
6.3 Certification related geometry verification oo 105
6.4 Enhancing geometric detail in early fuel system design through production rules . . . 108

7 Conclusions 111
A DLR-D150’s resulting statements from the GeoVerification tool 116
A.1 Geometry verification - falsified statements o0 116
A.1.1 Firstiteration e 116

A.1.2 Second iteration e 117

A.1.3 Third iteration L 117

A.2 Geometry verification - Resulting statements 119
A.3 Certification and guidelines verification - Resulting statements 133

ii

List of Figures

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

The effect of load alleviation due to the presence of wing tanks [1]
Check-valves and their one-directional flow capabilities [2]
Fuel transfer from subsonic to supersonic flight (left) and from supersonic to subsonic

flight (right) [3] o
Open vent system for an airliner [4] Lo Lo L
Internal details of an integral fuel tank [2]
A320 Fuel Tanks [5] o o
Schema of a motor-driven fuel pump [2]
Schema of an ejector (jet) pump [2]
System concept definition [2] Lo Lo

A380 - system providers
Knowledge framework L
Knowledge definition [6]
Knowledge acquisition matrix [6] L
Knowledge management process [6] e
Platform specific vs platform independent KBE [7]
Design completeness with respect to the level of abstraction and the knowledge avail-

able [8] L
MOKA knowledge models [9]
KBE lifecycle [10] o oot
MOKA informal model [11]
MOKA formal model [11]
Design cycle for traditional and KBE approaches [10]
Generative model method [12] Lo Lo
Project time vs product costs, available knowledge and freedom of design [13]
Semantic graph obtained from the geometry syntax in Listing 3.1 [14]
Multi-domain integration using ontologies [15]

Unit test output for the connection between pumps and lines and a detailed view (right)
showing the geometry errors in the connection.

Boost pump e
Snorkel pump with an inlet and an outlet port
Logic representation of the algorithm for finding the optimal root point on the bottom
surface of a tank for a fuel pumpo oL
Two-way shutoff valveo
Geometry mismatch due to an overlapping supply line
Geometry mismatch due to a gap between the supply line and the connection port . .
Geometry mismatch due to misalignment o000
Logic workflow to check if a pump is attached to the bottom of a tank
Wing rib overlapping with a fuel pumpo o oo
Tank volumes as defined by SAE [1] o L
Aircraft representation on TiGL’s main frame of reference
Fuel valve connected to two supply lines
Logic workflow to verify the relative position between a fuel valve and its connecting
supply lines

iii

List of Figures

5.14
5.15
5.16
5.17
5.18
5.19
5.20

5.21

5.22
5.23

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15
6.16
6.17
6.18
6.19

6.20

Uncontained rotor burst example for a wing-mounted engine [2] 76
A330 - Fuel tanks [16] o 7
A330 - Fuel system architecture [16] 78
Threat window for a rotor burst according to AMC-128A [17] 81
Dimensions for the intermediate fragment [17] L. 82
Trajectory paths for the intermediate fragment - top view 84
Trajectory paths for the intermediate fragment - front view. Rotor disk in red and

blade path in green L 85
Trajectory paths for the fan fragment - front view. Rotor disk in red and fan blade

pathin green e 86
Trajectory paths due to a fan and an intermediate fragment burst for a generic system 86
Detailed front view of a fan and an intermediate fragment trajectory 87
A320’s fuel system architecture [18] Lo 89
DLR’s D150 concept aircraft [19] 90
Simulation process from system modeling to system validation 90
Aircraft wing structure (in red) and extracted fuel system design space (in blue) . . . 91
D150 - From most outer to most inner, the fuel tank design spaces are as follows:

surge tanks (yellow), outer wing tanks (purple), inner wing tanks (red), and center

tank (green). e 92
Fuel pumps - naming convention L oo 93
Engine feed line and boost pumps (top), detailed view of boost pump 2 (bottom left),

and detailed view of boost pump 1 (bottom right) 95
Refueling port 96
Generated fuel system architecture - first iteration 98
Examples of geometric flaws identified by the GeoVerification tool 99
Connection error between a supply line and a fuel valve 100
Final fuel system design integrated into the aircraft model 102
Detailed view of the center tank and its components (top picture) and of the tank

openings between the center and the right feed tanks (bottom picture) 103
Center tank’s openings Lo 104
Trajectories for the left engine’s fan fragment 106
Trajectories for the left engine’s fan fragment - detailed view focusing on the fuel system106
Hit trajectories for the right engine’s rotor fragment - components in the hit zone . . . 107
Example of fuel valve subject to icing condition on the right engine feed line. 108
Geometric detail comparison between the fuel system found in [20] (top) and the pro-

posed fuel system design (bottom) L Lo 109
Geometric detail comparison for the fuel pumps and their connection with a supply line110

iv

List of Tables

3.1

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
7.1

Al
A2
A3
A4
A5
A6

Complexity in time before and after the KBE tool introduction [21]

Geometry related checks implemented as part of the geometric verification tool
Certification and guideline related checks implemented as part of the geometric verifi-
cation tool L

Uncontained rotor failure - impact zones
UERF - Standard values for the reference angles

Fuel tank volume requirements - D150
Fuel tank volume after design space segmentation - D150
Input position and calculated root position for the fuel pumps
Feed and transfer valves’ positioning L.
Inner and outer radius for the fuel system supply lines
Geometric requirements’ overview Lo
Tank openings’ positioning L L L
Geometric information for the engine rotors and fans
Supply lines potentially damaged by an uncontained rotor burst (small fragment) for
the right engine’s example rotor
Failed checks - certification related geometry checks (excluding UERF rules)

Simulation computer technical specificationso

Falsified geometric statements - first iteration
Falsified geometric statements - second iteration
Falsified geometric statements - third iteration
Verified geometric statements - last iteration oL oL
Verified certification-related statements L.
Falsified certification-related statements oL

Listings

3.1
4.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9
5.10
5.11
5.12

5.13

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Usage example of the Geometry Syntax [14]
Example of adding verification requirements to a model through statements
Example of rule querying for production rules,
Example of knowledge declaration to create a boost pump by the production rules
Example of added knowledge to a model through a production rule
When side for the creation of snorkel pumps using the production rules
When side for the creation of shutoff valves using the production rules
Example of user-declared tank opening (or cut) to the knowledge model
Messages provided to the user when checking for a components containment inside a
tank ..o L e e e
Geometry rule to check if a supply line and a connection port have matching sizes
Information extraction from the knowledge graph through statements
Iterative loop to find intersecting ribs with fuel system components
Intersection centroid’s definition and its addition to the knowledge graph
When side for the verification function responsible for checking the available fuel volume
and mass for the fuel system L oo
Algorithm to compute the minimum distance between a tank’s external surfaces and
asupply line e
When side for the checkPumplndividuality function
Knowledge extraction and filtering in Kotlin
When side for the checkPumpRedundancy function
When side for the checkRelativePositionSOVLines function
Rule registering using Codex L Lo
Example of adding a class assertion to multiple components in Codex
Trajectory path rotation due to the translational angle
Output example for the rotor burst productionrule.
When side for the medium fragment rotor burst verification rule
Probability of hit as an individual and related knowledge modeling
Fuel system individual creation and structural inputs
Supply line creation from boost pump related knowledge
Output message describing a misalignment error for pump 2
Knowledge modeling to create a shutoff valve geometry
Refueling system creation and refueling adapter’s knowledge modeling
Examples of failed checks printed to the logger
Examples of geometric knowledge modeling to create a tank opening
Geometry modeling for the right engine’sfan

vi

Chapter 1

Introduction

1.1 Background and motivation

The aerospace industry is constantly evolving and facing new challenges as technology advances
and new economic trends emerge. To stay ahead of the competition, companies in this industry
must constantly innovate and adapt. Furthermore, globalization has created new opportunities for
collaboration and expansion in the aerospace sector, necessitating the development of new product
development methodologies capable of keeping up with this fast-paced market.

Early-stage aircraft design is an essential phase during the entire development process of an aircraft
and has a major influence on the project’s success. In the last few decades, computer-aided aircraft
design has been increasingly applied, as it allows engineers to detect promising design patterns in
the early stages of the design process. More recently, the concept of digital modeling for complex
products has become not only a trend but a necessity in the industry as well, since the next generation
of aircraft requires a system of systems approach with an ever-increasing amount of data exchanged
between groups both within and across industrial partners. This need translates into the develop-
ment of new methodologies to manage the complex data flow between domains. An example of this
is the evolution of Knowledge-Based Engineering (KBE) methodologies, which allow knowledge from
different domains to be captured and formalized for execution by computer systems.

The description of the aircraft geometry is a critical component of the challenges this phase of the
design presents to the overall project. Precise and comprehensive descriptions of the aircraft geom-
etry are essential for multiple analyses, including aerodynamic simulations and structural analysis,
that impact the final aircraft design decisions. However, these detailed descriptions are frequently
unavailable in the initial stages of the project. Furthermore, the handling of complex geometries,
which is an inherent feature of aircraft fuel systems, is frequently not supported or poorly supported
by conventional tools on the market.

Knowledge-based engineering (KBE) approaches can be used to share and integrate knowledge in a
structured and efficient way when working with multidisciplinary designs. KBE makes it possible
to establish a central knowledge base that all parties involved in the design process can access, fa-
cilitating cooperation and reducing mistakes brought on by misunderstandings. Furthermore, KBE
tools can offer intelligent recommendations and automate monotonous tasks, increasing productivity
and efficiency when designing intricate geometries for aircraft fuel systems. Today’s market offers a
variety of software that caters to certain knowledge-based engineering methodologies. These software
solutions span a variety of categories, from more general solutions designed to ensure a high degree
of interoperability to specialized tools designed to tackle particular issues. These instruments are all
similar in that they take an object-oriented approach. Even though object-oriented programming
(OOP) has many advantages, it requires strict model definitions. As a result, it frequently takes a
while for all interested parties to agree on common terminology and schema definitions. Moreover,
OOP makes it more difficult to create novel products because those products might not have the
characteristics that the predefined object-oriented model requires. This might make it harder to be
creative and flexible when coming up with new ideas. Furthermore, because OOP necessitates a
thorough comprehension of the underlying model and all of its nuances, its complexity may result in
longer development times and higher development costs.

Chapter 1. Introduction

1.2 Related work

At the German Aerospace Center’s Institute for Systems Architectures in Aeronautics in Hamburg,
a new framework (Codex: COllaborative DEsign and eXploration) is being developed, inspired by
the potential of KBE in the aerospace sector. A first attempt at demonstrating the potential of
Codex is provided in [20]. By looking at the codex-geometry module, the authors show how different
geometric entities (points, curves, polylines, spheres, cuboids, etc.) can be used to define complex
geometries based on the Constructive Solid Geometry principle. In order to enable users with little to
no experience in software development to perform geometric operations like creating geometries and
calculating volume and surface, the authors show how to integrate an open-source geometric kernel,
such as the OpenCascade (OCC) CAD kernel, into a domain-specific language (DSL) service. Fur-
thermore, the authors stress that geometric ontologies can be used to integrate geometric knowledge
from different domains, even when the domain-specific models have no connection to one another. In
the same paper, the authors demonstrate the possibility of performing geometric checks on the model
using declarative rules enabled by the codex-rule module.

A second example of Codex possibilities can be found in [14], where the authors highlight Codex’s
potential for the rapid generation of new aircraft configurations by leveraging the codex-geometry
module. In this article, the authors explain the advantages of a declarative rule-based approach, where
rules can be exploited to generate complex geometries, expand the knowledge present in a model by
creating new knowledge or connecting the knowledge present in different domains, and verify the
knowledge itself. Furthermore, the authors demonstrate the advantages of a schema-less graph-based
framework as well as its potential for improved knowledge reusability and interoperability. Aircraft
configurations can be easily adapted and integrated with other systems or models using a schema-less
framework, allowing for seamless collaboration and information exchange across domains. Codex’s
potential is ultimately demonstrated by the ability to generate multiple aircraft configurations using
the same knowledge by simply altering a few user inputs that cause the framework’s rules to operate
differently.

The aforementioned works are cited in this master’s thesis and provide a basis for demonstrating and
augmenting Codex’s capabilities. In fact, these examples show the value of the geometric definition
of the model and how it can reduce development times without sacrificing the level of detail at the
beginning of the design process.

1.3 Problem statement and objectives

Because it requires a lot of volume and is distinguished by complex geometries, the fuel system is
one of the subsystems that could profit from additional consideration during the conceptual design
in order to provide a well-rounded design solution. In particular, the fuel system design is heavily
impacted by its geometric definition, which often poses difficulties to its design at early stages [20],
requiring new methods to provide engineers with more detailed knowledge during these phases.

In order to better support the design of a fuel system architecture, it is important to expand the
available information for this system at an early stage, which can be done by reusing existing knowl-
edge based on previous projects and engineers’ experience. The fuel system’s geometric knowledge
not only impacts the overall performance and efficiency of the system but also plays a crucial role in
ensuring the safety and reliability of the system itself. Additionally, accurate geometric knowledge
allows for effective integration with other subsystems and components, minimizing potential conflicts
or design flaws. Therefore, it is essential to validate the developed model as soon as possible to
ensure that the geometric knowledge is accurate and meets the desired objectives of the fuel system
architecture design.

In this context, this work aims to define a methodology to support aircraft fuel system design while
taking geometric, functional, and certification aspects into account. Applying knowledge-based en-
gineering (KBE) methodologies to this task allows to make the most of already-existing knowledge
and support design decisions. KBE can be used to compile past experiences, lessons learned, de-
sign guidelines, and requirements in order to give aircraft designers tools for evaluating their design
decisions and making additional suggestions. Particularly for geometric definition, KBE can enable
designers to concentrate on problem-solving tasks in a controlled setting, where they could be assisted
by geometric rules checking for the accuracy of their designs with ease.

The use case guiding the work covers studying the placement of different system components and
their validation using a declarative rule-based approach. Furthermore, the effect of a main rotor burst

Chapter 1. Introduction

and its potential to affect critical systems are also studied to demonstrate the potential to integrate
multiple domains into the verification rules. On the basis of this, a methodology for effective fuel
system placement is developed through the digitalization of complex geometry placement rules within
a semantic web framework. Through its standardized input and output connections, the resulting
KBE tool can then be used as part of overall aircraft conceptual design workflows.

Objectives

Identify the critical components related to the fuel system and model them using complex para-
metric geometries with the appropriate level of detail for preliminary design within a Semantic
Web framework.

Develop methods to support the placement of components related to the fuel system in order
to meet geometrical, functional, and certification constraints.

Develop methods to assist the fuel system design, with a focus on certification requirements
and the potential effects on critical fuel system components.

Implement the methods within the Codex framework domain.

Verify and validate the methodology by means of a use case focusing on conventional fuel system
architectures.

Chapter 2

Aircraft fuel systems

Aircraft fuel systems are responsible for safely and efficiently delivering fuel to the engines, allowing
airplanes to generate the necessary thrust to fly. These systems are designed to store and distribute
fuel throughout the aircraft, ensuring a constant and reliable supply during flight. It is an essential
and critical system in any airplane, requiring extensive knowledge and experience to optimally design
it and ensure its proper functioning.

The fuel system must be carefully engineered to account for factors such as fuel weight, balance, and
distribution, as well as the specific requirements of different aircraft models. Additionally, stringent
safety regulations and protocols must be followed to minimize the risk of fuel leaks or fires, making the
design and maintenance of aircraft fuel systems a top priority in aviation engineering. This chapter
provides an overview of modern commercial aircraft’s fuel system. An outlook of its main functions
is provided in Section 2.1, while an overview of the main components necessary to perform these
functions is provided in Section 2.2. Lastly, section 2.3 provides a brief outlook of the design process
for the fuel system.

2.1 Fuel system functions

The main function of the fuel system is to provide a continuous fuel supply to the engines in every
flight condition. This function can be further divided in order to have a better understanding of how
each component contribute towards this goal. Based on ATA Chapter 28, the following subdivision
is proposed:

e Fuel storage
e Fuel provision to the engines and APU

e Fuel transfer between tanks and fuel jettison

Refueling and defueling

e Fuel measurement and management

Venting and pressure management

These functions are present in all aircraft and, depending on the application, different architectures
can meet the requirements. The fuel system operations for today’s commercial aircraft, ranging from
smaller business jets to larger transportation aircraft, are covered in this section.

2.1.1 Fuel storage

Due to the large amount of fuel in an aircraft, fuel storage may be seen as a design constraint one
must overcome at the outset of the project rather than a function the system must perform. The fuel
tanks, which can take many different forms, are responsible for storing fuel, and their positioning is
of crucial matter to ensure proper aircraft stability.

Their installation can take place anywhere in the aircraft where integrity can be guaranteed after a
crash, with typical locations being the wings, the center wing-box and the tail. Tail fuel tanks are
particularly important in aircraft where the center of gravity is expected to shift a lot during the

Chapter 2. Aircraft fuel systems

Cruise

Ground/Landing

Downward force due to gravity/weight of fuel

Downward force due to gravity/weight of fuel

e ese— I
O JJG Upward force due to lifting forcg?nIﬂight

Figure 2.1: The effect of load alleviation due to the presence of wing tanks [1]

flight, and are used as means of reducing this shift to acceptable values by performing fuel transfer.
In fact, when designing tail tanks, the aircraft designer must pose particular attention in studying
different filling levels and transfer strategies, to make sure the aircraft’s stability will not be compro-
mised in any case, even when the system is faulty.

Fuel storage on the wings serve a secondary purpose in modern commercial aircraft, which have their
engines below the wing, known as load alleviation. Large amounts of fuel can be stored in the wings
to counterbalance the high loads of lift that cause the wings to bend upward during flight. This
results in smaller fatigue cycles and a longer interval between maintenance activities.

In order to minimize wingtip bending and maximize this effect, the wing tanks should allow the fuel
to remain as far outboard of the wings as possible until the end of the cruise phase. This strategy
enables structure weight to be reduced. Figure 2.1 highlights the advantageous effect of maintaining
the fuel at the most outward position of the wing and shows the effect of load alleviation due to the
presence of wing tanks.

If additional tanks are needed, these are often placed at the lowest part of the fuselage, and are
known as center tanks or auxiliary center tanks (ACTs). If these tanks are not used to directly feed
the engine, transfer strategies must be put in place in order to guarantee appropriate engine feed
through the feed tanks. The Airbus A321-XLR is a commercial aircraft that successfully integrates
the auxiliary center tank strategy. In this configuration, Airbus gives its aircraft the ability to travel
farther thanks to the addition of rear and forward center fuel tanks in the fuselage. This increases
the aircraft’s operational range by over 30% compared to the A321-neo configuration, giving it a
maximum fuel capacity of 32940 liters and a non-stop operational range of 4700 nm [22].

Wing tanks are further divided into several compartments by using the already present structural ele-
ments in the wing, such as the wing ribs, in order to reduce fuel slosh in non-inertial flight conditions,
which could potentially cause the aircraft to lose its stability. In order to allow for the movement of
fuel inside the tank and the routing of pipes throughout the system, openings must be provided in
these ribs. In ensuring a proper venting system, the ribs should also account for the passage of air
for various aircraft attitudes.

When the design foresees communicating fuel storage compartments using gravity-assisted fuel trans-
ferring between tanks, it is necessary to ensure the fuel cannot return to the transferring tank for any
aircraft attitude. This is usually performed guaranteeing the presence of check-valves between the
tanks interface, whose capabilities are illustrated in Figure 2.2.

When a tank’s geometry makes it difficult to use all of the fuel that is stored in it, it is important
to plan for this in the design. This is typically accomplished by either ensuring that the feed boost
pumps themselves are positioned so that they can pump all of the fuel from a tank, in any flight
condition, or by ensuring that both the front and aft positions of the tanks contain components able
to pump the fuel to the feeding zone, using the so-called scavenge pumps (most often jet pumps)

Chapter 2. Aircraft fuel systems

Outboard flow restricted Inboard flow allowed

Figure 2.2: Check-valves and their one-directional flow capabilities [2]

[2]. These strategies rely on redundancy, necessitating the installation of at least two fuel pumps in
various tank locations to meet the requirements.

Utilizing collector cells is one way to lessen the amount of unusable fuel or, at the very least, reduce
the number of pumps. In this scenario, the feed tank is further divided, and a small area of it is
converted into a closed area known as a collector cell. Fuel can enter this cell through check valves
and scavenge pumps, sucking it up from the tank’s bottom and adding it to the collector. This
minimizes fuel waste and keeps the boost pumps inside the collector submerged at all times, even
when performing negative-g maneuvers.

2.1.2 Fuel provision to the engines and APU

Engine feed is one of the main tasks to be executed by the fuel system and stringent requirements
are put into place in order to guarantee the aircraft’s airworthiness. Engine feed can be of two main
types: gravity-fed and pressure-fed systems.

The easiest way to feed an engine is through gravity, and gravity-fed systems take advantage of the
higher position of the tanks in relation to the engine to passively feed it through gravity. As a result,
the reliability of the entire system is increased. The drawbacks of this type of system include the
inability to feed at high pressures and the requirement that the head between the engine and the
tank always be positive, which precludes its use in larger and more complex aircraft. The fact that
gravity-fed systems are severely impacted by the vapour lock, a phenomenon that prevents fuel from
flowing to the engines in high altitude and high temperature conditions [23], is another disadvantage
of these systems. Vapour lock can be solved by adding fuel pumps to the system, able to provide
positive pressure head to the line. The addition of pumps turn the system in a pressure-fed system.
These systems are widespread in larger and more advanced aircraft and generally make use of motor-
driven pumps in order to feed the engines.

According to regulations CS 25.955 [1] [2], aircraft engines must have dedicated feed pumps able to
guarantee at least 100% of the fuel flow required in all operative conditions. In addition to that, CS
25.991 requires that the engine feed must be guaranteed by the main engine pump in any condition.
Whenever this is not possible, a secondary stand-by pump must be available.

In contemporary aircraft, the engine feed is typically accomplished by two identical pumps placed
side by side. Different strategies are used, with the most popular ones being either that both pumps
always perform the engine feed at once or that one pump can be left in stand-by [2]. In the first
scenario, it’s important to dimension the pumps so that, in the event of a pump failure, a single pump
can still supply the engine with the entire feed flow. In the second scenario, it’s important to make
sure the stand-by has a quick enough response time to prevent engine starvation in the event of a
failure [1].

It is essential to address the interactions between the various functions in the fuel system. For in-
stance, the location of the fuel storage tanks and the placement of the engines have a significant impact

Chapter 2. Aircraft fuel systems

on the design. An aircraft with wing tanks and rear-mounted engines will need longer, heavier fuel
lines that must most likely pass through pressurized areas like the cabin. This requires double-walled
fuel lines, which adds to the system’s overall weight.

The main component responsible for feeding the engines and the Auxiliary Power Unit (APU), to-
gether with the supply lines, are the fuel pumps. These pumps were described to a certain extent in
Section 2.2.2. Pumps must be able to supply fuel to the engines right away, so the aircraft designer
must take special care when selecting a pump from the available options. For example, some archi-
tectures call for an auxiliary pump to start and restart engines, which cannot be done by more basic,
passive pumps such as jet pumps. Furthermore, the designer must take into account the complete
flight envelope and the overall aircraft requirements when deciding the architecture and the position-
ing of the pumps. Negative-g conditions are particularly interesting and present an extra level of
difficulty when designing the fuel system, as the designer must ensure the continuous operation of the
pumps for negative-g conditions up to 8 seconds in order to comply with airworthiness requirements
1] [24].

In addition to pipes and pumps, low-pressure valves are an important component of the feed subsys-
tem because they are responsible for shutting off the fuel flow to an engine when necessary. This is
the final interface between the fuel system and the engine system, and it serves as a final resource to
stop feeding the engine when it is damaged or fails to operate.

Crossfeed

In the event that the engine’s primary feed tank fails, multi-engine aircraft have the important feature
of being able to fuel the engines from a different feed tank. Fuel crossfeed enables fuel to be moved
from one side of the aircraft to the other in the event that a feeding tank, pump, or line fails or is
damaged. In situations where there is an imbalance between the left and right wings, crossfeed can
also serve as a fuel transfer system, assisting in controlling weight and stability.

It is typical practice to implement a crossfeed system with a dual crossfeed valve architecture in
aircraft for which ETOPS (Extended range twin operations approval) certification is necessary [2].

APU feed

The APU is a small gas turbine that can power a portion of an aircraft’s electrical and pneumatic
loads. This makes the aircraft less reliant on ground systems and enables it to operate on the ground
even in airports where ground systems are unavailable or only partially available. The primary
function of the APU is to enable main engine starting, as well as to provide electrical and pneumatic
ground capabilities for de-icing, air conditioning, and pressurizing. In addition to these functions, the
APU can be used in flight to supply additional energy (electrical and pneumatic) to the aircraft in case
of emergency, guaranteeing basic aircraft functions like the actuation of control surfaces [25].In these
cases, the APU is considered an essential APU [1] and additional requirements are set to guarantee
airworthiness. CS 25J951 requires the fuel system to provide fuel flow at a rate and pressure such to
keep the APU operable at any flight condition, without incurring in flame-out.

If the APU is considered to be essential, CS 25J953 requires that "fuel system must provide either a
supply of fuel to the APU independent of the supply of fuel to the engine, or, if not independent, then
a shut off means for the fuel flow to the APU must be provided. Similar to the engine fuel supply, CS
25J991 requires that there must be an emergency or second main pump to the supply the APU, when
the primary main pump fails” [24], requiring the APU line to be directly connected to the engine
feed gallery, in order to be fed by the main feed pumps in case of APU pump failure.

In order to meet the requirements, a further shut-off valve is needed as an interface between the APU
feed line and the main engine feed line.

2.1.3 Fuel transfer between tanks and fuel jettison

In order to move fuel between fuel tanks, two strategies are possible [1] [4]. The Quantity Sequenced
Transfer System architecture is Airbus’ choice of architecture and is mostly used in larger aircraft
with multiple fuel tanks [2]. Typically, a main feed tank, which is solely in charge of feeding the
engine, supplies fuel to it individually. Afterward, depending on the transfer philosophy defined by
the aircraft constructor, the fuel from the other tanks is transferred to the main tanks using a variety
of architectural designs. Transfer can be gravity assisted, using baffle check valves, or it can be done
using fuel pumps. The advantages of this system are its simplicity when multiple tanks are in place

Chapter 2. Aircraft fuel systems

and the fact that it can rely on less fuel pumps, especially if gravity-transfer from the outer tanks
is applied. The choice of transfer strategy has a significant impact on the size and criticality of the
pump, which has an adverse effect on reliability. Transferring fuel gradually has the potential to be
less risky than doing so only when the main tanks are at low or nearly empty levels [1]. In fact, in
such circumstances, if a transfer system failure occurs, the pilots may have very little time to react,
which could result in a catastrophic failure if mitigation strategies are not properly implemented.
The fuel levels oscillate between full and transfer levels during gradual transfers, the best approach
when using this transfer technique. This causes the pumps to experience increased wear, which
ultimately shortens the time between maintenance intervals. It is essential to consider ways to shorten
the duration of such maintenance tasks in such circumstances. Implementing bottom-mounted boost
pumps with a cartridge-in-canister configuration is one way to achieve this.

A second strategy, which is mostly used by Boeing, is to implement an Override Transfer System,
which has the advantage of requiring no pump to the transfer process. In fact, because all tanks have
the ability to perform engine feeding, in such architectures the transfer system and the feed system
overlap. Despite its benefits, this transfer architecture is frequently used for architectures with no
more than three fuel tanks because it becomes more complex as the number of tanks increases [2].
In its functioning, fuel tanks remains completely full until the previous tank has been emptied and
its pump deactivated. This is possible because the pumps in the first tank are made to produce a
pressure that is significantly higher than those of the other pumps. Due to the higher pressure of the
outer flow, a check-valve is used to stop the flow of the pumps even though they are all running to
prevent fuel starvation when a tank empties [2] [1].

A secondary function of the transfer system regards weight and balance and aircraft stability, where
designers make use of the large quantities of fuel to maintain the aircraft’s center of gravity within
the desired range throughout the flight. The most interesting example of this usage can be found
on Concorde, where fuel transfer was used to balance the aerodynamic center of the aircraft that
shifted between subsonic and supersonic flight phases. Today, large aircraft leverage the use of tail
trim tanks in order to properly balance the aircraft itself and to reduce trim drag in flight. In these
circumstances, the transfer subsystem in charge of the trim transfer is a critical system, and efforts
must be made to ensure its reliability since stability is a top priority that must always be ensured.
Figure 2.3 illustrates the fuel transfer procedure for the Concorde.

Rear : %

Trm
Tank

Forward

Trim Tanks Forward

Trim Tanks

Main and Feed Tanks

Figure 2.3: Fuel transfer from subsonic to supersonic flight (left) and from supersonic to subsonic
flight (right) [3]

A320 transfer system

The A320 follows the transfer system approach as explained in this section. It uses two electrical
valves to transfer the fuel from the most outboard wing section, the outer wing tank to the inner wing
section - or inner feed tank, and there is no pumping involved in this procedure, since the system
leverage the tanks geometry and gravity to perform the transferring. The center tank, together with
the inner feeding tanks, have feed capabilities directly to the engine and the fuel transfer sequence is
as follows [5]:

1. The center tank is emptied

2. The inner tank goes down to a predefined fuel level

Chapter 2. Aircraft fuel systems

3. The transfer from the outer tanks begin, while the inner tank keeps feeding the engine

The fuel transfer happens automatically with the transfer valves being latched open, and it is possible
to manually override transferring routines if needed.

Fuel jettison

Fuel jettison is a technique for losing unused fuel, though it is not always a required part of the fuel
system [16]. Given that larger aircraft typically have a maximum takeoff weight that is significantly
higher than their maximum landing weight, it is especially crucial for larger aircraft and serves as
a safety precaution in the event that a landing is necessary soon after a takeoff. If an emergency
landing is needed shortly after takeoff, jettison has the capacity to quickly and efficiently expend a
large amount of fuel, enabling the aircraft to land with a manageable weight. This not only reduces
the structural landing load as a safety measure but also lengthens the time between maintenance
inspections, which lowers the maintenance costs overall.

Jettison systems need to be free of any fire hazards that could lead a fire to spread to the fuel system.
Additionally, it must be able to discharge fuel without striking with the aircraft and in a way that
preserves aircraft controllability [1]. Moreover, jet fuels have a negative impact on the environment
when released into the air, primarily because of their chemical makeup and evaporation patterns.
Due to this, in order to comply with environmental regulations, this operation is only permitted in a
very small portion of the airspace, above the mixing layer height and below the troposphere [26].

2.1.4 Refueling and defueling

For transport aircraft, the most common way to refuel or defuel an aircraft is by connecting it to a
ground service station called "hydrant”. For small, general aviation aircraft, the refueling is done by
gravity, with the refuel ports on top of the wings, allowing the fuel to be dropped inside the tanks.
As aircraft becomes larger, the need to provide a fast and reliable refueling system arises, requiring a
pressurized refueling system. In such cases, the refueling time is the main driving requirement and is
usually set by the client, most often the airline, whose main goal is to reduce the turn-around time.
Refuel times for airliners last between 15 and 40 minutes [2] and are often performed by an automated
system capable of optimizing the refuel procedure taking into consideration the mission requirements,
the allowed center of gravity shift during the operation, protection against spillage, static discharges
and over-pressurization.

Refueling ports are typically found under the wing, closer to the leading edge, with the right wing
configuration having the most common single port placement. A second port can be added during the
design process if a single port is unable to meet the turn-around specifications; this port is typically
located on the opposite wing [1].

2.1.5 Fuel measurement and management

Fuel measurement components provide the feedback to the pilot or fuel management system that is
required for the previously mentioned functions to be carried out correctly. Fuel quantity indication,
also known as fuel gauging, determines fuel quantity based on direct sensor measurements and is
subject to various sources of uncertainty. These challenges include, but are not limited to, changes in
aircraft attitude, variations in fuel properties due to composition and environmental factors, complex
tank geometry, and structural distortion of the tanks.

In order to quantify the fuel that is currently available, aircraft fuel management systems need both
continuous and discrete methods, requiring a different type of sensor for each. Today’s state-of-the-art
fuel gauging technology uses capacitance sensors, providing an accuracy that can reach up to 1/2%
of full scale + 1/2% of point [2], and the number of necessary probes is determined by the accuracy
requirements established for the system as well as tank geometry, as a tank with a complex geometry
will need more probes to provide accurate measurement capabilities for varying fuel levels and aircraft
attitudes.

The fuel management system is responsible for coordinating, controlling and monitoring all of the
fuel system functions, assisting the pilots and reducing their workload. Depending on the size and
mission requirements of an aircraft, this system can vary from easy, almost manual systems to very
complex systems able to interface with other aircraft management systems to perform in-flight mission
optimization, which is the case of modern large commercial aircraft.

Chapter 2. Aircraft fuel systems

Port Vent Ducts
' | [l I Atmosphere
SN N N I | s | SPLNUL NI W2 LAY _\.\.\.\.\. Surge Tank
Reserve Vent Tank
Starboard ~ Tank

Starboard Outboard

Inboard Tank

Tank

Center Tank

Figure 2.4: Open vent system for an airliner [4]

2.1.6 Venting and pressure management

Transport aircraft are distinguished by an open (non-pressurized) venting system that can keep the
pressure differential between the interior of the fuel tanks and the outside environment within ac-
ceptable limits, particularly during maneuvering and refueling [4]. The ullage space at the top of the
tank is utilized to connect the tanks to the vent system. The wing geometry is a key factor in the
venting system’s operation because it must guarantee that the moving airspace will always be able to
communicate with the vent line and, consequently, with the surge (vent) tank at the wing tip, while
also preventing fuel from entering that line [1]. Figure 2.4 illustrates an example of an open vent
system for an airliner.

The vent system also needs ways to stop flames from spreading and it needs to stop explosions brought
on by a potential flame spread after an incident for at least two and a half minutes in order to give
the passengers enough time to evacuate the aircraft [1].

2.2 Fuel system components

The fuel system is a complex system that consists of various components working together to ensure
enhanced capabilities that single components could not have by themselves. These components
include fuel tanks, fuel pumps, filters, valves, and fuel lines, where each component plays a crucial
role in maintaining the integrity and functionality of the fuel system.

2.2.1 Fuel tanks

Fuel tanks are responsible for storing the fuel inside an aircraft. A main challenge for these components
is the large amount of fuel they must store, which often requires a deep study of the design space
and the possible geometries for the tanks. In fact, the definition of the tank geometries and their
positioning are among the first steps in the conceptual design of such a system [2] and often rely on
engineers’ expertise and previous experiences with similar problems.

In order to ensure a good design that is compliant with airworthiness requirements, several physical
constraints have to be taken into account. For example, mass and volume are among the first
constraints related to their design. In fact, tanks must be able to support the weight of the stored
material and withstand any external forces or vibrations that may be encountered during operation
and may cause deterioration and leakage [1]. Additionally, the volume of the tanks must be sufficient
to accommodate the desired amount of fuel while also considering factors such as space limitations
and transportation requirements.

In addition to that, since the boarded fuel is quite heavy, the tanks’ positioning and geometry impact
significantly on the aircraft’s center of gravity and thus need to be properly studied from the very
beginning of the project in order to guarantee the aircraft’s overall weight distribution and stability
through all aircraft operation phases. Moreover, the tanks’ design should account for factors such
as fuel flow rates, pressure and temperature variations, and safety measures to prevent leakage or
potential hazards.

Aircraft fuel tanks can be divided into two main categories: bladder tanks and integral tanks [2].

10

Chapter 2. Aircraft fuel systems

Figure 2.5: Internal details of an integral fuel tank [2]

Bladder tanks are flexible containers that can expand or contract based on the fuel volume, allowing
for better weight distribution as the fuel is consumed. These tanks are usually made of thick rubber,
which leads to a volume loss of about 10% of the available volume [27]. Nevertheless, this type of tank
is still used nowadays, especially in general aviation aircraft and military aircraft for fuselage tanks,
due to its self-sealing capabilities (guaranteeing a better survivability rate since these aircraft cannot
provide the same level of reliability as larger aircraft due to their limited space), ease of installation
and repair, and crash and vibration resistance [27].

Integral tanks, on the other hand, are built directly into the structure of the aircraft, usually between
the front and rear wing spars, providing a more streamlined design with smaller center of gravity
shifts, but with less weight distribution flexibility. Figure 2.5 depicts the interior of an integral
wing tank, where various components such as fuel pipes and fuel pumps can be seen. Integral tanks
became popular in the 1950s as aircraft structural stiffness increased in response to higher aircraft
performance requirements. Nowadays, the use of carbon-fiber composites allows for the creation of
complex shapes, allowing for a 10-15% increase in fuel capacity over standard aluminium structures
[27].

The purpose of fuel tanks can also be used to distinguish them. Although storing fuel for the engines
is the primary purpose of fuel tanks, they can also be used as transfer tanks, venting (or surge) tanks,
and trim tanks:

e Feed tanks: these tanks are responsible for storing the fuel to be supplied to the engines through
the pumps. They are usually located close to the engines, and their geometry is often subjected
to multiple design constraints , such as space limitations, weight distribution, and certification
requirements (e.g. the possibility of a main rotor burst). Feed tanks are designed to ensure a
continuous and steady flow of fuel to the engines, preventing any interruptions or fluctuations
in engine performance. Additionally, they are equipped with various systems and mechanisms
to regulate fuel pressure and temperature for optimal engine operation. In modern commercial
aircraft, these tanks are usually the (inner) wing tanks and/or central tanks.

11

Chapter 2. Aircraft fuel systems

INNER CENTER INNER
TANK TANK TANK

'

Figure 2.6: A320 Fuel Tanks [5]

e Transfer tanks: not always required, these tanks are used to transfer fuel from one tank to
another, ensuring a balanced distribution of weight throughout the aircraft. They are typically
located in the wings or fuselage and can be manually or automatically controlled. Transfer tanks
play a crucial role in maintaining stability and fuel efficiency during flight. The fuel transfer
can be assisted by pumps or rely on gravity, depending on the architecture and location of these
tanks. Trim tanks can be considered a subcategory of transfer tanks , as they are specifically
designed to adjust the aircraft’s center of gravity during flight. Trim tanks are usually located
in the tail section of the aircraft and are used to fine-tune the balance of weight, improving
overall stability and control. They can be filled or emptied as needed to maintain optimal flight
conditions.

e Venting or Surge tanks: these tanks are responsible for gathering fuel that spills from the main
tanks, as well as collecting and condensing excess fuel vapor before it exits the aircraft through
the overboard fuel vents. They are used to ensure adequate fuel vapor pressure inside the tanks
and avoid explosions [2] [16].

Figure 2.6 illustrates the tank architecture for an Airbus A320. In this architecture, both the center
tank and the inner tanks have feeding capabilities, while the outer tank is responsible for providing
fuel for the inner tanks.

2.2.2 Fuel pumps

The fuel system is equipped with multiple pumps in order to overcome head losses in line and ensure
adequate feed pressure and fuel flow to the engines. Additionally, when a straightforward gravity-fed
system is unable to meet the needs of the aircraft, fuel pumps can be added to help with the transfer
of fuel between tanks. These extra pumps aid in maintaining a steady flow of fuel and avert any
potential problems with fuel starvation during flight. Pumps belonging to the fuel system can be of
two main types:

e Motor driven pumps
e Ejector pumps or jet pumps

Driven by an electric motor, motor pumps are capable of moving large amounts of fuel. Large and
high-performance aircraft are typically equipped with centrifugal pumps. These pumps are motor-
driven and work by taking the fuel in the center of an impeller and expelling it to the outside as the
impeller spins. These pumps, which are a type of boost pump, are efficient and reliable, ensuring
a consistent fuel supply to the engines at a positive pressure head regardless of external and flight
conditions, and are the only means of providing fuel to the engines at start for commercial aircraft.
Among all possible motor driven pumps, centrifugal pumps are frequently used in aircraft fuel systems

12

Chapter 2. Aircraft fuel systems

Poke-open
vent valve ﬁ Pump discharge

L Check valve

Fuel Pressure
g:> Outlet Canister—_| switch
Fuel ppng
Inlet Cartridge—_|
]
I:> Inlet
T slide valve

Centrifugal
Pumping element

: \ Inlet screen
N Pumping element

Electrical and motor
connector

Cartridge-canister schematic

Figure 2.7: Schema of a motor-driven fuel pump [2]

since they enable high flow volumes, low pressure rise, and high reliability [2]. These pumps are
usually mounted on the bottom of the tanks in a cartridge-in-canister configuration in order to easily
be removed and replaced from the outside during maintenance activities. Nonetheless, different
architectures are possible, depending on the needs and requirements set for the system. Figure 2.7
illustrates a cartridge-in-canister boost pump, where it is possible to observe the flow direction, where
fuel follows a outwards centrifugal path at its discharge.

In circumstances where it is necessary to keep the pump outside the tank or not submerged at all
times, spare-mounted boost pumps are typical (be it due to an unconventional architecture, space
optimization, etc.). In this scenario, a ”snorkel” inlet capable of being placed at the tank’s most
advantageous location inside the tank is used to capture the fuel from the bottom of the tank. Due to
the additional line that is subject to friction, this solution has a higher head loss (or pressure drop),
despite still being very effective. The system’s overall performance and pump efficiency may suffer as
a result of the increased head loss. Therefore, careful consideration should be given to selecting the
appropriate diameter and material for the snorkel inlet to minimize friction and turbulence effects.
Additionally, regular maintenance and cleaning of the snorkel inlet may be required to prevent clogging
and ensure uninterrupted fuel flow.

Ejector pumps, or jet pumps, on the other hand, use the Venturi effect to create suction and draw fuel
from tanks. Because they do not require an additional motor to operate, these pumps are commonly
used in smaller aircraft where weight and space are limited. Although jet pumps are extremely
reliable due to the absence of moving parts in their design, they do not have self-starting capabilities.
In fact, ejector pumps require a high-pressure motive flow, which is typically drawn from the engine
feed line, so they cannot be used to start the fuel flow and the engine. This type of pump is typically
used in larger aircraft to help move fuel closer to the main boost pumps. It is used as the main
feed pump to the engines in some architectures, but in these cases, it must always be paired with
a motor-driven pump to ensure fuel flow at engine start and when the jet pump loses its prime. A
schematic representation of a jet pump can be seen in Figure 2.8. It is possible to observe that, in
order to provide suction capabilities, a motive, high pressure, fuel flow has to be present. Due to
the low efficiency of jet pumps, which is around 30% [2], fuel lines must be larger than necessary
to accommodate a volume flow that can satisfy engine feed requirements. This is a key reason why
ejector pumps are not used in the engine feed of large commercial aircraft because they would require
extremely large and heavy fuel lines. On the other hand, ejector pumps are frequently used as
scavenge pumps to reduce the unused fuel present at remote corners of fuel tanks [2]. Both types of
fuel pumps play a crucial role in maintaining proper fuel flow and preventing any issues that could

13

Chapter 2. Aircraft fuel systems

High pressure (motive flow) source

Motive flow

H plus induced
‘—‘ \1\\ flow
Ejector nozzle \

Expansion nozzle

Induced fuel flow from feed tank

Figure 2.8: Schema of an ejector (jet) pump [2]

arise during flight.

2.2.3 Fuel lines

In an aircraft, fuel is physically moved from one location to another by fuel lines. Fuel lines must meet
a number of certification and geometrical requirements, just like the other parts of the fuel system,
and their design must be carefully considered because it has a significant impact on the mass of the
system. Fuel lines need to be strong and resistant to corrosion and leaks in addition to their size
and weight. Many of their design choices are influenced by the need for appropriate maintenance and
routine inspections to guarantee the integrity of the fuel lines and avoid any potential fuel system
failures during flight.

Recent developments on the field have made possible the usage of lighter material such as PTFE
(Polytetrafluoroethylene), allowing to create flexible and lighter hoses, capable of better withstanding
vibrations.

Additionally, because fuel lines are essential parts of fuel systems and are constructed in accordance
with strict specifications, they are subject to numerous regulations. As an example, pipes must
comply to specific line diameters and their positioning is heavily dependant on several geometric
requirements depending on their surrounding environment.

2.2.4 Fuel valves

There are many fuel valves in the fuel system, and their main purpose is to control the fuel flow
through a particular area of the system. They can be manually (physically) operated or electrically
actuated, and they come in a variety of shapes and sizes.

Shut-off valves, which include various valves like crossfeed valves, transfer valves, and isolation valves,
are the most frequently used valves in aircraft fuel systems. They provide a bidirectional flow that is
guided by the pressure gradient in the line. Check valves are yet another widely used type of valve
that can be found (or non-return valves). These valves, which only allow one direction of flow, are
frequently used in gravity-assisted transfer tanks to prevent fuel reflux in the line by preventing the
fuel from returning to the transfer tank in the event that the aircraft’s attitude changes.

Draining valves are a third type of valve that are frequently found in airplanes. In addition to allowing
for vapour venting, they also allow for the removal of accumulated water and fuel draining.

14

Chapter 2. Aircraft fuel systems

2.2.5 Other parts and subsystems

The fuel system is made up of a number of components that are outside the purview of this work
and will only be briefly mentioned. The system’s need for filters is essential, and their presence can
significantly affect a line’s pressure drop, which affects how the pumps are sized [2]. The fuel system
also consists of a number of fittings and bearings, the purpose of which is to support the lines while
allowing them to vibrate and oscillate within a specific range to prevent line rupture and leakage.
Numerous components in fuel systems are also in charge of ensuring that the system has an adequate
level of vapour pressure, which prevents explosions. Flame arrester, which stop flames from spreading
to an aircraft’s interior, and OBIGGS (On-Board Inert Gas Generation) are a couple of the compo-
nents in charge of this task. The newest inert systems, known as OBIGGS, are found on more recent
aircraft. This system is in charge of producing inert gasses that are added to the fuel tanks to lower
the fuel vapour pressure and help lower the risk of explosion.

It is worth noting that a variety of aircraft inert systems exist but are outside the scope of this work.
Another category of essential fuel system parts are connection ports, which ensure the connection
to the outside world and permit refueling or defueling of the aircraft. Their design is governed by
various specifications that must take into account a variety of factors, including the desired refueling
time for an airline (if it is a commercial aircraft), pressure, static discharges, and flow specifications
that must be in accordance with those set forth for the other subsystems (e.g. the size of the feed
and transfer lines may impact the refueling pressure and line diameter).

2.3 Fuel system design

This section gives a brief introduction to contemporary design drivers for fuel systems and serves as
a foundation for understanding its key features and how to use knowledge to enable more in-depth
analysis of the fuel system during conceptual design.

To come up with the best design solution, system requirements are analyzed and tradeoff studies are
put into practice during the conceptual design phase. At this stage few requirements are frozen and
aircraft designers have a lot of autonomy in their choices. Although this freedom allows to explore
different system architectures, the lack of knowledge of the final product could eventually lead to
design inconsistencies that require further changes. Designers must therefore fully understand how
the choices they make at this point may have an impact on the entire product lifecycle. Figure 2.9
illustrates the concept definition phase and its iterative characteristic.

As with any other subsystem, the top-level (or aircraft level) requirements serve as the foundation.
These include, among other things, the intended mission the vehicle is to perform, reliability and
operational availability goals, which specify the degrees of redundancy that a system must meet,
system management capabilities, the design of the electrical plant, and the overall system architecture.
The intended aircraft mission specifies the mission range and any additional certification requirements,
such as ETOPS availability, that the aircraft must meet. In order to size and position the fuel tanks
in an aircraft, this is one of the most important requirements that must be followed.

In addition to tank sizing, ETOPS requirements specify the amount of redundancy that crossfeed
lines must have and any measures that must be taken to ensure fuel rerouting when necessary.
Costs are a different class of influencing factors that direct design. As engineers define the fuel
system architecture, the committed costs, which define the overall cost for a product’s lifecycle [13],
are frozen. It is essential to offer both technically and economically viable solutions from the very
beginning of the design process in order to maximize the use of the available resources and to ensure
the competitiveness of the final product.

Due to their large volume, the task of placing the fuel tanks require a great effort throughout the
process. For modern commercial aircraft, with fuel tanks in its wings and engines below the wings,
the possibility of a Main Rotor Burst (MRB) must be taken into account during the design. In fact,
the release of high energy rotating parts from the engine could lead to ruptures close to its placement,
thus affecting the fuel tanks and other components. It is necessary to provide precautionary means
to reduce the possible damages and to mitigate any accident possibility caused by them. According
to AMC-20128A [17], where this failure mode could affect the tanks, dry-bays can be defined as an
acceptable design precaution to avoid high energy fragments of damaging the tank. These bays are
empty spaces left in the airframe and their geometry can span from very simple to complex geometries,
depending on the fragment’s possible trajectories, which influences the available space and geometry
of the fuel tanks.

15

Chapter 2. Aircraft fuel systems

Set of
Possible
solutions
SR
Top Level Formal
Requirements Reduced Review
Solution set @
. Trade @\ Pg;z?;id System-level
Studies Studies 4’@/, Solution requirements

R
Risks

— Certification
strategies

Figure 2.9: System concept definition [2]

Fuel system is subject to many different requirements and require large amount of information in
order to correctly design and size its components such as pumps, valves and lines. Due to its high
complexity and inter-dependency with several other subsystems, this system can greatly benefit from
early design studies and definition. A design strategy capable of leveraging previous knowledge to
enhance design capabilities is described in Chapter 3.

16

Chapter 3

Knowledge Based Engineering

3.1 Introduction

Aerospace is a highly technological and complex industry where the client plays a decisive role not
only in the customization process but also in defining the design requirements at an early stage. Com-
petences, relationships, and capabilities are crucial sources of competitive advantage and profits in a
globalizing industry where trade is fiercely contested. In fact, the capacity to fulfill customer needs
is strictly associated with the integration of technologies, resources, organizational roles, and funda-
mental procedures. This aspect cannot be separated from the emerging new patterns of industrial
relations, which have changed in response to shifting market demands. In recent years, traditional
relationships among subcontractors have been replaced by mergers, acquisitions, joint ventures, and
alliances in order to share and combine all types of resources and to develop the necessary compe-
tencies [28]. These new patterns have also led to a greater emphasis on flexibility and adaptability
in the workforce as companies seek to respond quickly to changes in the market.

Additionally, technological advancements have played a significant role in shaping these new indus-
trial relations as companies increasingly rely on automation and digitalization to improve efficiency
and reduce costs. In fact, the primary drivers of the aerospace industry have shifted in recent decades
in favor of lowering total cost and lead time. Over 30% of the total cost of an aircraft is thought
to be spent on production, but 80% of this cost is decided upon during the conceptual design phase
[29], when engineers have more freedom in their design choices. As a result, engineers are beginning
to think about how their decisions will affect production early in the design process.

In the current aerospace economy, complex projects are often conducted 24/7 around the globe. This
creates another challenge regarding the limited communication between different teams working in
different locations, leading to confusion and misunderstanding of design choices.

Moreover, it is estimated that in 20 years, the aeronautical systems will be as different from today’s
systems as the actual systems differ from those from 1930 [30]. To cope with these changes in such
a short time, a collaborative effort between different departments within a company is required, as
well as with external partners, to ensure that the design is feasible and can be produced efficiently.
The use of advanced simulation tools and digital twins has also become increasingly important in the
aerospace industry, allowing engineers to test and optimize designs before they are manufactured.
This not only reduces costs but also improves the overall quality of the final product. As the industry
continues to evolve, companies that are able to adapt quickly and effectively to changing market
demands while also leveraging technological advancements will be the ones that succeed in the long
run.

In addition to the difficulties already mentioned, the aerospace industry is experiencing rapid growth
and a shortage of qualified workers. At the same time, it is also dealing with an aging workforce, with
an expected retirement rate of 80% in its experienced workforce in the next few years [31]. This issue
calls for fresh approaches in order to more effectively store and repurpose the knowledge of seasoned
workers and to train and assist new engineers through knowledge transfer.

Considering this technological competitiveness, various methodologies have been developed and are
currently being built to attempt to solve most of the problems. Knowledge-based engineering (KBE)
is one of the most promising of these. There are numerous definitions of KBE in the literature, all of
which are accurate, but almost none of them fully explain what KBE is. One of the foremost author-
ities in the area, Gianfranco La Rocca, appears to offer the definition that best satisfies researchers

17

Chapter 3. Knowledge Based Engineering

Interior Cabin
Layout, Galleys,
Services

- Airbus
- Boeing

Cockpit Design
Design
- BAe

Ergonomics Structures

- Boeing - Boeing
- Airbus -IPTN
- BAe

Tooling

Wings, Spars,

b 'BPJe"':ng Ribs, Nacelles
- - Boei
B

- Airbus - BAe

Engines, Turbine Design
Fuel Systems

Mechanical Systems,

Electrical Systems Hydraulics, Piping - Pratt & Whitney
- Boeing - Boeing “holls Royce
- Latercore

Figure 3.1: A380 - system providers

from various fields and tries to cover KBE as a whole: "Knowledge Based Engineering (KBE) is a
technology based on the use of dedicated software tools (i.e., KBE systems) that can capture and
reuse product and process engineering knowledge. The main objective of KBE is to reduce the time
and cost of product development by means of automation of repetitive, non-creative design tasks and
by supporting multidisciplinary integration starting from the conceptual phase of the design process”
[12]. KBE systems can also improve product quality and consistency by ensuring that design rules
and best practices are followed consistently across different projects. Additionally, KBE can facilitate
knowledge sharing and collaboration among designers, engineers, and other stakeholders involved in
the product development process.

This chapter aims to give a thorough overview of knowledge-based engineering methodologies and
their application in the aerospace industry, outlining their main advantages as well as their current
issues and challenges.

3.2 Basic concepts of KBE

Knowledge-based systems (KBS) are a type of artificial intelligence that uses knowledge representation
and reasoning techniques to solve complex problems. When applied to engineering problems, these
methodologies are often called knowledge-based engineering (KBE).

KBE is still a recent innovation in industrial engineering, despite not being brand new. Its applications
are primarily found in the automotive and aerospace industries, industries known for requiring a high
level of customization of the final product, which can be seen as a variant of a family of products [21].
In these industries, KBE has been used to speed up time to market and enhance design processes, and
one of the main advantages of KBS is their ability to capture and reuse knowledge, which can lead
to significant improvements in productivity by means of automating decision-making procedures.
Figure 3.1 depicts how the aerospace industry is currently developing its products, with a well-known
segmentation and globalization of the entire supply chain. Knowledge-based systems can aid in the
integration and streamlining of this process by facilitating communication and collaboration among
various supply chain segments. This can eventually lead to shorter development times, lower costs,
and higher overall product quality.

18

Chapter 3. Knowledge Based Engineering

» Knowledge Environment

Knowledge Management
Frame-work

Based Engineering
Engineering Product Knowledge
- Fuselage / Wing / Skins / Stringers etc.
- Proprietary design specifications.
Design, Analysis and Manufacturing Process Knowledge
- Conceptual / Preliminary / Detail design
- Optimization (Weight, shape) and analysis

- Proprietary manufacturing techniques

Figure 3.2: Knowledge framework

3.2.1 Traditional design method vs. knowledge-based design

Traditionally, the design and production planning phases are carried out independently of one an-
other, with little to no communication between the involved parties. In this situation, designers
oversee creating a design that will later be given to production designers, who will assess the model’s
viability in light of manufacturing and assembly procedures and give feedback to the design engineer.
As a result of a lack of integration between design and production, the process iteratively continues
until it is satisfactory to the designer and the production engineers, which results in a lengthy devel-
opment period. Additionally, because of the difficulty in communicating between the stakeholders, it
is common to overlook factors like maintenance that are usually considered later in the design process.
As a result, the later a flaw is found in the design process, the more expensive product development
becomes.

To address this issue, many businesses are now taking a more comprehensive approach to product
development that considers the entire product lifecycle. This approach entails collaboration among
various departments and stakeholders, such as engineers, designers, marketers, and customers, to
ensure that all aspects of the product are considered from the start. Companies can reduce devel-
opment costs while improving product quality and customer satisfaction by doing so. Designers can
use KBE to re-use knowledge generated in previous projects, increasing creative design time, reduc-
ing the number and duration of design iterations, and improving collaborative design to ultimately
reduce development time [29]. In fact, 80% of engineering tasks are repetitive and routine, while the
remaining 20% call for the designer’s creative abilities [7].

KBE combines CAD technologies and artificial intelligence (AI) techniques, often using object-
oriented programming (OOP), to represent an evolutionary step in computer-aided engineering (CAE).
While older definitions were narrower and technology-oriented [13], when KBE was previously de-
scribed as a CAD system extension that mainly provided geometric functions, experts are now aware
of KBE’s power outside the geometric domain. These systems aim to capture not only product
knowledge but also process knowledge regarding the entire lifecycle to enable businesses to model en-
gineering design processes and then use this model to partially automate the process itself by means
of rule declaration. The emphasis is on providing the most complete product representation possible,
based on previous knowledge of similar products.

Figure 3.2 depicts the entire knowledge framework that must be implemented in order to successfully
apply KBE with results. It’s interesting to see how this approach considers more than just engineering
tools and is entirely dependent on the company’s business strategy and vision.

19

Chapter 3. Knowledge Based Engineering

3.2.2 Knowledge management

Knowledge management focuses on the use of techniques and tools to enhance the usage of knowledge
assets in an organization and concerns the identification of important knowledge for a business, de-
ciding what knowledge should be captured to provide adequate solutions to problems, and capturing,
representing, and storing knowledge in order to reuse it [6]. When using KBE, the lifecycle starts by
eliciting raw, unstructured knowledge. In a study conducted by Sanya et al. [7], five main sources of
knowledge were identified:

Geometry constraints

e Engineering processes

Data types

Algorithms and design rules
e Written word

These sources are mainly stored in three different repositories: human, document, and digital repos-
itories.

The elicitation process varies depending on the type of knowledge. Knowledge can be seen as a system
that drives the process of extracting data and information to generate actions and decisions. Figure
3.3 provides a few knowledge definitions that are used in academia when working with KBE. In [6]
the following definition of knowledge is given: Knowledge can be classified in different ways, but two

ability manipulate | | data perform skilfully
Knowledge is the < skill to 4 transform information ¢ to < make decisions
expertise create ideas solve problems

Figure 3.3: Knowledge definition [6]

important factors when describing it are:
1. Procedural knowledge versus conceptual knowledge
2. Explicit knowledge versus tacit knowledge

Procedural knowledge, which can be thought of as processes, tasks, and activities, is used to describe
the circumstances in which duties are carried out, the order in which they are conducted, and the
resources that are required to carry out tasks. Instead, conceptual knowledge can be thought of as a
description of concepts and their relationships, addressing how different objects and properties relate
to one another. This type of knowledge is often more abstract and theoretical and can be applied in
a variety of contexts. For example, understanding the concept of supply and demand can be useful
not only in analyzing economic trends but also in understanding how pricing decisions are made in a
retail setting.

One fundamental type of knowledge that occupies the foreground of a specialist’s mind is explicit
knowledge. It has a straightforward ”train of thought” and is simple enough for a third agent to
externalize and understand. This kind of knowledge focuses on fundamental concepts, fundamental
properties, and fundamental duties performed by a domain expert. The engineer’s experience is in-
extricably linked to tacit knowledge, which is a deep form of knowledge. It is difficult to impart this
knowledge through traditional educational methods because it relates to automatic processes that
use subconscious expertise as an input. It can be referred to by a variety of common terms, including

“hunches,” ”gut feelings,” ”intuition,” and ”instinct.”

20

Chapter 3. Knowledge Based Engineering

The steps of knowledge management

Knowledge management is a complex field of study and has multiple steps, from its raw acquisition to
its formalization and maintenance. The process begins with the application of knowledge acquisition
techniques, whose goal is to capture and structure knowledge. Several researchers have discovered,
through various case studies over the years, that knowledge from domain experts is difficult to obtain.
While explicit knowledge is relatively easy to extract (via books, equations, etc.), expert knowledge
is typically difficult for knowledge engineers to isolate, as engineers frequently do not recall or know
how to explain everything they know. Furthermore, different experts may hold alternative opinions
on the same issue, making it difficult to obtain a single coherent picture. This problem, combined
with the fact that domain experts develop specific conceptualizations and mental shortcuts for their
reasoning, makes it difficult. As a result, it is important to approach expert knowledge with a critical
and open mind, seeking to understand the underlying assumptions and biases that may influence their
perspectives. Additionally, interdisciplinary collaboration and communication can help to bridge gaps
in understanding and facilitate a more comprehensive understanding of complex issues.

To manage these difficulties, a number of tools have been developed in order to better capture
knowledge. Figure 3.4 illustrates a knowledge acquisition matrix, which provides multiple tools
depending on the knowledge to be extracted. Different methodologies and software tools are available
to perform knowledge acquisition, some of which will be discussed in the next sessions.

constrained tasks &
process mapping 20 questions

interviews
2 o4 |
8 8 obsevation
0 —
&3
=
- laddering commentating
rep grid
3 card trick
teach back s
a5
Q5 !
g0 card sorting
8 g concept i
Cv pt mapping
"4 ‘
explicit tacit
knowledge knowledge

Figure 3.4: Knowledge acquisition matrix [6]

In Figure 3.5, the whole knowledge management (or knowledge engineering) process is represented.
The process starts with the process analysis, a phase in which the company’s needs and the most
promising areas in which KBE could be applied are identified. This phase is intrinsically related to
the high management of a company and is decisive for the KBE implementation. In fact, due to the
high costs of the creation and maintenance of KBE tools, this strategy can only be executed once
significant gains can be identified for the business. The deliverable for this phase is a value map that
contains promising opportunities to apply KBE.

The second step is knowledge acquisition, which has been explained in the previous paragraphs. This
step is followed by the knowledge structuring phase, which is responsible for formalizing the captured
knowledge and incorporating it into machine-readable information useful for task automation. After

21

Chapter 3. Knowledge Based Engineering

] ®)oeg

KE-process knowledge |knowledge knowledge tool integration business
analysis acquisition strucluring applicalion and deployment implementation
business knowledge process KBE software integrated KBE training &
value map base redesign modules software application support

Figure 3.5: Knowledge management process [6]

having identified the needs and captured and structured the knowledge, the knowledge application
phase comes into action. This phase concerns software development and is based on the formal model
previously defined using KBE methodologies.

The fifth phase concerns the integration of KBE modules into the framework. In fact, one of the
most important aspects of defining a KBE environment is allowing it to be modularized. This has
two important outcomes. First, the system must have a clear separation between knowledge and its
execution. In modern aircraft design, different companies must share product information in order to
achieve the desired goals. These companies may sometimes be competing companies in different fields
and may be reluctant to share sensitive information with the project partners. This clear separation
between knowledge and execution allows companies to use the same knowledge framework without
sharing company knowledge. In addition, it allows companies to expand their knowledge to better
represent their needs. To satisfy these requirements, KBE systems should be as generic as possible
[29].

Second, this modularization enables each discipline specialist to work with their own trusted tools
[30] and to change and/or expand them as needed without rendering the entire framework inoperable
for the various stakeholders. For example, in the design of a new aircraft, the aerodynamics team
may use their own specialized software to generate wing designs and simulations, while the structural
engineering team may use their own tools for analyzing stress and deformation. These tools can be
integrated into a KBE system, allowing for seamless communication and sharing of data using a single
model between different teams without compromising proprietary information. The modularity also
allows for future updates and improvements to be made to each tool individually without disrupting
the entire system. This modularity enables the tools to be reused in future projects and makes
maintenance easier [32].

Figure 3.6 shows how most KBE applications are currently configured and how they should operate,
according to researchers. It is possible to detect a discernible trend toward software that is language-
independent (or platform-independent) and able to store various types of information from various
sources using a common language. When complexity is involved, ontologies or markup languages
can be used to accomplish this. Each tool is then connected to the framework through an API and
transforms this model as necessary. The sixth and last step in the process is support, maintenance, and
training. In fact, regular updates and revisions are necessary to ensure that the knowledge remains
relevant and accurate. This can be achieved through continuous learning and improvement processes
as well as effective communication and collaboration among team members. Moreover, providing
ongoing support and training to employees can help them stay up to date with the framework and
sponsor its usage.

3.2.3 KBE and the design process

When considering KBE systems, academia and industry tend to have different opinions on their
usage. Academia tends to see KBE systems as a theoretical foundation based on multiple domains
and product knowledge that must remain as generic as possible, even before considering them as a

22

Chapter 3. Knowledge Based Engineering

KBE - AS-IS State KBE - Future State
Platform Specific Platform Independent
RS AR - ——————————————————
Design Parameters (DP) : Code-specific ! Design Parameters (DP) | Higher level of i
Design Constraints (DC) i approach and i Design Constraints (DC) : abstraction due to the :
Design Rules (DR) | highly dependent 1 Design Rules (DR) | model driven i
| On programming | : architecture style. Not !
Functions & classes | language adopted ! Model driven code | dependent'on specific |
Proceduralappragch e i development | programming |
(program code to invoke *Knowledge Model i language i
and manipulate DP, DC «Implementation Model : !
and DR) T T T T
@ APlimplementedin ! @ | Datamodel :
Java, C#orC++ transformation ;
: (used to integrate : : language used for :
NX Open API | with the CAD i | KBE modellin i
| system) i Data Model | 9 i
) Transformation L
Language
3 e RESH
Interactswith the | SR ANO S L | APlimplementedin
. Interacts wi e ¢ ¥ 3 I Java, C# or C++ i
NX ' NXEnvironment | | [xmL] [owL] [uML] | (usedtointegrate |
Application : ! Q ' with the CAD system) |
_________ i |
foiroci e e n i St Lae S
@ Platform
Geometry Model specific Geometry Model
NX Open —
API |:> =
NX
Application

Figure 3.6: Platform specific vs platform independent KBE [7]

system or a tool, ensuring maximum modularity and flexibility [33]. That is, ideally, a system that can
store any and every piece of knowledge available in a company and, sometimes, automate tasks with
it. Industry, on the other hand, has a much more pragmatic view of KBE, where it is seen as solving
a specific business need in order to achieve tangible needs that must justify the investment. These
needs are usually expressed in terms of reduced lead times and product development costs. In such
cases, companies tend to neglect the development of a complete KBE framework and instead adopt
design automation (DA) strategies. Design automation (DA) strategies are focused on automating
specific design tasks, while a KBE framework involves a more comprehensive approach to knowledge
management and automation. However, it is important to note that a KBE framework can provide
long-term benefits, such as increased flexibility and adaptability in product design.

Tasks that lend themselves to automation usually have one or more of the following characteristics
[33]:

e Simplification of more complex design tasks

Integration of tools and datasets
e Documenting and report generation

e Low level, repetitive, and/or highly manual procedural tasks

Generation of manufacturing data and tooling design

When it comes to design strategies, the traditional process is heavily reliant on the quality of in-
formation exchanged between stakeholders and necessitates consistent and effective communication.
Furthermore, this process is characterized by an excessive amount of manual labor to provide ade-
quate information exchange between designers, simulation, and production engineers, each of which

23

Chapter 3. Knowledge Based Engineering

requires specific models, in specific formats, and containing specific information, which, when com-
bined with an increased number of design iterations, significantly increases project development time
and costs.

On the other hand, the deployment of a KBE framework allows experts from different disciplines to
work on a unified model with their desired analysis tools. This process, paired with greater product
knowledge at earlier stages of the product development cycle and automation techniques, allows for
easier model generation and requirements verification for a more multidisciplinary project develop-
ment. With lower iteration cycles and fewer misunderstandings between stakeholders, designers are
able to use more of their time to creative and critical thinking activities that eventually lead to en-
hanced product quality by executing a more detailed design evaluation and analyzing more candidate
designs in the same amount of time as before[32][8]. By doing so, it is possible to reduce the level of
abstraction and increase the knowledge of a product at the early design stages, as depicted in Fig-
ure 3.7. However, a counterexample to the benefits of a KBE framework can be seen in small-scale

»
»

o

Level of abstraction
4__...
Knowledge of product

v

v

Completeness of design Completeness of design

Figure 3.7: Design completeness with respect to the level of abstraction and the knowledge available
8]

projects where the cost and time investment required for implementing such a framework outweigh
the benefits. In such cases, design automation (DA) strategies may provide a more cost-effective
solution for automating specific design tasks.

3.2.4 KBE methodologies

When dealing with knowledge-based systems, it is important to clearly define the goals before start-
ing the application development phase. In [34] four categories of deliverables by KB systems were
identified:

e Automation of narrow tasks: this includes automation of rudimentary tasks. An example would
be the automation of primitive geometries for CAD tools (e.g., lines, circles, etc.)

e Model automation and data abstraction: these include high level operations capable of adding
new knowledge to the previous model, such as adding primitives together to create a complex
shape, and programming tools such as application programming interfaces (APIs).

e Design process automation consists of automating different engineering tasks made up of lower-
level tasks (narrow tasks, model automation, and abstraction) into a single process, automated
by means of specific parameters given by the user. An example of design process automation
is the use of parametric design software, which allows designers to create complex shapes and
structures by inputting specific parameters and rules.

e Exploration of the design space and discovery of new solutions add a higher level of complexity
to the tool by means of reasoning, or semantics. By making use of a library of multidisciplinary
knowledge, it is possible to solve new problem situations using explorative means. It enables the
tool to adapt to changing problems and requirements, making it more versatile and adaptable.

To enable the development and deployment of KBE tools, different methodologies were developed in
an attempt to formalize and improve the KBE application design process. A few examples of these
methodologies are [9]:

24

Chapter 3. Knowledge Based Engineering

Knowledge
Management System

" . ’ Informal Knowledge . Formal Knowledge " Neutral Language I N
ia:;j:ge: ' : p) Model [& | Model [3 Knowledge Model - | P Dsev::;o";?:n :giESg:t:em
9 I : ICARE forms | UML Based Model ’ XML Based 1 =

MOKA Model

Figure 3.8: MOKA knowledge models [9]

e MOKA (Methodology and tools Oriented to Knowledge-based engineering Applications): sup-
ports the knowledge acquisition process, focusing on knowledge capture and formalization.

e CommonKADS focuses on the organizational aspects of KBS and how the different stakeholders
communicate and relate.

e KNOMAD extends the MOKA methodology to account for life-cycle management issues, focus-
ing on multidisciplinary aspects of KBE applications. It uses ontologies to account for knowledge
change, improving the application’s transparency [35].

Most knowledge engineering projects include four general phases [10]:
1. Scoping phase, used to define in detail the objectives
2. Knowledge elicitation phase
3. Knowledge modeling phase

4. Knowledge implementation phase

The MOKA methodology

After recognizing that Europe lagged behind the USA and East Asia, a European research project
called MOKA was launched in 1998 with the goal of promoting the use of KBE techniques in Europe.
The absence of clearly defined standardized methods was found to be one of the primary factors
preventing KBE from being widely adopted in Europe.

The phases of knowledge acquisition and structuring, which the MOKA methodology emphasizes,
occurred when developing a KBE application, which incurred most costs. The main objectives of
MOKA were [9]:

1. Reduce the lead times and costs of developing KBE applications by 20-25%.
2. Provide a consistent way of developing and maintaining KBE applications.
3. Develop a methodology that will form the basis of an international standard.

The MOKA methodology consists of different modules that aim to help the knowledge engineer better
extract knowledge from domain experts and structure this knowledge by a common, standardized
language to be used by software developers [36]. Figure 3.8 illustrates MOKA’s knowledge models,
while Figure 3.9 shows the KBE lifecycle according to the methodology. The methodology consists
of eight steps, the first of which uses the informal knowledge module, which is structured using
ICARE forms (Illustration, Constraints, Activities, Rules, and Entities) to formalize the knowledge
capture phase. These forms give the knowledge engineer a method for classifying and connecting the
knowledge collected, offering a simple method for categorizing unstructured knowledge, and can be
described as [9] [11]:

25

Chapter 3. Knowledge Based Engineering

<
Business |

Need

provides a

New
Knowledge

[Stimulus

To

Identify Identify

What is involved

¥

in order to

u Justify

Development of | _either

or

new KBE system

v requiring

existing KBE system

Maintenance of

v no longer

Capture
and verification of the required knowledge

justified

Before the knowledge

engineer can
e

Capture

Formalise
And incorporate into the knowledge repository
to ensure consistency and completeness

Prior to extracting the appropriate

knowledgg in order to

Store Package

Figure 3.9: KBE lifecycle [10]

26

“Distribute
e KBE_m.to intended users

Itin the KBE system, test the resulting system

An

| ———
It

to and train the intended users 7

~ Use

The system to gain benefits, possibly resulting
in new system or process knowledge or new
requirements representing changes in

business needs

s
il

N

Chapter 3. Knowledge Based Engineering

Illustration forms: represent all kinds of generic knowledge using descriptions and comments.

Constraint forms: model the interdependencies between different entities in the model.

Activity forms: describe the crisis resolving steps of the design process.

Rule forms: model the rules necessary to apply the knowledge.

Entities: describe the product by means of object classes, according to the object-oriented view,
defining product structure, function, and behavior.

Figure 3.10 graphically represents the informal model. At this level, the knowledge must be un-
derstandable by all the stakeholders: the knowledge engineer, the domain expert, and the software
developer, as it is crucial for this acquired knowledge to be validated by all these experts in order
to avoid misunderstandings and knowledge misuse. This allows for a shared view of the problem
among the three parties. Furthermore, this collaborative effort ensures that the knowledge base is
accurate and up to date, as it can be continuously refined and improved based on feedback from
all stakeholders. Ultimately, this leads to a more effective and efficient system that better serves
its intended purpose. Using a well-defined modeling language, the formal knowledge model converts

[1lustration
Constarints

.. - Design
Informal Activity Process
Model

(ICARE)

Rule Assembly

Part

Entitiy \ Feature

Product

Figure 3.10: MOKA informal model [11]

the informal knowledge model into structured knowledge. To achieve this, the knowledge engineer
performs a manual conversion of the ICARE forms into the MOKA Modeling Language (MML), a
variation of the Unified Modeling Language (UML). The use of a modeling language, in particular
UML, is crucial because it enables the standardization of knowledge that the software developer can
interpret in a single way. The usage of a formal knowledge module, while very helpful to ensure
the correct application development, is frequently unknown to the expert engineer, which has the
disadvantage of keeping the domain expert out of the software development. This calls for informal
knowledge to be well understood and for a common vision among all parties. Figure 3.11 represents
the formal model included in MOKA’s methodology, which can be seen as two separate models that
communicate between themselves: the product model and the process model. As a means of es-

27

Chapter 3. Knowledge Based Engineering

Structural
View

Structure

Function

Situation

Functional

View Principal of
Solution

Technical
Solution

Product

Model State

Behaviour
View =
Process Transition

Model

Material
Technology

View Manufacturing
Process

Geometry

Representation Complex
\% Geometry

Sample

Geometry

Figure 3.11: MOKA formal model [11]

28

Chapter 3. Knowledge Based Engineering

tablishing a link between the software code and the knowledge models, a neutral language model is
used. To do so, MOKA recommends the use of XML, or eXtensible Markup Language, to allow the
knowledge model to be easily translated.

Despite being a very thorough and reliable methodology, MOKA also has some fallacies. The method-
ology, which focuses more on capturing and structuring knowledge through informal and formal mod-
els than on the end-user, is initially centered on the knowledge engineer. A lot of work is then needed
to ensure that the end user is a part of the development process by iterating through the informal
model as often as necessary and that the end user can have a great benefit from using the tool [13],
which typically translates into reduced lead-time and the automation of tedious tasks. Additionally,
because MOKA is unable to consider the origin of knowledge and the consequences of its transfor-
mation, it is unable to deal with knowledge change[35].

Various methodologies have been developed in recent years to address MOKA’s weaknesses. With
most of its principles derived from MOKA, KOMPRESSA (Knowledge-Oriented Methodology for the
Planning and Rapid Engineering of Small-Scale Applications) was developed to support small and
medium-sized enterprises (SMEs). It places a greater emphasis on risk analysis and management.
The KNOMAD method (Knowledge Nurture for Optimal Multidisciplinary Analysis and Design) is
another approach derived from MOKA, KOMPRESSA was developed to support small and medium-
sized enterprises (SMEs). It places a greater emphasis on risk analysis and management.

By implementing six steps—knowledge formalization, normalization, organization, modeling, analy-
sis, and delivery— KNOMAD attempts to address MOKA’s flaws. It focuses on the design process
[13] and enables the extension of multidisciplinary engineering knowledge to design and production,
in contrast to MOKA, which is a product-oriented methodology.

3.2.5 KBE approaches

Following the literature study on KBE, it is possible to mainly identify five different approaches to
KBE, each enhancing a few of KBE capabilities. Depending on the goal, these approaches can be
used individually or together, highlighting the necessary features the tool in development shall have.

Parametric Modeling

One of the first applications of KBE was to support CAD systems by using parametrically mod-
eled geometries. This method employs mathematical equations as the foundation for the rule-based
decision-making process and provides an easy way to reuse existing design processes. As an exam-
ple, consider the development of High-Level Primitives (HLP), in which CAD systems account for
geometric libraries containing reusable geometries such as wing sections that can be changed and
integrated based on the needs of the user. Nowadays, several CAD software programs implement
parametric modeling to assist the end-user’s design.

This approach has the advantage of providing a good representation of the product at the early stages
of the design and allowing for design changes as well.

Function Based Modeling

This approach is used when the design process tends to gain complexity. Its goal is to leverage
the potential of the digital model to connect design functions to the physical embodiments used to
recognize the function [11]. This approach sees rules, objects, and constraints as the main forms of
knowledge.

Case-Based KBE

With this method, new problems are attempted to be solved using the information from earlier, com-
parable problems. A database that houses use cases that can be referred to as ”previous experiences”
is necessary. It is constructed in four steps:

e Locating related cases
e Reusing prior knowledge to develop a solution for the new situation
e Updating the information with the new approach

e Keeping this revised response as a new case

29

Chapter 3. Knowledge Based Engineering

Since there are numerous solutions to a problem, there is a significant amount of uncertainty to be
dealt with, despite being very effective at finding new solutions.

Web-Based Approach

The web-based approach allows different stakeholders to work together in a collaborative environment,
regardless of their physical location. Additionally, this method enables real-time communication and
feedback, making it simpler to make changes and adjustments throughout the design process while
considering the potential to include the client in the design process loop and improve the design
process itself.

Moreover, web-based applications allow for real-time product visualization, which leads to better
product understanding for all stakeholders. HTML can be used to add detail to the product through
text, audio, video, and animations.

Although this is a great approach to use in collaborative scenarios, there needs to be an effort made to
standardize the exchange formats because the knowledge that is available online is not standardized.
Stakeholders can resolve this by deciding on the ideal format for exchanging each type of information.

Ontology Based KBE

With the aim of providing a machine-readable model that is not overly cryptic for humans, ontologies
enable the formal representation of the knowledge of a specific domain in a structured and organized
model made up of classes, properties, relationships, constraints, and rules. This kind of knowledge
representation is particularly helpful in industries like engineering, finance, and medicine where there
are intricate dependencies between various entities. Organizations can enhance their decision-making
procedures, increase data integration and interoperability, and facilitate more effective knowledge
sharing among various stakeholders by utilizing ontology based KBs.

By utilizing reasoning and inference processes for complex systems, this strategy enables the incorpo-
ration of additional knowledge. The use of a common language allows for KBE that is ontology-based
to represent a specific domain.

3.3 KBE in the aerospace industry

KBE application attempts in the aerospace industry are not new. The need to work with a global-
ized supply chain, which constantly includes competitor suppliers, and the need to cope with mass
personalization of its products are the main drivers for KBE development in OEMs. In such cases,
the high costs are justified by the ability to create new product designs in a shorter amount of time,
reducing reliance on a specific employee’s knowledge.

This section aims to give an overview of the current trends in the aerospace industry regarding KBE
applications, allowing the reader to have a broad outlook on the possibilities. In order to identify
where KBE can be applicable throughout the design process, [6] proposes five simple criteria to
evaluate the feasibility and potential of a KBE development:

e Is the process step a routine process step?

Is each step of the process based on formalized rules?

Is each step of the process complex, requiring iterations?

Qualitatively, what is the lead time for this process step?

What is the potential return on investment (ROI) for this KBE application?

With these five simple rules, it is already possible to identify potential candidates for KBE.

3.3.1 Examples of KBE applications

In the following paragraphs, a number of cases from the literature will be provided to help the reader
better understand the potential applications of KBE to the aerospace industry. These will go over
the main issue, the conventional solution, and how KBE can help engineers. These applications can
be generally divided into 4 classes [32] (or a mix of them):

30

Chapter 3. Knowledge Based Engineering

e Model generators: generate different product representations, or models.

e Structural analysis tools: focus on making the analysis process quicker by applying either
analytical or numerical methods. These tools are usually used together with model generator
tools.

e Manufacturability analysis tools: cost estimation and technical feasibility tools that evaluate
the project’s potential both from a business and technical point of view.

e Multi-disciplinary tools: combine several tools. If developed in different layers and modules, it
can be seen as a framework to support KBE tools.

Production modeling of an aircraft fuselage

In [29] the researchers used a KBE application to model the production process of an aircraft fuselage
both during manufacturing and in assembly. For the manufacturing study, researchers focused on the
production process of stringers, while for the assembly study, the focus was on the fuselage assembly
of the cabin. A semantic-web KBE approach was used with a methodology-guided approach to the
project. The writers created the MAMOT (Manufacturing and Assembly Modeling Tool) application,
consisting of a knowledge module, an assessment engine, and an inference engine.

The knowledge module accounts for all the ontologies and rules describing the process and are ex-
pressed using the Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL). In
this case, the ontologies are responsible for modeling the knowledge regarding the manufacturing and
assembly processes, while the rules are used for the decision-making process.

The rules are executed using an inference engine, which interprets the semantic knowledge and infers
new knowledge. This knowledge is what expert engineers have traditionally held, and their experi-
ence, in reports and in literature, on KBE is formalized by the knowledge engineer.

Using this tool, the researchers determined that repetitive tasks like creating new scenarios and refac-
toring the model to accommodate them could be automated, giving designers more creative time to
explore the design space.

CAD-CAE model generators for turbofan engine vanes

During the iterative design process, data in various formats must be exchanged. CAD software is
preferable for design engineers, but analysis engineers typically require pre-processing of the CAD
model to generate useful features for CAE tools. This process is complex and time consuming, but
with KBE, this task can be automated using a model generator. In [21], the researchers created the
”7CTX Vane Creator” to ease the handoff between CAD and CAE users in collaboration with AVIO
Aereo in Italy. In this application, there is a master model containing a great deal of data, both
geometric and non-geometric, which is used to create simpler models based on the user’s needs. This
is an interesting approach and goes towards a complete digitalization of the new product development
(NPD) process, as it allows all the users to work on the same model, which works as a repository.
Before developing the KBE tool, engineers had to go through a laborious process of simplifying
the CAD geometry, removing extraneous features, splitting complicated vane surfaces into smaller
dimensions, which had to be done for each airfoil, subdividing the entire vane into smaller pieces,
aligning the simpler forms, and converting it into a neutral format, such as Parasolid. This process
was heavily reliant on the engineer’s abilities and was prone to numerous errors due to inattention to
the task. Furthermore, this activity had to be repeated for every iteration of the process.

With the introduction of the KBE application, the number of non-productive interactions between
CAD and CAE engineers has decreased. This activity allowed a 93% reduction in the time required
to prepare a model, with a mean time reduction of 95% on the process, allowing for streamlined
knowledge sharing throughout the company. At the end of the research, a direct ROI of 35% was
generated.

The authors also identified the main costs of KBE development to be associated with the development
and testing of the tool and training engineers to use it.

As indirect benefits, the reduction of time spent on repetitive tasks allowed engineers to dedicate
their time to optimizing the design, leading to a better product in the end.

31

Chapter 3. Knowledge Based Engineering

Time metric Before After Change [%)]
OoDT 30 minutes 2 minutes -93
ATR 8.1 days 0.5 days -93

Table 3.1: Complexity in time before and after the KBE tool introduction [21]

Ontology-based KBE framework

In [7], the authors tackle the problem of defining a general framework based on ontology KBE methods
to support the creation of highly complex geometries using different primitives. In order to achieve a
generic framework, the authors describe the necessity of developing a platform-independent system
capable of separating the system itself from the application.

The three most important pillars of object-oriented programs are implemented in this framework:

e Inheritance allows child classes to be derived from a superclass and to inherit all their prop-
erties.

e Encapsulation prevents unauthorized access to information.
e Polymorphism consists of giving more than one form to a function, object, or attribute.

Furthermore, the use of declarative rules enhances the reusability and maintainability of the frame-
work. This application was tested to work with a parametric tool to ease the creation of complex
geometries using high-level primitives, and the framework was validated by nine different stakehold-
ers, each with a different role in the project. As a result of this project, the interviewees perceived a
high level of genericness (76.4%) and good cost reductions (36.3%) following the KBE tool develop-
ment [7].

Finally, the researchers emphasize that developing a platform-independent framework necessitates
more effort, both personally and financially, than platform-specific frameworks currently on the mar-
ket. This is motivated by the need to train experts to work with APIs, which is required to ensure
the framework’s long-term usability.

Fiber Metal Laminates design process

In [10], the authors take advantage of rule-based design to study the layering process of laminates. In
this study, three different business opportunities were identified at Stork Aerospace in the Netherlands.
To demonstrate KBE’s potential to aid the design process, the subdivision of prepreg plies was
chosen as a use case, where a highly structured but repetitive process was identified, with production
preparation time accounting for around 60% of the total design time, identifying this process as
a potential business opportunity. Although the process of developing the tool itself is long, taking
around 16 man-weeks, the authors concluded that this high price is paid after only six design iteration
cycles. In fact, in the time taken to execute 10 design cycles traditionally, 100 can be done using KBE,
with a 75% lead-time reduction. Furthermore, the recurring costs see a reduction after eight design
cycles. Figure 3.12 illustrates the results obtained for both the traditional and the KBE approaches
in terms of design cycles and time.

The researchers also identified that the rule-based approach allowed for a reduction in waste on 90°
prepreg plies, leading to an overall reduction in cost.

Automatic wire routing

With about 530 km of wiring with more than 100,000 wires and 40,000 connectors to drive 1150
electrical components in an A380, wire routing is a very demanding task for aircraft constructors.
The placement of these elements, as with any type of line in a complex machine, is subject to many
regulations and design rules. In the traditional way, engineers must manually study the routing for
each of the thousands of wires present. This process is highly repetitive and mutable as the design
advances, leading to a high amount of time spent on this task. In [34], the authors studied the usage
of KBE applications to aid engineers in planning wire routing through the aircraft. By using path
optimization algorithms together with a discrete FE model of the aircraft’s fuselage, it is possible to
define a KBE application fed by a set of complex design rules that look for the best optimal placement

32

Chapter 3. Knowledge Based Engineering

100

KBE system design cycles

Q0
80

. /
. Vi

) 4

40 /

) /

20 / Traditional design cycles — —
10 / .
0 w

0 2 4 6 8 10

Number of designs

Time (expressed in traditional design cycles)

Figure 3.12: Design cycle for traditional and KBE approaches [10]

of cables in order to minimize cable lengths and thus mass.

The authors discuss the necessity of avoiding ”black box” applications, where engineers do not un-
derstand what the code is doing. In fact, by using declarative rules that can be accessed by engineers,
it is possible to understand the choices the rule-based algorithm takes when defining the optimum
path, gaining the trust of designers. As a result, a significant time reduction in the process was found,
taking only 10 to 15 minutes to analyze more than 3 million nodes to route the cables. Furthermore,
the system is capable of coping with design changes, such as the addition of prohibited zones or extra
components.

KBE to support innovative design

Despite the fact that the majority of KBE research focuses on automation for mass production, KBE
also sees its potential applied to support innovative design. In [12] and [30], the authors developed a
KBE tool in order to aid designers in dealing with alternative aircraft designs. The tools could apply
parametric rules to support the CAD phase by using a series of high-level primitives common to any
vehicle. As an example, the authors mention the possibility of declaring a primitive responsible for
liftt. The authors argued in favor of using high level primitives because engineers frequently view
products as a set of functional requirements that must be met rather than as points, curves, etc.
This kind of primitive is common to any flying vehicle, both fixed wing and non-fixed wing. The tool
produced good results when modeling a blended wing body aircraft.

In addition, the researchers discuss a generative model approach to the problem, resulting in a
multidisciplinary framework that makes it possible to execute several tasks based on a single master
model. This guarantees that every stakeholder works on an updated version of the project by using
separate relational models derived from a unique definition for the product. Figure 3.13 illustrates
the generative model method, which was validated throughout the project with different research
and industry partners. Another finding from this study is that modeling the HLP in scripted form,
as opposed to the conventional CAD method, increases the robustness of the geometry generation
process, enabling the system to correctly manipulate widely known errors by using the declarative
rules method. The developed application was able to execute a MDO study with more than 50 aircraft
variants over a weekend, completely autonomously, using high fidelity tools, reducing the length of
the design process from months to days.

33

Chapter 3. Knowledge Based Engineering

Clouds of points

Concentrated masses

Flat panels Meshable surface fragments

Figure 3.13: Generative model method [12]

3.4 The KBE rationale

One of the biggest justifications for adopting KBE methodologies is due to the high costs of the entire
product lifecycle that are committed at the end of the early design phase (around 70-80%). It would
be best if it were possible to better explore the design space at an early stage before making decisions
that highly impact costs. Currently, the knowledge available to a designer at an early stage is very
limited, which leads to design choices that later must be rethought. This is a very time-consuming
activity that is mostly linked to routine tasks, as already mentioned. Therefore, there is a need for
tools and methods that can support designers in making informed decisions at an early stage. These
tools should be able to provide accurate cost estimations and help designers explore different design
options by adding detailed knowledge to the model based on previous experience.

According to Baxter et al. [37], almost 20% of the designer’s time is spent looking for a solution and
absorbing information. Furthermore, it is estimated that over 40% of the information required to
manage design requirements is currently extracted from personal knowledge, implying that knowledge
is not represented in an easy and sharable way. This highlights the need for a more efficient and
organized system for managing design requirements. Implementing a knowledge management system
could significantly reduce the time spent searching for solutions and increase collaboration among
designers.

In Figure 3.14, the product life-cycle costs are represented. It is interesting to observe the inverse
proportionality between design freedom and available knowledge. This is one of the things KBE tries
to solve by allowing designers to have more knowledge of the product at an early stage, allowing for
design decisions that reflect on the whole product life cycle, which eventually yields to a reduction in
the committed costs at an early stage.

3.4.1 Benefits of using KBE
Improved maintainability

Due to the high costs and lengthy development times of good KBE frameworks, businesses often only
apply a few of the KBE principles to their tools. However, by compartmentalizing the framework
into different modules, the advantages of KBE in terms of long-term maintenance of the tool have
been demonstrated. Numerous academic and industrial researchers have identified this advantage,
which has sparked a shift toward a comprehensive KBE process, particularly from OEMs that have
more resources.

34

Chapter 3. Knowledge Based Engineering

cost affected by:

Design Management

100% = 100%

- N mited cost_ —
Life-cycle cost \ o N ﬁ’m—- -
75%
Design
Knowledge
50%

Design Freedom
25%

reqt's project age

preliminary design
[detailed design |
| development |
production |

Figure 3.14: Project time vs product costs, available knowledge and freedom of design [13]

Shortening development time

One of the primary benefits of using KBE is that it allows businesses to save valuable resources while
also accelerating time-to-market. Companies that can adapt faster than their competitors and provide
new products and services to their customers will thrive in today’s globalized and dynamic world.
Additionally, design engineers can use the time they save to increase the caliber of their products
and respond more quickly to design modifications imposed by other departments [38]. It is estimated
that by implementing KBE strategies, costs and time can be reduced by 92% in this phase [11].

Extending the available knowledge in the early design phases

KBE enables design engineers to have a more in-depth view of the problem during the early design
phases by considering previous experiences on similar projects (knowledge reusability). Furthermore,
it enables the incorporation of various disciplines into the project design, some of which would be
impossible to incorporate at an early stage without prior knowledge, such as maintenance and detailed
cost predictions.

Better exploration of the design space

Designers can concentrate on the creative aspects of project development by using KBE. Furthermore,
by enabling the evaluation of more what-if scenarios, KBE promotes NPD innovation by lowering the
cost of taking risks while exploring the design space. This allows for the creation of more innovative
and unique products that can better meet the needs of consumers while being compliant with multiple
design requirements. Additionally, KBE can also improve the efficiency of the NPD process by
automating certain design tasks and reducing errors, ultimately leading to faster time-to-market and
increased profitability.

Knowledge for all

Knowledge sharing and dissemination within a company are crucial for its success. Junior engineers’
performance in the workplace is impacted because they are unable to reach their full potential because
of their lack of experience when it comes to putting forth new ideas [39]. KBE allows you to store
different types of knowledge to execute tasks. This allows not only for better knowledge management
of explicit knowledge but, most importantly, for the storage of tacit knowledge. This tacit knowledge
is what most junior engineers lack. With KBE, junior engineers can contribute significantly to the
design process by better exploring the design space and the company’s resources.

Keeping the knowledge inside the company

Companies rely on the collective talent and expertise of their employees and must frequently deal
with turnover, which leads to knowledge leaving the company in traditional project development.
By storing expert knowledge in KBE, companies gain an extra layer of resilience when there are
personnel changes or when employees retire. This not only ensures that the company’s knowledge

35

Chapter 3. Knowledge Based Engineering

base is preserved, but it also allows for faster and more efficient onboarding of new employees [40],
as they can quickly access the information they need to perform their job functions.

Separation of business and functionalities

By separating the functional module, where the tools to run the application are built, and the busi-
ness model, which contains the necessary knowledge to run it, competitors can collaborate on product
development without having to share confidential information. This strategy also allows for ad hoc
knowledge expansion based on one’s needs. This is especially important in the aerospace industry,
where a few OEMs compete for the large commercial aviation business (Boeing and Airbus). Because
their customers are located all over the world, these businesses must award contracts to subcontrac-
tors in various countries [21].

Consistent, coherent, and synchronized product knowledge

By adopting web technologies for KBE applications, it is possible for teams across the world to
collaborate in real time on the same product without the need for constant file exchanges that affect
traditional design strategies [12]. This not only saves time and resources but also ensures that all team
members have access to the most up-to-date product information. Additionally, it allows for a more
efficient and streamlined communication process between businesses and subcontractors in different
countries. Furthermore, changes made to the product can spread through the various models by
incorporating dependency backtracking, enabling up-to-date analysis, and reducing the risk of errors
or delays in production. This ultimately leads to a more cost-effective and timely delivery of products
to customers, enhancing overall customer satisfaction and loyalty.

3.4.2 Challenges and limitations of KBE

Although KBE has several intriguing, empirically supported business benefits, there are still barri-
ers to its widespread adoption. One of the major challenges is the massive amount of investment
required to establish a business-wide KBE framework, which keeps it as a technology used by large
companies as OEMs and in a limited number of industries, primarily aerospace, automotive, and
medical. Since there is no industry-accepted neutral-language standard model and no mechanisms to
translate formal knowledge models into neutral language model schemas [9], one of the many causes
of this significant investment (both in terms of time and money) is that the application development
is complicated and entirely manual.

Another barrier is the lack of skilled personnel who can effectively manage and utilize KBE systems,
which makes it difficult for small and medium-sized enterprises to adopt this technology. However,
as the benefits of KBE become more widely recognized, efforts are being made to address these chal-
lenges and make it more accessible to a wider range of industries and businesses.

A second important consideration is professional resistance to using the tool. In [40] the authors
discuss how it is a common practice in the aerospace industry to reward professionals based on their
expertise. This approach results in engineers leveraging their knowledge to ensure job security, access
to new and exciting projects, and the establishment of value-added services for the company. In such
cases, the process of knowledge capture may be perceived negatively by employees as a threat to job
security. To address this, corporate values must be shifted to encourage knowledge sharing across the
organization and reward knowledge reuse in order to maximize the use of the (expensive) KBE tools
developed. Additionally, it is important for management to communicate the benefits of knowledge
sharing and reuse to employees, such as increased efficiency and innovation. Training programs can
also be implemented to ensure that employees are equipped with the necessary skills to effectively
use the KBE tools and contribute to the knowledge sharing culture.

Furthermore, in order to gain the trust of the end-user, ”black box” behavior must be avoided. This
is one of the most difficult aspects of developing an application because it occurs when designers are
unable to understand what the system is doing and how it is reasoning due to a lack of transparency
in the design rules. In fact, it is critical to include the end-user in the KBE tool’s design loop and
provide him or her with a clear understanding of the rules that are being implemented. This can be
done in many ways. For example, when developing a KBE framework, it is necessary to give the user
the possibility to add new knowledge and modify it if necessary. Code annotation can be a useful tool
for managing knowledge and should be encouraged. In addition to that, exploiting knowledge graphs

36

Chapter 3. Knowledge Based Engineering

through the use of semantics can be a powerful tool when dealing with heterogeneous and complex
systems. This can help to better understand the relationships between different pieces of information
and improve decision-making processes. By leveraging these technologies, organizations can gain a
competitive advantage by effectively managing and utilizing their knowledge resources.

As one of the technical factors that present a challenge to KBE, the lack of skilled staff with great
domain technical experience is a limiting factor to its implementation in many companies. Further-
more, the software development itself is a major limitation. Different studies have identified how the
current KBE applications have limited scope and, more often than not, are hard-coded. Due to its
quicker development and lower implementation costs, this method is frequently employed in business
[33], but its limited long-term reusability can result in knowledge loss, abuse, and underutilization
[13]. A declarative rule approach, kept separate from the system’s core, is preferred because it allows
knowledge to be added and amended without having to rebuild the entire tool [34].

Technical factors such as the salary of a software developer may be a constraint in countries where
these figures are known to earn significantly more than design engineers. In such cases, the time
saved by an engineer by using the application may not be worth the financial resources spent on a
software developer to create the tool. The expensive software licenses and programming languages
designed primarily for seasoned developers and not the average user act as an additional barrier to
KBE’s widespread adoption [6].

A constant challenge when developing KBE systems is the difficulty of using them to foster innova-
tion. This problem was addressed in [12] and [30], and it is demonstrated how this problem could be
tackled by using HLP for computer-aided design activities. Although researchers concur that KBE
may not be the best methodology if the design process is largely dependent on the creative process
and is highly variable [13], making it difficult to standardize processes, they also acknowledge that
this situation is rare in the aerospace industry.

The fear of being locked into proprietary software was also noted as a deterrent to using KBE ap-
plications. A few solutions for how to handle this fear include the development of a generalized
modular framework that can integrate various tools through APIs to build a dependable system that
can withstand the test of time and the challenges posed by innovation.

Finally, the business evaluation of a KBE tool can be difficult. The high risk associated with the large
amount of investment required to develop a KBE application is frequently used to justify the cancella-
tion of a project that could produce meaningful results for the company. Both industry and academia
recognize the critical importance of developing concrete and robust methodologies to evaluate the fea-
sibility of a KBE tool in order to encourage companies to develop them. This is also regarded as one of
the major bottlenecks currently preventing its widespread use. Furthermore, the lack of standardized
evaluation methods also hinders the comparison and benchmarking of different KBE tools, making
it difficult for companies to make informed decisions on which tool to adopt. Therefore, it is crucial
for industry and academia to collaborate in establishing a set of reliable evaluation criteria that can
be universally applied to KBE tools.

3.5 The Codex framework

Codex is a knowledge-based engineering framework developed at the German Aerospace Center’s In-
stitute of System Architectures in Aeronautics in Hamburg, Germany. Its primary goal is to harness
the power of semantic web technologies in order to build a general, robust, and multidisciplinary
framework capable of knowledge capture, formalization and execution.

Differently from most KBE solutions available, Codex provide a non-frame based, or schema-less,
environment capable of knowledge capturing, formalization and execution [14]. By leveraging Se-
mantic Web Technologies (SWT), the knowledge is modelled through statements that are added to
the model. These statements are the most basic unit of the knowledge and are made by 3 elements,
consisting in a triple; subject, predicate and object [41].

Subjects are always made by resources (or individuals) and, as in standard grammar, they represent
what (or who) the statement is about [42]. As for subjects, resources can also take the place of an
object in a statement. In such cases, statements are said to link two resources or individuals (e.g.
”Mary - is the mother of - Peter). In addition to that, objects can also assume the form of literals,
such as strings and values, leading to statements that link subjects to different attributes or char-
acteristics. An example of a statement describing a characteristic could be ”Mary - was born in -
1980”, where the year 1980 is a singular information, meaning no more knowledge is linked to it.
Due to its genericness, it is important to point out that Semantic Web Technologies allow multiple

37

Chapter 3. Knowledge Based Engineering

ways to model the same problem. For example, if the year of 1980 had additional information at-
tached to it, such as a list of people who were born in the same year, one could assume 1980 to
be a resource to which different individuals (the people born in 1980) would be linked. By using a
different property, such as isYear linking the resource 1980 to the value ”1980”, the same properties
that were previously described become again available. It is easy to observe how the complexity of
modelling increases significantly as new information is added to the problem, thus increasing its own
complexity.

Although SWT allow the integration of multi-domain knowledge effortlessly, its abstraction and lack
of a fixed hierarchy capabilities are not well suited for the modelling of complex engineering prob-
lems [14]. Due to the high specificity of engineering concepts, their modelling may be subject to
the definition of several statements, thus leading to a very long modelling time [14]. To cope with
that, Codex allows the creation of Domain Specific Languages (DSL), which grants the creation of
simplified syntax that are specific to a certain domain and may be better understood by the domain
experts, providing modelling simplification. An example of DSL developed for Codex is the Geom-
etry Syntax, which provides tools and methods to deal with geometric modelling. By using a DSL,
developers reduces the workload left to the designer, while enabling complex problem modelling with
specific domain terminologies. In Listing 3.1 an example of a geometry problem modelled using the
Geometry Syntax is illustrated, while in Figure 3.15 the resulting knowledge is shown. It is easy
to observe the high amount of knowledge created by the much simpler functions createPoint and
createEllipse available to the users.

Listing 3.1: Usage example of the Geometry Syntax [14]

// Create a point and ellipse using geometry syntax
(GeometrySyntax) {

point = createPoint (0.0[m

createEllipse (point, 4.0]

}

], 0.0[m], 0.0[m])
ft], 1.0[m], AxisZ AxisY)

rdf:type
owl:Thing
rdf:type
e
rdf:type owl:NamedIndividual
geometry:hasCenter .
test:point
geometry:hasY
rdf:type geometry:Extrudable geometry:hasZ 0.0 [Meter|m|1.0/TOLIMOIOHONOJO]
Datatype: qt:quantity
geometry:hasX
rdf:type geometry:Ellipse rdf:type

test:ellipse rdf:type geometry:Point

geometry:hasMainAxis geometry:Wire

geometry:hasNormal geometry:yAxis

geometry:zAxis
geometry:hasMainRadius

4.0 [FT|ft|0.3048|TOL1MOIOHONOJO]
Datatype: qt:quantity

geometry:hasMinorRadius

1.0 [Meter|m|1.0[TOL1MOIOHONOJO]
Datatype: qt:quantity

Namespaces:
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
owl: http://www.w3.0rg/2002/07/owl#
qt: https://dlr.de/sl/ontologies/quantity#
geometry: https://dlr.de/sl/ontologies/geometry#
test: https://dlr.de/sl/ontologies/test#

Figure 3.15: Semantic graph obtained from the geometry syntax in Listing 3.1 [14]

The framework, which makes use of plugins and APIs, enables experts from various domains to con-
tribute their own ontologies to the problem while maintaining well-established standards for knowledge
representation [15]. Domain experts can connect various tools, languages, and technologies to the

38

Chapter 3. Knowledge Based Engineering

plugin architecture. The freedom Codex provides users in naming and modeling their ontologies is
an important feature. Equal knowledge modeled with different syntax by different domains can be
linked together using inference engines and semantic rules, yielding a univocal representation of the
product and allowing knowledge multi-domain integration, as illustrated in Figure 3.16.

O Aircraft
©Mission
OFuel-tank
@Requirements

Figure 3.16: Multi-domain integration using ontologies [15]

Codex excels in another area as well: knowledge representation. The limitations of Object-Oriented
Programming (OOP) regarding class hierarchies are not applicable to Codex because of its schema-
free architecture. This makes it possible to more effectively reuse knowledge as everyone is entitled to
access it, not just its ”children” elements. In the Codex framework, there are no levels of hierarchy
and all knowledge is treated at the same level, making class concepts and hierarchy ineffective. Codex
uses its graph-based modeling strategy to simplify the model and enable a single, easily accessible
representation of an entity, whereas traditional, OOP modeling would necessitate the repetition of
information whenever it is outside the scope of a predefined hierarchy.

Besides DSL and inference capabilities, Codex makes use of different rules to extend the knowledge
available in a model. The declarative characteristic of these rules allows the users to focus their atten-
tion on the implementation of the problem itself and not on its execution order. In fact, developers
are responsible for defining the best way to implement the rules and to increase the framework’s
performance. Still, experience shows that there are best ways to declare a rule itself, in order to
reduce the reasoning time behind this process.

Codex provides two categories of rules: parametric rules and production rules. Parametric rules focus
on equations and describe relationships between values characterizing the different knowledge nodes.
Production rules are used to add new knowledge or to connect existing entities in a model [14]. These
rules are often referred to as topological rules as they change the knowledge graph on a topological
level and are the main type of rule of interest for this project.

To implement the rules, Codex uses different engines to support knowledge inference:

e semantic engine: used to infer knowledge linked through statements made in different ontologies

e parametric engine: used to solve parametrically defined entities, by adding numerical entities
to the knowledge

e production engine: execute the production rules and change the graph’s topology with both
creation and removal capabilities of entities.

Among the different modules currently under development for codex, codex-geometry allows to exploit
semantics to tackle geometry modelling. By using Open CASCADE Technologies (OCCT) kernel [43],
this module provides the Geometry Syntax DSL that allows complex geometry creation effortlessly.
In addition to that, it leverages the production engines to develop production rules able to translate
the domain-specific objects into 3D geometric shapes [20]. These objects can then be exported into
different geometry representation extensions (e.g. BREP, IGS, STEP, etc.) and can be visualized in

39

Chapter 3. Knowledge Based Engineering

TiGL Viewer [44].

Geometry management is an area of great interest for engineering applications and has been identified
as a promising feature of Codex in need of further development. The ability to easily create complex
geometry and to leverage existing knowledge and rules to better explore the design space at an early
design stage could be better exploited if verification strategies were put into place with the goal of
providing a safer environment where designers can focus on optimizing a product by studying the
complete design space, while still being supported and advised about unfortunate design choices that
do not respect geometric rules (e.g. an overlapping between geometries) or certification rules and
guidelines. The creation of verification rules to aid the geometric modelling of a system is the main
goal of this thesis. In particular, the development of geometric and certification checks capable of
supporting the fuel system design for conventional aircraft is discussed in the next chapters.

40

Chapter 4

Methodology

This chapter presents to the reader the methodology developed to create the geometry validation
tool, hereafter referred to as GeoVerification tool or geometry verification tool, for the fuel system
design of a modern commercial aircraft. Although this methodology was developed with the aim of
enabling component placement for this particular application, it can be expanded and adapted to any
kind of geometry verification tool.

In this project, two main categories of analysis were identified:

e Geometric analysis: analysis where the verification algorithms focus purely on geometric aspects
of the product, highlighting solutions that are physically impossible to exist in order to fulfill
their function. Examples of this category would be overlapping components, missing connections
in a single geometry, etc.

e Certification and guidelines analysis: takes into account how the geometry of a component may
be affected by certification requirements or design guidelines. Examples of such analysis could
be the effect of a main rotor burst to the fuel system or the relative position of components
inside a tank

In addition to the analysis, in order to better support component placement, a series of production
rules aimed at the geometry creation of fuel system components such as pumps and valves were de-
veloped as a part of this project.

One of the key benefits of KBE systems is their capacity to store both explicit and tacit knowledge,
as covered in Chapter 3. When it comes to certification requirements for the aerospace industry, cer-
tification bodies like the FAA and EASA hardly ever give original equipment manufacturers (OEMs)
specific metrics or ways to meet a certain airworthiness requirement, leaving it up to the companies
to show the certification can be met. As a result, engineers rarely make decisions based on explicit
knowledge that guides the design process in order to verify the requirements. Instead, businesses must
develop unique methodologies based on experience in order fulfill the requirements, which becomes
tacit knowledge.

4.1 Knowledge capturing

As for any KBE methodology, the first step on the development of the geometry verification tool is
the knowledge capturing (see Section 3.2.2). This process allows to gather as much information as
possible about the user’s needs, in order to choose which features to implement. In addition, it gathers
technical information concerning the process behind formal requirements definition and validation.

An integrated approach that combined interviews and literature research was used to better com-
prehend the need for geometry verification tools for the fuel system. For the literature studies, SAE
Recommended Practices [1] providing guidelines for the fuel system design and the certification spec-
ifications provided by EASA’s CS-25 normative [24] were used as a support to understand the most
typical issues when developing such systems. From those, a list of possible verification features, both
geometric and certification related, was issued and then confronted with user’s needs gathered within
DLR’s Institute for System Architectures in Aeronautics. After multiple discussion sessions held as
weekly meetings, a list of possible features to implement filtered by priority level was produced. The

41

Chapter 4. Methodology

priority levels each feature received were based on the implementation feasibility, considering the
time and knowledge available at the moment, and subjective feedback from an aircraft design point
of view given by designers from the institute. The features that have been implemented are collected
in Tables 4.1 and 4.2. Each of these features are covered in detail in Chapter 5 and are here divided
by their primary objective: geometry or certification verification.
In addition to issuing a list of potential features to implement - or ”checks” - based on certification
and guidelines, the knowledge capturing phase was used to collect knowledge from an aircraft de-
signer’s experience that could be added to the tool. The information gathered in the form of informal
knowledge through written text, schetches, and commented worksheets needed to be formalized in

order to be implemented through code.

Function

Description

checkConnectedToForSupplyLines
checkTankVolume

checkContainedInForConnectionElements

checkConnectedToForPortsAndLines

checkAttachedToBottomForBoostPumps
checkAlignmentForConnectionPortsAndLines
checkLinePortMatchingSize
checkIntersectionPumpsRibs

checkTankCutGeometry

checkPipeTankIntersection

checkLongitudinalCoGTank

checkLongitudinalCoGFuelSubsystem

checkMinimumDistancePipesTanks

checkMinimumDistancePipesTanksSurface

Checks the correctness of the

connection between two supply lines
Checks if the create tank volume has the
specified volume

Checks if the connection element* is
contained in the specified design space
Checks the connection’s geometry between
lines and the connection elements through
the connection ports

Checks if pumps are correctly attached to
the bottom of a tank

Checks for disalignment errors between
connection ports and lines

Checks if ports and lines have the same
nominal diameter

Checks if pumps overlap with the wing’s
structure (ribs)

Checks whether a tank opening (cut)

is properly represented on a tank’s surface
Checks for errors in the design where
there are overlaps between pipes and

fuel tanks

Checks if the geometric barycenter of a
tank is within its specified range

Checks if the geometric barycenter of the
fuel system (fuel storage components only)
is within its specified range

Checks if a pipe respects the minimum
distance with all external surfaces of a tank
Checks if a pipe respects the minimum
distance with a specific surface (side) of a tank

Table 4.1: Geometry related checks implemented as part of the geometric verification tool
* Connection elements is a category of components comprehending fuel pumps and fuel valves

42

Chapter 4. Methodology

Function Description
k i 1 ibl
checkFuelMassSysten Che§ S t'he maximum useful mass possible
considering the complete fuel storage space
checkFuelMassTank Checks the maximum useful mass for a

specific fuel tank
Checks if the pumps contained in a tank can
checkPumpIndividuality be considered distinct individuals based on
the Open World Assumption \cite{}
Checks if the pumps meet the minimum
quantity required
Checks if the valves contained in a tank can
checkValveIndividuality be considered distinct individuals based on
the Open World Assumption
Checks if the valves meet the minimum
quantity required
Checks if a shutoff valve is present before
the engine adapter
Checks the valves positioning to avoid
water accumulation
Checks for possible overlaps between a
high energy (small fragment) rotor burst
checkHighEneergyRotorBurst with predefined critical components in the
system and computes the probability
of direct hit
Checks for possible overlaps between a
intermediate energy (medium fragment)
checkMediumEnergyRotorBurst rotor burst with predefined critical components
in the system and computes the probability
of direct hit
Checks for possible overlaps between a
fan burst with predefined critical components
in the system and computes the probability
of direct hit

checkPumpRedundancy

checkValveRedundancy
checkSOVBeforeEngineAdapter

checkRelativePositionSOVLines

checkFanRotorBurst

Table 4.2: Certification and guideline related checks implemented as part of the geometric verification
tool

Selection of production rules for component creation

Another need identified by the knowledge capturing phase was the provision of more detailed geomet-
ric information on the fuel system. Different fuel system architectures for commercial aircraft were
analyzed and 4 main categories of components were identified to be required in order to have a good
level of detail at an early design stage:

e Fuel tanks: in order to geometrically represent the fuel system, it was identified the need to
distinguish the different fuel tanks and to represent them individually

e Fuel pumps: pumps are the most important category of components in large aircraft fuel systems
as they allow the fuel to flow and to feed the engine.

e Valves: these components allow to isolate parts of the fuel system and may have stringent
requirements regarding their positioning and quantity.

e Pipes: represent the basic entity responsible for transporting the fuel and form the basis of the
different subsystems (feed, transfer, crossfeed, etc.)

These four categories led the development of production rules capable of geometrically representing
them. For the fuel tanks, it was identified the need to be able to extract their design spaces from
already existent aircraft configuration developed by DLR. These configuration are often stored in a

43

Chapter 4. Methodology

schema-based description file, commonly known as CPACS (Common Parametric Aircraft Config-
uration Schema) [45], and a novel method capable of extracting structural definition by means of
geometry modelling was required.

Fuel pumps were identified of being of 3 main types: bottom mounted boost pumps, spar-mounted
snorkel pumps and jet pumps. For the scope of this work, only motor-driven pumps of type boost and
snorkel were considered. Moreover, in order to simplify the development rules and the verification
functions to be implemented, valves were assumed to be shutoff valves and to have the same geometry,
which is dependent on the connecting pipes’ diameter. The development of such production rules is
discussed in Section 5.2. Production rules for fuel line creation were already developed as part of
previous work related to this project and thus won’t be discussed. A detailed description of such
production rule can be found in [20].

4.2 Knowledge formalization

Knowledge formalization is the second step in developing KBE applications. This activity is required
to convert written or spoken language into code-ready language. Based on the formalized knowledge,
multiple geometry management algorithms were developed for the implementation of the geometry
verification tool. This process took place directly in the code development phase to reduce develop-
ment time.

Formalized knowledge is necessary in order to have a single view of the requirements, leading to a good
software development that leaves no space for biases in its interpretation. Geometric requirements,
which are often expressed using verbal language, need to be quantified in order to be implemented in
code. As an example, a requirement stating ”Req: Fuel pumps shall be contained in a single design
space” needs multiple information to be quantified properly: what is the design space? What geo-
metric property will be used to check its containment? What tolerance shall be given to the result?
These are a few of the questions the knowledge engineer must pose in order to build the verification
function and avoid errors.

As to not overlap the information in this thesis, the implementation process is described in a separate
chapter. Nonetheless, the reader should bear in mind it is a major step on the methodology itself
and its planning shall be done ahead of its execution.

4.3 Validation

In order to ensure the correct functioning of a tool, software requires extensive testing before its
deployment. Unit testing methodologies were applied in order to promptly validate the implemented
rules. This methodology is based on three basic attributes [46]:

1. Unit tests verify small portions of a code called units
2. Unit tests are executed quickly
3. Unit tests are done in an isolated manner

This approach involved testing each geometry production rule and geometry validation tool indi-
vidually to ensure that they behaved in accordance with the necessary specifications. Although the
applied strategy is based on unit testing principles, it is important to note that some of the meaning
of unit testing is lost because of the features of the Codex framework and the logic of the various
reasoning engines, which are outside of the scope of this work. In actuality, a reasoning must be run
in order to test the verification rules, putting the test under the correct operation of these engines
since they cannot be run independently of the reasoning. Nevertheless, whenever it was felt necessary,
standalone functions were created to test the logic behind the rules before incorporating them into
the Codex framework.

Figure 4.1 shows the geometric output for the implementation of the rule
checkConnectedToForConnectionPortsAndLines, which provides indication to the users on whether
the fuel pump’s connection port is aligned with the connecting fuel line. In this example, it is possible
to see on the right picture the disalignment between both elements. Additional information on the
disalignment angle is calculated and provided to the user by means of this production rule.

The geometries for the pipe and the pump must be constructed according to production rules using
the Geometry Syntax offered by the codex-geometry module in order to carry out the test. The rule

44

Chapter 4. Methodology

uses the recently acquired information to examine whether the verification rule that has been put in
place is operating as intended. The test’s execution on the verification rule is straightforward, but
in order to create the geometries and acquire the necessary information, it is necessary to run the
reasoning. As a result, the test is not solely reliant on the implemented feature it is verifying. Real
standalone unit tests cannot currently be deployed using a strategy that is entirely independent of
reasoning engines because doing so would require a lot of time-consuming manual knowledge entry
into each test. Still, these private dependencies [46] are generated in each individual test and do not
affect different tests, thus guaranteeing the tests’ mutual isolation. Listing 4.1 shows the statements
that must be added to the test in order to trigger the rule in description. Although the pump indi-
vidual was directly created through the user to the model, until now no connectionPort1 individual
was mentioned in the description. In fact, this resource only begins to exist when the production rule
for the geometric creation of the pump is executed, showing the true potential of these topological
rules, capable of adding useful information to the model. As explained in Section 3.5, assertions are
given in the form of triples <subject, predicate, object>. In the example given in Listing 4.1,
both subject and object are individuals, while the properties are of type ObjectProperty, linking
the two individuals in the knowledge graph. The modules that derive these properties are expressed
as prefixes in the code (i.e. FS for the Fuel System and Ver for the Verification module).

Listing 4.1: Example of adding verification requirements to a model through statements

// add the requirements to the model through statements
assertedModel .addAssertion(pump, Ver.connectedToRequired, feedLine)
assertedModel.addAssertion(feedline, FS.isConnectedToPort, connectionPortl)

N BTicL - ErieL

Figure 4.1: Unit test output for the connection between pumps and lines and a detailed view (right)
showing the geometry errors in the connection

45

Chapter 5

Implementation

This chapter aims to provide a thorough explanation of how the different rules were implemented,
providing the logical steps taken in order to formalize the knowledge as seen in Chapter 4.

5.1 Codex’s production rules

In order to understand how the geometry creation and the geometry verification rules are imple-
mented, it is first necessary to understand how production rules work with Codex. As described in
Section 3.5, production rules are able to change the topological information of a knowledge graph. To
do so, they are composed by two parts: a When side and a Do side. On the ”when” side it is possible
to describe queries matching a specific pattern in the knowledge graph. When these patterns are
found, the production rule is capable of triggering the ”do” side, responsible for executing the rule
itself [14]. These rules, due to their topological nature, are used to create new knowledge and add it
to the model, enhancing its capabilities.

Listing 5.1 illustrates a production rule responsible for verifying if two elements of class SupplyLine
are connected to each other and it is made by five separate queries. In such case, whenever the knowl-
edge graph returns true to a combination of all the queries for the same two individuals, the rule is trig-
gered. The dependence of these queries on three different knowledge modules — FS (Fuel System), Ver
(Verification), and GC (Geo Completeness) — shows how simple it is to incorporate different knowl-
edge modules into the project. The verification and geo completeness modules are used in numerous
projects based on Codex, despite the fact that the fuel system knowledge model has only been fully
developed for this particular application. Additionally, the geo completeness module itself offers a set
of rules that verify the completeness of the parameters necessary to correctly represent the geometries.

Listing 5.1: Example of rule querying for production rules

When<SIndividual, SIndividual> { linel, line2 —>
+(1linel..Ver.connectedToRequired..line2)
+(linel..a..FS.SupplyLine)
+(1ine2..a..FS.SupplylLine)
+(linel..a..GC.Complete)
+(1ine2..a..GC.Complete)

} Do { linel, line2 —>
// code execution

}

The usage of production rules with the reasoning provided by the production engines allow to detach
the rule development from the application, allowing it to be easily maintained, reused and integrated
in different projects. As a drawback, the need to match queries in order to execute the rule means
that there is a constant need to observe the graph for possible changes that may match the required
queries throughout the reasoning process. This leads to an increased run time which could become a
problem when large knowledge databases are involved. Nonetheless, it has been identified that order-
ing the ”when” side queries [14] leaving the most stringent queries on top and the most general ones
on the bottom allows to reduce the reasoning time required. This strategy has become a common

46

Chapter 5. Implementation

practice among Codex developers in recent applications.
The next sections tackle each production rule individually and are divided in three different categories:

e Geometry creation
e Geometry verification

e Certification and Guidelines verification

5.2 Geometry creation

As stated in Section 4.1, in order to properly implement geometric verification tools to the fuel system,
it is necessary to first provide a larger level of detail to the geometry of the components.Priority in
their design was given to fuel pumps and valves because it was recognized that the architecture
would greatly benefit from the greater level of detail provided by these components. Because they
are essential to the fuel system, their placement must be carefully considered.

The implementation of the production rules, as previously mentioned, is intended to establish a proof
of concept for the usability of the codex-geometry module and its various applications. The production
rules are not extensive. Due to the lack of detailed geometric information regarding fuel system
components available, the geometry here presented is to be considered cautiously. Reference geometry
was taken from Lufthansa’s training manual for the A320 series [47], whenever this information was
available.

5.2.1 Boost pumps

Cartridge-in-Canister architecture for the boost pumps were considered, resulting in a cylindrical
shape. In order to provide additional detail about its geometry, connection ports, responsible for
connecting the pump to the fuel lines, were designed and integrated into the primitive pump geometry.
To properly create the geometry, users need to provide information on the positioning of such ports,
other than information on the boost pump itself.

Two main information are required to define the pump’s placement: a root point. given by the
hasRootPosition, from where the geometry will develop and a direction, identifying the pump’s
longitudinal axis. The direction is added to the model through the property hasDirection

In addition to that, users need to provide information on the connection port, in order to correctly
place it on the pump. To do so, users must provide the port’s radius, length, height, and angular
position on the pump’s surface. This angular position is given with respect to the X axis provided
in the model. Listing 5.2 illustrates how it is possible to add this knowledge to the model in order
to activate the rule. The programming language Kotlin is used in this project to leverage Codex’s
capabilities.

An interesting thing to observe is how the used property affects the required object. Whenever an
ObjectProperty is required, the assertion expects the third element of the triple to be a resource,
or an individual. On the other hand, if the information is a quantity, or a value, a DataProperty
can be used, thus requiring the creation of a typed literal, which takes the place of the resource.
Another type of property existent is the ParameterProperty, which is a subclass of data properties
focusing on quantities, and thus requiring a specific dimension attached to it. These properties are
very useful when the developer wants to restrict what kind of information should be given, in this
case, the measurement unit it expects.

Through the use of cylindrical coordinates, the production rule is capable of correctly positioning
the port on the pump. By using the root position, the pump’s radius (directly integrated in the
production rule), the angle and the port’s length, the correct placement point is found as follows

x = rootPointX + portHeight
y = rootPointY + (pumpRadius — portLength) * cos(port Angle)
z = rootPointZ + (pumpRadius — portLength) * sin(port Angle)

47

Chapter 5. Implementation

Listing 5.2: Example of knowledge declaration to create a boost pump by the production rules

pump = assertedModel.createAnonymousIndividual (FS.BoostPump)
assertedModel.addAssertion(pump, FS.hasRootPosition, point.individual)
assertedModel.addAssertion(pump, FS.hasDirection, direction.individual)

connectionPortl =

assertedModel.createAnonymousIndividual (FS.ConnectionPort)

assertedModel.addAssertion(connectionPorti7 FS.hasRadius,
assertedModel.createTypedLiteral (0.02[u.m]))

assertedModel .addAssertion(connectionPortl, FS.hasLength,
assertedModel.createTypedLiteral (0.01[u.m]))

assertedModel .addAssertion(connectionPortl, FS.hasHeight,
assertedModel.createTypedLiteral (0.05[u.m]))

assertedModel.addAssertion(connectionPortl, FS.hasAngularPosition,
assertedModel.createTypedLiteral (90.0[u.deg]))

assertedModel .addAssertion(pump, FS.hasConnectionPort, connectionPortl)

Where rootPointX, rootPointY and rootPointZ are the three cartesian coordinates for the root point,
pumpRadius is the radius predefined in the production rule, the portLength and the portAngle are
given by the user. An important feature of Codex is given by its codex-quantity module. This module
offers over 250 different dimensions (i.e. length, area, volume, time, etc.) and 270 units, with units
conversion and matching capabilities [14]. This allows for an easier usage of the geometric module,
as users do not need to focus on agreeing on a common unit and can leverage Codex’s reasoning
capabilities to provide unit conversion seamlessly.

The direction is computed using the aforementioned cylindrical coordinates as follows:

direction = (0, cos(portAngle), sin(port Angle))

Since ports are modelled as cylinders as well, these two information (port placement and direction)
are added to the model and used to create its geometry. Afterwards, geometry verification rules are
put into place in order to check the correctness of the recently created geometry. During this process,
the positioning of the port together with its dimension are analyzed to make sure the geometry can
be created. This allows for a better control on the geometry creation, leaving less margin for errors
due to bad calculations or lack of attention to the design. Up until this stage, the pump is created in
a standardized way, with the Z axis being the reference axis for its creation and thus ignoring the user
provided direction. This is done to allow an easier integration of the connection port to the geometry.
In fact, in order to use the cylindrical coordinates as previously mentioned, it is important to know
exactly the pump’s position with respect to the main cartesian axis. If the implementation considered
from the start the pump on its desired position, the computation of the cartesian coordinates would
become much harder to implement. To solve that, it was chosen to implement a pump rotation after
the completion of its geometry. Using basic principles of linear algebra, it is then possible to rotate
the recently created complex geometry and relative geometric knowledge such as the port’s position
and direction. To do so, a series of rotations are executed based on the normalized pump direction.
The rotation with respect to the first axis (X) is taken as follows:

Uy
0x = arctan —
Uz

Where u is the normalized direction vector and uy and uyz are two of its coordinates, Y and Z
respectively. With 6y a first rotation vector v; is computed:

vy = (ux,uy *cos(—0x) —uy *sin(—0x),uy *sin(—0x) + uy * cos(—0x))

The second rotation angle is then calculated as:

V1,

fy = arctan
’Ulz

And the second rotation vector, vo:

vy = (v1, * cos(—0Oy) + vy, * sin(70y),v1y, —vy, *sin(—0y) + vy, * cos(—by))

48

Chapter 5. Implementation

Finally, the third rotation angle, 8 is computed:

0z = arctan %2y

V2,
These three angles are then used to rotate the 3D geometry in space using a 3-2-1 sequence, that
is, the first rotation is done with 0z, the second with 8y and the final rotation with 6x. After
rotating all the necessary geometric entities, the newly computed information is added to the knowl-
edge graph. Listing 5.3 provides an example of how the production rule is capable of adding new
information to the model through assertions. This information is linked to the individual port, that
was previously defined by the user in order to trigger the production rule, and can be further used,
together with the created geometry, to provide different kinds of geometric checks to the model.

Listing 5.3: Example of added knowledge to a model through a production rule

model.addAssertion(port, GKM.hasPoints, connectionPoint)
model.addAssertion(port, FS.hasFace, portFace)
model.addAssertion(port, FS.hasDirection, portDirection)

In Figure 5.1, an example of boost pump is given. It is possible to note the connection port, which
is an integral part of the pump design.

- ETicL

Figure 5.1: Boost pump

Adding multiple ports to a fuel pump

In order to cope with different geometry requirements, a second production rule for creating fuel
pumps was developed. By declaring multiple connection ports linked to a same pump, it is possible to
create different pump types with a single production rule. An example of usage of this production rule
is the creation of snorkel pumps, which require a port to connect the pump outlet, as for the traditional
pumps, and a secondary port to link the snorkel line to the pump. Listing 5.4 illustrates the ”when”
side that queries the production rule for the creation of spar-mounted snorkel pumps, where the ports
are taken as a list of resources (SRDFList). The construction process is similar to the one for simple
pumps, with the addition that ports are created individually and then added to the primitive geometry
iteratively. Figure 5.2 illustrates a spar-mounted APU pump created using this rule and its connecting

49

Chapter 5. Implementation

Listing 5.4: When side for the creation of snorkel pumps using the production rules

When<SIndividual, SIndividual, SIndividual, SRDFList>
{pump, point, direction, ports >
+(pump ..FS.hasRootPosition..point)
+(pump ..a..FS.SnorkelPump)
lines. +(pump ..GKM.hasDirection..direction)
+(pump ..FS.hasConnectionPort ..ports)
+not (pump..a..GC.Complete)
+(point..a..GKM.Point)
+(direction..a..GKM.Direction)

} Do {...}

- EiTicL

Figure 5.2: Snorkel pump with an inlet and an outlet port

Production rule to automate the root point definition

Because this type of pump is frequently installed at the bottom of a fuel tank, and because fuel
tanks can have complex geometry, making manual placement of a pump difficult, a production rule
aimed at determining the correct root point for a pump based on a desired approximate position
was added. In fact, by using the property hasDesiredPosition linked to a specific fuel tank instead
of hasRootPosition, the reasoning triggers a secondary production rule responsible for finding an
optimal root position on the tank’s internal surface.

To do so, an algorithm based on Opencascade’s open source kernel was developed and is described in
Figure 5.3.

In order to extract the bottom surfaces of a tank, an approach based on analytic geometry was used.
First, the different surfaces of the tank are saved to a list. The algorithm iterates through the list of
surfaces and computes the normal vector to each surface at their center. To do that, it is assumed each
surface to be plane, that is a face, in order to have the same normal vector at each point of its surfaces.
Curved surfaces, whenever existent, are converted into smaller surfaces using a ”face” representation,
provided by Opencascade. A dot product (scalar product) is then computed for each surface’s normal
vector with a reference vector representing the direction pointing to the negative Z axis, or the bottom
of a geometry according to the conventions defined for this development. Whenever the dot product
is over a certain tolerance, thus meaning the vectors are more or less aligned, both the surface and
its respective direction are saved and used to find the optimal candidate to become the root point for

50

Chapter 5. Implementation

Pump has desired

position

y s the pump -
< contained in a
\\\ tank?

Cannot evaluate possible root
position for the pump

A

r N

r
Does the tank have a No
" valid geometry?
-

A -
N 4

Yes

Extract tank's bottom

surfaces

Project the desired

Get the Hh auriace point ento the surface

Get tolerance -+

// \.\
P . Update variables:
< distance <= rootPoint = projectedPoint
4 ——as— o
- tolerance= e direction = surface normal
. i direction
- ~

-
r ¥
Update tolerance:
tolerance = distance

r -,
r .

. ™,
Wias it possible to find a_ 1 Heraton |@
Yes——<_ position respectingthe -«€——Yes—— through surfaces >
© (lerance? \ﬁnahad? y

lore root point and direction to
the model

Figure 5.3: Logic representation of the algorithm for finding the optimal root point on the bottom
surface of a tank for a fuel pump

o1

Chapter 5. Implementation

the pump.
A new loop is then started, this time with the extracted bottom surfaces. In this new cycle, for each
surface the algorithm projects the desired point onto the surface and then three values are calculated:
the distances in the X and Y axis and the complete distance. While the X and Y distances are
straightforward, the complete distance is taken using the euclidean distance between the two points
as follows:

Total distance = \/distX2 + distY?

The tolerances for the X and Y distances are fixed to 0.5 m, while the tolerance for the total distance
has a starting value of 0.5 m and then is iteratively decreased whenever the following condition is
reached: Req: The three main distances must be smaller or equal to their respective tolerances.

In such cases, a temporary variable stores the value of the projected position and the surface’s direction
and updates the total distance’s tolerance with the current distance. If a second candidate surface
gives a projected point that respects this now more stringent requirement, the values are swapped,
guaranteeing in the end that the final candidate to be the root point is the one closest to the user’s
desired point. In case the desired point does not lie exactly above or below any of the surfaces, or
in cases the defined tolerances do not provide any good candidate, the algorithm provides an error
stating that it could not find any viable point close to the desired one that matches the criteria,
finishing the reasoning process. Although the recommended approach is for the user to provide a
different desired point, paying attention it is at least close to the tank’s surface, it is always possible
to change the tolerances, if needed.

5.2.2 Valves

A simplified valve representation was determined to be adequate for this master’s thesis. This led
to the development of a production rule that focused on building linear shut-off valves connecting
two distinct fuel lines. As for the boost pumps, a specific query is necessary in order to trigger this
rule. Adding the geometric characteristics of the valve to the query ("when” side) allows to correctly
trigger this rule only when all the geometric information is available. The geometric representation
of this two-way shutoff valve takes inspiration on linear valves illustrated in [47] and is composed by
three main parts:

1. Left port connection
2. Right port connection
3. Central part

The central, cubic part, which is a geometric representation of the opening mechanism of these valves,
is attached to the left and right ports, both of which are modeled as hollowed cylinders. Figure 5.4
illustrates a shutoff valve created with the production rule.

Listing 5.5 shows the ”when” side for this production rule. It is possible to see how all the required
geometric information are requested on the "when” side and are of type literal (RDFLiteral).

Listing 5.5: When side for the creation of shutoff valves using the production rules

When<SIndividual, SIndividual, SIndividual, SRDFLiteral>
{valve, point, direction, outerRadius —>
+(valve..FS.hasRootPosition..point)
+(valve..GKM.hasDirection..direction)
+(valve..a..FS.S0Valve)
+(point..a..GKM.Point)
+(valve..FS.hasRadius..outerRadius)
+not(valve..a..GC.Complete)
} Do {...}
For the creation of these valves, in addition to the root position, which represents the valve’s center
point, and the direction, defining the longitudinal axis - the same direction of the pipes -, a third
geometric information is required: the radius. This radius should be equivalent to the outer radius
of the connecting pipes, in order to provide an adequate pipe-valve match. The algorithm infers the
remaining geometric knowledge by making use of parametric rules. As an example, the outer radius
for the shutoff valves is created considering a 20% increase on the port’s inner radius. The same

52

Chapter 5. Implementation

- ETicL

Figure 5.4: Two-way shutoff valve

rotation algorithm implemented for the boost pumps can be found for the valves.

After the geometry is created, the production rule is in charge of adding the pertinent knowledge
to the knowledge graph, making it accessible by any additional production and parametric rules, if
they are registered to the reasoning. Due to their more static geometric nature, these linear valves do
not require the ports geometric characteristics to be predefined and added to the model beforehand,
which is an interesting difference between the creation processes for the valve and the pump. In fact,
the amount of information that must be provided by the user is significantly decreased by utilizing
a streamlined geometric representation of these components. The knowledge graph will nonetheless
continue to be enhanced after the production rule is triggered, and the connection ports and any
information related to them that is produced by this rule will also be automatically added to the
model.

5.2.3 Fuel tanks

An important characteristic of Codex is its great flexibility when modeling the knowledge. Although
very helpful to the user, the geometry creation based on production rules is not mandatory. Still, it
is highly recommended to use them in order to be sure that the necessary knowledge will be added
to the model, in order to allow the geometry verification tool to work as expected. Fuel tanks enjoy
the same freedom as any other component for what concerns their creation.

As an attempt to show how codex-geometry can easily integrate imported information from different
sources, an additional function capable of extracting geometric information from aircraft structural
components was created. At DLR and in multiple aerospace related institutions, CPACS is the state-
of-the-art configuration schema used to share information between stakeholders. A function capable
of extracting information related to the wing’s structural geometry was implemented in Python.
Leveraging TiGL Geometry Library [44], it is possible to extract the geometry related to wing spars
and ribs. An algorithm that uses Opencascade technologies then takes each rib’s geometry and
transforms it into an object of class TopoDS_Face [43]. Assuming that each face is rectangular, each
face is further divided into four connecting wires. The last step extracts the start and end points for
each wire and arranges them in a clockwise fashion. Every rib in the model goes through this process
once, and at the end of it, a list of the four ordered extreme points for every rib is generated and
saved into a JSON file that can be exported to Kotlin and then integrated into Codex.

It is important to note that only the right-sided elements are explicitly described into CPACS by
convention, whereas the left side is typically a mirrored entity based on the right side, and as a result,

53

Chapter 5. Implementation

only the geometric data related to the right wing is stored to this JSON file.

No methods were developed to support the design space creation for tanks based on different parts
of the aircraft. Nonetheless, Codex allows for their creation using the Geometry Syntax provided by
codex-geometry.

Definition of tank volumes based on the design space

After the design space has been defined and the JSON file containing the ribs positioning is imported
to the Codex environment, a second function can be used to separate the design space into multiple
fuel tanks. To do so, the user can declare an estimate volume for each tank, that will be taken
into account by an algorithm responsible for this process. The algorithm searches for a combination
of ribs to create a lofted space whose total volume corresponds, within a certain tolerance, to the
volume entered by the user using the lofting methods provided by codex-geometry. The most inner
position, which is typically occupied by the center tank or the innermost wing tank, is where the
process begins. The algorithm then starts looking for the volume of the following tank, starting from
the most recent saved position or the end-position for the previous tank.

In the end, the knowledge graph is enriched with the newly created lofted tanks, adding extra value
to the model and allowing further computation.

Tank’s external surfaces

Due to limitations to the codex-geometry module, calculations involving lofted surfaces, such as
determining their area, volume, and intersection with other components, call for the lofted geometry
to be entirely filled, giving it a solid appearance. It is anticipated that this limitation will be resolved
in the future as a result of Codex’s advancements.

Production rules were put into action to provide the external surface of a fuel tank in order to
deal with such issues and to provide a more realistic geometry for the model representation. These
production rules make use of the exploration functions of Opencascade, which can be used to extract
the external surfaces connected to a geometry. In order to visualize the geometry, these surfaces are
then stitched back together and saved as a BREP file.

Tank openings

Through the use of production rules, the GeoVerification module has yet another category of geometric
attributes added: tank openings. Fuel pipes, which move fuel between tanks, are the main reason
they are present. Since the fuel tanks frequently take up a significant amount of space on the wing’s
structure, pipes are frequently routed internally to these tanks, resulting in the presence of openings
in order for the lines to properly pass through them.

These openings are modeled as circular openings and require three basic information to define their
geometry:

e The tank on which it shall be created
e Its root position
e Its radius

Since fuel tanks are often modeled without gaps in between at early design stages, it is often possible
to use the same root position to create tank openings on two different tanks. This of course requires
for two sequences of statements to be added to the model, each linked to its specific tank. The
production rule is split into two different rules: the first rule is responsible for simply creating the
opening geometry at the specified point with a specified direction. The second is responsible for
changing the tank’s external surface geometry by means of subtracting the opening’s geometry from
the tank’s geometry itself.

As for the other components, it may be difficult to correctly place a tank opening manually, as it
requires both a specific point that must lay on the tank’s surface and a direction that shall coincide
with the normal vector to this same surface. To aid the user, an additional production rule, as for the
fuel pumps, is used in order to find the most optimal position. Given a point linked to an opening
by the hasDesiredPosition property and an additional information stating to each of the tank’s
surfaces this cut should be applied, an algorithm finds the most suitable position for the opening’s
root position and the direction of creation and adds it to the model. As soon as this information

54

Chapter 5. Implementation

is available, the previously mentioned rule responsible for creating its geometry is activated. Listing
5.6 illustrates a user-declared tank cut provided the desired position. Six different properties are
possible to be used by the user in order to define the projection face: isProjectedOntoBottom,
isProjectedOntoTop, isProjectedOntoFront, isProjectedOntoRear, isProjectedOntoLeft, and
isProjectedOntoRight. Based on these properties, the algorithm provides a different reference
vector to be used by the surface extraction function implemented (see Figure 5.3).

Listing 5.6: Example of user-declared tank opening (or cut) to the knowledge model

cut = assertedModel.createAnonymousIndividual (FS.TankCut)
assertedModel .addAssertion(cut, FS.hasDesiredPosition, point.individual)
assertedModel.addAssertion(cut, FS.isProjectedOntoRight, tank)
assertedModel.addAssertion(cut, FS.hasRadius,

assertedModel.createTypedLiteral (0.05[u.m]))

5.2.4 Additional production rules

The GeoVerification module provides additional production rules aimed at aiding the user when
constructing the geometry. Since these rules [20] are the result of earlier research, this thesis will not
go into great detail about them. In order to correctly produce the geometry, the construction of supply
lines necessitates a number of production rules that must be activated sequentially. The activation of
this sequential rule is reliant on the addition of new knowledge to the graph by the starting production
rule, which in turn triggers the activation of the second rule, thereby triggering the addition of new
knowledge to the model, and so on. The creation of supply lines relies on calling a specific function
and passing the required arguments (reference model, curve radius, list of points guiding the line, and
inner and outer radius) rather than requiring users to add statements to the model. The function is
then responsible for computing any missing parameter and adding the information to the knowledge
graph through statements.

5.3 Geometry verification

As one of the major goals of this project, the possibility to verify the geometric correctness of a
component or the connection between components is necessary to ensure proper system design. This
section covers the detailed description of the geometry related features implemented into the GeoVeri-
fication tool, as listed in Table 4.1. When possible, features with similar capabilities will be explained
in one place while making clear how they differ. For each production rule is provided the respective
created knowledge that is added to the graph, in order to give the reader a comprehensive view of
how these verification functions affect the design and how their features can be leveraged by designers.

Disclaimer: when describing properties and classes using the semantic syntazx, prefixes are repre-
sented by semicolons before the property/class’ name (e.g. FS:thisProperty , where FS is the prefix
representing the Fuel System knowledge module.).

During the course of the project’s development, it was decided to primarily rely on the fuel sys-
tem domain (FS) to define these properties. Codex’s inference abilities were utilized to enable the
incorporation of these properties within the verification domain itself. By categorizing the confirmed
and disproven properties from FS as subcategories of Ver:verified and Ver:falsified, respec-
tively, a unified domain serves as a repository for all evaluated properties, even when originating from
diverse domains. This implies that, even if an additional domain were to be introduced—such as
the structural domain Struc—it would still be feasible to associate all properties with the verifica-
tion domain, thereby preserving their origin information. Notably, the model can display all verified
or falsified statements within the Ver domain, while also allowing for statement filtering to discern
whether they pertain to the fuel system or the structural domain.

5.3.1 Tank volumes

A very basic and preliminary check is related to the tank volumes. As explained in Subsection 5.2.3,
fuel tanks can be created using the methods integrated into the GeoVerification tool. Still, users have

55

Chapter 5. Implementation

complete freedom to design their fuel tanks as they better prefer. In such cases, to aid their design
choices, it is possible to set a required tank volume that can be checked as soon as its geometry
is created. This function leverages the codex-geometry module and uses the GeometryAdapter [20]
provided. If the volume matches the required value, within the tolerance, this check is verified,
otherwise it is falsified.

Resulting statements

e Verified:

<tank, FS:hasVolumeVerified, volume>

o Falsified:
<tank, FS:hasVolumeFalsified, volume>

5.3.2 Components inside tanks

The checkContainedInForConnectionElements rule is used whenever it is necessary to check whether
a component is fully contained inside a fuel tank. In order to be activated, this production rules looks
for patterns on the knowledge graph where the following triple can be identified:

<component, Ver:containedInRequired, tank>

Provided the tank has a design space and both the component and the tank passed the geocom-
pleteness test (provided by codex-geometry), this function is capable of extracting both the tank’s
and component’s geometry with the getShape() method provided by the GeometryAdapter. The
intersection between both shapes is evaluated and its volume then computed. If this volume exceeds
the tolerance of 1 x 107°m? the check is falsified.

An important feature of the GeoVerification functions is that they are capable of providing feedback
to the user while the simulation runs through messages being printed to the logger. A common
characteristic all the functions have is to start with a message stating which check is currently being
executed and, after the computation is over, another message is printed out providing the result of
such analysis. Listing 5.7 illustrates both the start and end messages provided to the user.

Listing 5.7: Messages provided to the user when checking for a components containment inside a tank

// starting message
("Checked,if ${contained.readableName} is contained
in, ${containing.readableName}.")
// feedback message providing the results
("uuu>>u${contained.readableName} is contained in
${containing.readableNamel}: $check, overlap: $vol
(tolerance: $tolerance)")

Resulting statements

o Verified:
<component, Ver:containedInVerified, tank>

o Falsified:
<component, Ver:containedInFalsified, tank>

Differently from the conclusions drawn in Subsection 5.3.1, the terminology used to describe the
mentioned containment properties belongs to the Verification package. Codex has the capability
to integrate information from different domains, allowing the utilization of properties from various
disciplines without encountering compatibility issues.

56

Chapter 5. Implementation

5.3.3 Connection between components and lines

Fuel system components such as fuel pumps and valves are herein identified as connection elements.
In order to verify the geometric effectiveness of their connection to the supply lines, the information
on their related connection ports is exploited. Due to the geometric complexness and heterogenicity
of requirements related to their connection, three separate functions are defined in order to properly
evaluate them:

1. checkConnectedToForPortsAndLines
2. checkAlignmentForConnectionPortsAndLines
3. checkLinePortMatchingSize

Although they complement each other, each check is executed independently. This is done in order
to provide precise information for the user regarding the encountered problems in a model, while also
providing feedback on parts of the design that are compliant with requirements, even if the overall
requirement is not respected.

Connection

The first rule focuses on disclosing details about potential intersections between the lines and the
ports and/or potential gaps in their distance. The supply line’s intersection with the component
is the first property to be assessed. You can determine the volume of a potential overlap by using
the intersection method offered by GeometrySyntax. When the geometry is accurate, the overlap
should typically be zero. However, a minor overlap could occasionally be discovered as a result of
representational problems. A tolerance of 1 x 1076 m3 is provided to account for these exceptions.
This tolerance can be modified by the user according to his/her needs.

Afterwards, knowledge regarding the connection port is used to find gaps in the connection. The
GeometryAdapter offers means of computing the minimum distance between two shapes using the
getMinimumDistance function between two shapes. In order for it to properly work, the shape from
both the connection port and the supply line are used and a tolerance of 1 x 10~° m is applied.

The analysis is successful only if both the overlapping and the distance measurements are within
the required tolerances. Figure 5.5 shows a non-compliant case due to an overlap, while Figure 5.6
illustrates a gap between the line and the port end-point. In the first case, where the pipe overlaps
with the tank, the following output is displayed to the user:

>> Front inner pump is connected to Feed line through
Connection port 1: false, overlap 4.712388980384944E-6[m3]
(tolerance: 1.0E—6[m3])

The second error, where components present a gap on their connection, give a similar error, this time
providing the distance:

>> Front inner pump is connected to Feed line through
Connection port 1: false

overlap: 0.0[m3] (tolerance: 1.0E—6[m3])

distance: 0.0019999999999999463[m] (tolerance: 1.0E—5[m])

Alignment

Additional information provided by the connection port can be used to verify the correct alignment
with the supply line. By leveraging the geometric knowledge linked to the supply line, it is possible to
individuate the points that guide the same. The two points composing the line’s end points are taken
and their distance with the port itself is evaluated in order to find which end of the line should be
connected to the port. Then, the list of points is reordered such that the first point is the one closest
to the port, the p;. The remaining points are added following the geometric sequence, with the last
point, p,,, representing the opposite extremity. Since two consecutive points make a segment on the
line, only the first segment, the one closest to the port, is studied. The direction of this segment is
computed by:
segment direction = ((p2, — p1,), (P2, —p1,), (P2. — P1.))

57

Chapter 5. Implementation

EdTiGL

Figure 5.5: Geometry mismatch due to an overlapping supply line

TiGL

Figure 5.6: Geometry mismatch due to a gap between the supply line and the connection port

The port’s direction comes from the query related to the production rule’s "when” side. In fact,

whenever a quantity is necessary to make computations used in the rule, it is common practice to
query it. Doing so allows the rule to be triggered as soon as this property becomes available (as long
as the remaining queried information is already available). This strategy allows to avoid unintentional
usage of the rule, that could lead to wrong calculations or crashes.

In order to compute the effective alignment between the line and the port’s normal direction, the
cross product between the vectors, ¢ is computed and the result normalized. The resulting angle can
be computed as:

0 = arcsin||é|| (5.1)
With:
C=daxb

CERVERY

2
y T

58

Chapter 5. Implementation

Where ¢, @, b are the resulting cross product, the segment’s direction and the port’s normal vector,
respectively, ||¢]| the euclidean norm for ¢, and # the measured angle in radian. ¢, ¢y, and ¢, represent
the x, y and z coordinates for é. The tolerance set to this function is 1 x 1076 rad.

Figure 5.7 illustrates a case of misalignment between the port and the line, leading to the following
output:

>> Feed line is aligned to Connection port 1
from Front inner pump: false, angle: 3.1484103072924685[deg]

EITIGL

Figure 5.7: Geometry mismatch due to misalignment

Port and line dimension

The last check related to the connection between a pump or valve and a supply line is provided by
checkLinePortMatchingSize. This rule checks for the absolute difference between the line’s outer
radius and the port’s radius and turns out to be successful if their difference is under 1 x 107> m.
Listing 5.8 illustrates this rule in its completeness. By exploiting the codex-quantity module, it is
possible to make comparisons between two values without worrying about their units, as long as they
have the same dimension (i.e. a length).

Listing 5.8: Geometry rule to check if a supply line and a connection port have matching sizes

val checkLinePortMatchingSize by Rule(FS, Ver, GKM, GC) {
When<SIndividual, SIndividual, SRDFLiteral, SRDFLiteral>
{line, port, radiusl, radius2 —>
+(line..FS.isConnectedToPort ..port)
+(line..FS.hasOuterRadius..radiusl)
+(port..FS.hasRadius..radius2)
+(line..a..GC.Complete)
} Do {line, port, radiusl, radius2 —>
val tol = le—5 [u.m]
val diff = abs(radiusl.quantity — radius2.quantity)
val check = diff <= tol
println("Checked,if ${line.readableName} and, ${port.readableName}
uuuuhave matching sizes: $check")
if (diff > 0.0 [u.m]) {println(",uuDifference in radius_ size: $diff")}
model.addAssertion(line, if(check) FS.hasMatchingSizesVerified
else FS.hasMatchingSizesFalsified, port)

—

59

Chapter 5. Implementation

The resulting statements for the three functions here discussed are provided below:

Resulting statements

e Verified:
— Connection:
<connectionElement, Ver:connectedToVerified, line>
<line, Ver:connectedToVerified, connectionElement>
— Alignment:
<line, FS:isAlignedToVerified, port>
— Size:
<line, FS:hasMatchingSizesVerified, port>
e Falsified:
— Connection:
<connectionElement, Ver:connectedToFalsified, line>
<line, Ver:connectedToFalsified, connectionElement>
— Alignment;:
<line, FS:isAlignedToFalsified, port>
— Size:

<line, FS:hasMatchingSizesFalsified, port>

5.3.4 Boost pump attachment to tank’s bottom surface

An aircraft’s wing-mounted fuel tanks are very difficult to access internally, necessitating extra time
and specialized personnel to perform necessary maintenance. The components that need maintenance
the most frequently include fuel pumps because of their essential functions. To address this, many
aircraft manufacturers use the cartridge-in-canister pump configuration, which enables simple pump
removal without direct access to the internal volume of the tank and eliminates the need for it to be
emptied beforehand. This pump is typically placed at the bottom of the tank to ensure easy access
from the outside and to maximize the fuel suction assisted by gravity.

These characteristics make this requirement a good candidate for a geometric verification of the
pump’s design when integrated with the fuel tank. The checkAttachedToBottomForBoostPumps
function allows to verify whether a fuel pump is physically attached to the bottom surface of a
specific tank. To do so, users may activate the rule using the property Ver:attachedToRequired
linking the subject, the fuel pump, to the object tank.

Due to codex-geometry’s module not being yet complete, some functionalities are currently missing
and are taken directly from Opencascade. One of these functionalities is the surface extraction,
needed to identify the bottom surfaces of a fuel tank. Figure 5.8 illustrates the logic behind the
algorithm. The first step is to identify which surfaces can be categorized as bottom surfaces. To do
so, the extractSurfacesFromDesignSpace function, created for the scope of this project, is used.
By comparing the reference vector (0,0, —1) with each surface’s normal vector, this function returns
a list of surfaces that match the reference vector, meaning they are parallel up to a certain tolerance.
The algorithm proceeds checking two main aspects that constitute the attachment:

1. the distance between the pump and the closest point to it on the surface.

2. the misalignment offered by the pump’s longitudinal axis to the surface’s normal vector.

60

Chapter 5. Implementation

The first step on the process is to identify which of the bottom surfaces is the closest one to the pump.
To do so, the information on the pump’s root point is extracted from the knowledge graph and used
to find the surface that provides the closest distance from the root point, by applying point projection
algorithms. Listing 5.9 illustrates how to extract information from the model using statements. The
null object allows to get any object matching the pattern. In this instance, the hasRootPosition
property was not queried on the ”when” side because the pump is expected to have a valid geometry.
Instead, the production rule that produced the geometry itself is what is necessary for its existence.
Users must keep in mind that the GeoVerification tool will not function properly if they choose not
to add the necessary knowledge to the model whenever the available geometry creation rules are not
used.

Listing 5.9: Information extraction from the knowledge graph through statements

pumpRootIndiv = model.statements (pump, FS.hasRootPosition,
null). ().obj.getAs<SIndividual >()
pumpRootPoint = getPoint (pumpRootIndiv).asDoubleArray ()

The minimum distance between the pump’s geometry and the target surface is then computed and a
tolerance of 0.05 m is provided to account for the existence of supports below the fuel pump. After-
wards, the cross product between the directions is computed using equation 5.1 and a tolerance of 15
degrees is provided to account for misalignments between the two geometries. Overlaps in the geome-
tries are not computed here as they are already dealt by the checkContainedInForConnectionElements
function. At the end of the evaluation, users receive a message output stating the distance between
elements and their misalignment angle. If both measures respect the tolerance, the check is successful.

61

Chapter 5. Implementation

Req: Pump is
attached to bottom

Extract tank's bottom
surfaces

.

,,~Sl'.|’ccessful? (At least q\':lb‘\ No
" bottom surface available)

|

Yes

Get normal vector to

Cannot evaluate the attached
to bottom requirement

surfaces
I
tore failed statement
1o the model
¥
) . Mo
— Get pump direction
I
v Falsified
Gel pump root Get tolerance
position
I
N Mo
r. .
. e
. N |
¥ . b v
nd the surface d s mpute minimum
closest to the root ~ Foundsurface . Yes distance between the
oint \\ y ump and the surfac
v
- >
~ L 4 Is distance <= tolerance
h Get normal vector to > AND
surface angle <= tolerance?

.| Compute cross
“|product and get angle

-~

Get tolerance

tore verified statements to
the model

Figure 5.8: Logic workflow to check if a pump is attached to the bottom of a tank

Resulting statements
e Verified:
<pump, Ver:attachedToVerified, tank>

o Falsified:
<pump, Ver:attachedToFalsified, tank>

5.3.5 Intersection between pumps and ribs

In order to check for errors in the geometry caused by an overlap in positioning between structural
and fuel system components, it is possible to use the geometric representation of the wing ribs by
utilizing the knowledge of the aircraft’s structure. Due to their relatively large size, which could
cause geometry issues if they are positioned in areas where the ribs are close together, fuel pumps

62

Chapter 5. Implementation

are an excellent candidate to test this functionality. By understanding how their design decisions
affect and are affected by other systems, fuel system designers can optimize their choices early in the
development of an aircraft. This leads to a better understanding of the final product.

The knowledge of the ribs’ positioning must be known before this function can be activated. The
overlap with all the ribs is then calculated for each pump that is present in the model. An error
message identifying the overlapping region and the respective rib is made available, if any of the ribs
do in fact overlap with the fuel pump. When a problematic condition is identified, the all iterator
returns the information and the iteration ends. Therefore, if more than one rib was overlapping with
the component, it is possible that even after the user takes a corrective action, this function still
returns a falsified value in a next reasoning.

To make the development process easier, it was decided to go through an iteration with all of the ribs
for each fuel pump. This strategy has been determined to be feasible, with minimal time penalties
in simulation time. If a model becomes too complex, it may be preferable to modify the function
to only consider the ribs related to the fuel tank in which the pump is contained. Of course, more
geometric information about the architecture is required beforehand.

Figure 5.9 illustrates a case where a fuel pump intersects one of the ribs, where the intersecting rib
is colored in red, while Listing 5.10 illustrates the iteration loop through all the ribs for each pump,
made possible by the codex-geometry module.

Listing 5.10: Iterative loop to find intersecting ribs with fuel system components

val check = ribFaces.all { rib —>
val intersection = pumpGeo.intersect(rib)
val intersectionArea = model.getCeometryAdapter ().
getSurface(intersection)
val checkIntersection = intersectionArea — 0.0[u.m2]
if (!checkIntersection) {
println("The element ${pump.readableName} intersects the
uuLLLLLLTib #$ribNumber")
println(",,u0verlap: $intersectionArea™)
}

ribNumber ++
checkIntersection

Figure 5.9: Wing rib overlapping with a fuel pump

63

Chapter 5. Implementation

Resulting statements

o Verified:
<pump, FS:isContainedBetweenRibsVerified, fuelSystem>

e Falsified:
<pump, FS:isContainedBetweenRibsFalsified, fuelSystem>

5.3.6 Tank opening geometry

Tank openings are created using two different production rule: while the first rule is responsible for
creating the opening’s geometry itself, the second rule is responsible for integrating the opening to the
respective fuel tank. Since the opening is represented as a 2D geometric element, slight misalignments
between the tank surface’s normal vector and the direction vector used to create the opening could
result in a mismatch between the desired opening geometry and that created on the tank’s surface.
In order to verify if the geometries match, a production rule was put into place.

The tank’s surface is geometrically subtracted from the opening geometry using the geometry adapter
provided by codex-geometry. Because "negative” geometries are not possible, if the opening is com-
pletely on one of the tank’s surfaces, the remaining surface as a result of this operation should be
zero. If, on the other hand, this operation yields a non-null shape, it is possible to conclude that the
opening was not completely integrated on the tank’s surface, and thus the desired and actual opening
geometries differ. To account for slight differences due to geometric representation, a small tolerance
of 1 x 1078 m? is considered.

Resulting statements

e Verified:

<opening, Ver:containedInVerified, tank>

e Falsified:
<opening, Ver:containedInFalsified, tank>

5.3.7 Intersection between supply lines and tanks

In fuel system design, supply lines are one of the biggest timing consuming components to design
due to the need to properly route them through the design space. These lines can often assume
complex shapes, with multiple turns, and can be very long, passing through multiple tanks. In order
to aid the designer, a production rule capable of identifying overlaps between lines and fuel tanks was
developed. In order to trigger it, it is necessary that the user sets the property setCheckPipeTank-
Intersection between the individual belonging to the class FS:FuelSystem and the class of supply
lines, FS.SupplyLine. Because the main goal of this function is to find design inconsistencies between
pipes and tanks that the designer could not have identified, the rule is executed for any combination of
pipe and tank. Due to the amount of iterations required, it was identifying that calling this function
for every combination of supply line and tank was very time consuming and not optimized. In fact,
if n is the number of declared fuel tanks and k is the number of supply lines present in the model,
the amount of times this rule would be executed is given by combinatorial analysis as:

: _ mtk—1
#function calls = C}

As an example, if there are three tanks and two pipes in the model, this function would be called six
times: C5T27! = Cf = % = 6. This is not ideal since nested functions called by this rule, such as
the surface extraction function, would be called a large amount of times, requiring extra time and
increasing significantly the problem’s complexity. In an attempt to reduce the algorithm’s complexity,
the function was set to be called n times, one for each fuel tank. The algorithm then has to call the
extraction function only once for each fuel tank, thus reducing the time required for the simulation.
By exploiting the graph’s properties, it is possible to extract all the supply lines belonging to the
model at once in order to iterate through each of them, looking for possible intersections.

In case an intersection is found, the algorithm is capable of extracting geometrical information from

it. If a pipe intersect with a tank in multiple, separate zones, the intersection will be composed by

64

Chapter 5. Implementation

disjoint parts, which are identified by the algorithm and then split into individual shapes, each con-
taining their own geometries. By exploiting Opencascade’s capabilities, it is the possible to compute
the centroid for each intersection, which in turn can be saved to the model to give additional infor-
mation on the encountered problems. This strategy allows to add an extra layer of detail to
the GeoVerification tool, where not only it provides a binary result, as passed or failed,
but also additional information to aid the designer in providing corrective measures to
the model.

Whenever an overlapping condition is found, an individual representing the centroid of each intersec-
tion is created and the information is added to the model as illustrated in Listing 5.11.

Listing 5.11: Intersection centroid’s definition and its addition to the knowledge graph

barycenter = intersecProp.centreOfMass ()
pointInd = createPoint (barycenter [0][u.m],
barycenter [1][u.m], barycenter [2][u.m]).individual
// add the statement to the model
model.addAssertion(pipe, FS.hasOverlapWithTankPosition, pointInd)

Resulting statements

o Verified:
<supplyLine, FS:isNotOverlappingWithTankVerified, tank>

o Falsified:
<supplyLine, FS:isNotOverlappingWithTankFalsified, tank>

<supplyline, FS:hasOverlapWithTankPosition, pointIndividual>

5.3.8 Center of gravity shift

The fuel system design has a significant impact on the overall aircraft’s center of gravity (CoG)
due to the large amount of fuel contained in the tanks and the complex geometries these tanks can
assume. The development of a verification function capable of computing the center of gravity for a
specific tank or the entire fuel system and verifying if it is within the user-specified boundaries aims
to assist designers in focusing on the design and being advised by the GeoVerification tool if their
choices provide a CoG shift that exceeds the requirements. Codex geometry is capable of managing
the complex shapes that fuel tanks may assume and can easily provide the geometric centroid.

As a proof of concept, two separate functions were developed:

e checkLongitudinalCoGTank: provides verification capabilities focusing on a specific tank.

e checkLongitudinalCoGFuelSubsystem: provides verification capabilities that focus on all de-
clared tanks at the same time and may be useful for configurations where tail tanks play a
major role on CoG shift

Both functions are solely concerned with tank geometry and do not take into account different filling
levels or aircraft attitude. To be activated, these rules require that both the upper and the lower
bounds are set for the longitudinal axis by using the hasLongitudinalCOGLowerBoundRequired and
hasLongitudinalCOGUpperBoundRequired properties, which link a resource (a tank or the fuel sys-
tem) to a literal, representing the boundary value in meters - or any other unit representing a length.
The center0fMass() method is provided by Opencascade as a volume property and provides the
CoG in meters. It is required that the tank - or group of tanks - have an appropriate complete shape
in order to use it. Upper and lower bounds are independently verified, and a statement for each
boundary is added to the graph, indicating whether or not the boundary is respected. If both the
lower and the upper boundaries are respected, a single statement is added to the model stating the
information.

Resulting statements

e Verified:
<tank, FS:hasLongitudinalCOGBoundariesVerified, centroid>

65

Chapter 5. Implementation

OR
<tank, FS:hasLongitudinalCOGLowerBoundVerified, centroid>

<tank, FS:hasLongitudinalCOGUpperBoundVerified, centroid>
e Falsified:
<tank, FS:hasLongitudinalCOGBoundariesFalsified, centroid>

OR
<tank, FS:hasLongitudinalCOGLowerBoundFalsified, centroid>

<tank, FS:hasLongitudinalCOGUpperBoundFalsified, centroid>

Where the ”OR” represents the possible verified and falsified statements but not the combination
assumed by the model (i.e. if both boundaries are verified only the first verified statement is added,
otherwise one of the two statements below it could be added to the model, depending on the case.)

5.4 Certification and guidelines verification

This category of verification functions includes all geometry-related checks that are also subject to
certification specifications and guidelines provided by recognized organizations (e.g., EASA, SAE).
Furthermore, knowledge based on engineering experience was implemented in the form of verification
rules, which also fall under this category.

5.4.1 Available fuel mass

As for any fluid, aircraft fuel’s behavior is subject to environmental conditions, requiring additional
attention when sizing its storage compartment. EASA’s CS §25.969 requires that when sizing fuel
tanks, an expansion space of at least 2% of the tank’s total volume shall be considered for an eventual
fuel expansion. This is based on standard Jet A and Jet A-1 fuels, considering an expansion due to
a temperature change from 25 °C until the first engine fuel burn, at an expansion rate of 0.8%/10°C
[1]. In addition to that, it is important to consider the integration between tanks and fuel pumps,
where a portion of fuel may remain unreachable by the pump, thus accumulating in the so called
sump areas. As aircraft fuel tends to have a small portion of water associated to it, this accumulation
leads to water separation and sedimentation, as its density is higher than that of the fuel. The sizing
of this sump area is ruled by CS §25.971, which requires that the tank’s volume shall account for
a sump volume of 0.25L or 0.1% the tank’s capacity, whichever is greater. Figure 5.10 illustrates
the different volume definitions provided by SAE’s Aircraft Fuel System Design Guidelines (SAE
ATIR7975) [1]. Two verification rules were implemented to determine whether the available mass
meets the requirements, one focusing on the entire fuel system (all fuel storage components) and the
other on individual tanks.

In order to be activated, information regarding the aircraft’s fuel must be present in the model to
be properly queried. As the fuel is the same for all fuel system components, its presence is linked
to the fuel system itself and not to the components. Listing 5.12 illustrates the ”when” side for
the production rule responsible for computing the available mass in the fuel system. It only differs
from the second production rule by the first query, where instead of having an individual of class
FS:FuelSystem with a design space (or shape), we have an individual of class FS:FuelStorage,
a fuel tank. As soon as the relevant information related to the fuel is declared (i.e. its density)
and the mass requirements are found in the knowledge graph respecting the patterns requested, the
production rule takes place. Using the geometry adapter it is possible to compute the volume of each
tank or the complete tank arrangement, depending on which rule is triggered. Then, the volume
required for the fuel expansion and that needed by the surge are computed as follows:

V.=02%xV
Vs = max(0.25L,0.1 % V)

66

Chapter 5. Implementation

@ Ullage above Vent @ Usable Fuel @ Unpumpable and
ungaugable, but drainable
@ Expansion space Unpumpable but @ Undrainable (also part of
(also part of Ullage, gaugable

unpumpable and ungaugable)

when not full of fuel)

Vent Line |

Refuel shut-

Hi Level Sensor
off volume

FQl Sensor

Water Drain o @

Figure 5.10: Tank volumes as defined by SAE [1]

Where V. and V; are the expansion volume and the surge volume, respectively, and V is the total
tank volume computed with the getVolume () method. The available volume thus become

Vavailable =V - Ve - Vs

and the available fuel mass, my, is
my = pf* Vavailable

With py the fuel’s density. The calculated available mass is then compared with the mass requirement
set by the user, using the FS:hasMassRequired parameter property, and the check results successful
whenever the computed mass is equal or higher than the one set by the user.

Listing 5.12: When side for the verification function responsible for checking the available fuel volume
and mass for the fuel system

When<SIndividual, SIndividual, SRDFResource, SRDFLiteral, SRDFLiteral>

{fuelSystem, designSpace, fuel, mass, density —>
+(fuelSystem..FS.hasDesignSpace..designSpace)

+(fuelSystem..FS.hasFuelType .. fuel)

(fuel..FS.hasDensity..density)

(fuelSystem..FS.hasMassRequired..mass)

(fuelSystem..a..FS.FuelSystem)

} Do {...}
On the logger screen, a message informing the user of the available and required mass is displayed,

and the resulting statements are added to the graph. The resulting statements differ only by subject,
depending on whether the subject was the fuel system or the tank that had its mass evaluated.

+
+
+

Resulting statements

e Verified:

67

Chapter 5. Implementation

— Fuel system:
<fuelSystem, FS:hasMassVerified, mass>

— Tank:
<tank, FS:hasMassVerified, mass>

e Falsified:

— Fuel system:
<fuelSystem, FS:hasMassFalsified, mass>

— Tank:
<tank, FS:hasMassFalsified, mass>

5.4.2 Minimum distance between pipes and fuel tanks

Integral fuel tanks use the already existent aircraft structure as boundaries for their design space.
When designing the fuel system, in particular the pipe routing, it is advisable to maintain a minimum
distance between it and the surrounding structure and other components and subsystems [1]. A
minimum distance of 0.25 inch is considered to be acceptable according to SAE AS18802 [48] without
needing to demonstrate possible separation via clamping, which could be verified only at advanced
design stages.

Two production rules were developed to give the user more options when defining this requirement.
A first production rule allows the minimum distance between the pipe and the tank as a whole to be
verified. However, if pipes crossing multiple tanks’ boundaries are expected, their minimum distance
with the tank’s surface will most likely be less than 0.25 inches, unless an opening at least 0.25
inch larger than the tank’s radius is also provided. To cope with that, a second production rule,
able of dealing with the tank’s sides individually, was implemented. Assuming wing tanks to have
a hexahedral shape, six properties are available, where the directions are taken with respect to the
aircraft’s fuselage considering the front to be pointing towards the aircraft’s nose (towards negative
X axis). Figure 5.11 shows the reference frame provided by TiGL viewer and how it relates to the
aircraft representation. The fuel tank sides are defined using TiGL’s frame as follows:

e hasMinimumDistanceToFrontRequired: front side points towards the negative X axis.
e hasMinimumDistanceToRearRequired: rear side points towards the positive X axis.
e hasMinimumDistanceToTopRequired: top side points towards the positive Z axis.

e hasMinimumDistanceToBottomRequired: bottom side points towards the negative Z axis.

hasMinimumDistanceToLeftRequired: left side points towards the negative Y axis.
e hasMinimumDistanceToRightRequired: right side points towards the positive Y axis.

If the complete tank is to be considered for the analysis, the following property can be set

FS:hasMinimumDistanceToRequired

In order to activate this rule, it is necessary to define the combination of tanks and supply lines to be
verified by means of the above mentioned properties. These properties take as the subject the supply
line and as object the tank individuals.

The standard minimum distance of 0.25 inches can be changed according to the user’s needs by
using the property FS:hasMinimumDistancePipesTanks. If this property linking the individual of
class FS:FuelSystem and the distance is not found in the graph, the standard value is used. Codex-
quantity supports the algorithm on providing the correct conversion between units, if conflicts arise.
After setting the correct tolerances, the reference surfaces are extracted from the tank’s geometry.
The ”hasMinimumDistanceTo...Required” properties, each of which corresponds to a specific reference
vector, define which surfaces are supposed to be extracted. Once these surfaces are extracted, they
are sewed again into a single shape using the BRepBuilderAPI Sewing() provided by Opencascade.
This strategy allows to unite all the single pieces of surface that were extracted in order to evaluate
only once the minimum distance. The geometry for the pipes is extracted and then the minimum

68

Chapter 5. Implementation

Figure 5.11: Aircraft representation on TiGL’s main frame of reference

distance is computed, as illustrated in Listing 5.13. Because codex-geometry does not yet provide
integrated methods for performing surface loft computations, it was decided to proceed with the
implementation using the methods provided directly by Opencascade’s geometry kernel.

Listing 5.13: Algorithm to compute the minimum distance between a tank’s external surfaces and a
supply line

val tankGeo = OpencascadeConnector (model).
getOrCreateShape (designSpace.getShape())
val pipeGeo = OpencascadeConnector (model).

getOrCreateShape (pipe.getShape())
val distanceFunction = BRepExtrema_DistShapeShape (tankGeo,
pipeGeo)
distanceFunction.Perform() // compute the distance
// get the minimum distance between tankGeo and pipeGeo
val distance = distanceFunction.value()[u.m]
val check = distance >= minimumDistance

If the calculated distance is less than the reference distance, the check returns the verified statements.
A visual output is also provided to the user on the logger’s screen, stating the minimum distance taken
as reference and the algorithm’s computed minimum distance. The two production rules differ only
by the surfaces to be considered during the process and the resulting statements. Whereas only one
type of statement is required for the first production rule, the second production rule requires a clear
definition of which side of the tank respects or does not respect the minimum distance requirement.
To accomplish this, six distinct properties were defined for both verified and falsified statements. The
following is a list of possible resulting statements. It is important to remember that in order to verify
multiple tank surfaces (top, rear, etc...), multiple statements must be set, activating the production
rule multiple times and thus providing separate statements to each analysis run.

Resulting statements
e Verified:

— Tank:
<supplyLine, FS:hasMinimumDistanceToVerified, tank>

69

Chapter 5. Implementation

— Tank’s surface:
<tank, FS:hasMinimumDistanceToFrontVerified, tank>

<tank, FS:hasMinimumDistanceToRearVerified, tank>
<tank, FS:hasMinimumDistanceToTopVerified, tank>

<tank, FS:hasMinimumDistanceToBottomVerified, tank>
<tank, FS:hasMinimumDistanceToLeftVerified, tank>

<tank, FS:hasMinimumDistanceToRightVerified, tank>

e Falsified:

— Tank:
<supplylLine, FS:hasMinimumDistanceToFalsified, tank>

— Tank’s surface:
<tank, FS:hasMinimumDistanceToFrontFalsified, tank>

<tank, FS:hasMinimumDistanceToRearFalsified, tank>
<tank, FS:hasMinimumDistanceToTopFalsified, tank>

<tank, FS:hasMinimumDistanceToBottomFalsified, tank>
<tank, FS:hasMinimumDistanceToLeftFalsified, tank>

<tank, FS:hasMinimumDistanceToRightFalsified, tank>

5.4.3 Redundant components

An important aspect when designing the fuel system is providing means to accommodate failures
that may arise throughout the aircraft’s life cycle. Among different failure management strategies,
the redundancy of a component is widely applied by the industry when it comes to the fuel system.
A main requirement leading the development of this type of analysis is provided by CS §25.903 [24]
and AMC 128-A [17] regarding an engine rotor burst.

If a rotor burst may affect critical components such as engine feed pumps, AMC 128-A requires that
the component be duplicated and adequately spaced as an acceptable means of compliance. ETOPS
certification requirements, in addition to rotor burst requirements, call for crossfeed and valve redun-
dancy when dealing with twin-engine aircraft to perform ETOPS-certified operations, as stated in
the AMC 20-6 [17].These are just a few examples of how using the GeoVerification tool to verify a
component’s redundancy can be beneficial.

Although easily verified by humans, the verification of redundant components becomes more diffi-
cult when modeled in semantic-web optics, since counting operations using OWL (Web Ontology
Language) [41] are impacted by the ”"Open World Assumption”. According to this assumption, due
to the dynamic and distributed characteristics of the knowledge graph (or semantic webs), it is not
possible to assume that, at any time, all information is available or that the graph contains all the
necessary and existent knowledge on a certain resource [42]. Semantic webs rarely permit making
absolute assumptions, such as the case of counting elements, unless it is possible to precisely state it,
because new information may be determined by inference or manually added to the graph. Although
the model is said to have multiple components, this logic forbids making assumptions about their
uniqueness because it is impossible to predict whether or not new information will ultimately show
that the components are the same. To cope with it, OWL provides means of explicitly declaring that
two elements are not the same through the differentFrom property.

Redundancy verification rules were developed for fuel pumps and valves. The assertion of a compo-
nent’s individuality requires two steps, implemented in two separate functions:

1. component’s individuality verification
2. component’s redundancy verification

This strategy has been implemented separately for both fuel pumps and fuel valves, for a total of
four distinct production rules.

70

Chapter 5. Implementation

Component’s individuality verification

In order to respect the Open World Assumption, the first step in counting elements is to provide
a way to check whether components can be explicitly defined as different. Listing 5.14 illustrates
the "when” side for the function checkPumpIndividuality. The distinctive statements respon-
sible for activating this function, and thus required to be added to the model, depend on the
existence of the property FS:hasDistinctIndividualsRequired linking a fuel tank to the class
of components in question (i.e. the fuel pump class) and on the non-existence of the property
FS:hasDistinctIndividualsVerified. While the first is required to enable the check, the latter
allows for time optimization during the reasoning. In fact, in the absence of the latter, this rule would
be activated once for each pump present in this tank. As opposed to this, because the algorithm’s
main objective is to determine whether or not the available pumps differ from one another, once this
rule is applied it is applicable to all pumps.

Listing 5.14: When side for the checkPumplIndividuality function

When<SIndividual, SIndividual> {pump, tank —>

+(pump ..a..FS.FuelPunp)

+(tank..a..FS.FuelStorage)

+(tank..FS.hasDistinctIndividualsRequired..FS.FuelPump)

+(pump ..Ver.containedInRequired.. tank)

+not (tank..FS.hasDistinctIndividualsVerified..FS.FuelPump)
} Do {...}
When the query identifies resources on the graph matching the desired patterns, the algorithm pro-
ceeds extracting all the individuals belonging to the requested class (fuel pumps or fuel valves) and
filtering them by the Ver:containedInRe-quired property linking the components to the tank in
analysis. It then proceeds looking for the owl:differentFrom property between every pair of com-
ponents belonging to the filtered individuals. If the property is shared by every pair of elements, it
can be assumed that each element (component) in the sought-after class and present in the required
tank is a unique individual. Instead, if this claim does not hold for at least one pair of components,
the Open World Assumption makes it impossible to state that these two components are distinct
elements, which compromises the counting abilities. Lastly, the algorithm alters the graph by adding
the statements: one for each pump, stating its individuality or indetermination, and one for the tank,
stating if all components of a same class belonging to this fuel tank are distinct individuals. This
last statement does not have a falsified correspondent, meaning that, if the check turns out to fail,
no statement saying the tank does not have distinct individuals is provided. This follows the Open
World Assumption, as new knowledge saying otherwise may appear at any moment.
Listing 5.15 illustrates how it is possible to extract the individuals belonging to the FS:FuelPump
class who also belong to the designated fuel tank using Kotlin embedded iteration functions and fil-
tering capabilities. The method individualsOf allow to extract all individuals present in the model
belonging the same class while hasProperty () allows to correctly filter them according to the desired
property, where the individual in question is the subject of a statement.

Listing 5.15: Knowledge extraction and filtering in Kotlin

pumpIndividuals = model.individuals0f(FS.FuelPump).
{ element —>
element .hasProperty(Ver.containedInRequired, tank)
}.toMutableSet () // get all the declared pumps within a
//fuel tank
pumpIndividuals.remove (pump)

Component’s redundancy verification

Only after the individuality has been asserted it is possible to proceed with counting the elements
and verifying whether they meet the redundancy requirements. Listing 5.16 shows the ”when” side
for the checkPumpRedundancy function. It is clear how this rule is triggered if, and only if, the fuel
tank gained the FS:hasDistinctIndividualsVerified, which is provided by the previous function.

71

Chapter 5. Implementation

Listing 5.16: When side for the checkPumpRedundancy function

When<SIndividual , SRDFLiteral> {tank , minPumpNo —>
+(tank..a..FS.FuelStorage)
+(tank..FS.hasMinimumPumpNumberRequired .. minPumpNo)
+(tank..FS.hasDistinctIndividualsVerified..FS.FuelPunmp)
} Do {...}
The FS:hasMinimumPumpNumberRequired linking a fuel tank to a literal is required to be set by the
user in the model, whenever needed. Although not used in this project, a different approach might be
to define the requirements that call for component redundancies and then add the statements to the
model through inferences (for example, if a user specifies that ETOPS requirements must be met, it
is simple to infer through a production rule that a redundant crossfeed line, with redundancies on the
crossfeed valve, are necessary). Using a similar approach as seen in Listing 5.15, a new list of compo-
nents containing the property FS:isDistinctIndividualVerified with the fuel tank is extracted.
Having already identified the different components, the counting is straightforward in Kotlin. The
resulting value is then compared with the one set by the user through the hasMinimumPumpNum-
berRequired, or hasMinimumValveNumber, and a boolean check is provided stating the result of the
operation. Lastly, the consequent statements are added to the graph.

Resulting statements
e Verified:
— Component’s individuality:
<component, FS:isDistinctIndividualVerified, tank>
<tank, FS:hasDistinctIndividualsVerified, FS.FuelPump>
<tank, FS:hasDistinctIndividualsVerified, FS.FuelValve>
— Component’s redundancy:
<tank, FS:hasRedundantPumpsVerified, individuals>
<tank, FS:hasRedundantValvesVerified, individuals>
e Falsified:
— Component’s individuality:

<component, FS:isDistinctIndividualFalsified, tank>

— Component’s redundancy:
<tank, FS:hasRedundantPumpsFalsified, individuals>

<tank, FS:hasRedundantValvesFalsified, individuals>

5.4.4 Shutoff valves before engine adapter

According to CS §25.903 [24], segregation means are necessary to provide engine isolation if failures
arise. In the event of an engine malfunction, pilots may be able to isolate the engine by turning it off
and preventing fuel from being fed. This requirement can be met by incorporating shutoff valves as
a last-resort resource at the interface between the fuel system and the aircraft’s powerplant. In order
to verify the presence of a shutoff valve before the engine adapter, a production rule was developed.
This rule can be activated whenever an engine adapter has been declared to the model and is linked
to a feed line. The algorithm looks for patterns on the knowledge graph where a connection between
the queried supply line, which is connected to the engine adapter, is also connected to a fuel valve.
Provided the following pattern of statements exist, the rule successfully returns the connection as a
visual output to the logger.

<supplyLine, Ver:connectedToVerified, connectionPort>

72

Chapter 5. Implementation

5.4.5 Relative position between valves and lines

Using the GeoVerification tool it is possible to leverage geometric knowledge to provide additional
information about possible design mistakes that may greatly affect the system’s performance. Al-
though aircraft fuel has a high level of purity, the presence of water cannot be completely excluded
[17][1][1]. Led by ETOPS requirements concerning a crossfeed valve failure due to icing, a verification
rule was developed to study possible water accumulation points in the design. To be triggered, the
rule searches the graph for patterns where the connection between valves and lines has been declared,
as well as information on which connection port belonging to the valve the line is connected to, as
shown in Listing 5.17. Furthermore, the geometric knowledge regarding the components’ positioning
is required.

Listing 5.17: When side for the checkRelativePositionSOVLines function

When<SIndividual, SIndividual, SIndividual, SIndividual>
{valve, line, port, point —>
+(valve..Ver.connectedToRequired..line)
+(line..FS.isConnectedToPort .. port)
(port..FS.hasPoints..point)
(valve..FS.hasConnectionPort .. port)
(valve..a..FS.S0Valve)
(line..a..FS.SupplyLine)
(valve..a..GC.Complete)
(line..a..GC.Complete)
(point..a..GKM.Point)
.GC.Complete)

t4++++++++

—~

el
(o}
.
B
ct

The logic steps behind this rule are depicted in Figure 5.13. The algorithm begins by obtaining
geometric information about the supply line, as well as the points that form it and the location of the
connection port. Afterwards, a simple search between both extremities of the supply line, in order
to find the one closest to the connection port, is performed, using basic euclidean norm to calculate
the distance between the line’s point and the connection port itself. Since a connection is expected
between one of the line’s endpoints and the valve, a small tolerance of 1 x 1078 m is given to the
distance. If both extremities do not meet this tolerance, an error is provided and the simulation
ended.

After finding the closest point to the connection port, the points that constitute the supply line are
ordered with the first being that closest to the port itself. For each point, the relative difference on
height is computed with respect to the start point, Py, as follows:

— POZ

relative height = ————=
||Poz |

With P;, i = 1..n the points in the list of points defining the pipe’s geometry of dimension n + 1.
Three main outcomes are expected from this iteration cycle:

1. Relative height >= 2%: the starting point can be considered in a low position with respect
to the supply line, as at least one segment in the line blocks the fuel in a stationary condition
(when no pumps are actively providing the fuel flow).

2. Relative height <= —2%: the valve is assumed to be in a high position. In fact, considering
an aircraft in leveled flight, if the respective fuel pump stops, it is possible to rely on gravity to
passively distance the water formation away from the valve.

3. Relative height between —2% and 2%: no low or high position can be inferred, requiring the
evaluation of more segments on the line.

The 2% tolerance can be manually changed by the user if necessary. In cases 1 and 2, the algorithm
stops searching through the line once a condition is identified since only one favorable (high) or
unfavorable (low) position is necessary to evaluate the requirement. The user is given more details
about the location where the condition was discovered via the logger terminal. Case 3 on the other
hand makes the assumption that the line is flat up until the i-th point, needing a closer examination
of its geometry. The supply line is assumed to be completely flat and not to be in an icing-prone state

73

Chapter 5. Implementation

if the iteration process fails to identify a low or high position for the valve (cases 1 and 2). The small
amount of water that might be present in the line will be distributed throughout this line without a
significant concentration close to the valve that could cause ice formation.

Figure 5.12 depicts the concept of low and high valve position. It is possible to see that the supply
line on the left (in red) develops in such a way that it may lead to water accumulation close to the
valve, whereas the supply line on the right, in green, is designed in such a way that water can be
brought to a lower position, away from the valve, to avoid its accumulation.

Resulting statements

e Verified:
<valve, FS:isNotProneTolIcingVerified, supplyLine>

o Falsified:
<valve, FS:isNotProneTolIcingVerified, supplyLine>

<supplylLine, FS:hasOverlapWithTankPosition, pointIndividual>

Figure 5.12: Fuel valve connected to two supply lines

74

Chapter 5. Implementation

Req: Valve is not
prone to icing

Get supply line's point
list

—_—

h 4
Get connection port's |
position

h

Get the c_:losest point Get tolerance
from line to port

- b
- g _
r g \\
4 . :
- - Cannot evaluate the relative
4 . b .
< Closest point found? position between supply line
. o and valve
\\ p >
- y
- >
- /
-

Order point list

‘f / JA\ \
Get i-th point Hi =i+1]4—&;—(i=<n? M
~ 7
Eo Yes
A -
y N N
Y p e ~ . y d ‘ -
Compute relative N Relati hi) >= 0.02 ~Relative height >="
hetgnt » t:bs glaiive helght) 2= ST e Y o2
X . 4 - . -
A 4 :

N 4
Get tolerance e

Store falsified statements to
the model

Figure 5.13: Logic workflow to verify the relative position between a fuel valve and its connecting
supply lines

5.4.6 Rotor burst

Because aircraft requires large amounts of fuel to fly, the fuel storage position and geometry, together
with the components placed within, pose additional constraints to the design. Although engine
manufactures have made significant improvements to reduce uncontained rotor burst, this failure
mode, however unlikely, continues to occur. According to CS §25.903(d) [24], it is necessary to take
precautions during the design phase to mitigate, or at least minimize, the effects of an impact due to
an uncontained burst associated to the engines (UERF) or, less likely, to the Auxiliary Power Unit.
Due to the high speed rotating components of these devices, the enormous amount of kinetic energy

(0]

Chapter 5. Implementation

that can be released by their fragments has the potential to seriously damage the aircraft’s structure
by cutting into the fuselage, the fuel tanks, and causing damage to the fuel pumps, valves, and lines.
The fuel tank’s design is severely constrained by the potential harm caused by a rotor burst, so two
main tactics are used to lessen its effects. Following the identification of areas in the fuel tank that
may be harmed by a rotor’s fragment, dry bays can be considered. These areas of "dead space”
can be placed on the aircraft’s structure in such a way that, if this failure mode occurs, fragments
won’t be able to hit the fuel tanks because the dry bay is set up to cover potential hit zones, as
illustrated in Figure 5.14. The aircraft remains damaged but its critical components remain intact
and an emergency landing is not compromised by the fuel system [2].

Engine

Engine
Nacelle

Center Tank

Feed Tank

Dry Bay

Figure 5.14: Uncontained rotor burst example for a wing-mounted engine [2]

Whenever the creation of dry bays is not possible due to the large amount of fuel to be stored,
segmenting the tank on the hit zone can be done. Figure 5.15 shows the fuel tanks geometry for an
Airbus A330. It is possible to see the division of the inner wing tank into two. The smaller section,
responsible for the feed, is placed in an area where an uncontained rotor failure could potentially
damage the tank. Following this segmentation strategy, if this failure mode happens and affects the
aircraft’s structure, compromising the fuel tank, it is possible to isolate the affected portion of the
tank without losing the system functionalities by means of a split valve. If the rotor burst affecting
the tank was due to the opposite engine, it is still possible to feed the engine that was fed by the
compromised tank through the crossfeed valve, as can be seen in Figure 5.16. By enabling the
crossfeed valve, engine feed is still possible by the remaining feed system. In addition to providing
means to adequately feed the engines after a rotor burst, it is necessary to foresee during design
strategies to transfer fuel to account for fuel imbalance that could reduce in-flight stability [2].
According to AMC-128A, there are four main failure modes foe engines: three for the main rotor and
one the fan. Table 5.1 depicts these failure modes with the respective spread angles. The fragment
spread angle is defined as the angle measured fore and aft from the center where the plane of rotation
lies, for an individual rotor stage, initiating at the engine (or APU) shaft centerline [17].
AMC-128A states that knowledge of the hit zones and subsequent changes to the design to account for
the failure are necessary for acceptable means of compliance that can ensure airworthiness following
an uncontained burst failure mode. Changes to the tank’s design space, the addition of dry bays or
tank segmentation, adequate pipe rerouting, extensive study on the impact of placement of a critical
component on failure mitigation, component redundancy, and adequate spacing between redundant
components are a few of the strategies designers may employ.

76

Chapter 5. Implementation

CTR TANK
INNER TANK l INNER TANK
OUTER TANK A OUTER TANK
VENT TANK INR TK DIVISION
TRIM TANK VENT TANK

COLLECTOR

CELL \
®

I
@’:;NORMAL PUMPS

STBY PUMP®

EMER SPLIT VALVE

Figure 5.15: A330 - Fuel tanks [16]

Three of the four primary failure modes have been developed and integrated into the GeoVerification
tool to help engineers better understand the impact of a rotor burst on their design. In order to provide
the user with better control over the tool, three different properties were created, each responsible
for triggering a specific failure mode analysis. The correct use of these properties is provided below:

<fuelSystem, FS:setCheckSmallFragmentRotorBurst, rotor>

<fuelSystem, FS:setCheckMediumFragmentRotorBurst, rotor>
<fuelSystem, FS:setCheckFanRotorBurst, rotor>

Since the implemented logic for each function employs a similar methodology and the geometry of
the fragment being considered and the spread angle are the only variables that differ, the logic of the
algorithm is only described once for the first function. The remaining functions provide additional
information about the geometry of the fragment under consideration, but their implementation is
unchanged.

Single one-third disk fragment

The rules pertaining to a rotor burst are implemented through a different rule module called Fuel-
SystemUncontainedRotorBurstCheckRules, which is different from where the other verification rules
are implemented. The installation of various rule packages for a project is shown in Listing 5.18,
demonstrating the excellent modularity provided by Codex. It is possible to see how the rotor burst
rules and the geometry verification rules come from different packages. Although it is not necessary
for the rules to be divided into modules for proper operation, doing so enables focused analysis and

7

Chapter 5. Implementation

VALVE —

PUMP m— ENGINE FEED

Figure 5.16: A330 - Fuel system architecture [16]

Maximum fragment size Rotating element Spread angle Energy

1/3 disk fragment Rotor +3° Infinite
Intermediate fragment - o ..
1/3 bladed disk radius Rotor +15 Finite
Small fragment - o Protection by the
tip half of the bladed foil Rotor +15 primary structure
1/3 blade airfoil height Fan +15°

Table 5.1: Uncontained rotor failure - impact zones

cuts down on simulation time. Additionally, this modularity enables the sequential verification of
various design elements. One can, for instance, divide the design process into different steps, with the
first step containing only the rules required for the creation of the geometry, and the rule set needed
to carry out the geometry verification being installed separately after the creation.

Listing 5.18: Rule registering using Codex

install (RuleEngine) {
registerRules (FuelSystemProductionRules)
registerRules(GeometryCompletenessOntology.CompletenessRules)
registerRules (GeometryCheckRules)
registerRules (FuelSystemGeometryCheckRules)
registerRules (FuelSystemRotorBurstCheckRules)

A~ N N

}

In order to be activated, the rule requires geometric information on the rotor, such as the rotor disk
diameter, the original diameter and its positioning. It is considered that rotors have their rotation
plane in the YZ axis, perpendicular to the aircraft’s longitudinal axis. In addition, information re-
garding the class of the rotation object is needed. In the fuel system knowledge module, two different
classes are provided:

1. FS:EngineRotor: any of the engine’s rotors besides the fan.

78

Chapter 5. Implementation

2. FS:EngineFan: due to the large size of its blades compared to the disk, engine fans are consid-
ered as a separate class of rotor elements.

This rule requires a rotor element of type EngineRotor to be activated. Additionally, information
regarding the fuel system critical components must be given. In order to assert a component is
critical, a class assertion can be added to each individual containing the FS:isCriticalComponent
class. In Listing 5.19 an example of adding such statement to components of class FS:FuelPump is
given.

Listing 5.19: Example of adding a class assertion to multiple components in Codex

// add the assertion of critical component
assertedModel.individualsOf (FS.FuelPump). {

assertedModel.addClassAssertion(it, FS.CriticalComponent)
¥

Users have the possibility to change some of the function’s parameters such as the spread angle by
adding additional statements to the model. Three parameters accept manual override through the
statement pattern

<fuelSystem, property, value>

1. Spread angle : defines the fore and aft angle made with the rotation plane. Set with
FS:hasSpreadAngle.

2. 1 resolution: sets the sampling interval for the spread angle ¥. Set with FS:hasPsiResolution.

3. ¢ resolution: this angle sets the sampling interval for the translational angle ¢ = [0,2x]. Set
with FS:hasPhiResolution.

The algorithm looks for information regarding the aforementioned values and using the codex-quantity
capabilities, converts them to degrees, in case the information was given in radians. If no information
can be found on the graph, standard values are provided (see Table 5.2).

Parameter Value

P According to the fragment type and size. See Table 5.1.
1) resolution 1.0°
¢ resolution 5.0°

Table 5.2: UERF - Standard values for the reference angles

For every critical component defined to the model, the function continues creating a discrete map of
angles for both the translational plane, or rotation plane, and the spread plane, normal to the rotation
plane, according to the defined resolution. Figure 5.17 illustrates both the translational angle ¢ and
the spread angle ¢ and how they interact with the target (critical component). For every combination
of discrete ¢ and psi angles, a trajectory path is created using the fragment’s geometry. As a first
step for defining the trajectory path, the fragment’s geometry is defined. For the single one-third
disk, the following is defined:

D —dgr 2b

b= 7Hre uced — D o
3 duced = (D + 3)
Dcentriod = Hreduced * COS(SOO)
Hiequce o

Rlcentroid = d2 2 * 005(60)

Where b is the blade length, dr the rotor disk diameter, D the original diameter, H; ¢4y ceq the reduced
height diameter, Dceptroiq the fragment’s diameter from its centroid and Rlceptroiq the fragment’s
radius from its centroid. For each value of translational angle v, the fragment’s locus point is created:

locus = (PR$7 PRy + Rlcentroid * COS ¢7 PRZ + Rlcentroid * sin ¢) (52)

Where PR, PR,, PR, are the x, y and z coordinates for the rotor’s position. In order to create the
trajectory, first a trajectory shape defining the reach the burst may have is created on the rotation

79

Chapter 5. Implementation

plane YZ. This trajectory is considered to be quadrilateral, starting at the locus point. The definition
of the trajectory’s reach is done once for the fragment and reused to map the complete probable hit
zones. The four points defining its shape are defined as follows:

P) = (PR, locusy, locus, + Deentroid/2) (5.3)
Py, = (PR,,100,locus, + Dcentroid/2)

P; = (PR, locusy, locus, — Deentroid/2)

Py = (PR,,100,locus, — Deentroid/2)

Since the analysis focus only on the aircraft, a radius of 100 meters was defined more than enough
to compute the burst’s reach. For each translational angle ¢ mapped, the trajectory a rotation pf
¢ is performed taking as center of rotation the locus point and the axis of rotation the X axis. In
addition, due to its rotating characteristics, a tangential exit is expected for the fragment, leading
to an additional rotation of +90.0°. This additional rotation is defined by an extra parameter called
rotationDirection. If not declared to the model, a standard rotation of +90.0°, corresponding to
a clockwise rotation, is performed.

80

Chapter 5. Implementation

TRANSLATIONAL RELEASE

FRAGMENT N

SWEPT PATH ’f\“ ./ TRANSLATIONAL RISK
ANGLE
SEE FIGURE 6 _
FOR DETAILS

PLANE OF ROTATION

SPREAD RISK ANGLE

PLANE NORMAL TO PLANE OF ROTATION

Figure 5.17: Threat window for a rotor burst according to AMC-128A [17]

Listing 5.20: Trajectory path rotation due to the translational angle ¢

trajectoryFace = createFace(trajectoryWire).
rotate(locusPoint, AxisX, phiQuantity).
rotate(locusPoint, AxisX, rotationAngle)

To produce the translational-spread trajectory map, an inner loop iterates through the discretized
spread angles 1 and adds a second rotation to the trajectory path. The critical component’s geometry
and the final trajectory geometry, which represents the path after the three rotations, are intersected
for each potential trajectory. If an intersection is identified, the respective (¢, 1) pair is printed to the
screen, together with the rotor and the component’s identifiers. An example of these outputs is pro-

81

Chapter 5. Implementation

Listing 5.21: Output example for the rotor burst production rule

>> Detected hit for Rotor 1 — Right Engine and Left

vided in Listing 5.21. boost pump in center tank: Phi 80.0, psi —1.0
>> Detected hit for Rotor 1 — Right Engine and Left

boost pump in center tank: Phi 85.0, psi —1.0

The user is also given access to BREP files that contain the overlapping geometries, which improves
the problem’s ability to be visualized. Users can provide solutions by pinpointing the exact location
of the issue using these geometric files. Finally, the probability of direct hit is computed and the
resulting statements are added to the model. The probability of direct hit, (P), is calculated as
a fraction considering the possible direct hits individuated my the algorithm and all the possible
combinations of ¢ and :

p_ #direct hits

n*xm

* 100%

Where m and n are the number of discrete translational and spread angles.

Intermediate fragment

Intermediate fragments are assumed to have finite energy and a maximum dimension equal to one-
third of the bladed disk radius. Figure 5.18 depicts the fragment’s dimension with respect to the
rotor. According to AMC 128-A, a spread angle of 5° can be considered for calculations (see Table
5.2). Listing 5.22 illustrates the "when” side for this production rule, which is similar to all three

e TS
- - = y

1
J/ N /3 (R +b)

Whera R =disc radius
b =biade length

Maxirmnum dimension = 3 {R + b)
Mass assumed to be Yaoth of bladed disc
CG iz taken to lie an the disc rim

Figure 5.18: Dimensions for the intermediate fragment [17]

rules.

82

Chapter 5. Implementation

Listing 5.22: When side for the medium fragment rotor burst verification rule

When <SIndividual, SIndividual, SIndividual, SRDFLiteral,

SRDFLiteral, SIndividual> {system, component , rotor,

rotorDiskDiameter , originalDiameter, rotorPoint —>
+(system..a..FS.FuelSysten)

+(component ..a..FS.CriticalComponent)

(system..FS.setCheckMediumFragmentRotorBurst..rotor)

(rotor..a..FS.EngineRotor)

(rotor..FS.hasRotorDiskDiameter .. rotorDiskDiameter)

(rotor..FS.hasDiameter ..originalDiameter)

(rotor..FS.hasPoints..rotorPoint)

(rotorPoint..a..GKM.Point)

(component ..a..GKM.Shape)

(component ..a..GC.Complete)

} Do {...}

In order to create the locus point for the trajectory path, the following parameters are used:

t++++++++

d

=

R:

o |

Ryraded =

b= Rpiaded — R
R+b

dmax - T

With R the disk radius, Rpjadeq the bladed radius, b the blade length and d,,., the fragment’s
maximum dimension. Since now the fragment is assumed to lie on the disk radius, the locus point
can be easily found as:

locus = (PRy, PR, + R * cos ¢, PR, + R * sin ¢) (5.4)
And the points defining the trajectory:

= (PRg,locusy, locus; + dmaz/2) (5.5)
= (PR,, 100, locus, + dmaz/2)

= (PRy,locusy, locus, — dpmqz/2)

= (PR,,100,locus, — dmaz/2)

The remaining variables remain the same as the previous failure mode. Figure 5.19 illustrates the
top view of the fragment trajectories for a spread angle of 5°. The tangential characteristic due to
the rotation path is illustrated in Figure 5.20, where the trajectory paths are represented in blue. It
is also possible to see the fragment’s dimension. Moreover, it is clear that the locus point for the
intermediate fragment lies at the disk’s rim, at the blades’ root positions.

Fan fragment

Because engine fans have large blades, it is assumed that any fragments will have a maximum size
equal to one-third of the blade airfoil, with the fragment’s centroid is assumed to lie at its centerline.
As seen in Table 5.2, a spread angle of 15° is considered. The fragment’s dimensions are defined as
follows:

dr

r=17

2

D

Ryiaded = 5
b = Ryladeda — R
by

dmaw = -

3

83

Chapter 5. Implementation

ETiGL

Figure 5.19: Trajectory paths for the intermediate fragment - top view

Where by is the fan’s blade length. All the other quantities have been defined above and their meaning
remain the same. The locus point is given by:

locus = (PR,, PR, + (% *x by + R) *cos¢, PR, + (g x by + R)*sin¢) (5.6)

The points defining the trajectory path are defined using Equations 5.5. Figure 5.21 depicts the front
view of a fan fragment’s trajectory path. The fragment corresponds to one-third the blade’s length.
Figure 5.22 depicts the BREP output for a generic system that demonstrates the function’s visual
capabilities. This system is composed of three boxes in space, an engine fan, and an engine rotor. The
failure modes of an engine rotor intermediate fragment and an engine fan fragment were investigated,
and the trajectory paths colliding with at least one of the boxes are depicted. The fan fragment is
represented by the front disk with orange trajectories, while the engine rotor is represented by the
back disk with purple trajectories. This analysis is depicted in detail in Figure 5.23. Because of
the different radii and failure modes of the disks, the fragments take on different dimensions. This
is yet another demonstration of Codex’s incredible ability to deal with geometry verification in a
straightforward manner.

Resulting statements

The following are the possible resulting statements for the three verification rules concerning an
uncontained rotor burst. If the verification rule identifies a possible hit with the component, an
additional statement is added to the model that links the component to an individual and gathers all
properties related to the probability of direct hit in order to provide additional information about it
other than its value. This is necessary to inform the user of the failure mode that occurs in order to
provide the stated probability of hit. Listing 5.23 depicts the creation of a hit probability individual
and the statements associated with it in order to better characterize it.

o Verified:
— Single one-third disk fragment:
<component, FS:hasSmallFragmentCollisionPathWithVerified, rotor>
— Intermediate fragment:
<component, FS:hasMediumFragmentCollisionPathWithVerified, rotor>
— Fan fragment:

<component, FS:hasFanFragmentCollisionPathWithVerified, rotor>

84

Chapter 5. Implementation

-

A
= //’ ’(/"
) / '

Figure 5.20: Trajectory paths for the intermediate fragment - front view. Rotor disk in red and blade
path in green

o Falsified:
— Single one-third disk fragment:
<component, FS:hasSmallFragmentCollisionPathWithFalsified, rotor>
<component, FS:hasProbabilityDirectHit, probHit>
— Intermediate fragment:
<component, FS:hasMediumFragmentCollisionPathWithFalsified, rotor>
<component, FS:hasProbabilityDirectHit, probHit>
— Fan fragment:
<component, FS:hasFanFragmentCollisionPathWithFalsified, rotor>
<component, FS:hasProbabilityDirectHit, probHit>

Listing 5.23: Probability of hit as an individual and related knowledge modeling

val probabilityDirectHit = (resultlList.size.toDouble() /
(phiSteps.size * psiSteps.size)) [u.ul]
val probHitIndv = model.createAnonymousIndividual (FS.ProbabilityRotorHit)
model .addAssertion(probHitIndv, RDFS.comment,
model.createTypedLiteral(“Probabilityuofuaudirectuhitufromuausmall
vuuufragment (high energy) -yrotor: ${rotor.readableNamel}. Value in
vuuudecimalsof yunit (e.g.,0.1,=,10%)"))
model.addAssertion(probHitIndv, FS.hasValue,
model.createTypedLiteral (probabilityDirectHit))
model.addAssertion(component, FS.hasProbabilityDirectHit, probHitIndv)

85

Chapter 5. Implementation

X

IS el . 4

Figure 5.21: Trajectory paths for the fan fragment - front view. Rotor disk in red and fan blade path
in green

Figure 5.22: Trajectory paths due to a fan and an intermediate fragment burst for a generic system

86

Chapter 5. Implementation

Figure 5.23: Detailed front view of a fan and an intermediate fragment trajectory

87

Chapter 6

DLR-D150: Fuel system modeling,
verification and results

This chapter offers a use case based on a twin-engine modern commercial aircraft that was developed
to show the full range of the GeoVerification tool’s capabilities as well as the potential of codex-
geometry for modeling complex geometries. To demonstrate the validity of the tool, the modeling
process will be presented, along with the use of the GeoVerification tool to validate the created ge-
ometry, and the reader will be given the results of this simulation process.

Different fuel system architectures [2] were examined in order to gather data regarding the trans-
fer architecture, quantity and placement of fuel pumps, crossfeed strategy, number and placement
of fuel tanks, separated by fuel feed and fuel transfer tanks, APU feed architecture, and refueling
architecture before making a decision on the architecture of the system. Since the Airbus A320 has a
relatively complex fuel system architecture that could benefit from codex-geometry to its modeling,
it was determined that this architecture could serve as a starting point to create a proof of concept
for the GeoVerification tool. Figure 6.1 depicts the fuel system architecture for an A320, where the
feed, transfer, refuel and crossfeed lines can be seen, together with their respective fuel pumps and
main valves. In this architecture the main boost pumps in the center and inner wing tanks can be
seen, feeding to both the left and right engine independently. In addition, a single crossfeed valve
architecture and the low-pressure valves separating the fuel system from the engine can be found.
Although the A320 serves as inspiration to define the fuel system, the aircraft of reference is a design
created at the German Aerospace Center [19] and is referred to as D150. A representation of this
aircraft using TiGL viewer can be seen in Figure 6.2.

Because the D150 is designed as a small-medium range (SMR) aircraft, a wing-only fuel tank ar-
chitecture is capable of providing enough fuel storage to meet the mission requirements. A five fuel
tanks architecture was chosen; the center tank, the left and right innermost wing tanks, and the two
remaining outer wing tanks on the left and right of the wing are in charge of providing engine feed
capabilities and transferring the remaining fuel to the inner wing tanks, respectively. In order to
accommodate the eventual surge/venting system, an additional requirement defining two additional
spaces at the most outer section of both wings was set, though they were not explicitly modeled for
the purposes of this use case. Section 6.1 contains a detailed explanation of the geometric modeling
of the fuel system architecture.

Since the goal of this proof of concept is to demonstrate how the Codex framework, and in particular
the codex-geometry module, can be used to leverage geometry verification, a simulation workflow was
set up and is depicted in Figure 6.3. The GeoVerification tool is divided in a set of three separate files
containing each a set of verification rules, which is aimed at better segmenting the design process,
allowing users to choose specific packages of rules to be used at a certain time. These rules were
divided into modules as follows:

e FuelSystemGeometryCheckRules: contains all the rules in Section 5.3.

e FuelSystemRotorBurstCheckRules: contains the three production rules describing the three
considered failure modes for an uncontained rotor burst.

e FuelSystemCertificationRelatedCheckRules: contains all the certification related production
rules, minus those responsible for evaluating the uncontained rotor bursts.

88

Chapter 6. DLR-D150: Fuel system modeling, verification and results

— - fC ————————————— T~
-7 enter
:::lfr | tank Cross feed valve ~—

| Outer
tank
@ Transfer
@ valve

| Outer
| tank

| Transfer
valve

S8

Sequence
Refuel/ valve

|
|
|
|
|
|
|
|
|
|
Defuel pipeline |
|
|

I
C

Refuel Refuel
coupling APU pump coupling

Low pressure valve

APU

Figure 6.1: A320’s fuel system architecture [18]

The process starts by the fuel system modeling using the geometry syntax provided by codex-
geometry. In this step, the design space for the fuel system is created, fuel tanks are then defined
based on their desired volume and components are placed. Fuel pumps are set first and their posi-
tioning lead the pipe routing design, together with the shutoff valves’ placement. Supply lines are
manually defined through the definition of its root points, which linked together define the lines spine.
The geometric knowledge regarding the shutoff valves, such as their positioning and port diameter,
is also added during this step. The first reasoning step is led by registering the parametric rules, pro-
vided by codex-parametric, which helps to define any missing geometry parameter for the fuel lines
[20], and the geometry creation production rules, responsible for creating the complete fuel system
architecture. After the activation of the production rules, if the reasoning converges, the architec-
ture is created and saved to a BREP file. A second knowledge base is then created by copying the
complete model created and the production rules regarding the geometry verification and geometry
completeness are registered. This activity of creating different knowledge bases for each step on the
process allows to work with only the necessary rules for the specific step, reducing significantly the
simulation time while allowing a better control on code errors’ identification and management. To
this second knowledge base, all the geometric requirements are set to the model through statements.
A second reasoning takes place and evaluates all the geometric requirements using the production
rules described in Section 5.3, providing timely information on identified geometric problems on the
logger screen.

After the reasoning, a list of verified and failed statements are provided to the user, providing in-
formation on the test executed as a property and the related individuals. At this stage, if there
are requirements that could not be met, changes on the geometry may be done, thus requiring the
rerunning of the first knowledge base and the geometry creation rules. On the other hand, if the
design results to be adequate, it is possible to proceed with the second layer of verification, focus-
ing on the geometry-related certification and functional requirements. By adding a third knowledge
base and importing to it the previous knowledge, the certification rules defined in Section 5.4 can
be registered and executed. As before, the simulation output provides a list of all the successful
and failed requirements, providing the user indications of design fallacies. In addition, by extracting
information added to the graph by the verification rules, engineers can gather additional information
on corrective measures to their design. As an example, suppose that, after running the verification
rules, a problem is identified due to an intersection between a supply line and the center feed tank.
In order to make geometric corrections to the model, such as adding a tank opening, designers can
first look at the model for patterns linking to the property that states this problem, and then look for
geometric information on the precise point in space the intersection occurs. When all the conditions

89

Chapter 6. DLR-D150: Fuel system modeling, verification and results

EITiGL

Figure 6.2: DLR’s D150 concept aircraft [19]

are satisfied after providing design corrections, the model is said to be geometrically coherent, and as
a result, the geometry is said to be verified.

The sections that follow offer a more thorough explanation of each of these steps as well as interesting
examples of how to use the geometry syntax to build the fuel system.

~— Contains information on how
Parametric rules and to create supply lines, Add the geometric
geomelry creation fuel pumps, valves related requirements

production rules

Fuel system modeling

]

Geometry
Fuel system properties (mass, fuel type, etc)
Relationships (e.g. assign tank shape to tanks)
Set parametric requirements

YES—» Parametric model reasonUntilConverged()

Contains the necessary paramelric
infarmation taken from the Knowledge
Database and all the properties and
data inherited from the modeled system

Model has no geometric fallacies
New statements added to the model
that will be used for subsequent checks

l«——— Complete model |#¢——vES: Converged? reasonUntilConverged() («—— Complete model

This model contains all the properties,
data and geometries inherited

from the previous models and

additional geometric data and statements
added by the production rules

reasonUntiiConverged()

Uncontained rotor burst
and certification related
production rules

Geometry

check production
rules

YES

Verified Model

Figure 6.3: Simulation process from system modeling to system validation

90

Chapter 6. DLR-D150: Fuel system modeling, verification and results

6.1 Geometry modeling

The process starts with the design space definition for the fuel system. The D150’s data is provided
in a XML file following the CPACS standard [45]. Using the python script described in Subsection
5.2.3, the geometric definition of wing spars and wing ribs was extracted and the design space was
created. Using the A320’s fuel tank volumes as reference, the volume requirements for the D150’s
fuel tanks are set in Table 6.1.

Tank Volume
Center tank 4 m?
Inner wing tanks 6 m?® / each
Outer wing tanks 0.8 m® / each

Table 6.1: Fuel tank volume requirements - D150

Figure 6.4 illustrates the design space created from the wing structural definition found in CPACS,
using TiGL. The red elements are the wing’s front and rear spars and the wing ribs, while the
overlapping blue loft represents the design space that can be extracted from the ribs positioning. A
production rule allows to divide the design space volume according to the requirements. Table 6.2
depicts the volumes each tank assume after the design space segmentation. A large amount of the
design space has been dedicated to the venting system and a portion of it could be further used for
fuel storage.

~L-

ETiGL

Figure 6.4: Aircraft wing structure (in red) and extracted fuel system design space (in blue)

Tank Volume

Center tank 4.053 m?
Inner wing tanks 6.005 m?® / each
Outer wing tanks 0.883 m? / each

Surge/vent 1.177 m3 / each

Total volume 18.231 m?

Table 6.2: Fuel tank volume after design space segmentation - D150

91

Chapter 6. DLR-D150: Fuel system modeling, verification and results

As seen in Subsection 5.2.3, the geometry extraction for the aircraft wing structure provides informa-
tion only on the right wing. After the design space has been divided into sections and the required
lofts have been built, it is possible to make mirrored entities that represent the left side wing tanks.
It’s crucial to point out that only the fuel tank geometry has been created thus far; the actual fuel
tank has not yet been connected to it. In Figure 6.5, the created fuel tanks are shown, with the
outermost volume serving as the surge/venting tank’s available volume before the outer wing tank
and inner wing tank. The center tank, which is constructed using the wingbox structure, is housed
in the interior’s most central and inner volume.

~1

Figure 6.5: D150 - From most outer to most inner, the fuel tank design spaces are as follows: surge
tanks (yellow), outer wing tanks (purple), inner wing tanks (red), and center tank (green).

After creating the design spaces, the tank individuals are created and their design space linked to
them through the following statement pattern:

<tank, FS:hasDesignSpace, designSpace>

The entity representing the fuel system is created as can be seen in Listing 6.1. A label property is
added to the element in order to name it. Although not necessary for the machine, adding labels
provides a more human-friendly model.

Listing 6.1: Fuel system individual creation and structural inputs

fuelSystem = assertedModel.

createAnonymousIndividual (FS.FuelSystem)
assertedModel .addAssertion(fuelSystem, RDFS.label,

assertedModel.createTypedLiteral ("Fuel, System"))

The chosen architecture is composed by six boost pumps placed as follows:

e Center tank: two boost pumps are placed close to the front most outer portions of the center
tank, one to the left and one to the right side, each providing feed capabilities to the respective
engine individually.

e Inner tanks: each wing’s inner tank contains two boost pumps, responsible for feeding the
respective engine. Both pumps are sized equally in order to provide equal capabilities of engine
feed, allowing to maintain the correct fuel pressure to the engine in case of a single failure.
The boost pumps are placed separated by wing ribs to allow adequate distancing in case of an
uncontained rotor burst.

92

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Fuel is transferred from the outer wing tanks to the inner wing tanks using gravity, taking advantage
of the wing’s geometry. The placement of the pump makes use of the production rule’s ability to
determine the ideal location. By applying the production rule, it is possible to give an approximate
position based on the system’s top view, without the need to correctly place it on the Z axis.

The final root point following the application of the production rule is collected in Table 6.3 along
with the desired pump position that is input given for each fuel pump. It is easy to observe how the
X and Y root position respect closely the desired position. the Z position is such that the pumps
root points lie on the tanks’ bottom surface. A tolerance of 0.5 meter was used and judged to provide
good results on the pumps’ placement. The convention to enumerate the pumps is provided in Figure
6.6. In order to create the pumps, a first reasoning is conducted to activate the necessary production

@ Pump2

EITiGL

Figure 6.6: Fuel pumps - naming convention

Pump Desired position [m] Computed root position [m]

1 (14.0, -1.0, 0.0) (13.860, -0.992, -1.655)
2 (14.0, 1.0, 0.0) (13.860, 0.992, -1.655)
3 (14.70, 3.18, 0.0) (14.698, 3.184, -1.469)
4 (14.8, 2.2, 0.0) (14.667, 2.510, -1.596)
5 (14.70, -3.18, 0.0) (14.699, -3.184, -1.468)
6 (14.8, -2.2, 0.0) (14.666, -2.510, -1.596)

Table 6.3: Input position and calculated root position for the fuel pumps

rules and build the geometries. To the pumps creation follow the supply lines definition. Two main
feed lines were created in order to feed both engines separately. Boost pumps 1, 5 and 6 connect
to the left engine feed line, while pumps 2, 3 and 4 connect to the right main feed line. In order to
build the connection between pumps and the main feed lines, it is possible to use the recently created
knowledge regarding the connection port belonging to each of these components. By exploiting their
positioning and direction contained in the knowledge graph, it is possible to define the supply line’s
shape and direction. In fact, by exploiting the port’s direction to create the first segment on the
supply line connected to the pump, it is possible to avoid possible misalignment errors. Listing 6.2
illustrates the creation of the supply line connecting the pump 1 to the main feed line, where the
connection port’s positioning and direction is used to create the first segment of the line by connecting
the polePumpiPort and the polel. The line is created using the createSupplyLineWithRounded-
Edges (), which is responsible for verifying the provided parameters and add the necessary knowledge

93

Chapter 6. DLR-D150: Fuel system modeling, verification and results

to the model through statements, in order to trigger the necessary geometry creation rules.

Listing 6.2: Supply line creation from boost pump related knowledge

// first line connecting the pumpl to the system

// get the port direction from the model
directionPortl = getDirection(completelModel.statements (portl,
GKM.hasDirection, null). ().obj.getAs<SIndividual >())

// polel will be in the same direction as polePumpPortl
polel = createPoint(polePumplPort.x + 0.2[u.ul] x directionPortl.x,
polePumplPort.y + 0.2[u.ul] * directionPortl.y,
polePumplPort.z + 0.2[u.ul] * directionPortl.z)
pole2 = createPoint(polel.x + 0.2[u.m], polel.y , polel.z — 0.05[u.m])
pole3 = createPoint(pole2.x + 1.5[u.m], pole2.y , pole2.z — 0.1[u.m])
linel = createSupplyLineWithRoundedEdges(assertedModel,
1list0f (polePumplPort, polel, pole2, pole3), curveRadius,
innerPipeRadiusEngFeed, outerPipeRadiusEngFeed)

The top image in Figure 6.7 shows the main feed supply lines and their connections to each of the
supply lines leading to the six boost pumps. Two detail views of pumps 1 and 2 are displayed at
the bottom. In these views, a misalignment error in the connection with boost pump 2 can be seen
because the related connection port’s information was not used when creating the line. On the other
hand, since the aforementioned characteristics were taken into consideration during the design, boost
pump 1 has a proper connection. Listing 6.3 displays the output message delivered to the user in
relation to the boost pump 2’s described geometric error.

Listing 6.3: Output message describing a misalignment error for pump 2

Checked if line 2 from Right boost pump in center tank is aligned
to Port 2 in Right boost pump in center tank.
>> line 2 from Right boost pump in center tank is aligned to
Port 2 in Right boost pump in center tank from Right boost
pump in center tank: FALSE, angle: 4.856391638587414 [deg]

Designers are required by certification standards to include methods for isolating specific fuel system
components in the event that a failure or damage is confirmed. The system can be given isolation
capabilities by simply adding shutoff valves. The main feed lines between the center tank and the
corresponding inner wing tank for each engine have valves added because they can both be used as
feed tanks. The main goal of these measures is to isolate the center tank in the event of a failure and
to prevent fuel flow to this tank when it is empty and its pump fails. A second pair of shutoff valves
are added between the last portion of the engine feed line and the engine fuel adapter, providing
means to isolate the engines in case of failure, as required by CS §25.903.

Through the crossfeed line, which connects the left and right feed lines with a fifth shutoff valve, fuel
can also be transferred from the left to the right side. In order to comply with ETOPS specifications,
a second crossfeed line is added in parallel to the first. To improve the engine feed and fuel transfer
management capabilities and to improve the geometric data that engineers have at their disposal, a
total of six shutoff valves are added at this stage, and their positioning can be found in Table 6.4.
Points relative to the supply lines are used as a reference to position them. The direction of the valve
is assumed to be the same as the flow of the line to which it must be added. In order to create the
geometry, a reasoning takes place. At this time, there may be geometric overlaps between the recently
created valves and the connecting supply lines. It is possible then to leverage the knowledge created
by the production rules that generated the valves to find the exact points in which the connection
must happen, through the connection ports, and adjust the lines’ dimension. An additional reasoning
takes place to change the lines’ geometry. The geometry should have converged at this point while
still adhering to the specifications.

Listing 6.4 illustrates the parametric approach to execute knowledge modeling for Valve 1, demon-
strating how information on the supply line is used to correctly position the component.

94

Chapter 6. DLR-D150: Fuel system modeling, verification and results

iGL

EdTicL

Figure 6.7: Engine feed line and boost pumps (top), detailed view of boost pump 2 (bottom left),
and detailed view of boost pump 1 (bottom right)

Listing 6.4: Knowledge modeling to create a shutoff valve geometry

val valvel = assertedModel.createAnonymousIndividual (FS.S0Valve)

assertedModel .addAssertion(valvel, RDFS.label,
assertedModel.createTypedLiteral ("Valve, 1"))

// get valve’s positioning based on line 1’s poles

val poleValvel = between(pole3, pole6, 0.5).individual

// define valve’s geometric parameters

assertedModel.addAssertion(valvel, FS.hasRootPosition, poleValvel)

assertedModel.addAssertion(valvel, FS.hasDirection, directionLinel)

assertedModel.addAssertion(valvel, FS.hasOuterRadius,
assertedModel.createTypedLiteral (outerPipeRadiusEngFeed))

An additional fuel pump was added to provide additional pressure to the APU. This pump assumes
a spar-mounted configuration with two connection ports: the first is connected directly to the left
main feed line while the second, the outlet port, provides the fuel to the APU.

Additionally, a manifold refuel line was modeled and included in the fuel system. This line is attached
to a refueling port inside the outer left wing tank. The construction of this refueling port, which is
positioned on the tank’s bottom surface, makes use of the production rules created in this project to
determine the ideal root position and direction. In Figure 6.8, the refueling port is shown in greater
detail. It can be seen that two connection ports were modeled to it: the bottom connection port
serves as an inlet port for pressurized ground refueling, while the second port connects the refueling

95

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Valve Root position [m]

1 (15.853, 1.909, -1.771)
(15.853, 5.789, -1.076)
(15.853, -1.743, -1.677)
(15.7, 6.0, -0.945)
(15.5, 6.0, -1.065)
(15.353, 1.909, -1.671)

S T W N

Table 6.4: Feed and transfer valves’ positioning

main line. Six ramifications are modeled as a result of the main line’s manifold configuration: one for
each outer and inner wing tank and two for the central wing tank. The boost pumps on each tank
are situated close to these secondary refueling lines. To control which tanks must be filled, additional
shutoff valves are added to the ends of each of these lines.

L ETicL

Figure 6.8: Refueling port

Listing 6.5 shows the knowledge modeling process for the refueling port. An additional rotation was
added to the refueling adapter in order to better align it to the wing’s leading edge.

96

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Listing 6.5: Refueling system creation and refueling adapter’s knowledge modeling

val refuelSystem = assertedModel.createAnonymousIndividual (FS.RefuelSystem)

assertedModel.addAssertion(refuelSystem, RDFS.label,
assertedModel.createTypedLiteral ("Refuel subsystemn"))

val refuelAdapterl = assertedModel.createAnonymousIndividual (FS.RefuelAdapter)

assertedModel .addAssertion(refuelAdapterl, RDFS.label,
assertedModel.createTypedLiteral ("Refuel adapter 1"))

assertedModel.addAssertion(refuelAdapterl, FS.hasDesiredPosition,

createPoint (18.0[u.m], —10.0[u.m], 0.0[u.m]).individual)
assertedModel .addAssertion(refuelAdapterl, FS.isProjectedOntoBottom,
leftTransferTank)

assertedModel .addAssertion(refuelAdapterl, FS.hasRefuelingAdapterRadius,
assertedModel.createTypedLiteral (outerPipeRadiusRefuelingAdapter))
assertedModel.addAssertion(refuelAdapterl, FS.hasRefuelinglLineRadius,
assertedModel.createTypedLiteral (outerPipeRadiusRefueling))
assertedModel .addAssertion(refuelAdapterl, FS.hasRotationOnPlane,
assertedModel.createTypedLiteral (120.0[u.deg]))
reasonUntilConverged ()

An overview of the geometric characteristics of the supply lines is provided in Table 6.5. No study
was done on the correct line diameters because the goal of this thesis is to demonstrate the potential
of the methodology that has been developed; the values were taken directly from a previous geometry
modeling study that is referenced in [20]. Figure 6.9 shows the created geometry for the fuel system.

Line Inner radius [m] Outer radius [m] Curve radius [m]
Feed 0.018 0.020 0.054
Transfer + crossfeed 0.018 0.020 0.054
Main refueling 0.044 0.048 0.132
Secondary refueling 0.022 0.024 0.065
APU feed 0.007 0.010 0.021
APU pump skorkel 0.018 0.020 0.054

Table 6.5: Inner and outer radius for the fuel system supply lines

97

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Figure 6.9: Generated fuel system architecture - first iteration

6.2 Geometry verification

By adding the correct properties between elements, a first geometry verification takes place using the
FuelSystemGeometryCheckRules rules. This initial verification provides some insight into potential
design flaws that the designer might have overlooked. This initial verification provides more infor-
mation on the overlaps between tanks and supply lines since the designed supply lines often cross
multiple tanks, which is helpful information for positioning tank openings in the model. In Table 6.6,
an overview of the properties added to the model in order to activate the geometry verification rules is
represented, where the subject and object are represented by a common name given to the individuals
of a same class, while the predicate is the linking property. After running the geometric verification,
design flaws can be tracked using the verified /falsified statements that are printed to the logger screen.
An additional Turtle (.ttl) document containing a textual representation of the knowledge graph
is generated. This file can be imported into Codex’s web application (under development), which
provides a more user-friendly interface to manage the knowledge. Figure 6.10 gathers a few geometry
flaws identified by the GeoVerification rule; on top intersections between fuel pipes and the center
tank are shown. In addition to that, the crossfeed shutoff valve results not contained in the center
tank, thus not meeting the set requirement. On the bottom picture, it is possible to see another valve
that does not meet the containment requirements, while Figure 6.11 a failed connection between the
supply lines and a fuel valve is depicted, where the lines were wrongly connected to the ports. Listing
6.6 shows a portion of the output logger containing the falsified statements geometrically represented
in Figure 6.10.

Listing 6.6: Examples of failed checks printed to the logger

<line 15, fuelsystem:isNotOverlappingWithTankFalsified, Center feed tank>
<line 16, fuelsystem:isNotOverlappingWithTankFalsified, Center feed tank>
<Valve 4, geoverification:containedInFalsified, Right feed tank>

<Valve 5, geoverification:containedInFalsified, Left feed tank>

<Valve 6, geoverification:containedInFalsified, Center feed tank>

98

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Figure 6.10: Examples of geometric flaws identified by the GeoVerification tool

99

Chapter 6. DLR-D150: Fuel system modeling, verification and results

EITiGL

Figure 6.11: Connection error between a supply line and a fuel valve

At this stage, 24 failed checks are present on the model, thus requiring further geometric modeling.
By using Kotlin’s capabilities to find the necessary statements, collect the necessary geometric data,
and then create new knowledge and activate the necessary production rules to modify the design, it
is possible to automate this process rather than manually searching for design flaws in the model.

A total of 4 iterations to the geometry modelling were done. After each of them, the GeoVerification
tool performed a geometric evaluation of the model with indication of corrective measures. After the
last iteration, as anticipated, incorrect intersections between fuel lines and tanks have been eliminated
by adding more precise geometric data to the fuel system by including tank openings. The complete
list of verified and falsified checks after the last design iteration can be found in Appendix A. After the
last design changes, a total of 430 successful geometric checks were performed, validating the geometry
for the next step. Figure 6.12 shows the final geometry proposed for the fuel system integrated into
the aircraft model, where all geometric flaws have been solved. A detailed view of the center tank
and its components, together with a view of two of the tank openings present between the center and
the right feed tanks is shown in Figure 6.13, where it is possible to observe two tank openings, from
which the refueling line and the right feed line can pass through the tanks.

100

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Subject

Predicate

Object

FS:FuelPump

a

owl:differentFrom
FS:connectedToRequired
Ver:attached ToRequired
Ver:containedInRequired

FS:Critical Component
FS:FuelPump
FS:SupplyLine
FS:FuelStorage
FS:FuelStorage

FS:FuelStorage

a

FS:hasMassRequired
FS:hasMinimumPumpNumberRequired
FS:hasDistinctIndividualsRequired
FS:hasDistinctIndividualsRequired

FS:Critical Component
Quantity
Quantity

FS:FuelPump
FS:FuelValve

) . FS:hasMinimum ValveNumberRequired Quantity
FS:FuelSubsystem FS:hasDistinctIndividualsRequired FS:FuelValve
FS:hasFuel Type FS:FuelType
FS:hasRibsPositions GKM:Shape
FS:hasMinimumDistancePipesTanks Quantity

FS:FuelSystem

FS:setCheckPipeTankIntersection
FS:setCheckFanFragmentRotorBurst
FS:setCheckSmallFragmentRotorBurst
FS:setCheckMediumFragmentRotorBurst
FS:hasLongitudinal COGLowerBoundRequired
FS:hasLongitudinal COGUpperBoundRequired

FS:SupplyLine
FS:EngineFan
FS:EngineRotor
FS:EngineRotor
Quantity
Quantity

FS:FuelValve

a

FS:belongsTo
FS:connected ToRequired

FS:Critical Component
FS:FuelSubsystem
FS:SupplyLine

FS:SupplyLine

a

FS:isConnected ToPort
FS:connectedToRequired
FS:connectedToRequired

FS:hasMinimumDistanceToRequired

FS:Critical Component
FS:ConnectionPort
FS:SupplyLine
FS:EngineAdapter
FS:FuelStorage

Table 6.6: Geometric requirements’ overview

101

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Figure 6.12: Final fuel system design integrated into the aircraft model

102

Chapter 6. DLR-D150: Fuel system modeling, verification and results

-L rITIGL

Figure 6.13: Detailed view of the center tank and its components (top picture) and of the tank
openings between the center and the right feed tanks (bottom picture)

It was determined that there are two different types of design flaws that affect how supply lines and
fuel tanks overlap: overlaps caused by improper line positioning in the design and overlaps caused by
closed tank openings. While the former can be resolved by altering the geometry-defining points of
the line, the latter necessitates altering the geometry of the tanks by adding openings to their surface
in order to allow supply lines to pass through them. Additional geometric problems regarding the
connection between supply lines were identified for the supply lines connecting pumps 1 and 2 to the
main feed line and was solved by moving the end position for the supply lines slightly upwards.

After gathering data regarding the required tank openings, a second geometry modeling cycle was
performed. Not only were the initial design flaws fixed during this process, but new information was
also added to the model to allow for changes in the tank geometries that would take opening into
account and allow for proper pipe routing. Listing 6.7 provides an example of tank opening, also

103

Chapter 6. DLR-D150: Fuel system modeling, verification and results

defined as a tank cut, knowledge modeling. This knowledge provides geometric information on the
opening’s size and location. By adding the illustrated knowledge to the model, it is possible to exploit
the necessary production rules to correctly place and create the geometry, as seen in Subsection 5.2.3.

Listing 6.7: Examples of geometric knowledge modeling to create a tank opening
// get opening’s position from the graph
val openingPos = getPoint(completeModel.statements(line8,
FS.hasOverlapWithTankPosition, null).first ().obj.
getAs<SIndividual >()).individual
val tankCut = assertedModel.createAnonymousIndividual (FS.TankCut)
assertedModel .addAssertion(tankCut, RDFS.label,
assertedModel.createTypedLiteral ("Tank opening"))
// add the geometric knowledge to the tank opening
// hasDesiredPosition triggers the automatic component placement rule
assertedModel.addAssertion(tankCut, FS.hasDesiredPosition, openingPos)
assertedModel.addAssertion(tankCut, FS.isProjectedOntoLeft, centerFeedTank)
assertedModel .addAssertion(tankCut, FS.hasRadius,
assertedModel.createTypedLiteral (1.1[u.ul] * outerPipeRadiusEngFeed))

Table 6.7 provides an overview of the tank openings location added to the model. By setting the
following statement pattern to the model

<fuelTank, FS:createTankWithOpeningRequired, fuelTank

where fuelTank is the fue tank individual in question, a production rule responsible for changing
the external geometry of the fuel tank is activated. Figure 6.14 illustrates the final geometry for the
center feed tank. It is possible to observe 5 openings on this tank, required to pass the main refueling
line, in the front, the crossfeed lines, in the back lateral sides, and the APU feed line, exiting this
tank through its rear surface. Each of these openings have different dimensions, which are dependent
on the respective supply lines, where the opening was radius is taken as 10% larger than the supply
line’s radius.

~- ETicL

Figure 6.14: Center tank’s openings

104

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Tank opening Position [m] Connecting tanks

Center Feed Tank

1,2 (15.85,-2.10,-1.62) oG e
Center Feed Tank
3,4 (15.85, 2,10, -1.62) Lo e Tk
Center Feed Tank
5,6 (13.75,-2.08, -142) R0
Left Feed Tank
78 (17.09, -8.54, -0.76) Left Transfer Tank
9 (15.47, -6.0, -0.84) Left Feed Tank
10 (15.47, 6.0, -0.84) Right Feed Tank
11 (16.15, -0.71, -1.40) Center Feed Tank
Center Feed Tank
12, 13 (13.75, 2.08, -1.42) Right Feed Tank
14, 15 (17.09, 8.54, -0.76) 1ueht Feed Tank

Right Transfer Tank

Table 6.7: Tank openings’ positioning

6.3 Certification related geometry verification

Production rules for the certification-related geometric checks (see Section 5.4) are registered to the
project as the final step in the fuel system geometry validation process. Based on certification require-
ments and guidelines, these rules search for geometry-related design flaws. In order to demonstrate
the capabilities of the GeoVerification tool concerning an uncontained rotor burst, geometric informa-
tion on one rotor stage and on the engine’s fan was added to the model for both engines, which can be
found in Table 6.8. The rotor and fan dimensions are considered to be similar to high bypass turbofan
engines used in the A320, such as the PW6000 [49]. In addition to the knowledge regarding the engine
rotors, the fuel pumps were set as target components by means of the FS:CriticalComponent class.
The computed fragment trajectories for the left engine’s fan are shown in Figure 6.15. Due to the
fan’s forward positioning in relation to the fuel system’s components, it was determined that it does
not present design challenges, as can be seen in Figure 6.16, where it is clear no trajectory crosses
the critical components in the fuel system. The analysis was conducted using the standard values for
the translational and spread angles, which can be found in Tables 5.1 and 5.2. Listing 6.8 illustrates
the knowledge modeling for the right engine’s fan, where geometric information regarding the fan’s
positioning and the fan’s geometry is added to the model.

Listing 6.8: Geometry modeling for the right engine’s fan

fanl = assertedModel.createAnonymousIndividual (FS.EngineFan)
assertedModel .addAssertion(fanl, RDFS.label,
assertedModel.createTypedLiteral ("Engine Fan - Right Engine"))
// add geometric information to the engine fan individual
assertedModel.addAssertion(fanl7 FS.hasRotorDiskDiameter,
assertedModel.createTypedLiteral (1.0[u.m]))
// hasDiameter accounts for the complete, bladed, diameter
assertedModel .addAssertion(fanl, FS.hasDiameter,
assertedModel.createTypedLiteral (1.3[u.m]))
// position the fan in space
assertedModel.addAssertion(fanl, FS.hasPoints,
createPoint (11.8[u.m], 5.75[u.m], —2.3[u.m]).individual)
assertedModel.addAssertion(fanl, FS.hasRotationDirection,
assertedModel.createTypedLiteral ("clockwise"))

After running the GeoVerification tool with the FuelSystemRotorBurstCheckRules module, no fuel
pumps result to be subject to a rotor burst due to a small fragment. A second attempt was performed,
this time adding the supply lines as critical components as well. From this simulation a total of 9
possible hits for each engine rotor was detected, for a total of 18 possible hits with 9 supply line

105

Chapter 6. DLR-D150: Fuel system modeling, verification and results

AN R) i V /4 ,
\ \ | . /
AN \) ’ y J
N\) ' ; & V4
N\ . i 47 //
AN \ 4 4
. AN / 4
= N N \ //
s AN /7
- AN /

Q

N

8
RS

) T / A\N \ dTiG L

Figure 6.15: Trajectories for the left engine’s fan fragment

N

N N \;“

Figure 6.16: Trajectories for the left engine’s fan fragment - detailed view focusing on the fuel system

segments. Table 6.9 shows the possible hits due to a small fragment originated from the right engine’s
rotor 2 and the pair of translational (¢) and spread angles (1) for which they occur. The intersecting
trajectories for this rotor’s fragment can be seen in Figure 6.17, where the intersecting supply lines are
depicted in red. In this example, the refueling lines are affected by a potential rotor burst from the
right engine. With this information available, aircraft designers can proceed to making risk evaluation
on the system’s behavior and potentially provide design changes to the architecture.

Although the GeoVerification tool also identified other non-compliant geometries, such as valves in
potentially icing-prone positions, it was decided not to pursue further geometry changes at this point
because the purpose of this proof of concept was to show the tool’s verification capabilities rather
than to provide a fuel system without any geometric flaws. Figure 6.18 shows an example of a valve
in an icing-prone situation. The left connecting supply line, shown in red, is higher than the valve,
while the right connecting line, shown in green, is positioned so that fuel and water move away from
the valve with the help of gravity, preventing the formation of water.

Apart from the uncontained rotor burst verification, 65 certification-related checks totaling 12 failed
checks were carried out. Table 6.10 displays the list of failed checks. Three of the five fuel tanks do not
adhere to the imposed mass requirements, as can be seen from this list. By exploring the knowledge

106

Chapter 6. DLR-D150: Fuel system modeling, verification and results

. . . Bladed Disk Sense of
Rotation object Position [m] radius [m] radius [m] rotation
Rotor 1 - Left Engine (13.5, -5.75, -2.3) 0.65 0.5 Clockwise
Rotor 2 - Right Engine (13.5, 5.75, -2.3) 0.65 0.5 Clockwise
Fan 1 - Left Engine (11.8 -5.75, -2.3) 0.8 0.15 Clockwise
Fan 2 - Right Engine (11.8 -5.75, -2.3) 0.8 0.15 Clockwise

Table 6.8: Geometric information for the engine rotors and fans

model and examining the information at hand, it is possible to see that the mass requirements are
not satisfied by a few tens of kilograms. Since there is a sizable amount of space available for the
venting system, it would be feasible to use this space to increase the amount of room for the fuel
tanks. This would enable the mass requirements to be met without the need to add additional tanks
to the aircraft’s fuselage. The complete list of performed checks can be found in Appendix A.

Component Possible hit for (¢,)

Line 23 (80.0°,3.0°)
(75.0°,2.0°)
(75.0°,3.0°)
(80.0°,2.0°)
(80.0°,3.0°)
(85.0°,3.0°)
()
()
()

Line 18

80.0°,2.0°
80.0°,3.0°
85.0°,3.0°

Line 17

Table 6.9: Supply lines potentially damaged by an uncontained rotor burst (small fragment) for the
right engine’s example rotor

\

3 | |
w5 o \ N\ o
\ A

ALl
/%j(%*‘ L\
AR \
A \\ \\\ \\\\ \
SOUN L WY
NV -)15/
NN WNNNN
N N NSNS
\\\‘ N \i‘ ‘\ \/77/
NAN N/ 2

Figure 6.17: Hit trajectories for the right engine’s rotor fragment - components in the hit zone

107

Chapter 6. DLR-D150: Fuel system modeling, verification and results

Figure 6.18: Example of fuel valve subject to icing condition on the right engine feed line

Subject Predicate Object
Center feed tank FS:hasMassFalsified 6476 [kg]
Fuel system FS:hasMassFalsified 18728 [kg]
Left feed tank FS:hasMassFalsified 5435 [kg]
Right feed tank FS:hasMassFalsified 5435 [kg]
Valve 1 FS:isNotProneTolcingFalsified Line 7
Valve 1 FS:isNotProneTolcingFalsified Line 8
Valve 11 FS:isNotProneTolcingFalsified ~ Line 27
Valve 12 FS:isNotProneTolcingFalsified ~ Line 29
Valve 2 FS:isNotProneTolcingFalsified Line 10
Valve 3 FS:isNotProneTolcingFalsified Line 9
Valve 8 FS:isNotProneTolcingFalsified Line 21
Valve 9 FS:isNotProneTolcingFalsified ~ Line 23

Table 6.10: Failed checks - certification related geometry checks (excluding UERF rules)

6.4 Enhancing geometric detail in early fuel system design
through production rules

Providing extended geometric information at an early design stage is a main goal defined for this
project. By utilizing the geometry creation production rules within the GeoVerification tool, it
is possible to enhance the level of detail for the fuel system in its early design stage. While the
components might not possess the same level of geometric complexity required for later stages, their
accurate placement and existence enable the early detection of design flaws, as demonstrated in this
section. Previous efforts to model a fuel system using Codex are discussed in Section 1.2 and detailed
in [20]. In Figure 6.19, a comparison between the fuel system proposed in [20] with the geometrically
improved fuel system developed in this project is provided. The benefits of introducing production
rules for geometry creation are evident, as they facilitate a more intricate fuel system design capable
of more advanced geometric assessments than its predecessor.

While the groundwork laid by the work in [20] led to the creation of the GeoVerification tool, the
authors recognized the potential advantages of incorporating additional geometric details into the

108

Chapter 6. DLR-D150: Fuel system modeling, verification and results

model. This recognition served as the initial inspiration for this master’s thesis. Figure 6.20 provides
a detailed comparison of a fuel pump in both scenarios. The upper depiction showcases the earlier
design, where fuel pumps were simplified as cylinders and supply lines were overlapped onto them.
In contrast, the lower image exhibits the newly enhanced geometric representation of the fuel pumps,
complete with connection ports. The value of incorporating production rules becomes evident, as
it now accurately enables the connection of a supply line to a fuel pump. Additionally, geometry
assessments regarding the correctness of such connections can be conducted using the implemented
production rules in the tool.

- ETiGL

Figure 6.19: Geometric detail comparison between the fuel system found in [20] (top) and the proposed
fuel system design (bottom)

109

Chapter 6. DLR-D150: Fuel system modeling, verification and results

ATIGL

Figure 6.20: Geometric detail comparison for the fuel pumps and their connection with a supply line

110

Chapter 7

Conclusions

This master thesis provided an overview of how it is possible to exploit semantic web technologies
(SWT) to perform geometry verification activities on the fuel system design at an early design stage,
exploiting the Codex framework. By using Knowledge Based Engineering methodologies, it was
demonstrated the capabilities of automating the creation of fuel system components. Additionally,
the benefits of enriching the geometric knowledge available at an earlier stage were demonstrated. In
fact, as more geometric information is available, it is possible to provide additional capabilities and
means of identifying geometric flaws in the design at a conceptual level. Furthermore, it was shown
how it is possible to gather both explicit and tacit knowledge from heterogeneous sources to develop
rules that can be easily integrated and reused. The potential of Codex’s reasoning engines together
with a declarative-rule architecture show the high modularity this framework offers. The advantage of
this modularity was shown in Chapter 6, where different rules were registered and used in the project
at different stages. This modularity allows for faster reasoning times as only the necessary module of
rules are used at each step of the project. Beyond this, the adoption of a graph-based approach, as
exemplified by Codex, emancipates design from the conventional hierarchical confines of model-based
engineering. This characteristic empowers unrestricted access to information, facilitating a more di-
rect pathway to information retrieval compared to traditional frame-based designs. The developed
use case has provided a comprehensive insight into potential basic geometric anomalies inherent in
fuel system design, effectively showcasing the capabilities of the developed GeoVerification tool in
identifying design irregularities. Furthermore, the study has showcased the formulation of intricate
geometric rules, translating multifaceted certification prerequisites into geometric verification rules to
assist designers, which is only possible thanks to the more detailed geometric information available
to the user, which also translates in a faster tool development.

A step towards assisted design was taken and explained in Chapter 5, where the development of
the production rules to find a feasible position for the components’ placement were explained. The
combined influence of these verification and placement rules might pave the way for automated com-
ponent positioning aligned with the system’s requisites in the foreseeable future. Encompassing the
comprehensive GeoVerification framework, the endeavor yielded a collection of 25 verification rules
and 10 geometry creation rules.

While the tool’s efficiency has been demonstrated, real-time capabilities remain elusive due to the
requisite reasoning time for rule activation and knowledge graph evaluation. The design construction
reasoning, as illustrated in the presented use case, necessitates approximately 5 minutes to complete
all essential elements. Encouragingly, the geometric verification conducted through the GeoVerifica-
tion tool has showcased promising evaluation times, with sub-4-minute reasoning times achievable for
over 500 geometric evaluations using a standard personal computer. The specification of the afore-
mentioned computer is displayed in Table 7.1.

Component Technical Specification

Processor Intel Core 15 11th Gen
RAM 32 GB DDR4
(ON] Windows 10

Table 7.1: Simulation computer technical specifications

111

Chapter 7. Conclusions

In tandem with the goal of achieving real-time capabilities, a discernment has emerged that focusing
reasoning solely on altered portions of the knowledge graph is imperative. This strategic approach
holds promise for substantially reducing reasoning times, as only modified knowledge necessitates
supplementary reasoning efforts.

The GeoVerification tool resulted to be a great asset to support aircraft fuel system design. It not only
furnishes users with insights into detected geometric incongruities but also endeavors, when feasible,
to present corrective actions to the identified design shortcomings. Lastly, the Codex framework,
alongside its constituent modules, has proven its utility in engineering KBE tools aimed at supporting
aircraft design. The integration of the codex-geometry module streamlines geometry management,
alleviating associated workload burdens. Additionally, the codex-quantity module simplifies unit
conversions, endowing users with greater flexibility in knowledge modeling, ultimately contributing
to a design process less susceptible to errors.

In light of the accomplishments and insights derived from this study, several avenues for future research
and development are discernible. One notable avenue is the pursuit of enhancing real-time capabilities
within the GeoVerification tool. The reduction of reasoning times through selective activation of
rules in response to altered knowledge graph sections presents a compelling prospect to achieve
seamless real-time performance. Furthermore, the extension of the tool’s capabilities to encompass a
broader spectrum of geometric complexities and verification scenarios could greatly amplify its utility.
Exploring advanced machine learning techniques for the identification and formulation of geometric
verification rules could potentially enhance the tool’s automated detection accuracy and efficiency.
Additionally, the integration of collaborative features could facilitate concurrent design reviews and
collaborative error resolution among design teams. Expanding the framework’s scope to include
compatibility with evolving semantic web standards and technologies would ensure its relevance and
longevity within the dynamic landscape of engineering practices. Ultimately, these potential avenues
for future work hold the promise of fostering even greater automation, accuracy, and efficiency in
the aircraft fuel system design process, thereby contributing to the advancement of both the aviation
industry and semantic web technologies.

112

Bibliography

[1]
2]

[11]

[12]

[13]

[16]

[17]

SAE International, “ATR7975: Aircraft Fuel System Design Guidelines,” 12 2019.

R. Langton and E. Al, Aircraft Fuel Systems. American Institute Of Aeronautics And Astro-
nautics ; Chichester, 2009.

Heritage Concorde, “Concorde fuel transfer.”
H. Gavel, On Aircraft Fuel Systems. Linkopings Universitet, 2007.
AIRBUS GmbH, “A320 flight crew operating manual - fuel.”

S. van der Elst, M. van Tooren, B. Vermeulen, C. Emberey, and N. Milton, “Application of a
knowledge based design methodology to support fuselage panel design,” Cambridge University
Press, vol. 114, pp. 589-597, 09 2010.

I. Sanya and E. Shehab, “An ontology framework for developing platform-independent
knowledge-based engineering systems in the aerospace industry,” International Journal of Pro-
duction Research, vol. 52, pp. 6192-6215, 05 2014.

O. Isaksson, “A Generative Modeling Approach to Engineering Design,” International Confer-
ence on Engineering Design, 08 2003.

A. R. Kulkarni, “Requirement-product-process Ontology,” 05 2022.

C. Emberey, N. Milton, J. Berends, M. Van Tooren, S. Van Der Elst, and B. Vermeulen, “Ap-
plication of Knowledge Engineering Methodologies to Support Engineering Design Application
Development in Aerospace,” 7th AIAA ATIO Conf, 2nd CEIAT ; followed by 2nd TEOS Forum,
09 2007.

E. Jayakiran Reddy, C. Sridhar, and V. Pandu Rangadu, “Knowledge Based Engineering: No-
tion, Approaches and Future Trends,” American Journal of Intelligent Systems, vol. 5, pp. 1-17,
01 2015.

G. L. Rocca and v. Tooren, “Knowledge-based engineering to support aircraft multidisciplinary
design and optimization,” Proceedings Of The Institution Of Mechanical Engineers, Part G:
Journal Of Aerospace Engineering, vol. 224, pp. 1041-1055, 09 2010.

W. J. C. Verhagen, P. Bermell-Garcia, R. E. C. van Dijk, and R. Curran, “A critical review of
Knowledge-Based Engineering: An identification of research challenges,” Advanced Engineering
Informatics, vol. 26, pp. 5-15, 01 2012.

J. Zamboni, A. Zamfir, E. Moerland, and B. Nagel, “A semantic knowledge based engineering
framework for the rapid generation of novel air vehicle configurations,” 2022.

J. Zamboni, A. Zamfir, and E. Moerland, “Semantic Knowledge-Based-Engineering: The Codex
Framework,” 12th International Conference on Knowledge Engineering and Ontology Develop-
ment, 01 2020.

F. Olives, Weight estimation of parametrically design of fuel and hydraulic systems of a com-
mercial airplane. PhD thesis, 09 2019.

European Union Aviation Safety Agency EASA, “Easy Access Rules for Acceptable Means of
Compliance for Airworthiness of Products, Parts and Appliances (AMC-20),” 03 2021.

113

Bibliography

[18]

[19]

[20]

[30]

[31]

[32]

[37]

[38]

Y. Tu, X. Chen, L. Yin, Q. Zheng, and Y. Zeng, “Numerical Study on Pipeline Pressure Surge
of the Large Aircraft Fuel System,” Shock and Vibration, vol. 2022, p. €7529857, 05 2022.

W. Kriiger, B. Gerlinger, O. Brodersen, T. Klimmek, and Y. Giinther, “Das DLR-Projekt Kon-
tekst: Konzepte und Technologien fiir emissionsarme Kurzstreckenflugzeuge,” 2020.

B. Boden, Y. Cabac, T. Burschyk, and B. Nagel, “Rule-based Verification of a Geometric Design

using the Codex Framework,” 33rd Congress of the International Council of the Aeronautical
Sciences, ICAS 2022, 11 2022.

A. Corallo, R. Laubacher, A. Margherita, and G. Turrisi, “Enhancing product development
through knowledge-based engineering (KBE),” Journal of Manufacturing Technology Manage-
ment, vol. 20, pp. 1070-1083, 10 2009.

Airbus, “A321XLR — Xtra Long Range performance — Airbus Aircraft,” 05 2022.
IJARIIE, Review of Aircraft Fuel System , vol. 1, 2015.

European Union Aviation Safety Agency (EASA), “Certification Specifications and Acceptable
Means of Compliance for Large Aeroplanes CS-25,” 12 2020.

M. D. Fernandes, S. T. de P. Andrade, V. N. Bistritzki, R. M. Fonseca, L. G. Zacarias, H. N. C.
Gongalves, A. F. de Castro, R. Z. Domingues, and T. Matencio, “SOFC-APU systems for aircraft:
A review,” International Journal of Hydrogen Energy, vol. 43, p. 1631116333, 08 2018.

T. R. Quackenbush, M. E. Teske, and C. E. Polymeropoulos, “A model for assessing fuel jetti-
soning effects,” Atmospheric Environment, vol. 28, no. 16, pp. 2751-2759, 1994.

Z. Goraj and P. Zakrzewski, “Aircraft fuel systems and their influence on stability margin,”
pp. 29-40, 01 2005.

A. La Bella, D. Canzano, and M. Grimaldi, “Critical capabilities and performance in the
aerospace industry: a knowledge management approach,” 03 2004.

J. P. Risueno and B. Nagel, “Development of a Knowledge-Based Engineering Framework for
Modeling Aircraft Production,” AIAA Aviation Forum, 06 2019.

G. L. Rocca and M. V. Tooren, “Enabling distributed multi-disciplinary design of complex
products: a knowledge based engineering approach,” J. of Design Research, vol. 5, p. 333, 2007.

R. Suryaprakash, “Knowledge Based Engineering (KBE) in Aerospace Product Development,”
ATAA, 11 2007.

A. van der Lann, Knowledge based engineering support for aircraft component design. PhD thesis,
01 2008.

C. van der Velden, C. Bil, and X. Xu, “Adaptable methodology for automation application
development,” Advanced Engineering Informatics, vol. 26, pp. 231-250, 04 2012.

C. Van der Velden, C. Bil, X. Yu, and A. Smith, “An intelligent system for automatic layout
routing in aerospace design,” Innovations in Systems and Software Engineering, vol. 3, pp. 117-

128, 05 2007.

S. Quintana-Amate et al., “A new knowledge sourcing framework for knowledge-based engineer-
ing: An aerospace industry case study,” Computers € Industrial Engineering, vol. 104, pp. 3550,
02 2017.

R. Klein, “Knowledge Modeling In Design — The MOKA Framework,” Artificial Intelligence in
Design, pp. 77-102, 01 2000.

D. Baxter et al., “An engineering design knowledge reuse methodology using process modelling,”
Research in Engineering Design, vol. 18, pp. 37-48, 04 2007.

C. B. Chapman and M. Pinfold, “The application of a knowledge based engineering approach to
the rapid design and analysis of an automotive structure,” Advances in Engineering Software,
vol. 32, pp. 903-912, 12 2001.

114

Bibliography

[39]

[40]

[45]

[46]
[47]

[48]
[49]

S. Ahmed and K. Wallace, “Understanding the knowledge needs of novice designers in the
aerospace industry,” Design Studies, vol. 25, pp. 155-173, 03 2004.

D. C. Ramanigopal, “Knowledge Management Strategies for Successful Implemention in
Aerospace Industry,” INTERNATIONAL JOURNAL OF MANAGEMENT RESEARCH AND
REVIEW, vol. 2, 10 2012.

W3C, “Standards - W3C,” 2019.
D. Allemang and J. Hendler, Semantic Web for the Working Ontologist. Elsevier, 07 2011.
Opencascade, “Introduction - Open CASCADE Technology Documentation.”

M. Siggel, J. Kleinert, T. Stollenwerk, and R. Maierl, “TiGL: An Open Source Computational
Geometry Library for Parametric Aircraft Design,” Mathematics in Computer Science, vol. 13,
pp- 367-389, July 2019.

M. Alder, E. Moerland, J. Jepsen, and B. Nagel, “Recent Advances in Establishing a Common
Language for Aircraft Design with CPACS,” in Aerospace Europe Conference 2020, 2020.

V. Khorikov, Unit Testing Principles, Practices, and Patterns. Simon and Schuster, 2020.

Lufthansa Technical Training LTT, “Training Manual Airbus A318/A319/A320/A321 - ATA 28
FUEL,” 06 2020.

SAE International, “AS18802 - Fuel and Oil Lines, Aircraft, Installation of,” 08 2013.
MTU Aero Engines, “PW6000 - MTU Aero Engines.”

115

Appendix A

DLR-D150’s resulting statements
from the GeoVerification tool

This appendix provides the lists of falsified statements for each of the iterations performed to correctly
model the geometry. For the last iteration, the resulting list of complete statements is provided. In
addition, a list containing the certification related statements is given.

A.1 Geometry verification - falsified statements

A.1.1 First iteration

Table A.1: Falsified geometric statements - first iteration

line 11 - right engine feed line after Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Right feed
tank

line 12 - Left engine feed line after Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Left feed
tank

line 12 - Left engine feed line after Valve 5 geoverification:connected ToFalsified ShutOff valve right
connection port

line 12 - Left engine feed line after Valve 5 geoverification:connectedToFalsified Valve 5

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Center feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Left feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Left transfer tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Center feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Right feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Right transfer tank

line 2 from Right boost pump in center tank geoverification:connectedToFalsified line 7 - crosfeed
from Valve 1 to Right boost pump in center tank

line 7 - crosfeed from Valve 1 to Right boost pump in center tank geoverification:connected ToFalsified
line 2 from Right boost pump in center tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Left feed
tank

line 9 - feed line from Valve 3 to Valve 4 geoverification:connected ToFalsified ShutOff valve left
connection port

line 9 - feed line from Valve 3 to Valve 4 geoverification:connected ToFalsified Valve 5

ShutOff valve left connection port geoverification:connected ToFalsified line 9 - feed line from Valve 3
to Valve 4

ShutOff valve right connection port geoverification:connected ToFalsified line 12 - Left engine feed line
after Valve 5

Valve 5 geoverification:connected ToFalsified line 12 - Left engine feed line after Valve 5

Valve 5 geoverification:connected ToFalsified line 9 - feed line from Valve 3 to Valve 4

Valve 5 geoverification:containedInFalsified Left feed tank

116

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

A.1.2 Second iteration

Table A.2: Falsified geometric statements - second iteration

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Center feed
tank

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Right feed
tank

line 11 - right engine feed line after Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Right feed
tank

line 12 - Left engine feed line after Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Left feed
tank

line 12 - Left engine feed line after Valve 5 geoverification:connectedToFalsified ShutOff valve right
connection port

line 12 - Left engine feed line after Valve 5 geoverification:connected ToFalsified Valve 5

line 14 - from spar-mounted APU pump in the center tank - left side to APU unit fuelsys-
tem:isNotOverlappingWithTankFalsified Center feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Center feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Left feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Left transfer tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Center feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Right feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Right transfer tank

line 2 from Right boost pump in center tank geoverification:connectedToFalsified line 7 - crosfeed
from Valve 1 to Right boost pump in center tank

line 7 - crosfeed from Valve 1 to Right boost pump in center tank geoverification:connected ToFalsified
line 2 from Right boost pump in center tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Center feed
tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Left feed
tank

line 9 - feed line from Valve 3 to Valve 4 geoverification:connected ToFalsified ShutOff valve left
connection port

line 9 - feed line from Valve 3 to Valve 4 geoverification:connected ToFalsified Valve 5

ShutOff valve left connection port geoverification:connected ToFalsified line 9 - feed line from Valve 3
to Valve 4

ShutOff valve right connection port geoverification:connected ToFalsified line 12 - Left engine feed line
after Valve 5

Valve 5 geoverification:connected ToFalsified line 12 - Left engine feed line after Valve 5

Valve 5 geoverification:connected ToFalsified line 9 - feed line from Valve 3 to Valve 4

Valve 5 geoverification:containedInFalsified Left feed tank

A.1.3 Third iteration

Table A.3: Falsified geometric statements - third iteration

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Center feed
tank

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Right feed
tank

line 11 - right engine feed line after Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Right feed
tank

line 12 - Left engine feed line after Valve 5 fuelsystem:isNotOverlappingWithTankFalsified Left feed
tank

line 14 - from spar-mounted APU pump in the center tank - left side to APU unit fuelsys-
tem:isNotOverlappingWithTankFalsified Center feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Center feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Left feed tank

117

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Left transfer tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Center feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Right feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankFalsified Right transfer tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Center feed
tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankFalsified Left feed
tank

118

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

A.2 Geometry verification - Resulting statements

Table A.4: Verified geometric statements - last iteration

Boost pump 1 in left inner tank geoverification:attachedToVerified Left feed tank

Boost pump 1 in left inner tank geoverification:containedInVerified Left feed tank

Boost pump 1 in right inner tank geoverification:attachedToVerified Right feed tank

Boost pump 1 in right inner tank geoverification:containedInVerified Right feed tank

Boost pump 2 in left inner tank geoverification:attachedToVerified Left feed tank

Boost pump 2 in left inner tank geoverification:containedInVerified Left feed tank

Boost pump 2 in right inner tank geoverification:attachedToVerified Right feed tank

Boost pump 2 in right inner tank geoverification:containedInVerified Right feed tank

Center feed tank geoverification:attachedToVerified Right boost pump in center tank

Left boost pump in center tank geoverification:attachedToVerified Center feed tank

Left boost pump in center tank geoverification:containedInVerified Center feed tank

Left feed tank geoverification:attachedToVerified Boost pump 2 in left inner tank

line 1 from Left boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Center
feed tank

line 1 from Left boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Left surge
tank

line 1 from Left boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Right feed
tank

line 1 from Left boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Right
transfer tank

line 1 from Left boost pump in center tank geoverification:connectedToVerified line 8 - crosfeed from
Valve 1 to Left boost pump in center tank

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTank Verified Center feed
tank

119

i

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankVerified Left surge
tank

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankVerified Right feed
tank

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:isNotOverlappingWithTankVerified Right trans-
fer tank

line 10 - feed line from Valve 2 to Valve 5 geoverification:connected ToVerified line 4 from Boost pump
2 in right inner tank

line 10 - feed line from Valve 2 to Valve 5 geoverification:connectedToVerified ShutOff valve right
connection port

line 10 - feed line from Valve 2 to Valve 5 geoverification:connectedToVerified Valve 4

line 11 - right engine feed line after Valve 4 fuelsystem:isNotOverlappingWithTankVerified Left feed
tank

line 11 - right engine feed line after Valve 4 fuelsystem:isNotOverlappingWithTankVerified Left trans-
fer tank

line 11 - right engine feed line after Valve 4 fuelsystem:isNotOverlappingWithTankVerified Right
transfer tank

line 11 - right engine feed line after Valve 4 geoverification:connectedToVerified Valve 4

line 12 - Left engine feed line after Valve 5 fuelsystem:isNotOverlappingWithTankVerified Left surge
tank

line 12 - Left engine feed line after Valve 5 fuelsystem:isNotOverlappingWithTank Verified Right feed
tank

line 12 - Left engine feed line after Valve 5 fuelsystem:isNotOverlappingWithTankVerified Right
transfer tank

line 12 - Left engine feed line after Valve 5 geoverification:connectedToVerified Valve 5

line 13 - from feed line to spar-mounted APU pump in the center tank - left side fuelsys-
tem:isNotOverlappingWithTank Verified Center feed tank

120

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 13 - from feed line to spar-mounted APU pump in the center tank - left side fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 13 - from feed line to spar-mounted APU pump in the center tank - left side fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 13 - from feed line to spar-mounted APU pump in the center tank - left side fuelsys-
tem:isNotOverlappingWithTankVerified Right transfer tank

line 14 - from spar-mounted APU pump in the center tank - left side to APU unit fuelsys-
tem:hasMatchingSizesVerified Port 8 in the spar-mounted APU pump in the center tank - left side

line 14 - from spar-mounted APU pump in the center tank - left side to APU unit fuelsys-
tem:isNotOverlappingWithTankVerified Left feed tank

line 14 - from spar-mounted APU pump in the center tank - left side to APU unit fuelsys-
tem:isNotOverlappingWithTank Verified Left transfer tank

line 14 - from spar-mounted APU pump in the center tank - left side to APU unit fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

line 15 - crossfeed parallel line fuelsystem:isNotOverlappingWithTankVerified Center feed tank

line 15 - crossfeed parallel line fuelsystem:isNotOverlappingWithTankVerified Left surge tank

line 15 - crossfeed parallel line fuelsystem:isNotOverlappingWithTankVerified Right feed tank

line 15 - crossfeed parallel line fuelsystem:isNotOverlappingWithTank Verified Right transfer tank

line 15 - crossfeed parallel line geoverification:connected ToVerified ShutOff valve right connection port

line 16 - crossfeed parallel line fuelsystem:isNotOverlappingWithTank Verified Center feed tank

line 16 - crossfeed parallel line fuelsystem:isNotOverlappingWithTankVerified Left surge tank

line 16 - crossfeed parallel line fuelsystem:isNotOverlappingWithTankVerified Right feed tank

line 16 - crossfeed parallel line fuelsystem:isNotOverlappingWithTank Verified Right transfer tank

line 16 - crossfeed parallel line geoverification:connectedToVerified ShutOff valve left connection port

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Center feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Left surge tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Right feed tank

line 17 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Right transfer tank

121

i

>
=]
il
@
=
=5
"
>
=)
&
=
)
—_
a
e}
w0
=
]
w0
=)
=
—
=
0
w0
-+
2
@
=
@
=3
w0
=g
o
B
-+
=
@
Q
()
=
@
=
=
Q
&
-+
—
o
=
o+
o
]
=

line 17 - refueling main line geoverification:connectedToVerified line 21 - secondary refueling line from
main refuel line Valve 8

line 18 - refueling main line fuelsystem:isNotOverlappingWithTank Verified Center feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Left surge tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Right feed tank

line 18 - refueling main line fuelsystem:isNotOverlappingWithTankVerified Right transfer tank

line 18 - refueling main line geoverification:connectedToVerified line 27 - secondary refueling line from
main refuel line Valve 11

line 19 - secondary refueling line from main refuel line Valve 7 fuelsys-

tem:isNotOverlappingWithTank Verified Center feed tank

line 19 - secondary refueling line from main refuel line Valve 7 fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 19 - secondary refueling line from main refuel line Valve 7 fuelsys-
tem:isNotOverlappingWithTankVerified Right feed tank

line 19 - secondary refueling line from main refuel line Valve 7 fuelsys-
tem:isNotOverlappingWithTankVerified Right transfer tank

line 19 - secondary refueling line from main refuel line Valve 7 geoverification:connectedToVerified
ShutOff valve left connection port

line 2 from Right boost pump in center tank fuelsystem:hasMatchingSizesVerified Port 2 in Right
boost pump in center tank

line 2 from Right boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Left feed
tank

line 2 from Right boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Left
transfer tank

line 2 from Right boost pump in center tank fuelsystem:isNotOverlappingWithTankVerified Right
surge tank

line 2 from Right boost pump in center tank geoverification:connectedToVerified line 7 - crosfeed from
Valve 1 to Right boost pump in center tank

122

i

>
=]
il
@
=
=5
"
>
=)
&
=
)
—_
a
e}
w0
=
]
w0
=)
=
—
=
0
w0
-+
2
@
=
@
=3
w0
=g
o
B
-+
=
@
Q
()
=
@
=
=
Q
&
-+
—
o
=
o+
o
]
=

line 2 from Right boost pump in center tank geoverification:connectedToVerified Right boost pump
in center tank

line 20 - secondary refueling line from Valve 7 to Left transfer tank fuelsys-
tem:isNotOverlappingWithTank Verified Left feed tank

line 20 - secondary refueling line from Valve 7 to Left transfer tank fuelsys-
tem:isNotOverlappingWithTank Verified Left transfer tank

line 20 - secondary refueling line from Valve 7 to Left transfer tank fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

line 20 - secondary refueling line from Valve 7 to Left transfer tank geoverifica-
tion:connected ToVerified ShutOff valve right connection port

line 21 - secondary refueling line from main refuel line Valve 8 fuelsys-
tem:isNotOverlappingWithTank Verified Center feed tank

line 21 - secondary refueling line from main refuel line Valve 8 fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 21 - secondary refueling line from main refuel line Valve 8 fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 21 - secondary refueling line from main refuel line Valve 8 fuelsys-
tem:isNotOverlappingWithTankVerified Right transfer tank

line 21 - secondary refueling line from main refuel line Valve 8 geoverification:connectedToVerified
ShutOff valve left connection port

line 22 - secondary refueling line from Valve 8 to Left feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Center feed tank

line 22 - secondary refueling line from Valve 8 to Left feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 22 - secondary refueling line from Valve 8 to Left feed tank fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 22 - secondary refueling line from Valve 8 to Left feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Right transfer tank

123

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 22 - secondary refueling line from Valve 8 to Left feed tank geoverification:connectedToVerified
Valve 8

line 23 - secondary refueling line from main refuel line Valve 9 fuelsys-
tem:isNotOverlappingWithTankVerified Left feed tank

line 23 - secondary refueling line from main refuel line Valve 9 fuelsys-
tem:isNotOverlappingWithTank Verified Left transfer tank

line 23 - secondary refueling line from main refuel line Valve 9 fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

line 23 - secondary refueling line from main refuel line Valve 9 geoverification:connectedToVerified
line 17 - refueling main line

line 23 - secondary refueling line from main refuel line Valve 9 geoverification:connectedToVerified
Valve 9

line 24 - secondary refueling line from Valve 9 to Center feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Left feed tank

line 24 - secondary refueling line from Valve 9 to Center feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Left transfer tank

line 24 - secondary refueling line from Valve 9 to Center feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

line 24 - secondary refueling line from Valve 9 to Center feed tank geoverification:connectedToVerified
ShutOff valve right connection port

line 25 - secondary refueling line from main refuel line Valve 10 fuelsys-
tem:isNotOverlappingWithTankVerified Center feed tank

line 25 - secondary refueling line from main refuel line Valve 10 fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 25 - secondary refueling line from main refuel line Valve 10 fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 25 - secondary refueling line from main refuel line Valve 10 fuelsys-
tem:isNotOverlappingWithTank Verified Right transfer tank

line 25 - secondary refueling line from main refuel line Valve 10 geoverification:connectedToVerified
ShutOff valve left connection port

124

i

>
=]
il
@
=
=5
"
>
=)
&
=
)
—_
a
e}
w0
=
]
w0
=)
=
—
=
0
w0
-+
2
@
=
@
=3
w0
=g
o
B
-+
=
@
Q
()
=
@
=
=
Q
&
-+
—
o
=
o+
o
]
=

line 26 - secondary refueling line from Valve 10 to Right transfer tank fuelsys-
tem:isNotOverlappingWithTank Verified Center feed tank

line 26 - secondary refueling line from Valve 10 to Right transfer tank fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 26 - secondary refueling line from Valve 10 to Right transfer tank fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 26 - secondary refueling line from Valve 10 to Right transfer tank fuelsys-
tem:isNotOverlappingWithTankVerified Right transfer tank

line 26 - secondary refueling line from Valve 10
tion:connectedToVerified Valve 10

to Right transfer tank geoverifica-

line 27 - secondary refueling line from main refuel line Valve 11 fuelsys-
tem:isNotOverlappingWithTank Verified Left feed tank

line 27 - secondary refueling line from main refuel line Valve 11 fuelsys-
tem:isNotOverlappingWithTank Verified Left transfer tank

line 27 - secondary refueling line from main refuel line Valve 11 fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

line 27 - secondary refueling line from main refuel line Valve 11 geoverification:connectedToVerified
line 18 - refueling main line

line 27 - secondary refueling line from main refuel line Valve 11 geoverification:connectedToVerified
Valve 11

line 28 - secondary refueling line from Valve 11 to Right feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Center feed tank

line 28 - secondary refueling line from Valve 11 to Right feed tank fuelsys-

tem:isNotOverlappingWithTankVerified Left surge tank

line 28 - secondary refueling line from Valve 11 to Right feed tank fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 28 - secondary refueling line from Valve 11 to Right feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

125

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 28 - secondary refueling line from Valve 11 to Right feed tank geoverification:connected ToVerified
ShutOff valve right connection port

line 29 - secondary refueling line from main refuel line Valve 12 fuelsys-
tem:isNotOverlappingWithTankVerified Center feed tank

line 29 - secondary refueling line from main refuel line Valve 12 fuelsys-
tem:isNotOverlappingWithTankVerified Left surge tank

line 29 - secondary refueling line from main refuel line Valve 12 fuelsys-

tem:isNotOverlappingWithTank Verified Right feed tank

line 29 - secondary refueling line from main refuel line Valve 12 fuelsys-
tem:isNotOverlappingWithTankVerified Right transfer tank

line 29 - secondary refueling line from main refuel line Valve 12 geoverification:connectedToVerified
ShutOff valve left connection port

line 3 from Boost pump 1 in right inner tank fuelsystem:hasMatchingSizesVerified Port 3 in Boost
pump 1 in right inner tank

line 3 from Boost pump 1 in right inner tank fuelsystem:isNotOverlappingWithTank Verified Left feed
tank

line 3 from Boost pump 1 in right inner tank fuelsystem:isNotOverlappingWithTankVerified Left
transfer tank

line 3 from Boost pump 1 in right inner tank fuelsystem:isNotOverlappingWithTankVerified Right
surge tank

line 3 from Boost pump 1 in right inner tank geoverification:connectedToVerified Boost pump 1 in
right inner tank

line 3 from Boost pump 1 in right inner tank geoverification:connectedToVerified Port 3 in Boost
pump 1 in right inner tank

line 30 - secondary refueling line from Valve 12 to Center feed tank fuelsys-
tem:isNotOverlappingWithTank Verified Left feed tank

line 30 - secondary refueling line from Valve 12 to Center feed tank fuelsys-
tem:isNotOverlappingWithTank Verified Left transfer tank

line 30 - secondary refueling line from Valve 12 to Center feed tank fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

126

i

>
=]
o)
@
=
=5
"
>
=)
&
=
)
—_
a
e}
w0
=
]
w0
=)
=
—
=
0
w0
-+
2
@
=
@
=3
w0
=g
o
B
-+
=
@
Q
()
=
@
=
=
Q
&
-+
—
o
=
o+
o
]
=

line 30 - secondary refueling line from Valve 12 to Center feed tank geoverifica-
tion:connectedToVerified ShutOff valve right connection port

line 4 from Boost pump 2 in right inner tank fuelsystem:hasMatchingSizesVerified Port 4 in Boost
pump 2 in right inner tank

line 4 from Boost pump 2 in right inner tank fuelsystem:isNotOverlappingWithTank Verified Left feed
tank

line 4 from Boost pump 2 in right inner tank fuelsystem:isNotOverlappingWithTankVerified Left
transfer tank

line 4 from Boost pump 2 in right inner tank fuelsystem:isNotOverlappingWithTankVerified Right
surge tank

line 4 from Boost pump 2 in right inner tank geoverification:connectedToVerified Boost pump 2 in
right inner tank

line 4 from Boost pump 2 in right inner tank geoverification:connectedToVerified Port 4 in Boost
pump 2 in right inner tank

line 5 from Boost pump 1 in left inner tank fuelsystem:isNotOverlappingWithTankVerified Center
feed tank

line 5 from Boost pump 1 in left inner tank fuelsystem:isNotOverlappingWithTank Verified Left surge
tank

line 5 from Boost pump 1 in left inner tank fuelsystem:isNotOverlappingWithTankVerified Right feed
tank

line 5 from Boost pump 1 in left inner tank fuelsystem:isNotOverlappingWithTankVerified Right
transfer tank

line 5 from Boost pump 1 in left inner tank geoverification:connectedToVerified line 9 - feed line from
Valve 3 to Valve 4

line 6 from Boost pump 2 in left inner tank fuelsystem:hasMatchingSizesVerified Port 6 in Boost
pump 2 in left inner tank

line 6 from Boost pump 2 in left inner tank fuelsystem:isNotOverlappingWithTankVerified Left feed
tank

127

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 6 from Boost pump 2 in left inner tank fuelsystem:isNotOverlappingWithTankVerified Left trans-
fer tank

line 6 from Boost pump 2 in left inner tank fuelsystem:isNotOverlappingWithTankVerified Right
surge tank

line 6 from Boost pump 2 in left inner tank geoverification:connectedToVerified Boost pump 2 in left
inner tank

line 6 from Boost pump 2 in left inner tank geoverification:connectedToVerified Port 6 in Boost pump
2 in left inner tank

line 7 - crosfeed from Valve 1 to Right boost pump in center tank fuelsys-

tem:isNotOverlappingWithTankVerified Left feed tank

line 7 - crosfeed from Valve 1 to Right boost pump in center tank fuelsys-
tem:isNotOverlappingWithTank Verified Left transfer tank

line 7 - «crosfeed from Valve 1 to Right boost pump in center tank fuelsys-
tem:isNotOverlappingWithTankVerified Right surge tank

line 7 - crosfeed from Valve 1 to Right boost pump in center tank geoverification:connectedToVerified
line 16 - crossfeed parallel line

line 7 - crosfeed from Valve 1 to Right boost pump in center tank geoverification:connectedToVerified
ShutOff valve left connection port

line 7 - crosfeed from Valve 1 to Right boost pump in center tank geoverification:connectedToVerified
Valve 1

line 8 - crosfeed from Valve 1 to Left boost pump in center tank fuelsys-
tem:isNotOverlappingWithTankVerified Center feed tank

line 8 - «crosfeed from Valve 1 +to Left boost pump in center tank fuelsys-

tem:isNotOverlappingWithTankVerified Left surge tank

line 8 - «crosfeed from Valve 1 to Left boost pump in center tank fuelsys-
tem:isNotOverlappingWithTank Verified Right feed tank

line 8 - «crosfeed from Valve 1 to Left boost pump in center tank fuelsys-
tem:isNotOverlappingWithTank Verified Right transfer tank

line 8 - crosfeed from Valve 1 to Left boost pump in center tank geoverification:connected ToVerified
line 13 - from feed line to spar-mounted APU pump in the center tank - left side

128

i

>
=]
o)
@
=
=5
"
>
=)
&
=
)
—_
a
e}
w0
=
]
w0
=)
=
—
=
0
w0
-+
2
@
=
@
=3
w0
=g
o
B
-+
=
@
Q
()
=
@
=
=
Q
&
-+
—
o
=
o+
o
]
=

line 8 - crosfeed from Valve 1 to Left boost pump in center tank geoverification:connectedToVerified
ShutOff valve right connection port

line 8 - crosfeed from Valve 1 to Left boost pump in center tank geoverification:connectedToVerified
Valve 1

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTank Verified Center feed
tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankVerified Left surge
tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTankVerified Right feed
tank

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:isNotOverlappingWithTank Verified Right transfer
tank

line 9 - feed line from Valve 3 to Valve 4 geoverification:connectedToVerified line 6 from Boost pump
2 in left inner tank

line 9 - feed line from Valve 3 to Valve 4 geoverification:connectedToVerified ShutOff valve right
connection port

line 9 - feed line from Valve 3 to Valve 4 geoverification:connected ToVerified Valve 5

Port 1 in Left boost pump in center tank geoverification:connectedToVerified line 1 from Left boost
pump in center tank

Port 2 in Right boost pump in center tank geoverification:connectedToVerified line 2 from Right boost
pump in center tank

Port 3 in Boost pump 1 in right inner tank geoverification:connectedToVerified line 3 from Boost
pump 1 in right inner tank

Port 4 in Boost pump 2 in right inner tank geoverification:connectedToVerified line 4 from Boost
pump 2 in right inner tank

Port 5 in Boost pump 1 in left inner tank geoverification:connectedToVerified line 5 from Boost pump
1 in left inner tank

Port 6 in Boost pump 2 in left inner tank geoverification:connectedToVerified line 6 from Boost pump
2 in left inner tank

129

i

>
=]
il
@
=
=5
"
>
=)
&
=
)
—_
a
e}
w0
=
]
w0
=)
=
—
=
0
w0
-+
2
@
=
@
=3
w0
=g
o
B
-+
=
@
Q
()
=
@
=
=
Q
&
-+
—
o
=
o+
o
]
=

Port 8 in the spar-mounted APU pump in the center tank - left side fuelsys-
tem:hasMatchingSizesVerified line 14 - from spar-mounted APU pump in the center tank -
left side to APU unit

Right boost pump in center tank geoverification:attachedToVerified Center feed tank

Right boost pump in center tank geoverification:containedInVerified Center feed tank

Right feed tank geoverification:attachedToVerified Boost pump 2 in right inner tank

ShutOff valve left connection port geoverification:connectedToVerified line 11 - right engine feed line
after Valve 4

ShutOff valve left connection port geoverification:connectedToVerified line 16 - crossfeed parallel line

ShutOff valve left connection port geoverification:connectedToVerified line 21 - secondary refueling
line from main refuel line Valve 8

ShutOff valve left connection port geoverification:connectedToVerified line 25 - secondary refueling
line from main refuel line Valve 10

ShutOff valve left connection port geoverification:connectedToVerified line 29 - secondary refueling
line from main refuel line Valve 12

ShutOff valve left connection port geoverification:connectedToVerified line 9 - feed line from Valve 3
to Valve 4

ShutOff valve right connection port geoverification:connectedToVerified line 15 - crossfeed parallel
line

ShutOff valve right connection port geoverification:connectedToVerified line 22 - secondary refueling
line from Valve 8 to Left feed tank

ShutOff valve right connection port geoverification:connectedToVerified line 26 - secondary refueling
line from Valve 10 to Right transfer tank

ShutOff valve right connection port geoverification:connectedToVerified line 30 - secondary refueling
line from Valve 12 to Center feed tank

ShutOff valve right connection port geoverification:connectedToVerified line 8 - crosfeed from Valve
1 to Left boost pump in center tank

130

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

ShutOff valve right connection port geoverification:connectedToVerified line 9 - feed line from Valve
3 to Valve 4

spar-mounted APU pump in the center tank - left side geoverification:containedInVerified Center feed
tank

Tank opening 10 geoverification:containedInVerified Right feed tank

Tank opening 12 geoverification:containedInVerified Center feed tank

Tank opening 14 geoverification:containedInVerified Right feed tank

Tank opening 2 geoverification:containedInVerified Left feed tank

Tank opening 4 geoverification:containedInVerified Right feed tank

Tank opening 6 geoverification:containedInVerified Left feed tank

Tank opening 8 geoverification:containedInVerified Left transfer tank

Valve 1 geoverification:connectedToVerified line 7 - crosfeed from Valve 1 to Right boost pump in
center tank

Valve 1 geoverification:containedInVerified Center feed tank

Valve 10 geoverification:connected ToVerified line 26 - secondary refueling line from Valve 10 to Right
transfer tank

Valve 11 geoverification:connectedToVerified line 27 - secondary refueling line from main refuel line
Valve 11

Valve 11 geoverification:containedInVerified Right feed tank

Valve 12 geoverification:connected ToVerified line 30 - secondary refueling line from Valve 12 to Center
feed tank

Valve 2 geoverification:connectedToVerified line 10 - feed line from Valve 2 to Valve 5

Valve 2 geoverification:containedInVerified Center feed tank

Valve 3 geoverification:connectedToVerified line 9 - feed line from Valve 3 to Valve 4

Valve 4 geoverification:connected ToVerified line 10 - feed line from Valve 2 to Valve 5

Valve 4 geoverification:containedInVerified Right feed tank

Valve 5 geoverification:connectedToVerified line 9 - feed line from Valve 3 to Valve 4

Valve 6 geoverification:connected ToVerified line 15 - crossfeed parallel line

Valve 6 geoverification:containedInVerified Center feed tank

131

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

Valve 7 geoverification:connectedToVerified line 20 - secondary refueling line from Valve 7 to Left
transfer tank

Valve 8 geoverification:connectedToVerified line 21 - secondary refueling line from main refuel line
Valve 8

Valve 8 geoverification:containedInVerified Left feed tank

Valve 9 geoverification:connected ToVerified line 24 - secondary refueling line from Valve 9 to Center
feed tank

132

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

A.3 Certification and guidelines verification - Resulting state-
ments

Table A.5: Verified certification-related statements

Boost pump 1 in right inner tank fuelsystem:isDistinctIndividualVerified Right feed tank

Boost pump 2 in right inner tank fuelsystem:isDistinctIndividual Verified Right feed tank

Center feed tank fuelsystem:hasRedundantPumpsVerified 3395e5{2-b797-42dc-b8e1-4a69f6fbdc90

Crossfeed System fuelsystem:hasRedundantValvesVerified 1b408336-8c33-4d1b-a8ac-044ea2e85e17

Left feed tank fuelsystem:hasDistinctIndividualsVerified fuelsystem:FuelPump

Left transfer tank fuelsystem:hasMassVerified 691.0[kg]

line 1 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 1 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 10 - feed line from Valve 2 to Valve 5 fuelsystem:hasMinimumDistanceToBottom Verified Right
feed tank

line 10 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 10 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 11 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 11 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 12 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 12 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 13 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 13 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 14 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 14 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 15 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 15 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 16 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 16 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 17 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

133

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 18 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 19 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 19 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 2 from Right boost pump in center tank fuelsystem:hasMinimumDistanceToVerified Center feed
tank

line 2 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 2 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 20 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 20 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 21 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 21 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 22 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 22 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 23 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 24 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 24 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 25 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 25 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 26 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 26 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 27 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 27 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 28 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 28 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 29 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 29 fuelsystem:hasSmallFragmentCollisionPathWith Verified Rotor 2 - Right Engine

line 3 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 3 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 30 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

134

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

line 30 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 4 from Boost pump 2 in right inner tank fuelsystem:hasMinimumDistanceToVerified Right feed
tank

line 4 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 4 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 5 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 1 - Left Engine

line 5 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 1 - Left Engine

line 6 from Boost pump 2 in left inner tank fuelsystem:hasMinimumDistanceTo Verified Left feed tank

line 6 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 6 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 7 - crosfeed from Valve 1 to Right boost pump in center tank fuelsys-
tem:hasMinimumDistanceToBottomVerified Right feed tank

line 7 - «crosfeed from Valve 1 to Right boost pump in center tank fuelsys-
tem:hasMinimumDistanceToRear Verified Right feed tank

line 7 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 7 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 8 - «crosfeed from Valve 1 to Left boost pump in center tank fuelsys-
tem:hasMinimumDistanceToBottom Verified Left feed tank

line 8 - crosfeed from Valve 1 to Left boost
tem:hasMinimumDistanceToRearVerified Left feed tank

pump in center tank fuelsys-

line 8 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 8 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

line 9 - feed line from Valve 3 to Valve 4 fuelsystem:hasMinimumDistanceToRearVerified Left feed
tank

line 9 fuelsystem:hasFanFragmentCollisionPathWithVerified Fan 2 - Right Engine

line 9 fuelsystem:hasSmallFragmentCollisionPathWithVerified Rotor 2 - Right Engine

Right feed tank fuelsystem:hasDistinctIndividualsVerified fuelsystem:FuelPump

Right transfer tank fuelsystem:hasMassVerified 691.0[kg]

Valve 1 fuelsystem:isDistinctIndividual Verified Crossfeed System

135

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

Valve 10 fuelsystem:isNotProneTolcingVerified line 26 - secondary refueling line from Valve 10 to
Right transfer tank

Valve 12 fuelsystem:isNotProneTolcingVerified line 30 - secondary refueling line from Valve 12 to
Center feed tank

Valve 3 fuelsystem:isNotProneTolcingVerified line 8 - crosfeed from Valve 1 to Left boost pump in
center tank

Valve 4 fuelsystem:isNotProneTolcingVerified line 11 - right engine feed line after Valve 4

Valve 5 fuelsystem:isNotProneTolcingVerified line 9 - feed line from Valve 3 to Valve 4

Valve 6 fuelsystem:isNotProneTolcingVerified line 15 - crossfeed parallel line

Valve 7 fuelsystem:isNotProneTolcingVerified line 19 - secondary refueling line from main refuel line
Valve 7

Valve 8 fuelsystem:isNotProneTolcingVerified line 22 - secondary refueling line from Valve 8 to Left
feed tank

136

Appendix A. DLR-D150’s resulting statements from the GeoVerification tool

Table A.6: Falsified certification-related statements

Valve 8 fuelsystem:isNotProneTolcingFalsified line 21 - secondary refueling line from main refuel line
Valve 8

Valve 3 fuelsystem:isNotProneTolcingFalsified line 9 - feed line from Valve 3 to Valve 4

Valve 1 fuelsystem:isNotProneTolcingFalsified line 7 - crosfeed from Valve 1 to Right boost pump in
center tank

Valve 1 fuelsystem:isNotProneTolcingFalsified line 8 - crosfeed from Valve 1 to Left boost pump in
center tank

Right feed tank fuelsystem:hasMassFalsified 5435.0[kg]

Center feed tank fuelsystem:hasMassFalsified 6476.0[kg]

Fuel system fuelsystem:hasMassFalsified 18728.0[kg]

Valve 12 fuelsystem:isNotProneTolcingFalsified line 29 - secondary refueling line from main refuel
line Valve 12

Valve 11 fuelsystem:isNotProneTolcingFalsified line 27 - secondary refueling line from main refuel
line Valve 11

Left feed tank fuelsystem:hasMassFalsified 5435.0[kg]

Valve 9 fuelsystem:isNotProneTolcingFalsified line 23 - secondary refueling line from main refuel line
Valve 9

Valve 2 fuelsystem:isNotProneTolcingFalsified line 10 - feed line from Valve 2 to Valve 5

line 17 fuelsystem:hasSmallFragmentCollisionPathWithFalsified Rotor 1 - Left Engine

line 17 fuelsystem:hasSmallFragmentCollisionPathWithFalsified Rotor 2 - Right Engine

line 18 fuelsystem:hasSmallFragmentCollisionPathWithFalsified Rotor 1 - Left Engine

line 18 fuelsystem:hasSmallFragmentCollisionPathWithFalsified Rotor 2 - Right Engine

line 23 fuelsystem:hasSmallFragmentCollisionPathWithFalsified Rotor 2 - Right Engine

line 24 fuelsystem:hasSmallFragmentCollisionPathWithFalsified Rotor 1 - Left Engine

137

