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Chapter 1

Introduction

Figure 1.1: Illustration of Orion capsule re-entry

Atmospheric re-entry is an important aspect of many space missions: it is crucial
for every human mission to guarantee a safe landing of the crew and it is also
necessary whenever experiments or samples need to be transported back to Earth.
This problem has also implications in the military field, just think about Inter
Continental Ballistic Missiles (ICBMs) or the more advanced hypersonic missiles
being developed today.

The first re-entry vehicle was developed in 1952 by General Electric and it was
called the Mark 2, designed for Thor, Jupiter and Atlas missiles [1]. It was a
ballistic capsule with a blunt body shape and a heat sink designed to absorb
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Introduction

the heat from re-entry. Since then many other vehicles were designed and the
technological level improved rapidly: there were advancements in the heat shield
design with the introduction of the ablative technology that allowed for higher
total heat loads and significantly lower masses, and the radiative technology that
could be reused such in the case of Space Shuttle. There were improvements also
from an aerodynamic point of view with the development of lifting body re-entry
vehicles: they have great control authority and can be guided with high accuracy,
they are also subject to much lower G-loads and thus ideal for human flight.

This thesis focuses on lifting body re-entry vehicles on Earth atmosphere and
has three main goals:

• Developing a tool that allows the derivation of lifted re-entry trajectories
satisfying every mission constraint. To achieve this goal an optimization
approach must be utilized.

• Development and implementation of a guidance and control algorithm for
3 degrees of freedom flight simulation, able to follow the optimal reference
trajectory profile.

• Test the model and compare the results with existing re-entry vehicles.

The chapters 2, 4, 5 and 6 will discuss in depth the characteristics of the re-entry
problem and how it has been approached. There will be a detailed discussion about
the developed model form the trajectory optimization aspect to the guidance and
control aspect. In chapter 7 the results will be shown to prove the efficacy and
robustness of the algorithms.
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Chapter 2

Overall problem statement

In this chapter the overall re-entry problem is described in every aspect [2]. Every
section covers a different aspect:

• The re-entry problem
Here an overview on re-entry with the various strategies relative to the different
vehicles is described.

• Constraints
The numerous constraints are listed here: there are physical constraints
relative to the vehicle characteristics and structural/thermodynamic limits,
geographical constraints such as the avoidance of certain no-fly zones and
ground station visibility constraints.

• Target
This section describes the desired target values at the end of the trajectory,
they are necessary to connect the re-entry part to the Terminal Area Energy
Management (TAEM) part. The TAEM is the last part of the trajectory
where the vehicle is controlled in order to land to the desired spot, the GNC
strategy completely changes in this part which is not covered in this thesis.

• Entry corridor
A crucial aspect of the re-entry problem is the definition of the entry corridor
which defines a region of survivability of the vehicle. It is described in this
section.

• Vehicle dynamics
The vehicle dynamics equations and the overall mathematical model used in
this thesis is described here.

3



Overall problem statement

• IXV entry vehicle
In this section a brief description of the IXV vehicle is depicted, this spacecraft
is the main reference for the validation of the results obtained in this thesis.

This chapter describes the background knowledge necessary to understand the rest
of the thesis.

2.1 The re-entry problem
The main goal of atmospheric re-entry is to safely guide and land the entry vehicle.
During descent the spacecraft is subject to significant structural and thermody-
namic stresses that must not exceed the design limits. The Guidance Navigation
and Control (GNC) subsystem of the vehicle has to precisely follow a predetermined
reference trajectory that satisfies the numerous constraints in order to survive and
meet every required target condition [3].

The re-entry starts at the Entry Interface Point (EIP), that is where the aero-
dynamic forces are no longer negligible at a height of around 120 km. The EIP
velocity ranges from about 7500 m/s for an equatorial prograde orbit to about
8500 m/s for an equatorial retrograde orbit considering re-entry from LEO (400
to 800 km height). Another important EIP parameter is the Flight Path Angle
(FPA), which defines the steepness of the entry condition. If the FPA is too small
the spacecraft rebounds on the atmosphere and skips back to space; instead, if it is
too steep, the vehicle enters the atmosphere with an excessive descent rate and
reaches the denser parts too early with high heat fluxes and G-loads.

There are three possible re-entry scenarios:

• Ballistic re-entry
It occurs when the Lift-to-Drag ratio (L/D) is 0, this is the case of meteoroids
or the Mercury capsule. The control authority is zero and the trajectory is
fully determined by the EIP conditions and the ballistic coefficient of the
vehicle. This trajectory is characterized by an elevated heat flux and G-load.

• Aerodynamic re-entry
In this case L/D > 0, the vehicle is able to control the trajectory by moving
the lift vector (typically with a bank manoeuvre). This way it is possible
to obtain a much lower heat flux and G-load which is convenient for human
re-entry and for some kinds of payloads. An example is the Space Shuttle or
the European IXV vehicle. A controlled re-entry also means higher accuracy
on the landing position.

4



Overall problem statement

• Skip re-entry
The vehicle enters the atmosphere with a combination of FPA and Angle of
Attack (AoA) such that it rebounds on it. After some time the spacecraft
reenters the atmosphere with a lower entry velocity. It is the case of the Orion
capsule for Artemis missions.

Figure 2.1: Comparison between the different re-entry strategies

2.2 Constraints
The entry vehicle must satisfy a wide range of constraints such as thermodynamic
and structural limits, geographical constraints, visibility constraints and so on. The
following section describes every constraint considered in this study along with the
relative equations:

• Maximum dynamic pressure
The re-entry vehicle is designed to withstand a maximum value of dynamic
pressure. The general expression of dynamic pressure is the following:

q = 1
2ρv

2 < qmax (2.1)

ρ: atmospheric density
v: spacecraft velocity
q: dynamic pressure
qmax: maximum allowed dynamic pressure

5
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Another constraint is the pressure on the stagnation point, which has the
following expression:

qstag = 1,85q < qstagmax (2.2)

qstag: pressure at the stagnation point
q: dynamic pressure
qstagmax : maximum allowed pressure at the stagnation point

• Maximum load factor
Due to structural reasons a maximum value of load factor (G-load) can be
tolerated by the spacecraft. The G-load value can be easily calculated with
the following expression:

gload =
√
L2 +D2

mg0
< gloadmax (2.3)

L: spacecraft lift
D: spacecraft drag
m: spacecraft mass
g0: gravitational acceleration at sea level
gload: load factor
gloadmax : maximum allowed load factor

• Maximum heat flux
Any kind of heat shield can withstand a maximum value of heat flux per
unit area, this limit is generally higher in ablative heat shields compared
to radiative heat shields (the latter is the technology used in the vehicles
analysed in this thesis). There are many ways to calculate this heat flux, an
approximated empiric equation used to achieve this goal is the DKR formula:

q̃ = Kcatal
1√
Rn

A
ρ

ρ0

B0,5 3
v

v0

43,15
< q̃max (2.4)

catal: catalytic coefficient
Rn: spacecraft nose radius
ρ: atmospheric density
v: spacecraft velocity
q̃: nose heat flux

6
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q̃max: maximum allowed nose heat flux
K = 113,5 · 106

ρ0 = 1.225 kg/m3

v0 = 7908 m/s

This formula evaluates only the conductive heat flux, the radiative term can
be neglected since it becomes significant at velocities above 9 km/s which are
higher than the entry velocities considered in this thesis. For the specific cases
of IXV and Space Rider entry vehicles a more accurate aero-thermodynamic
database is used to calculate the heat fluxes.

• Maximum flap heat flux
The flaps are generally subject to a higher heat flux compared to the rest of the
vehicle. There is not an analytical expression for the evaluation of this heat flux:
it can only be interpolated from the aero-thermodynamic database relative to
the given spacecraft. In the case of this study the IXV database has been used.

• Maximum integral heat flux
The vehicle can sustain a maximum heat load:

Q̃ =
Ú T

0
q̃dt < Q̃max (2.5)

Q̃: total heat load
q̃: heat flux
Q̃max: maximum allowed heat load

• Ceiling limit
The ceiling limit represents the maximum height at which equilibrium glide
can be sustained. The vehicle can fly above this limit just in a transitory
state, but it is not recommended because the dynamic pressure decreases
significantly and thus the control authority of the spacecraft degrades. The
ceiling is not a destructive constraint but it is important to fly below this limit
to maintain full control of the vehicle. To calculate the ceiling firstly the bank
angle and the flight path angle are set to zero and then the generated lift is
put equal to the gravitational force acting on the vehicle minus the centrifugal
force. In ECEF coordinates the following expression is derived:

1
2ρv

2SCl = m

AA
g − v2

r

B
− 2Ωv cosϕ sinψ − Ω2r cosϕ2

B
(2.6)
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S: spacecraft reference surface
Cl: spacecraft lift coefficient
ρ: atmospheric density
v: spacecraft velocity
r: distance from the center of the Earth
g: gravitational acceleration
Ω: Earth angular velocity
ϕ: spacecraft latitude
ψ: spacecraft heading angle

• Passive to active oxidation limit
When the heat flux on the heat shield is particularly high and the atmospheric
pressure is below a certain threshold, the shield material starts an oxidation
process that increases significantly the surface temperature. This phenomenon
leads to the erosion of the material which can be catastrophic. For a given
heat shield it is necessary to find an empiric correlation between atmospheric
pressure and heat fluxes, this way a passive to active oxidation curve can be
calculated.

• Maximum flight time
For thermal reasons, it might be necessary to set a maximum flight time. The
heat shield radiates back into the atmosphere most of the heat absorbed but
some of it flows through the shield itself via conduction. This conductive heat
increases the temperature of the metallic structure underneath which can only
withstand a maximum value, the structure heating increases with flight time,
this is why there is a limit to it.

• Maximum bank angle
The bank angle, which is the control parameter of the spacecraft, can be
subject to a certain limit. As an example for IXV it is set to 90° in order to
have a continuous connection with the GPS constellation.

• Maximum bank angle rate
The spacecraft moments of inertia and the efficacy of the control surfaces (or
the reaction control thrusters) determine the maximum bank angular velocity.
The lower this angular rate is, the harder it is to control the vehicle. For IXV
this limit is set to 12 deg/s.

• No-fly zones
For geopolitical reasons or to avoid flying over populated areas it might be
needed to define certain no-fly zones.

8
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• Ground station visibility
To guarantee a constant link between the vehicle and the ground segment it
is necessary to ensure the visibility between the spacecraft and the ground
stations.

2.3 Target
The aim of this thesis is to calculate and simulate a safe re-entry trajectory from the
entry interface point to the Descent and Recovery System (DRS) deployment (which
is the parachute used for the terminal part of the flight). The target conditions are
necessary for a correct activation of the DRS, they are defined by four parameters:

• Target longitude

• Target latitude

• Target Mach number

• Target dynamic pressure

The goal of the GNC system is to enable a trajectory that allows a precise targeting
of all these quantities while satisfying every constraint during descent.

2.4 Entry corridor
The Atmospheric re-entry problem represents a challenge in many fields, including
the GNC field [4]. The vehicle must fly within a very specific region of space to
survive the re-entry: at a given velocity if the spacecraft is flying in a region where
the atmosphere is too dense it can be destroyed by the mechanical and thermal
stresses. On the other hand, if it is flying where the atmosphere is too thin it loses
control authority. This means that at any given velocity the re-entry vehicle must
fly within a specific range of altitudes to survive and be controllable:

9
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Figure 2.2: Qualitative visualization of the entry corridor

The entry corridor can be numerically calculated given some of the constraints
introduced in section 2.2, specifically:

• Maximum dynamic pressure and stagnation point pressure

• Maximum load factor

• Maximum heat flux

• Maximum flap heat flux

• Ceiling limit

• Passive to active oxidation limit

10
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The other constraints cannot be visualized in the entry corridor. A common
representation of the entry corridor is drawn in the Altitude-Velocity (A-V) plane:

Figure 2.3: Entry corridor in the A-V plane

At high velocities the major danger is the heat flux that can reach critically high
values, at lower velocities instead the limiting constraint becomes the G-load. The
re-entry corridor can also be visualized in the Drag-Velocity (D-V) plane. This is
the representation that will be utilized throughout this dissertation because it is
more useful from a control point of view:

Figure 2.4: Entry corridor in the D-V plane
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2.5 Vehicle dynamics
The model implemented in this study has three degrees of freedom (3-DoF), it
considers the motion of the point mass located in the barycenter of the vehicle.
The dynamical model is fully described by two vectorial equations of motion (or six
scalar equations) derived directly by Newton second law [5]. In the Earth Centered
Earth Fixed (ECEF) reference system (Earth centered and rotating coherently
with the planet rotation) in cartesian coordinates, the system of equations can be
written the following way:

dr⃗
dt

= v⃗
dv⃗
dt

= L⃗
m

+ D⃗
m

+ g⃗ − 2Ω⃗ × v⃗ − Ω⃗ ×
1
Ω⃗ × r⃗

2 (2.7)

r⃗: radius vector
v⃗: velocity vector
L⃗: lift vector
D⃗: drag vector
g⃗: gravity vector
Ω⃗: Earth angular velocity vector

The model used to propagate the trajectories integrates these equation in po-
lar coordinates [6], the system is then translated in this form:



dv
dt

= −D
m

− g sin γ + Ω2r cosϕ (cosϕ sin γ − cos γ cosψ sinϕ)
dr
dt

= v sin γ
dλ
dt

= v
r

cos γ sinψ/ cosϕ
dϕ
dt

= v
r

cos γ cosψ
dγ
dt

= L
v

cosσ +
1
v
r

− g
v

2
cos γ + 2Ω cosϕ sinψ+

+Ω2r
v

cosϕ (cosϕ cos γ − sin γ cosψ sinϕ)
dψ
dt

= L sinσ
v cos γ + v cos γ sinψ tanϕ/r − 2Ω (tan γ cosϕ cosψ − sinϕ)

+ Ω2r
v cos γ sinϕ cosϕ sinψ

(2.8)

v: velocity
r: radius
λ: geocentric longitude
ϕ: geocentric latitude
γ: flight path angle
ψ: heading angle
σ: bank angle
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Ω: Earth angular velocity
m: spacecraft mass
g: gravitational acceleration

Figure 2.5: Angles in ECEF coordinates

The Lift and Drag aerodynamic forces are calculated the following way:

L = 1
2ρ(h)v2SCl(M,α) (2.9)

D = 1
2ρ(h)v2SCd(M,α) (2.10)

The aerodynamic coefficients Cl and Cd are mostly a function of Mach num-
ber and angle of attack, the angle of attack is usually itself a function of the Mach
number since the vehicle has to follow a certain trim line to ensure aerodynamic
stability at every Mach regime. The model described in this thesis also uses an
advanced aerodynamic database developed for IXV and SpaceRider vehicles, in this
case the aerodynamic coefficients are function of: Mach number, AoA, dynamic
pressure, pressure, temperature, side-slip angle and uncertainties.

The Atmospheric model utilized was developed for the IXV flight, it contains
also uncertainties which will be used in the Montecarlo analysis. The gravity model
is simply spherical.
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Overall problem statement

2.6 IXV entry vehicle
IXV or Intermediate eXperimental Vehicle is a European experiment that demon-
strated and validated the re-entry technologies [7]. It is a lifting body vehicle with
a length of 5.5 meters, a width of 2.2 meters and a height of 1.5 meters. Its shape
is the result of a set of requirements such as the maximization of the internal space
for experiments.

IXV control authority is given by reaction control thrusters while in space and by
aerodynamic surfaces during the atmospheric phase. The re-entry is divided in
two parts: the first one takes place from EIP to DRS activation (the supersonic
parachute deployment) and it is actively controlled; the second part, from DRS
activation to splashdown, is not controlled and the vehicle is drifted by the winds.

The vehicle was successfully launched one time in 2015 by a Vega rocket in Kourou
(French Guiana). The launcher set IXV in a nearly equatorial suborbital trajectory
with an apogee of around 450 km, when the vehicle reached the EIP it started
the atmospheric re-entry phase flying more than 7000 km downrange in about 20
minutes. Then it safely landed in the pacific ocean and was recovered by a ship.

Every constraint and boundary condition relative to IXV flight has been used
in the development of this thesis in order to simulate a realistic scenario.

Figure 2.6: Intermediate eXperimental Vehicle
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Chapter 3

Optimization overview

The following chapter will discuss the general concept of optimization [8] with the
different strategies known today. In the case of this thesis a specific application of
the black box optimization approach has been adopted, which will be described in
more detail throughout the chapter.

3.1 General concept of optimization
Optimizing is finding the best solution to a given problem by manipulating a set
of controllable variables which are usually subject to certain constraints. The
concept of optimization is inherent in nature and it is the goal of the evolutionary
process: we can think about the shape of beehives that maximizes the volume of
honey contained, the evolution of the human hand that allow us to manipulate an
enormous quantity of tools with great precision, or the shape of bird wings that
changes and optimizes itself for the different flight conditions. This concept can
be applied also to engineering and there are mathematical tools able to solve a
variety of optimization problems. A few of these problems can be solved in a closed
form such as the brachistochrone problem, but most of them can only be solved
numerically.

There are two main classes of optimization problems, "finite-dimensional" and
"infinite-dimensional" problems:

• A finite-dimensional problem is for example the packing optimization issue,
only a finite number of real variables are involved such as the position and
the orientation of the thrusters.

• An infinite-dimensional problem is the low-thrust trajectory optimization,
where the control and trajectory functions are unknown.

15



Optimization overview

The field of trajectory optimization has a rich and captivating history. The problem
can be defined as finding a trajectory that fulfil certain initial and final conditions
while satisfying a set of constraints Q and minimizing a given cost function J . The
goal could be that of minimizing the propellant consumption or the overall control
inputs. It might be necessary to define upper and lower bounds (U and U) to the
control variables u, in the specific case of atmospheric re-entry the spacecraft is
subject to a maximum allowed bank angle value and a maximum bank angle rate
due to the vehicle inertia and the efficacy of the actuators.

The generic optimization paradigm, in finite dimension, can be defined as fol-
lows: 

min J(u)
Q(u) ≤ 0
U ≤ u ≤ U

with


u ∈ Rn

J : Rn → R

Q : Rn → Rm

(3.1)

Another important characteristic of optimization problems is whether they are
convex or non convex. Convex problems are much easier to solve because they enable
efficient line search and a local optimization algorithm is sufficient since the local
solution coincides with the global solution. For non convex optimization problems
a global optimization algorithm is necessary to ensure that the local solution
found is also the global solution [9]. Unfortunately the trajectory optimization
problem is non-linear and non-convex. in the context of this thesis Matlab Global
Optimization Toolbox was utilized to approach the non-convexity of the problem
[10]. The specific algorithm utilized is the Sequential Quadratic Programming,
specialized for non-linear problems.

Figure 3.1: Convex vs non convex functions
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There are many different types of optimal control problems but in each one of them
the following elements must be defined:

• The mathematical model of the controlled system and the environment sur-
rounding it.

• The declaration of the performance index or cost function.

• The declaration of every constraint and boundary condition that must be
satisfied by the state vector of the system and the control inputs.

Fortunately, various methods exist today to tackle real-world optimization problems.
They can be classified into three main categories:

• Direct methods
These use discretization to transform the optimal control problem into a
finite-dimensional nonlinear programming (NLP) problem which is solved
directly [11]. In the traditional approach the trajectory is usually subdivided
into N intervals, state and control variables are considered constant in each
interval, resulting in a large-scale problem. Direct methods offer the advantage
of accommodating almost any problem formulation and they are robust: the
algorithm performs well under many different initial conditions and boundaries.
On the downside, compared to indirect methods, they can be computationally
expensive and relatively less accurate.

• Indirect methods
Here the problem is considered continuous for both state and control variables,
the necessary (and sufficient) conditions for optimality, given by Pontryagin
Maximum Principle (PMP), are used to solve the optimal control problem in
terms of a Boundary Value Problem (BVP). The trajectory may be divided into
arcs in the presence of discontinuities or changes in the differential equations
used. The problem modeled with an indirect method is generally smaller and
with fewer parameters to evaluate, this results in shorter computational times
and potentially higher accuracy compared to direct methods. However, it
is necessary to determine the costates, which lack physical meaning and it
can be challenging to calculate them in order to satisfy all constraints and
boundaries of the problem. Inadequate selection of these variables can hinder
algorithm convergence or lead to numerical issues.

• Evolutionary algorithms
These employ mechanisms inspired by nature, the problems are solved by
emulating the behavior of living organisms, specifically the concepts of Dar-
winian Evolution. The approach is the following: the initial guess solutions are
randomly generated and subsequently their effectiveness is evaluated. The best
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solutions are then selected for reproduction and undergo mutation, generating
improved solutions throughout an iterative process. Various techniques can be
employed to achieve the desired result, the Genetic Algorithms are the most
used.

3.2 Black box optimization
Black Box Optimization (BBO) [12] can be used when the structure of the objective
function J or the constraint function Q is unknown, non-existent, or lacks an
analytic expression. The BBO approach is frequently used when the objective
and/or constraint function require the execution of a computer simulation such
as a trajectory propagation (like in the case of this thesis). Another less frequent
case is when the output is an experimental result and thus cannot be modeled
analytically. The BBO approach is used in many different contexts such as material
science, computer engineering design, road design optimization, cardiovascular ge-
ometries. Not many applications can be found in the field of trajectory optimization.

The general scheme of the BBO optimization is the following: the optimization
parameters u are the inputs for the black-box function, they must be contained
within an upper bound U and a lower bound U . The black-box function performs
the computer simulation and formulates the output vector y:y = f(u)

U ≤ u ≤ U
(3.2)

The output y and the optimization parameters u are then used to calculate the
cost function J and the constraint function Q:

J(u, y) s.t.
U ≤ u ≤ U

Q(u, y) ≤ 0
(3.3)

The values of J and Q are then used by the optimization algorithm to calculate the
next values of u. This BBO approach is used with a direct optimization method,
figure 3.2 shows the BBO block diagram:
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Figure 3.2: Black box optimization block diagram

In a traditional direct approach there are hundreds or thousands of optimization
variables depending on the precision of the trajectory discretization, and there
are a similar number of constraints. By using the BBO approach the number of
optimization variables is greatly reduced (10 at most, in the case of this thesis)
and the majority of the constraints are satisfied inside the black-box function itself.

The atmospheric re-entry problem is not defined by a clear and obvious objective
function (there is no propellant consumption to be minimized), for this reason
the cost function can be properly chosen. In the approach here followed, the cost
function has been defined as a weighted sum of different errors associated with
each constraint. This problem is actually of a feasibility type: when the selected
objective function is minimized the problem feasibility has been obtained. The
intrinsic feasibility of the problem makes the optimization model very fast: the
only goal of the optimization algorithm is to minimize the cost function and it does
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not have to look for a feasibility region beforehand.

The details of the different optimization models developed in this thesis will
be described in chapters 5 and 6.

3.3 Sequential Quadratic Programming
Sequential Quadratic Programming (SQP) [13] is an iterative optimization algo-
rithm specialized in solving constrained non-linear optimization problems. It can
be considered a quasi-Newton method. It is one of the most successful algorithms
used in the space industry and it has proven to be the fastest even for the work
presented in this thesis.

This algorithm can handle a high degree of non-linearity but it incorporates
the calculation of many derivatives. For this reason the objective and constraint
functions need to be at least twice differentiable (everywhere). the SQP method
solves a set of optimization subproblems, each one of them optimizes a quadratic
model of the cost where the constraints are linearized.

If the problem is unconstrained (which is the case for most of the models de-
veloped in this thesis), the algorithm is reduced to Newton method.
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Chapter 4

Guidance and Control
solutions

This chapter describes in detail the guidance and control algorithms developed in
this thesis. The GNC system goal is to guide and control the vehicle allowing it to
follow a predetermined optimal reference trajectory in order to survive re-entry.
The control parameter is traditionally just one, the bank angle, which can be
modulated via aerodynamic surfaces (as in the case of space shuttle or IXV entry
vehicle) or reaction control thrusters (like the dragon capsule).

4.1 Reference trajectory
The guidance and control system has to follow with high accuracy a given reference
trajectory obtained through an optimization process. This reference trajectory is
located within the entry corridor boundaries and satisfies every constraint, including
the ones that are not directly visible in the entry corridor itself such as integral
heat flux, maximum flight time, geographical constraints... From the reference
trajectory are derived a set of three different profiles needed by the feedback control
loop of the GNC system. The first profile can be plotted in the Drag-Velocity plane
[14]:
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Figure 4.1: Drag-Velocity reference profile

The control system must accurately follow the D-V reference profile in order to
stay within the entry corridor boundaries.

The second profile is plotted in the Energy-Range plane:

Figure 4.2: Energy-Range reference profile
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The energy is calculated as the sum of kinetic and potential energy per unit mass
of the spacecraft at a given distance from the target:

E = 1
2v

2 + g0h (4.1)

The Energy-Range profile is needed by the guidance algorithm to adjust the Drag-
Velocity reference profile: this is necessary in order to reach the target with the
right amount of energy in terms of altitude and velocity of the spacecraft. This
will be discussed with more detail in section 4.3.

Finally the third profile can be plotted in the Altitude-Range plane:

Figure 4.3: Altitude-Range reference profile

This profile can by used by the guidance algorithm as an alternative to the Energy-
Range profile to achieve the same goal: the adjustment of the reference trajectory
in the D-V plane. During the development of the model better performances were
obtained using the Energy-Range profile instead of the Altitude-Range, for this
reason from now on this last profile will not be mentioned.
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4.2 Control parameter: bank angle
The feedback control law must follow the D-V reference profile by controlling the
lift generated by the spacecraft. This action can be achieved in two ways:

• The variation of the angle of attack, which modulates the magnitude of the
lift vector

• The variation of the bank angle, which changes the direction of the lift vector
and consequently modulates its vertical component

The first strategy is not used traditionally: as said in section 2.5 the vehicle has to
follow a certain AoA profile during re-entry due to aerodynamic stability reasons.
This means that the only real control parameter is the bank angle, which indicates
the rotation of the lift vector around the velocity vector axis:

Figure 4.4: Bank angle and angle of attack representation

There is a major drawback to this kind of control: by rotating the lift vector an
horizontal lift component is created which determines a drift of the trajectory to
the left and to the right depending on the bank angle sign. To counteract this
phenomenon a series of bank reversal manoeuvres are needed, where the bank an-
gle changes in sign but not in magnitude. This will be discussed in more detail later.
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Figure 4.5: Bank control drift

4.3 Guidance logic for energy management
As anticipated in section 4.1, an important goal of the GNC system is to deliver the
vehicle to the target with the right amount of energy, in other words the spacecraft
must have the right velocity and altitude for DRS activation when it reaches the tar-
get position. To ensure this happens correctly a guidance law must be implemented.

The input for this guidance law is the error between the measured energy and the
reference energy at a given distance from the target. Then the guidance algorithm
calculates a corrective action to reduce this error:

• If the actual energy is higher than the reference, the guidance law scales up the
D-V reference profile to higher drag values to dissipate the excessive energy.

• If the actual energy is lower than the reference, the guidance law scales down
the D-V reference profile to lower drag values to limit energy dissipation.

The following lines describe this guidance law. Firstly the energy error is calculated:

e = E − Eref (range)
Eref (range)

(4.2)

E: actual energy
Eref : reference energy
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Then this error and its first derivative are used in a PD-like guidance law to adjust
the D-V reference profile:

Dref (v) = Dref (v) ·
A

1 +K1e+K2
de

dt

B
(4.3)

Dref (v): adjusted reference drag
Dref (v): reference drag
K1: proportional gain
K2: derivative gain

Finally the adjusted reference drag is saturated whenever it exceeds a maximum
threshold safety value, this is done to ensure that the reference drag always lays
within the entry corridor margins:


Dref (v) = Dref (v) if Dref (v) < Dsaf e

Dref (v) = Dsaf e if Dref (v) > Dsaf e

(4.4)

Dref (v): adjusted and saturated reference drag
Dsaf e: maximum safety drag

4.4 Control law
The aim of the control law is to calculate an optimal control lift to follow with high
accuracy the D-V reference profile. This lift is then translated into a bank angle
value. The algorithm developed in this thesis calculates the control lift as the sum
of three terms that will be described in the following subsections.

4.4.1 Commanded lift
The commanded lift is calculated from the error between the reference drag and
the actual measured drag, this error is expressed the following way:

e = D −Dref (v) (4.5)

This error, its first derivative and its integral are then used in a PID-like control
law which calculates the desired lift. There are other terms besides the classic PID
terms that will be discussed in more detail later:
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Lc = Kq

q
·
A
Kpe+Kd

de

dt
+Ki

Ú t

0
edt+Kh(v)dh

dt

B
(4.6)

Kh(v) =
0 if v < 5000m/s

−Kh · v−5000
10000−5000 if v > 5000m/s

(4.7)

Kp: proportional gain
Kd: derivative gain
Ki: integrative gain
Kh: vertical velocity gain
Kq: dynamic pressure gain

There are two more terms other than the classic PID terms:

• The Kh(v)dh
dt

term proved to be useful in attenuating oscillations in the first
part of re-entry at very high altitudes and velocities, but harmful at low
velocities because it does not allow for a precise matching of the reference
profile. For this reason the gain Kh(v) decreases linearly until a velocity of
5000 m/s and then it becomes null. The value of 5000 m/s is chosen by trial
and error and it is not necessarily the best one, it could be improved through
an optimization process.

• The whole expression is multiplied by Kq

q
, this terms is big at low dynamic

pressures and small at high dynamic pressures. The idea is to increase the
gains when the aerodynamic forces are small and the vehicle loses control
authority, and to decrease them when the aerodynamic forces are sufficiently
high for the vehicle to have great control authority.

4.4.2 Equilibrium glide lift
The equilibrium glide lift by itself allows the vehicle to fly with zero vertical
acceleration because the sum of the vertical forces acting on it (weight, lift and
centrifugal) equals zero. The implementation of this term in the control law
creates a symmetry on the effectiveness of the commanded lift described in the
section 4.4.1. For a given error measured between the reference drag and the
actual drag, called e0, the commanded lift is the same whether the error is pos-
itive or negative aside from the sign: |Lc(e0)| = |Lc(−e0)|. Without the use of
the equilibrium glide lift, if the error is negative the vertical forces acting on
the spacecraft are F− = Lc(−e0) − weight + centrifugal, if the error is positive
the forces are F+ = Lc(e0) − weight + centrifugal. It is obvious that there
is no symmetry in these two cases because |F−| /= |F+|: the control action is
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more effective when the vehicle has to fly at lower altitudes and less effective
when it has to fly at higher altitudes. By introducing the equilibrium glide
lift the weight and the centrifugal forces are already counteracted and the sym-
metry is restored: F− = Lc(−e0) + L0 − weight + centrifugal = Lc(−e0) and
F+ = Lc(e0) + L0 − weight+ centrifugal = Lc(e0) so that |F−| = |F+|.

The equilibrium glide lift can be expressed the following way:

L0 = m ·
11
g − v2

r

2
cos γ − 2Ωv cosϕ sinψ − Ω2r cosϕ (cos γ cosϕ+ cosψ sin γ sinϕ)

2
(4.8)

4.4.3 Safety lift
This term is introduced as a safety measure to ensure that the boundaries of the
entry corridor are not surpassed. Firstly the error between the actual drag and the
drag corresponding to the entry corridor boundary (called Dmax) is calculated:

e = Dmax −D (4.9)

Secondly this error is used to compute the safety lift:

Ls = 1
(e/0,1)100 (4.10)

The value of Ls is basically zero if the error is bigger than 0,1. When the spacecraft
is close to the corridor upper boundary (in the D-V plane) and the error becomes
smaller than 0,1 the value of Ls grows exponentially commanding the vehicle to
move to higher altitudes.

4.4.4 From lift to bank angle
The ultimate control lift is the sum of the three terms described before:

Lcontrol = L0 + Lc + Ls (4.11)

This control lift is translated into a bank angle command with the following
expression:

σ = arccos
A
Lcontrol
L cos γ

B
(4.12)
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Figure 4.6: Bank angle and lift components

4.5 Guidance logic for bank reversal
Bank reversal manoeuvres are necessary to compensate the lateral drift deriving
from the horizontal lift component. The logic is very simple, firstly the angle
between the velocity vector and the target vector (heading error) is calculated:

α = bearing − heading (4.13)

The heading error must stay within a maximum and a minimum value which define
a heading error corridor. Each time α reaches the maximum or the minimum
boundary, a bank reversal manoeuvre is commanded:

sign =


1 if α > αmax

−1 if α < −αmax
signold if − αmax < α < αmax

(4.14)

σ = sign · σ (4.15)
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Figure 4.7: The heading error α

Figure 4.8: Heading error corridor

The frequency of bank reversal manoeuvres increases as the vehicle gets closer to
the target.
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Figure 4.9: Bank profile with reversals

A simplified block diagram of the guidance and control subsystem is shown in figure
4.10:

Figure 4.10: Guidance and control block diagram
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Chapter 5

Variable entry interface
point tool

This chapter will discuss in detail the optimization process developed to obtain
reference trajectories that satisfy every constraint discussed in chapter 2. The target
position and conditions are known but the EIP is not fixed: the tool calculates the
best entry interface point.

The tool is divided into many parts which will be described in the sections of this
chapter.

5.1 Model inputs
The tool needs several inputs to operate:

• Atmospheric model
The atmospheric model must be loaded in the form of a matrix with three
columns: the first column is the altitude vector, the second column is the
density vector and the third column is the speed of sound vector.

• Aerodynamic coefficients
The aerodynamic coefficients are expressed as a function of Mach number,
they must be loaded in a matrix with three lines: the first line is the Mach
number vector, the second line is the lift coefficients vector and the third line
is the drag coefficients vector.

• Spacecraft constants
The model needs to know the mass of the vehicle, the surface area, the
nose radius, and other quantities which are only used for the entry corridor
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calculation: the catalytic coefficient, the elevon and aileron deflections and
the angle of side-slip.

• Orbital parameters
The original orbit where the spacecraft flew before re-entry must be known
in order to correctly calculate the EIP conditions. This model considers
only circular orbits and the inputs needed are just the inclination and the
semi-major axis. Here the user also chooses if the goal is for the vehicle to
fly to the target while moving towards the ascending node or the descending
node of the orbit.

• EIP conditions
In this section the user sets the EIP altitude and flight path angle, these inputs
together with the known orbital parameters allow for the calculation of the
other quantities of the EIP state vector: initial velocity, longitude, latitude
and heading angle. The user also chooses a minimum and a maximum range
from EIP to target: the actual entry interface point chosen by the model will
be located within these boundaries.

• Target conditions
The necessary target conditions are: final longitude, final latitude, final Mach
number and final dynamic pressure.

• Ground stations
The user must insert the information about the ground stations in a matrix
where each line represents a different station. The first two elements of each line
are the longitude and latitude of the station, the third element is its altitude,
the fourth element is the minimum elevation at which a communication link
can be created, and finally the fifth element is the minimum desired visibility
window (in terms of duration) between the station and the spacecraft. This
section can be left empty if no ground stations are implemented.

• Constraints
In this section the following constraints are defined: maximum dynamic pres-
sure, maximum pressure at stagnation point, maximum load factor, maximum
heat flux, maximum heat flux on the flaps, ceiling value, maximum integral
heat flux, flight time, maximum bank angle and maximum bank angle rate.

• Heading error corridor
The user must insert four different values of maximum heading error that will
define a heading error corridor as function of the distance from target:
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αmax =


α1 if range > 3500km
α2 if 3500km > range > 1500km
α3 if 1500km > range > 500km
α4 if range < 500km

(5.1)

5.2 EIP conditions map
As anticipated before, the tool calculates the optimal EIP location. The minimum
and maximum EIP distances from the target are chosen by the user. The length
between these two extremes is then divided into many equidistant points and the
EIP conditions are calculated in every point. The actual EIP location is then
interpolated between these points. It is therefore necessary to calculate a map of
feasible EIP conditions for the model to interpolate.

5.2.1 Orbit RAAN determination
The reentry is only possible if the ground track of the spacecraft orbiting Earth
intersects the target location, or at least passes very close to it. This means that not
every orbit can be used for re-entry and it is necessary to wait until this condition
is satisfied:

Figure 5.1: Ground track of multiple orbits

In this thesis instead of waiting for the proper orbit that allows re-entry, the Right
Ascension of the Ascending Node (RAAN) is chosen in order to geometrically
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satisfy the necessary intersection condition between target and ground track. In
reality the orbit RAAN is known but choosing it in order to satisfy this condition
does not change the physics of the problem at all, that is why it is implemented
this way.

The RAAN is calculated analytically using the geometrical relations of spher-
ical right triangles. There are eight different expressions depending on three
parameters: the target latitude (northern or southern hemisphere), the inclination
of the orbit (prograde or retrograde) and the part of the orbit where the re-entry
takes place (ascending node side or descending node side). For example in the
following case: target in the northern hemisphere, prograde orbit and descending
node side, the expression is the following:

a = π

2 − arccos
3

cot (i) cot
3
π

2 − L
44

(5.2)

RAAN = Longitudetarget + a+ π (5.3)

Figure 5.2: Spherical geometry relations
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5.2.2 Calculation of EIP conditions
The spacecraft orbiting the Earth in order to re-enter atmosphere has to perform
an entry burn to reduce its energy and lower its perigee. This ∆V is applied in the
opposite direction relative to the velocity vector of the vehicle. The EIP conditions
uniquely depend on the modulus of this ∆V , on the true anomaly value ν where
the ∆V is applied and on the time of flight T after the entry burn:

Figure 5.3: EIP as function of ∆V , ν and T

Calculating the correct ∆V , ν and T to get the desired EIP flight path angle,
altitude and range from target is not an easy task because Earth is an ellipsoid:
by changing ν, also ∆V and T have to change to get the desired flight path an-
gle, and it is very easy to miss completely the atmosphere since this angle is so small.

After many attempts and algorithms the best solution for this problem is to
develop an optimization model whose optimization parameters are ∆V , ν and T ,
and the cost function minimizes the error between the actual EIP conditions and
the desired EIP conditions:



J1 = ((rangeEIP − rangeEIP ) · 10−6)2

J2 =
11
fpaEIP − fpaEIP

2
· 102

22

J3 =
11
HEIP −HEIP

2
· 10−5

22

J = J1 + J2 + J3

(5.4)
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rangeEIP : desired distance EIP-target
fpaEIP : desired EIP flight path angle
HEIP : desired EIP altitude

J1 relates to the error between the desired EIP position and the actual EIP
position, J2 indicates the error between the desired and actual EIP flight path
angle and J3 represents the error between the desired and actual EIP altitude. J
is the sum of these three terms to be minimized.

The optimization model uses the black-box approach: every constraint is taken into
account inside the trajectory propagator (which is the black-box) and there are no
additional constraints that need to be verified. This means that the optimizer has
to solve a problem which is always feasible and for this reason it always converges
to a solution.

Figure 5.4: EIP conditions optimization model
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The optimization algorithm is Interior-point; the function used to integrate the
equations of motion is ode89, which is a 8th order variable step Runge-Kutta
method for non stiff problems.

The process is extremely fast: the model finds the solution in 3 or 4 seconds
and the desired values are obtained with very high accuracy. This model is run
20 times in order to calculate the EIP conditions in 20 equally spaced locations
ranging from the minimum and the maximum distances EIP-target chosen by the
user in section 5.1. For each run the whole state vector is saved (longitude, latitude,
velocity, radius, flight path angle and heading angle) together with the values of
∆V , ν and T . This creates the EIP conditions map:

Figure 5.5: EIP conditions map

5.3 Entry corridor definition
In this section the entry corridor is calculated using the equations defined in section
2.2. The constraints taken into account for the definition of the entry corridor are
listed in section 2.4. Figure 5.6 shows the different curves relative to the given
constraints:
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Figure 5.6: Entry corridor with the given constraints

The inferior boundary of the entry corridor is defined by the ceiling limit, the
superior boundary is represented by the constraint that has the lower value at a
given velocity. The entry corridor can thus be expressed in the following lighter
form:

Figure 5.7: Entry corridor boundaries
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5.4 Ideal reference profile definition
This part of the model analytically calculates 11 curves contained within the entry
corridor boundaries called ideal reference profiles. These curves are parameterized
with a parameter k that varies from 0 to 1 with a step of 0.1, this is why there are
11 curves. These curves do not represent the actual profiles that will be followed
by the control law but they represent the "skeleton" on which the proper reference
profile will be built. This will be clarified in section 5.5, for now these ideal profiles
are calculated as follows:

The ideal reference profiles are defined by three different functions depending on
the velocity of the spacecraft:

D(v) =


D1(v) if 0 < v < v (Machtarget)
D2(v) if v (Machtarget) < v < 8800m/s
D3(v) if 8800m/s < v < 9000m/s

(5.5)

• 0 < v < v (Machtarget)
In this range of velocities the drag profile is constant and the drag value
satisfies the target dynamic pressure. D1 is the same for each of the 11 ideal
profiles:

D1(v) = D (qtarget) (5.6)

• v (Machtarget) < v < 8800m/s
Here the drag profile is calculated as a spline between different points chosen
by the user. The user has to define the following inputs:

– k1 and k2
Dmax(v) is the superior boundary of the entry corridor, Dmin(v) is its
inferior boundary and ∆D(v) = Dmax(v) −Dmin(v) is the entry corridor
width. k1 and k2 represents the margin on these boundaries, meaning that
each point of the spline will be contained between Dmargin = Dmin(v) +
∆D(v) · k1 and Dmargin = Dmax(v) − ∆D(v) · k2:

D2(v) = Dmargin + k · ∆D(v) (1 − k1 − k2) (5.7)

where 0 ≤ k ≤ 1.
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Figure 5.8: Entry corridor with margins

– Velocity vector
The user creates a vector of N elements, each element is a velocity value
contained between v (Machtarget) and 8800m/s in ascending order. These
values are the points that will be used for the creation of the spline.

– Upper limit vector
The user can decide if it is desirable to put another upper margin on
the drag values. A vector of N elements (same dimension of the velocity
vector) is created, the i− th element of this vector is associated with the
i − th element of the velocity vector and it must be contained between
0 and 1. If the value is 1 no upper margin (other than the one already
defined) is applied, if the value is lower than 1 it means that k (vi) is
limited to that maximum value.

• 8800m/s < v < 9000m/s
For this range of velocities the drag is again constant and equal to zero. It is
the same for each of the 11 ideal profiles:

D3(v) = 0 (5.8)

Finally the 11 ideal reference profiles are obtained with the procedure described
above and with k = 0,0.1,0.2,0.3, ...,0.8,0.9,1 (unless it is saturated by the upper
limit vector). The final result is the following:
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
k1 = 0.05
k2 = 0.25
Vvector = [1500 2000 3000 4000 4500 5000 6000 7000]
Limitvector = [1 1 1 1 1 1 0.7 0.7]

Figure 5.9: Ideal reference profiles

5.5 Reference trajectory optimization model
The optimization model developed in this section finds the gains for the control
law described in chapter 4. The goal is to follow with the best accuracy the several
ideal reference profiles defined in section 5.4. These gains will be used in section
5.6 to derive the actual reference profile that satisfies every constraint.

This optimization model uses the black-box approach: every constraint is satisfied
in the trajectory propagator (the black-box), this makes the problem inherently
feasible and the model always converges to a solution, even though this solution
might just be a local minimum. This feature makes the model very efficient and
fast since its only goal is to minimize a certain cost function.

The optimization parameters are the five control gains Kp, Kd, Ki, Kh and Kq.
These gains are used in a simplified control law which does not include the bank
angle rate limit and the energy management guidance law: the goal is not to reach
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the target with high accuracy in terms of position, but to find a profile that stays
within the entry corridor boundaries and that satisfies the desired target dynamic
pressure when it reaches the target Mach number. This is done by implementing
the following cost function that minimizes the square error between the propagated
drag-velocity profile and the ideal reference profile:

J =
NØ
i=1

(Dpropagated (vi) −Dideal (vi))2 (5.9)

N is the number of integration points, it is fixed for a given simulation but it can
change between simulations: The trajectory propagator integrates with a fixed
time step of 5 seconds and the integration is automatically stopped when the target
Mach number is reached.

The trajectory propagator uses the first column of the EIP map as initial con-
ditions and the ideal reference profile followed by the control law is the sixth
one (corresponding to k = 0.5). Figure 5.10 shows the optimization model block
diagram:

Figure 5.10: Reference trajectory optimization model block diagram
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The optimization algorithm is sqp, described in section 3.3. The function used to
integrate the equations of motion is ode4, which is a 4th order fixed step Runge-
Kutta method for non stiff problems, the step size is set to 5 seconds.

This optimization model is used inside Matlab Global Optimization Toolbox in
order to calculate multiple solutions and hopefully the absolute minimum of the
cost function is found. The user has to choose the optimization time and to create
a vector of five elements: each element is associated with a certain control gain and
represents the maximum value allowed for that specific gain. After the optimization
process is complete the user manually chooses the solution that follows in the best
way the ideal reference profile and reaches with maximum accuracy the target
dynamic pressure:

Optimization time: 15min
[KpMAX KdMAX KiMAX KhMAX KqMAX ] = [100 2000 1 0.5 10000]

Figure 5.11: Reference trajectory optimization model results
Optimal gains: [67.6 1860.4 0.052 0.292 6326.3 ]

Final dynamic pressure percentage error: − 6.4%
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This propagated profile satisfies every constraint but not necessarily the followings:

• Maximum integral heat flux

• Maximum flight time

• Maximum bank angle rate

• No-fly zones

• Ground station visibility

• Target position

Most of these constraints will be satisfied in section 5.6 where the actual reference
profile is calculated.

5.6 Actual reference profile calculation
In this section the optimal gains found in section 5.5 are used to propagate the
trajectory using each one of the 11 ideal reference profiles calculated in section 5.4,
starting from k = 0 all the way to k = 1. Each time the trajectory is propagated
the maximum integral heat flux, maximum flight time and ground station visibility
constraints are checked and the first propagated profile that satisfies every con-
straint becomes the actual reference profile.

The cycle that characterizes this iterative approach is divided in three main parts:

• selection of the ideal reference profile
Here the ideal reference profiles are chosen from the first to the last.

• Shifting of the EIP point
In this part the EIP position is shifted with an iterative process in order to
minimize the error on the final position, this is done by interpolating the EIP
map table. An accuracy on the target position of less than 100 meters is
achievable.

• Constraints check
Here the constraints listed before are verified.
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Figure 5.12 shows the block diagram of this iterative process:

Figure 5.12: Actual reference profile calculation block diagram

Figure 5.13 shows the actual drag-velocity and energy-range reference profiles
obtained with this process:

Figure 5.13: Actual reference profile



Final position error: 14m
Final dynamic pressure percentage error: − 4.36%
Flight time margin: 3.5%
Integral heat flux margin: 71.7%
Ground station visibility margin: 117%
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This reference profile satisfies every constraint but not necessarily the followings:

• Maximum bank angle rate

• No-fly zones

The no-fly zone will be analyzed in the final parts of this chapter. The maximum
bank angle rate is always set to infinity during the trajectory optimization process
for a simple reason: if the bank reversal manoeuvres are not instantaneous and
instead take a certain amount of time to be finalized, during this time an undesired
increased vertical lift component is created. This determines a "bump" on the
reference profile each time a bank reversal manoeuvre is commanded and creates
noise on the profile itself making it more difficult for the GNC system to follow. By
removing the bank angle rate limit on the construction of the reference trajectory,
the reference profile obtained is the smoothest possible and the GNC system can
follow it more easily.

5.7 Alternative reference trajectory optimization
model

The sections 5.7 and 5.8 are necessary only if the optimization model described in
sections 5.5 and 5.6 did not find a feasible solution satisfying the constraints. If
this is the case a different optimization approach is necessary.

The optimization model described in this section creates a new ideal reference
profile by optimizing the drag values of each node used for the spline interpolation.
This ideal reference profile is then followed by the control law which utilizes the
optimal control gains obtained in section 5.5. The control law is still simplified: it
lacks the energy management guidance logic and the bank rate limit.

The optimization strategy still utilizes the black-box approach, most of the con-
straints are satisfied during the trajectory propagation (black-box part of the model)
but some of them are taken into account in the optimization part of the model:
integral heat flux and total flight time. This means that the model is not inherently
feasible and before minimizing the cost function it needs to find a feasible region
for the optimization variables, which is not necessarily guaranteed.
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The new ideal reference profile is obtained the following way:

Each spline point Pi is characterized by a X coordinate which is its velocity
value vi, and a Y coordinate which is its drag value Di:

Pi = (vi, Di) (5.10)

The velocities relative to the N spline points are not chosen by the optimizer
model, they are in fact the same values selected by the user in the velocity vector
described in section 4.4. The drag values on the other hand are the parameters to
be optimized, the model chooses the scale factor ki for each node:

Di = Dmargin + ki · ∆D(vi) (1 − k1 − k2) (5.11)

With 0 ≤ ki ≤ 1 unless the value is further limited by the upper limit vector
described in section 5.4. More details on the terms of the equation 5.11 can be
found in the description of equation 5.7. Figure 5.14 shows an example of the ideal
reference profiles obtained with this technique, it is important to know that the ki
values in figure 5.14 are not obtained through optimization, they are just random
numbers used to demonstrate the concept:

Figure 5.14: Example of ideal reference profile

The cost function and the constraint function are defined the following way:

• cost function
The cost function minimizes the square error between the spline points chosen
by the optimizer and the spline points of one of the 11 previous ideal reference
profile created in section 5.4. Before the optimization process the user chooses
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which one of these 11 ideal profiles has to be used for the calculation of the
cost function.

J =
NØ
i=1

(Didealnew (vi) −Didealold
(vi))2 (5.12)

N is the number of spline points.

• constraint function
After the trajectory is propagated, the integral heat flux Q̇ and total flight
time T are calculated and a constraint function is defined using the following
inequality equation:

Q =
T − Tmax < 0
Q̇− Q̇max < 0

(5.13)

Figure 5.15 shows the block diagram of this optimization model:

Figure 5.15: Optimizer model 2 block diagram
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The optimization algorithm is sqp, described in section 3.3. The function used to
integrate the equations of motion is ode4, which is a 4th order fixed step Runge-
Kutta method for non stiff problems, the step size is set to 5 seconds.

This model uses Matlab Global Optimization Toolbox to obtain multiple solutions.
Before the optimization process the user chooses the running time. The solutions
found by this model satisfy every constraints except the following which might not
be satisfied:

• Maximum bank angle rate

• No-fly zones

• Ground station visibility

• Target position

Most of these constraints will be satisfied in the section 5.8 where the actual
reference profile is calculated.

5.8 Alternative actual reference profile calcula-
tion

In this section the user chooses one of the solutions obtained in section 5.7 to study.
Once the profile is chosen, a series of operation similar to what is described in
section 5.6 take place:

• Translation of the EIP point
In an iterative process the EIP state vector is interpolated from the EIP
conditions map in order to maximize the accuracy on the final position.

• Constraint check
The ground station visibility constraint is checked.

After analyzing every solution obtained in section 5.7, the user chooses the best
reference profile considering the following points:

• Ground visibility constraint satisfied

• Smoothness of the profile
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• Distance of the profile from the higher boundary of the entry corridor

• Accuracy on the final value of dynamic pressure

At the end of this process the only constraints that are not verified and possibly
not satisfied are:

• Maximum bank angle rate

• No-fly zones

The bank angle rate limit will be implemented in section 5.9 where the optimal
control gains are calculated.

5.9 Control gains optimization model
In this section the optimal control gains are calculated. The ideal gain values
calculated in section 5.5 are optimal when the goal is obtaining the smoothest
reference profile but they are not physically feasible. The drawback of being able
to follow with extremely high accuracy one of the ideal reference profiles described
in section 5.4 is that the resulting bank angle profile has very high frequency and
high amplitude oscillations:

Figure 5.16: Ideal gains bank profile
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The solution to this problem is to develop an optimization model which finds
control gains that allow the vehicle to precisely follow the actual reference profile
and at the same time determine a feasible bank angle profile, which has to be
smooth and with limited oscillations.

The model is again developed with a black-box approach: the trajectory propaga-
tion part is able to satisfy every constraint and the optimization part has to solve
an inherently feasible problem and always converges to a solution. This feature
makes the model extremely efficient and fast: in a matter of minutes it is able to
find good solutions.

The cost function developed for this goal is a linear combination of two terms:

J =
NØ
i=2

1
(1 −K) · (D (vi) −Dref (vi))2 +K · (σ (vi) − σ (vi−1))2

2
(5.14)

N is the number of integration points. The term (D (vi) −Dref (vi))2 minimizes the
error between the propagated drag-velocity profile and the reference drag-velocity,
the term (σ (vi) − σ (vi−1))2 instead minimizes the variations of the bank value
throughout the simulation. K is a factor that changes the relative weight of the
two terms.

The optimization model uses Matlab Global Optimization Toolbox to obtain
multiple solutions. Before the optimization process starts the user has to set the
following inputs:

• Duration of the optimization

• A vector containing the maximum values allowed for each gain

• The value of the weight factor K that ranges from 0 (case that minimizes the
error between the propagated drag profile and the reference drag profile) to 1
(case that minimizes the bank angle variations)

The control law implemented in the trajectory propagator contains the bank angle
rate limit but still lacks the energy management guidance logic. The optimization
model block diagram is shown in figure 5.17:
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Figure 5.17: Optimizer model 3 block diagram

The optimization algorithm is sqp, described in section 3.3. The function used to
integrate the equations of motion is ode4, which is a 4th order fixed step Runge-
Kutta method for non stiff problems, the step size is set to 5 seconds. An example
of bank angle profile obtained with this technique is shown below:

Figure 5.18: Bank angle profile example
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5.10 Optimal gains choice
In this section the user analyzes the solutions obtained with the third optimization
model and chooses the best one. The control law implemented in this part is finally
complete and it also contains the energy management guidance logic. The inputs
for this section are: the number of the solution that has to be analyzed, the gains
of the energy management guidance law K1 and K2. In this case 35 solutions were
found by the global optimization algorithm, the first three solutions are shown in
Figures 5.19, 5.20 and 5.21:

Figure 5.19: Solution 1 profiles

There are mainly four indicators helping the user to choose the best solution. The
first indicator is the ability of the vehicle to follow the reference trajectory, visible
in the top-left image of figure 5.19. The second indicator is the smoothness of the
bank angle profile, visible in the lower image of figure 5.19. The third and fourth
indicators are the errors on the final position and dynamic pressure, they must
be as small as possible. Solution 1 is acceptable because the reference profile is
followed with good precision and the errors on final position and dynamic pressure
are minimized. The second and third solutions (Figure 5.20 and 5.21) on the other
hand are not acceptable: the second solution has too many oscillations, the third
one is completely unable to follow the reference profile adjusted by the energy
management guidance logic and it overshoots the entry corridor boundaries in a
way that the safety lift term in the control law is not able to counteract:
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Figure 5.20: Solution 2 profiles

Figure 5.21: Solution 3 profiles
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It is important to note that not every time the best solution is the first one, that is
why the user must analyze all of them before choosing.

5.11 No-fly zones
The avoidance of the no-fly zones can be implemented in the last part of the
optimization process: after many different mission scenarios it has been experimen-
tally proven that it does not change the quality of the solution obtained without
considering this aspect. The avoidance strategy includes the definition of waypoints
carefully positioned by the user and it is divided in two main parts:

• Calculation of the area where the vehicle can fly.

• Positioning of the waypoints inside this area to avoid the no-fly zone.

These aspects will be discussed in the following subsections.

5.11.1 Region of possible flight
Every vehicle has limited cross-range capabilities, this means that there is a finite
region of space where it can safely fly. The calculation of this region is obtained by
finding the boundary trajectories: they are the most deviated trajectories flyable
by the vehicle where it can still converge to the target.

The boundary trajectories are obtained by using a slightly modified GNC al-
gorithm: the guidance logic for energy management and the control law are kept
the same but the guidance logic for bank reversal is modified. Instead of command-
ing the bank reversal manoeuvre each time the heading error overshoots a certain
threshold, there is just one bank reversal throughout the whole trajectory.

The vehicle starts with a given sign of bank angle which does not change for
the first part of the trajectory. Then at a specific time Tswitch the bank reversal
manoeuvre takes place and the bank angle sign changes and remains the same for
the second part of the trajectory. Tswitch must be chosen accurately because it is
clear that if the bank reversal takes place at time T = Tswitch − ∆T the vehicle will
undershoot the target, instead if it happens at T = Tswitch + ∆T the vehicle will
overshoot the target:
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Figure 5.22: Boundary trajectory representation

The time Tswitch is calculated through an iterative process. In order to define the
boundaries of the flyable region two different simulations must be done: the first
one starts with a bank angle sign of 1 and then it switches to -1, the second one
starts with a bank sign of -1 and then switches to 1. With this process the following
result is obtained:

Figure 5.23: Flyable region

The waypoints must be located within this region otherwise the vehicle will not be
able to reach them.
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5.11.2 Waypoints definition
This section needs several inputs:

• no-fly value
The user sets this value to 1 if there is a no-fly zone, otherwise the value is set
to 0.

• no-fly zone definition
The user defines the no-fly zone as a circle characterized by its center co-
ordinates and its radius. The first are defined inside a two element vector
containing the longitude and the latitude, the second is defined inside a scalar
variable.

• Waypoints definition
The waypoints are defined inside a matrix where each line represents a specific
waypoint. The first element of each line is the longitude of the waypoint, the
second element is its latitude.

• Initial bank sign
The user sets inside a scalar variable the initial sign of the bank angle (1 or
-1).

The bank reversal guidance logic considers the first waypoint as its target and the
vehicle moves towards it. When the distance between this waypoint and the vehicle
becomes smaller than 200 kilometers the bank reversal guidance logic switches to
the next waypoint and so on until the target is reached. The user has to tweak the
waypoints position in an iterative process in order to avoid the no-fly zone, usually
just one waypoint is sufficient for this goal.
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Figure 5.24 shows the results of this process together with the ground station
visibility:

Figure 5.24: Propagated trajectory with waypoint and ground station visibility

5.12 Final trajectory propagator
This is the final part of the process, this trajectory propagator contains the complete
GNC algorithms and uses every result from the previous sections. A difference
relative to the previous propagators is that here the heat flux is not calculated
with the DKR formula but it is interpolated from the IXV aero-thermodynamic
database.
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This section is mostly used for output visualization as can be seen in figures 5.25,
5.26 and 5.27:

Figure 5.25: Output visualization figure 1

Figure 5.26: Output visualization figure 2
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Figure 5.27: Output visualization figure 3

Besides the figures this script also shows the errors between the propagated tra-
jectory and the desired values defined in section 5.1. In this case the errors on
the final position and final dynamic pressure are small and acceptable. The other
constraints are satisfied since all the margins are positive:

Final position error: 0.73km
Final dynamic pressure percentage error: − 0.14%
Flight time margin: 2.9%
Integral heat flux margin: 71.1%
Ground station visibility margin: 119.5%
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Fixed entry interface point
tool

This chapter will discuss the optimization tool that calculates the optimal entry
trajectory and the optimal control gains in the case of known initial and final
position of the vehicle (EIP and target conditions). The tool has the same structure
and it is overall very similar to the one described in chapter 5 with a few differences:
instead of having 12 sections it is divided into 9 sections that will be described
below.

6.1 Part 1
This part of the chapter describes the first 4 sections of the model which are
basically the same as what is shown in sections 5.1, 5.3, 5.4 and 5.5:

• Model inputs
This is the part where every input is declared. It is basically the same as section
5.1 with a main difference: the previous model needed the definition of the
orbital parameters, the desired FPA and altitude at the entry interface point
in order to calculate the EIP conditions map, necessary for the interpolation
of the optimal EIP state vector. In this model instead the EIP conditions are
predefined and the user needs to declare only the initial state vector (EIP
velocity, radius, longitude, latitude, flight path angle and heading angle).
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• Entry corridor definition
The second step is to calculate the entry corridor starting from the defined
constraints, this is done the same way described in section 5.3.

• Ideal reference profile definition
This part is exactly the same as what described in section 5.4. The 11 ideal
reference profiles are calculated with the same procedure (using a spline with
a scale factor k that ranges from 0 to 1) although they will not be used later:
in section 6.2 a brand new ideal reference profile will be constructed using an
optimal value of the scale factor k, this will be clarified later.

• Reference trajectory optimization model
The goal of this model is to find the optimal control gains able to follow with
high precision a generic ideal reference profile in order to start building the
actual reference profile. The procedure is the same one described in section
5.5.

6.2 Part 2
This section calculates the actual reference profile that satisfies most of the con-
straints. The idea is to find the optimal value of k (the scale factor that determines
the position of the ideal reference profile inside the entry corridor as seen is section
5.4) that allows the vehicle to end its trajectory exactly at the target position.
If k < koptimal then the reference profile is located at higher altitudes and the
vehicle overshoots the target; if k > koptimal the reference profile is located at lower
altitudes and the vehicle undershoots the target. The problem of finding koptimal
can be modeled as the problem of calculating the zero of the following function:

R = f(k) (6.1)

with 0 < k < 1

Figure 6.1: Function block diagram
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Where R is the final range to target:

Figure 6.2: Function qualitative plot

koptimal that satisfies R = 0 is found numerically. The reference profile obtained
with this process satisfies every target condition and every constraint plottable in
the Drag-Velocity plane.

The biggest problem of this approach is that it finds just one solution, and this
solution does not necessarily satisfy the other non-plottable constraints:

• Maximum integral heat flux

• Maximum flight time

• No-fly zones

• Ground station visibility

The no-fly zones are implemented in the final part of the model as seen in section
5.11, and the other three constraints are satisfied in the specific case of the IXV
vehicle for its particular trajectory. But a future improvement might be to develop
an alternative model that considers these constraints in the optimization process
itself.
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6.3 Part 3
This part of the chapter describes the last 4 sections of the model which are the
same as what is shown in sections 5.9, 5.10, 5.11 and 5.12:

• Control gains optimization model
The optimization model developed in this section calculates the optimal control
gains that satisfy the following two conditions: allow the vehicle to follow
with precision the reference profile obtained in the previous section, determine
a smooth bank angle profile that minimizes the actuators movement. This
section is exactly the same as section 5.9.

• Optimal gains choice
Here the user must choose the best solution obtained by the previous opti-
mization model as described in section 5.10.

• No-fly zones
The no-fly zone (if present) is avoided by including one or more waypoints,
the process is already described in section 5.11.

• Final trajectory propagator
The complete trajectory propagator that includes the full GNC algorithms is
used for output visualization.
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Chapter 7

Experimental analysis

This chapter will present the results obtained with the variable entry interface point
tool described in chapter 5, many of the comparisons between my results and the
ones obtained in IXV mission analysis cannot be shown because of a Non-Disclosure
Agreement (NDA) since they are sensible informations.

7.1 Reference framework
The framework of this analysis is the study done in 2014 regarding the IXV vehicle
mission analysis. The constraints and boundary conditions used in that document
are implemented in the model developed in this thesis to demonstrate the efficacy
of the optimization tool and the guidance and navigation algorithms. The infor-
mations about the value of constraints, EIP state vector and target state vector
are confidential and thus cannot be shown. The comparison will be presented just
with relative errors between the different quantities.

7.2 Results and comparison with IXV vehicle
This section shows the results obtained with the fixed EIP re-entry model and
compares them to the ones obtained during IXV mission analysis. The values
obtained with my model at the end of the trajectory propagation are well within the
limits of acceptability and every constraint is satisfied. The percentage difference
between the two models is very low, usually less than 5%:
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Figure 7.1: Final state vector

Figure 7.2: Other quantities

Figure 7.3 compares the reference profile obtained with the tool described in this
thesis, to the one obtained during IXV mission analysis. This is the result of the
optimization process:

Figure 7.3: Reference profile comparison
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The actual Drag-Velocity, Energy-Range and Altitude-Range profiles obtained by
propagating the trajectory with the GNC algorithms developed in this thesis are
shown below. The optimal control gains found through optimization allow the
vehicle to follow with great accuracy the reference profile as can be seen in figures
7.4, 7.5 and 7.6:

Figure 7.4: Drag-Velocity profile

Figure 7.5: Energy-Range profile
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Figure 7.6: Altitude-Range profile

The bank angle profile is smooth and two things can be noticed:

• In the first part of the trajectory (first 500 seconds) the control law gets to
saturation because it is compensating the fact that the atmosphere is very
thin and thus there is not much control authority. When the atmosphere gets
denser, the control law scales down its gains and stops saturating.

• Six bank reversal manoeuvres are commanded by the guidance logic and when
they happen the bank profile does not change immediately sign: the curve
is not vertical but slightly inclined, this is the due to the bank angle rate
limitations.

Figure 7.7: Bank angle profile
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The bank reversal manoeuvres can be clearly noticed in the heading angle profile
and also in the projection of the trajectory in the latitude-longitude plane:

Figure 7.8: Heading angle profile

Figure 7.9: Trajectory in the latitude-longitude plane
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The flight path angle is almost constant for most of the trajectory and then it
decreases significantly in the last parts of the trajectory:

Figure 7.10: Flight path angle profile

The G-load, dynamic pressure, heat flux, total heat flux and passive to active
oxidation profiles are well below the maximum allowed values (which cannot be
shown because they are proprietary informations). They are presented in figures
7.11 - 7.15:

Figure 7.11: G-load profile
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Figure 7.12: Dynamic pressure profile

Figure 7.13: Heat flux profile
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Figure 7.14: Total heat flux profile

Figure 7.15: P/A oxidation profile
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7.3 Montecarlo analysis
In this section the Montecarlo analysis is shown to prove the robustness of the
GNC algorithms developed in this thesis. 1200 cases are analyzed and they all
converge to the target and satisfy every constraint. The uncertainties are applied
to the following quantities:

• EIP conditions
The EIP conditions uncertainty is applied to the orbital parameters with a
normal distribution: 

a = anominal + ∆a · randn/3
e = enominal + ∆e · randn/3
i = inominal + ∆i · randn/3
Ω = Ωnominal + ∆Ω · randn/3
ω = ωnominal + ∆ω · randn/3

(7.1)

randn is a random number of the normal distribution, it is divided by 3 to
contain the 3σ probability within the ∆ of the given orbital parameter.

• Atmospheric conditions
Uncertainties are applied to atmospheric density and temperature accordingly
to the standard deviations contained in the IXV atmospheric model:ρ(h) = ρnominal(h) · (1 + ∆ρ(h) · randn)

T (h) = Tnominal(h) · (1 + ∆T (h) · randn)
(7.2)

• Vehicle mass
In this case the uncertainty has a constant distribution, not a normal one:

m = mnominal + ∆m · 2
3
rand− 1

2

4
(7.3)

Where rand is a random number between 0 and 1.

• Trim line
The vehicle trim line has the following uncertainty:

α(M) = αnominal(M) + ∆α(M) · randn/3 (7.4)

• Aerodynamic coefficients
The aerodynamic coefficients are extracted by IXV aerodynamic database
which can optionally implement uncertainties.
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• Mach number at DRS triggering
The triggering of the parachute happens at Mach number close to the desired
one with a small uncertainty:

Mtarget = Mtargetnominal
+ ∆M · randn/3 (7.5)

Every uncertainty value is chosen accordingly to what is presented in IXV mission
analysis documents. Every propagated trajectory satisfies the different constraints
and the target values are within the acceptable margins, the results are shown in
figures 7.16 - 7.19:

Figure 7.16: Montecarlo results 1
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Figure 7.17: Montecarlo results 2
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Figure 7.18: Montecarlo results 3
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Figure 7.19: Montecarlo results 4
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Chapter 8

Conclusive remarks

The re-entry optimization problem is extremely demanding from a computational
point of view. Since the beginning the goal was to develop a fast and efficient
optimization tool able to run on average computers in a reasonable amount of time:
the model developed in this thesis is the result of this approach.

The trial and error iterative approach exploited in this work resulted in a step by
step sequence of relatively simple operations that together allow for the calculation
of the optimal reference profile and the optimal gains for the control law. The main
advantages of this model are the following:

• Flexibility
By changing values to a set of well defined inputs this model can be applied
to many different re-entry scenarios: It can calculate optimal trajectories
from every LEO orbit (prograde and retrograde), the target can be located
anywhere on the planet and the target conditions can be freely chosen, as well
as the constraints. It works with every lifting body vehicle because the optimal
gains (that might change depending on the mass, aerodynamic coefficients,
maximum bank angle rate, ..., of the spacecraft) are automatically calculated
and the guidance and control laws proved to be robust and effective.

• Adaptability
The user can freely change a wide variaty of parameters to obtain maximum
performance on a specific re-entry problem.

• Modularity
The step by step approach (12 steps for the variable EIP model described
in chapter 5 and 9 steps for the fixed EIP model described in chapter 6) is
inherently iterative. After completing the first iteration the solution might
be not satisfactory, in this case the user must iterate a second, third, maybe
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fourth time. The many steps must be followed in the right order just for the
first iteration. From the second iteration the user can change singularly any
of the different modules (or steps) without restarting the process from the
beginning.

• Efficient and fast computing
The black-box approach used in every optimization model described in this
thesis has two main advantages: firstly, the number of optimization variables is
very low (never more than 10). Secondly, the minimization of the cost function
automatically satisfies every constraint (except one case described in section
5.7) meaning that the problem becomes feasible. It has been demonstrated
experimentally that the global optimization tool always finds at least one
good local minimum of the cost function for which the feasibility is also
implicitly satisfied. These characteristics make the different optimization
models described in chapter 5 very fast and the whole tool (from the first
to the last step) can be run in under an hour and most likely find a good
solution.

• High precision and accuracy
The black-box simulation propagates the trajectory with a fourth order Runge-
Kutta method which enables higher accuracy compared to the trapezoid
or Simpson methods used in the traditional direct collocation optimization
approach.

The comparison of the results with IXV proved the efficacy of the developed tool
and the guidance and control algorithms. Some future improvements might be
done to enhance the performance and the user experience such as:

• Design a user friendly graphic interface

• Improve the fixed EIP optimization tool which lacks robustness since in some
specific cases it might not necessarily satisfy some of the constraints

• Add more constraints such as the maximum flap hinge moment

• Adapt the model to a Martian environment in order to study the feasibility of
mars re-entry trajectories.
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