
POLITECNICO DI TORINO
MASTER’s Degree in AUTOMOTIVE

ENGINEERING

MASTER’s Degree Thesis

Racing line optimisation algorithms for
high performance and/or automated

vehicles

Supervisors

Prof. ALESSANDRO VIGLIANI

Prof. ALDO SORNIOTTI

Ing. PIETRO STANO

Candidate

PAOLO RUSSO

OCTOBER 2023

Abstract

The lap time optimisation is the process to calculate the best trajectory to achieve
the minimum lap time, while considering the boundaries due to the vehicle dy-
namics. Traditional approaches have leaned on physics-based control models,
which, although effective in offline settings, fall short when applied to online racing
scenarios. These models not only burden computational resources but also lack
the adaptability required to respond promptly to dynamic variations in vehicle
behaviour and track conditions.

The work of this thesis consists of a reinforcement learning algorithm capable
to act as a path re-planner with access to previously stored information coming
from previous manoeuvres. This introduces the way for adaptive re-planning that
can dynamically respond to changes in the vehicle’s behaviour and evolving track
conditions during the course of a racing session. Such dynamic changes include
variations in friction coefficients, alterations in tire temperature, and fluctuations in
the dynamic condition of the vehicle—all of which are common occurrences during
a racing session.

The primary objective of this study is to optimise lap times by considering real-
time vehicle information, gathered through data collection by sensors such as
accelerometers, yaw rate and wheels speeds from previous and current manoeuvres.
To achieve this, two critical components are developed and integrated into the
system: a highly representative 8-degree-of-freedom (DOF) vehicle model and a
data buffer for storing historical performance data from prior laps.

The 8-DOF vehicle model serves as a comprehensive representation of vehicle
dynamics, forming the foundation upon which the re-planning process operates.
The trajectory derived from this process guides the vehicle’s path in the current
state through a previously tuned Feedforward-Feedback (FF-FB) path tracking
controller.

Data extrapolation and retrieval rely on the use of buffers—databases storing
dynamic information of the vehicle, including steering actions, lateral and longitu-
dinal accelerations, as well as vehicle states such as position and yaw. This stored
data is then accessed by the RL algorithm within a spatial window determined by
the vehicle’s current position. By focusing on localised data retrieval around the
vehicle, the overall procedure of reading the database is facilitated, allowing for
more efficient agent learning.

In summary, the novelty of this research lies in the creation of an architecture
that enables online learning based on data recorded from previous manoeuvres.
This approach promises to enhance the performance and safety of autonomous
racing vehicles, ultimately contributing to the advancement of autonomous driving
technology in high-speed and dynamic environments.

ii

A Vittorio ed Angela. Il vostro supporto è stato tale che questo raggiungimento è
più vostro, che mio.

ii

Acknowledgements

Un sincero ringraziamento al professore Aldo Sorniotti per il lavoro dedicatomi e
per le continue delucidazioni in ambito di dinamica del veicolo. Un ringraziamento
sentito va a Pietro Stano, faro di riferimento, umanamente e tecnicamente, in questi
mesi di lavoro. Un profondo ringraziamento anche ai colleghi dell’ufficio 13AA03,
Giulio, Nuccio, Edoardo, Paolo, Matteo ed Ignazio; condividere questa esperienza
con voi mi ha fatto sentire fortunato.

Vorrei esprimere la mia gratitudine anche a Federico, Davide, Jaime e Francesco;
non potevo chiedere una compagnia migliore per sentirmi a mio agio ovunque fossi.

A Piero e Nina, la cui saggezza mi hanno sempre guidato e rasserenato nelle
decisioni più difficili.

A tutti i colleghi, amici e conoscenti incontrati durante questi anni e sparsi per il
globo; spero di essere riuscito nel tempo a dimostrare la mia profonda gratitudine
verso ciascuno di voi.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 The Minimum lap time simulation 1
1.2 Aim of this thesis . 2
1.3 Chapter organisation . 3

2 Literature review 4
2.1 OCP: Fundamentals . 4
2.2 MLTS: General approaches . 5

2.2.1 Predefined (fixed) and free trajectory 8
2.2.2 Optimisation problem . 11
2.2.3 Vehicle Models . 13

2.3 MLTS procedure: a general methodology 17
2.4 State of art: a summary table . 19

3 Reinforcement Learning 25
3.1 Introduction . 25
3.2 Definitions . 27
3.3 Implementation . 32

v

4 Trajectory generation for QSS point mass vehicle model 41
4.1 Tool-chain introduction . 41

4.1.1 Vehicle model adopted . 43
4.1.2 Trajectory generation . 43

4.2 OpenLAP Lap time simulation . 44
4.3 Implementation . 45
4.4 Critical analysis . 53

5 Path re-planning 57
5.1 Tool-chain for data retrieval . 57

5.1.1 Vehicle model . 58
5.1.2 Calculation of s . 59
5.1.3 Controllers . 60

5.2 Buffers . 65

6 Buffers: memory data storage 67
6.1 Description . 67
6.2 Implementation . 71
6.3 Results . 77

7 Conclusion 79
7.1 Novelty points . 79
7.2 Further improvements . 80

Bibliography 81

vi

List of Tables

2.1 References: [11], [18], [19], [20], [21], [22], [23], [24]. 21
2.2 References: [15], [16], [25], [26], [27], [28], [7]. 21
2.3 References: [3], [17], [12], [29], [6]. 22
2.4 References: [30], [31], [32], [33], [6]. 23
2.5 References: [34], [35], [36], [37], [38],[39]. 23
2.6 References: [40], [5], [41], [42], [43], [22], [23]. 24

3.1 Pseudocode for DDPG algorithm [48]. 32

4.2 OpenTRACK csv example for initial part of Berlin Formula E 2018
track . 48

4.1 Vehicle parameters adopted. 56

vii

List of Figures

2.1 g-g diagram of F1 racing car [4]. 7
2.2 Apex-finding technique [4]. 10
2.3 Points identification for free-trajectory approach [11]. 11
2.4 Solutions for different optimisation arguments [12]. 12
2.5 Point mass vehicle model simplification [4]. 15
2.6 8 DOF vehicle model [14]. 16

3.1 RL and its relation with control filed [13]. 26
3.2 RL and its interaction with environment [13]. 28
3.3 RL Agent block from DRL Toolbox of Mathworks. 33
3.4 Critic Network. 37
3.5 Actor Network. 39
3.6 Simulink model created for lap time simulations. 40
3.7 Simulink model created for lap time simulations. 40

4.1 First sector of Berlin Formula E 2018 track, used in this project. . . 42
4.2 Workflow of OpenVEHICLE script. 43
4.3 Workflow of OpenTRACK script. 44
4.4 Lateral deviation following the centreline normal. 52
4.5 Training window of the RL. 54

5.1 8 DoF Simulink implementation. 58
5.2 ṡ model representation. 59
5.3 s Simulink implementation. 60
5.4 PI controller used for longitudinal controller [14]. 61

viii

5.5 Simulink implementation of the FF-FB controller [14]. 61
5.6 Training window of the RL. 66

6.1 Difference among the distance covered by the two trajectories. Path1
will reach P1 with a covered distance bigger respect to path2 [23]. . 69

6.2 Idea used of the moving window. 70
6.3 Moving window implementation . 71
6.4 Simulink implementation of the look-up tables (buffer data retrieval) 71
6.5 Training window of the RL. 77
6.6 Trajectory comparison considering different agents. 78

ix

Acronyms

AI

Artificial Intelligence

MLTS

Minimum lap time simulation

OCP

Optimal control problem

NN

Neural Network

RL

Reinforcement Learning

DOF

Degrees Of Freedom

QSS

Quasi steady state

NLP

Non linear programming

xi

Chapter 1

Introduction

In the automotive industry, racing has always been the benchmark for innovative
technologies. In the context of racing, the parameter most commonly used as an
index of performance is the amount of time required to cover a defined distance,
referred to as the lap time [1] [2]. In order to achieve the best performance, the
lap time must be as low as possible and, in the context of a race, the objective
is to minimise consecutive lap times as much as possible, resulting in the lowest
possible overall time. In recent years, thanks to the evolution of numerical analysis
and computing power, the goal of minimising lap times has been handled through
simulations, resulting in what is now known as Minimum Lap Time simulations
(MLTS) [3]. These simulations address the challenge of minimising lap times by
considering an optimal control problem (OCP). The core objective of the OCP
is to control the vehicle’s power delivery, deceleration, and driving techniques to
achieve the best possible lap time. Essentially, MLTS represents an optimal vehicle
control methodology focused on non-linear optimal control techniques.

1.1 The Minimum lap time simulation

Throughout history, the way in which minimum lap time simulation has been
handled as an optimal control problem has been approached in different ways. First
of all, it must be emphasised that MLTS was not always approached as an OCP.
Instead, the first experiments focused on simulating already defined trajectories as

1

Introduction

truthfully as possible, helping drivers and engineers to analyse the data without
necessarily having to refer to an actual driven lap [4].

Only later, when the technology was mature enough to allow the required compu-
tational effort, people begin to consider MLTS as a tool for estimating the best
possible trajectory, instead of just simulating a predefined one. Based on this idea,
lap time was defined as a cost function to be minimised, subject to the model
physics and physical limitations of the track, resulting in an optimised trajectory.
In other words, the MLTS was interpreted as an OCP. [3].

Several approaches have been proposed over the years concerning not only how
the OCP was imposed mathematically, but also on what the control objective was.
In fact, there are several applications where the focus has been not so much on
generating trajectories but trying to compute appropriate velocity and acceleration
profiles in order to assets the lowest lap time achievable [5]. Or, again, treating
the OCP as an actual calculation of driver inputs in order to perform the best lap
time possible, extending the concept of MLTS to a calculation of virtual drivers
capable of competing with physical expert drivers [6].

1.2 Aim of this thesis

Having explained the historical context in which the writing of this thesis takes place,
the project presented is positioned as a research study of the possible application
of a reinforcement learning (RL) agent to calculate the best possible trajectory
given a circuit. During the learning process, the agent consults a buffer of data
that enables it to improve its performance through prior experience knowledge.
The novelty of this thesis is therefore to propose a tool-chain where an agent can
learn by accumulating direct experience on a lap time simulator. In addition, for a
more complete research, a second tool-chain was created in which the agent acts
on a highly realistic vehicle model and, thanks to the implementation of specially
created buffers, the agent is also able to improve himself thanks to information
from previous laps.

2

Introduction

At the best of the author’s knowledge, the state of the art application of artificial
intelligence on trajectory computation is limited to either the computation of
control actions or, if trajectories are computed based on geometric information,
they are not tested on simulators, thus demonstrating convergence to a solution of
which there are no actual proof of its performance over a simulated lap time.

1.3 Chapter organisation

The chapter 1 has been just a brief introduction to the Minimum Lap Time (MLT)
problem. In the following chapters a more in depth analysis of the work carried
out will be exposed.
In chapter 2 a literature review has been proposed, with emphasis on the different
approaches adopted during the years concerning MLT. Then a standard methodol-
ogy has been proposed, which can be helpful for any MLT application since it can
be adapted to any kind of approach. Finally a series of detailed tables resuming
the state-of-art is presented in the last section of this chapter, putting in evidence
the most adopted solutions up to date.
For what concern the chapter 3, an introduction to RL has been addressed with its
definition and why it has been chosen for the development of this thesis.
Furthermore, the tool-chain used for this thesis is explained in the chapter 4,
explaining all the steps involved in developing a proper lap time simulator in
Simulink environment and how to couple it with a RL agent.
In chapter 5, the second tool-chain is presented, which group the RL with the 8-
degree-of-freedom vehicle model, the buffer implementation and a brief explanation
of the controllers used.
In chapter 6, on the other hand, the implementation of buffers is explained in more
detail, starting with their theoretical explanation through to their formulation and
implementation.
Finally, in the last chapter 7, it is possible to find the results obtained and the
conclusion drawn form them. A critical analysis is performed, questioning if the
goal set has been reached and highlighting the benefits and drawbacks of such
applications in further studies.

3

Chapter 2

Literature review

The state of the art on MLTS is very broad and varied, being a problem that has
been posed since the early days of automotive racing [3]. Different methodologies
have been proposed over the years, and with them there are as many diversification
of proposed solutions, considerate models and programs used. The aim of the
following chapter is, therefore, to give guidelines on the state of the art, organising
the state of the art into macro groups, each one discussed into a dedicated subsection:

• If the simulation has been carried out over a predetermined trajectory or it is
computed by scratch (subsection 2.2.1).

• How the optimisation problem has been addresses, if the goal was to minimise
the lap time or the path driven by the car (subsection 2.2.2).

• The vehicle models adopted, since they vary from one-point mass vehicle to
highly complex models up to 7 DOF (subsection 2.2.3).

2.1 OCP: Fundamentals

Before delving into the different proposed sections, it is good to first define how the
concept of OCP is generalised in the case of an MLTS, since it is a formulation that
not only helps in the understanding of the different sections but, as a generalist
writing, also allows it to be extended to any application of MLTS. The general

4

Literature review

formulation of a OCP applied to a MLTS can be write in the following way [7]:

minimise
Ú T

0
1 dt

subjected to: ẋ = fc(x(t), u(t))

x(0) = xS, x(T) = XF

x(t) ∈ X , u(t) ∈ U

(2.1)

Where the lap time time is defined as T , all the controller action (human or
algorithm) is defined by u(t), the vehicle model is defined by the state equation
fc(x, u), xs and x(T) represent respectively the initial and final conditions (starting
and finish line), meanwhile U and X represent the actuation and track constrains.

From the generic formulation (2.1), it is possible to derive most of the OCPs applied
to MLTS. This simple formulation is fundamental for the understanding of the
following part, where a classification of the literature is given, where the groups
identified mainly concern the argument of the minimum function, the vehicle model
considered and the physical limits of the track.

2.2 MLTS: General approaches

When interfacing with the trajectory optimisation problem some engineering choices
must be taken. The latter concerns the formulation of the minimisation problem,
the vehicle model and if the optimisation calculate a trajectory from scratch or
improve a reference one. However, these choices are linked among them, meaning
that, for example, the use of a simplified vehicle model well suits a quasi-steady-
state simulation due to their light but reliable lap time modelisation [3]. Three
approaches established them-self during the years and they can be summarised as
follows:

• QSS with fixed trajectory (’apex finding technique’): This technique is
the oldest one and offer a significant advantage with its quick algorithms,
requiring minimal computational effort for both the model and simulations.
This methodology, as the name suggest, consider that the lap time is divided

5

Literature review

into several steps and in each one of these the vehicle is considered to be in a
steady state condition. This condition permit to properly define the vehicle
state along with its handling limits thanks to the use of g-g diagrams, which
are fundamental for this kind of applications.

The latter are plots of the maximum longitudinal acceleration of the vehicle
for a specific speed versus the lateral acceleration obtained for the same speed.
Their application starts from the early days of racing performance analysis
since they permit to define the concept of handling limit. When a vehicle’s
steady state falls within the envelop of the friction ellipse on the g-g diagram,
it signifies that the vehicle has reached its maximum combined acceleration.
The causes for reaching this limit can vary, ranging from tire friction limits to
engine power limits.

By considering acceleration data, both from simulations and recorded on-track
measurements, and comparing them with the g-g diagrams it becomes possible
to determine the margin to the handling limit. The gap between the data
and the envelop on the g-g diagram represents the residual capacity to fully
exploit the vehicle’s handling capabilities [4].

Due to its simplicity in both modelling and application, in the literature it
has been studied even applications of such method utilising RL agents to
create command inputs to reach this handling limit [5], which can provide
performance comparable to a skilled driver.

Furthermore, g-g diagrams can also be extended into 3D maps if the velocity
is considered as the third variable. This extension becomes valuable in
scenarios where the velocity profile needs to be calculated based on a predefined
trajectory [3].

This methodology is more adequate to the vehicle performance analysis, as
the presentation [8] shows. Instead of conducting real track tests for each
setup change, simulations are performed using a lap time simulator, enabling
the identification of optimal setups even before the actual testing begins. This
becomes particularly crucial in categories like the Formula SAE competition,
where time reserved for testing is limited [9].

6

Literature review

Figure 2.1: g-g diagram of F1 racing car [4].

• Dynamic vehicle model with free trajectory: These methods started to
be common published around the 2000s, since the evolution of optimal control
problems solving was strongly linked to the computational capacity. Moreover
specific algorithm have been developed during these years and they have been
progressively applied to MLT problems [3].

Instead of using a simple point-mass car, a more sophisticated approach
involves adopting a complex vehicle model even with non-linearity (see Section
2.2.3 for a more detailed description of the adopted vehicle models.). This
provides more reliable representations of real-world vehicle behaviour. However,
the increased complexity also presents challenges, thus the mathematical
methods adopted to solve such complex equations are not easy to handle
and require an adequate knowledge of the theory behind them. Among
the procedures adopted, three major groups can be identified and they are
explained into Section 2.2.2.

Each mathematical method necessitates its own unique procedure, making
it difficult to find a common approach that addresses all methods compared

7

Literature review

to the QSS with fixed trajectory methodology proposed in Subsection 2.2.1.
Nevertheless, any combination of these approaches published so far can be
restructured by integrating the contents from the specific vehicle model section
(Section 2.2.3) and the mathematical methodology described in Section 2.2.1.

• QSS with free trajectory: The concepts of using g-g diagrams (numerically
or experimentally computed) as tools for modelling the vehicle handling
capability well suits the QSS approach, since it permits to define the vehicle
maximum acceleration (both longitudinal and lateral) for every steady-state
evaluated. This concepts does not prove it wrong even in the approach
discussed in this subsection, since it can be applied no matter the nature
of the trajectory, if it has been calculated or deduced. Moreover, the g-g
diagrams have the advantage to summarise all the complex, non linear vehicle
behaviours, lightening the computational effort over the OCP solver. For this
reason adopting a QSS with free trajectory seems to be the most promising
solution, since it allows to handle a reliable vehicle model with a limited
increase of complexity and computational requirements [10]. Combining the
advantages of a QSS approach with the adaptability of not having any reference
trajectory one seems to create the right compromise among the possibilities
presented for the MLTS OCP.

Respect to the other two approaches, a QSS with free trajectory is 10 times
faster than the free-trajectory approach using a dynamic model, and about 10
times slower than the predefined trajectory QSS approach [10].

Considering its advantage to be light but reliable solution, a QSS with free
trajectory approach has been adopted during the project of this thesis. A lap
time simulator has been chosen as a plant inside a control system whose goal
was to run simulations until a satisfactory trajectory has been deduced. To
deepen the vehicle model used, so as the algorithm used to simulate a lap
time, reference can be made to section 4.

2.2.1 Predefined (fixed) and free trajectory

The difference in using a fixed trajectory approach over a free-one is due to the
goal set by the MLT problem. In fact, a fixed one is mostly related to simulate as

8

Literature review

close as possible a lap time, the other approach tries to apply an OCP to a lap
time, meaning that it has to compute an optimised trajectory without having a
reference. Therefore there is a notable difference among the two approaches and
for this reason the selection of one of the two is fundamental and strikingly related
to the requirements of the problem set.

• Fixed trajectory: In early stages the concept of lap time simulation (MLTS)
was not to directly calculate an optimised trajectory but to replicate as realis-
tically as possible a real lap time. This was done by reverse engineering, where
the driver inputs needed to replicate a determined trajectory were calculated.
In particular most applications replies the commands of a professional diver,
being accelerations commands and steering wheel actions [4]. To solve such
problem the idea is to maximise the performance of the vehicle along that
trajectory, which physically consist on creating the best possible velocity
profile [3].

The apex-finding method is the method most adopted and consist on the
identification of the corner apex along the predefined trajectory, also nominated
as critical point (make reference to figure 2.2).

At this point the vehicle is supposed to be at its maximum acceleration
capacity, meaning that its velocity can be computed form a lateral equilibrium
equation, since the radius of curvature is known by the trajectory information.
This idea can be simply formulated as follow:

m
v2

max

ρ
= µmg ⇒ vmax = √

µρg (2.2)

Having a defined speed at the apex, the car at the entrance of the curve is
supposed to be hitting its maximum braking capacity, meaning that is on
the negative apex of the g-g diagram envelop. Having a defined maximum
braking acceleration, the velocity profile of the car can be easily deduced by
integration. Therefore the velocity profile is calculated step by step during the
deceleration phase until or a physical constrain is exceeded or the deceleration
curve intersect an acceleration curve. In fact the same concept, applied forward,
can be adapted to the curve exit phase. With the hypothesis that at the exit of
the curve the car is accelerating at its maximum, the speed profile is computed

9

Literature review

Figure 2.2: Apex-finding technique [4].

by integration. The velocity profile computed in two consecutive apexes are
then connected among them at their intersection point. The physical limits of
the vehicle can be modelled by g-g diagrams, avoiding to implement complex
vehicle models into the simulation [4].

• Free trajectory: As the name suggest, this procedure involves the creation
of trajectories from scratch. For this reason it involves the implementation
of optimisation process, where a dynamic parameter as the trajectory or the
curvature is set as the minimisation argument. The first application of such
method adopts a procedure which is not so different from the methodology
interpreted by the fixing trajectory, where peculiar points of the trajectory
are identified and the trajectory is evaluated form these [11]. In particular,
four points are set when cornering:

– Turning point: where the driver starts to act on the steering wheel;

– Brake releasing point: where the car does not generate anymore longitu-
dinal acceleration;

– Apex: car is in pure lateral acceleration condition after a coasting period;

10

Literature review

– Corner exit: point where the steering angle imposed by the driver returns
to a null value.

By the definition of these four points, the trajectory can be computed by an
interpolation involving a cubic spline. The optimisation is carried out by a
genetic algorithm whose purpose is to find the combination of the four points
such that minimises the cornering radius. This process is well represented in
the following figure 2.3.

Figure 2.3: Points identification for free-trajectory approach [11].

2.2.2 Optimisation problem

During the years several approaches have been considered regarding the optimisation
problem, one of which regards the argument of the optimisation problem. Most of
the literature propose the most intuitive approaches being the lap time and the
curvature, which both needs to be minimised. Intuitively the two approaches should
provide comparable results, however only in the latter years a direct comparison
of the two approaches have been studied [12]. The conclusion of such analysis is
that configuring the same optimisation problem where the only difference is the
argument choose, lap times and the trajectory itself changes accordingly. Moreover

11

Literature review

the amount of changes is quite significant, being it of 1.23 seconds especially
considering that the track analysed (Airport of Berlin E-prix of 2018) is quite short
(776 meters in total). The results are shown in the figure 2.4 where it is possible
to appreciate the difference not only in the trajectory but also in the lap times
reported in the legend.

Figure 2.4: Solutions for different optimisation arguments [12].

Also Game changing is the methodology adopted for solving the optimal control,
in other words how the optimisation is computed and solved. The main idea is
to transform the minimum lap time problem into an OCP, where the equations
of motion act as constraints in the optimisation process. There are three primary

12

Literature review

categories of methods for solving OCPs: dynamic programming (DP), indirect
optimal control, and direct optimal control [1].

Dynamic programming has theoretical advantages, such as handling discrete/-
continuous variables and guaranteeing the global optimum, but it suffers from
the curse of dimensionality, especially with larger vehicle models. To address this
limitation, differential dynamic programming (DDP) was introduced, which solves
a sequence of quadratic subproblems obtained from the quadratic approximations
of the objective function around a reference trajectory. Hybrid DDP is an advanced
version that combines DDP with nonlinear mathematical programming techniques,
showing promise in solving complex trajectory optimization problems.

Indirect methods rely on the Pontryagin Maximum Principle to determine the
necessary conditions optimally. They involve a set of ordinary differential equations
with initial and final boundary conditions, forming a two-points boundary value
problem (TPBVP) coupled with a minimisation problem to derive the optimal
control law. Various numerical techniques are used to solve such problems, and
several works have applied this approach to minimum lap time simulations for both
motorbike and car scenarios.

Direct methods translate the OCP into a discrete constrained minimisation
problem, known as nonlinear programming problem (NLP). There are different ways
to discretise the controls and states, such as sequential discretisation or collocation.
Among the sequential discretisation methods, the direct multiple shooting method
emerged as the most efficient, as it is less affected by high sensitivities and is
naturally suited for parallelization. This method has been applied successfully to
minimum time problems, including gear choice, using software like MUSCOD-II
and partial outer convexification to handle discrete variables.

2.2.3 Vehicle Models

The state of the art uses different vehicle models according to need. In fact, it
is possible to find models from the simplest to facilitate computation, to more

13

Literature review

realistic models where much more importance is given to the representative capacity
of the model [4]. In addition, a road often taken is to use simple models but
incorporating in these features describing more complete dynamics (e.g: tyre
temperature, cornering stiffness variation, etc... [3]).
In this thesis two different vehicle model have been adopted, one using a point-mass
representation, the other is a complete 8-degree-of-freedom model, which provides
an accurate description of all the dynamics of the vehicle in motion. In the first
phase of the project, where the objective was to implement an RL capable of
generating and testing a trajectory on a lap time simulator such as OPENLAP,
the latter adopts a point mass model using g-g maps to establish the vehicle
manoeuvrability limit. Subsequently, having the objective of implementing an
architecture that allows the RL to learn through data accumulated from previous
manoeuvres, the model to be considered was necessarily changed. In fact, it is
fundamental that the information coming from the vehicle are as reliable as possible,
not only for a question of the quality of the agent’s action, but also to facilitate the
training of the NN. The agent, in this way, having more reliable data will be more
inclined to generate control actions (or path re-planning as in the evaluated case)
of higher quality, thus facilitating the implementation of the AI in the architecture
[13]. Hence the need for a more complete high fidelity vehicle model than a point
mass model.

Point Mass Model

The point mass model is a straightforward representation based on Newton’s laws,
featuring three degrees of freedom: longitudinal velocity, lateral velocity, and yaw
motion. Figure 2.5 illustrates the body diagram of this model.

14

Literature review

Figure 2.5: Point mass vehicle model simplification [4].

The model is applicable to open-wheeled racing vehicles with ground effects aero-
dynamics, rear-wheel drive, and rear-engined configurations. It assumes rigid
suspension systems, minimising suspension effects without significantly compromis-
ing accuracy. The equations of motion for this model are as follows:

15

Literature review

u = 1
m

5
Ta + Tb − f(mg +Na) −Ra − δCr(δ − v + ar

u
)
6

+ vr

v = 1
m

C
Cf(δ − v + ar

u
) + Cr(

v − br

u
)
D

− ur

r = 1
Izz

C
−fmhur + aCr(δ − v + ar

u
) − bCr(

v − br

u
)
D

Where: - u is the longitudinal velocity along the X axis, - v is the lateral velocity
along the Y axis and - r is the yaw rate.
The point mass model offers rapid computation and robustness, making it suitable
for various applications, including those involving complex multi-body models.
However, it neglects transient behaviours like tire load dynamics, yaw dynamics, and
suspension damper effects, making it less accurate compared to more sophisticated
techniques [1].

8 Degree-of-Freedom (8 DOF) Model

The 8 DOF model is one of the most complex and accurate vehicle models available.
It accounts for longitudinal, lateral, yaw, and roll motions, as well as the dynamics
of all four wheels. It models forces (lateral and longitudinal) and rolling resistance
using Pacejka Magic Formula.

Figure 2.6: 8 DOF vehicle model [14].

16

Literature review

The equations of motion for the 8 DOF model are as follows:

ẍ = 1
mC

(Fx,FL + Fx,FR + Fx,RL + Fx,RR) + ẏψ̇

ÿ = 1
mC

(Fy,FL + Fy,FR + Fy,RL + Fy,RR) − ẋψ̇

ψ̈ = 1
Jz,C

(a(Fy,FL + Fy,FR) − b(Fy,RL + Fy,RR)

+ TF
2 (Fx,FR − Fx,FL) + TR

2 (Fx,RR − Fx,RL)
4

θ̈ = 1
Jx,C

(mCay(HCG −Hroll,F) cos(θ)

+ mCg(HCG −Hroll,F) sin(θ) − (Fy,RL + Fy,RR)(Hroll,R −Hroll,F)
− Mantiroll,F −Mantiroll,R))

ω̇FL = 1
Jy,w,F

(TFL − Fl,FLRw,F −My,FL)

ω̇FR = 1
Jy,w,F

(TFR − Fl,FRRw,F −My,FR)

ω̇RL = 1
Jy,w,R

(TRL − Fl,RLRw,R −My,RL)

ω̇RR = 1
Jy,w,R

(TRR − Fl,RRRw,R −My,RR)

Ẋ = ẋ cos(ψ) − ẏ sin(ψ)
Ẏ = ẋ sin(ψ) + ẏ cos(ψ)

ṡ = 1
1 + krefey

(ẋ cos(eψ) + ẏ sin(eψ))

2.3 MLTS procedure: a general methodology

As discussed in the previous section (2.2), various methodologies have been de-
veloped over the years for simulating and optimizing lap times. The process of
simulating and minimizing lap times is inherently an optimization problem that
doesn’t adhere to a strict or predetermined sequence. However, some common-sense
principles can be identified. In particular, the methodology here presented offers a
valuable approach that can be applied to a wide range of applications [3].

1. Track Modelling and Construction:

17

Literature review

The initial and crucial step in setting up a simulation is the creation of an
accurate track model. Without a faithful representation of the environment,
meaningful simulations are unattainable. The manner in which the circuit
is depicted plays a pivotal role in ensuring a realistic simulation. Essential
parameters such as circuit shape, track curvature, and track-width details are
indispensable for establishing inequality constraints that keep the vehicle on
the track. It’s noteworthy that, as far as the author is aware, there exists
no standardised or widely accepted database for race track representations.
Therefore, all the circuit used in this work are inherited from previous works
and online sources as Github.

2. Vehicle Modelling:

Irrespective of the chosen approach or application for lap time calculation,
it’s imperative that the vehicle model accurately represents the capabilities
of the car. Vehicle modeling entails the establishment of equations of motion
and kinematic differential equations that delineate the relationship between
system states and controls. This model forms the foundation for the optimal
control algorithm, allowing the vehicle to navigate the track and determine an
optimal control strategy.

3. Cost Function Definition:

In cases where the Minimum Lap-Time Simulation (MLTS) includes trajectory
optimisation, defining an appropriate cost function becomes a pivotal step. The
cost function, minimised during the optimisation process, must be meticulously
defined to align with the simulation objectives. Additionally, specifying the
constraints applied to the cost function holds equal importance. A standard
mathematical representation of this problem is detailed in Equation (2.1).

4. Constraints on Vehicle Dynamics:

The optimisation problem typically seeks to minimise lap times while adhering
to constraints imposed by the vehicle’s dynamics, initial conditions, track
limitations, and consistency of both states and inputs. These constraints may
encompass limits on steering torque, steering angle rate of change, suspension
travel, and engine power.

18

Literature review

Minimum Lap Time Optimisation is a mathematical optimisation problem
where the mathematical constraints imposed are the vehicle’s equations of
motion. In this way, whatever trajectory is calculated, there is a certainty that
the vehicle can actually perform the given trajectory. Hence the importance of
imposing constraints that are as realistic as possible, in other words, providing
equations of motion of the vehicle that are as complete as possible. Since
these equations are impositions on an optimisation problem, the level of detail
of the equations of motion has a physiological limit, in the sense that one
could even impose a model with high DOF, but with the certainty of incurring
either extremely high computation times or a mathematical divergence, i.e.
the optimisation algorithm cannot find a solution to the problem posed. Hence
the tendency in the literature to find a compromise between simplified models
and the addition of particular dynamic features, as described in the section
2.2.3. Generally, vehicle dynamics constraints on steering torque, steering
angle rate of change, suspension travel, and engine power [1].

5. Solving the Optimisation Problem:

Following the formulation of the optimisation problem with its defined cost
function and constraints, the next step is to solve it. Various methods have
been proposed, and the current state-of-the-art often relies on Non-Linear
Programming techniques. Notable examples include the MATLAB toolbox
ICLOCS [15], Pontryagin’s indirect method using Maple software [16], and
IPOPT [17].

2.4 State of art: a summary table

During the course of the project, a careful analysis of the state of the art was
made in order to assess the most commonly used technologies in the field of MLT
optimisation, while also trying to catch a glimpse of possible new solutions not yet
fully explored by current research. Several papers were read and a summary table
was drawn up (2.1 up to 2.6), in order to facilitate consultation and recall of the
main papers on the subject of minimum lap time optimisation, with emphasis on
the methodologies used, how the MLT problem was modelled and which vehicle

19

Literature review

model was used.

In short, it can be seen that in the early stages, the main objective was to try
to replicate a lap time as faithfully as possible, while only in recent years has an
attempt been made to exploit NLP to directly calculate new optimised trajectories,
perhaps even using lap time simulators to optimise the design of certain vehicle
components.

Artificial Intelligence approaches, on the other hand, are of the latest generation,
where mainly conventional deep learning networks are used to model the vehicle
model, while Reinforcement Learning is more involved by exploiting its model-free
capability. In particular, it is worth mentioning how RL seems to fit best in full end-
to-end driving contexts, i.e. the mere presence of a Deep Neural Network between
the sensors and the control action (also referred to as the black-box approach). In
this way, the process of feature extraction and control is all in the hands of the
AI, which extracts features directly from the camera images, these are utilised by
the AI (mainly RL) which directly generates control actions, without receiving any
information about the vehicle dynamics. This is enabled by the RL’s ability to
learn from interaction with the environment alone, based on which it receives a
reward or penalty. Since the RL agent learns based only on maximising the reward
it receives, it can learn policy without having any information about the model,
based only on its interaction with the environment.
Below are some tables summarising the state-of-the-art study carried out.

20

Literature review

Table 2.1: References: [11], [18], [19], [20], [21], [22], [23], [24].

Table 2.2: References: [15], [16], [25], [26], [27], [28], [7].

21

Literature review

Table 2.3: References: [3], [17], [12], [29], [6].

22

Literature review

Table 2.4: References: [30], [31], [32], [33], [6].

Table 2.5: References: [34], [35], [36], [37], [38],[39].

23

Literature review

Table 2.6: References: [40], [5], [41], [42], [43], [22], [23].

24

Chapter 3

Reinforcement Learning

3.1 Introduction

Deep reinforcement learning (DRL) is a type of machine learning that allows
computers to learn how to behave in an environment by trial and error. DRL
algorithms use deep neural networks to learn from their experiences and improve
their performance over time.
DRL algorithms are different from other machine learning algorithms in a few ways:

• They are trained on sequential data, which means that they learn from a
sequence of actions and rewards.

• They are trained in an environment, which means that they learn by interacting
with the world around them.

• They are trained using reinforcement learning, which means that they learn
by trial and error.

DRL algorithms have been used to achieve state-of-the-art results in a variety of
tasks, including playing video games, controlling robots, and trading stocks.
Here is a simpler analogy:
Imagine a child learning to walk. The child starts by crawling around and trying
different things. When they take a step and fall down, they receive a negative
reward. When they take a step and stay upright, they receive a positive reward.

25

Reinforcement Learning

Over time, the child learns to walk by trial and error, and they maximise their
total reward by staying upright.
DRL algorithms work in a similar way. They start by taking random actions in an
environment and observing the rewards they receive. Over time, they learn to take
actions that lead to higher rewards.
DRL is a powerful tool that can be used to create intelligent machines that can
learn from their experiences and improve their performance over time [44].

Figure 3.1: RL and its relation with control filed [13].

Remark: Deep NN definition
It should be pointed out that the concept of Deep when referring to a Neural
Network is somewhat ambiguous. In fact, there is no canonical and accepted
definition of the limit beyond which the neural network is sufficiently long to be
considered deep. There is no definitive answer to the question of how many layers
a neural network needs to have in order to be considered deep. However, it is
generally accepted that a network with two or more hidden layers can be considered
deep. A network with only one hidden layer is typically called "shallow."
Some people believe that the term "deep" is relative, and that the number of
layers needed for a network to be considered deep will increase over time as our

26

Reinforcement Learning

understanding of neural networks improves. For example, in ten years, people
might think that anything with less than ten layers is shallow.
Informally, the term "deep" is used to describe neural networks that are difficult to
train and understand. This is because deep networks have many parameters, and
it can be difficult to determine how these parameters interact with each other to
produce the desired output.
Here is a simpler analogy:
Imagine a neural network as a series of rooms, with each room containing a group
of neurons. The input layer is the first room, and the output layer is the last room.
The hidden layers are the rooms in between.
Shallow neural networks have only a few rooms, while deep neural networks have
many rooms. The more rooms a neural network has, the more complex the functions
it can learn. However, the more rooms a neural network has, the more difficult it
is to train and understand [45].

3.2 Definitions

The main operation of the RL is that given a given state in which the agent finds
itself, it will attempt to perform the action such that the long term reward is as
high as possible.
A reward is a number that tells an agent how good a transition is. In reinforcement
learning, an agent observes a state, takes an action, receives a reward, and transitions
to a new state. The reward is a single number that indicates how good the
transition was for the agent. An adequate definition of the reward function is
therefore fundamental, since it is the criterion upon which the agent learns the
control problem posed. Its mathematical definition can be formulated as:

r(s, a) = E [Rt|St−1 = s, At−1 = a] (3.1)

Meaning that the reward r is a function that for a state-action pair (s, a), it is the
expectation E of the reward of a given time step Rt, given the action and the state
of the previous time step St−1, At−1.
However, making reference to the control problem, what the agent learns by the
reward is a policy, which means a series of actions aimed at maximising future

27

Reinforcement Learning

Figure 3.2: RL and its interaction with environment [13].

reward and involving optimal control behaviour.
The action-value function, also known as the Q-function, is a function that estimates
the expected return of taking a particular action in a particular state (figure 3.2
schematise this idea). It is a key concept in reinforcement learning, which is a
type of machine learning that allows computers to learn how to behave in an
environment by trial and error.
The Q-function can be used to improve policies, which are rules that tell a computer
what action to take in a given state. By comparing the Q-values of different actions
in the same state, it is possible to select the action that is expected to lead to the
highest reward.
The Q-function also captures some of the dynamics of the environment, which

28

Reinforcement Learning

means that it can be used to improve policies without the need for a model of the
environment. This is an important advantage of the Q-function over other methods
for reinforcement learning [13]. Its mathematical description can be formulated as
following:

q(s, a) = Eπ [Rt + γGt+1|St−1 = s, At−1 = a] (3.2)

The Q-value of an action a is the average reward that an agent can expect E to
receive if it takes that action a in a particular state s and then continues to follow
its policy π.
The practical way in which a given policy is undertaken by the agent is based on
reinforcement techniques [46]. Indeed given a given policy, defined as:

πθ = P [a|s, θ] (3.3)

Where θ are the policy parameters, which, during training, the neural network will
adjust these parameters so that the agent’s behaviour is considered satisfactory.
In order to evaluate the goodness of the policy selected by the agent, Policy
Objective Function are defined, whose purpose is to measure how well a policy
is doing at achieving this goal. An intuitive policy objective function can be
represented by:

L(θ) = Ex∼p(x|θ) [R] (3.4)

Where the expectation E of the total reward R is calculated under some probability
distribution p(x|θ) are parameterised by some θ.
Considering the Q-function, which estimates the return of a certain set of actions,
Q(st, at) = Rt+1 the gradient of the a deterministic policy can be stated as follows:

∂L(θ)
∂θ

= Ex∼p(x|θ)[
∂Q

∂θ
] (3.5)

Actor Critic algorithm

The RL studied in this thesis exploit an Actor-Critic algorithm which is a hybrid
method that combines the policy gradient method and the value function method.
The policy function is called the actor, and the value function is called the critic.
The actor produces an action given the current state of the environment, while the
critic produces a signal to criticise the actor’s actions. The actor network learns to

29

Reinforcement Learning

take actions that maximise the expected cumulative long-term reward, as predicted
by the critic network. The critic network learns to accurately predict the expected
cumulative long-term reward for each action-state pair.
An analogy with an everyday context can be helpful. An actor is like a junior
employee who does the actual work, while a critic is like a boss who criticises the
work and hopefully helps the junior employee improve.
In this way, by substituting the Q-function with a NN, meaning that Q(s, a, w),
where w are the weight of the Neural Network, the Deep Deterministic Policy
Gradient formula can be derived:

∂L(θ)
∂θ

= ∂Q(s, a, w)
∂a

∂a

∂θ
(3.6)

Deep Deterministic Policy Gradient (DDPG)

The algorithm used in this thesis is the Deep Deterministic Policy Gradient (DDPG),
a model-free online and off-policy reinforcement learning method. Each character-
istic has a particular meaning:

• Model-Free: It learns without knowing the model of the environment.

• Online: Its learning process is continuous as long as it interacts with the
environment.

• Off-policy: that it learns from data that was collected while following a
different policy than the one it is currently using

Behind the DDPG algorithm, therefore, we have two processes running in parallel,
Q-learning and Policy-learning. In other words, during training, the agent not only
learns a way in which to best interpret the goodness of its actions (Q-learning), but
also learns in parallel a sequence of actions that seek to maximise the effectiveness
of the same actions (Policy-Learning).
DDPG maintains four function approximators:

• Actor: Takes an observation and outputs an action.

• Target actor: A copy of the actor network that is used to stabilize training.

30

Reinforcement Learning

• Critic: Takes an observation and an action as inputs and outputs the expected
long-term reward.

• Target critic: A copy of the critic network that is used to stabilize training.

The actor and critic networks are trained together. The actor is trained to maximise
the expected long-term reward, as predicted by the critic. The critic is trained to
accurately predict the expected long-term reward for each action-state pair.
The target actor and critic networks are used to stabilise training. They are updated
less frequently than the actor and critic networks, and they are used to generate
the targets for the actor and critic networks. This helps to prevent the actor and
critic networks from over-fitting to the training data.
In other words, the target actor and critic networks are used to provide more stable
targets for the actor and critic networks to learn from. This helps to improve the
performance of the algorithm [47] [48].

The Q-Learning is the process by which the NN of Reinforcement Learning learns
to estimate the Q-function, which is the mathematical tool with which the RL
understands whether the action taken in a given state was a good action or not.
Mathematically speaking, the Q-function is a procedure of minimising the loss
of the mean-squared Bellman error (MSBE) function by means of a stochastic
gradient descent algorithm, as already anticipated in the formula 3.6, from which
the more complete formula can be written:

L(π,D) = E(s,a,r,s′,d)∼D

C3
Qπ(s, a) − (r + γ(1 − d) max

a′
Qπ(s′, a′))

42
D

(3.7)

Policy evaluation is that process by which the agent learns to follow a set of
commands aimed at maximising the expected future reward, or in mathematical
words, to find that policy π such that it maximises Qπ(s, a). The algorithm for
solving this problem is the gradient ascend, the mathematical formulation of which
is as follows:

max
θ

E
s∼D

[Qπ(s, µθ(s))] (3.8)

31

Reinforcement Learning

Table 3.1: Pseudocode for DDPG algorithm [48].

3.3 Implementation

Using the Mathworks toolbox on Deep Reinforcement Learning, an agent can be
defined in the MATLAB environment. The environment can be defined either in
MATLAb or in Simulink. Since in our case the agent has to interact with a LapTime
Simulator as well as with a vehicle model both defined in Simulink, it is possible

32

Reinforcement Learning

to select a Simulink model as the environment and implement the rlAgent block
in the Simulink library (figure 3.3), thus allowing the agent to interact with the
generated Simulink model. Owning the vehicle model in the Simulink environment,
it was decided to adopt the latter implementation for ease of operation.

Figure 3.3: RL Agent block from DRL Toolbox of Mathworks.

MATLAB

First, the environment with which the agent is to interact is defined. In particular,
it is necessary to define the position of the block within the Simulink environment.
Furthermore, fundamental to the success of this thesis project is the definition of
the Reset Function via a global function. This is a function that is executed at
the end of each episode and is crucial to the success of this thesis project. In fact,

33

Reinforcement Learning

during RL training, it is not possible to access or modify the Matlab workspace.
Therefore, if you want to modify an element at the end of an episode, you first have
to pre-define it, whereas to modify it without acting in the workspace, you either
use a Matlab function defined in Simulink or rely on ResetFcn. Both approaches
have been adopted, for more details please refer to the chapter 4.

Listing 3.1: Environmental definition
1 %−−
2 % % I n i t i a l i z i n g the RL agent block in s imul ink
3

4 env = rlSimul inkEnv (" Vehicle_model_2023 " , " Vehicle_model_2023/
Model/ Latera l_Long i tud ina l_Contro l l e r / Reference_path /BUFFER/
RL Agent " , . . .

5 obsInfo , a c t I n f o) ;
6 %−−
7 % % Reset Function as a l o c a l f unc t i on in oder to act in to the
8 % workspace at the end o f each ep i sode :
9

10 env . ResetFcn = @(in) loca lResetFcn (in , Buffer_Data , Manoeuvre) ;

Critic Network
As already discussed, there are two distinct networks in DDPG architectures, the
actor and the critic. The critic’s network in particular is responsible for estimating
the Q-function, which indicates the quality of a given action in a specific state. This
network takes as input both the current state and the current action and estimates
the value of the Q-function. Since it is designed to estimate the Q function (the
action value function defined in eq. 3.7), which depends on both the current state
and the current action it is needed two distinct network, one that observes the
state and the other that observe the action, the ’state path’ and the ’action path’
respectively:

• Action Path: This path receives the current action (the decision made by
the agent) as input and is responsible for processing it. In other words, it
evaluates how the current action affects the Q-function.

• State Path: This path receives the current state of the environment as input.

34

Reinforcement Learning

It is responsible for processing the current state and evaluates how the current
state affects the Q-function.

Subsequently, the outputs of these two paths are combined to obtain the final
estimate of the Q function. This estimate is used to guide the agent’s training in
the environment.
The critic’s network in DDPG uses both an action path and a state path to capture
the complex dynamics between actions and states in the environment in order to
correctly estimate the Q function and guide the agent’s learning [13].
The critic network chosen is made of two fully connected layers with a ReLU layer
in between, this for each path. Then the common path is made by a single ReLU
layer, which is an activation function, meaning that will set all its input below
the threshold into a null value. Each Fully Connected layer has numNeurons set
equal to 200.

Listing 3.2: Critic Network
1 %% 01 . Creat ing the c r i t i c network
2

3 %−−
4 % Takes an obse rvat i on and an ac t i on as inputs and outputs the

expected long term reward .
5 %−−
6 % Defined with two path , one f o r s t a t e e s t imat i on and one f o r

the ac t i on .
7 % The two par t s have a path in commond .
8

9 statePath = [
10 f ea ture InputLayer (obs In fo . Dimension (1) ,Name="netObsIn ")
11 fu l lyConnectedLayer (numNeurons ,Name="FCs1 ")
12 re luLayer (Name="RUs1 ")
13 fu l lyConnectedLayer (numNeurons ,Name="FCs2 ")] ;
14

15 act ionPath = [
16 f ea ture InputLayer (a c t I n f o . Dimension (1) ,Name="netActIn ")
17 fu l lyConnectedLayer (numNeurons /2 ,Name="FCs3 ")
18 re luLayer (Name="RUs2 ")

35

Reinforcement Learning

19 fu l lyConnectedLayer (numNeurons ,Name="FCs4 ")] ;
20

21 commonPath = [
22 addi t ionLayer (2 ,Name="add ")
23 re luLayer (Name="RUs3 ")
24 fu l lyConnectedLayer (1 ,Name="Crit icOutput ")] ;
25

26 %−−
27 % Each path crea ted now has to be l i n k e to c r e a t e the NN
28

29 c r i t i cNetwork = layerGraph () ;
30 c r i t i cNetwork = addLayers (c r i t i cNetwork , statePath) ;
31 c r i t i cNetwork = addLayers (c r i t i cNetwork , act ionPath) ;
32 c r i t i cNetwork = addLayers (c r i t i cNetwork , commonPath) ;
33

34 % s p e c i f y i n g which par t s o f the NN needs to be connected
35 c r i t i cNetwork = connectLayers (c r i t i cNetwork , . . .
36 "FCs2 " , . . .
37 " add/ in1 ") ;
38 c r i t i cNetwork = connectLayers (c r i t i cNetwork , . . .
39 "FCs4 " , . . .
40 " add/ in2 ") ;

36

Reinforcement Learning

Figure 3.4: Critic Network.

Actor Network
The actor network is responsible for learning and determining the agent’s policy,
i.e. which action should be chosen in a given state of the environment. The actor
network accepts the current state as input and returns the intended action. In
practice, it is responsible for the agent’s action decision.
Differently from the critic network, the actor network will have only one path since
its purpose is to determine policy, i.e. to choose actions. In practice, using a single
actor network can simplify the agent architecture and reduce the computational
complexity. The agent learns directly from the environment how to choose optimal
actions to maximise a reward function. The actor network is trained via gradient
back-propagation to optimise the policy in order to maximise the value function Q
estimated by the critical network.
The definition of the actor’s network follows that of the critic, what changes is its

37

Reinforcement Learning

architecture. In fact it is defined by three Fully Connected Layers, each with 200
neurons as in the critic’s network, followed by the ReLU activation function, except
for the last layer where a Hyperbolic Tangent activation function is preferred. This
choice is due to the fact that tanh is not only limited to values of 0 and 1 but also
allows for values between -1 and 1, which is very suitable when actions can be both
positive and negative or when more flexibility in the choice of actions is required.
the code adopted for its formualtion is here presented:

Listing 3.3: Actor Network
1 %% 02 . Creat ing the ac to r network
2

3 %−−
4 % Takes an obse rvat i on and outputs an ac t i on .
5 %−−
6 % Actor network d e f i n i t i o n
7

8 actorNetwork = [
9 f ea ture InputLayer (obs In fo . Dimension (1) , ’Name ’ , ’ obse rvat i on ’

)
10 fu l lyConnectedLayer (numNeurons ,Name="FCa1 ")
11 re luLayer (Name="RUa1")
12 fu l lyConnectedLayer (numNeurons ,Name="FCa2 ")
13 re luLayer (Name="RUa2")
14 fu l lyConnectedLayer (a c t I n f o . Dimension (1) ,Name="FCa4 ")
15 tanhLayer (Name="Tanha1 ")
16 s ca l i ngLaye r (’Name ’ , ’ SCa1 ’)
17] ;
18

19 actorNetwork = dlnetwork (actorNetwork) ;

38

Reinforcement Learning

Figure 3.5: Actor Network.

Simulink

Once the agent has been defined, it is implemented in two different models (figure
3.6 and 3.7). In the first application, the agent receives as observers the centreline
trajectory of a given circuit, the action it performs (defined as a lateral deviation
from the centreline of the circuit) and the lap time information. The reward
function adopted instead is based on the same information with the addition of
the trajectory in the inertial reference system. A memory block is used to allow
the signals generated by the agent to have an initial condition on the first iteration
and to avoid the creation of algebraic loops.
With regard to the application of the agent in the buffer system, on the other hand,
the vehicle states (coordinate x and y in the inertial reference system, yaw angle
psi, longitudinal and lateral accelerations ax and ay and steering action δf) were

39

Reinforcement Learning

Figure 3.6: Simulink model created for lap time simulations.

set as observations. These signals refer both to the current state of the vehicle
and to previous laps, thanks to a data buffer that is consulted according to the
curvilinear co-ordinate on the centreline trajectory, referring to a moving window
integral with the vehicle.

Figure 3.7: Simulink model created for lap time simulations.

40

Chapter 4

Trajectory generation for
QSS point mass vehicle
model

4.1 Tool-chain introduction

As a first playground for defined artificial intelligence, it was chosen to test trajectory
generation on an open source lap time simulator. OpenLAP is a lap time simulator
designed by Cranfield University. Its features include simplicity of implementation,
speed of execution, good reliability and the ability to have a large amount of signals
generated.

This is a simple MATLAB code saved as an .m file, it is executable on later versions
of MATLAB 2015. It consists of three scripts, OpenVEHICLE, OpenTRACK
and OpenLAP. The first, as the names suggest, allows the vehicle parameters to
be defined and generates from these the g-g diagram used during the lap time
simulation. The second script allows you to define the trajectory to be followed
by the vehicle during the lap time. In fact, OpenLAP is a lap time simulator on
a fixed trajectory, i.e. it is not capable of calculating the optimal trajectory, but
is limited to simulating the vehicle along a given trajectory. Therefore, it should

41

Trajectory generation for QSS point mass vehicle model

be emphasised that the trajectory is an input to the system. In the application
studied, in fact, the input is generated by the agent. Finally, the third script allows
true lap-time simulation using the selected vehicle model and the given trajectory
as input.

Both the vehicle and the trajectory are perfectly customizable from csv files. In
fact, the code of OpenVEHICLE as well as that of OpenTRACK read .csv files via
the xlsmread function of MATLAB, extract the data and save them in structures
that will later be used by OpenLAP. In the proposed work, therefore, a specific
circuit was selected, namely the first sector of the Berlin track used in the Formula
E calendar 2018 for its shortness yet its demanding vehicle dynamic performance,
as well as the model of a single-seated similar to an SAE formula was implemented.

Figure 4.1: First sector of Berlin Formula E 2018 track, used in this project.

42

Trajectory generation for QSS point mass vehicle model

4.1.1 Vehicle model adopted

The vehicle model adopted in OpenLAP is a Quasi-Steady-State Point Mass vehicle
model and adopts the procedure introduced in section 2.2.1. However instead of
computing the vehicle state-system at each step, an algorithm to estimate the
velocity profile is used and presented in section 4.2.
The generation of the car model is made from an Excel file. Here all the parameters
can be defined and modified. Notable, the trajectory generation is performed
considering that the vehicle is kept the same along the training. Therefore the
vehicle model is created as a Matlab structure only once and is done prior to the
lap time simulation.

Figure 4.2: Workflow of OpenVEHICLE script.

The vehicle model selected resembles a Formula SAE car, whose parameter can be
summarised in table 4.1.

4.1.2 Trajectory generation

The trajectory generation follows the same principle of the vehicle model. However,
at each episode the trajectory changes since it is generated by the agent, the file
needs to be modified at the end of each simulation. This process will be deeply
explained in the section 4.3.
Although the output of the OpenTRACK code is a structure that contains infor-
mation about the circuit, it is good to keep in mind that the trajectory is defined
within it by the radius of curvature ρ.

43

Trajectory generation for QSS point mass vehicle model

Figure 4.3: Workflow of OpenTRACK script.

4.2 OpenLAP Lap time simulation

Algorithm
Basically this Lap time simulator has as its goal to estimate the velocity profile
of the vehicle and is done by 4 steps: Apex findings and speed values calculation;
Acceleration; Deceleration; Braking points.
The apex is defined where the vehicle has a local minima of the speed. From here,
it is assumed that the vehicle will accelerate and before that point the vehicle will
brake. The velocity profile therefore will, follows the acceleration velocity profile
until the intersection point with the following braking curve is met, and afterwards
the vehicle velocity will follow the braking curve.
The algorithm proceeds as follows: at each point the maximum lateral velocity is
independently estimated by pure lateral motion. However the velocity computed
could lead to the situation where the drag force over exceed the longitudinal force
created by the car. Physically it means that the vehicle should generate some
longitudinal force which will reduce the lateral acceleration and, therefore, the
velocity at which the car is turning. This is done by reverse computing the actual
velocity.
From the assumed velocity (calculated from pure lateral acceleration), the tyre
forces are computed and from these the lateral acceleration needed to develop
such forces is estimated. By making a comparison with the friction ellipse (equal
to the g-g map), the ay actually available is read and if the acceleration needed
overweight the acceleration available, the velocity is slightly reduced. This process

44

Trajectory generation for QSS point mass vehicle model

is reiterated until the latter condition is true.
Once the velocity at each apex is defined, several points along the circuits are
defined by the apex, and from there the all lap velocity profile is deduced following
the acceleration and deceleration curves.

4.3 Implementation

OpenLAP was programmed as a Matlab file, so implementing it on Simulink required
a lot of adaptation and code reconstruction. In particular, several Matlab functions
were written and implemented as Matlab function in the Simulink environment.
implementation procedure of OpenLAP in the Simulink environment follows the
standard procedure done by the original author. In fact, first useful parameters are
defined, such as the vehicle model and simulation parameters, such as sampling
time and pre-allocation of variables for code stability.
Next, the actual execution of the simulation can take place. Starting from the
assumption that the RL agent generates a trajectory (the explanation of which is
detailed in the section 4.3), this is passed to a function that modifies the csv file,
allowing OpenTRACK to generate the trajectory structure. To do this, a function
was created ad hoc, the code for which is given here:

Listing 4.1: csvGeneratefunction
1 f unc t i on [baseFileName] = generateCSVfunction (curvature , agent_x

, agent_y)
2 %−−
3 % MATLAB func t i on to take an array , wr i t e i t on a tab l e and

save in to . x l sx
4 %−−
5

6 % I t i s needed to usa a func t i on in s t ead o f a .m s c r i p t due to
code

7 % genera t i on requi rements
8

9 %−−
10 warning (" o f f " , " a l l ") ;

45

Trajectory generation for QSS point mass vehicle model

11 addpath (" csvOfTrajectoriesForOpenLAP ")
12

13 % Direc tory d e f i n i t i o n
14 f o l d e r = " csvOfTrajectoriesForOpenLAP " ;
15

16 % Assuring that the f i l e i s be ing c losed , o therw i s e the
wr i t i ng i s

17 % denied
18 f c l o s e (" a l l ") ;
19

20 % Creat ion o f the d i r e c t o r y i f not e x i s t i n g
21 i f ~ e x i s t (f o l d e r , ’ d i r ’)
22 mkdir (f o l d e r) ;
23 end
24

25 %−−
26 % F i l e and ar rays c r e a t i o n − NOTE: Check the name o f the x l sx

c reated
27 %−−
28

29 % F i l e c r e a t i o n
30 baseFileName = " Agent_sector_2_Flip_0_traj_ltpl_cl " ;
31 f i l e E x t e n s i o n = " . x l sx " ;
32 fu l lF i l eName = f u l l f i l e (f o l d e r , baseFileName+

f i l e E x t e n s i o n) ;
33

34 %−−
35 % Column mod i f i c a t i on − 3 Columns have to be modi f i ed : rho , x ,

y
36 %−−
37

38 % Write curvature to the second shee t in the th i rd column ,
s t a r t i n g from the second row

39 corner_sheet = 2 ;
40 corner_range = ’C2 ’ ;
41 corner = 1 ./ abs (curvature) ;

46

Trajectory generation for QSS point mass vehicle model

42 wri tematr ix (corner , fu l lF i leName , ’ Sheet ’ , corner_sheet , ’
Range ’ , corner_range) ;

43

44 % Write agent_x to the seventh sheet , s t a r t i n g from the
second row

45 agent_x_sheet = 7 ;
46 agent_x_range = ’A2 ’ ;
47 wri tematr ix (agent_x , fu l lFi leName , ’ Sheet ’ , agent_x_sheet , ’

Range ’ , agent_x_range) ;
48

49 % Write agent_x to the seventh sheet , s t a r t i n g from the
second row

50 agent_y_sheet = 7 ;
51 agent_y_range = ’B2 ’ ;
52 wri tematr ix (agent_y , fu l lFi leName , ’ Sheet ’ , agent_y_sheet , ’

Range ’ , agent_y_range) ;
53

54 % Close to avoid mul t ip l e f i l e running
55 f c l o s e (" a l l ") ;
56 end

The csv used by OpenTRACK must have a precise formatting. In sheet 1,3,4,5,6,7
some info over the track are given are given, meanwhile in sheet 2 the trajectory to
e followed must be declared in three columns: left/right/straight information, the
section length and the corner radius in meters. Please note that the csv file requires
the corner of the curve radius, not the curvature. For this reason the calculation at
line 41 is performed. An example for the first meters of the Berlin Formula E 218
track is reported in the table 4.2.

47

Trajectory generation for QSS point mass vehicle model

Type SectionLength[m] CornerRadius[m]
Right 2.998027318 22.7281369
Right 2.998047955 2.44869273
Right 2.998074969 69803.8729
Right 2.998107933 72.6767477
Right 2.998147286 5.30194156
Right 2.998192619 19.8624412
Right 2.99824421 17.6776915
Right 2.998302161 2.56749936

Table 4.2: OpenTRACK csv example for initial part of Berlin Formula E 2018
track

Afterwards, it is possible to have the codes used to execute OpenTRACK and
OpenVEHICLE. However, normally the two codes communicate with each other
by creating variables which are saved in structures which are then called up by
the next code. In Simulink, this operation would not only be laborious, as it
would involve the massive use of data buses, but is not easily combined with the
limitations imposed during Reinforcement Learning. In fact, during this procedure,
due to structural limits imposed by Mathworks, the workspace within which the
data is saved is not accessible [49]. Therefore, if you wish to add or delete a variable
during agent training, you must declare a local Matlab function. The latter in
fact allows a variable to be declared and used as desired without affecting the
workspace, which is instead composed of global variables [50]. For this reason, it
was decided to communicate the OpenTRACK script with the OpenLAP script
using local functions.

To recapitulate, the OpenTRACK code has been introduced into a function which
reads the csv file, generates the track data including the trajectory to be followed
and as output has an array of cell elements, where each element corresponds to a
field of the structure that the original script predicted. This array of cells is passed
as input to an OpenLAP pre-launching script, which extracts the data from the
array and converts it into the format that the original OpenLAP script envisaged.
Finally, OpenLAP, adapted as a local function named functionOpenLAP_GR, is
executed using the data read from the array. The codes of the following functions

48

Trajectory generation for QSS point mass vehicle model

are proposed below, avoiding the inclusion of the OpenTRACK and OpenLAP
scripts, not only because they are open source and therefore available to the
reader, but since they are codes of 902 lines the former and 1138 the latter, they
would unnecessarily prolong the text without bringing any particular additional
information.

Listing 4.2: LaunchOpenTRACK
1 f unc t i on trTableData = LaunchOpenTRACK(baseFileName)
2 %−−
3 % OpenTRACK s c r i p t adapted as a func t i on f o r Simulink

environment .
4 %−−
5

6 % This fucn t i on c r e a t e s the nece s sa ry f i l e s to s imulate a
proper lap

7 % time in to OpenLAP.
8

9 % xl sx Name −> t h i s f i l e −> c e l l (data f o r OpenLAP)
10

11 % The genera t i on i s based on the read ing o f a x l sx
12 % f i l e , in which the t r a j e c t o r y i s de f i ned as a d i s t anc e

t r a v e l l e d and
13 % curvature (" Shape shee t " − Sheet 2 o f the x l sx f i l e)
14

15 % This s c r i p t takes as an input the f i l e name o f the x l sx
f i l e (without

16 % the extens i on !) and g i v e s as an output a c e l l . Here are
inc luded

17 % in fo rmat i ons about the t rack and the t r a j e c t o r y to be
s imulated .

18

19 %−−
20 % OpenTRACK s c r i p t
21 %−−
22

23

49

Trajectory generation for QSS point mass vehicle model

24 [. . .]
25

26 %−−
27 % Output D e f i n i t i o n
28 %−−
29

30 trTableData = c e l l (1 , numel (f i e ldnames (t r))) ’ ;
31

32 % Get the f i e l d names o f the s t r u c t u r e
33 f ie ldNames = f i e ldnames (t r) ;
34 trTableData = s t r u c t 2 c e l l (t r) ;
35 end

Listing 4.3: LaunchOpenLAP
1 f unc t i on lapt ime = LaunchOpenLAP(trTableData)
2 %−−
3 % Function which act as the launcher f o r OpenLAP s c r i p t f o r

Simulink environment .
4 %−−
5 % This func t i on s imulate a lapt ime f o r the t rack and

t r a j e c t o r y
6 % c h a r a c t e r i s t i c s s to r ed in to the c e l l v a r i a b l e .
7

8 % This s c r i p t takes as an input the c e l l conta in ing the
v a r i b a l e s

9 % needed and g i v e s as an output the lapt ime in seconds .
10

11 % c e l l (t rack and t r a j e c t o r y) −> t h i s f i l e −> lapt ime
12 %−−
13 % D e f i n i t i o n s
14 %−−
15

16 % Take a t t en t i on to the index numerations !
17 check_savingIndex = f a l s e ;
18 i f check_savingIndex
19 type Nomenclature_input_for_functionOpenLAP . txt

50

Trajectory generation for QSS point mass vehicle model

20 end
21

22 % Extract ing in fomrat ion : c e l l −> arrays
23 tr_x = ce l l 2mat (trTableData (1)) ;
24 tr_X = ce l l2mat (trTableData (2)) ;
25 tr_r = ce l l 2mat (trTableData (3)) ;
26 tr_dx = ce l l 2mat (trTableData (4)) ;
27 tr_n = ce l l 2mat (trTableData (5)) ;
28 tr_Z = ce l l 2mat (trTableData (6)) ;
29 tr_bank = ce l l 2mat (trTableData (7)) ;
30 t r_ inc l = ce l l 2mat (trTableData (8)) ;
31 t r_factor_gr ip = ce l l 2mat (trTableData (9)) ;
32 t r_sec to r = ce l l 2mat (trTableData (10)) ;
33 tr_Y = ce l l2mat (trTableData (11)) ;
34 tr_apex = ce l l 2mat (trTableData (12)) ;
35 tr_r_apex = ce l l 2mat (trTableData (13)) ;
36 t r_in fo_con f ig = " Closed " ;
37 tr_info_name = " Try " ;
38

39 %−−
40 % OpenLAP s imu la t i on
41 %−−
42

43 % Function launch that resamble the OpenLAP s c r i p t
44 lapt ime = functionOpenLAP_GR(tr_X , tr_Y , tr_Z , tr_apex , tr_bank

, tr_dx , tr_factor_gr ip , t r_inc l , t r_info_conf ig , tr_n , tr_r ,
tr_r_apex , t r_sector , tr_info_name , tr_x) ;

45 f c l o s e (’ a l l ’) ;
46 end

RL Implementation

In the context explained, the RL is the trajectory generator. These are entered
into the csv file and then read and passed to the LaunchOpenTRACK function.
The agent’s observations are the global co-ordinates, the action it performs and

51

Trajectory generation for QSS point mass vehicle model

the lap time due to the action performed. The agent is set to generate trajectories,
in particular it generates a lateral deviation from the centreline normal. Therefore
what the agents learns is how to deviate from the centreline in order to reduce the
lap-time. Piratically, the output of the agent is a vector containing a scalar value
which has to be add to the centreline reference trajectory.

Figure 4.4: Lateral deviation following the centreline normal.

This approach presents a novelty compared to the literature. In fact, the path-
planning process tends to be performed by optimisers that require considerable
computational effort. RL was mainly used as path-tracking. Or if it has been
used as path-planning, it is because it was involved in an end-to-end autonomous
approach, i.e. the agent learns from the video input and learns to generate control
signals (make reference to the literature review proposed in section 2).

The proposed work therefore proposes the idea of presenting the RL as a trajectory
optimiser that is able based on lap-time observations to adapt to the vehicle
and track context. Indeed, as the DDPG is a model-free algorithm, it should
learn an optimisation strategy that only considers the effects of its actions on the
environment, without taking into account the nature of the model it is acting on.
This approach could be useful in the racing context, where the agent should adapt
in real-time to modifications in the vehicle’s performance and the ever-changing

52

Trajectory generation for QSS point mass vehicle model

track conditions.

Fundamental to the correct training of the agent is a properly defined reward
function for the proposed porblem [13]. In the case studied, it was decided to set
a lap time for an optimised trajectory, obtained by executing the optimisation
process proposed in the reference [12].
The proposed reward function is based on two main signals: a time delta and the
action of the agent. Both of these quantities have an associated weight that must
be properly defined. In the proposed case, the chosen values are the results of a
trial-and-error procedure.

∆lap−time = toptimiser − tagenti−1 (4.1)

Thus, one of the signals on which reward function is based is the time difference
between this optimised trajectory and that of the agent. This provides an incentive
for the agent to learn this trajectory in the first phase, and then later explore other
solutions. The lateral deviation from the centreline α, defined as the agent’s action
in the antecedent step. To encourage the agent to further reduce the lap-time,
the H element is introduced, which becomes equal to 1 if the ∆lap−time is below
1seconds. Finally, the reward function used can be formulated:

reward = −(100∆lap−time + 500u2) × (−1e−3) + 2H (4.2)

4.4 Critical analysis

The results of the training procedure explained in this chapter are pressed in
the figure 4.5. Here it can be seen that despite the high number of episodes
(corresponding to approximately 24 hours of uninterrupted calculation), the reward
although has an upward trend, it does not reach satisfactory values, which physically
translates into a difficulty on the part of the agent in generating competitive
trajectories.
The cause of this can be associated with several reasons, including:

• The heaviness of the process of reading and writing from the disk.

53

Trajectory generation for QSS point mass vehicle model

Figure 4.5: Training window of the RL.

Although the toolchain works, necessarily having to go through the reading
and writing of an excel file is not the most efficient process possible. In fact,
among computer actions, the process of reading a file, editing it and saving it
is among the most demanding computationally speaking. This implies that
the simulation is slow and inefficient, and these are not the optimal condition
for a proper neural network training.

• Mismatch between the demands of the plant and the agent.

A weakness of OpenLAP is that it requires the trajectory to be fully defined
before simulation takes place. In the case studied, only the first sector was
evaluated. However, the longer the sector to be analysed, the greater the
length of the vector to be generated by the RL. As can easily be guessed,
the larger the size of the action to be performed by the agent, the more
difficult it will be to converge to a solution. This problem is called the curse

54

Trajectory generation for QSS point mass vehicle model

of dimensionality [51]. In the case studied, therefore, it is difficult to reach a
compromise, since on the one hand OpenLAP requires a suitably long sector
of the track to be analysed in order to have sufficient information, while on
the other hand the agent would require a reduction in the array it has to
generate, which would imply a smaller section of the circuit. This effect of
decompensation slows down the training process considerably, not allowing the
network to converge to an optimal result in a time that is not exaggeratedly
long.

• Need for a more realistic model.

Although OpenLAP is demonstrably a good lap time simulator, for the needs
of the proposed thesis it may have limitations. In fact, since the idea is
to be able to allow online training based on data from previous laps, it is
consequently necessary to have a vehicle model that is as representative as
possible. In fact, since the training must be based on the signals coming
out of the plant, the more reliable the plant is, the more satisfactory the
training of the network, and its ability to perform an optimal control action,
will be. Hence the need to change the vehicle model and switch to a more
representative and comprehensive system than a lap time simulator.

55

Trajectory generation for QSS point mass vehicle model

Name Formula 1 -
Type Open Wheel -
Total Mass 1200 kg
Front Mass Distribution 53 %
Wheelbase 3000 mm
Steering Rack Ratio 10 -
Lift Coefficient CL -1 -
Drag Coefficient CD -1.246 -
CL Scale Multiplier 1 -
CD Scale Multiplier 1 -
Front Aero Distribution 50 %
Frontal Area 1 m2

Air Density 1.2041 kg/m3

Disc Outer Diameter 250 mm
Pad Height 40 mm
Pad Friction Coefficient 0.45 -
Caliper Number of Pistons 6 -
Caliper Piston Diameter 40 mm
Master Cylinder Piston Diameter 25 mm
Pedal Ratio 4 -
Grip Factor Multiplier 1.2 -
Tyre Radius 300 mm
Rolling Resistance -0.001 -
Longitudinal Friction Coefficient 1 -
Longitudinal Friction Load Rating 300 kg
Longitudinal Friction Sensitivity 0.0001 1/N
Lateral Friction Coefficient 1 -
Lateral Friction Load Rating 300 kg
Lateral Friction Sensitivity 0.0001 1/N
Front Cornering Stiffness 1200 N/deg
Rear Cornering Stiffness 1200 N/deg
Power Factor Multiplier 1 -
Thermal Efficiency 0.35 -
Fuel Lower Heating Value 4.72E+07 J/kg
Drive Type RWD -
Gear Shift Time 0.05 s
Primary Gear Efficiency 0.98 -
Final Gear Efficiency 0.9 -
Gearbox Efficiency 0.98 -
Primary Gear Reduction 0.98 -
Final Gear Reduction 1 -
1st Gear Ratio 1 -

Table 4.1: Vehicle parameters adopted.

56

Chapter 5

Path re-planning

In this chapter the second part of the thesis is explained. It concerns the developing
of a tool-chain capable of store vehicle’s signals generated online into a buffer which
is used as a data provider for the Reinforcement Learning agent during its training.
In particular, emphasis was placed on the implementation of buffers that allow
online consultation and updating at the end of each episode.

5.1 Tool-chain for data retrieval

Given the difficulties of Reinforcement Learning in generating trajectories for entire
sections of the circuit, it was decided to implement it in an contest where it only
generates the instantaneous trajectory that the vehicle will follow. A manoeuvre
is defined, in the case studied a 90 degree turn to the left was chosen. The agent
trains by taking into account the data collated from previous turns, consulted by
taking into account the position of the vehicle and a moving window that moves
with it. The input used to read the data is the curvilinear co-ordinate along the
centreline trajectory, to use a distance-independent reference. A 8 DOF vehicle
model is used as a high-fidelity plant for higher dynamic accuracy of the system.
Two controllers are used to make the plant follow the trajectory generated by
the agent: a PID for longitudinal dynamics and an FF-FB for lateral dynamics.
At each end of an episode, set equal to the length of the manoeuvre, the data
buffer is updated by saving the last recorded data and deleting the oldest data.

57

Path re-planning

In the first phase of training the buffer will contain information on manoeuvres
that are not quite optimal, but as the agent improves his trajectory, the buffer will
consequently store more and more meaningful manoeuvre data that will facilitate
network learning.

5.1.1 Vehicle model

The vehicle model presented in Chapter 2 was implemented. It consists of a 8 DoF
model, corresponding to longitudinal and lateral coordinate, yaw and roll motion,
and the dynamics of the four wheels. The equation have been presented in section
2.2.3 meanwhile here its implementation is presented.

Figure 5.1: 8 DoF Simulink implementation.

This model takes as inputs the acceleration7braking command, which is generated
from the longitudinal dynamics - PID and the steering angle, coming as an output
from the lateral FF-FB controller. The output of the model are the vehicle model
state bus, containing information over the longitudinal speed, lateral speed, yaw
rate, yaw angle, roll rate, roll angle, the four wheels speeds, longitudinal and lateral
positions, lateral and longitudinal accelerations. The vehicle model is implemented
as a MATLAB function containing the equations presented in section 2.2.3.

58

Path re-planning

5.1.2 Calculation of s

The information over which the buffer is read is though the curvilinear coordinate,
also referred to as s. This information has to be estimated from the vehicle states
following the equation 5.1. Considering a generic point moving along a trajectory
and a reference point, the system in figure 5.2 can be draw. The value of ṡ can
be derived. From this information, the curvilinear coordinate s can be obtained
trough integration [14].

Figure 5.2: ṡ model representation.

59

Path re-planning

ṡ = 1
1 + krefey

(ẋ cos (eψ) + ẏ sin (eψ)) (5.1)

The Simulink implementation of the system described is showed in figure 5.3,
where in the left block the calculation of ṡ is performed according to formula 5.1,
meanwhile the right block performs the integration, having as initial condition the
value of the curvilinear coordinate at the previous step.

Figure 5.3: s Simulink implementation.

5.1.3 Controllers

Two controllers are adopted to follow the trajectory generated by the agent, one
for longitudinal dynamics and the other for lateral dynamics. The longitudinal
dynamics is controlled by a PI, while the lateral dynamics is followed by an FF-
FB controller. The PI has as input the error on the longitudinal velocity, i.e.
the difference between the current vehicle speed and the reference speed of the
manoeuvre, and has as output the torque demand. The formulation of the PI in
continuous time is presented in the formula 5.2. The Simulink implementation is
presented in figure 5.4.

u(t) = Kpe(t) +Ki

tÚ
0

e(τ)dτ (5.2)

The FF-FB controller serves as a lateral control system. It achieves overall steering
control through a combination of two key components: feed-forward and feedback.
The implementation of controllers into Simulink environment is showed in picture
5.5.
The feed-forward component determines the required steering angle for steady-
state turn negotiation. It is calculated by combining the kinematic steering angle,

60

Path re-planning

Figure 5.4: PI controller used for longitudinal controller [14].

Figure 5.5: Simulink implementation of the FF-FB controller [14].

computed using the Ackermann formula for a single-track model, with the slip
angles of the front and rear tires. Generating slip angles involves the creation of
lookup tables with lateral forces and vertical loads as inputs, yielding slip angles
as outputs. On the other hand, the feedback portion of the controller utilises a
proportional controller for two error signals: lateral position error (ey) and heading
error (eψ). This feedback is derived from the sum of the lateral position error at
the vehicle’s centre of gravity (ey) and the projection of the look-ahead distance in
the direction of eψ.
The controller’s tuning parameters consist of the proportional gain (KFF−FB) and
the look-ahead distance (xLA). The former adjusts the relative importance of the
entire feedback component in the overall control action, while the latter regulates
the balance between lateral deviation at the centre of gravity and heading error.
Finally the final formulation of the two controllers is shown in equations 5.3 and
5.4 [14].

61

Path re-planning

δFF = lcρplanned + αFF,F − αFF,R (5.3)

δFB = KFF−FB [ey + xLA(eψ − (αFF,R + bcρplanned))] (5.4)

With the default setting of the model, using the explained controller (equations
5.2, 5.4 5.3) and the defined vehicle model (2.2.3) it is possible to perform the first
manoeuvres, which will be defined as the standard manoeuvre. Assuming that
the ideal trajectory is known, the plant will provide the following results (figure
5.6) for a 90 degree manoeuvre to the left can be observed. The code used for
running the Simulation is given in listing 5.1, where all the function used are all
used for creating structures containing parameters useful for the Simulink model.
In Listing 5.1

Listing 5.1: Simulink_model_startup
1 c l e a r
2 c l o s e a l l
3 c l c
4 warning (’ o f f ’)
5

6 MyPath = pwd ;
7 addpath (genpath ([MyPath , ’ \1_Parameters ’])) ;
8 addpath (genpath ([MyPath , ’ \2_Model ’])) ;
9 addpath (genpath ([MyPath , ’ \3 _Results ’])) ;

10

11 Simulink_mdl = ’ Vehicle_model_2023 . s l x ’ ;
12

13 g l o b a l Simulation_parameters Parameters_car Manoeuvre Obstac le
Contro l l e r_parameters Planner_probl_data Buffer_Data

14

15 %−−
16 % Simulat ion s e t t i n g s
17 %−−
18

19 % Open / Closed loop t e s t
20 % 1 : Open loop − LUT tab l e planning
21 % 2 : Closed loop − Online re−planning

62

Path re-planning

22 Open_Closed_Loop_sw = 2 ;
23

24 % Open loop t e s t
25 % 1 : S t ra i gh t l i n e t e s t
26 % 2 : Ramp s t e e r t e s t
27 % 3 : Step s t e e r t e s t
28 % 4 : Double s tep s t e e r t e s t
29 % 5 : S i n u s o i d a l t e s t
30 Open_loop_steer_input = 1 ;
31

32 % Closed loop manoeuvre
33 % 1 : Obstac le avoidance
34 % 2 : Skidpad
35 % 3 : Imola F1 track
36 % 4 : McLaren Logo
37 % 5 : Top Gear Test Track
38 % 6 : Oval Track
39 % 7 : 90 deg corner long Track
40 Manoeuvre_closed_loop = 7 ;
41

42 % Closed loop path t rack ing c o n t r o l l e r
43 % 1 : P
44 % 2 : FF−FB Stanford
45 % 3 : PD with preview
46 % 4 : LQR
47 % 5 : LQR with preview
48 % 6 : MPC l i n e a r
49 % 7 : MPC l i n e a r l a t e r a l and l o n g i t u d i n a l v a r i a b l e C s t i f f
50 Closed_Loop_Steering_Control ler = 2 ;
51

52 %−−
53 % Simulat ion parameters
54 %−−
55

56 % −−−− Simulat ion parameters −−−−
57 Simulation_parameters = Get_simulation_parameters (Simulink_mdl ,

Open_Closed_Loop_sw , Open_loop_steer_input , Manoeuvre_closed_loop ,
Closed_Loop_Steering_Control ler) ;

58

63

Path re-planning

59 % −−−− Vehic l e parameters −−−−
60 Parameters_car = Car_parameters (MyPath) ;
61

62 % −−−− Manoeuvre parameters −−−−
63 Manoeuvre = Get_manoeuvre_parameters (

Simulation_parameters , Parameters_car) ;
64

65 % −−−− Obstac le parameters −−−−
66 Obstac le = Get_obstacle_parameters () ;
67

68 % −−−− Load planner parameters −−−−
69 Planner_probl_data = Get_planner_parameters (Manoeuvre ,

Parameters_car , Obstac le) ;
70

71 % −−−− C o n t r o l l e r s parameters −−−−
72 Contro l l e r_parameters = Get_Controller_Parameters_Simulink (

Simulation_parameters , Parameters_car) ;
73

74 % −−−− Buf f e r data −−−−
75 Buffer_Data = Get_Buffer_Data () ;
76

77 %−−
78 % Run s imu la t i on model
79 %−−
80

81 c l e a r v a r s −except Simulation_parameters Parameters_car Manoeuvre
Obstac le Contro l l e r_parameters Planner_probl_data Buffer_Data

82

83 % Open the Simulink model
84 % open (Simulation_parameters . Simulink_mdl_name)
85

86 % Run the s imu la t i on
87 % t i c
88 sim (Simulation_parameters . Simulink_mdl_name)
89 % toc
90 %−−
91 % Save data
92 %−−
93

64

Path re-planning

94 % Savedata
95

96 %−−
97 % End
98 %−−

5.2 Buffers

A key point in the development of the defined tool-chain is the development of
buffers that allow online consultation of data from previous laps. The final objective
of the project, of which the work of this thesis is a part, is to allow a path re-planning
that takes into account the evolution of the state of the track or vehicle without
direct modelling of the environment or plant being involved. Not surprisingly, an
RL agent was chosen due to its model-free learning qualities. However, in order for
the agent to learn to adapt to dynamic conditions in the racing environment, (like
variations in friction coefficients, alterations in tyre temperature) it is necessary for
the agent to observe such changes during training. Hence the need to implement
subsets of stored data that maintain dynamic information on previous laps and
that can be consulted online by the agent. In the next Chapter (6) the code and
implementation of such buffers will be discussed.

65

Path re-planning

Figure 5.6: Training window of the RL.

66

Chapter 6

Buffers: memory data
storage

In this chapter, the buffer implementation is presented. An initial explanation is
presented regarding the idea developed, followed by an explanation of the code
developed and its Simulink model. The final objective of the proposed work is to
develop the buffer system, and to demonstrate how it works, a training example is
presented. In fact, in the current state of the project, the buffer works correctly
and the agent is able to start training, however, the tuning of the training and the
agent is part of the further development that will be completed in the next stages
of the project.

6.1 Description

The idea of the buffer as a memory data storage application arose from the need to
have a database that would work online during both writing and reading. For this
reason, the creation of .mat files containing data structures in MATLAB was used.

Procedure

During the phase of reading, the buffer is loaded into the workspace at the start of
each episode and the values saved from previous laps are loaded into LUTs. These,

67

Buffers: memory data storage

based on the scenterline information of the current lap, interpolate the data saved
at the same position but referring to previous laps. In this way, from the current
position of the vehicle, it is possible to extrapolate the dynamic information of
longitudinal and lateral acceleration, steering angle, vehicle inertial co-ordinates
and yaw angle from previous manoeuvres.

Centre-line information

The decision to use scenterline as input for retrieving saved data was made for
several reasons. Firstly, it simplifies the process by requiring only one piece of
information, avoiding the need for complex 3D look-up tables (LUTs), simplifying
the Simulink model, furthermore makes it possible to read data with information
that is comparable with each other, preventing the data read from being discordant
with the current vehicle data.

Consider two different driving manoeuvres: an optimised one aiming for the quickest
track traversal (e.g., the optimised trajectory) and a highly cautious manoeuvre
with a longer duration and less aggressive trajectory (e.g., an initial trial by the
agent). To ensure that data saved at a certain point, denoted as k along the track,
remains comparable, it’s crucial that this data is retrieved at the same spatial
position relative to the vehicle.
One might initially think of using the x and y coordinates of the vehicle as inputs,
with the dynamic variables from previous laps as output. However, this approach
would necessitate the use of computationally intensive 3D LUTs, which would
burden the model significantly. Hence, the decision was made to use scenterline as
the reference for comparison.

Making reference to the two-trajectory case hypothesised. Given a point P , defined
as a specific point along the curvilinear coordinate after travelling a certain distance
k, using the vehicle’s instantaneous curvilinear coordinate s would mean that for a
slow trajectory (e.g., hugging the centre line), the car would reach point P1 after
covering k meters. In contrast, for a more aggressive trajectory, the car would
reach a different point P2 after covering the same k meters, distinct from P1.
Assuming that data from these two laps are saved in the buffer and a third trajectory

68

Buffers: memory data storage

Figure 6.1: Difference among the distance covered by the two trajectories. Path1
will reach P1 with a covered distance bigger respect to path2 [23].

is being followed, using s as the read value would result in the agent receiving
simultaneous information between P1 and P2. Since these points are spatially
distinct, they might also represent different locations on the track, such as the
entry and exit points of a curve. This could lead to mixed observations, such as
acceleration (at the curve exit) and deceleration (at the curve entry), occurring
simultaneously. Such mixed situations would complicate the training of the agent.

69

Buffers: memory data storage

Instead, by utilising the scenterline information, the algorithm ensures that when the
vehicle’s projection onto the centre line trajectory covers a distance k, it consults the
database at that precise point. Here, all the collected data are directly comparable
since they pertain to the same spatial coordinate, occurring under the same driving
conditions during the manoeuvre. Moreover, this approach only requires one input
for the look-up table, thus simplifying the algorithm.

Moving window

In order to further lighten the algorithm, instead of reading the entire database
during the manoeuvre, it was decided to interpret the data readout only for a
moving window, i.e. for the values corresponding to the vehicle’s current position
plus a defined margin of metres forwards and backwards from the current position.

Figure 6.2: Idea used of the moving window.

In order to interpolate the buffer data considering the moving window, it was
sufficient to add (in the forward case) or subtract the current position of the vehicle
by the defined metres. The size of the window is defined via a parameter that can
be set in the MATLAB launch code. In order to have distinct values, the window
sizes are defined as vectors, which are concatenated thanks to the mux. In this way,
if for example a window size of 5 is set, corresponding to the 5 metres in front of and
behind the vehicle, a vector of 11 elements will be generated ([datak−5, ..., datak−1

+ datak + datak+1, ..., datak+5]) and for each of its elements an interpolation will
take place associating the corresponding data of the previous laps with each of the

70

Buffers: memory data storage

11 elements.

Figure 6.3: Moving window implementation

6.2 Implementation

The buffers were implemented as look-up tables that receive as input the projection
of the vehicle’s curvilinear co-ordinate along the centre-line trajectory and allow
the extraction of the values of the dynamic variables saved in previous laps.

Figure 6.4: Simulink implementation of the look-up tables (buffer data retrieval)

Before any simulation can take place, buffers must be initialised. In fact, it is not

71

Buffers: memory data storage

possible to add a variable during training but only to modify an existing one [49].
For the proposed application, it was decided to initialise the buffers to the standard
manoeuvre shown in figure 5.6. The results of this simulation are saved in the
mat file Dataset.mat. This is done in a function (Get_Buffer_Data.m) that is
launched when the simulation is started (refer to line 75 of the code presented in
listing 5.1). The code is presented in the following listing 6.1.

Listing 6.1: Get_Buffer_Data
1 f unc t i on Buffer_Data = Get_Buffer_Data ()
2

3 %−−
4 % Buf f e r l oad ing
5 %−−
6

7 % In t h i s way a ready−to−go b u f f e r f o r the 90 degree manoeuvre i s
loaded

8

9 % and f u l l y working .
10

11 %−−
12

13 buffer_path = "1 _Parameters \07 _Buffer \ Dataset . mat " ;
14 load (buffer_path) ;
15

16 %−−
17 % Creat ion o f i n i t i a l s i g n a l s
18 %−−
19

20 % For the f i r s t ep i sode the re i s the need to pre−a s s i gn the i n i t i a l
s i g n a l s

21

22 % which are going to be s to r ed in to the LAP1 f i e l d . This part should
be

23

24 % executed only i f the f i l e " StandardManoeuvreSignals . mat " has been
l o s t or

25

26 % corrupted

72

Buffers: memory data storage

27

28 %−−
29

30 r e s t o r e I n i t i a l D a t a = f a l s e ;
31

32 i f r e s t o r e I n i t i a l D a t a
33

34 I n i t i a l S i g n a l .X = X ;
35

36 I n i t i a l S i g n a l .Y = Y ;
37

38 I n i t i a l S i g n a l . p s i = psi_yaw ;
39

40 I n i t i a l S i g n a l . d e l t a = de l t a ;
41

42 I n i t i a l S i g n a l . ax = xddot ;
43

44 I n i t i a l S i g n a l . ay = yddot ;
45

46 save ("1 _Parameters \07 _Buffer \ StandardManoeuvreSignals . mat " , "
I n i t i a l S i g n a l ") ;

47 end
48

49 %−−
50 % Loading o f i n i t i a l s i g n a l s
51 %−−
52

53 % For the f i r s t ep i sode the re i s the need to pre−a s s i gn the i n i t i a l
s i g n a l s

54

55 % which are going to be s to r ed in to the LAP1 f i e l d . The nomeclature
f o l l o w s

56

57 % the same one crea ted and saved in the workspace at the end o f the
ep i sode

58

59 % f o r coherence
60

61 %−−

73

Buffers: memory data storage

62

63 load ("1 _Parameters \07 _Buffer \ StandardManoeuvreSignals . mat ") ;
64

65 X = I n i t i a l S i g n a l .X;
66 Y = I n i t i a l S i g n a l .Y;
67 psi_yaw = I n i t i a l S i g n a l . p s i ;
68 de l t a = I n i t i a l S i g n a l . d e l t a ;
69 xddot = I n i t i a l S i g n a l . ax ;
70 yddot = I n i t i a l S i g n a l . ay ;

In order to allow the table data of the LUTs to vary with each episode (see the
name of the table data in figure 6.4), a localResteFcn was used. This function
in MATLAB was idealised for resetting the initial conditions of a given Simulink
bloc. However, any variable that is modified internally via MATLAB code can
be re-initialised. So in the proposed application, at each episode the data just
generated by the simulation is saved in the buffer, which will be read from the
moving windows in the next episode. It is therefore essential to have a function that
allows this data to be saved at the end of each episode, removing the information
from the oldest lap and replacing it with that of the lap just completed. The
function which allows this is the localResetFcn whose code is presented in the
listings 6.2.

Listing 6.2: localResetFcn
1 f unc t i on in = loca lResetFcn (in , Buffer_Data , Manoeuvre)
2

3 %−−
4 % Buf f e r uploading
5 %−−
6

7 % At the end o f each episode , the l a s t lap i s s to r ed in to the LAP1
f i e l d

8

9 % d e l e t i n g the o ld LAP3 present . The o ld LAP2 and LAP1 are s to r ed in
the

10

11 % s u c c e s s i v e f i e l d . For b e t t e r c l a r i f i c a t i o n makes r e f e r e n c e to t h i s
12

13 % scheme :

74

Buffers: memory data storage

14

15 % current_LAP −−−> LAP1
16

17 % LAP1 (s to r ed in the b u f f e r) −−−> LAP2
18

19 % LAP2 (s to r ed in the b u f f e r) −−−> LAP3
20

21 %−−
22

23 % Sca l i ng the prev ious LAPS
24

25 Buffer_Data .LAP3 = Buffer_Data .LAP2 ;
26

27 Buffer_Data .LAP2 = Buffer_Data .LAP1 ;
28

29 %−−
30

31 % Take the s i g n a l from the s imua l t i on and r e s i z i n g them to match s i z e
f o r

32

33 % the LUT tab l e . Standard manoeuvre s i g n a l s are s to r ed in the . mat
f i l e

34

35 % " StandardManoeuvresSignals "
36

37 load ("1 _Parameters \07 _Buffer \ StandardManoeuvreSignals . mat ") ;
38

39 X_currentLap = changeLength (X, l ength (Manoeuvre .
Reference_path . s)) ;

40 Y_currentLap = changeLength (Y, l ength (Manoeuvre .
Reference_path . s)) ;

41 psi_currentLap = changeLength (ps i , l ength (Manoeuvre .
Reference_path . s)) ;

42 delta_currentLap = changeLength (de l ta , l ength (Manoeuvre .
Reference_path . s)) ;

43 ax_currentLap = changeLength (xddot , l ength (Manoeuvre .
Reference_path . s)) ;

44 ay_currentLap = changeLength (yddot , l ength (Manoeuvre .
Reference_path . s)) ;

75

Buffers: memory data storage

45

46 Buffer_Data .LAP1 .X = X_currentLap ;
47 Buffer_Data .LAP1 .Y = Y_currentLap ;
48 Buffer_Data .LAP1 . p s i = psi_currentLap ;
49 Buffer_Data .LAP1 . de l t a = delta_currentLap ;
50 Buffer_Data .LAP1 . ax = ax_currentLap ;
51 Buffer_Data .LAP1 . ay = ay_currentLap ;
52

53 %−−
54 % Buf f e r sav ing
55 %−−
56

57 % Once the Buf f e r has been updated , i t needs to be saved : TO BE
CHECKED

58

59 %−−
60

61 save ("1 _Parameters \07 _Buffer \ Dataset . mat " , " Buffer_Data ") ;
62

63

64 %−−
65 % Buf f e r sav ing
66 %−−
67

68 % Put the v a r i a b l e i n to " in " in order to permit the uploading a f t e r
the

69

70 % epi sode .
71

72 %−−
73

74 in = se tVar i ab l e (in , ’ Buffer_Data ’ , Buffer_Data) ;
75

76 end

76

Buffers: memory data storage

6.3 Results

The procedure presented thus allows for agent training, the learning outcome of
which is shown in the figure 6.5. In this context, the training window of interest is
notably the phase during which significant improvements occur, stretching from
lap n to lap n+m. The training has been terminated when the improvement in
lap time was not high enough to be worth the computational time needed for
further episodes. It is noteworthy that the training tendency is a slow convergence
towards an asymptote, corresponding the limit beyond which the agent would not
be able to improve. This limit is the optimal trajectory of the manoeuvre, which
corresponds to the minimum lap time of the simulation posed. Consequently, it
is possible to appreciate how the agent used manages to improve and achieve lap
times comparable to those of the optimal trajectory.

Figure 6.5: Training window of the RL.

The generated trajectories are proposed in figure 6.6. Here one can appreciate how

77

Buffers: memory data storage

in the initial stages of training the agent tends not to deviate from the centreline,
while the last trained agent shows a tendency towards an optimal trajectory. The
final result shows how the agent has the possibility to improve, even if the final
trajectory shows slight fluctuations and tends to deviate slightly from the centreline.
This shows that the agent still has room for improvement, among which the reward
function a term could be inserted to penalise the yaw rate of the vehicle.

Figure 6.6: Trajectory comparison considering different agents.

78

Chapter 7

Conclusion

7.1 Novelty points

The work carried out by this thesis thus consists of a state-of-the-art study of the
problem of minimum la time simulation. A careful analysis was proposed and
summarised in the tables in chapter 2, in which the vehicle modelling, methodology
and algorithm used were presented and discussed. Subsequently, a study on the
application of Reinforcement Learning as an agent for optimising time as a trajectory
generator was carried out. However, since the ultimate goal of the project is to
optimise the lap time by taking into account the vehicle’s dynamic information,
which is updated in real time and also takes into account past information, a
lap time simulator which, although realistic, uses a point mass model could be
a limitation. For this reason, a move was made towards a more complex model,
which allows a more realistic representation of the vehicle, from which the agent’s
training would benefit in terms of convergence and results. Fundamental to the
application of this idea is the need to adopt buffers, which are databases of previous
simulations that allow the agent to compare the dynamic variables of the current
episode with those of previous laps. Once the buffers had been implemented, and
a reward function suitable for the problem posed had been designated, an agent
was trained to learn how to generate a delta of curvature which, when added to
the curvature of the centre line, allows the path tracking controller to follow the
optimised trajectory.

79

Conclusion

7.2 Further improvements

The work presented achieves satisfactory results in a simple and not too complex
manoeuvre. This is due to the computational effort that would require having
to simulate and train the agent on longer and more complex circuits. Therefore,
the first limitation is the computational availability one has to test more complex
trajectories. In addition, one could consider transferring the most complex part
of the calculation, such as training the agent, to a computationally less intru-
sive software than MATLAB-Simulink, however with the complexity of having
to interface such a program with the 8 dof vehicle model. Next, an aspect of
improvement is the reward function. This needs to be well defined according to
the environment in which the agent is located. An analysis of the different weights
can be carried out, as the inclusion of other vehicle signals such as lateral and
longitudinal acceleration. Still itinerant to the agent, reducing the number of
observations certainly represents an achievable improvement, as it would lighten
the network, so an analysis on which observations can be avoided can be carried out.
Another aspect for discussion could be the implementation of other Reinforcement
Learning architectures, such as the latest TD3 algorithm. In conclusion, one of the
characteristics of Reinforcement Learning is that since it is a non-deterministic
approach, possible new implementations do not necessarily imply better results
and the improvement process may be long and not as fruitful as hoped.

80

Bibliography

[1] Nicola Dal Bianco, Enrico Bertolazzi, Francesco Biral, and Matteo Massaro.
«Comparison of direct and indirect methods for minimum lap time optimal
control problems». In: Vehicle System Dynamics 57.5 (May 4, 2019), pp. 665–
696. issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.2018.1480048.
url: https://www.tandfonline.com/doi/full/10.1080/00423114.2018.
1480048 (visited on 10/10/2023) (cit. on pp. 1, 13, 16, 19).

[2] William F. Milliken and Douglas L. Milliken. Race car vehicle dynamics.
Warrendale, PA, U.S.A: SAE International, 1995. 890 pp. isbn: 978-1-56091-
526-3 (cit. on p. 1).

[3] M. Massaro and D. J. N. Limebeer. «Minimum-lap-time optimisation and
simulation». In: Vehicle System Dynamics 59.7 (July 3, 2021), pp. 1069–1113.
issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.2021.1910718. url:
https://www.tandfonline.com/doi/full/10.1080/00423114.2021.
1910718 (visited on 10/10/2023) (cit. on pp. 1, 2, 4–7, 9, 14, 17, 22).

[4] D. Metz and D. Williams. «Near time-optimal control of racing vehicles».
In: Automatica 25.6 (Nov. 1989), pp. 841–857. issn: 00051098. doi: 10 .
1016/0005-1098(89)90052-6. url: https://linkinghub.elsevier.com/
retrieve/pii/0005109889900526 (visited on 07/31/2023) (cit. on pp. 2, 6,
7, 9, 10, 14, 15).

[5] Xiaohui Hou, Junzhi Zhang, Chengkun He, Yuan Ji, Junfeng Zhang, and
Jinheng Han. «Autonomous driving at the handling limit using residual
reinforcement learning». In: Advanced Engineering Informatics 54 (Oct. 2022),
p. 101754. issn: 14740346. doi: 10.1016/j.aei.2022.101754. url: https:

81

https://doi.org/10.1080/00423114.2018.1480048
https://www.tandfonline.com/doi/full/10.1080/00423114.2018.1480048
https://www.tandfonline.com/doi/full/10.1080/00423114.2018.1480048
https://doi.org/10.1080/00423114.2021.1910718
https://www.tandfonline.com/doi/full/10.1080/00423114.2021.1910718
https://www.tandfonline.com/doi/full/10.1080/00423114.2021.1910718
https://doi.org/10.1016/0005-1098(89)90052-6
https://doi.org/10.1016/0005-1098(89)90052-6
https://linkinghub.elsevier.com/retrieve/pii/0005109889900526
https://linkinghub.elsevier.com/retrieve/pii/0005109889900526
https://doi.org/10.1016/j.aei.2022.101754
https://linkinghub.elsevier.com/retrieve/pii/S1474034622002129
https://linkinghub.elsevier.com/retrieve/pii/S1474034622002129

BIBLIOGRAPHY

//linkinghub.elsevier.com/retrieve/pii/S1474034622002129 (visited
on 10/10/2023) (cit. on pp. 2, 6, 24).

[6] Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Pe-
ter Durr. «Super-Human Performance in Gran Turismo Sport Using Deep
Reinforcement Learning». In: IEEE Robotics and Automation Letters 6.3
(July 2021), pp. 4257–4264. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.
2021.3064284. url: https://ieeexplore.ieee.org/document/9372847/
(visited on 10/10/2023) (cit. on pp. 2, 22, 23).

[7] Achin Jain and Manfred Morari. Computing the racing line using Bayesian
optimization. Feb. 11, 2020. arXiv: 2002.04794[cs]. url: http://arxiv.
org/abs/2002.04794 (visited on 10/10/2023) (cit. on pp. 5, 21).

[8] Mathworks - ETH. Lap Time Simulation; Essential Part of Concept Devel-
opment. 2014. url: https://it.mathworks.com/videos/matlab- and-
simulink-racing-lounge-lap-time-simulation-essential-part-of-
concept-development-98733.html (cit. on p. 6).

[9] SAE international. Formula SAE regulation - 2022. 2022. url: https://
fsaeonline . com / cdsweb / gen / DownloadDocument . aspx ? DocumentID =
25e8885c-7397-4b2d-93b3-fc404960bab1 (cit. on p. 6).

[10] M. Veneri and M. Massaro. «A free-trajectory quasi-steady-state optimal-
control method for minimum lap-time of race vehicles». In: Vehicle System
Dynamics 58.6 (June 2, 2020), pp. 933–954. issn: 0042-3114, 1744-5159. doi:
10.1080/00423114.2019.1608364. url: https://www.tandfonline.com/
doi/full/10.1080/00423114.2019.1608364 (visited on 10/10/2023) (cit.
on p. 8).

[11] Marco Gadola, David Vetturi, Danilo Cambiaghi, and Luca Manzo. «A
Tool for Lap Time Simulation». In: Motorsports Engineering Conference &
Exposition. Dec. 1, 1996, p. 962529. doi: 10.4271/962529. url: https:
//www.sae.org/content/962529/ (visited on 10/10/2023) (cit. on pp. 10,
11, 21).

82

https://linkinghub.elsevier.com/retrieve/pii/S1474034622002129
https://linkinghub.elsevier.com/retrieve/pii/S1474034622002129
https://linkinghub.elsevier.com/retrieve/pii/S1474034622002129
https://doi.org/10.1109/LRA.2021.3064284
https://doi.org/10.1109/LRA.2021.3064284
https://ieeexplore.ieee.org/document/9372847/
https://arxiv.org/abs/2002.04794 [cs]
http://arxiv.org/abs/2002.04794
http://arxiv.org/abs/2002.04794
https://it.mathworks.com/videos/matlab-and-simulink-racing-lounge-lap-time-simulation-essential-part-of-concept-development-98733.html
https://it.mathworks.com/videos/matlab-and-simulink-racing-lounge-lap-time-simulation-essential-part-of-concept-development-98733.html
https://it.mathworks.com/videos/matlab-and-simulink-racing-lounge-lap-time-simulation-essential-part-of-concept-development-98733.html
https://fsaeonline.com/cdsweb/gen/DownloadDocument.aspx?DocumentID=25e8885c-7397-4b2d-93b3-fc404960bab1
https://fsaeonline.com/cdsweb/gen/DownloadDocument.aspx?DocumentID=25e8885c-7397-4b2d-93b3-fc404960bab1
https://fsaeonline.com/cdsweb/gen/DownloadDocument.aspx?DocumentID=25e8885c-7397-4b2d-93b3-fc404960bab1
https://doi.org/10.1080/00423114.2019.1608364
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1608364
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1608364
https://doi.org/10.4271/962529
https://www.sae.org/content/962529/
https://www.sae.org/content/962529/

BIBLIOGRAPHY

[12] Alexander Heilmeier, Alexander Wischnewski, Leonhard Hermansdorfer, Jo-
hannes Betz, Markus Lienkamp, and Boris Lohmann. «Minimum curvature
trajectory planning and control for an autonomous race car». In: Vehicle Sys-
tem Dynamics 58.10 (Oct. 2, 2020), pp. 1497–1527. issn: 0042-3114, 1744-5159.
doi: 10.1080/00423114.2019.1631455. url: https://www.tandfonline.
com/doi/full/10.1080/00423114.2019.1631455 (visited on 07/31/2023)
(cit. on pp. 11, 12, 22, 53).

[13] Miguel Morales. Grokking Deep Reinforcement Learning. Shelter Island, New
York: Manning Publications, 2020. 472 pp. isbn: 978-1-61729-545-4 (cit. on
pp. 14, 26, 28, 29, 35, 53).

[14] Mattia Zanchetta. «Autonomous Driving and Stability Control of Over-
Actuated Vehicles at the Limits of Handling». PhD thesis. University of
Surrey, Dec. 2019 (cit. on pp. 16, 59, 61).

[15] Giacomo Perantoni and David J.N. Limebeer. «Optimal control for a Formula
One car with variable parameters». In: Vehicle System Dynamics 52.5 (May 4,
2014), pp. 653–678. issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.
2014.889315. url: http://www.tandfonline.com/doi/abs/10.1080/
00423114.2014.889315 (visited on 10/10/2023) (cit. on pp. 19, 21).

[16] Roberto Lot and Nicola Dal Bianco. «Lap time optimisation of a racing
go-kart». In: Vehicle System Dynamics 54.2 (Feb. 2016), pp. 210–230. issn:
0042-3114, 1744-5159. doi: 10.1080/00423114.2015.1125514. url: http:
//www.tandfonline.com/doi/full/10.1080/00423114.2015.1125514
(visited on 10/10/2023) (cit. on pp. 19, 21).

[17] L. Leonelli and D. J. N. Limebeer. «Optimal control of a road racing mo-
torcycle on a three-dimensional closed track». In: Vehicle System Dynam-
ics 58.8 (Aug. 2, 2020), pp. 1285–1309. issn: 0042-3114, 1744-5159. doi:
10.1080/00423114.2019.1617886. url: https://www.tandfonline.com/
doi/full/10.1080/00423114.2019.1617886 (visited on 10/10/2023) (cit.
on pp. 19, 22).

[18] J.P.M. Hendrikx, T.J.J. Meijlink, and R.F.C. Kriens. «Application of Optimal
Control Theory to Inverse Simulation of Car Handling». In: Vehicle System
Dynamics 26.6 (Dec. 1996), pp. 449–461. issn: 0042-3114, 1744-5159. doi:

83

https://doi.org/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://doi.org/10.1080/00423114.2014.889315
https://doi.org/10.1080/00423114.2014.889315
http://www.tandfonline.com/doi/abs/10.1080/00423114.2014.889315
http://www.tandfonline.com/doi/abs/10.1080/00423114.2014.889315
https://doi.org/10.1080/00423114.2015.1125514
http://www.tandfonline.com/doi/full/10.1080/00423114.2015.1125514
http://www.tandfonline.com/doi/full/10.1080/00423114.2015.1125514
https://doi.org/10.1080/00423114.2019.1617886
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1617886
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1617886

BIBLIOGRAPHY

10.1080/00423119608969319. url: http://www.tandfonline.com/doi/
abs/10.1080/00423119608969319 (visited on 09/17/2023) (cit. on p. 21).

[19] V. Cossalter, M. Da Lio, R. Lot, and L. Fabbri. «A General Method for the
Evaluation of Vehicle Manoeuvrability with Special Emphasis on Motorcycles».
In: Vehicle System Dynamics 31.2 (Feb. 1, 1999), pp. 113–135. issn: 0042-3114.
doi: 10.1076/vesd.31.2.113.2094. url: http://www.tandfonline.com/
doi/abs/10.1076/vesd.31.2.113.2094 (visited on 09/17/2023) (cit. on
p. 21).

[20] Casanova. «On minimum time vehicle manoeuvring: the theoretical optimal
lap». PhD thesis. Cranfield University, 2000. url: http://hdl.handle.net/
1826/1091 (cit. on p. 21).

[21] D L Brayshaw and M F Harrison. «A quasi steady state approach to race
car lap simulation in order to understand the effects of racing line and
centre of gravity location». In: Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering 219.6 (June 1, 2005),
pp. 725–739. issn: 0954-4070, 2041-2991. doi: 10.1243/095440705X11211.
url: http://journals.sagepub.com/doi/10.1243/095440705X11211
(visited on 10/10/2023) (cit. on p. 21).

[22] Alessandro Rucco, Giuseppe Notarstefano, and John Hauser. «Computing
minimum lap-time trajectories for a single-track car with load transfer». In:
2012 IEEE 51st IEEE Conference on Decision and Control (CDC). 2012 IEEE
51st Annual Conference on Decision and Control (CDC). Maui, HI, USA:
IEEE, Dec. 2012, pp. 6321–6326. doi: 10.1109/CDC.2012.6426265. url:
http://ieeexplore.ieee.org/document/6426265/ (visited on 10/10/2023)
(cit. on pp. 21, 24).

[23] Julian P. Timings and David J. Cole. «Vehicle trajectory linearisation to
enable efficient optimisation of the constant speed racing line». In: Vehicle
System Dynamics 50.6 (June 2012), pp. 883–901. issn: 0042-3114, 1744-5159.
doi: 10.1080/00423114.2012.671946. url: http://www.tandfonline.
com/doi/abs/10.1080/00423114.2012.671946 (visited on 07/31/2023)
(cit. on pp. 21, 24, 69).

84

https://doi.org/10.1080/00423119608969319
http://www.tandfonline.com/doi/abs/10.1080/00423119608969319
http://www.tandfonline.com/doi/abs/10.1080/00423119608969319
https://doi.org/10.1076/vesd.31.2.113.2094
http://www.tandfonline.com/doi/abs/10.1076/vesd.31.2.113.2094
http://www.tandfonline.com/doi/abs/10.1076/vesd.31.2.113.2094
http://hdl.handle.net/1826/1091
http://hdl.handle.net/1826/1091
https://doi.org/10.1243/095440705X11211
http://journals.sagepub.com/doi/10.1243/095440705X11211
https://doi.org/10.1109/CDC.2012.6426265
http://ieeexplore.ieee.org/document/6426265/
https://doi.org/10.1080/00423114.2012.671946
http://www.tandfonline.com/doi/abs/10.1080/00423114.2012.671946
http://www.tandfonline.com/doi/abs/10.1080/00423114.2012.671946

BIBLIOGRAPHY

[24] Paul A. Theodosis and J. Christian Gerdes. «Nonlinear Optimization of a
Racing Line for an Autonomous Racecar Using Professional Driving Tech-
niques». In: Volume 1: Adaptive Control; Advanced Vehicle Propulsion Sys-
tems; Aerospace Systems; Autonomous Systems; Battery Modeling; Biochem-
ical Systems; Control Over Networks; Control Systems Design; Cooperativ.
ASME 2012 5th Annual Dynamic Systems and Control Conference joint with
the JSME 2012 11th Motion and Vibration Conference. Fort Lauderdale,
Florida, USA: ASME, Oct. 17, 2012, pp. 235–241. isbn: 978-0-7918-4529-5.
doi: 10.1115/DSCC2012- MOVIC2012- 8620. url: http://proceedings.
asmedigitalcollection . asme . org / proceeding . aspx ? doi = 10 . 1115 /
DSCC2012-MOVIC2012-8620 (visited on 10/10/2023) (cit. on p. 21).

[25] Maximilian Brunner, Ugo Rosolia, Jon Gonzales, and Francesco Borrelli.
«Repetitive learning model predictive control: An autonomous racing exam-
ple». In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
2017 IEEE 56th Annual Conference on Decision and Control (CDC). Mel-
bourne, Australia: IEEE, Dec. 2017, pp. 2545–2550. isbn: 978-1-5090-2873-3.
doi: 10.1109/CDC.2017.8264027. url: http://ieeexplore.ieee.org/
document/8264027/ (visited on 10/10/2023) (cit. on p. 21).

[26] Danio Caporale et al. «A Planning and Control System for Self-Driving
Racing Vehicles». In: 2018 IEEE 4th International Forum on Research and
Technology for Society and Industry (RTSI). 2018 IEEE 4th International
Forum on Research and Technology for Society and Industry (RTSI). Palermo:
IEEE, Sept. 2018, pp. 1–6. isbn: 978-1-5386-6282-3. doi: 10.1109/RTSI.
2018.8548444. url: https://ieeexplore.ieee.org/document/8548444/
(visited on 10/10/2023) (cit. on p. 21).

[27] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N. Zeilinger.
«Learning-Based Model Predictive Control for Autonomous Racing». In:
IEEE Robotics and Automation Letters 4.4 (Oct. 2019), pp. 3363–3370. issn:
2377-3766, 2377-3774. doi: 10 . 1109 / LRA . 2019 . 2926677. url: https :
//ieeexplore.ieee.org/document/8754713/ (visited on 10/10/2023) (cit.
on p. 21).

85

https://doi.org/10.1115/DSCC2012-MOVIC2012-8620
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/DSCC2012-MOVIC2012-8620
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/DSCC2012-MOVIC2012-8620
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/DSCC2012-MOVIC2012-8620
https://doi.org/10.1109/CDC.2017.8264027
http://ieeexplore.ieee.org/document/8264027/
http://ieeexplore.ieee.org/document/8264027/
https://doi.org/10.1109/RTSI.2018.8548444
https://doi.org/10.1109/RTSI.2018.8548444
https://ieeexplore.ieee.org/document/8548444/
https://doi.org/10.1109/LRA.2019.2926677
https://ieeexplore.ieee.org/document/8754713/
https://ieeexplore.ieee.org/document/8754713/

BIBLIOGRAPHY

[28] Alexandra Tătulea-Codrean, Tommaso Mariani, and Sebastian Engell. «De-
sign and Simulation of a Machine-learning and Model Predictive Control
Approach to Autonomous Race Driving for the F1/10 Platform». In: IFAC-
PapersOnLine 53.2 (2020), pp. 6031–6036. issn: 24058963. doi: 10.1016/
j.ifacol.2020.12.1669. url: https://linkinghub.elsevier.com/
retrieve/pii/S2405896320322722 (visited on 10/10/2023) (cit. on p. 21).

[29] Ugo Rosolia and Francesco Borrelli. «Learning How to Autonomously Race
a Car: A Predictive Control Approach». In: IEEE Transactions on Control
Systems Technology 28.6 (Nov. 2020), pp. 2713–2719. issn: 1063-6536, 1558-
0865, 2374-0159. doi: 10.1109/TCST.2019.2948135. url: https://ieeexp
lore.ieee.org/document/8896988/ (visited on 10/10/2023) (cit. on p. 22).

[30] Emilio Capo and Daniele Loiacono. «Short-Term Trajectory Planning in
TORCS using Deep Reinforcement Learning». In: 2020 IEEE Symposium
Series on Computational Intelligence (SSCI). 2020 IEEE Symposium Series on
Computational Intelligence (SSCI). Canberra, ACT, Australia: IEEE, Dec. 1,
2020, pp. 2327–2334. isbn: 978-1-72812-547-3. doi: 10.1109/SSCI47803.
2020.9308138. url: https://ieeexplore.ieee.org/document/9308138/
(visited on 10/10/2023) (cit. on p. 23).

[31] Sam Garlick and Andrew Bradley. «Real-time optimal trajectory planning
for autonomous vehicles and lap time simulation using machine learning». In:
Vehicle System Dynamics (2021). doi: 10.1080/00423114.2021.2011929
(cit. on p. 23).

[32] Fabian Christ, Alexander Wischnewski, Alexander Heilmeier, and Boris
Lohmann. «Time-optimal trajectory planning for a race car considering vari-
able tyre-road friction coefficients». In: Vehicle System Dynamics 59.4 (Apr. 3,
2021), pp. 588–612. issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.
2019.1704804. url: https://www.tandfonline.com/doi/full/10.1080/
00423114.2019.1704804 (visited on 10/10/2023) (cit. on p. 23).

[33] Eugenio Chisari, Alexander Liniger, Alisa Rupenyan, Luc Van Gool, and
John Lygeros. Learning from Simulation, Racing in Reality. May 7, 2021.
arXiv: 2011.13332[cs,eess]. url: http://arxiv.org/abs/2011.13332
(visited on 10/10/2023) (cit. on p. 23).

86

https://doi.org/10.1016/j.ifacol.2020.12.1669
https://doi.org/10.1016/j.ifacol.2020.12.1669
https://linkinghub.elsevier.com/retrieve/pii/S2405896320322722
https://linkinghub.elsevier.com/retrieve/pii/S2405896320322722
https://doi.org/10.1109/TCST.2019.2948135
https://ieeexplore.ieee.org/document/8896988/
https://ieeexplore.ieee.org/document/8896988/
https://doi.org/10.1109/SSCI47803.2020.9308138
https://doi.org/10.1109/SSCI47803.2020.9308138
https://ieeexplore.ieee.org/document/9308138/
https://doi.org/10.1080/00423114.2021.2011929
https://doi.org/10.1080/00423114.2019.1704804
https://doi.org/10.1080/00423114.2019.1704804
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1704804
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1704804
https://arxiv.org/abs/2011.13332 [cs, eess]
http://arxiv.org/abs/2011.13332

BIBLIOGRAPHY

[34] Peide Cai, Hengli Wang, Huaiyang Huang, Yuxuan Liu, and Ming Liu. Vision-
Based Autonomous Car Racing Using Deep Imitative Reinforcement Learning.
July 17, 2021. arXiv: 2107.08325[cs,eess]. url: http://arxiv.org/abs/
2107.08325 (visited on 10/10/2023) (cit. on p. 23).

[35] Olaf Borsboom, Chyannie Amarillio Fahdzyana, Theo Hofman, and Mauro
Salazar. «A Convex Optimization Framework for Minimum Lap Time Design
and Control of Electric Race Cars». In: IEEE Transactions on Vehicular
Technology 70.9 (Sept. 2021), pp. 8478–8489. issn: 0018-9545, 1939-9359.
doi: 10.1109/TVT.2021.3093164. url: https://ieeexplore.ieee.org/
document/9468407/ (visited on 10/10/2023) (cit. on p. 23).

[36] Jaroslav Klapalek, Antonin Novak, Michal Sojka, and Zdenek Hanzalek. «Car
Racing Line Optimization with Genetic Algorithm using Approximate Home-
omorphism». In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2021 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, Sept. 27,
2021, pp. 601–607. isbn: 978-1-66541-714-3. doi: 10.1109/IROS51168.2021.
9636503. url: https://ieeexplore.ieee.org/document/9636503/ (vis-
ited on 10/10/2023) (cit. on p. 23).

[37] Axel Brunnbauer, Luigi Berducci, Andreas Brandstätter, Mathias Lechner,
Ramin Hasani, Daniela Rus, and Radu Grosu. Latent Imagination Facilitates
Zero-Shot Transfer in Autonomous Racing. Feb. 28, 2022. arXiv: 2103.0490
9[cs]. url: http://arxiv.org/abs/2103.04909 (visited on 10/10/2023)
(cit. on p. 23).

[38] Adrian Remonda, Sarah Krebs, Eduardo Veas, Granit Luzhnica, and Roman
Kern. Formula RL: Deep Reinforcement Learning for Autonomous Racing
using Telemetry Data. June 13, 2022. arXiv: 2104.11106[cs]. url: http:
//arxiv.org/abs/2104.11106 (visited on 10/10/2023) (cit. on p. 23).

[39] Stan Broere, Jorn Van Kampen, and Mauro Salazar. «Minimum-lap-time
Control Strategies for All-wheel Drive Electric Race Cars via Convex Optimiza-
tion». In: 2022 European Control Conference (ECC). 2022 European Control
Conference (ECC). London, United Kingdom: IEEE, July 12, 2022, pp. 1204–
1211. isbn: 978-3-907144-07-7. doi: 10.23919/ECC55457.2022.9838115.

87

https://arxiv.org/abs/2107.08325 [cs, eess]
http://arxiv.org/abs/2107.08325
http://arxiv.org/abs/2107.08325
https://doi.org/10.1109/TVT.2021.3093164
https://ieeexplore.ieee.org/document/9468407/
https://ieeexplore.ieee.org/document/9468407/
https://doi.org/10.1109/IROS51168.2021.9636503
https://doi.org/10.1109/IROS51168.2021.9636503
https://ieeexplore.ieee.org/document/9636503/
https://arxiv.org/abs/2103.04909 [cs]
https://arxiv.org/abs/2103.04909 [cs]
http://arxiv.org/abs/2103.04909
https://arxiv.org/abs/2104.11106 [cs]
http://arxiv.org/abs/2104.11106
http://arxiv.org/abs/2104.11106
https://doi.org/10.23919/ECC55457.2022.9838115

BIBLIOGRAPHY

url: https://ieeexplore.ieee.org/document/9838115/ (visited on
10/10/2023) (cit. on p. 23).

[40] Pieter De Buck and Joaquim R. R. A Martins. «Minimum lap time trajectory
optimisation of performance vehicles with four-wheel drive and active aerody-
namic control». In: Vehicle System Dynamics (July 19, 2022), pp. 1–17. issn:
0042-3114, 1744-5159. doi: 10.1080/00423114.2022.2101930. url: https:
//www.tandfonline.com/doi/full/10.1080/00423114.2022.2101930
(visited on 10/10/2023) (cit. on p. 24).

[41] K. Tucker, R. Gover, R. N. Jazar, and H. Marzbani. «Feasible trajectory
planning for minimum time manoeuvring». In: Vehicle System Dynamics
(Jan. 9, 2023), pp. 1–32. issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.
2022.2164314. url: https://www.tandfonline.com/doi/full/10.1080/
00423114.2022.2164314 (visited on 10/10/2023) (cit. on p. 24).

[42] Mattia Piccinini, Matteo Larcher, Edoardo Pagot, Davide Piscini, Leone
Pasquato, and Francesco Biral. «A predictive neural hierarchical framework
for on-line time-optimal motion planning and control of black-box vehicle
models». In: Vehicle System Dynamics 61.1 (Jan. 2, 2023), pp. 83–110. issn:
0042-3114, 1744-5159. doi: 10.1080/00423114.2022.2035776. url: https:
//www.tandfonline.com/doi/full/10.1080/00423114.2022.2035776
(visited on 10/10/2023) (cit. on p. 24).

[43] J. Biniewicz and M. Pyrz. «A quasi-steady-state minimum lap time simulation
of race motorcycles using experimental data». In: Vehicle System Dynamics
(Jan. 31, 2023), pp. 1–23. issn: 0042-3114, 1744-5159. doi: 10.1080/00423114.
2023.2170256. url: https://www.tandfonline.com/doi/full/10.1080/
00423114.2023.2170256 (visited on 10/10/2023) (cit. on p. 24).

[44] Angelo Borneo, Luca Zerbato, Federico Miretti, Antonio Tota, Enrico Gal-
vagno, and Daniela Anna Misul. «Platooning Cooperative Adaptive Cruise
Control for Dynamic Performance and Energy Saving: A Comparative Study of
Linear Quadratic and Reinforcement Learning-Based Controllers». In: Applied
Sciences 13.18 (Sept. 19, 2023), p. 10459. issn: 2076-3417. doi: 10.3390/
app131810459. url: https://www.mdpi.com/2076-3417/13/18/10459
(visited on 09/25/2023) (cit. on p. 26).

88

https://ieeexplore.ieee.org/document/9838115/
https://doi.org/10.1080/00423114.2022.2101930
https://www.tandfonline.com/doi/full/10.1080/00423114.2022.2101930
https://www.tandfonline.com/doi/full/10.1080/00423114.2022.2101930
https://doi.org/10.1080/00423114.2022.2164314
https://doi.org/10.1080/00423114.2022.2164314
https://www.tandfonline.com/doi/full/10.1080/00423114.2022.2164314
https://www.tandfonline.com/doi/full/10.1080/00423114.2022.2164314
https://doi.org/10.1080/00423114.2022.2035776
https://www.tandfonline.com/doi/full/10.1080/00423114.2022.2035776
https://www.tandfonline.com/doi/full/10.1080/00423114.2022.2035776
https://doi.org/10.1080/00423114.2023.2170256
https://doi.org/10.1080/00423114.2023.2170256
https://www.tandfonline.com/doi/full/10.1080/00423114.2023.2170256
https://www.tandfonline.com/doi/full/10.1080/00423114.2023.2170256
https://doi.org/10.3390/app131810459
https://doi.org/10.3390/app131810459
https://www.mdpi.com/2076-3417/13/18/10459

BIBLIOGRAPHY

[45] Ian Goodfellow, Bengio Yoshua, and Aaron Courville. Deep Learning. MIT
Press, 2016. url: http://www.deeplearningbook.org (cit. on p. 27).

[46] Ben Lau. Using Keras and Deep Deterministic Policy Gradient to play TORCS.
2016. url: https://yanpanlau.github.io/2016/10/11/Torcs-Keras.
html (cit. on p. 29).

[47] Mathworks. Deep Deterministic Policy Gradient (DDPG) Agents. 2023. url:
https://it.mathworks.com/help/reinforcement-learning/ug/ddpg-
agents.html (cit. on p. 31).

[48] OpenAI. Deep Deterministic Policy Gradient. 2022. url: https://spinning
up.openai.com/en/latest/algorithms/ddpg.html (cit. on pp. 31, 32).

[49] Mathworks. fast-restart. 2023. url: https://it.mathworks.com/help/
sldo/ref/sdo.simulationtest.fastrestart.html?searchHighlight=
fast%20restart&s_tid=srchtitle_support_results_2_fast%20restart
(cit. on pp. 48, 72).

[50] Mathworks. workspace. 2023. url: https://it.mathworks.com/help/
matlab/learn_matlab/workspace.html?searchHighlight=workspace&s_
tid=srchtitle_support_results_1_workspace (cit. on p. 48).

[51] Richard Ernest Bellman. Dynamic Programming. Courier Dover Publications,
2003. isbn: 978-0-486-42809-3 (cit. on p. 55).

89

http://www.deeplearningbook.org
https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html
https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html
https://it.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html
https://it.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://it.mathworks.com/help/sldo/ref/sdo.simulationtest.fastrestart.html?searchHighlight=fast%20restart&s_tid=srchtitle_support_results_2_fast%20restart
https://it.mathworks.com/help/sldo/ref/sdo.simulationtest.fastrestart.html?searchHighlight=fast%20restart&s_tid=srchtitle_support_results_2_fast%20restart
https://it.mathworks.com/help/sldo/ref/sdo.simulationtest.fastrestart.html?searchHighlight=fast%20restart&s_tid=srchtitle_support_results_2_fast%20restart
https://it.mathworks.com/help/matlab/learn_matlab/workspace.html?searchHighlight=workspace&s_tid=srchtitle_support_results_1_workspace
https://it.mathworks.com/help/matlab/learn_matlab/workspace.html?searchHighlight=workspace&s_tid=srchtitle_support_results_1_workspace
https://it.mathworks.com/help/matlab/learn_matlab/workspace.html?searchHighlight=workspace&s_tid=srchtitle_support_results_1_workspace

	List of Tables
	List of Figures
	Acronyms
	Introduction
	The Minimum lap time simulation
	Aim of this thesis
	Chapter organisation

	Literature review
	OCP: Fundamentals
	MLTS: General approaches
	Predefined (fixed) and free trajectory
	Optimisation problem
	Vehicle Models

	MLTS procedure: a general methodology
	State of art: a summary table

	Reinforcement Learning
	Introduction
	Definitions
	Implementation

	Trajectory generation for QSS point mass vehicle model
	Tool-chain introduction
	Vehicle model adopted
	Trajectory generation

	OpenLAP Lap time simulation
	Implementation
	Critical analysis

	Path re-planning
	Tool-chain for data retrieval
	Vehicle model
	Calculation of s
	Controllers

	Buffers

	Buffers: memory data storage
	Description
	Implementation
	Results

	Conclusion
	Novelty points
	Further improvements

	Bibliography

