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Summary

This Master’s Thesis presents a comprehensive exploration of an innovative project
aimed at enhancing minimum travel time path research algorithms for electric
vehicles. The algorithm used for defining the shortest path is Dijkstra’s algorithm,
which is implemented on a cost matrix constructed by assigning a specific recharging
station within a map to each column and row. The value contained in each cell is
the sum of the travel time taken from the station connected to the column to the
station connected to the row, to which is added the recharging time required to
restore the battery to its initial charge level.
The first part of this project focuses on constructing a vehicle and battery recharging
model to ensure compliance with the vehicle’s range limits, as well as accurately
modeling the battery recharging profile for better evaluation of recharging time.
This involves defining a vehicle model that includes: a more accurate assessment of
the power required at the wheels by incorporating an inertial coefficient to account
for the rotational inertia of driveline components; constructing an efficiency map
of the electric motor based on its nominal parameters; defining a regeneration
coefficient to modulate the regenerative capacity of the vehicle based on its driving
speed, and specifying a non-constant recharging profile using the CP-CV charging
protocol.
The second part of this project focuses on reducing the processing time involved
with the construction of the cost matrix, which will subsequently be used in
the Dijkstra’s algorithm. This reduction is primarily achieved by clustering the
recharging stations based on their geographic density using the DBSCAN algorithm,
thereby reducing the number of recharging stations to be considered within the
cost matrix in areas with high density of recharging stations. Additionally, to
the cost matrix obtained with clustered recharging stations, a series of pruning
techniques were further applied. The objective of these techniques is to reduce
the number of recharging stations considered to only those that are essential for
defining the desired route. The primary function of these pruning techniques is
to deem as non-essential, for defining the minimum travel path, all recharging
stations whose geographic coordinates fall outside a defined straight corridor with
a specified width, beginning and ending at the departure and arrival coordinates of
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the desired journey.
Overall, the project’s innovations significantly improved the original program,
with potential applications in artificial intelligence and route planning, combining
computational approaches with cognitive principles to enhance efficiency and reduce
processing times. This research marks a significant advancement in the domain of
electric vehicle route planning, offering valuable insights for future developments in
sustainable transportation and artificial intelligence.
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Chapter 1

Introduction

For more than a century, the world has been under the dominance of cars propelled
by combustion engines. Nevertheless, the widespread proliferation of these vehicles
has led to various public health and environmental issues, necessitating the impera-
tive formulation and implementation of stringent environmental policies.
The main issue is that ICE vehicles burn fossil fuels like gasoline and diesel, re-
leasing a mix of harmful substances into the air [1]. This encompasses particulate
matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2)
and greenhouse gases, including carbon dioxide (CO2).
These emissions create deleterious consequences for public health [1]. For instance,
PM represents a particularly menacing threat due to its capacity to infiltrate the
pulmonary recesses, thereby instigating an array of respiratory maladies. NOx
irritate the respiratory tract, weakening the body’s innate immunological defenses
against pathogenic incursions. CO, a lethal gas, obstructs the essential oxygenation
of vital organs. Furthermore, the release of benzene, a noxious air pollutant, has
been correlated with carcinogenic outcomes.
The atmospheric contamination within urban agglomerations, affects a substantial
fraction of the population since it lives in areas afflicted by sub-optimal air quality
indices [2]. Such areas manifest high concentrations of ozone, PM and emissions
leading to the formation of atmospheric smog. The health problems stemming from
this pollution mean higher healthcare costs [1], from treating respiratory illnesses
to more severe conditions. Furthermore, the problem of people dying early due to
long exposure to bad air puts a heavy load on healthcare system.
In response to these imperatives, national governments and international regulatory
organizations have introduced strict environmental policies [3], with the express aim
of reducing emissions from ICE vehicles and promote cleaner ways of getting around.
One big solution is transitioning to electric vehicles (EVs). Unlike traditional cars,
EVs produce zero emissions at the tailpipe, making them much cleaner for the
environment. However, the efficacy of this transition is linked to the migration of
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power generation from fossil fuels to renewable and sustainable sources, including
wind, solar, and hydroelectric power.

In the late 19th century, EVs gained popularity alongside steam and gasoline
vehicles. Steam had a slow startup and limited range, while gasoline cars were
challenging to operate, noisy and smelly. EVs were quiet, easy to drive especially
appealing to urban residents and women. However, Henry Ford’s affordable Model
T and the electric starter’s invention in 1912 favored gasoline cars. By the 1920s,
better roads, affordable gas and limited rural electricity led to the decline of EVs.
EVs saw little progress for about 30 years due to cheap gasoline and improved
internal combustion engines. In the late 1960s and early 1970s, soaring oil prices
and gas shortages, particularly the 1973 Arab Oil Embargo [4], drove interest in
domestic fuel sources. Congress passed the Electric and Hybrid Vehicle Research
Development and Demonstration Act of 1976 [5], enabling Energy Department
support for electric and hybrid vehicle research and development. During this pe-
riod, various automakers explored alternative fuel vehicles, including EVs. General
Motors displayed an urban EV prototype in 1973 [6], and the American Motor
Company tested electric delivery jeeps with the U.S. Postal Service in 1975 [7].
However, 1970s EVs had limitations, with limited performance and a 40-mile range
before recharging.
EVs’ true revival came in the early 21st century. Two key events drove this shift.
The first was Toyota’s introduction of the Prius in 1997 [8], a mass-produced hybrid
EVs that gained global success due to rising gas prices and eco-concerns. Tesla
Motors’ 2006 announcement of a luxury electric sports car with more than 200
miles range marked the second pivotal moment [9]. Tesla’s rapid rise led other
carmakers to accelerate EVs development.

Despite the increasing prevalence of EVs, several challenges must be addressed
before they can become a viable option for all. One primary concern is range
anxiety [10] [11], the fear of running out of power before finding a charging station.
Efforts to combat this have included advancements in battery efficiency and im-
proved charging infrastructure. Nowadays, many EVs offer a range of up to 500
km on a single charge [12], typically sufficient for most drivers. However, access
to reliable charging infrastructure while on the road remains crucial. Although
charging stations are becoming more common, there are still areas lacking them,
resulting in potential charging difficulties. The UK’s Climate Change Committee
[6] estimates that by 2030, 1170 charging stations will be required for every 100
km. Given the current growth rate, only a quarter of the anticipated total public
charging stations will be in place by 2032. This delay is partially attributed to a
global shortage of vital EV charger components and precious metals like lithium
[13]. An apparent solution against range anxiety is to expand battery size and
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capacity. However, this isn’t sustainable due to the high battery manufacturing
costs [14] [15]. In addition, the cost of electric cars remains a significant hurdle [16].
While prices have dropped considerably in recent years due to battery technology
advancements, EVs still tend to be pricier than traditional ICE vehicles. This cost
barrier makes it challenging for many individuals to switch from ICE vehicles to
EVs, as the initial expenses are often prohibitive.

A more captivating, feasible and cost-effective alternative lies in strategies that
can extend the driving range of electric vehicles through the provision of driving
range predictions. To offer insight and effectiveness, a driving range prediction
strategy must consider the power-train model of the electric vehicle, as well as
the characteristics of the road transportation network. Inaccurate estimations of
energy consumption often result in both overly conservative and excessively opti-
mistic driving range estimates. The former may lead to unnecessary delays during
a journey, while the latter can result in the battery being completely depleted,
requiring immediate recharging. Such circumstances are highly counterproductive
and can further intensify range anxiety [10] [11]. In order to solve this issue, many
EV manufactures have developed their own route planner software that are able to
select the best route according to the battery SoC and the availability of charging
stations. However, most of them do not take into account the battery SoH, ambient
temperature conditions and the related energy consumption caused by Heating
Ventilation and Air Conditioning (HVAC) activation.

The present Master’s Thesis takes advantage of an innovative model [17] which
encompasses a scheduler incorporating battery’s SoH and external temperature
parameters. This advanced scheduler selectively determines charging stations
by evaluating an adjusted range value, subsequently adapting the planned route
accordingly. The outcomes of these simulations underscore the inherent risks
associated with disregarding range degradation when planning a route, particularly
highlighting the potential danger of battery depletion during the journey.
Despite the notable enhancements incorporated, the planner presented by [17]
exhibits certain limitations that influence the final outcome. Primarily, the vehicle
model employed for energy consumption calculations is characterized by exces-
sive simplification, while the recharging profile consistently operates at a non-real
constant power level. Furthermore, the algorithm employed to identify optimal
charging stations lacks optimization in terms of travel time minimization. Lastly,
the algorithm requires prolonged processing times, exceeding the standards typically
observed in contemporary route planning software.

The objective of this Master’s Thesis is to address and solve the identified weak-
nesses of the existing framework. Specifically, a refined vehicle model is introduced,
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incorporating efficiency maps of the electric motor and modeling the recharging
protocol. These enhancements are seamlessly integrated into a revisited algorithm
for recharging station selection, which incorporates optimization techniques to
minimize travel time, leveraging the well-established Dijkstra’s algorithm. Further-
more, this Master’s Thesis proposes an innovative clustering system for charging
stations, utilizing their geographical positioning, in order to reduce processing time
to the greatest extent possible. The findings and insights gained from this research
contribute to the advancement of the field and offer potential solutions to the
existing limitations, thereby offering promising avenues for further research and
development.
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Chapter 2

State of Art

As previously indicated in Section 1, the primary objective of this Master’s Thesis
is to address and resolve the identified weaknesses within the project presented by
[17], whose objective was to enhance the state-of-the-art in route planning software
utilized within the field of EVs.
The structure of route planning software, though not inherently intricate, is based
on three core components: the vehicle’s energy consumption model, crucial for
continuous monitoring of energy requirements from the battery; the battery charging
protocol, essential for tracking battery recharge times and consistently offering
the optimal solution in terms of minimizing total travel time; and the route
planning algorithm, which combines the two aforementioned key elements, ensuring
mathematical optimization to delineate the route that minimizes overall travel
time. This optimization also accounts for potential battery recharging, thereby
ensuring the practicality of the journey in terms of energy consumption.

2.1 Vehicle Consumption Model
The current state of the art of vehicle consumption model involves the estimation
of energy consumption with varying degrees of complexity. Among the simpler
methodologies, the work presented by [18] proposed the calculation of energy
consumption based exclusively on driving speed. This involves multiplying the
difference between the actual driving speed and an optimal reference speed by a
constant energy consumption coefficient expressed in kWh/km. On the other hand,
[19] maintain this foundational structure, but introduce increased complexity in the
energy consumption parameter, moving from a constant value to a higher-degree
polynomial function, thus affording greater flexibility in approximating real-world
consumption patterns. Conversely, [20] and [21] deviate from the conventional
approach, which relies solely on vehicle speed and its associated energy consumption
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parameters, offering a more physically accurate representation of the problem by
calculating the tractive force required at the wheels at each moment. From this
calculation, they derive the power and energy demands on the battery. However,
despite these models providing a more precise determination of power requirements
from a physical standpoint, they still exhibit certain fundamental limitations. These
limitations include the need for an improved representation of electric motor and
battery efficiency, as well as a more sophisticated modeling of energy recovery
during regenerative braking.
It is noteworthy that regenerative braking is a topic that often receives only cursory
attention in the existing literature. Frequently, the ability of electric vehicles to
recover and store energy is approximated using a constant regeneration factor [22].
Another approach, presented by [23], introduces a speed-dependent regenerative
braking factor that represents the percentage of braking energy recoverable by
the motor. Additionally, [24] propose a power based energy consumption model,
which computes regenerative energy efficiency based on instantaneous deceleration.
However, all these models assume a constant value for either the electric motor’s
efficiency and the energy regeneration factor.
Considering these characteristics and limitations of the actual state-of-art of vehicle
consumption models, [25] focuses on developing and validating a computationally
efficient battery EV simulation model able to estimate the energy consumption,
based on a high-level representation of its main components, while employing a dy-
namic approach that combines vehicle speed and motor torque limitations in order
to simulate the energy recovery capability of the EV. A significant contribution of
the proposed model lies in its utilization of universally accessible technical specifi-
cations as input parameters. These generic data sources, like vehicle information
leaflets and manufacturer websites, eliminate the need for confidential information
or field measurements. Following this approach enhances transparency in the thesis
methodology, avoiding reliance on proprietary data.
As a starting point, [25] adopts a fundamental physics based model for estimating
the tractor effort necessary to overcome resistance forces and to accelerate the
vehicle. Specifically, the traction effort, as described in previous literature [26],
encompasses the combined effects of aerodynamic drag, rolling resistance, hill
climbing force, linear acceleration and the inertia force resulting from rotating
vehicle components.
The construction of part-load efficiency curves is conducted through the utilization
of rational and linear fitting techniques. To determine the part-load efficiency curve
for the motor, it is assumed that the minimum and maximum efficiency values
can be inferred based on the known efficiency ranges of IMs and BLDC motors
[27]. By utilizing these characteristic points and considering the efficiency range
specific to each motor type, a piece wise function is employed to approximate the
load-efficiency curve.
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The relationship between motor size, specifically rated power and efficiency is
derived from the minimum efficiency requirements for electric motors [28]. The
average efficiency of each rated power class is calculated and normalized by the
maximum average efficiency. This normalization factor serves as a multiplier,
adjusting the motor’s efficiency to account for its size in the determination process.
In [25], it is postulated that the regenerative braking system is ineffective at low
vehicle speeds due to limited available torque. To simulate this behavior, the
model proposed in this thesis incorporates a speed-dependent regeneration factor
that represents the proportion of available braking power recoverable based on the
vehicle’s speed.
In order to verify the accuracy of the simulation model created in its study, [25] com-
pared its results to those obtained from the FASTSim, a well-established simulation
tool that utilizes real-world data from operational vehicles. The validation results
demonstrate that the average absolute error of cumulative energy consumption
remains below 45 Wh, approximately equal to an average absolute percentage error
of 4%, after conducting the primary work cycles commonly employed for validating
vehicle fuel consumption and emissions. These cycles include the LA92-Unified,
LA92-Short, HWFET, JP 10 Mode, JP 15 Mode, UDDS, NYCC, SFTP and NEDC.
Moreover, with a similar hardware adopted in this thesis, [25] results in a computa-
tional time to complete each driving cycle on the scale of tens of milliseconds. These
findings demonstrate that the developed model successfully achieves a favorable
equilibrium between representation effectiveness and computational efficiency.

2.2 Battery Recharge Model
As previously highlighted, the modeling of battery charging profiles stands as
a fundamental component within route planning software, complementing the
vehicle’s energy consumption model and the algorithm employed for the actual
route planning. The importance of accurately defining the battery charging model
is emphasized by the substantial time investment required for charging, coupled
with the restricted travel range attainable before necessitating a recharge. This
limitation translates to an increased frequency of stops during extended journeys,
underscoring the value of making more precise predictions regarding trip duration.
This, in turn, affords drivers greater autonomy and informed decision-making when
selecting the optimal route to minimize overall travel time.
Nevertheless, it is imperative to acknowledge that, in practice, charging power
profiles are often approximated as constant [29]. This approximation does not
account for the fact that, in reality, the charging power of lithium-ion batteries
tends to decrease significantly once the battery’s SoC reaches approximately 80%
[30]. Within the context of this Master’s Thesis project, a portion of the research
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conducted by [18] will be incorporated. This research delineates two distinct battery
charging protocols, both of which encompass a charging process divided into two
phases. The point of separation between these two phases is typically situated on
the battery’s SoC level at 80%. These two charging protocols are:
• Constant Current - Constant Voltage (CC-CV);
• Constant Power - Constant Voltage (CP-CV);

It is worth mentioning that in the study conducted by [18], the two battery’s
recharging protocols have been validated against measurement data from charging
an electric vehicle [31]. During such comparison, CP-CV protocol achieves a
charging time match within ±2%, while using the CC-CV protocol yields a relative
error exceeding 10%.

Constant Current - Constant Voltage (CC-CV)

The first phase of this protocol is characterized by a constant current and a voltage
that increases linearly with respect to the battery’s SoC, resulting in a charging
power that increases linearly with the battery’s SoC. The second phase, on the
other hand, is characterized by a constant voltage and a current that decreases with
respect to the battery’s SoC, resulting in a charging power that linearly decreases.
The mathematical model adopted by [18] to represent the CC-CV recharging
protocol is shown in the following from Eq.2.1 to Eq.2.3:

PCC−CV (SoC) = V (SoC) · i(SoC) (2.1)

i(SoC) =

imax SoC < 80%
1−SoC

0.2 · imax SoC ≥ 80%
(2.2)

V (SoC) =

Vlow + SoC
0.8 · (Vhigh − Vlow) SoC < 80%

Vhigh SoC ≥ 80%
(2.3)

where imax = Pmax/Vhigh is the maximum current, Pmax is the maximum charging
power of the charging station, Vlow is the voltage defined at SoC = 0%, while Vhigh

is the voltage defined at SoC = 80 − 100%.
Figure 2.1 presents the formulas previously illustrated for the CC-CV charging
protocol, emphasizing the values of voltage, current and charging power in relation
to the battery’s SoC and charging time duration.
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(a) Function of SoC (b) Function of time

Figure 2.1: CC-CV charging protocol as function of SoC and time

Constant Power - Constant Voltage (CP-CV)

The first phase of this protocol is characterized by a current that decreases and
a voltage that increases linearly with respect to the battery’s SoC, resulting in a
constant charging power. The second phase, on the other hand, is characterized by
a constant voltage and a current that decreases with respect to the battery’s SoC,
resulting in a charging power that decreases linearly.
The mathematical model adopted by [18] to represent the CC-CV recharging
protocol is shown in the following from Eq.2.4 to Eq.2.6 :

PCP −CV (SoC) = V (SoC) · i(SoC) (2.4)

i(SoC) =


Pmax

V (SoC) SoC < 80%
1−SoC

0.2 · imax SoC ≥ 80%
(2.5)

V (SoC) =

Vlow + SoC
0.8 · (Vhigh − Vlow) SoC < 80%

Vhigh SoC ≥ 80%
(2.6)

adopting this protocol the recharging power is recalculated after each second of
charging and terminates when SoC = 99%.
Figure 2.2 presents the formulas previously illustrated for the CP-CV charging
protocol, emphasizing the values of voltage, current and charging power in relation
to the battery’s SoC and charging time duration.

(a) Function of SoC (b) Function of time

Figure 2.2: CP-CV charging protocol as function of SoC and time
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2.3 Route Planning Algorithms
The research for the optimal route is currently carried out through the utilization
of algorithms designed with the objective of defining a sequence of actions that,
when executed, serve to minimize a designated cost. To elucidate further, within
the context of route planning, this sequence of actions corresponds to the specific
road segments to be travelled, thereby minimizing the aforementioned cost. When
the cost is related to the length of individual road segments, the output of these
algorithms will be the shortest route. Conversely, when the cost is associated with
travel time, the algorithms yield a route that minimizes the overall travel time.
The contemporary landscape of route planning algorithms encompasses a diverse
array of techniques, each applied to achieve results that are, in most cases, inversely
proportional to the processing time required to obtain them. For instance, the
bidirectional search techniques, adopted by [17], undertake simultaneous exploration
of routes originating from both the source and destination, with their convergence
at an intermediate point facilitating the discovery of the shortest path. Conversely,
solutions such as the A* algorithm [32] exemplify heuristic-based approaches that
effectively search for the shortest path. These methods consider not only the cost
from the origin node but also an estimated cost to reach the destination node.
Additionally, certain algorithms belong to the category of time-dependent and
dynamic routing [33]. These algorithms adapt to real-time fluctuations in travel
times, encompassing factors like traffic conditions. They excel in finding optimal
routes amidst dynamically evolving scenarios.
In the scope of this section, particular emphasis is put on Dijkstra’s algorithm [34],
since it assumes a key role in the context of this project. Discussion extends to the
Bellman-Ford algorithm [35] and two techniques adopted to enable the application
of the Dijkstra’s algorithm within the context of electric vehicles. In this regard,
we introduce the Johnson’s Shifting Technique [36], alongside a technique that
significantly truncates the processing time of the Dijkstra’s algorithm, known as
Contraction Hierarchies [37].
It is however worth pointing out that this project does not use any of the state of the
art speed-up techniques to deal with Dijkstra’s algorithm’s complexity. Instead, it
relies on clustering methods to diminish the size of the matrix underlying Dijkstra’s
algorithm.

Dijkstra’s Algorithm

Dijkstra’s algorithm is a widely used algorithm for determining the shortest path
from a source vertex to all other vertices in a weighted graph. In the context of
route planning, the nodes that make up the weighted graph are simply the road
intersections between two or more roads, while the connections between these
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intersections represent the individual roads. Each road is associated with a cost,
which is why the term weighted is used to describe the network of nodes. The
cost, still within the context of route planning, typically represents the distance or
the travel time between various connections among the nodes. Additionally, it is
possible to incorporate a combined cost, which could be the sum of two or more
attributes, such as travel time and energy consumption. By employing specific
multiplicative coefficients for each cost components, this combined cost can yield
a journey that, depending on the choice of coefficients, may prioritize either the
minimization of travel time or energy consumption. The algorithm’s objective
is to provide the correct sequence of nodes to traverse in order to minimize the
mentioned cost from a generic starting node to an arrival node.
To achieve this objective, the algorithm starts by setting the distance of the source
vertex to 0 and the distances of all other vertices to ∞. Then, it iterative selects
the vertex with the smallest tentative distance and explores its neighboring vertices,
updating their distances if a shorter path is found. This process continues until all
vertices have been visited or the destination vertex is reached. Operating in this
manner, the Dijkstra algorithm has a time complexity of O(n · log(n) + m), where
n denotes the number of vertices and m represents the number of edges.
However, it is important to underline that the aforementioned algorithm cannot
handle graphs with negative edge weights. One of the main reasons the Dijkstra
algorithm fails with negative edge costs is the concept of a greedy approach it
employs. It always selects the vertex with the smallest tentative distance for
exploration, assuming it has found the optimal solution so far. However, in the
presence of negative edge costs, this assumption is no longer valid. Negative edge
costs can create scenarios where a vertex with a larger tentative distance can
actually lead to a shorter overall path due to the negative cost. The algorithm,
following its greedy nature, might incorrectly discard such possibilities as it always
favors vertices with smaller tentative distances. This can result in suboptimal or
incorrect shortest path calculations.
One of the pioneering works that addressed the challenge of incorporating negative
edge costs into the application of the Dijkstra algorithm for optimizing energy-
efficient routes for BEVs within street networks was the study conducted by [38].
The study highlighted two fundamental distinctions from the conventional shortest
path problem: firstly, edge costs may be partially negative due to the energy
recuperation capability of BEVs. Secondly, battery constraints must be satisfied,
prohibiting a feasible path from including a node with a battery load less than zero
(energy depletion) or a battery load exceeding the battery capacity (overcharging).
However, [39] demonstrated that one-to-one queries can be resolved with the same
complexity as Dijkstra’s algorithm by representing battery constraints as edge
cost functions and leveraging Johnson’s shifting method to transform them into
non-negative edge costs.
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Johnson’s Shifting Technique

Johnson’s shifting method [36] aims to transform the graph and eliminate negative
edge weights, thereby making it suitable for Dijkstra’s algorithm. The main concept
behind Johnson’s shifting method involves introducing a shifting factor that is
added to each edge weight. The shifting factor is carefully chosen to ensure that all
edge weights become non-negative. By applying this shifting operation, the graph
is transformed in a way that eliminates any negative cycles.

Bellman-Ford’s Algorithm

An alternative algorithm to Dijkstra’s for finding the shortest path is Bellman-
Ford’s algorithm [35]. It operates by iterative relaxation of the edges of the
graph, gradually improving the estimated distances to the nodes until the solution
converges to the optimal one. It follows a dynamic programming approach, where
the shortest path from the source node to each destination node is built up one
edge at a time. Initially, all nodes are assigned a distance value of ∞, except for
the source node which is set to 0. Then, for each edge in the graph, the algorithm
checks if the distance to the destination node can be improved by taking the current
edge. If so, the distance is updated accordingly. This process is repeated for a
number of iterations equal to the number of nodes minus one, ensuring that the
algorithm has sufficient opportunities to optimize the distance values. If, after
this number of iterations, any distance value can still be improved, it indicates
the presence of a negative cycle. In the context of the Bellman-Ford algorithm,
the existence of a negative cycle within the network is deemed unacceptable, as it
would imply the presence of a path that, if perpetually traveled, would lead to an
incessant reduction in the overall cost of the cycle.
The main advantage of the Bellman-Ford algorithm over Dijkstra’s is its capability
to determine the shortest path in various types of graphs, including those with
positive, zero, or negative edge weights. However, it comes with a computational
complexity of O(n · m), where n denotes the number of vertices and m represents
the number of edges, which is higher than that of Dijkstra’s algorithm.

Contraction Hierarchies

The specific formulation of the edge cost functions adopted in route planning
algorithms, enables the adaptation of an acceleration strategy for shortest path
queries known as contraction hierarchies [37]. In a pre-processing phase, the graph
is enriched with shortcuts that effectively enhance the speed of path finding queries.
This is achieved through a process of gradually contracting the nodes of the graph,
effectively removing them from consideration. If a contracted node lies on the
shortest path between two neighboring nodes, a direct edge (shortcut) connecting

12



State of Art

those neighbors is added to ensure the preservation of the shortest path. The
determination of such shortcuts involves performing a shortest path search using
Dijkstra’s algorithm between each pair of neighbors. Each node is assigned a level
based on the order of contraction, with higher levels indicating later contractions
and the possibility of replacing shortcuts from lower-level nodes. To query the
shortest path, a bidirectional search using Dijkstra’s algorithm is conducted, with
each side only traversing to nodes of higher levels until they meet. This approach
significantly reduces the number of visited nodes, resulting in rapid queries without
the issue of exponential growth in function descriptions.
However, the pre-processing stage can be computationally demanding, especially
for large-scale maps spanning entire countries. As more nodes undergo contraction,
the remaining uncontracted nodes become densely connected, leading to significant
computational costs when contracting the last few nodes. To address this issue,
[40] proposed a strategy that selectively contracts only a subset of nodes, achieving
reasonable pre-processing times by contracting merely 99.5% of the nodes. The
resulting graph, consisting of the remaining uncontracted nodes, is referred to as
the core graph [41]. While this approach significantly reduces pre-processing time,
it may lead to longer query times.

The development of this Master’s Thesis exclusively relies on the utilization of
Dijkstra’s algorithm, as deeper explained in the subsequent Section 3.1.2. Accord-
ingly, a node network will be constructed wherein nodes correspond to charging
stations present on the map and edge costs represent travel time from one node to
another, encompassing recharge time in instances where destination node coincides
with a charging station. Since edge costs are always positive in the context of
travel time between nodes, there is no need to apply Johnson’s shifting techniques.
Consequently, the adoption of Dijkstra’s algorithm proves more advantageous in
terms of computational efficiency when compared to Bellman-Ford’s algorithm [35].
Conversely, this Master’s Thesis does not incorporate the utilization of any contrac-
tion hierarchies. Rather, the set of edges constituting the complete map remains
unaltered throughout the entirety of the study, as the primary interaction entails
accessing it as a client of a third-party software. This software grants access to the
map while providing the requisite information (speed profile) for the construction
of a secondary cost matrix that will serve as the foundation for executing the
Dijkstra algorithm. The specific approach employed by the third-party software
to determine the fastest path between arbitrary origin and destination edges is
beyond the scope of this study. Instead, the software is treated as a black box,
receiving inputs and generating outputs.
It is crucial to emphasize that, unlike the aforementioned work by [39], battery
constraints are not initially integrated within the map. Instead, they are taken into
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consideration subsequently, after receiving the speed profile from the external soft-
ware. This enables the execution of simulations utilizing a vehicle model, facilitating
the energy consumption estimation. From a purely mathematical standpoint, the
solution derived in this study is not rigorous, as the inclusion of battery constraints
within the map itself is deemed essential. There may arise situations wherein the
external software calculates fastest path overlooking battery constraints, resulting
in excessive depletion and the need for a recharge. Modifying the map to include
these constraints would enable the software to optimize the route, minimizing
battery usage and avoiding deviation to charging stations. Nonetheless, this slight
deviation from the mathematical rigor is justified by the outcomes of simulations
conducted by [18], comparing the results attained using a system that integrates
battery constraints within the node network and adjusts the edge costs, with
a system that exclusively pursues the fastest route without factoring in battery
constraints. The results reveal a discrepancy of approximately 0.2% between the
former, incorporating battery constraints, and the latter, omitting them - an entirely
acceptable variance within the context of this research endeavor.
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Chapter 3

Methodology

In the subsequent sections, the operational framework of the program will be
elucidated. Initially, a comprehensive overview of the solution will be provided,
encompassing the concepts delineated in Figure 3.1. Subsequently, in-depth analyses
will be provided regarding the route planning algorithm, the vehicle consumption
model, the novel charging station clustering tool and the several speed-up techniques
employed to lower processing time.

Figure 3.1: Working Principles - Summary
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3.1 Working Principle
In order to briefly introduce what will be extensively described in the subsequent
sections, referring to Figure 3.1, it can be noted that the project presented in this
Master’s Thesis is divided into three parts. In the first part, called the Input Phase,
the user is required to input the fundamental parameters for the proper functioning
of the program. In the second part, called Initial Phase, a preliminary check is
carried out to determine if the journey with the coordinates set by the user, the
environmental and vehicle conditions can be completed without the need to stop for
battery recharge. If this isn’t feasible, the third part, referred to as the Main Phase,
is entered. This section, which not only constitutes the most extensive section and
where the greatest efforts have been concentrated, is also the one that ensures the
definition of the optimal route to minimize travel time taking in consideration the
need of stopping for recharging the battery.

3.1.1 Input Phase
The program execution starts by asking the user to input the fundamental param-
eters for its operation. In this Master’s Thesis project, all these parameters are
manually provided by the user, but in a future application of the software in a real
vehicle, some of them could be automatically acquired by the software through
internal hardware, GPS or learned by the software itself.

Figure 3.2: Working Principles - Input Phase

Referring to Figure 3.2, the first parameters requested are the starting and destina-
tion coordinates of the trip. In a practical application, the starting coordinates
could be obtained automatically by the software through the integrated GPS in
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the vehicle, while the destination coordinates would need to be entered manually
by the user.
Next, the user is prompted to input critical parameters for preserving battery life
when properly configured. These parameters include minimum desired battery’s
SoC threshold, which represents the lower limit that should never be violated during
the journey, along with desired maximum battery’s SoC level for each charging
cycle. In a future application on a real hardware, these two parameters could
be automatically set by the vehicle manufacturer, with the possibility of being
adjustable by the user as needed.
Finally, the user is required to provide initial battery’s SoC, number of passen-
gers, external temperature and adopted driving style. In the context of a future
implementation in a real vehicle, the initial battery SoC, as well as the number of
passengers and external temperature, are parameters that could be easily acquired
by onboard hardware. As for the driving style, there could be several possible op-
tions: the user could be able input it manually, or the driving style could be chosen
through an internal learning system that analyzes the user’s driving behavior and
selects the most suitable one [42]. In this project, the choice of the driving style has
impacts on both the maximum speed and the maximum acceleration/deceleration
that the vehicle undergoes during the travel of different routes, as highlighted in
Table 3.1.

Table 3.1: Driving Style Parameters

Drving Style Max Acc. Max Speed
Eco 1 m/s2 25 m/s

Normal 2.5 m/s2 40 m/s
Sport 9 m/s2 50 m/s

3.1.2 Initial Phase
At this stage, the actual execution of the program begins according to the steps
highlighted in Figure 3.3. First, a check is performed to immediately verify the
non-stop journey feasibility, considering the retrieved parameters and the con-
straints set by the user, as specified in Section 3.1.1. The same procedure is later
applied to verify the reachability of each charging station, relying on the adoption
of the external software SUMO [43] and the utilization of the TraCI4Matlab [44]
functions, enabling the communication between SUMO and Matlab. The working
environment and the specific functions employed will be thoroughly elucidated in
Section 3.2.
In response, the program retrieves the minimum travel time baseline route, that
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means without stops, from the starting to the destination coordinates, presented
as a list of various edges constituting the entire trajectory. Subsequently, employ-
ing TraCI4Matlab functions, length and maximum allowed speed of each edge
are extracted from the aforementioned list. By performing simple mathematical
operations, starting from the knowledge of the length and travel speed of each edge,
speed and acceleration profiles as functions of time are then obtained.

Figure 3.3: Working Principles - Initial Phase

The two obtained profiles undergo an additional process, defined as Smoothing,
before being utilized for the validation of energy consumption with the vehicle
model. This process was not included in the original model [17] and serves as a
replacement for the effect of noise. The noise was initially introduced to simu-
late a non-uniform trend characterized by continuous small positive and negative
accelerations. However, its purpose of use differs from the current process. The
objective of this process is to refine the acceleration profile and, consequently, the
speed profile, in order to mitigate peak acceleration and deceleration values to
comply with the constraints set by the user’s driving style set in Section 3.1.1.
Three driving styles are available: Eco, Normal, and Sport. Each driving style is
associated with specific speed and acceleration limits, as detailed in Table 3.1.
The calculation of energy consumption profile is performed based on the newly
obtained speed and acceleration smoothed profiles. This profile is essential in
determining the feasibility of the trip without the need of any stops. The detailed
calculation of the energy consumption profile is provided in Section 3.3. The trip
feasibility corresponds to the possibility of performing such trip maintaining the
battery SoC level above the pre-determined limits established during the Section
3.1.1. If the trip is deemed feasible, the problem is solved and the result is presented
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to the user. Conversely, if the trip is found to be unfeasible, the program moves to
the subsequent phase, wherein the objective is to identify the minimum travel time
route from the departure point to the destination incorporating charging stops to
recharge the battery up to the designated level specified by the user, as described
in Section 3.1.1.

3.1.3 Main Phase
As depicted in Figure 3.4, this phase is characterized by the utilization of Dijkstra’s
algorithm as the primary tool for determining the shortest path from origin to
destination, while considering the time required for each recharge.

Figure 3.4: Working Principles - Main Phase

Dijkstra’s algorithm, as introduced in Section 2.3, is employed when the objective
is to find the minimum cost of going from one node to another within a network
of nodes. These nodes correspond to the charging stations that are present on
the map, in addition to the starting and ending locations specified by the user.
On the other hand, the network branches represent the cost of moving between
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nodes within the network. In this project, the cost associated with each branch
is the summation of two values: the travel time from the starting node to the
destination node and the recharge time at the destination node. The travel time
is acquired providing to SUMO the coordinates of all the nodes inside the net.
These coordinates can correspond to user’s specified start and end locations at
Section 3.1.1 or the various charging stations. Recharge time, on the other hand, is
calculated as the time required to reach the specified SoC level once the node has
been reached. An approximate indication of how the cost for each connection is
calculated is provided by the Eq.3.1, which represents the cost associated with the
interconnection between a generic starting node ith and a generic ending node jth:

costi→j = ti→j
travel + ti→j

charge ≈ ti→j
travel + Ei→j

travel

P j
charge

(3.1)

Naturally, if the destination node coincides with the user’s start or end location,
the recharge time would be null due to the absence of any charging station at that
position.
As mentioned in Section 3.1.2, not all routes are feasible due to the possibility of
the battery SoC level to fall below the user-defined minimum or even reaching
complete depletion. In such cases, the cost of the journey is no longer the sum of
the two parameters defined earlier. Instead, an out-of-scale value (∞, 1010 , ...)
is assigned to the edge. This value is sufficiently high to ensure that it is never
considered during the computation of the minimum cost path using Dijkstra’s
algorithm.
Operating in this manner yields a square cost matrix of size (n+2)× (n+2), where
n represents the number of charging stations present on the map, with the addition
of the departure and arrival locations of the trip specified by the user. The value
at position ij within the matrix represents the cost associated with traveling from
the ith starting node to the jth destination node.

3.1.4 Speed-Up Techniques
As will be analysed in Section 3.4, the large number of stations (n) coupled with
the average processing time required to calculate the cost for each cell within the
cost matrix, results in a time-consuming and computationally intensive matrix
construction process. These factors have prompted the development of methods to
accelerate the construction of the cost matrix.
The first step to accelerate the construction of the cost matrix is represented by
an innovative clustering system for charging stations based on their geographical
location. It has been introduced in order to significantly reduce the number of
stations and, consequently, the size of the cost matrix. Additionally, a speed-up
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mechanism has been implemented to streamline the matrix construction process,
enabling for the computation of costs only for the relevant branches/trips that
contribute to the final outcome. A more comprehensive explanation of the clustering
system and of the speed-up mechanisms is presented in Section 3.4, for clustering,
and in Section 3.5, for the speed-up mechanisms.

Macro - Micro Research

Operating accordingly with Figure 3.4, the research for the minimum travel time
path, from the starting point to the destination, is divided into two distinct stages:
the macro-research and the micro-research.
During the macro-research, the focus is on defining the minimum travel time path
using clustered charging stations. These clusters represent sets of stations grouped
together under a single geographic location. The output of Dijkstra’s algorithm
in this stage is a sequence of geographic areas, rather than individual charging
stations, inside each of which micro-research will define the best places to stop
minimizing travel time. The term macro has been adopted to emphasize the focus
on macro-geographic areas that encompass multiple stations.
Subsequently, micro-research phase entails resolving the same problem of finding
the path that minimizes cost using Dijkstra’s algorithm, but exclusively consid-
ering the recharging stations located within the clusters identified as the output
solution of macro-research. The output of Dijkstra’s algorithm in micro-research
is the precise sequence of charging stations where stopping is required to travel
from starting point to destination, minimizing total travel time. This elucidates
the rationale behind the adoption of the term micro as it focuses on micro-scale
geographic areas, providing a fine-tuning of the ultimate outcome by comparing
charging stations with closely located geographical positions, where the difference
in travel distance from the entire journey is significantly reduced.

The internal components of macro and micro-research flowchart, represented
in Figure 3.4, exhibits the same structure. Both research methods comprise a
speed-up block followed by a work cycle that employs TraCI4matlab functions to
establish communication between the SUMO environment and Matlab followed
by Dijkstra’s algorithm resolution block, employed to determine the shortest path
within the cost matrix.
The concept of speed-up techniques aims to expedite the creation of the cost matrix
by mitigating the performance bottleneck caused by TraCI4matlab functions, as
outlined in Section 3.4. During the subsequent computational phase utilizing
SUMO software, only trips deemed essential for determining the shortest path will
be considered, while non-essential trips will be rapidly assigned an out-of-scale
default value. This approach excludes them from Dijkstra’s algorithm application,
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as conceptually introduced at the beginning of Section 3.1.3. Consequently, the
same final outcome can be achieved with reduced processing time.
Cycling block encompasses the utilization of SUMO environment for the speed
profile creation and feasibility assessment of the trip in terms of energy consumption,
according to user’s inputs outlined in Section 3.1.1. This block cycle adheres to the
operational principle, introduced in Section 3.1.3, of assigning an out-of-scale value
to infeasible trips or cells within the cost matrix and a cost equal to the combined
travel time and recharge time for the feasible trips. Energy consumption verification
for the definition of the feasibility of a trip relies on the formulas introduced in
Section 3.3.1.
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3.2 Working Environment
3.2.1 Software Involved
For this project, two distinct software applications were employed: Matlab and
SUMO [43], an open-source traffic simulation software designed for simulating
traffic scenarios and analyzing transportation systems. Matlab was employed as
the platform for executing the co-simulation, seamlessly integrating with SUMO
software through the utilization of TraCI4Matlab [44]. TraCI4Matlab is a special-
ized implementation of the TraCI protocol [45] tailored to Matlab environment,
facilitating smooth communication between the two software tools. This enables the
seamless interaction between Matlab and SUMO, where SUMO acts as the server
fulfilling Matlab’s requests as the client [46]. Co-simulation serves the purpose of
validating the defined route by providing a more accurate simulation of the vehicle
dynamics. Speed and acceleration profiles are obtained from SUMO co-simulation,
which operates with a time step of 1 second.The decision to employ SUMO for route
definition and speed profile generation is driven by its optimization capabilities,
allowing for route computation within milliseconds. Additionally, SUMO’s status
as a traffic simulator makes it a suitable choice for future developments where the
impact of traffic congestion may be taken into account.

3.2.2 Road Network
The road network utilized in this study, as depicted in Figure 3.5, is the same
adopted in the original project [17], encompassing the primary thoroughfares of
the northwestern region of Italy.

Figure 3.5: Road Network with Recharging Stations
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The network is represented within SUMO framework and sourced from OSM
website [47], an online cartographic service constantly updated and constructed by
volunteer contributors, accessible under an open-content license.
As indicatively illustrated in Figure 3.6, the road network in SUMO is composed
of three key components: junctions, edges, and lanes. Junctions serve as the
network nodes where each edge initiates or terminates. Edges denote unidirectional
connections linking two junctions and form the fundamental building blocks for
route representation.

Figure 3.6: Edges, Junctions and Lanes creation

In Matlab, routes are expressed as ordered arrays of cells, with each cell indicating
the corresponding edge name. Lanes, as sub-components of edges, encompass
vital details such as speed limits, lengths and permissible vehicle types. Within
the context of this paper, lanes assume particular importance as they store the
speed and length information for each edge. The constitutive elements of the
network are consolidated in a .xml file, where their respective properties are stored.
It is worth noting that, while the vehicle model and simulation both account
for road slope, the network itself lacks altitude information, rendering it unable
to incorporate slope considerations during route creation and subsequent energy
consumption simulations. Additionally, temperature data, though user’s input,
follows a simplified representation, with a single temperature value throughout the
whole map, a simplification utilized in previous studies [48] [49]

3.2.3 Charging Stations
While SUMO has its own representation for charging stations, identified as portions
of lanes, throughout this work it was preferred to store them in an external Matlab
table. This choice was taken to be able to easily access such database bypassing
SUMO when performing the planning operation. In order to seamlessly merge the
two logics, a triangular arrangement of roads has been introduced. The vehicle
reaches the designated charging station location and traverses the three consecutive
edges added outside the core network, finally halting at the third edge, which
represents the station. When simulating the following step of the travel, SUMO
will generate a vehicle departing from the same edge
As shown in Figure 3.7, which displays screenshots taken in the Matlab environment,
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Figure 3.7: Road Network saved in a Matlab Struct

charging station details are stored in a Matlab struct, where each row corresponds
to a specific charging station. The first column of the struct contains the charging
station’s name in order to provide to the user more detailed information on where to
stop and charge the battery, thereby improving the human-machine interface. The
second and third columns contain the (X,Y) coordinates of charging stations within
the local coordinate system, which are essential for the subsequent charging station
clustering process. The fourth column, crucial for route planning, stores the edge
name, which is given as an input to SUMO to find the road from start to station
or from station to arrival. Lastly, the fifth column contains a table for each row,
representing all the docks of the charging stations. Due to the considerable number
of charging stations considered in this research and the manual data set compilation,
the table does not include charger types. However, this information can be easily
incorporated. The database comprises around 700 charging stations, added by
manually extracting data from Google Maps. The selection aimed to achieve
equitable coverage across the entire map of northwestern Italy while emphasizing
denser charging station representation within major cities.

(a) (b) (c) (d)

Figure 3.8: Examples of Recharging Stations inside the Road Map
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3.3 Vehicle Consumption Model
In this section, the mathematical model employed to approximate the vehicle under
study is presented. Specifically, vehicle type b) utilized in the original project [17],
whose fundamental parameter values are listed in Table 3.2.

Table 3.2: Vehicle Main Parameters

Parameter Symbol Value
Vehicle Mass m 1320 kg
Frontal Area A 2.38 m2

Aero-Drag Coeff. Cd 0.30
Inertia Factor Cinertia 0.05

Coast Down (Constant) f0 0.005 N
Coast Down (Quadratic) f2 3.5 · 10−6 N/(m/s)2

EM Torque Rated Trated 400 Nm
EM Base Speed wbase 4000 rpm
EM Max Speed wmax 12000 rpm

EM transm. ratio gratio 4
EM transm. eff. ηgear 0.99
Battery Energy EBatt 24.15 kWh
Battery RTE RTE 0.95

Tyre Data - 175/55 R20

Moreover, the data to compare numerical simulations conducted using the newly
developed mathematical model presented in this project were provided, as well
as the previous mathematical model presented in [17]. Notably, the principal
distinctions between the new and old model derive from the consideration of a
variable motor efficiency based on the power demanded by the driver [25], together
with a coefficient accounting for the motor size [25] and the electric motor’s inability
to regenerate braking at low speeds due to insufficient available torque [25].
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3.3.1 Mathematical Formulation
In Figure ??, an explanatory diagram of the direction of power flow used during
the current section is provided. The direction of power is considered positive when
the battery supplies energy to the motor and negative when the battery receives
energy from the motor, which functions as a generator.

Figure 3.9: Power flows and Efficiencies in Main Components

Traction Power at wheels

As a starting point, a generic physics-based model serves as the theoretical frame-
work for estimating the tractive effort Ft (in N) required to overcome resistance
forces and accelerate the vehicle. Specifically, the tractive effort refers to the
propulsive force transmitted to the ground through the wheels, driving the vehicle
forward. This concept is defined by Eq. 3.2:

Ft = Faero + Froll + Fhc + Facc + Finertia (3.2)

The aerodynamic drag, Faero, is the force that acts in opposition to the vehicle’s
motion through the air, as defined by Eq. 3.3:

Faero = 1
2ρAfCdv2 (3.3)

where ρ is the air density (in kg/m3), Af is the frontal vehicle area (in m2), Cd

is the aerodynamic drag coefficient, and v is the linear vehicle speed (in m/s).

The rolling resistance force, Froll, arises primarily from the interaction between
the vehicle’s tires and the road surface, as represented by Eq. 3.4 , where f0 (in
N) and f2 (in N/(m/s)2) are respectively the constant and quadratic term of the
coast down resistance, while v represents the vehicle speed (in m/s):

Froll = f0 + f2 · v2 (3.4)

The hill climbing force, Fhc, denotes the gravitational force component that acts
on a vehicle when ascending a slope α, as defined by Eq. 3.5:
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Fhc = mg · sin(α) (3.5)

In accordance with Newton’s second law of motion, the force Facc required to
achieve linear acceleration in a vehicle is expressed by Eq. 3.6

Facc = m · a (3.6)

where a is the linear acceleration of the vehicle (in m/s2).

The inertia force Finertia, associated with the rotating components of the vehicle,
is influenced by the powertrain’s moment of inertia. Since this parameter is often
not readily available, a common approach is to employ a mass correction factor
Cinertia to account for the rotational inertia acceleration [25], as shown in Eq. 3.7.
A common approximation for Cinertia is the one adopted in Table 3.2.

Finertia = Cinertia · m · a (3.7)

The overall tractive effort, Ft, is considered positive when the battery supplies
power to the motor, and negative when the motor operates as a generator, supplying
power back to the battery. The traction power, Pt (in W ), required to propel the
vehicle at a given speed v, (in m/s), can be represented by Eq. 3.8:

Pt = Ft · v (3.8)

Transmission System

Despite there being simpler vehicle models in which the power drawn from the
battery is a simple function of driving speed [18], in the model proposed by
this Master’s Thesis, motor efficiency is represented by a map as a function of
motor speed and torque. For this reason, it is necessary to appropriately model a
transmission system.
As a first distinctive element, in this vehicle model, the wheels are not directly
connected to the motor shaft. Instead, a gear system is used to convert the torque
generated by the motor into the torque required at the wheels. Considering the
gear ratio of the transmission system as gratio, the angular speed of the motor,
ωmot,out (in rad/s), can be determined using Eq. 3.9:

ωmot,out = ωwheel · gratio = v

R
gratio (3.9)

where ωwheel is the angular speed of the wheel (in rad/s), R is the tyre radius
(in m) and v (in m/s) is the vehicle speed.
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Taking into account transmission system gear efficiency ηgear, the mechanical
power Pmot,out can be expressed, as in Eq. 3.10, for both the cases where trac-
tion power is provided to the wheels or energy is recovered in generator mode.
Additionally, Eq. 3.11 provides the motor output torque Tmot,out (in Nm):

Pmot,out =

Pt · ηgear Pt < 0
Pt/ηgear Pt > 0

(3.10)

Tmot,out = Pmot,out

ωmot,out

(3.11)

Motor

In contrast with the approach adopted by [17], which utilizes a constant motor
efficiency, in the proposed Master’s Thesis, the construction of the efficiency curves
is based on rational and linear fitting, using efficiency values at specific load points,
as done by [25]. These load points include 0%, 25%, 50%, 75%, and 100% of
the rated load. The assumed part-load efficiency curve for an IM typically varies
between 88% and 92%, while a BLDCM ranges from 92% to 95% [25].
By utilizing the characteristic points presented in Table 3.3 and considering the
efficiency range for each motor type, the load-efficiency curve can be approximated
using a piecewise function, as expressed in Eq.3.12:

ηmot, ηgen =


(c1 · x + c2)/(x + c3) 0 ≤ x < 0.25
d1 · x + d2 0.25 ≤ x < 0.75
e1 · x + e2 x ≥ 0.75

(3.12)

where x denotes the mechanical power of the motor Pmot,out (in W ) as a fraction
of its rated power Pmot,rated (in W ). Figure 3.10 in used to visualize the efficiency
curve defined by Eq.3.12 as a function of the aforementioned x.
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Figure 3.10: Motor efficiency curve for IM and BLDC motor

Table 3.3: Nominal motor efficiency at part and full rated load

Percent Load Motor Eff.
0% 0
25% minEff
50% 0.98 · maxEff
75% maxEff
100% 0.98 · maxEff

Table 3.4: Coefficients of piece wise function for motor/generator efficiency
IM BDLC

Motor Mode Generator Mode Motor Mode Generator Mode
c1 0.924300 0.925473 0.942269 0.942545
c2 0.000127 0.000148 0.000061 0.000067
c3 0.012730 0.014849 0.006118 0.006732
d1 0.080000 0.075310 0.060000 0.057945
d2 0.860000 0.858605 0.905000 0.904254
e1 -0.073600 -0.062602 -0.076000 -0.066751
e2 0.975200 0.971034 1.007000 1.002698

One important attribute of electric motors is their tendency to exhibit higher
efficiency as their size increases [25]. The correlation between motor size, indicated
by rated power, and efficiency is established by considering the prescribed minimum
efficiency requirements for electric motors [28]. The average efficiency of motors is
determined for each rated power class, and subsequently divided by the maximum
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average efficiency. The results of these computations are represented in Table
3.5 with the indication of the value of the normalization factor for each rated
power class. This computation yields to Eq. 3.13, where the normalization factor
(normfactor), which serves as coefficient for the motor efficiency calculated by
Eq. 3.12, enables the incorporation of motor size as a factor in determining its
efficiency.

Pmot,in =

Pmot,out · ηgen · normfactor Pt < 0
Pmot,out/(ηmot · normfactor) Pt > 0

(3.13)

Table 3.5: Efficiency normalization factor (normfactor)

Prated [kW ] 30 45 55 75 90 110 132 160 200-375
normfactor 0.968 0.978 0.981 0.987 0.990 0.993 0.996 0.998 1.000

In this project, it was assumed that the torque-speed relationship in generator
mode mirrors that in motor mode, as long as the braking torque remains below or
equal to the maximum generator torque, an assumption already established in the
literature [25]. Conversely, if the braking torque surpasses the torque limit, the
remaining power is wasted as heat due to mechanical braking. Additionally, the
regenerative braking system does not exert any braking force at low vehicle speeds,
as the available torque is insufficient [25].
In order to simulate this operation, the vehicle model incorporates a speed-
dependent regeneration factor, denoted as regenfactor. This factor represents the
proportion of available regenerative braking power that can practically be recovered
based on the vehicle’s speed v (in m/s). Notably, there exists a threshold speed
v1 (in m/s) that must be exceeded for the electrical machine to initiate energy
regeneration [26]. Furthermore, the EV machine achieves its maximum regeneration
capability for speeds surpassing another threshold speed v2 (in m/s). For speeds
between v1 and v2, we assume that the percentage of recoverable braking power
increases linearly with the vehicle’s speed until reaching the maximum regeneration
capability. In this project, the two speed thresholds were set as v1 = 10km/h and
v2 = 30km/h.
Considering the aforementioned details, Eq.3.13 can be re-formulated as follows:

Pmot,in =

Pmot,out · ηgen · normfactor · regenfactor Pt < 0
Pmot,out/(ηmot · normfactor) Pt > 0

(3.14)
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Figure 3.11: Speed-dependent regeneration factor

Battery

In this project, energy and power losses during battery charging and discharging,
due to conversion of electric energy into chemical and vice-versa, are expressed
through battery round-trip efficiency factor (RTE). Table 3.6 shows the relevant
efficiencies of typical battery types [25][50]. Battery power flow in each time
instance is expressed by Eq.3.15

Ptotal =

Pbattery,out ·
√

RTE Pbattery,out < 0
Pbattery,out/

√
RTE Pbattery,out > 0

(3.15)

where Ptotal (in W ) and RTE denote the total power and round trip efficiency
of the EV battery respectively, while Pbatter,yout (in W ) is the electric output of
the battery to provide power Pac (in W ) to the accessories of the EV, and supply
the motor with electric power (Pmotor,in > 0) or receive electric power from the
generator (Pmotor,in < 0), as given in Eq.3.16:

Pbattery,out = Pmotor,in + Pac (3.16)

Table 3.6: Energy efficiency of typical battery types for EVs

Battery Type Energy Eff.
Lead Acid >80%

NiCd 75%
NiMH 70%
Li-ion >95%

The cumulative energy consumption E(t) can be computed by Eq.3.17:

E(t) = E(t − 1) +
Ú t

t−1
Ptotal(t) dt (3.17)
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Recharge Power Profile

Unlike the approach adopted in the initial project [17], where a constant power
charging profile was used regardless of the SoC of the battery, this Master’s Thesis
project adopts a variable charging profile that depends on the battery’s SoC. As
highlighted by [18], the CP-CV protocol is considered the closest to real-world
charging, with an error margin of less than 2%. In paper [18], the authors decided
to divide the charging profile into two parts: an initial phase of constant power
charging for SoC ranging from 0% to 80%, followed by a subsequent phase of
constant voltage charging from 80% to full battery charge. This charging protocol
is mathematically represented by Eq. 3.18

Pcharge(SoC) =

Pcharge,max SoC ≤ 80%
Pcharge,max · 1−SoC

0.2 SoC > 80%
(3.18)

Additionally, Figure 3.12 presents the charging power profile as a function of time.
It is evident that the charging power is not constant, but exhibits a decrease
after a certain point, where the charging power starts to diminish. This decline,
corresponding to reaching an SoC of 80%, results in extended expected charging
times compared to the previous model [17]. This observation is particularly
significant when considering battery charging beyond the 80% threshold, whereas
below this threshold, the outcome remains unchanged.

Figure 3.12: Charging Power profile as a function of Time

From the way the charging power profile was formulated in Eq. 3.18, it is possible
to calculate the charging time (tcharge) required to reach a certain SoC at the end of
the charging (SoCend), starting from an initial SoC (SoCstart), using the formulas
provided in Eq. 3.19, where Ebatt is the maximum energy the battery is capable to
store:

tcharge =


(SoCend−SoCstart)·Ebatt

Pcharge,max
SoC ≤ 80%

max( (SoCend−SoCstart)·Ebatt

Pcharge,max
, 0) − Etot·20%

Pcharge,max
· log(1−SoCend

20% ) SoC > 80%
(3.19)
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3.3.2 Model Comparison
This Section is focused on the comparison between the new model, whose mathe-
matical formulation has been presented in Section 3.3.1, and the old model, adopted
in project [17], from the point of view of the energy consumption calculation and
required processing time.
At first, a comparison of the energy consumption of the two models has been
performed. The speed profile utilized in this section is depicted in Figure 3.13. This
speed profile was derived by inputting the coordinates of two edges present in the
map into the SUMO software, following a methodology similar to that employed
in the execution of Section 3.1.2. Following the approach described in Section
3.1.2, the raw speed profile obtained from SUMO was subsequently subjected to a
Smoothing process, employing the driving style conditions categorized as normal,
as indicated in Table 3.1.
The adopted speed profile is characterized by a duration of more than 8000 seconds.
It exhibits a notable variety of speeds, encompassing urban segments, suburban
stretches and an extensive highway section featuring speeds surpassing 130 km/h.
Furthermore, it encompasses acceleration and deceleration of varying magnitude
and duration, enabling the assessment of transient performance.

Figure 3.13: Speed Profile

Firstly, we focused on comparing the tractive power demanded by the wheels in the
two models under investigation. To visualize this performance comparison, Figure
3.14 illustrates the discrepancy between the tractive power calculated using the
new model and that derived from the old model, as a function of time.

Figure 3.14: Difference in Power Requests at Wheel Level (New-Old)

It is crucial to emphasize that the fundamental dissimilarity between these two
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models lies in the incorporation of an inertia factor, which considers the rotational
inertia of the power-train components. As a result, the graph depicted in Figure
3.14 exhibits non-zero values solely at instances where discrepancies in speed occur,
signifying the influence of inertia. When the vehicle operates at a constant speed,
the discrepancy in the power demanded by the wheels between the two models
becomes negligible. Conversely, during acceleration, the new model exhibits a
tendency to require higher power from the motor, as a portion of the power is allo-
cated to overcome the inertia of the power-train. Conversely, during deceleration,
a reduced power demand is observed.
However, in terms of energy requested to the battery, the anticipated trend of the
newly developed model, with higher power demands during acceleration and lower
power requirements during deceleration, is not evident. As depicted in Figure 3.15,
battery energy requirement is lower in the new model compared to its predecessor.

Figure 3.15: Energy Requests at Battery Level

The discrepancy can be attributed to the introduction of novel efficiencies and
corrective parameters, which differ from those employed in the previous model.
Notably, the overall vehicle efficiency is no longer treated as a constant; instead, it
is contingent upon demanded power and speed of the electric motor. Furthermore,
the inclusion of a regenerative capacity factor for the electric motor has been
introduced, which now depends on the instantaneous vehicle speed.

Figure 3.16: Combined Efficiency of Battery and EM

As demonstrated in Figure 3.16, the primary source of disparity in battery energy
demand stems from the divergent combined efficiency of the EM and battery. Over
long stretches of the journey, the combined efficiency in the new model surpasses
that of the constant efficiency employed in the previous model. Notably, during
periods of constant high travel speed, which constitute a significant portion of the
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travel duration, the power required at the wheels remains the same for both old
and new models, but the augmented combined efficiency in the new model yields
reduced energy consumption. Nevertheless, there exist specific instances, typically
occurring at lower travel speeds, where the efficiency computed with the new model
falls short in comparison to the constant efficiency adopted in the previous model.
This discrepancy arises from the combined influence of the EM’s efficiency being
less pronounced at lower power demands and the regenerative factor substantially
nullifying recharging when the vehicle’s speed is low.
After analyzing the differences between the two models, specifically focusing on
subsets of a single journey, the objective shifted towards obtaining a broader per-
spective on the disparities between these models. To accomplish this, conducted
simulations involving a varied number of trips (100, 500, 1000, and 1500 random
trips), while considering the disparity in battery energy consumption between the
two models. Furthermore, taking into account the duration of each trip, computed
an indicative value for the energy consumption difference between old and new
models, using a standardized mean reference trip length of 100 km. The resulting
data have been presented in Table 3.7 for each simulation cycle. In addition, Figure
3.17 exhibits individual outcomes obtained from the simulation cycles involving
100, 500, 100 and 1500 trips.

Table 3.7: Battery’s Energy Request - New Model vs. Old Model

N° of Trips Mean Distance [km] Mean Battery Diff. (Old-New) [kWh]
Over each Trip Over 100 km

100 126.26 1.817 1.441
500 124.18 1.949 1.570
1000 124.24 1.861 1.497
1500 123.90 1.915 1.549

In this Master’s Thesis project, focus extends beyond the final outcome of each
program segment to encompass the consideration of processing time. The aim
is to develop a program that not only yields reliable results, but also operates
with optimal processing speed. Thus, comprehensive analysis has been conducted,
as depicted in Table 3.8, comparing the processing times associated with each
simulation cycle. The evaluation was performed using the same set of random
trips employed in the creation of Table 3.7. Consistent with previous approach,
detailed information for each simulation cycle have been provided, including the
number of random trips considered, the average distance traveled per trip, the
average processing time and the processing time normalized per 100 km trips for
the old model. Additionally, the corresponding values for the new model have been
presented, both in terms of average processing time and processing time normalized
per 100 km.
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(a) Data related to 100 random trips (Old-New)

(b) Data related to 500 random trips (Old-New)

(c) Data related to 1000 random trips (Old-New)

(d) Data related to 1500 random trips (Old-New)

Figure 3.17: Cumulative Battery Energy Consumption Difference (Old-New)

It is crucial to emphasize that the processing time presented in Table 3.8 exclusively
pertains to the verification of energy consumption, with no involvement in the
route computation from the origin to the destination. Furthermore, it is crucial to
emphasize that the comparison was conducted by analyzing the outcomes derived
from a set of random trips within the operational map depicted in Figure 3.5.
This analysis omitted any stops for battery recharging and did not account for
the battery’s maximum energy storage capacity. This approach was deliberate, as
the primary objective was to gather indicative data pertaining to the variance in
energy consumption from the battery for a generic 100-kilometer route.
The subsequent analysis, reported in Table 3.8, specifically addresses the comparison
between the processing time required for energy consumption calculation and that
needed to generate the velocity profile from the starting point to the endpoint.
Notably, processing time significantly increases with the new vehicle model in
comparison to the original model. This disparity arises from the introduction of
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novel functions for efficiency determination, inevitably elongating the processing
time when compared to the previous model, where all such efficiencies were restricted
to a single constant value.

Table 3.8: Processing Time - New Model vs. Old Model

N° of Trips Mean Distance [km] Mean Proc. Time (Old) [ms] Mean Proc. Time (New) [ms]
[ms] [ms/100km] [ms] [ms/100km]

100 126,26 0,019 0,015 0,073 0,058
500 124,18 0,009 0,007 0,066 0,053
1000 124,24 0,006 0,006 0,057 0,046
1500 123,90 0,005 0,005 0,045 0,036

The considerable increase in processing time could potentially undermine the
advantage offered by the improved estimation of energy consumption. However,
the project finds support in Table 3.9, which presents a comparison between the
processing time for energy consumption using the new model and the processing
time required for route calculation, from which the velocity profile is derived. Table
3.9 provides a comprehensive overview of each simulation cycle, including the
number of trips, the average distance traveled per trip, the average processing time
normalized to 100 km for energy consumption calculation with the new model,
as well as the average processing time and the normalized one used for route
calculation and the subsequent velocity profile definition.

Table 3.9: Processing Time - Energy Consumption vs. Route Definition

N° of Trips Mean Distance [km] Mean Proc. Time (New) [ms] Mean Proc. Time Routes [ms]
[ms] [ms/100km] [ms] [ms/100km]

100 126,26 0,073 0,058 267 212
500 124,18 0,066 0,053 293 236
1000 124,24 0,057 0,046 264 213
1500 123,90 0,045 0,036 213 172

The results clearly demonstrate that the processing time of energy consumption
calculation requires orders of magnitude less time compared to the route calculation.
Therefore, the increase in processing time for energy consumption calculation has
no practical impact on the overall processing time.
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3.4 DBSCAN Clusterization Algorithm
As previously mentioned in Section 3.1.3, this Master’s Thesis project proposes the
utilization of a clustering system for charging stations in order to accelerate the
construction of the cost matrix and subsequently apply the Dijkstra’s algorithm to
determine the optimal sequence of nodes that minimizes the overall cost, specifically
the total travel time.
The concept of clustering charging stations draws inspiration from the way humans
typically plan their EV journeys. It involves either opting to stop within a general
geographical area that encompasses numerous charging stations meeting the desired
requirements (power, availability, cost, etc.) or specifically selecting a particular
charging station within a specific geographic location.
Among the plethora of existing clustering algorithms, the choice falls upon a novel
approach known as the DBSCAN algorithm [51]. This algorithm allows for the
identification and grouping of highly dense geographic regions containing charging
stations, while also identifying isolated stations situated in distinct geographic
areas as outliers.
In a more detailed analysis, the DBSCAN algorithm [51] is a clustering algorithm
widely used in various domains for identifying clusters based on data density. Unlike
traditional clustering algorithms, DBSCAN does not rely on predefined cluster
shapes or centroid assumptions, making it particularly suitable for datasets with
varying densities and complex cluster structures.

Figure 3.18: DBSCAN vs. k-means clustering [52]

The fundamental principle of DBSCAN lies in the notion of density. The algorithm
starts by selecting an unvisited data point randomly and examines its neighbor-
hood within a specified distance threshold (ϵ). If the number of points within
this neighborhood surpasses a user-defined minimum threshold (minPts), a new
cluster is formed. The algorithm continues to expand the cluster by iteratively
exploring the neighborhoods of newly added points, effectively connecting them to
the existing cluster.
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DBSCAN categorizes data points into three types: core points, border points, and
noise points. As shown in Figure 3.19, core points are characterized by having a
sufficient number of neighboring points within the distance threshold, indicating a
dense region. Border points have fewer neighbors, but are still within the distance
threshold of another core point. Noise points, on the other hand, do not satisfy the
density criteria and are considered outliers, not assigned to any cluster. In Figure
3.19, the core points depicted in red and the border points shown in yellow form a
single cluster. On the other hand, the blue point represents a noise point that does
not belong to any specific cluster.
By designating noise points as outliers, the algorithm effectively handles noisy or
sparse regions in the dataset, ensuring accurate cluster identification. This aspect
holds significant importance within our project, given the presence of numerous
isolated charging stations that are far from major urban areas. This particular
characteristic allows the algorithm to efficiently identify these charging stations as
outliers.

Figure 3.19: DBSCAN at work (MinPts = 4)

However, selecting appropriate parameters for DBSCAN is crucial for obtaining
meaningful results. The ϵ parameter determines the distance threshold for defining
a neighborhood, while the minPts parameter sets the minimum number of points
required to form a dense region. These parameters demand careful consideration
and experimentation to achieve optimal clustering outcomes, often guided by do-
main knowledge and data characteristics.
In Figure 3.20, the results of four distinct clustering processes conducted with four
different pairs of ϵ and minPts parameters are presented. Geographic locations
within the same cluster are assigned the same color, while black points denote
locations identified as outliers through clustering. It is worth noting that locations
with the same color may belong to different clusters due to their significant spatial
separation. This discrepancy arises from the greater number of clusters compared to
the available colors for representation. Hence, color classification should primarily
be utilized when distinguishing adjacent clusters. The analysis of Figure 3.20
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reveals how the selection of different ϵ and minPts values can significantly impact
the clustering of charging stations. Consequently, this affects the number of nodes
within the network, regardless of whether it pertains to macro or micro-research.
This observation underscores the importance of carefully choosing these parameters
to achieve accurate and meaningful clustering results in the context of charging
station analysis.

(a) ϵ = 4000 ; minPts = 2
clusters = 58 ; outliers = 30

(b) ϵ = 4000 ; minPts = 5
clusters = 32 ; outliers = 116

(c) ϵ = 8000 ; minPts = 2
clusters = 41 ; outliers = 4

(d) ϵ = 8000 minPts = 5
clusters = 31 ; outliers = 40

Figure 3.20: Influence of ϵ and minPts on the clustering

Defining a single set of ϵ and minPts values that can effectively capture the char-
acteristics of all possible journeys on the map presents a challenge. The main
issue arises from the difficulty of achieving at the same time a reduced number of
nodes in the clustering output, while maintaining efficient processing times during
macro-research, without compromising the identification of clusters containing a
substantial number of charging stations, which would considerably increase the
processing time during micro-research.
To address this challenge, a dual-level clustering approach is proposed. This ap-
proach involves two distinct levels, each characterized by a specific pair of ϵ and
minPts values. The primary objective of the first level is to perform clustering

41



Methodology

with higher ϵ and minPts values, effectively reducing the number of nodes and
consequently improving the processing time during macro-research. In the second
level, the focus shifts to clusters that encompass a significant number of charging
stations, surpassing a predefined threshold. Only the charging stations within these
densely populated clusters undergo a secondary clustering process with lower ϵ and
minPts values. As a result, these clusters are subdivided into multiple smaller
clusters, each exhibiting a reduced number of charging stations, that will lead to a
reduce processing time during micro-research.
The effectiveness of this two-level clustering technique is demonstrated in Figure
3.21. Notably, this approach minimally impacts the node count within the macro-
research network, while substantially decreasing the number of stations that need
to be examined during micro-research, ultimately enhancing the efficiency of the
overall analysis process.

(a) First Level: ϵ = 4000
clusters=58; outliers=30

(b) Second Level: ϵ = 4000 → 1000
clusters=79 outliers=49

(c) First Level: ϵ = 8000
clusters=41 outliers=4

(d) Second Level: ϵ = 8000 → 2000
clusters=55 outliers=10

Figure 3.21: Two Level Clusterization
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3.5 Pruning Techniques

The overall processing time is primarily influenced by two factors: the computa-
tional time required by SUMO to calculate the speed profile from the origin node
to the destination node, along with the associated smoothing process discussed in
Section 3.4; as weel as the processing time associated with the feasibility verification
of the journey, as extensively elaborated in Section 3.3.
As mentioned in Section 3.3, the introduction of a new vehicle model has resulted in
an increase in processing time. However, as highlighted in Table 3.9, the processing
time for performing the feasibility check is significantly smaller compared to the
time spent by SUMO in calculating the speed profile. Hence, it can be inferred
that the majority of the processing time is dedicated to determine the speed profile
with SUMO, with only a marginal increment caused by the subsequent feasibility
check. These findings strongly support the adoption of a more sophisticated vehicle
model, as the benefits in terms of energy consumption prediction far outweigh the
drawbacks arising from the increased processing time.
In a more general context, taking into account the conducted simulations reported
in Table 3.9, it has been determined that the SUMO software, complemented by
the Traci4Matlab function family, requires an average of 0.2 seconds to calculate
the speed profile and apply smoothing techniques for mitigating acceleration peaks
and valleys. This step involves creating a network branch, which will later undergo
later the Dijkstra algorithm’s.

Even when considering the reduction of charging stations through clustering in the
macro-research, as discussed in Section 3.4, it becomes apparent that the complete
construction of the cost matrix consumes a significant amount of time. For instance,
referring to the example depicted in Figure 3.20(a), clustering with an ϵ = 4000
and MinPts = 2 yields a network comprising 109 nodes, encompassing both
clusters and outliers. Considering that the resulting cost matrix has dimensions of
(109+2)×(109+2), it entails 12321 cells, each requiring the computation of velocity
profiles and travel feasibility. Based on the average processing time depicted in
Table 3.9, this operation would demand approximately 2370 seconds, equivalent to
over 39 minutes. Clearly, such a computational duration is deemed unacceptable
for real time software implementation. Moreover, the situation does not improve
even if different values of ϵ and MinPts are employed. As demonstrated in the
same Figure 3.20(c), adopting an ϵ = 8000 and MinPts = 2 results in a network of
59 nodes, comprising clusters and outliers, and leads to a matrix of size 61×61 with
3721 cells. On average, the processing time required for this computation amounts
to approximately 744 seconds, or 12 minutes. It is important to highlight that the
aforementioned rough processing time solely pertains to the initial phase, known
as macro-research. The subsequent phase, known as micro-research, which involves
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examining individual stations within each cluster, still needs to be accounted for.
Consequently, while the utilization of ϵ and MinPts values that reduce the total
number of nodes yields a processing time advantage during macro-research, it
inadvertently leads to an increase in nodes within the new network during micro-
research. This is due to the fact that, on average, a higher number of charging
stations exist within each cluster.

Through multiple simulations conducted without any form of pruning techniques,
several distinct phenomena were observed. Firstly, it was noted that the majority
of the cells within the cost matrix exhibited values that were out of scale. As
explained in Section 3.1.3, such values indicate the non feasibility of a trip in terms
of energy consumption. Secondly, the algorithm’s selection of charging stations,
determined by Dijkstra’s algorithm, predominantly favored locations along the
direct path connecting the user-defined origin and destination nodes. Thirdly,
in cases where feasible, the Dijkstra algorithm consistently prioritized charging
stations with higher power capacity to minimize the time spent on battery charging.
Lastly, when a trip involved multiple stops, the algorithm shows the tendency
to elongate each intermediate leg by selecting charging stations that allowed for
significant battery discharge, while still adhering to the user-defined limits outlined
in Section 3.1.1.

Through the analysis of these phenomena, the idea has emerged to incorporate some
pruning techniques before utilizing SUMO. The aim is to partially construct the
cost matrix without relying on SUMO. This construction will exclusively focus on
cells/trips that are deemed irrelevant for determining our own trip. The approach
involves pro-actively identifying these cells assigning them an out-of-scale value,
in a similar manner to what was described in Section 3.1.3. This ensures that
they are not considered by Dijkstra’s algorithm when calculating the path that
minimizes total travel time. The significant advantage of these pruning techniques
lies in the fact that the early identification of these cells/trips, and the subsequent
value assignment, can be accomplished in a fraction of the time required by SUMO.
By minimizing the reliance on SUMO, which constitutes the primary processing
time bottleneck, only trips considered potentially useful will undergo its evaluation,
while all other trips/cells can be swiftly assigned out-of-scale values.

In the following, the elements that have contributed to the pruning techniques in
both macro-research and micro-research will be listed. The two pruning systems
differ between the two phases, as in the first phase it is necessary to identify the
best geographical areas for the stops, while in the second phase, it is already known
that these geographical areas are crucial for achieving an optimal result. The
pruning techniques will be presented using three key routes as examples: from
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Turin to Milan, from Milan to Genoa, and from Turin to Genoa. Through figures
it is shown how, progressively, pruning techniques reduce the number of remaining
useful connections, leaving only those where further verification, using the SUMO
environment, is truly necessary.

3.5.1 Pruning for Macro-Research
As previously mentioned, this section focuses on defining the various steps involved
in the implementation of the pruning techniques for macro-research. The pictures
from Figure 3.22 to Figure 3.29 presents the map used in this project, where red
and green points are interconnected by blue lines. The two green points represent
the user-defined origin and destination points, as specified in Section 3.1.1, while
the red points indicate the charging stations identified after applying the clustering
technique. Specifically, the DBSCAN algorithm was employed with characteristic
values of ϵ = 8000 and MinPts = 2, resulting in a network comprising 57 nodes,
including both clusters and outliers. Furthermore, the blue lines connecting pairs
of nodes represent the branches of our node network, representing specific cells in
the cost matrix and potential travel routes.
In accordance with Figure 3.22, it is observed that, in the absence of any pruning
algorithm, the journeys from Turin to Milan, from Milan to Genoa, and from Genoa
to Turin exhibit an equal number of connections, amounting to 11990. Considering
a starting number of nodes n = 57, this count of connections was obtained starting
from (n + 2) · (n + 2) = 3481 connections present in the entire matrix. Then
(n + 2) = 59 cells on the diagonal of the matrix, were excluded since they represent
trips from a node to itself. An additional 2 ·(n+1) = 116 cells representing journeys
where the starting node serves as the destination or vice versa, were also excluded.

(a) Turin to Milan - 3306 (b) Milan to Genoa - 3306 (c) Genoa to Turin - 3306

Figure 3.22: Node net at macro-research with no pruning

Battery Range Pruning

The first pruning step takes into account the maximum range achievable by the
electric vehicle under examination, without the need for recharging. Naturally, this
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maximum range strongly depends on the driving speed and it results challenging to
predict in advance. However, the aim of this initial step is to consider generally long
journeys that would yield an out-of-scale value within the cost matrix, indicating
complete battery depletion and surpassing the user-defined SoC limits. These
lengthy trips are often traversed primarily via highways or expressways to mini-
mize travel time. This provides us with additional insights into potential energy
consumption. Considering the vehicle’s consumption at highway and expressway
speeds, we assumed an average consumption rate of approximately 20 kWh per 100
km. By dividing the battery capacity by this average consumption, we obtained
an approximate value for the maximum distance that can be covered on a single
charge. Subsequently, any branches connecting two nodes with an air distance
greater than the calculated maximum distance are deemed unfeasible and assigned
an out-of-scale value. This ensures they are not taken into account during the
determination of the path that minimizes travel time. It is crucial to clarify that
the distance considered for comparison with the maximum distance achievable on
a single charge is the air distance between two nodes. This distance is calculated
solely based on geographical coordinates, without utilizing SUMO and it is always
shorter than the actual distance covered by the vehicle from the starting node to
the destination node through the road network.
As demonstrated in Figure 3.23, employing this first pruning step results in precisely
2274, 2285, and 2275 connections for the trips from Turin to Milan, from Milan to
Genoa, and from Genoa to Turin, respectively.

(a) Turin to Milan - 2274 (b) Milan to Genoa - 2285 (c) Genoa to Turin - 2275

Figure 3.23: Node net at macro-research with 1 step of pruning

Geometrical Pruning

In Figure 3.23, it is evident that the network of nodes remains extensive and
intricate even after applying the first step of pruning step. Notably, there are
numerous nodes, along with their respective connections, that are unlikely to play
a significant role in route planning. For instance, during the journey from Turin
to Milan, it is implausible to consider stopping near Genoa. Similarly, transiting
through Brescia is inconceivable when traveling from Turin to Genoa. Thus, it
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becomes imperative to restrict the nodes under consideration solely to those situated
along the journey between the origin and destination nodes. To accomplish this,
a bounding rectangle was created based on the coordinates of the user-defined
starting and destination nodes. For any connection where either node fell outside
this bounding rectangle, an out-of-scale value was assigned within the cost matrix.
The construction of the bounding rectangle involved drawing a direct line connecting
user-defined starting and destination nodes. From this line, two parallel lines were
generated at a specified distance, effectively forming a corridor of specified width.
The width of the corridor is set at either 40 km or 30 km, depending on whether
the air distance between the coordinates of the starting and destination charging
stations is less than 200 km (40 km) or greater (30 km). The corridor was then
intersected by two orthogonal lines passing through the user-defined starting and
destination points.
As illustrated in Figure 3.24, this second pruning step resulted in the following
number of connections for the respective journeys: 306 for Turin to Milan, 1249 for
Milan to Genoa, and 419 for Genoa to Turin.

(a) Turin to Milan - 306 (b) Milan to Genoa - 340 (c) Genoa to Turin - 209

Figure 3.24: Node net at macro-research with 2 steps of pruning

Angular Pruning

As depicted in Figure 3.24, the network of connections between nodes now exhibits
a higher degree of alignment with the intended objectives, providing initial insights
into user-defined journey’s starting and ending nodes, as well as the designated
geographical areas for battery recharge stops. Nevertheless, the total number
of connections for all three routes remains considerably high. To address this
issue, a criterion to identify journeys that do not substantially bring us closer to
the desired final node has been employed. Specifically, for each viable journey
showcased in Figure 3.24, the angle formed between the straight line connecting
the user-defined starting and ending nodes and the straight line linking a given
starting and ending node within the network has been examined. If the resulting
angle exceeds a predetermined acceptance angular threshold, the corresponding
journey is deemed impractical as it fails to significantly converge towards the target
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destination. By implementing this methodology, we have derived a revised node
network comprising only journeys that effectively propel us towards the intended
endpoint, as they follow trajectories that, within a specific angular tolerance, closely
align with the original user-specified journey. Consistent with the preceding two
pruning stages, any routes/cells that violate the constraints imposed by this pruning
mechanism have been assigned an out-of-scale value, ensuring their exclusion from
the calculation of the minimum-cost path.
This second phase of pruning encompasses an additional advantage that may not
be immediately evident by simply visually comparing the reduction in connections
depicted Figure 3.25. In the context of this preparatory stage prior to utilizing the
SUMO environment, it is important to note that the cost matrix is constructed
as a nearly symmetric square matrix. This near symmetry arises from the fact
that cell ij represents the total travel time required to travel from the ith starting
node to the jth destination node, while the symmetric cell at position ji represents
the travel cost from jth starting node to the ith destination node. Considering the
way in which the initial two pruning steps were designed, when a connection from
the ith node to the jth node has not been pruned out by the first two steps, it
follows that the symmetric connection from the jth node to the ith node is also still
considered plausible.
By introducing this third step of pruning, if a connection/cell ij, between a starting
ith node and a destination jth node, is still considered plausible thanks to its
alignment with the original user-defined journey, the symmetric cell at position ji
will be regarded as implausible. This is because the journey originating from the
jth node and ending at the ith node displays a divergent direction compared to the
connection/cell ij. Hence, if the connection or cell ij is oriented towards our desired
destination, it is guaranteed that the connection or cell ji will lead in the opposite
direction, away from the intended destination. It is important to emphasize that,
even though it’s certain that if the connection/cell ij is plausible, in terms of its
alignment with the user-defined trip, the connection/cell ji is not aligned, the
opposite cannot be automatically assumed. In simpler terms, if connection/cell ij
is not plausible, it does not imply that connection/cell ji is automatically plausible.
Consequently, during the third stage of pruning, it is essential to monitor of all
connections/cells deemed plausible after the second pruning stage. Nonetheless,
this approach offers a substantial advantage in terms of the efficacy of pruning
techniques, leading to the reduction of over half of the connections/cells that
would otherwise have redundantly been considered. This efficiency gain stems
from the fact that, in addition to eliminating all connections/cells ji for which the
counterpart ij is plausible, both connections/cells ij and ji can be pruned if neither
aligns, within a defined tolerance, with the user-defined trip.
As illustrated in Figure 3.25, this second pruning step resulted in the following
number of connections for the respective journeys: 126 for Turin to Milan, 440 for
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Milan to Genoa, and 151 for Genoa to Turin.

(a) Turin to Milan - 126 (b) Milan to Genoa - 128 (c) Genoa to Turin - 86

Figure 3.25: Node net at macro-research with 3 steps of pruning

Short Trip Pruning

The subsequent pruning step is derived from the analysis of results obtained before
implementing any pruning techniques. It was observed that the Dijkstra algorithm
exhibits a tendency to favor longer trips, aiming to maximize battery discharge
before initiating a subsequent recharge. This trend is attributed to the non-constant
profile of the charging power, which tends to decrease beyond a SoC of 80%. Despite
the total energy consumption being equal across the entire journey, opting for mul-
tiple short trips and more frequent recharging when the SoC is above 80% results
in charging at a lower power level than the maximum permitted. Consequently,
the program prioritizes minimizing the total travel time by predominantly charging
the energy with a SoC below 80% while utilizing the maximum permissible power.
To address this trend, a fourth pruning step is introduced, which identifies trips
covering shorter distances and excludes them from further analysis within the
SUMO environment. To identify these trips, the analysis begins with the set of
trips that were deemed valid after the previous pruning step. The straight-line
distance between the starting and destination nodes of each trip is considered. If
this distance falls below a certain fraction of the maximum range achievable with
a single battery charge, the trip/cell is assigned an out-of-scale value, following
the approach adopted in previous steps. The maximum distance that our vehicle
can cover is determined based on the assumption made during the initial pruning
step, which estimated an average energy consumption of approximately 20 kWh
per 100 km for each trip. By leveraging this average consumption value and the
known energy capacity of the battery, an average maximum travel range and the
corresponding acceptance fraction for this pruning step are computed.
It is important to note that this pruning step is not applied to connections connec-
tions departing from the starting point of the travel. This decision is justified by the
consideration that, in certain cases, like starting with a low SoC of the battery, it
is advantageous to halt the journey at the earliest opportunity, potentially utilizing
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charging stations with high power capacities. This strategic pause allows for a
subsequent continuation with a comfortably high SoC, effectively mitigating range
anxiety concerns from both the driver’s and passenger’s perspective.
As illustrated in Figure 3.26, this fourth pruning step resulted in the following
number of connections for the respective journeys: 111 for Turin to Milan, 391 for
Milan to Genoa, and 139 for Genoa to Turin.

(a) Turin to Milan - 111 (b) Milan to Genoa - 119 (c) Genoa to Turin - 82

Figure 3.26: Node net at macro-research with 4 steps of pruning

Charging Power Pruning

This new step of pruning arises, similar to the previous one, from the analysis of
results obtained prior to the implementation of pruning techniques. It has emerged
that the Dijkstra algorithm exhibits a tendency to favor trips where the charging
station power is maximized within the vehicle’s allowable limits. This preference
aims to minimize the charging time and, consequently, the overall travel duration.
In order to beforehand identify such trips/cells, an out of scale value has been
assigned to the remaining trips from the previous step of pruning that feature a
destination node linked to a clustered charging station with a maximum power
below the permissible threshold. It is worth noting that, since the representative
charging station of the entire cluster offers a charging power greater than or equal
to any other station within the cluster, it is appropriate to focus this acceleration
check solely on that particular station. It is important to emphasize that this
acceleration stage provides significant advantages when adopting a charging power
above the minimum requirement (for example 50 kW instead of the minimum 22
kW). As demonstrated in Figure 3.28, substantial reductions in the number of
nodes within the network were achieved, showcasing the efficacy of this approach.
As illustrated in Figure 3.28, this fifth pruning step resulted in the following number
of connections for the respective journeys: 78 for Turin to Milan, 276 for Milan to
Genoa, and 92 for Genoa to Turin.
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(a) Turin to Milan - 78 (b) Milan to Genoa - 106 (c) Genoa to Turin - 72

Figure 3.27: Node net at macro-research with 5 steps of speed-up

Isolated Nodes Pruning

With the introduction of the latest step, the pruning techniques reach their conclu-
sion, as all the elements identified during the analysis of results and cost matrices,
without the application of any pruning technique, have been appropriately trans-
formed into corresponding constraints.

(a) Turin to Milan - 78 (b) Milan to Genoa - 276

Figure 3.28: Node net at macro-research with 5 steps of speed-up

However, as highlighted in Figure 3.28 by the black circles around certain network
nodes, there are still numerous trips/cells that do not contribute to defining the
optimal path. These trips are characterized by originating from nodes that are
not destinations of any other connection or arriving at nodes from which no new
connection originates.
To eliminate these fictitious connections, which would never be utilized for gen-
erating a path, a comprehensive review of the cost matrix is conducted multiple
times, ensuring that if the ith row exclusively contains out-of-scale values, the ith

column must also be filled with the same out-of-scale values. Naturally, the same
principle is applied by initially considering the jth column and subsequently the
jth row. This approach guarantees that if the ith node is not the departure point
of any connection, it will also not serve as the destination for any connection.
Any attempt to reach such a node would be futile, as the journey cannot progress
further. Similarly, if the jth node is not the destination of any trip, it is illogical
to initiate any additional trips from it. Of course, it is necessary to exclude the
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user-defined starting and ending nodes from this pruning step.
It is crucial to emphasize that this pruning step, which comprehensively reviews
the cost matrix by examining and modifying the values within, must be executed
multiple times. There is a potential risk that sequentially reviewing the matrix from
the first to the last row and column and replacing the values within may generate
new rows and columns consisting solely of out-of-scale values. Consequently, new
nodes may emerge from which no connections originate or to which no connections
arrive. Nevertheless, after just a few reviews of the cost matrix (less than 10
given size of the matrix) it can be certain that the pruning step has been correctly
completed.
As illustrated in Figure 3.29, this final pruning step resulted in the following number
of connections for the respective journeys: 42 for Turin to Milan, 55 for Milan to
Genoa, and 40 for Genoa to Turin.

(a) Turin to Milan - 42 (b) Milan to Genoa - 41 (c) Genoa to Turin - 51

Figure 3.29: Node net at macro-research with 6 steps of pruning

3.5.2 Pruning for Micro-Research
In a similar manner to the pruning techniques employed for macro-research, the
development of these secondary pruning techniques were derived from the analysis
of numerous simulations conducted without employing any micro-research pruning
methods. Specifically, only pruning techniques for the macro-research were imple-
mented to extract essential trends and streamline the construction process of the
second cost matrix.
As mentioned, the focal point was shifted away from the macro-research phase,
which aimed to identify the macro-geographic areas for charging stops, redirecting
it towards the micro-research phase, where the necessary charging locations within
these pre-determined clusters were already known. During this phase, the simula-
tions conducted without micro-research pruning techniques revealed a prominent
tendency: the charging stations deemed suitable for stopping consistently adhered
to the sequence of clusters identified as the outcome of the Dijkstra’s algorithm
during the macro-research.
This observed trend affirms the significant benefits of simplifying the construction
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of the second cost matrix by incorporating an out-of-scale value for all cells/trips
that hold no relevance in determining the optimal route. Notably, it is essential to
underscore that the second cost matrix employed for the micro-research outcome
is a square matrix encompassing all feasible connections between the user-defined
starting and destination nodes, outlined in Section 3.1.1, as well as all the nodes
representing charging stations located within the clusters identified at the conclu-
sion of the macro-research, using the Dijkstra’s algorithm.
For instance, if a particular journey, as dictated by the macro-research, neces-
sitates two charging stops, the cost matrix will encompass numerous cells/trips
that can be deemed irrelevant in advance neglecting the utilization of the external
SUMO software, leading noteworthy improvements in processing time. Considered
irrelevant in advance are cells/trips representing connections between user defined
starting node and charging stations situated within the second cluster, as they
fail to adhere to the prescribed sequence indicated by the macro-research output.
Similarly, every cells/trips between nodes within the first or second cluster and
the user defined starting node, exhibiting a reversed sequence compared to that
specified by the macro-research, as well as cells/trips between charging stations
within the same cluster that provide no substantive contribution to determining
the optimal path are assigned with an out-of-scale value.
To summarize, micro-research pruning techniques expect to consider as irrelevant
any cells/trips connecting the user-defined starting or destination node with nodes
representing charging stations that do not conform to the ordered sequence of
clusters identified as the output of the macro-research.
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Results

In this chapter, the goal is the actual implementation and analysis of the various
additions proposed throughout this project. These additions encompass the in-
troduction of a new vehicle model, described in Section 3.3, the utilization of a
clustering algorithm as outlined in Section 3.4, and the incorporation of speed-up
techniques elaborated in Section 3.5. Consequently, these implementations will
be compared against the baseline minimum travel time path research software
presented by [17]. The primary metrics employed to assess the effectiveness of
our work are the total travel time and processing time required to execute the
operations.
The focus has been on comparing the outcomes obtained with the original model
[17], with those achieved through an intermediary solution employing the same
approach of minimum travel time path research detailed in [17] together with
the new vehicle model. Lastly, the comparison is concluded by presenting the
results obtained through the utilization of the new vehicle model, as well as the
novel minimum travel time path research system enabled by clustering and various
speed-up techniques.
In order to test the enhancements made to the base program, a series of simulations
were conducted to validate its performance across medium and long-distance trips.
To establish meaningful comparisons, short-duration trips were intentionally ex-
cluded from the analysis. The reason behind this decision stems from the minimal
number of charging stops required, which would make it challenging to discern
discrepancies between the various vehicle models and path search systems.
To ensure a robust evaluation of the newly implemented features across diverse
work scenarios, identical routes were employed while varying user-defined initial
parameters. This approach facilitated the examination of the new minimum travel
time path research system’s sensitivity to those user-defined factors. Furthermore,
we explored the impact of external ambient temperature and driving style on the
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system’s performance. For comprehensive coverage, all simulations were systemati-
cally repeated with variations in the maximum allowable charging power, selecting
either 22 or 50 kW , to verify the sensitivity of the enhancements to this parameter.
The initial stage of the investigation involves comparing the performance of different
minimum travel time path research systems using a maximum charging power of
22 kW , which represents the minimum power output provided by every charging
station featured in the map illustrated in Figure 3.5.

Within this first phase of simulations, an examination was undertaken evaluating
the performance of the route planning tools across six distinct routes. Specifically,
the routes encompassed the connections between Turin and Milan, Milan and
Cuneo, Piacenza and Turin, Cuneo and Parma, Turin and Brescia, and Milan
and Genoa. With reference to Figure 3.5 it can be seen that these six routes not
only have variations occur in total travel distance, but also in travel direction.
Consequently, different roads, highways, regions and charging stations were visited
and utilized along each route.
To thoroughly assess the impact of various user-defined parameters, numerous
simulations were executed for each of the aforementioned routes, systematically
altering the user-defined initial parameters. Initially, all simulations adopted a
standard configuration, wherein SoH was set at 100%, initial SoC at 80%, reachable
SoC threshold during every journey at 20%, SoC threshold at the destination at
20%, no passengers were considered and a normal driving style was employed.
Subsequently, the initial configuration was systematically modified to investigate
the sensitivity of the system to various factors. Adjustments included reducing the
SoH of the battery, decreasing the initial SoC value, increasing the reachable SoC
threshold during the journey, as well as the threshold at the destination. Moreover,
the external ambient temperature was altered within a range of ±10◦C, and the
driving style parameters were varied accordingly.

To effectively present the simulation results and provide comprehensive insights,
Table 4.1, 4.2 and 4.3 captures essential data for each program iteration, encom-
passing base, intermediate and final solution. Data includes: total travel time,
number of stops required for battery charging, processing time, and final SoC
value upon arrival. Notably, in the case of the final program, which integrates
clustering and speed-up techniques, a division was made in the results of the travel
and processing time. This division enabled a separated examination of the macro
and micro-research outcomes, facilitating the evaluation of the positive impact of
micro-research on the total travel time, along with its potential negative effect on
the processing time.
Furthermore, certain routes within the tables have been marked in red to draw
attention to those that do not fully adhere to the user-defined constraints in Section
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3.1.1. The results obtained from these specific routes, along with their influence on
the comparison, will be further examined in the subsequent section dedicated to
presenting the results.

Table 4.1: Results relative to Base Logic and Base Vehicle Model - 22 kW

Trip SoH - startSoC - minSoC - endSoC - Temp - numPass - Style Travel Time (sec) N° Stops Process Time (sec) Final SOC (%)

TORINO - MILANO

100 - 80 - 20 - 20 - 21 - 0 - Normal 13897 5 324.51 77.11
90 - 80 - 20 - 20 - 21 - 0 - Normal 13893 5 266.44 76.53
100 - 60 - 20 - 20 - 21 - 0 - Normal 15032 5 312.10 76.82
100 - 80 - 20 - 40 - 21 - 0 - Normal 13897 5 321.82 77.11
100 - 80 - 20 - 20 - 21 - 0 - Sport 20407 5 142.45 72.69

MILANO - CUNEO

100 - 80 - 20 - 20 - 21 - 0 - Normal 22883 7 452.73 75.50
100 - 40- 20 - 20 - 21 - 0 - Normal 25615 7 401.70 75.38
100 - 80 - 20 - 40 - 21 - 0 - Normal 23438 7 479.84 75.31
100 - 80 - 20 - 20 - 14- 0 - Normal 23343 7 336.65 85.23

100 - 80 - 20 - 20 - 21 - 3 - Eco 15168 2 85.23 28.96

PIACENZA - TORINO

100 - 80 - 20 - 20 - 21 - 0 - Normal 19595 7 488.92 86.81
90 - 80 - 20 - 20 - 21 - 0 - Normal 20578 6 407.02 86.65
100 - 80 - 20 - 40 - 21 - 0 - Normal 19595 7 583.02 86.81
100 - 80 - 20 - 40 - 21 - 3 - Normal 21666 6 355.39 86.51
100 - 80 - 20 - 20 - 21 - 0 - Sport 23926 6 236.75 0.00

CUNEO - PARMA

100 - 80 - 20 - 20 - 21 - 0 - Normal 23250 5 309.15 26.39
100 - 60 - 20 - 20 - 28 - 0 - Normal 26218 6 210.55 40.60
100 - 80 - 20 - 60 - 21 - 0 - Normal 23411 5 280.60 26.62

100 - 80 - 20 - 20 - 21 - 3 - Eco 19276 2 81.71 55.90

TORINO - BRESCIA

100 - 80 - 20 - 20 - 21 - 0 - Normal 21850 7 470.06 63.65
85 - 80 - 20 - 20 - 21 - 0 - Normal 20418 7 296.07 58.25
100 - 80 - 20 - 60 - 21 - 0 - Normal 21542 6 492.07 66.27
100 - 80 - 20 - 20 - 30 - 0 - Normal 22696 6 165.07 64.35
100 - 80 - 20 - 20 - 21 - 0 - Sport 30258 7 255.69 42.88

MILANO - GENOVA

100 - 80 - 20 - 20 - 21 - 0 - Normal 14567 4 415.21 85.91
90 - 80 - 20 - 20 - 21 - 0 - Normal 14247 5 438.15 83.99
100 - 60 - 20 - 20 - 21 - 0 - Normal 15472 5 456.63 84.50
100 - 80 - 20 - 40 - 21 - 0 - Normal 14567 4 401.90 85.91
100 - 80 - 20 - 20 - 21 - 0 - Sport 20618 5 206.26 79.18

Table 4.2: Results relative to Base Logic and New Vehicle Model - 22 kW

Trip SoH - startSoC - minSoC - endSoC - Temp - numPass - Style Travel Time (sec) N° Stops Process Time (sec) Final SOC (%)

TORINO - MILANO

100 - 80 - 20 - 20 - 21 - 0 - Normal 13208 3 205.72 87.76
90 - 80 - 20 - 20 - 21 - 0 - Normal 14738 6 373.05 87.70
100 - 60 - 20 - 20 - 21 - 0 - Normal 14969 4 267.31 88.18
100 - 80 - 20 - 40 - 21 - 0 - Normal 13208 3 190.21 87.76
100 - 80 - 20 - 20 - 21 - 0 - Sport 10710 2 58.27 3.20

MILANO - CUNEO

100 - 80 - 20 - 20 - 21 - 0 - Normal 21837 5 323.67 85.56
100 - 40- 20 - 20 - 21 - 0 - Normal 20862 5 278.49 26.98
100 - 80 - 20 - 40 - 21 - 0 - Normal 19476 4 270.06 47.96
100 - 80 - 20 - 20 - 14- 0 - Normal 21055 4 185.58 56.83

100 - 80 - 20 - 20 - 21 - 3 - Eco 16566 3 155.38 38.65

PIACENZA - TORINO

100 - 80 - 20 - 20 - 21 - 0 - Normal 14782 4 281.45 59.67
90 - 80 - 20 - 20 - 21 - 0 - Normal 18379 4 268.23 52.52
100 - 80 - 20 - 40 - 21 - 0 - Normal 14782 4 286.85 59.67
100 - 80 - 20 - 40 - 21 - 3 - Normal 19244 4 241.5 53.70
100 - 80 - 20 - 20 - 21 - 0 - Sport 13163 2 64.06 28.00

CUNEO - PARMA

100 - 80 - 20 - 20 - 21 - 0 - Normal 22679 5 302.10 34.34
100 - 60 - 20 - 20 - 28 - 0 - Normal 24360 6 209.38 41.31
100 - 80 - 20 - 60 - 21 - 0 - Normal 21850 4 263.58 49.28

100 - 80 - 20 - 20 - 21 - 3 - Eco 20266 3 151.93 57.62

TORINO - BRESCIA

100 - 80 - 20 - 20 - 21 - 0 - Normal 19250 5 253.56 61.93
85 - 80 - 20 - 20 - 21 - 0 - Normal 21117 7 281.1 62.02
100 - 80 - 20 - 60 - 21 - 0 - Normal 19202 4 211.24 71.13
100 - 80 - 20 - 20 - 30 - 0 - Normal 20801 5 126.32 60.36
100 - 80 - 20 - 20 - 21 - 0 - Sport 21417 4 124.12 41.56

MILANO - GENOVA

100 - 80 - 20 - 20 - 21 - 0 - Normal 14035 4 402.31 87.07
90 - 80 - 20 - 20 - 21 - 0 - Normal 13868 4 355.73 86.44
100 - 60 - 20 - 20 - 21 - 0 - Normal 15049 4 386.65 86.98
100 - 80 - 20 - 40 - 21 - 0 - Normal 14035 4 416.39 87.07
100 - 80 - 20 - 20 - 21 - 0 - Sport 11439 2 101.35 14.17
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Table 4.3: Results relative to New Logic and New Vehicle Model - 22 kW

Trip SoH - startSoC - minSoC - endSoC - Temp - numPass - Style Travel Time Macro (sec) Travel Time Micro (sec) N° Stops Process Time Macro (sec) Process Time Micro (sec) Final SOC (%)

TORINO - MILANO

100 - 80 - 20 - 20 - 21 - 0 - Normal 9206 9206 2 22.41 28.92 33.01
90 - 80 - 20 - 20 - 21 - 0 - Normal 9286 9286 2 44.01 26.43 1.48
100 - 60 - 20 - 20 - 21 - 0 - Normal 9997 9858 2 22.41 26.92 34.99
100 - 80 - 20 - 40 - 21 - 0 - Normal 9356 9284 2 48.61 25.28 1.41
100 - 80 - 20 - 20 - 21 - 0 - Sport 9214 9072 2 22.35 25.29 33.44

MILANO - CUNEO

100 - 80 - 20 - 20 - 21 - 0 - Normal 13016 12932 2 24.59 83.51 6.68
100 - 40- 20 - 20 - 21 - 0 - Normal 14760 14676 3 24.58 83.99 9.67
100 - 80 - 20 - 40 - 21 - 0 - Normal 14316 14054 3 47.51 83.53 9.71
100 - 80 - 20 - 20 - 14- 0 - Normal 14642 14366 3 43.71 91.83 9.08

100 - 80 - 20 - 20 - 21 - 3 - Eco 9660 9660 1 21.69 85.03 3.46

PIACENZA - TORINO

100 - 80 - 20 - 20 - 21 - 0 - Normal 11792 11620 3 30.82 43.54 13.73
90 - 80 - 20 - 20 - 21 - 0 - Normal 11706 11535 3 24.25 40.97 14.96
100 - 80 - 20 - 40 - 21 - 0 - Normal 12150 12150 2 42.72 38.10 3.75
100 - 80 - 20 - 40 - 21 - 3 - Normal 13146 13141 2 49.60 38.52 9.51
100 - 80 - 20 - 20 - 21 - 0 - Sport 11992 11815 3 26.99 39.25 12.64

CUNEO - PARMA

100 - 80 - 20 - 20 - 21 - 0 - Normal 18471 18436 4 23.77 92.43 12.03
100 - 60 - 20 - 20 - 28 - 0 - Normal 19637 19637 4 21.60 123.67 8.93
100 - 80 - 20 - 60 - 21 - 0 - Normal 20378 20240 5 64.82 123.10 23.43

100 - 80 - 20 - 20 - 21 - 3 - Eco 16497 16487 3 79.47 27.49 11.63

TORINO - BRESCIA

100 - 80 - 20 - 20 - 21 - 0 - Normal 15683 15679 3 30.12 87.44 14.72
85 - 80 - 20 - 20 - 21 - 0 - Normal 15552 15552 3 21.35 104.04 16.89
100 - 80 - 20 - 60 - 21 - 0 - Normal 16302 16302 3 66.94 115.35 10.18
100 - 80 - 20 - 20 - 30 - 0 - Normal 16142 16142 3 27.06 90.93 13.57
100 - 80 - 20 - 20 - 21 - 0 - Sport 15693 15693 3 30.04 108.98 18.33

MILANO - GENOVA

100 - 80 - 20 - 20 - 21 - 0 - Normal 7506 7506 1 24.05 44.41 0.73
90 - 80 - 20 - 20 - 21 - 0 - Normal 8993 8983 1 36.70 50.93 2.89
100 - 60 - 20 - 20 - 21 - 0 - Normal 8297 8297 1 24.50 48.51 0.70
100 - 80 - 20 - 40 - 21 - 0 - Normal 9048 9038 1 42.04 45.46 1.70
100 - 80 - 20 - 20 - 21 - 0 - Sport 8964 8964 1 44.84 37.69 2.00

In order to enhance the interpretation of simulation results, graphical represen-
tations have been employed. Figure 4.1 illustrates the outcomes concerning total
travel time, while Figure 4.2 provides an overview of the processing times across
different simulations obtained with a maximum charging power of 22 kW .

Figure 4.1: Travel Time Results - 22 kW
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Figure 4.2: Processing Time Results - 22 kW

These two figures serve as crucial tools for evaluating the efficacy of the imple-
mented modifications, presenting the simulation results as a percentage fraction
in relation to the baseline program [17]. The values lower than unity, or 100%,
indicate a reduced travel or processing times compared to the results obtained with
the base program [17], thereby highlighting an improvement in program output.
The utilization of percentage fractions as a representation has been favored over
direct reporting as it allows for a more comprehensive analysis of the results and
the identification of performance trends, despite variations in total travel time and
processing time across all the different routes.

Within Figures 4.1 and 4.2, four distinct lines are featured. The grey line,
consistently maintained at 100% horizontally, represents the results attained with
the base program. The blue line corresponds to the results achieved through the
intermediate program, which incorporates the minimum travel time path research
program presented in the base model and the newly introduced vehicle model. The
final two lines, characterized by light and dark orange respectively, denote the
results derived from the final program. As already mentioned, this final program
allows to distinguish the results between those obtained with macro-research only
from those obtained with micro-research.
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When examining the results presented in Figure 4.1, it becomes evident that
the intermediate program, incorporating the minimum travel time path research
system of the base program and the new vehicle model, consistently achieves a
lower total travel time compared to the original model in the majority of tests. As
demonstrated in Section 3.3.2, the new vehicle model successfully reduces energy
consumption during each trip, resulting in fewer stops for battery charging and ef-
fectively compensating for the increased travel time associated with a non-constant
battery power charging profile. In general, the total travel time calculated with the
intermediate program is able to reach 80% of the one obtained with the original
program. However, it is worth noting that specific combinations of user-defined
parameters and routes can lead to a slightly higher total travel time compared to
the original model.
Furthermore, the intermediate program demonstrates a notable reduction in process-
ing time. By employing a vehicle model that consumes less energy, the intermediate
program achieves processing times that can be up to 40-80% lower than those of
the original model. This improvement in processing time is directly linked to the
reduction in the number of stops and iterations required to check all potential
charging stations between the starting and ending points. These findings highlight
the positive impact of the intermediate program on both travel time and processing
efficiency, confirming the effectiveness of the new vehicle model and its associated
path search system. It is worth noticing that, in a similar manner to the travel
time, there are combinations of user-defined parameters and routes, where even
the processing time exceeds that of the base program.
Regarding the comparison between the intermediate and final programs, it is clear
that the final program consistently achieves a lower total travel time compared
to the intermediate program. Generally, the travel time calculated with the final
program ranges from 50-80% of the travel time calculated with the original program.
A considerable portion of the travel time reduction can be attributed to achieving
a lower final SoC of the battery. The introduction of the new shortest path search
program, incorporating the Dijkstra’s algorithm alongside clustering and speed-up
techniques, enables a more effective selection of charging stations, thereby opti-
mizing the overall outcome. This approach efficiently utilizes the battery’s energy,
leading to fewer charging stops during the journey, in line with the constraints
specified by the user.
Furthermore, an additional improvement is observed in the reduction of processing
time from the intermediate to the final program. The integration of clustering and
speed-up techniques has led to a significant decrease in the number of nodes/stops
considered, consequently resulting in a reduction in processing time.
Through the analysis of the results obtained with the final program, it can be
observed that the total travel time calculated using the macro or micro-research is
practically equal, while the inclusion of the micro-research introduces a significant
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increase in processing time. This observed trend is fully justified as the role of
the micro-research is primarily to refine the travel time determined by the macro-
research, which plays a more prominent role in identifying the optimal battery
charging areas across the entire map. However, it is important to note that the
micro-research can lead to notable negative impacts on the overall processing time.
Based on the conducted simulations, it can be argued that the exclusive utilization
of the macro-research approach is justified, focusing on the examination of a single
charging station for each cluster. Although this approach may result in slightly less
precise travel time calculations, it offers substantial benefits in terms of processing
time reduction.
In order to conclude the analysis of the results obtained with a maximum charging
power by the vehicle equal to 22 kW , it is crucial to highlight the existence of
particular routes, as evident in Table 4.2 highlighted in red, where the intermediate
program fails to respect the user-defined limits for the minimum SoC value upon
arrival and during the journey. This aspect carries significant importance as it
significantly influences the interpretation of the travel and processing time graphs,
ultimately leading to inaccurate comparisons between the intermediate and final
programs. Consequently, the results derived from the intermediate program can
be considered slightly underestimated, as full compliance with the user-defined
constraints would have inevitably increased both total travel and processing time.

Moving on to the analysis of the results presented from Table 4.4 to 4.6, which
depict the total travel and processing time results obtained with a maximum
charging power of 50 kW , we can draw similar conclusions as those derived from
the study conducted with a lower charging power.

Table 4.4: Results relative to Base Logic and Base Vehicle Model - 50 kW

Trip SoH - startSoC - minSoC - endSoC - Temp - numPass - Style Travel Time (sec) N° Stops Process Time (sec) Final SOC (%)

TORINO - MILANO

100 - 80 - 20 - 20 - 21 - 0 - Normal 9305 3 37.75 42.45
090 - 80 - 20 - 20 - 21 - 0 - Normal 11843 9 144.26 86.45
100 - 60 - 20 - 20 - 21 - 0 - Normal 11395 6 125.63 87.54
100 - 80 - 20 - 40 - 21 - 0 - Normal 8837 3 55.25 41.06
100 - 80 - 20 - 20 - 21 - 0 - Sport 13185 5 49.61 83.23

MILANO - CUNEO

100 - 80 - 20 - 20 - 21 - 0 - Normal 16216 6 106.26 74.54
100 - 40- 20 - 20 - 21 - 0 - Normal 17569 6 111.29 74.85
100 - 80 - 20 - 40 - 21 - 0 - Normal 16381 6 122.11 74.82
100 - 80 - 20 - 20 - 14- 0 - Normal 17131 8 85.79 73.99

100 - 80 - 20 - 20 - 21 - 3 - Eco 13479 2 26.26 44.28

CUNEO - PARMA

100 - 80 - 20 - 20 - 21 - 0 - Normal 16872 6 96.24 38.50
100 - 60 - 20 - 20 - 28 - 0 - Normal 17894 6 62.76 40.60
100 - 80 - 20 - 60 - 21 - 0 - Normal 18362 8 161.42 41.36

100 - 80 - 20 - 20 - 21 - 3 - Eco 15247 2 24.52 19.79

TORINO - BRESCIA
100 - 80 - 20 - 20 - 21 - 0 - Normal 15116 7 107.07 63.77
100 - 80 - 20 - 60 - 21 - 0 - Normal 14809 5 84.05 57.73
100 - 80 - 20 - 20 - 30 - 0 - Normal 15421 6 60.18 64.55

ALESSANDRIA - BRESCIA
90 - 80 - 20 - 20 - 21 - 0 - Normal 15632 8 172.51 86.78
100 - 80 - 20 - 40 - 21 - 0 - Normal 21651 9 306.80 86.73
100 - 80 - 20 - 20 - 21 - 0 - Sport 20614 6 356.02 83.45

MILANO - GENOVA

100 - 80 - 20 - 20 - 21 - 0 - Normal 10535 4 112.37 83.56
90 - 80 - 20 - 20 - 21 - 0 - Normal 10712 5 122.36 80.37
100 - 60 - 20 - 20 - 21 - 0 - Normal 11411 5 138.04 81.23
100 - 80 - 20 - 40 - 21 - 0 - Normal 10535 4 112.18 83.56
100 - 80 - 20 - 20 - 21 - 0 - Sport 13988 6 78.20 74.83
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Table 4.5: Results relative to Base Logic and New Vehicle Model - 50 kW

Trip SoH - startSoC - minSoC - endSoC - Temp - numPass - Style Travel Time (sec) N° Stops Process Time (sec) Final SOC (%)

TORINO - MILANO

100 - 80 - 20 - 20 - 21 - 0 - Normal 8571 3 62.47 54.09
090 - 80 - 20 - 20 - 21 - 0 - Normal 9839 4 77.17 61.21
100 - 60 - 20 - 20 - 21 - 0 - Normal 9066 3 73.99 53.77
100 - 80 - 20 - 40 - 21 - 0 - Normal 8571 3 70.85 54.09
100 - 80 - 20 - 20 - 21 - 0 - Sport 9076 2 18.92 41.05

MILANO - CUNEO

100 - 80 - 20 - 20 - 21 - 0 - Normal 14320 4 85.81 48.03
100 - 40- 20 - 20 - 21 - 0 - Normal 15947 5 122.94 26.80
100 - 80 - 20 - 40 - 21 - 0 - Normal 14453 4 100.51 47.94
100 - 80 - 20 - 20 - 14- 0 - Normal 15587 4 52.20 56.93

100 - 80 - 20 - 20 - 21 - 3 - Eco 14357 3 72.86 42.52

CUNEO - PARMA

100 - 80 - 20 - 20 - 21 - 0 - Normal 16576 6 126.38 44.45
100 - 60 - 20 - 20 - 28 - 0 - Normal 18206 8 98.26 43.70
100 - 80 - 20 - 60 - 21 - 0 - Normal 18123 6 130.76 44.44

100 - 80 - 20 - 20 - 21 - 3 - Eco 16351 3 37.94 58.00

TORINO - BRESCIA
100 - 80 - 20 - 20 - 21 - 0 - Normal 13465 4 68.81 71.12
100 - 80 - 20 - 60 - 21 - 0 - Normal 13695 5 103.21 61.72
100 - 80 - 20 - 20 - 30 - 0 - Normal 14705 5 40.42 60.22

ALESSANDRIA - BRESCIA
90 - 80 - 20 - 20 - 21 - 0 - Normal 15843 6 229.72 86.13
100 - 80 - 20 - 40 - 21 - 0 - Normal 13545 4 91.44 60.09
100 - 80 - 20 - 20 - 21 - 0 - Sport 12056 6 110.92 46.11

MILANO - GENOVA

100 - 80 - 20 - 20 - 21 - 0 - Normal 10432 4 129.95 84.74
90 - 80 - 20 - 20 - 21 - 0 - Normal 10466 4 119.41 84.86
100 - 60 - 20 - 20 - 21 - 0 - Normal 11202 5 144.86 82.66
100 - 80 - 20 - 40 - 21 - 0 - Normal 10432 4 140.74 84.74
100 - 80 - 20 - 20 - 21 - 0 - Sport 8676 2 23.53 14.58

Table 4.6: Results relative to New Logic and New Vehicle Model - 50 kW

Trip SoH - startSoC - minSoC - endSoC - Temp - numPass - Style Travel Time Macro (sec) Travel Time Micro (sec) N° Stops Process Time Macro (sec) Process Time Micro (sec) Final SOC (%)

TORINO - MILANO

100 - 80 - 20 - 20 - 21 - 0 - Normal 7311 7311 2 39.96 17.78 1.58
090 - 80 - 20 - 20 - 21 - 0 - Normal 7540 7430 3 34.40 10.08 3.49
100 - 60 - 20 - 20 - 21 - 0 - Normal 7925 7816 3 39.96 11.68 4.07
100 - 80 - 20 - 40 - 21 - 0 - Normal 7499 7499 2 41.22 10.25 1.85
100 - 80 - 20 - 20 - 21 - 0 - Sport 7691 7600 3 38.58 10.04 3.08

MILANO - CUNEO

100 - 80 - 20 - 20 - 21 - 0 - Normal 11123 11019 3 26.79 41.09 9.28
100 - 40- 20 - 20 - 21 - 0 - Normal 11863 11758 4 26.79 35.09 13.12
100 - 80 - 20 - 40 - 21 - 0 - Normal 11667 11667 4 60.03 34.66 3.92
100 - 80 - 20 - 20 - 14- 0 - Normal 11268 11161 3 23.28 34.08 8.6

100 - 80 - 20 - 20 - 21 - 3 - Eco 10433 10433 3 23.53 36.48 5.27

CUNEO - PARMA

100 - 80 - 20 - 20 - 21 - 0 - Normal 15995 15539 4 27.09 64.91 13.57
100 - 60 - 20 - 20 - 28 - 0 - Normal 17619 17245 6 65.66 47.27 25.42
100 - 80 - 20 - 60 - 21 - 0 - Normal 15996 15996 4 62.62 47.22 6.47

100 - 80 - 20 - 20 - 21 - 3 - Eco 15571 15571 3 62.65 47.26 4.52

TORINO - BRESCIA
100 - 80 - 20 - 20 - 21 - 0 - Normal 11847 11800 4 27.73 87.39 5.91
100 - 80 - 20 - 60 - 21 - 0 - Normal 12841 12841 4 74.36 84.73 4.23
100 - 80 - 20 - 20 - 30 - 0 - Normal 12299 12135 5 24.74 102.52 8.28

ALESSANDRIA - BRESCIA
90 - 80 - 20 - 20 - 21 - 0 - Normal 8369 8249 2 63.13 64.36 13.27
100 - 80 - 20 - 40 - 21 - 0 - Normal 8400 8280 2 65.82 72.66 10.65
100 - 80 - 20 - 20 - 21 - 0 - Sport 8360 8169 2 63.57 65.77 12.27

MILANO - GENOVA

100 - 80 - 20 - 20 - 21 - 0 - Normal 6325 6225 1 24.05 20.81 0.76
90 - 80 - 20 - 20 - 21 - 0 - Normal 7436 7436 2 81.80 15.12 1.58
100 - 60 - 20 - 20 - 21 - 0 - Normal 6673 6673 1 24.05 20.54 0.7
100 - 80 - 20 - 40 - 21 - 0 - Normal 7160 7160 2 57.31 19.96 2.98
100 - 80 - 20 - 20 - 21 - 0 - Sport 6380 6380 1 23.41 17.64 0.53
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First, it is worth noting that, as previously observed for the lower charging
power, the intermediate program predominantly achieves a lower total travel time
compared to the base program. Generally, the total ravel time obtained with the
intermediate program ranges between 80-100% of the result obtained with the
base program, with only a few exceptions falling below 80% or slightly exceeding
100%. This once again attests to the effectiveness of employing a vehicle model
that consumes less energy, resulting in a considerable reduction in the number
of required charging stops. Such optimization compensates for the utilization of
a non-constant charging power profile. Conversely, the processing time exhibits
considerable variability, as demonstrated by the figures and the comparable number
of routes that display both higher and lower processing times than the base model.

Figure 4.3: Travel Time Results - 50 kW
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Figure 4.4: Processing Time Results - 50 kW

Directly addressing the results depicted in Figure 4.3, it is evident that the
total travel time achieved with the final program consistently outperforms that
of the intermediate program, which aligns with the earlier observations. However,
the increased allowable charging power has led to a reduced number of charging
stations to consider along the journey, thereby diminishing the effectiveness of the
clusterization and speed-up techniques. Consequently, the percentage difference in
travel time results between the intermediate and final programs is less pronounced
compared to the scenario with the lower charging power. An in-depth analysis of
these outcomes, coupled with the utilization of the same vehicle model and charging
profile between the intermediate and final programs, once again underscores the
efficacy of the various clustering strategies and speed-up techniques, complemented
by the implementation of Dijkstra’s algorithm. Collectively, these methodologies
optimize the selection of charging stops along the shortest path, surpassing the
logic of the base program.
Nevertheless, the superiority of the final program over the intermediate one in terms
of processing time is not as evident. This discrepancy is particularly noticeable
in those routes characterized by specific user-defined parameter combinations,
wherein the final program may exhibit higher processing times than its intermediate
counterpart. This trend becomes more evident during extensive journeys spanning
the entire map. For instance, routes such as Cuneo to Parma or Turin to Brescia
generally manifest higher processing times in the final program, while shorter routes
such as the one from Turin to Milan or Turin to Genoa improved results in both
travel and processing time when compared to the intermediate program.
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Chapter 5

Conclusion

Throughout this Master’s Thesis, the project has been presented in alignment with
the actual evolution of the program, starting from the original program [17] and
taking into consideration the enhancements it has introduced to the state of the
art in EV route planning software.
The first step involved modifying the vehicle model and the battery recharging
profile within the minimum travel time path research algorithm. The vehicle
model, built upon the framework proposed by [25], facilitated more precise energy
consumption predictions by more accurately modeling the electric motor’s efficiency
through a power-dependent engine map. Moreover, regenerative braking efficiency
was incorporated via a regeneration factor linked to the vehicle’s speed [25]. The
comparative analysis between the original and the new vehicle models illuminated
how the combined motor and battery efficiency consistently achieve a reduction in
battery consumption of approximately 1.5 kWh per 100 km traveled.
In parallel to the advancement in the vehicle model, a strategic decision was made
to introduce a novel battery charging model, formulated through in depth analysis
as elaborated by [18]. This model proposed adopting a CP-CV charging protocol
through a comparison with real world data, replacing the previous constant power
recharging protocol.

The analysis of initial simulations, carried out with the aim of identifying the
minimum travel time path between a user defined origin and destination, employing
the new vehicle model together with the original research algorithm, shows sig-
nificant challenges concerning final outcomes, processing times and recommended
recharging stations. A thorough examination of the obtained results and the algo-
rithm utilized in the original project underscored the necessity of improvements.
These enhancements were not only confined to the vehicle model and battery
charging process, but extended to the algorithm itself employed for the minimum
travel time path research. Consequently, the decision was made to comprehensively
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rewrite the research algorithm, leveraging the architecture of Dijkstra’s algorithm.
According to this methodology, each charging station was conceptualized as a node
within a network. The cost associated with each link between nodes represented
the shortest travel time between the starting and ending stations, incorporating
the battery charging time up to the level specified by the user.

It is crucial to emphasize that this approach deviates from the conventional
minimum travel time path research programs based on the Dijkstra’s algorithm.
As elucidated in Section 2.3, the usual procedure entails constructing a network of
nodes, designating each intersection on the map as a node, with links representing
road segments between intersections. Each link is assigned a cost, representing
travel time. The Dijkstra’s algorithm is applied to this network of nodes to identify
the less expensive path from a starting node to an arbitrary destination node.
Starting from this base version, a specific variant tailored for electric vehicles was
developed [38], which also accounts for energy consumption within the cost function
of each link. This ensures that the optimal path does not consume more energy
than initially available in the battery.
The decision to employ the Dijkstra’s algorithm in an unconventional manner
stemmed from two considerations. First, during the script of the original project
[17], the choice was made to utilize external software [43] to effortlessly obtain the
shortest path from an initial location to an arbitrary destination. This bypassed
the need to define a cost matrix, with simply provide the software with a map con-
taining the costs of each road segment. However, this software did not incorporate
energy consumption as a factor in the cost function of each segment. Consequently,
it might output a path that was not feasible in terms of energy consumption,
potentially leading to a situation where, at the end of the journey, more energy
was consumed than initially stored in the battery. Therefore, it became imperative
to verify the feasibility of the journey from the perspective of energy consumption,
accounting for the battery’s initial conditions. During the construction of the node
network between the various charging stations, if the path suggested by the external
software was found to be unfeasible in terms of energy consumption, that segment
was excluded from the network.
Conducting a posteriori check without incorporating energy consumption in the
cost function of each road segment results in a loss of mathematical precision in
the final solution. In simpler terms, it yields paths with longer travel times than
the minimum possible if energy consumption were included, as detailed earlier.
Nevertheless, the results presented in [18] demonstrate that the paths obtained by
including energy consumption in the cost function compared to those obtained by
applying a posteriori checks exhibit minimal disparities, justifying the unconven-
tional construction of the node network and the subsequent use of the Dijkstra
algorithm.
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As delineated earlier in Section 3.5, the substantial number of connections
within the Dijkstra’s network, when applied to each charging station, in conjunc-
tion with the average time required to calculate the cost of each network link
and the requisite updates of these costs for every travel request to accommodate
specific user-provided data, necessitated targeted strategies to expedite the network
construction phase. An additional effort was undertaken to address this challenge.
The objective was further streamlining the network’s complexity by formulating an
algorithm capable of discarding links representing unfeasible travel scenarios, those
inconsequential to the desired path, or those typically excluded due to inherent
constraints that prolonged the total travel time.
Taking inspiration from the cognitive processes involved in human route planning,
the approach was to deem journeys reliable only when their intermediate starting
and ending positions fell within a defined-width imaginary corridor. This corridor
was designed to originate from and terminate at the user-specified starting and
ending point. Nonetheless, it is imperative to acknowledge a hidden limitation.
The effectiveness of these techniques is most pronounced when dealing with routes
between relatively closed positions in relation to the overall dimensions of the
map. In scenarios where the distance between the starting and ending positions is
closed to the maximum defined by the map, the spatial layout of the infrastructure,
encompassing highways and their associated recharging stations, finishes to exhibit
linear characteristics. In such cases, two important risks appears. Firstly, there
exists the possibility that segments of the route may extend beyond the boundaries
of the imaginary corridor created by the speed-up techniques, thereby elevating
the risk of not accounting plausible charging stations. To mitigate this danger,
an adaptation involves increasing the corridor’s width in accordance with the
spatial distance between the starting and ending positions, thereby guaranteeing
the inclusion of all feasible charging stations. Nonetheless, this adaptation presents
a secondary risk: the potential inclusion of an excessive number of charging stations
within the corridor. This, in turn, would substantially increase processing time,
thereby nullifying the benefits derived from the truncation done by the speed-up
techniques.
This double problem is a well-known risk associated with the use of a straight
corridor that inadequately fits the intricate configuration of the infrastructure
depicted on the map. A plausible solution to this issue would have necessitated
the construction of a corridor with a variable form, tailored to the principal in-
frastructure features situated between the initial starting and concluding positions.
However, such solution would have involved a considerable investment of labour
time, so it has been replaced in favor of a solution adopting a straight corridor
with variable width based on the distance between starting and ending position.
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In conclusion, the integration of speed-up techniques through the establish-
ment of a straight corridor with variable width, built upon the distance spanned
between the starting and ending positions, constitutes an indispensable element
that facilitated the integration of the Dijkstra’s algorithm into the project, all
while maintaining acceptable processing times. It is imperative to underline that
all the optimization strategies outlined have notably enhanced the overall system
performance. Specifically, the duration of travel and data processing times have
been significantly refined. As demonstrated in Section 4, the implementation of
algorithms built on the structure of Dijkstra’s node network for optimal route find-
ing consistently resulted in diminished travel times. This achievement stems from
the ability to discern the most suitable charging stations through the construction
of a node network, coupled with the capability to traverse it with utmost freedom.
Conversely, regarding processing time, a more faded dynamic emerges. Broadly
speaking, it can be affirmed that as the maximum charging power permissible
by the vehicle diminishes, the number of charging stations capable of providing
that level of energy increases. In these scenarios, the new search logic proves
more advantageous in terms of processing time than what was achievable through
the original program. This scenario represents the optimal context where the
clusterization and truncation executed through the speed-up techniques manifest
particular effectiveness in optimizing the process. Nevertheless, with the augmenta-
tion of the maximum permissible charging power of the vehicle, a reduction in the
number of stations capable of offering that power is observed. Consequently, the
number of recharging stations normally taken into account during the research for
the travel path diminishes. However, this situation is translated into a decreased
positive impact of clusterization and truncation within the decision making process
pertaining to processing time.

Within the purview of this Master’s Thesis, the innovations introduced in this
project encompassing the vehicle model, battery recharging process and the al-
gorithm for selecting recharging stations to minimize the total travel time, have
substantially contributed to the overall refinement of the original program. Specifi-
cally, the decision to incorporate clusterization of charging stations predicated on
their geographical density, coupled with the integration of a sequence of speed-up
strategies for truncating less relevant branches within the node network concerning
the user’s desired path, unlocks promising horizons within the realm of optimal
route planning. This progression can be further extended into the use of artifi-
cial intelligence given that , as introduced in Section 3.4, these strategies were
formulated with analogies to the current cognitive approach to route planning.
However, the integration of computational approaches amplifies these capabilities,
substantially enhancing computational performance and, consequently, markedly
reducing processing times.
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