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ABSTRACT 

 
This thesis presents a comprehensive study focused on examining the three distinct regimes of 

friction, namely pre-sliding, transition, and gross-sliding, in the context of pneumatic actuation 

systems. Pneumatic actuators are widely used in the industrial field thanks to their cost-effectiveness, 

versatility, and mechanical simplicity compared to other types of actuators. Furthermore, the use of 

air enables greater flexibility in their application, even in flammable or explosive environments and, 

air as a driving fluid, is considered a sustainable resource compared to other fluids as oils.  
The primary objective of this research is to gain a deep understanding of the frictional behaviours that 

occur when pneumatic actuators are employed, which is crucial for enhancing the efficiency, control, 

and reliability of such systems. The investigation begins with a complete review of the fundamental 

principles of friction and its role in pneumatic actuation and then experimental work is conducted to 

characterize and differentiate the three distinct frictional regimes. Different test setups are utilized to 

control parameters like pressure and velocity allowing for the study of each regime's behaviour. A 

system made by a carriage constrained by a linear guide with recirculating ball bearings, which is 

actuated by a double-acting pneumatic cylinder and a 5/3 proportional flow valve is used. This system 

is used for the study of transition and gross-sliding regimes. For the pre-sliding regime, experimental 

trials coming from the literature are taken in account due to the impossibility of conducting certain 

type of tests. Experimental data are then collected to examine the frictional behaviour. In addition to 

the experimental approach, numerical models from existing literature are considered in this study as 

Polito, Dahl, LuGre and Leuven models. Those models are widely used in the literature thanks to 

their efficiency offering different approaches (static and dynamic) and different accuracy. The results 

obtained from these numerical simulations are then compared with the experimental results to validate 

the different models.  
The findings of this research contribute to a comprehensive understanding of the pre-sliding, 

transition, and gross-sliding regimes of friction in pneumatic actuation systems. By clarifying the 

factors influencing these regimes and their impact on system performance, this study provides 

valuable insights for the design and control of pneumatic actuators in various applications, including 

robotics, automation, and manufacturing. Additionally, the knowledge gained from this research can 

aid in the development of optimized control strategies, materials selection, and lubrication techniques, 

ultimately leading to more efficient and reliable pneumatic actuation systems. These insights have the 

potential to make a significant impact on industries where pneumatic actuators play a critical role in 

achieving precise and controlled motion. 
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CHAPTER 1 
 
In this section will be entailed a brief description of the pneumatic cylinder’s applications and the 

problem about the friction will be highlighted. Then, the most used numerical friction models are 

listed and concisely described. A discussion it is also necessary about how the parameters that 

compose the models are found since their empirical and not physical nature.  
 
1.1 Introduction 
 
Pneumatic cylinders are widely used in many industrial applications. They play a key role in 

automatic process where repeated movements are necessary. From 2011 to 2015, the sales value on 

the global market of pneumatic cylinders has increased from 837,35‧ to 961,83‧million dollars [1]. 

Their success can be attributed to the operating flexibility, the high reliability, the relative low cost, 

and their ability to work in rough environments, i.e., dusty air, explosive environments.  
They can be used in a variety of applications regarding manufacturing, robotics, material handling 

and packaging, where they allow parts or tools to be positioned, moved, or picked up. Other 

operations include locking, where a piece is held in place by jaws driven by the cylinder, and 

punching, where the thrust of the pneumatic cylinder allows to mark an object. 
However, deal with a compressible fluid has some not negligible consequences: the compression and 

expansion process of air involves thermodynamic losses due to entropy affecting the efficiency 

compared to the hydraulic actuators. If we consider the efficiency as the ratio between power 

consumption to obtain pressurized air and the output power of the cylinder it can be noticed that the 

pneumatic actuators are the less efficient in comparison to the hydraulic and electric ones. In 

particular, the pneumatic cylinders can reach up to 20% in efficiency against the 40% of the hydraulic 

pistons and the 80% of the electric [1]. On the other hand, air can be considered as an eco-friendly 

medium instead of oil-based medium that are used in the hydraulic cylinders: air is always available, 

and it can be considered as non-polluting since doesn’t need any sort of processing thus avoiding the 

use of fluids from the oil industry. 
The compressibility of the fluid entails relative low accuracy and slight resistance to external noises. 

Air leakages are also to be reckoned with. Nevertheless, for certain type of functioning they are 

preferred (i.e., systems that do not require high pressures). Friction losses are also source of lack in 

performance mainly due to the internal structure of the cylinder (the contact of piston and rod seals 

with the cylinder walls). Its chaotic and random behaviour is very hard to predict, and it is an obstacle 

in the optimal use of pneumatic pistons in positioning systems. The value of the friction is never the 

same and changes according to dozens of parameters.  
Friction may occur in nonlinear manner and cause limit cycles and unexpected stick-slip oscillation 

at low operating velocities. These nonlinear characteristics of the friction make accurate simulation 

and position control of the fluid power cylinders difficult to achieve. 
Predicting friction may also help evaluate the wear (to avoid unexpected failures) of the components 

other than increase the accuracy. Currently, a knowledge of this phenomena is also warranted since 

environmental regulations limit the use of lubricant mists in compressed air, and a trend towards more 

compact cylinders calls for new space-saving sealing arrangements [2]. To overcome these 
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difficulties, it is, therefore, necessary to develop an accurate friction model for the pneumatic 

cylinders. 
 
The contacts between the asperity of the surfaces of two objects generate friction. The friction force 

is naturally opposed to the direction of the displacement trying to stop the motion. Friction occurs 

also in static when the objects in contact are not relatively moving. This force is not easy to predict 

due to its non-linearity and compromise the accuracy of pneumatic cylinders in servo positioning 

system: without feedback sensors it is impossible to know the exact position of our system. There is 

still plenty of ongoing studies that try to replicate and model this phenomenon since there is not a 

model that can precisely estimate friction. 
Friction force is usually subdivided into two regimes: the presliding regime and the gross-sliding 

regime. In the presliding regime the friction force is mainly a function of position, whereas in the 

gross-sliding regime the friction force appears as a function of velocity. Within these regimes the 

observed phenomena can be subdivided into static and dynamic phenomena. This is because frictional 

behaviours have their own internal dynamics, it thus does not instantaneously react on a change of 

velocity or displacement. The transition from pre- to gross-sliding occurs when the external applied 

force overcome a characteristic value, called breakaway force.  
In presliding regime, the adhesive forces are dominant. Applying a load (without triggering the 

motion) means force the asperity to deform both elastically and plastically, behaving as a non-linear 

spring. As the force increases asperity deforms more and more until it achieves the maximum stiction 

force (breakaway point) in which the contacts between the asperities breaks as the limit in the stress-

strain curve reaches and sliding occurs. In the static field it be noticed a hysteretic behavior due to 

the non-local memory of the junctions for which the deformation of the roughness depends only on 

the position of the object and not on the velocity given that it is still not moving. The hysteretic trend 

moves between two poles: the positive breakaway force and the negative one. What there is in the 

middle among those two extremes is a function of the micro-displacement of the object and contains 

internal loops each who moves between their poles given by the past deformations of the asperity. 

When the force is decreased to zero, not all displacement will be recovered, i.e., there will in general 

be a residual displacement. Hysteresis depends on the past events that occur in stiction but once the 

sliding regime starts, the phenomena completely disappears and in the case the object will stop, the 

hysteresis will start again without memory of the previous deformations. 
Above the breakaway point, i.e., in the gross sliding regime, all the junctions are broken, and the 

friction is no further an only displacement function. Generally, at low velocities there is still a not 

negligible contribution due to the asperity deformation but when the speed increases more and more, 

since the asperities have less and less time to interact, the velocity takes the lead and friction is 

increasingly a velocity function. After the breakaway threshold, the object will suddenly accelerate, 

and the system will be critically stable. The resistance to the motion during gross sliding usually has 

its maximum value at the beginning of motion and decreases with increasing relative velocity [3]. 
The following paragraphs will describe some of the numerical models that are currently used to 

simulate the frictional behavior of sliding objects. 
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There are plenty of method that try to estimate the sliding regime in dry friction. Leonardo da Vinci 

in the 16th century stated the two basic laws of sliding friction: the frictional resistance is proportional 

to the load and it is independent of the apparent area of the sliding surfaces [4].  
Later, in 1781, Coulomb formulated the dry friction laws in the form that is still used today for some 

simple cases. The Coulomb law is considered a static law in which velocity is not taken in account. 

Coulomb already divided the friction phenomena in two parts: static and sliding. Coulomb states that 

starting from rest position, it takes a minimum force 𝐹𝑠 = 𝜇𝑠𝐹 to move an object in contact with 

another surface. The coefficient μs stands for the static friction coefficient. In sliding condition, the 

coefficient that determines the Coulomb force changes in μd, the dynamic friction coefficient. The 

two coefficients depend on the materials property of the couple of objects in contact. 
 

{
𝐹𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = 𝜇𝑑 𝐹

𝐹𝑓 = 𝐹𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑠𝑖𝑔𝑛(𝑣)
 

 
Friction is presented as discontinuous, and its sign depends on the sign of the relative velocity 𝑣. In 

sliding condition, the force keeps constant. This model is considered as a static one in which there is 

an assumption that in the standstill friction conditions the relative motion between the rubbing bodies 

does not occur. Static models, with a simpler structure and fewer parameters than in the dynamic 

models, are mainly dedicated to the study of friction pairs with significant slip velocities and a small 

number of transitions between standstill and kinetic friction states, especially when these transitions 

run in a rapid manner [5].  
 

 
Figure 1.1 The Coulomb model. 

 
 

The Coulomb stiction model is a variation of the classic Coulomb friction model that aims to capture 

the phenomenon of stiction. Stiction is observed when the applied force is not sufficient to overcome 

the static friction and initiate motion. When the relative velocity between the surfaces is greater than 
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zero, the dynamic friction force comes into play and opposes the motion. However, when the relative 

velocity is zero (indicating stiction), the static friction force becomes the dominant force, preventing 

any motion from occurring. 
 

 
Figure 1.2 The Coulomb-stiction model. 

 
Later, Karnopp tried to overcome the problem of the friction at zero velocity. The Karnopp model 

(1985) operates by taking the applied force on the object as an input and produces the resulting 

velocity of the object as an output. Within this model, there exists a defined interval of zero velocity 

(|v| < DV). During this interval, the internal state (which includes the velocity) can change and be 

non-zero, but the modeled velocity output remains zero. Depending on whether the state lies within 

or outside the zero-velocity interval, the friction force is determined using either a saturated version 

of the external force or a static function of the velocity.  
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Figure 1.3 The Karnopp model. 

Despite its advantages, the Karnopp model has a main drawback in that it requires the external force 

to be provided as an input, which is not always known. Additionally, the zero-velocity interval does 

not align with real friction characteristics. Nevertheless, the Karnopp model and its variations are still 

utilized because they allow for efficient simulations. 
The continuous model, also referred to as the smooth Coulomb friction model, is a modified version 

of the traditional Coulomb model. It was developed to overcome the computational challenges caused 

by force discontinuity. Instead of a sudden change, a smooth curve is used to address the discontinuity 

around v = 0. An example of this is the investigation of the hyperbolic tangent smoothening function. 

The Coulomb law changes its formula in [6]: 

𝐹𝑓 = −𝐹𝑑 tanh (
𝑣

𝑣𝑑
) 
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Figure 1.4 The Smooth-Coulomb model [6]. 

With 𝑣𝑑 as the velocity tolerance and Fd is the dynamic friction force.  However, this model cannot 

reproduce stiction because the force is equal to zero when velocity is null. 
In the velocity-based friction model instead, an extra curve is incorporated specifically for the range 

that includes zero velocity. Within this model, Fd represents the dynamic friction force, Fs represents 

the static friction force, vd represents the dynamic velocity tolerance, and vs represents the static 

velocity tolerance. The curve is constructed by combining trigonometric functions, with Fd, Fs, vd, 

and vs serving as parameters. The formula used in this model is [6]: 
𝐹𝑓 = −𝐹𝑠  sin [𝐶 tan

−1(𝐵 𝑣) − 𝐸 {(𝐵 𝑣) − tan−1(𝐵 𝑣)}]   
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Figure 1.5 Velocity-based friction model [6]. 

It is important to note that this model falls short of accurately replicating stiction at zero velocity. 

Nonetheless, the presence of the friction force Fs helps to significantly reduce the relative velocity 

compared to the smooth Coulomb friction model. 
A more complex model was implemented by Stribeck (1902) in which the dependence on velocity in 

sliding regime is highlighted for the first time. Stribeck modified the constant portion of the Coulomb 

model replacing it by the Stribeck function 𝑠(𝑣). The latter decreases in velocity and bounded by un 

upper limit at zero velocity equal to the static friction force 𝐹𝑠, and a lower limit equal to the Coulomb 

force 𝐹𝑐, and a viscous friction part [7]. Stribeck thought about replace the discontinuity of the 

Coulomb model with a line of finite slop, up to a very small threshold ε and doing experiments for 

constant velocities he observed that part of the friction force as a function of velocity (for constant 

velocity) has a negative friction force gradient with increasing speed. 
 

𝐹𝑓 =

{
 
 

 
 
          𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒

(|
𝑣
𝑉𝑠
|)
𝛿

,          |𝑣| > 𝜀

(𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
(|
𝑣
𝑉𝑠
|)
𝛿

)(
𝑣

𝜀
),         |𝑣| ≥  𝜀 

 

 
With Fc represents the Coulomb friction force at zero velocity, Fs is the static friction force, Vs is the 

Stribeck velocity, that is the velocity in correspondence of the lowest value of friction force, and δ is 

the shaping factor of the Stribeck function, while ε is the threshold. 
 
 
 
 

 
Figure 1.6 The Stribeck curve. 
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These Coulomb and Stribeck methods are impractical for friction compensation at motion stop and 

inversion, where stick-slip could arise, and discontinuity occurs. 
Another model that tries to overcome the zero-velocity problem is presented in [8] where Lentini et 

al. proposed a static solution based on the Karnopp and Stribeck models. 
 

𝐹𝑓 = {

𝐹(𝑣),                         |𝑣| ≥  𝜀  
𝐹𝑒𝑥𝑡,       |𝑣| < 𝜀, |𝐹𝑒𝑥𝑡| < 𝐹𝑠
𝐹𝑠  𝑠𝑖𝑔𝑛(𝐹𝑒𝑥𝑡),      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹(𝑣) = {𝑠𝑖𝑔𝑛(𝑣)𝐹𝑐1 + 𝑠𝑖𝑔𝑛(𝑣)(𝐹𝑠 − 𝐹𝑐1)𝑒
−(
|𝑣|
𝑉𝑠
)
𝛿

+ 𝑐1𝑣

𝑠𝑖𝑔𝑛(𝑣)𝐹𝑐2 + 𝑐2𝑣
 

 
Where Fs is the breakaway force, vs is the Stribeck velocity, δ is a geometry dependent parameter, FC1 

and FC2 stand for the Coulomb friction for increasing and decreasing speed, c1 and c2 are the viscous 

term for increasing and decreasing velocity respectively while ε is the Karnopp threshold that is 

needed to overcome the zero-velocity numerical problem. 
 
 
 
 
 

 
Figure 1.7 Friction model presented in [8]. 

A novel view about the contacts between the surfaces of two bodies: to overcome the problem due to 

the asperity deformation an analogy with the behavior of “bristles” was made. Asperities are now 

considered as some bristles with its own stiffness. Each asperity contributes to the total friction force 

as a spring would be. The change in the shape of each asperity is given by the stress-strain curve and 
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they act as stiff beams deforming in the elasto-plastic field. Within a given applied load, the elastically 

deformed bristle adds a compliance and returns to its original position after the load is removed. Once 

the elastic resistance is overtaken, the entire brush moves, and a permanent displacement is produced 

[6]. 
 
 

 

Figure 1.8 The bristle analogy [6]. 

 
The bristles idea was initially introduced in the Dahl model. The Dahl model attributes the origin of 

friction to the continuous formation and subsequent breaking of quasi-static bonds. These bonds give 

rise to a brush-like behavior, where the bristles of the brush bend in one direction during forward 

motion and then flop or bend in the opposite direction when the motion is reversed. The Dahl model 

is considered as a static model in which the presliding regime is not considered. For high velocities, 

the Dahl model exhibits similarities to Coulomb friction, which can be discerned by setting the 

derivative of displacement with respect to time (dz/dt) equal to zero. The main disadvantage of the 

Dahl model is its complexity that results in being highly computation-wise time-consuming and in 

generating high calibration costs  [5]. 
The presliding friction has been approximated as a generalized first order model of the position 𝑥 of 

the object. The sliding regime is approximated by a static friction Fs. 

 
𝑑𝐹𝑓

𝑑𝑥
=  𝜎0 𝑠𝑖𝑔𝑛 (1 −

𝐹𝑓

𝐹𝑠
) |1 −

𝐹𝑓

𝐹𝑠
|
𝑛

 

 
With σ0 as the micro-stiffness, Fs the static friction force and 𝑛 a shape factor. 
The latter can be converted into an easier form for the numerical implementation: 
 

{

𝐹𝑓 = 𝜎0 𝑧

𝑑𝑧

𝑑𝑡
= 𝑣  𝑠𝑖𝑔𝑛 (1 − 𝑠𝑖𝑔𝑛(𝑣)

𝜎0𝑧

𝐹𝑐
) |1 − 𝑠𝑖𝑔𝑛(𝑣)

𝜎0𝑧

𝐹𝑐
|
𝑛 
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With 𝑧 the state variable interpreted as elastic deformation of surface asperities of adjacent bodies 

and 𝑣 the sliding velocity but it does not correspond to any physical quantity, i.e., the parameters of 

this kind of model must be experimentally identified. 
 
 

 

Figure 1.9 Representation of the variable z [5]. 

Notice that implicitly is assumed that σ0 is time invariant. The Dahl model does not include the 

Stribeck effect nor stiction. Another disadvantage is that the Dahl model suffers from drift [9]. When 

the friction force is simulated by the Dahl model and an arbitrary small bias and small vibrations are 

put on the system it will drift, even though the applied force will stay below the break-away force. 

The reason for this drift is that the Dahl model only include a plastic component in its model when it 

describes the pre-sliding phenomenon. Not considering the elastic behavior of the asperities means 

that the value of the asperities deformation never resets. 

 
Haessing and Friedland (1991) introduced two novel stick-slip friction models. One of them, called 

the Bristle model, aimed to depict the interactions occurring at the microscopic contact point between 

two surfaces. In this model, each contact point is conceptualized as a connection between pliable 

bristles. As the surfaces undergo movement, the strain within the bond intensifies. Consequently, the 

bristles function as springs, generating a force of friction. 
 

𝐹𝑓 =∑𝜎0 (𝑥𝑖 − 𝑏𝑖)

𝑁

𝑖=1

 

 
With N the number of bristles, σ0 the stiffness of the bristles, xi the position of the bristles and bi the 

location where the bond is formed. When the distance between |xi-bi| equals δs, the bond breaks, 

resulting in the formation of a new bond at a random location relative to its previous position. 

However, the Bristle model has limited usage due to its computational inefficiency. To address this, 
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Haessig and Friedland introduced the Reset Integrator model, which offers a more efficient approach 

to modeling friction. Rather than breaking the bristle, this model maintains a constant bond by halting 

the increase of strain at the point of rupture. To define the strain in the bond, an extra equation is 

proposed: 
 

𝑑𝑧

𝑑𝑡
= {

0  𝑖𝑓 (𝑣 > 0 𝑎𝑛𝑑 𝑧 ≥ 0) 𝑜𝑟 (𝑣 < 0 𝑎𝑛𝑑 𝑧 ≤ 0)
𝑣     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
The 

𝑑𝑧

𝑑𝑡
 signal is fed to an integrator, to which the input is shut off according to the rules above. The 

friction force is then given by: 

𝐹𝑓 = (1 + 𝛼(𝑧)) 𝜎0𝑧 + 𝜎1
𝑑𝑧

𝑑𝑡
 

The term 𝜎1
𝑑𝑧

𝑑𝑡
 is the damping term that is different from zero only in adhesion. Striction is realized 

by: 

𝛼(𝑧) = {
𝑎   𝑖𝑓 (|𝑧| < 𝑧0)
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
The variable z remains constant when the deflection reaches the z0 value. At the same time, the friction 

force drops since a(z) is zero.  
The main disadvantage of this model is that it requires detection of 𝑧0 > |𝑧| that it is discontinuous. 
 
Armstrong (1994) created a model that separates sticking and sliding into two different equations. 

The adhesion part is given by: 
𝐹𝑓 = 𝜎0 𝑥 

While sliding is modeled by: 
 

{
  
 

  
 
𝐹𝑓(𝑣, 𝑡) =

(

 𝐹𝑐 + 𝐹𝑠(𝛾, 𝜏𝑑)
1

1 + (
𝑣(𝑡 − 𝜏𝑡)

𝑣𝑠
)
2

)

 𝑠𝑖𝑔𝑛(𝑣) + 𝐹𝑣  𝑣

𝐹𝑠(𝛾, 𝜏𝑑) = 𝐹𝑠,𝑎 + (𝐹𝑠,∞ − 𝐹𝑠,𝑎  
𝜏𝑑
𝜏𝑑+𝛾

)

 

 
The seven parameters that give the name to the model are: Fc the Coulomb friction force, Fv the 

viscous friction force coefficient, Fs,∞ the magnitude of the Stribeck friction after a long time at rest, 

σ0 the stiffness of the static contact, vs the Stribeck velocity, τt the time-constant of the frictional 

memory, γ an empirical parameter. The other parameters are the dwell time τd , the rising static friction 

function Fs(γ,τd) and the value of the Stribeck friction at the end of the previous period Fs,a. 
An important drawback is the requirement to initialize the states of the model whenever a switch 

occurs, necessitating a mechanism to govern this switching process. Whether the model can be 

classified as truly dynamic is a topic of debate. This is because it essentially combines two static 

relationships without inherent dynamics, even though it effectively describes phenomena related to 

dynamic friction. 
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In subsequent studies, dynamic models as the Lund-Grenoble (LuGre) model were introduced. 

“Dynamic model” means that both pre-sliding and gross sliding behavior are considered. The LuGre 

model is a modification of the Dahl model in which the pre-sliding regime is combined with the 

Stribeck curve 𝑠(𝑣) in sliding regime [10] and it is a bristle-based model.  In order to describe the 

friction lag in sliding regime, that comes from hysteretic behaviors of the asperities, the authors 

introduced an internal state variable 𝑧 and a first order nonlinear differential equation [11]: 
 

{

𝑑𝑧

𝑑𝑣
= 𝑣 − 𝜎0

𝑣

𝑠(𝑣)
𝑧

𝑠(𝑣) = 𝑠𝑖𝑔𝑛(𝑣) (𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
−|
𝑣
𝑉𝑠
|
𝛿
 

 
Where 𝑣 is the velocity of the element under investigation, σ0 represents the average bristle stiffness 

and 𝑠(𝑣) being the Stribeck curve, Fc is the Coulomb friction force, Fs is the stiction force, Vs is the 

Stribeck velocity and δ is an empirical factor called “the shape factor”.  
Instead, the friction force comes up as a function of the velocity 𝑣 and of the state variable 𝑧: 
 

𝐹𝑓 = 𝜎0 𝑧 + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2 𝑣 

 
With σ1 as the micro-viscous friction coefficient and σ2 representing the macroscopic viscous 

damping. The LuGre model is widely used and very popular in control applications despite the 

nonlinear properties. The model takes place mostly for identification, dissipative and adaptive control 

considerations [11]. 
 
From experimental trials it has been noted a hysteretic behavior during presliding regime. The Leuven 

model is a dynamic bristle-based model that tries to consider this response of the system during 

adhesion regime by adding a new term 𝐹ℎ(𝑧) that substitutes the first term of the LuGre model friction 

force equation. The identification of this term will be detailed further on during this study. This term 

appears during stiction and is function only of the position and does not depend on velocity. The 

remaining part of the LuGre equation is kept almost identical in the Leuven model a part of the state 

equation of the variable 𝑧. 
The friction is identified with the following equation: 
 

𝐹𝑓 = 𝐹ℎ(𝑧) + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2 𝑣 

 
The parameter σ1 and σ2 are already descript in the LuGre model and 𝑣 is the velocity.  
Instead, the variable 𝑧 comes from the state equation: 
 

𝑑𝑧

𝑑𝑡
= 𝑣 ( 1 − 𝑠𝑖𝑔𝑛 (

𝐹𝑑(𝑧)

𝑠(𝑣) − 𝐹𝑏
) |

𝐹𝑑(𝑧)

𝑠(𝑣) − 𝐹𝑏
|
𝑛

) 
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𝑠(𝑣) is the Stribeck curve, Fd is a point-symmetrical strictly increasing function of 𝑧, Fb is the value 

of the friction force at the velocity reversal and 𝑛 is the Leuven shape factor determining the 

transformation between the state variable 𝑧 and the position of the moving mass. This equation will 

further modify to avoid some mathematical issues.  
Instead, the parameter Fh(z) that takes in account the hysteretic behavior during stiction, is given by: 
 

𝐹ℎ(𝑧) = 𝐹𝑏 + 𝐹𝑑(𝑧) 
 
This method presents more problem during his implementation respect to the LuGre method but is 

more precise due to the parameter that consider hysteresis. 
 
The authors of the Leuven model also introduced the Generalized Maxwell-Slip (GMS) model as a 

response to a limitation of the LuGre model. The primary motivation behind developing the GMS 

model was to address the absence of nonlocal memory characteristics in the hysteresis behavior 

during the presliding regime. 
In the GMS model, N elasto-sliding elements are connected in parallel. Each of these massless model 

shares the same input (velocity, force, or displacement) and dynamics model but possesses distinct 

parameter sets. Additionally, each individual friction model includes a logical state indicating whether 

the element is in a sticking or slipping state. 
Each mass is characterized by its own maximum force Wi, a linear spring-constant Ki and a state 

variable δi that describes the position of the i-th element. 

 

Figure 1.10 Maxwell slip model configuration [11]. 

 
The physics of each elementary mass are determined by the following rules: 
 



14 
 

{
 
 

 
 

𝑑𝛿𝑖
𝑑𝑡
 =  𝑣        𝑖𝑓 𝛿𝑖 < 𝑠𝑖(𝑣) 𝑖𝑛 𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛

𝑑𝛿𝑖
𝑑𝑡

=  𝑠𝑖𝑔𝑛(𝑣)  𝐶𝑖  (1 −
𝛿𝑖
𝑠𝑖(𝑣)

)        𝑖𝑛 𝑠𝑙𝑖𝑑𝑖𝑛𝑔

𝑠𝑖(𝑣) = 𝑠𝑖 (0) + ( 𝑠𝑖(0) − 𝑠𝑖(∞))(𝑒
−(

𝑣
𝑉𝑠
)
− 1)

 

 
Where 𝑣 is the common input for all the models (v stands for velocity in this case), δi is the i-th spring 

displacement, C is a parameter that determines how quick δi converges to si(v) that is the i-th Stribeck 

velocity. 
The friction force comes from the summatory of all the elasto-plastic models plus some parameters: 

𝐹𝑓(𝑣) =  ∑(𝑘𝑖 𝛿𝑖 + 𝜎𝑖  �̇�𝑖) + 𝑓(𝑣)

𝑁

𝑖=1

 

Where 𝑓(𝑣) is the velocity strengthening component that usually is proportional to 𝑣 to express the 

viscous friction. Inside the summatory the first term represents the elasto-sliding friction force while 

the second one is the viscoelastic part. 
It is possible to obtain the basic Maxwell slip model replacing δi with 

𝑊𝑖

𝑘𝑖
 and applying the Coulomb 

law for friction. The Maxwell slip model can be helpful in the Leuven method to approximate the 

hysteretic behavior.  
The model's disadvantage lies in the substantial amount of experimentation required to determine the 

parameters. One approach to determine the model is by comparing the hysteresis loops produced by 

the N elements with experimentally derived hysteresis loops. 
 
Two of the newest models about friction are The Non-Linear Regression (NLR) and Dynamic 

NonLinear Regression with direct application of eXcitation (DNLRX) techniques that are built upon 

the fundamental Maxwell Slip model. This underlying model incorporates nonlocal memory to 

capture presliding hysteresis but only offers a fixed sliding friction. Both the NLR and DNLRX 

models comprise N parallel elasto-slide elements that are weightless and experience identical 

displacement excitation x(t). 
If the absolute deformation of an element's spring, denoted as δi, is less than the threshold Δi (|δi(t)| 

< Δi), the element remains stuck. However, if the deformation exceeds the threshold, the element 

starts to slip, and the spring deformation is determined as δi(t) = Δi. 
 

𝛿𝑖(𝑡) = 𝑠𝑖𝑔𝑛 [𝑥(𝑡) − 𝑥(𝑡 − 1) + 𝛿𝑖(𝑡 − 1)] ‧ 𝑚𝑖𝑛{|𝑥(𝑡) − 𝑥(𝑡 − 1) + 𝛿𝑖(𝑡 − 1), 𝛥𝑖} 
 
The whole system is in adhesion if at least one element sticks. The system slide when all the elements 

do. 
• In the NLR model the friction force is given by: 

𝐹𝑓(𝑡) =  ∑𝑘𝑖   ‧ 𝛿𝑖(𝑡)

𝑁

𝑖=1

 

• In the DNLRX model instead: 
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𝐹𝑓(𝑡) =∑𝑐𝑟 ‧𝑥(𝑡 − 𝑟) + ∑𝜒𝑟
𝑇

𝑛𝛿

𝑟=0

‧𝛿(𝑡 − 𝑟)

𝑛𝑥

𝑟=0

  

 
The main drawback of the NLR model is that it only accounts for constant sliding friction.  
To address the limitations of the NLR model, the DNLRX model is proposed as a modification of the 

linear component of the NLR model. In this modified model, the frictional force is allowed to vary 

based on both current and past values of spring deformations and displacements. This is achieved by 

passing the applied displacement x(t) through a Finite Impulse Response (FIR) filter with nx 

coefficients cr (where r = 0, . . ., nx), and the spring deformation vector δ(t) through an N-dimensional 

FIR filter with n coefficients θr (where r = 0, . . ., n).  
 

𝛿𝑡 = [𝛿1(𝑡), …𝛿𝑁(𝑡)]
𝑇 

 
Here is the list of all the parameters: N is the number of elements, x(t) is the displacement input, ki 

the stiffness of the i-th element, Δi is the maximum spring deformation before the i-th element start 

moving, χr is the vector of coefficient for spring displacement FIR filter, nδ is the spring displacement 

FIR filter order, cr are the coefficients of displacement FIR filter, nx is the displacement FIR filter 

orders, δ the spring deformation vector while δi is the i-th spring deformation. 
The initial component of the DNLRX equation introduces the capability for friction to be influenced 

by the history of displacements, as well as incorporating viscous friction and frictional lag. This is 

achieved by numerically differentiating the displacement to obtain the velocity. The second part of 

the equation considers the dependence of friction on both present and past values of spring 

deformations, which can be seen as a discrete-time representation of the micro-viscous effect. Again, 

the velocity is obtained by numerically differentiating the spring displacement.  
However, there are certain limitations to the model. It fails to capture the Stribeck effect (velocity 

weakening), and the physical interpretation of the FIR coefficients is not straightforward. 

Nevertheless, the DNLRX model has been successfully identified and utilized for feedforward 

compensation. 
 
1.2 Identification of the friction model parameters 
 
The friction models parameters have not a physical meaning since they do not really exist, and they 

must be empirically found. In the literature there are many examples of experimental analysis of the 

friction models parameters. Those parameters also depend on each study case and must be evaluated 

before each experiment.  
The authors of [11] tried to find the parameters of 4 types of friction models for a machine tool table 

system at low velocities. One of those 4 types is static (Stribeck modified), while the other are 

dynamics (Dahl, LuGre, Leuven).  
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Figure 1.11 Experimental set-up in [11]. 

 
The experimental validation of the friction models is demonstrated in Figure 1, which illustrates the 

implementation of a linear table system for machine tools. This system comprises two recirculating-

roller guideways, each equipped with two carriages, that guide and support the table. All the bearings 

utilized in this setup are of the rolling-element variety. Connecting the table to a screw is a 50-mm 

pitch-size ball-screw, which, in turn, is directly linked to the rotor of a brushless permanent magnet 

servo motor (specifically, the Parvex LD840EE model) using a rigid coupling, without incorporating 

any form of reduction mechanism. 
The position of the table is measured using a Renishaw interferometer. This measurement is based on 

determining the relative distance between two mirrors, with one mirror fixed to the frame and the 

other attached to the table. To control the system, a voltage input is provided. This voltage is converted 

by the motor's current amplifier into a current signal that is directly proportional to the applied force 

on the rotor. 
In the case of the static model, the friction equation was: 

𝐹𝑓 = 𝜎2 𝑣 + 𝑠𝑖𝑔𝑛(𝑣) (𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
−|
𝑣
𝑉𝑠
|
𝛿

 
 
All parameters have been already stated and the formula is like the Stribeck model but with the sum 

of 𝜎2𝑣, where 𝑣 is the velocities and σ2 the macroscopic viscous damping (the same of LuGre and 

Leuven). To determine the parameters of this static model, various constant velocities are applied to 

the system utilizing a position and velocity feedback controller with low gain. Due to the constant 

velocity, the inertial forces are negligible, causing the friction force to be equal to the applied force. 
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The friction force associated with each measurement point is obtained by averaging data samples 

collected during five experiments. 
 
 

 

Figure 1.12 Result of the static model in [11]. 

In the figure the cross are the measured points while the curve is the one that fit better those points 

using a nonlinear least squares identification algorithm. 
In Leuven model the hysteretic behavior, descript in Fh(z), must be find. Obviously, the variable 𝑧 

can not be directly measured. To bypass this problem, it is possible to approximate 𝑧 with the micro-

displacement 𝑥 of the mass. Evidently this approximation can work only if the system stays in the 

adhesion regime. At this point, a periodic signal at low frequency with low amplitude is applied to 

the system. The theory of the Maxwell slip model is applied to model the hysteresis curve and several 

elements are defined (in this case 10) and the maximum force Wi and linear spring-constant ki of each 

element is identified using curve-fitting techniques. 
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Figure 1.13 Measured and estimated curve in [11]. 

The remaining parameters (σ0, σ1 and n) have been identified by minimizing the peak tracking error. 
 
Another approach was made by the authors of [12]. The aim of their studies was to find the parameters 

of the same friction models of [11]: one static model and 2 dynamic models (Dahl and LuGre).  
The primary components of the experimental setup are a ball screw, a motor, and a brass block. The 

ball screw and the motor shaft are linked together using a beam coupler. To monitor the shaft's 

movement, an optical encoder is utilized. A thin metal plate is fastened to the ball screw nut to transmit 

the longitudinal motion to the brass block. To prevent any bending during the experiments, a load cell 

creates a sturdy connection between the thin metal plate and the brass block. The micrometer head is 

employed to calibrate a specialized high-sensitivity sensor, which is essential for determining 

parameters in the LuGre model. 
The beam coupler facilitates the transfer of rotary motion from the shaft to the ball screw shaft. As a 

result, the ball screw nut undergoes linear movement along the longitudinal axis. The metal plate, 

known for its high stiffness, combined with the load cell, guarantees precise reproduction of one-

dimensional sliding motion on the brass block. The load cell is employed for the continuous 

measurement of either the tension or compression force exerted on the brass block. To gauge the 

linear displacement of the mass, an optical encoder is utilized.  
Accurately measuring the micro-displacement of the block prior to significant sliding has long been 

a recognized obstacle for encoder-based displacement sensing systems. This displacement, 

commonly referred to as pre-sliding, plays a crucial role in the identification process of the LuGre 

model and typically occurs at a scale of a few micrometers. To capture and record the pre-sliding of 

the block, a capacitance displacement sensor with exceptional sensitivity has been specifically 

designed and constructed. 
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Figure 1.14 Experimental set-up in [12]. 

All the trials are carried out computing the friction force from the Newton’s second law: 
𝐹𝑒𝑥𝑡 − 𝐹𝑓 = 𝑚 �̈� 

Where Fext is the external force, 𝑚 corresponds to the mass of the block and �̈� is its linear acceleration. 
For the classical static model, the parameters Fc, Fs and 𝜎2 have been found going through two types 

of experiment: once wants to find the friction force at constant velocity while the other cares about 

the Coulomb friction force for which the block start sliding. The first experiment involves conducting 

15 trials with varying desired velocities, ranging from v = ±2.0mm/s to ±5.5mm/s, using equal 

intervals of 0.5mm/s. A PID controller is used to control the velocity output and functions based on 

tracking error. In the steady state, the friction experienced by the block is equal to the force exerted 

on it because there is no acceleration. In the next step, the objective is to determine the maximum 

load that can be applied before the block start its dynamic motion. This is accomplished by conducting 

13 trials, where the desired input force is assigned to a closed-loop force PID controller. After these 

two experiments, the Stribeck curve can be built.  
Regarding the Dahl model, the parameters σ and Fc are identified through 16 trials in which the input 

excitation has a sinusoidal shape and it’s regulated with a PID controller. 
 

𝑑𝐹𝑓

𝑑𝑥
=  𝜎0 𝑠𝑖𝑔𝑛 (1 −

𝐹𝑓

𝐹𝑠
) |1 −

𝐹𝑓

𝐹𝑠
|
𝑛

 

 
In those experiments the parameters 𝑛 and the 𝑠𝑖𝑔𝑛 (1 −

𝐹𝑓

𝑓𝑠
) are considered equal to 1 while the 

remaining parameters have been found through the least squares method on Matlab to find the best 

fitting curve. The parameters identified within the positive and negative velocity regions are averaged 

out to obtain the nominal parameters. 
With respect to the LuGre model, 6 parameters must be found but 4 comes from the Stribeck curve 

that has been already detected during the static model experiment. The remaining “dynamic” 

parameters σ0 and σ1 are identified during 6 trials. A force is applied thanks to a PID controller that 
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also operates on tracking errors. The time series of the micro-displacement resulting from each trial 

contributes to one set of the dynamic parameters. The displacement is sensed by the capacitance 

sensor, and it is related to the known force applied. In the pre-sliding regime, the approximation 𝑧 =

𝑥 has been made to obtain the following equation: 
 

𝐹𝑓 = 𝜎0 𝑥 + 𝜎1
𝑑𝑥

𝑑𝑡
+ 𝜎2 𝑣  

 
Substituting the latter inside the Newton’s second law it is possible to directly compute σ0 because, 

after some mathematical simplification, the equation: 

𝐹𝑓 = 𝜎0 𝑥 + (𝜎1 + 𝜎2)
𝑑𝑥

𝑑𝑡
+  𝑚 �̈�  

 
Can be reduced to: 

𝐹𝑓 = 𝜎0 𝑥 
 
The different values of σ0 coming from the different trials are averaged and a final value of σ0 is 

obtained.  
Once σ0 has been identified, the value of σ1 is calculated from the not simplified Newton’s second 

law equation. 
In the studies carried on in [13] the experimental arrangement consists of two friction pads (1) that 

exert pressure on a mobile mass(2). This mass is supported by two thin steel sheets (3), which provide 

the spring force. The mobile mass is composed of AISI 1018 steel, while the friction pads are made 

from automotive carbon brake pads. Despite being commonly used for sliding contact purposes, these 

materials are suitable for bristles-based applications because of the flat contact surfaces. An 

electrodynamic shaker is directly connected to the mobile mass using a stinger. Additionally, the 

design incorporates two piezoelectric stack actuators (4), enabling the real-time adjustment of the 

normal force. 
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Figure 1.15 CAD model of the damper in [13]. 

An impedance head measures the force and acceleration while the input vibrational behavior comes 

from 2 different vibration shakers.  
 
 

 
 

Figure 1.16 Block diagram of the experimental set-up in [13]. 

 
The friction force is indirectly computed measuring the displacement 𝑥, the velocity 𝑣, the 

acceleration �̈� and the external force Fext: 
𝐹𝑓 = −𝑚�̈� − 𝑐 𝑣 − 𝑘 𝑥 + 𝐹𝑒𝑥𝑡 

The evaluation of the external force is not trivial because the force is not directly applied on the mass. 

To avoid this problem the external force is computed assuming a single degree of freedom system 

(SDOF) of this type: 
 



22 
 

 
Figure 1.17 The SDOF used in [13]. 

 
The identification of the mass, stiffness and damping of the SDOF is fundamental to compute the 

friction force. To acquire the accelerance transfer function, a dual channel analyzer was utilized. This 

function corresponds to the relationship between the input current applied to the shaker and the 

accelerometer signal measured from the impedance head installed on the moving mass. Notably, this 

measurement was obtained in the absence of any friction force. The authors employed two distinct 

vibration shakers to confirm that the parameters of the friction model remain consistent regardless of 

the specific vibration shaker used. Consequently, these parameters remain independent of the system 

parameters determined without the presence of friction. To determine the parameters of the SDOF, a 

second-order identification procedure was employed. 
Now that the system is complete, it is possible to look for the LuGre parameters. First, it is necessary 

to find the Frequency Response Function (FRF) of the system in pre-sliding regime. The FRF was 

obtained applying a white noise with a certain amplitude and contemporarily measuring the friction 

force. To identify the static parameters of the LuGre friction model, a harmonic forcing function was 

generated using the shaker. This specific function was designed to induce a stick-slip response from 

the friction damper. The stick-slip regime was chosen because it provides a distinct visual 

representation of the bristles. 
By introducing micro-slip oscillations, the stick-slip regime enables the examination of the bristles' 

stiffness and damping characteristics. These oscillations are closely associated with the behavior of 

the bristles themselves. 
 
In the specific case of pneumatic cylinders, Raparelli et al. in [14] tried to find experimentally a trend 

of the friction coefficient by for the contact between seal and cylinder without passing through the 

numerical models parameters listed before. 
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The experimental set-up for the identification of the friction force mimics a typical piston-bore 

configuration, and the seal being tested operates under realistic conditions. Both the piston seal and 

the bore were lubricated to mimic standard working conditions. 
The piston is housed within a reciprocating bore controlled by a crosshead connected to the rod of a 

hydraulic cylinder. The pneumatic cylinder bore is linked to the hydraulic cylinder rod through a load 

cell. The crosshead, which runs on longitudinal slides, guides the cylinder, preventing the transducer 

from bearing its weight. Two electric limit switches allow for cylinder stroke adjustment up to a 

maximum value. The test rig is equipped with sensors for load, pressure, and speed, as well as an 

automatic data acquisition system. Air enters the piston chamber through the hollow rod attached to 

the piston. Sealing is achieved by the test seal on one end and by an aerostatic bush on the other end. 

The aerostatic bush maintains chamber pressure without introducing significant friction forces. The 

motion between surfaces is achieved through the sliding action of the cylinder bore due to the 

hydraulic cylinder. Guide rings at both ends of the piston ensure proper positioning of the piston 

within the bore. The holes located to the left of the aerostatic bush allow for air exhaust upstream of 

the left guide rings. 
 

 

Figure 1.18 Experimental set-up used in [14]. 

All the forces acting on the system are sketched in the set-up image. Fg1,2 are the reaction forces due 

to the presence of the guide-rings, Fc corresponds to the crosshead reaction and Ff,s is the friction 

force due to sealing. The friction force will result from the difference between the force acting on the 

cylinder Tf and the force T’f. In the first case, Tf is measured considering the presence of the seal, 

instead T’f comes from measurements without the sealing. 
𝐹𝑓 = 𝑇𝑓 − 𝑇𝑓

′ 
Another experimental test was made to find the friction coefficient of the seal. Through this test, it 

became feasible to quantify the friction coefficient between a test specimen and a standard moving 

surface as a function of velocity. The testing arrangement comprises a moving plate that is activated 

by a pneumatic cylinder. The seal being tested is pressed against the plate with a specific load, 

resulting in contact pressures equivalent to those anticipated at the seal-bore interface during the 

experimental friction test. 
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Figure 1.19 Test set-up for friction coefficients [14]. 

In these tests, a sliding plate is employed to simulate the bore wall utilized for the friction test. The 

roughness of the plate was assessed using an instrument equipped with a sharp-pointed stylus, which 

traced the surface profile irregularities. The measured roughness represents the average of three 

readings taken at 120° intervals around the cylinder bore. It is worth noting that the grease used for 

these tests is identical to the one employed in the friction force test. The tests were conducted under 

dry conditions, evaluating both boundary and fluid lubrication scenarios. 
 

 

Figure 1.20 Friction coefficients in [14]. 

The following figures show the measured friction force by varying the speed and the pressure in the 

chambers at constant level of lubrication. 
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Figure 1.21 Friction force-Pressure in [14]. 

 
 

 

Figure 1.22 Friction force-velocity in [14]. 
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CHAPTER 2 
 
This chapter describes the typical physical phenomena related to friction that are usually experienced 

in dry and lubricated contacts. The chapter also describes some lumped parameter friction models 

that are currently used in Literature: Polito, Dahl, LuGre and Leuven models. These mathematical 

frameworks can be classified as static or dynamic models. The static models (Polito) do not include 

a state equation to simulate pre-sliding, while the dynamic ones (Dahl, LuGre, Leuven) do. Those 

models need a time-advanced scheme to obtain a time evolution of the model during time, i.e., implicit 

Euler, explicit Euler, and software solvers already implemented in Matlab.  
 
2.1 The friction phenomenon 
 
Friction is a phenomenon that occurs whenever two surfaces are in contact and there is an attempt to 

slide one surface over the other. It manifests as a force that opposes to the relative motion between 

the surfaces. Depending on the intensity driving force, it is possible to distinguish a presliding and a 

gross sliding regime. The pre-sliding regimes characterized by the presence of microscopic 

deflections of the asperities of the mating surfaces. Once the applied force exceeds the breakaway 

force and the object starts to move, the friction between the surfaces transitions from static to gross-

sliding friction. This friction force opposes the motion of the object that's already sliding. 

Understanding the transition from pre-sliding to gross-sliding is important in engineering and various 

practical applications. Each of the three regimes (pre-sliding, transition and gross-sliding) has a strong 

dependance on a physical quantity: position for pre-sliding, position-velocity for transition and 

velocity for gross-sliding.  
In pre-sliding conditions, the phenomenon of hysteresis occurs. It appears in various scientific and 

engineering contexts. Hysteresis describes the lagging or delayed effect of a system's output, 

especially in response to changes in the system's input. In simple terms, hysteresis refers to a situation 

where the current state of a system depends not only on its current input but also on its history. 
Hysteresis is a complex phenomenon that arises from the interplay of various factors, including 

energy dissipation, material properties, and system dynamics. It's a fundamental concept in physics, 

engineering, and materials science, and understanding hysteresis is crucial for designing and 

analyzing systems that involve cyclic or history-dependent behavior. Hysteresis in the context of 

friction due to asperity deformations or bristle deformations refers to the phenomenon where the 

frictional force between two surfaces depends not only on their relative velocity but also on their 

history of interaction. In other words, the friction force doesn't only depend on the instantaneous 

conditions but also on the past conditions the surfaces have experienced. This is called hysteresis with 

non-local memory. Hysteresis with non-local memory involves that the future friction force values at 

a particular point in time being influenced by more than just its current value at that specific moment 

and the ongoing displacement. It also considers the past extreme friction values. 
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Figure 2.1 Hysteresis phenomenon in [15]. 

 
When two rough surfaces come into contact, such as in the case of solid-solid interactions, the actual 

contact points are the asperities on the surfaces. These contact points can deform and interact in 

complex ways, leading to hysteresis effects in friction. Similarly, in cases involving flexible bristle-

like structures, their deformation and interaction with a surface can lead to similar hysteresis behavior. 

As two surfaces come into contact and relative motion occurs, the contact points experience forces 

that cause them to deform. During loading (when the surfaces approach each other), the asperities or 

bristles are compressed. This compression contributes to the frictional force opposing the relative 

motion. However, even after the surfaces start moving apart, the asperities or bristles may not 

immediately return to their original state due to factors like material deformation and adhesion. This 

delayed or incomplete recovery during unloading leads to hysteresis. The frictional force during the 

motion will depend not only on the current relative velocity but also on how the contact points were 

deformed during previous cycles of loading and unloading. This dependence on the history is the 

trademark of hysteresis. It means that the friction force can be different when the same relative 

velocity is reached during the loading phase compared to the unloading phase. Modeling and 

understanding hysteresis in friction due to asperity or bristle deformations can be quite challenging 

due to the intricate nature of the interactions.  
When the body starts its motion, in between the pre-sliding regime and the gross-sliding regime, a 

transition phase appears. During this stage the phenomena of stick-slip can happen. It occurs when 

two surfaces in contact experience a combination of static friction and kinetic friction, leading to 

irregular motion. It is commonly observed in various mechanical systems and natural phenomena. 

When two surfaces are in contact, static friction prevents them from sliding against each other if the 

applied force is not sufficient to overcome this frictional force. However, when the force exceeds the 

threshold of static friction, the surfaces begin to move relative to each other, transitioning into the 

gross-sliding regime. 
To simulate the stick-slip condition of the rod-piston-carriage system, an MSD system was developed. 

This system is commonly used in the literature to study the stick-slip behavior in both dry and 

lubricated friction. This model simplified the mechanical structure of a pneumatic cylinder. It is 

possible to consider the piston as a mass that slide on a surface: the friction between them will 
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simulate the friction acting because of the seal on the exit hole of the piston and the seal between 

piston and rod.  
 

 

Figure 2.2 The SDOF used in the simulation. 

The normal force FN is an equivalent force depending on the difference in pressure between the two 

chambers and from the average pressure inside the chambers. The mass is linked to a spring and a 

damper through which the motion happens. In this way the mass can be easily pulled with a constant 

velocity. The assumption of constant velocity is necessary to simulate the stick and slip behavior. 
The FBD relative to the mass can be represented in the following figure: 
 

 

Figure 2.3 The FBD of the mass. 

Where N is the normal reaction of the contact surface, FN an equivalent normal force due to the mass 

weight and chamber pressures, Fm is the driving force, Ff corresponds to the friction force while 𝑚�̈� 

is the inertial term containing the mass m and the acceleration �̈�. All these forces can be collected in 

the Equation of Motion given by the equilibrium of the forces along the horizontal axes: 
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𝐹𝑓 = 𝐹𝑚 −𝑚�̈� 
The driving force is produced by the difference in displacement between the reference system (x,�̇�,�̈�) 

of the mass and the reference system of the driving force position (y,�̇�, �̈�). The amplitude of this force 

is proportional to the stiffness of the spring and to the damping coefficient of the damper. 
 

 

Figure 2.4 Representation of the driving force Fm. 

If we consider cs the damping factor and ks the stiffness, as it is shown the figure, the driving force is 

given by the following equation: 
 

𝐹𝑚 = 𝑐𝑠(�̇� − �̇�) + 𝑘𝑠(𝑦 − 𝑥) 
 
This formula can be included in the previous formula of the Equation of Motion for the MSD system. 
 

𝐹𝑓 = 𝑐𝑠(�̇� − �̇�) + 𝑘𝑠(𝑦 − 𝑥) − 𝑚�̈�  
 
In our study the assumption of no damping factor is implemented. That means that the driving force 

depends only on the spring deformation. The latter formula will be the core of the time-advanced 

scheme that are used in the numerical simulation. During the comparison with experimental results, 

the driven force will be given by the pressures inside the chambers of the pneumatic cylinder. 

Assuming a constant driving velocity for the MSD previous described, the position during time 

presents this behavior:  
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Figure 2.5 Stick-slip showed in the position-velocity chart in [16]. 

 
During stick-slip behavior, the surfaces alternate between periods of sticking (static friction 

dominates) and slipping (kinetic friction dominates). Initially, the applied force gradually increases 

until it overcomes static friction, causing a sudden release of stored energy. This results in rapid 

acceleration of the sliding surfaces, leading to slipping. However, as the surfaces move, kinetic 

friction comes into play, gradually reducing the speed and eventually bringing the motion to a stop. 

Once, the motion ceases, static friction takes over again, preventing further sliding until the applied 

force surpasses the static friction threshold once more. This cyclic process of sticking and slipping 

continues, producing a characteristic oscillatory motion. Stick-slip behavior can be observed in 

various situations, such as in mechanical systems like brakes, clutches, and drilling processes. It is 

also prevalent in natural phenomena like earthquakes, where the accumulated stress between tectonic 

plates causes them to stick until it exceeds the frictional resistance, resulting in sudden slipping and 

seismic activity. Understanding and controlling stick-slip behavior is crucial in engineering 

applications, as it can affect the performance, efficiency, and safety of mechanical systems. Engineers 

often employ strategies to minimize stick-slip, such as lubrication, surface treatments, or optimizing 

design parameters to reduce frictional forces and promote smoother motion. In this thesis the 

lubrication will not be considered, and just dry friction will be analyzed.  
When speed increases the transition regime ends and the gross-sliding regime occurs. Friction in the 

sliding regime is also known as kinetic friction or dynamic friction. In this case the asperities don’t 

have enough time to interact and friction completely depends on the relative speed between the two 

bodies and it is proportional to a viscous term. Understanding friction in the sliding regime is crucial 

for various applications, ranging from designing machinery to controlling the movement of 

mechatronics systems. 
 
2.2 Numerical models 
 
To simulate the described behavior due to friction force, some of the numerical models found in 

literature were implemented. Starting from static models as the Polito model and then implementing 

dynamic models that present a state equation as the Dahl, LuGre and Leuven model. Each of them as 

its peculiarity and different accuracy. 
 
2.2.1 Polito 
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The Polito model, presented in [8], is a static model based on the Stribeck and Karnopp models. It 

presents a modification of the Stribeck curve: depending on the velocity sign, the coefficients 

characterizing the value of the friction force are different. This model tries to overcome the 

mathematical jump that the Coulomb friction model has when the velocity is null in the same way as 

Karnopp does. 
 

 
Figure 2.5 The Polito model curve showed in [8]. 

 
This model is relatively easy to implement but it presents some problems when it is developed with 

implicit time advanced scheme. Indeed, it is necessary knowing a priori the sign of the velocity and 

acceleration for each time step. This is not feasible and to overcome this problem some simplification 

can be done at the expense of the precision.  
 
2.2.2 Dahl 
 
The Dahl friction model is used in the modeling and simulation of mechanical systems [10], 

particularly in the field of control engineering and dynamics analysis. It is used to describe the 

frictional behavior of a system, especially in systems where accurate representation of friction is 

crucial for control or analysis purposes. The Dahl model is one of several models used to represent 

friction, each with its own level of complexity and accuracy. The Dahl model ascribes the source of 

friction to the continual formation and subsequent breaking of quasi-static bonds. These bonds give 

rise to a behavior of a brush, where the bristles of the brush bend in a specific direction during forward 

motion and then flex or bend in the opposite direction when the motion is reversed. The Dahl model 

is characterized as a dynamic model due to the presence of the state equation that describes �̇�. The 

model advantages definitely contain the relatively easy implementation and the dynamic nature of 

the model. The disadvantages are the accuracy also due to the presence of the drift phenomenon: the 

bristle deformation does not recover its elastic deformation causing a “drift” in the prediction of the 

displacement. It's important to note that while the Dahl model provides a simple representation of 

friction, friction itself can be quite complex and can exhibit nonlinear behavior in various situations. 

Therefore, more advanced models like the LuGre friction model or the Stribeck model are often used 

for more accurate representations of friction in complex systems. 
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2.2.3 LuGre 
 
The Lund-Grenoble method is a popular friction compensator used in the field of robotics and 

mechatronics [10]. It is primarily employed to model and control friction phenomena in mechanical 

systems. This method is a numerical method that tries to simulate the friction behavior by exploiting 

the bristle theory. This is an approach to friction modelling in which the asperities between two 

surfaces in contact are represented by bristles with their own stiffness. This idea was first introduced 

in the Dahl model. The LuGre model puts a step forward respect to the Dahl model and modifies its 

equations. It consists of three main components: the Stribeck, viscous, and Coulomb friction 

elements. The Stribeck element accounts for the static friction and its dependence on velocity, while 

the viscous element represents the dynamic friction and its relation to velocity. The Coulomb element 

models the boundary condition of friction, describing the sudden transition between static and 

dynamic friction. The aim of this numerical simulation is to understand the trend of the MSD system 

previous detailed under low velocities condition through the LuGre method. This gives us the 

opportunity to highlight its behavior under stick-slip conditions. The LuGre model presents some 

advantages as it provides a nonlinear representation of friction that can capture complex friction 

behavior more accurately than simpler linear models, it includes separate components representing 

viscous and Coulomb friction, allowing it to capture different friction modes and the LuGre model 

can adapt to changing friction conditions in real-time is beneficial for control systems that require 

accurate friction compensation. The main disadvantages are the complexity of implementation and 

the parameters identification that can influence the accuracy. 
 
2.2.4 Leuven 
 
A more elaborated model was presented after the LuGre model [17]. The Leuven model is a 

modification of the LuGre model in which the term representing the friction part due to micro-

stiffness of the bristles is replaced by an expression function of the deformation z that describes the 

hysteresis behavior at zero velocity. Considering hysteresis means to be more precise. Hysteresis is a 

real phenomenon despite the expression characterizing it, is function of a non-existing parameter as 

z. Through z it is possible to simulate this behavior that is not considered in the other models. The 

other two parameters inside the formula are the same of the LuGre model. Indeed, the Leuven model 

has the same difficulty in finding the viscous and micro-viscous parameters. Furthermore, the 

identification of the hysteresis expression, is very hard. 
 
2.3 Time advanced schemes 
 
To implement the listed numerical methods, they require a time-advanced scheme to discretize them 

on time. This scheme can be already implemented by a Matlab solver.  
One of the easiest methods for the implementation of the friction models is the explicit Euler scheme. 

explicit Euler, also known as the forward Euler method, is a numerical method used for approximating 

the solutions of ordinary differential equations (ODEs). The method is relatively straightforward and 

involves approximating the solution of an ODE by taking small time steps and using a first-order 
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Taylor series expansion. Given an initial value problem in the form of a first-order ODE: 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) 

with an initial condition 𝑦(𝑡 = 0) = 𝑦0 it is possible to identify a time step Δt of certain size. This 

step corresponds to the interval at which the approximation will be computed. The procedure starts 

with the initial condition y0 and t0 and approximate the solution at the next step 𝑡1 = 𝑡0 + 𝛥𝑡 using 

the formula: 
 

𝑦1 ≃ 𝑦0 + 𝛥𝑡 ‧ 𝑓(𝑡0, 𝑦0) 
 
With 𝑓(𝑡0, 𝑦0) that is a function representing the derivative evaluated at the current time step. This 

process continues until the desired endpoint is reached. The explicit Euler method is easy to 

implement and computationally inexpensive when the chosen time step is not too small. However, it 

has certain limitations. One major drawback is that the method is only first-order accurate, meaning 

that the error introduced at each step is proportional to the step size Δt. Consequently, the method 

tends to accumulate errors over long integration intervals or when the step size is too large.  Another 

limitation is that the explicit Euler method is not always stable for certain types of ODEs. If the ODE 

system is stiff (i.e., has rapidly varying components with different time scales), the explicit Euler 

method may produce inaccurate or oscillatory solutions. In such cases, more advanced numerical 

methods like implicit methods or higher-order methods such as the Runge-Kutta methods are often 

employed. Despite its limitations, explicit Euler remains a useful and widely used method for simple 

ODEs or as a building block for more sophisticated numerical methods. It provides a good starting 

point for understanding numerical integration techniques and their applications in solving differential 

equations. 
 
Euler devised also an implicit method called the implicit Euler method, also known as the backward 

Euler method. It is another numerical method used for approximating the solutions of ordinary 

differential equations (ODEs). It is like the explicit Euler method but differs in the way it computes 

the approximation at each time step. While the explicit Euler method calculates the approximation at 

the next time step using the derivative evaluated at the current time and state, the implicit Euler 

method instead uses the derivative evaluated at the next time step. This makes the implicit Euler 

method an implicit scheme. As it was for the explicit Euler, given an initial value problem: 
𝑑𝑦

𝑑𝑡
=

𝑓(𝑡, 𝑦) with an initial condition 𝑦(𝑡 = 0) = 𝑦0. A time step size Δt is chosen, which determines the 

interval at which the approximation will be computed. Then, starting with the initial condition y0 at 

time t0 and approximate the solution at the next time step 𝑡1 = 𝑡0 + 𝛥𝑡 using the formula: 
 

𝑦1 ≃ 𝑦0 + 𝛥𝑡 ‧ 𝑓(𝑡1, 𝑦1) 
 
Where 𝑓(𝑡1, 𝑦1) represents the derivative evaluated at the next time step t1 and an unknown value y1. 

This equation is typically nonlinear and may require numerical techniques such as iteration or root-

finding algorithms to solve it. Once y1 is determined, the process is repeated to compute the 

approximation at the next time step. 
The key difference between the implicit Euler method and the explicit Euler method lies in the 

implicit nature of the former. In the implicit Euler method, the approximation at each time step 
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depends on the unknown value of the next time step. This means that each step requires solving an 

equation, which can be more computationally demanding compared to the explicit approach. 
However, the implicit Euler method has some advantages over the explicit counterpart. Firstly, it is 

unconditionally stable for linear, time-invariant systems, meaning that it can handle stiff equations 

and larger time steps without stability issues. It is possible to demonstrate this advantages respect to 

the explicit Euler inserting the same time step for the two methods imposing the same input data and 

signal. The chosen time steps are: 
𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝1 = 10−5 
𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝2 = 10−3 

 
 

 
Figure 2.6a Explicit Euler with time step1. 

 
Figure 2.6b Explicit Euler with time step2. 
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Figure 2.6c Implicit Euler with time step1. 

 

It is possible to note that in the case of time step1, the time step is small enough to allow the correct 

displacement prediction by explicit Euler. In the second case the time step is much larger, and the 

explicit Euler diverge and cannot follow anymore the displacement of the body. Implicit Euler instead 

does not have this problem. Secondly, it is numerically more accurate for certain types of ODEs, 

especially those with rapidly varying components or oscillatory behavior. Nevertheless, the implicit 

Euler method also has its limitations. Solving the equation at each time step involves additional 

computational effort, especially for large systems of equations. Additionally, if the equation is highly 

nonlinear, convergence issues may arise, requiring more advanced numerical techniques. In summary, 

the implicit Euler method is a numerical scheme that provides stability and accuracy advantages over 

the explicit Euler method, particularly for stiff or oscillatory ODEs. However, it requires solving 

equations at each time step, making it more computationally intensive. The choice between the two 

methods depends on the specific characteristics of the problem at hand and the trade-off between 

computational cost and accuracy requirements. 
 
The Runge-Kutta method is another numerical method used for solving ordinary differential 

equations (ODEs). It is a family of numerical integration methods that approximate the solution of an 

ODE by advancing the solution over small time intervals. Those methods can be either explicit or 

implicit. The most used variant of the Runge-Kutta method is the fourth order Runge-Kutta (RK4) 

method. In the RK4 method each next time step is given by the formula: 
 

𝑦𝑘+1 = 𝑦𝑘 + 𝛥𝑡 ‧ (
1

6
𝑓1 +

1

3
𝑓2 +

1

3
𝑓3 +

1

6
𝑓4) 

With: 
𝑓1 = 𝑓(𝑦𝑘, 𝑡𝑘) 

𝑓2 = 𝑓 (𝑦𝑘 +
1

2
𝛥𝑡‧𝑓1, 𝑡𝑘 +

1

2
𝛥𝑡) 

𝑓3 = 𝑓 (𝑦𝑘 +
1

2
𝛥𝑡‧𝑓2, 𝑡𝑘 +

1

2
𝛥𝑡) 

𝑓4 = 𝑓(𝑦𝑘 + 𝛥𝑡‧𝑓3, 𝑡𝑘 + 𝛥𝑡) 
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This process is repeated for subsequent time steps to obtain the numerical solution of the ODE. The 

RK4 method is known for its high accuracy and stability, making it a popular choice for solving ODEs 

numerically. It strikes a balance between computational efficiency and accuracy by using a 

combination of weighted averages of different derivative estimates. However, it is important to note 

that the RK4 method may not be suitable for all types of ODEs, especially those with stiff or highly 

oscillatory behavior, for which specialized methods may be more appropriate. Other variants of the 

Runge-Kutta method exist, such as RK3, which use similar principles but with fewer derivative 

estimates. This variant has lower accuracy but may be computationally faster in certain scenarios. 

The RK3 scheme can be described as: 
 

𝑦𝑘+1 = 𝑦𝑘 + 𝛥𝑡 ‧ (
2

9
𝑓1 +

1

3
𝑓2 +

4

9
𝑓3) 

 
Where the addends on the right-hand side are recursively defined by: 
 

𝑓1 = 𝑓(𝑦𝑘, 𝑡𝑘) 

𝑓2 = 𝑓 (𝑦𝑘 +
1

2
𝛥𝑡‧𝑓1, 𝑡𝑘 +

1

2
𝛥𝑡) 

𝑓3 = 𝑓 (𝑦𝑘 +
3

4
𝛥𝑡‧𝑓2, 𝑡𝑘 +

3

4
𝛥𝑡) 

 
Overall, the Runge-Kutta method, particularly RK4, is a widely used and effective numerical 

technique for solving ODEs, providing a reliable approximation to the continuous solution of the 

differential equation. 
 
The ode15s function in MATLAB is a solver designed to numerically solve stiff and non-stiff systems 

of ordinary differential equations (ODEs). The "s" in ode15s stands for "stiff," indicating its suitability 

for stiff systems. The ode15s solver is based on the Rosenbrock method, which is an implicit Runge-

Kutta method. It combines the efficiency of implicit methods with the ability to handle stiff systems. 

It employs variable step sizes to adaptively control the accuracy of the solution and adjust the step 

size according to the stiffness properties of the system. To use ode15s, you need to define the system 

of ODEs you want to solve in MATLAB as a function of the form 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦). Here, t represents the 

independent variable, i.e., time, and y is a vector representing the dependent variables. The function 

f should return a vector that contains the derivatives of the dependent variables with respect to the 

independent variable. The output of ode15s is the solution at specific time points stored in the vectors 

t and y. The vector t contains the time points at which the solution is evaluated, and the matrix y 

contains the corresponding values of the dependent variables. Ode15s is capable of handling stiff 

systems efficiently. It automatically detects stiffness in the system and adjusts the integration 

parameters accordingly. It uses an internal algorithm to estimate the Jacobian matrix of the system, 

which is necessary for solving stiff systems. The ode15s solver is part of MATLAB's ODE suite and 

provides a robust and versatile tool for solving a wide range of ODE problems. It is particularly useful 

when dealing with stiff systems, where explicit methods like ode45 may be inefficient or unstable. 
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Another Matlab solver for solving ordinary differential equation is ode45. It stands for "Ordinary 

Differential Equation 4th/5th order." ode45 is one of the most used solvers in MATLAB because of 

its versatility and robustness. It uses a combination of fourth and fifth order Runge-Kutta methods to 

approximate the solution of the ODE. The output of the solver gives two column vectors: one 

containing the time points at which the solution is computed and the other where each column 

represents the solution at the corresponding time point.The algorithm used by ode45 automatically 

adjusts the step size based on the error estimate, allowing it to handle both stiff and non-stiff systems 

of ODEs efficiently. For stiff systems, it employs a smaller step size to capture rapid changes, while 

for non-stiff systems, it takes larger steps to improve efficiency. ode45 is often a good choice for 

solving ODEs because it provides a balance between accuracy and efficiency. However, depending 

on the specific problem characteristics, other solvers like might be more appropriate. Overall, ode45 

is a powerful tool in MATLAB for solving ODEs numerically and is widely used in various fields, 

including physics, engineering, biology, and mathematical modeling. 
 
 
2.4 The numerical implementation 
 
Polito 
In the Polito model the friction force follows: 

𝐹𝑓 = {

𝐹(𝑣),                         |𝑣| ≥  𝜀  
𝐹𝑒𝑥𝑡,       |𝑣| < 𝜀, |𝐹𝑒𝑥𝑡| < 𝐹𝑠
𝐹𝑠  𝑠𝑖𝑔𝑛(𝐹𝑒𝑥𝑡),      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹(𝑣) = {𝑠𝑖𝑔𝑛(𝑣)𝐹𝑐1 + 𝑠𝑖𝑔𝑛(𝑣)(𝐹𝑠 − 𝐹𝑐1)𝑒
−(
|𝑣|
𝑉𝑠
)
𝛿

+ 𝑐1𝑣    𝑖𝑓 �̈� > 0

𝑠𝑖𝑔𝑛(𝑣)𝐹𝑐2 + 𝑐2𝑣                                                        𝑖𝑓 �̈� ≤ 0
 

 
Where Fext is the driving force, v the velocity, ε the Karnopp velocity, Fs the stiction force, FC1 and 

FC2 the Coulomb force (for positive and negative velocities), c1 and c2 are the viscous coefficient (for 

positive and negative velocities), vs is the Stribeck velocity. The method is implemented only with 

explicit Euler for the reason previous detailed. A simplification is necessary to overcome the problem 

of knowing a priori the “k-th” acceleration: 
 

�̈�𝑘 ≃ �̈�𝑘+1 =
�̇�𝑘+1 − �̇�𝑘

𝛥𝑡
   

In this way it is possible to do the first choice depending on the sign of the acceleration. The function 

F(v) can be found. The friction force depends on the module of the velocity, but it is a known value 

that comes from the equation of motion of the body: 

�̇�𝑘+1 = �̇�𝑘 +
(𝐹𝑒𝑥𝑡𝑘 − 𝐹𝑓𝑘) 𝛥𝑡

𝑚
 

As consequence: 
𝑥𝑘+1 = 𝑥𝑘 + �̇�𝑘𝛥𝑡  

Of course, it needs initial conditions: 
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{
𝑥|𝑘=0 = 𝑥0
�̇�|𝑘=0 = �̇�0

 

 
Dahl 
In the Dahl model instead, the friction force is obtained by: 

𝐹𝑓 = 𝜎0 𝑧 
If we put this equation in the Equation of Motion of the MSD system: 

𝜎0 𝑧 = 𝐹𝑚 −𝑚�̈�  
This model needs a time advancing scheme to be implemented. In this thesis, the explicit Euler and 

the implicit Euler are taken in account. The developing on time of the phenomena is divided into “k-

th” time steps.  
• Applying the explicit Euler to the Equation of motion, it is possible to write: 

 𝜎0 𝑧𝑘 = 𝐹𝑚𝑘 −
𝑚

𝛥𝑡
(�̇�𝑘+1 − �̇�𝑘) 

 
With initial conditions: 

{
𝑥|𝑘=0 = 𝑥0
�̇�|𝑘=0 = �̇�0

 

{
𝑧|𝑘=0 = 𝑧0
�̇�|𝑘=0 = �̇�0

 

The term 𝑧𝑘+1 can be found from the state equation proposed by Dahl: 

𝑧𝑘+1 = 𝑧𝑘 +  𝛥𝑡 ( �̇�𝑘 − 𝜎0 |�̇�𝑘|
𝑧𝑘
𝐹𝑐
) 

 
• In a similar way it is possible to use the implicit Euler method, but it requires the application 

of a method that solves nonlinear equations. In this case the Regula Falsi method has been 

used. 

𝜎0 𝑧𝑘 = 𝐹𝑚𝑘 −
𝑚

𝛥𝑡
(�̇�𝑘 − �̇�𝑘−1)   

The remaining terms can be computed from: 
𝑥𝑘 = 𝑥𝑘−1 + 𝛥𝑡 �̇�𝑘  

𝑧𝑘 = (𝛥𝑡 �̇�𝑘  +  𝑧𝑘−1) (
𝐹𝑐

𝐹𝑐 + 𝛥𝑡 𝜎0 |�̇�𝑘|
)  

 

�̇�𝑘 =
𝑧𝑘 − 𝑧𝑘−1

𝛥𝑡
 

 
LuGre 
The more complicated LuGre equations are typically formulated as a set of first-order differential 

equations. These equations incorporate various parameters that can be estimated or identified 

experimentally.  
The friction force is described by: 
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𝐹𝑓 = 𝜎0 𝑧 + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2 �̇� 

 
This formula must be included in the Equation of Motion coming from the balance forces equation 

of the MSD system. 
 

𝜎0 𝑧 + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2�̇� = 𝐹𝑚 −𝑚�̈�  

• Applying Explicing Euler to the acceleration term and indicating the “k-th” instant of time 

with the letter “k” the latter became: 

 𝜎0 𝑧𝑘 + 𝜎1�̇�𝑘 + 𝜎2 �̇�𝑘 = 𝐹𝑚𝑘 −
𝑚

𝛥𝑡
(�̇�𝑘+1 − �̇�𝑘)   

Starting from some initial conditions, it is possible to find the unknown velocity �̇�𝑘+1 and therefore 

the position 𝑥𝑘+1: 

{
𝑥|𝑘=0 = 𝑥0
�̇�|𝑘=0 = �̇�0

 

{
𝑧|𝑘=0 = 𝑧0
�̇�|𝑘=0 = �̇�0

 

 
On the other hand, the values of �̇�𝑘+1 and 𝑧𝑘+1 come from the state equation: 

𝑧𝑘+1 = 𝑧𝑘 +  𝛥𝑡 ( �̇�𝑘 − 𝜎0 |�̇�𝑘|
𝑧𝑘

𝑔(�̇�𝑘)𝑘
) 

With: 

𝑔(�̇�𝑘)𝑘 = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐) exp(−(
|�̇�𝑘|

𝑣𝑠
)

𝛿

) 

• It is possible to apply the implicit Euler formula using the same initial conditions of the 

previous case. This changes the Equation of Motion in: 
    

 𝜎0 𝑧𝑘 + 𝜎1�̇�𝑘 + 𝜎2 �̇�𝑘 = 𝐹𝑚𝑘 −
𝑚

𝛥𝑡
(�̇�𝑘 − �̇�𝑘−1)   

This method is harder to implement due to the application of a method that solves nonlinear 

equations. In this case, the Regula Falsi method. Indeed, unlike explicit Euler, the values of 𝑧𝑘 

and �̇�𝑘 are not known. Once the velocity �̇�𝑘 has been computed through the Regula Falsi method, 

it is trivial to obtain the other quantities: 
𝑥𝑘 = 𝑥𝑘−1 + 𝛥𝑡 �̇�𝑘  

�̇�𝑘 =

(

 
 
�̇�𝑘 −

𝜎0 |�̇�𝑘|  𝑧𝑘−1

𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐) exp (− (
|�̇�𝑘|
𝑣𝑠
)
𝛿

)
)

 
 

‧

(

 
 
𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐) exp (− (

|�̇�𝑘|
𝑣𝑠
)
𝛿

)

1 + 𝛥𝑡 𝜎0 |�̇�𝑘|  

)

 
 
    

 
𝑧𝑘 = 𝑧𝑘−1 + 𝛥𝑡 �̇�𝑘  
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Leuven 
A modified version of the LuGre method is the Leuven model, where the friction force is obtained 

by: 

𝐹𝑓 = 𝐹ℎ(𝑧) + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2 𝑣 

With: 
𝐹ℎ(𝑧) = 𝐹𝑏 + 𝐹𝑑(𝑧) 

𝑑𝑧

𝑑𝑡
= 𝑣 ( 1 − 𝑠𝑖𝑔𝑛 (

𝐹𝑑(𝑧)

𝑠(𝑣) − 𝐹𝑏
) |

𝐹𝑑(𝑧)

𝑠(𝑣) − 𝐹𝑏
|
𝑛

) 

 
The term Fh(z) is introduced to take in account the hysteresis effects and substitutes the first term of 

the LuGre equation. This term is different from zero only when the velocity is null. It consists in an 

expression function of the bristle deformation z. Its value at the initiation of a transition curve (such 

as during a velocity reversal) is denoted as Fb. The transition curve that becomes active at a specific 

moment is symbolized as Fd(z). Fd(z) constitutes a symmetrical point-wise function of z that 

consistently increases. The implementation of Fh(z), necessitates the utilization of two memory 

stacks: one to store the ascending-ordered minima of Fh (referred to as stack min), and another to 

house the descending-ordered maxima of Fh (referred to as stack max). These stacks expand during 

velocity reversals and contract when internal loops are closed. The computation of Fb, Fd(z), and z 

adheres to the subsequent set of regulations [17] : 
• During a velocity reversal, the initiation of a new transition curve occurs. The state variable z 

and Fd(z) are both reset, while the preceding value of Fh(z) is recorded in a memory stack 

called (fm and fM) while the corresponding value of z is memorized in the memory stacks 

called zm and zM. The recorded value of Fh(z) then assumes the role of the new Fb. 
• Performing the closure of an internal loop, referred to as "wiping out," involves removing the 

most recent values from all the stacks (zm, zM, fm, fM) associated with this internal loop. For 

positive/negative velocity, the last value on the stack fM (or fm) becomes the updated Fb. 

Recalculations are carried out for the values of z and Fd(z) in a manner that enables the 

initiation of a new transition curve using the newly determined Fb value [18]. 
• Once the velocity is different from zero and the sliding regime occurs, all the parameters are 

reset. 
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Figure 2.7 Representation of the behavior of Fh, Fb and Fc at velocity reversal [17] 

 
In our purposes, two modifications were made to simplify its implementation: 

• To overcome the discontinuity in the friction force, the argument of the nonlinear state 

equation 
𝐹𝑑(𝑧)

𝑠(𝑣)−𝐹𝑏(𝑧)
 is changed to 

𝐹ℎ(𝑧)

𝑠(𝑣)
 [18].With this argument, the new nonlinear state 

equation becomes: 
𝑑𝑧

𝑑𝑡
= 𝑣 ( 1 − 𝑠𝑖𝑔𝑛 (

𝐹ℎ(𝑧)

𝑠(𝑣)
) |
𝐹ℎ(𝑧)

𝑠(𝑣)
|
𝑛

) 

 
• The initial curve or virgin curve is computed in a similar way respect to [19] where the 

expression of this curve by: 
 

𝑓(𝑥) = 𝑘1𝑥 − 𝑓1 (exp(−𝑓2 ‧ 𝑥) − 1) 
 

 
Figure 2.8 The virgin curve [19]. 
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This formula represents the stress-strain curve due to the asperity deformation. It is 

possible to define an elastic and plastic domain. After the rupture, motion happens. 
 

 

 
Figure 2.9 Virgini curve parameters [15]. 

 
The parameters k1, f1 and f2 depends case by case on the different type of materials in contact. 

In our study they have been found with a Matlab fitting curve toolbox. 
 

It is possible to schematize the behavior of the hysteresis at zero velocity in the following way: 
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• If �̇� = 0 it means that this is a velocity reversal point. A velocity reversal can correspond to a 

minimum or a maximum and each of them can be absolute or relative. If they are absolute, 

the point finds out of the two extremes, and it coincides with a point on the virgin curve. In 

this case all the values in all the stacks are deleted and replaced with the value in that point: 

zM is replaced with the value of zi at the reversal, zm is replaced with the negative value of zi, 

fM is substitutes with the value of the function in zi and fm is replaced by the negative value of 

the function in zi. In the case of relative maximum or minimum, it means that zi is in between 

the two extremes and the point fall into an internal loop. In the case of relative maximum but 

zi larger than the last recorded value of zM, the previous internal loop is closed and all the last 

values of all the stack must be removed. If zi is less than the last value recorded in zM a new 

internal loop begins and all the stacks are updated with this new value. Instead in the case of 

relative minimum and zi less than the last value of zm, the last internal loop is closed and all 

the last values of all the stack are eliminated. If zi is greater than the last value of zm a new 

internal loop initiates and all the stacks are revised with the new values. 
 

• If �̇� > 0 there will be a motion through the right side of the hysteresis curve and the point on 

the hysteresis curve can be on part of the virgin curve or can be part of an internal loop. 
If the zi value is greater than the maximum value of the values included in the stack, that 

means the zi is on the virgin curve and its value follows the equation for the stress strain curve 

or the equation given by: 
𝐹ℎ(𝑧) = 𝑓(𝑥) 

 
𝑓(𝑥) =  𝑦(𝑥) 

Where: 
𝑓(𝑥) = 𝑘1𝑥 − 𝑓1 (exp(−𝑓2 ‧ 𝑥) − 1) 

 
 
On the other side, if zi is less than the maximum value of the stack, it is part of an internal 

loop. If zi is greater than the last value recorded on the stack of the maximum points zM it 

means that a new internal loop is going to create and the previous internal loop is closed: the 

last values recorded on the all stacks (stack of maximum zM, stack of minimum zm, stack 

corresponding to the values of f(z) computed in the maximum  fM and stack corresponding to 

the values of f(z) calculated in the minimum fm) must be deleted. If zi is less than the last value 

of the stack of the maximum points, the internal loop is not closed. In both cases, the value of 

the friction force is given by the formula from the formula: 
 

𝐹ℎ(𝑧) = 𝑓(𝑥) 
 

𝑓(𝑥) =  −𝑦(−𝑥) 
 

 
• If �̇� < 0 there will be a motion through the left side of the hysteresis curve and the point on 

the hysteresis curve can be on part of the virgin curve or can be part of an internal loop. 



45 
 

If the zi displacement is less than the minimum value of the stack of zm that means zi is outside 

of the minimum extreme and the value of Fh follows the equation of the virgin curve. If zi is 

greater than the minimum value recorded in the stack of the minimum values zm , zi is in an 

internal loop. In the case zi less than the last value recorded in the stack of minimum values 

zm, the last internal loop is closed and all the last values from all the stacks must be deleted. 

If zi is equal or greater than the last recorded value of zm the internal loop is still running. In 

both cases the function describing Fh follows the equation: 
 

𝐹ℎ(𝑧) = 𝑓(𝑥) 
 

𝑓(𝑥) =  −𝑦(−𝑥) 
 

2.5 Test bench description 
 
This chapter describes the test bench utilized in the thesis. It consists of enumerating its diverse 

components and presenting key details regarding its construction and operational features. Before 

proceeding with the description of the components, it's important to explain the functioning of the 

bench. A proportional flow control valve receives an input voltage signal that determines the 

displacement of the spool, consequently regulating the compressed air flow that powers the circuit 

and actuates the cylinder. The end of the stem is then attached to a carriage that moves along a linear 

guide with recirculating ball bearings, reducing friction's impact. The experimentation involves 

controlling the valve using different signals and comparing the level of accuracy between 

experimental data collected from sensors and the numerical values calculated by the implemented 

model. In this study will be analyze two types of signals for this specific test bench: a sinusoidal 

signal and one step signal that try to simulate the stick and slip phenomena. 
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Figure 2.10 Test bench in [20]. 

 
 

The experimental setup includes a 5/3-way flow proportional valve (FESTO, MPYE-5-M5-010-B) 
and a pneumatic cylinder (Camozzi, 24N2A16A500) used for controlling the position of a cart 
weighing 0.75 kg. The cart is guided by a recirculating ball bearing guide (Misumi, SEBL 20-510). 
The pneumatic cylinder features a 500 mm stroke, a 16 mm bore diameter, and a 6 mm rod. Flow 
rates through the valve ports were measured using two bidirectional hot wire flowmeters (FESTO, 
SFAH-200B-Q65-PNLK-PNVBA-M8). Pressure readings within the cylinder chambers were 
obtained using two pressure sensors (Honeywell, 40PC-150G). The force applied to the cart during 
actuation was quantified using a load cell (HBM, U9C 200N) positioned between the cylinder rod 
and the cart. The position and velocity of the cart were continuously monitored using a wire linear 
position transducer (Celesco, DV301-0040-111-1110). Cart acceleration was measured with an 
accelerometer (Brüel & Kjær 4507 B 004), securely attached using cyanoacrylate-based adhesive. To 
control the system, a computer provided the driving voltage signal to the valve via a D/A converter. 
Data from the various sensors and transducers were visualized and recorded using a data acquisition 
system (USB-6212 BNC Bus-Powered M Series, 16 AI, 16-bit, 400 kS/s). It's essential to note that, 
in these experiments, the pneumatic positioning system was tested without the use of a closed-loop 
control system. Figure 2.11a schematize the test set-up. In Figure 2.11b, the test bench configuration 
has been modified to perform friction identification test. The 5/3-ways proportional flow valve was 
removed and  a Camozzi ER238-90AP pressure regulator was used to supply air to one of the cylinder 
chambers, whereas the other one was kept plugged.  
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Figure 2.11a Schematization of the test bench [20]. 

 
Figure 2.11b Modification of the test bench [20]. 

 
While the forces acting on the carriage can be represented as: 
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Figure 2.12 Schematization of the forces acting on the cart [20]. 

The forces here sketched are: Ffriction the friction force, Fi the inertia force, Fp the driven force and Fx 

the force due to the presence of the LVDT sensor. The sum of the friction force between the seal of 

the piston-rod contacts and the frontal seal on the exit hole of the piston constitutes the total Ffriction. 

The friction due to the carriage is neglected because it is very poor. 
The carriage consists of a recirculating ball prism guide provided by Misumi, with product code SEBL 

20-510. The movable part includes a plate for potential accommodation of a inverted pendulum, while 

the fixed part of the guide has been attached to a wooden platform serving as the foundation for 

installing all the components making up the bench. The pneumatic cylinder is connected to the 

carriage via a spherical joint supplied by Camozzi (GY-12-16). 
 

 

 
Figure 2.13 The cart used in the test. 
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The pneumatic cylinder utilized is manufactured by Camozzi, with product code 24N2A16A500.  
 
 

 
Figure 2.14 The double acting cylinder [20]. 

 
The cylinder characteristics are listed below: 

Stroke 500 mm 
Bore 16 mm 

Rod diameter 6 mm 
Operating temperature 1\10 bar 

Speed 10\100 mm/s 
Fluid Filtered air 7.8.4  
Joint M5 

 
The flow valve is a closed-center 5/3 proportional valve manufactured by Festo: model MPYE-5-

M5-010-B. 
 
  
 

 
Figure 2.15 The pneumatic valve [20]. 

  
  

The valve characteristics are: 
Operating pressure 0\10 bar 

Standard nominal flow rate  100 l/min 
Max frequency 115 Hz 
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Max hysteresis 0,4 % 
Operating voltage 17\30 V 
Nominal values 0\10 V 

Fluid Filtered air 
Fluid temperature 5\40 °C 
Pneumatics joint M5 

 
The electronic pressure regulator is manufactured by Camozzi, with product code ER238-90AP, and 

it has been used to modulate the output pressure of the component according to a known law. 
 

 
Figure 2.16 The pressure regulator [20]. 

 
 

Operating pressure range 0,5\9 bar 
ANR flow rate 1500 Nl/min 
Inlet Pressure 10 bar 
Input Signal 0\10 V 

Output Signal 0\5 V 
Voltage supply DC 24 V 

Operating temperature 5\50 °C 
Degree of protection IP 40 

 
 
A manual valve, manufactured by Metal Work, product code 7010001300, was used in series with 

another manual valve (Metal Work 7010000200) to pressurize a tank during required tests. By 

establishing this connection, it became feasible to control the pressure inside the tank using a second 

supply line. 
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Figure 2.17 The manual valve 3/2 [20]. 

 
 
 

Operating range -0,99\10 bar 
ANR flow rate 1500 Nl/min 
Inlet Pressure 10 bar 
Input signal 0\10 V 

Output signal 0\5 V 
Voltage supply DC 24 V 

Operating temperature 5\50 °C 
Degree of protection IP 40 

 
The series of valves is completed by a manual valve that is manufactured by Metal Work, product 

code 7010000200. It's a 3/2 manual control valve, and its main characteristics are outlined below. 
 

 
Figure 2.18 The manual valve 3/2 [20]. 

 
Operating range -0,99\10 bar 
ANR flow rate 550 Nl\min 
Pipe diameter 1/8’’ 

Operating temperature -10/60 °C 
Weight 164,28 g 
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Material Aluminum 
 
On the other hand, the flow rate sensors utilized are manufactured by FESTO with reference code 

SFAH-200B-Q65-PNLK-PNVBA-M8. These are bidirectional flow meters utilizing a thermal 

phenomenon, as the measurement is conducted through a micromechanical sensor element connected 

to an electronic control unit downstream. This unit monitors the heat transfer in relation to the flow 

passing through the sensor. 
 

 
Figure 2.19 The flow rate sensor [20]. 

 
Operating range -0,9\10 bar 

Max measurable flow rate 200 l/min 
Accuracy ± (2% of the measured value + 1%FS) 

 
Analogic Output 

0-10 V 
4-20 mA 

1-5 V 
Operating voltage range 22\26 V 

Max output current 100 mA 
Fluid Filtered air 

Fluid temperature 0\50 °C 
Nominal temperature 23 °C 

 
 
The bench is equipped with two Honeywell pressure transducers, model 40PC-150G, to detect the 

pressures in the two chambers of the pneumatic cylinder. 
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Figure 2.20 The pressure transducer [20]. 

 
 

Measurement range 0\150 psi 
Max pressure 300 psi 

Supply tension 5 V 
Max supply current 10 mA 
Max output current 0.5 mA 

Operating temperature -45\125 °C 
Hysteresis and repeatability 0,15 % 

Output voltage 0,5\4 V 
Sensibility 26,6 mV/psi 

 
The carriage movement is detected through a non-extendable wire transducer, model DV301-0040-

111-1110, from the company Celesco. This device is a combination of a hybrid trace potentiometric 

position transducer and a tachometric device that outputs an electrical signal proportional to the 

velocity of the body to which the wire end is attached. A wire transducer has the drawback of the 

return force required to retract the wire inside itself; in some applications, this action might not be 

tolerable as it can be comparable to the forces acting on the object being position-monitored. 
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Figure 2.21 The LVDT sensor [20]. 

 
Measure range 0\101,6 cm 

Accuracy 0,1 % FS 
Repeatability ± 0,02 % FS 

Max supply voltage 30 V 
Output voltage speed 65 mV/m/min 

Output resistance 500 Ω 
Operating temperature range -40/90 °C 

 
 
To enhance data accuracy during acquisition, the decision was made to install a Brüel & Kjær model 

4507 B 004 accelerometer on the trolley. This device comes with various benefits, including the 

ability to connect directly to the power network, the option to use cost-effective long connecting 

cables, and a significantly extended bandwidth. The employed accelerometer is denoted by the 

manufacturer as CCLD, signifying its operation through direct connection to the power network, 

thereby generating a voltage-modulated output signal in alignment with the power network. 
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Figure 2.22 The accelerometer [20]. 

 
Weight 4,6 g 

Sensibility 10 ± 5% mV/s-2 
Bandwidth 6 kHz 

Voltage supply 24\30 V 
Current 2\20 mA 

Output resistance 30 Ω 
Operating temperature -54\121 °C 

 
In order to measure the driven force a load cell was mounted between the top of the cylinder rod and 

the spherical joint to measure the intensity of both tensile and compressive forces transmitted by the 

pneumatic actuation. Specifically, the model used is the U9C 200N, manufactured by HBM. The 

measuring element is a deformable steel diaphragm on which strain gauges (SG) are installed. These 

strain gauges are positioned so that the applied force causes two of them to stretch under tension and 

two to compress. The strain gauges are interconnected to form a Wheatstone bridge with a four-wire 

configuration. They change their ohmic resistance proportionally to their length variation, thus 

unbalancing the Wheatstone bridge. When the bridge is supplied with an excitation voltage, the circuit 

produces an output signal proportional to the resistance variation and, consequently, to the introduced 

force. The arrangement of the strain gauges is chosen in a way that significantly compensates for 

parasitic forces and moments (such as lateral forces and the influence of eccentricity), as well as 

temperature effects. The utilized transducer emits a signal in mV/V, and for signal processing, a 
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measuring amplifier is required. The main technical data of the U9C force transducer are summarized 

in the table. 
 

 

 
Figure 2.23 The load cell [20]. 

 
Accuracy class 0,2 

Relative hysteresis <0,2% v0,5 
Nonlinearity error <0,2% dlin 

Nominal sensibility 1 mV/V 
Voltage supply 0,5\12 V 

Operating temperature -30\85 °C 
Max force 200 N 

Rupture force >400 N 
Max torque 2,5\3,7 Nm 

Resonance frequency 12, kHz 
 
The amplifier utilized is the HBM Clip AE101, designed to amplify measurement signals originating 

from the load cell. The technical specifications are detailed in the provided table. 
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Figure 2.24 The signal amplifier [20]. 

 
Accuracy class 0,1 

Bridge supply voltage 2,5 V, 5 V, 10 V 
 
 

Measurement range 

 
0,1\2 mV/V 
0,2\4 mV/V 
0,4\8 mV/V 

 
Nonlinearity error <0,05% FS 

Output voltage ± 10 V 
Load resistance ≥ 4 kΩ 

Internal resistance < 2 Ω 
Operating temperature -20\60 °C 
Temperature influence < 0,1 % FS 

CC supply voltage 15\30 V 
Protection grade IP10 

 

 
 
To acquire the data, the National Instruments USB-6212 multifunction I/O device was employed. The 

key characteristics of this device are presented in the following table. 
 

 Supply 5 V 
 Number of channels 8 
 ADC resolution 16 bit 

Analogic input Acquisition frequency 400 kS/s 
 Timing resolution 50 ns 
 Bandwidth 1,5 MHz 
 Number of channels 2 
 DAC resolution 16 bit 

Analogic output Max frequency 250 kS/s 
 Timing resolution 50 ns 
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 Output range ± 10 V 
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CHAPTER 3 
 
This chapter shows and describes the results of the performed experimental tests. Each test has been 

made for a different type of regime: pre-sliding, transition and gross sliding. Experimental test related 

to the pre-sliding regime highlighted the phenomenon of hysteresis with non-local memory. 

Transition regime tests exhibit the stick-slip phenomenon. Gross-sliding tests manifest the Stribeck 

effect is emphasized.  
 
3.1 Pre-sliding regime test 
 
Pre-sliding regime tests are necessary to identify the parameters related to bristle state equation. Since 

the execution of this test requires a force control actuator (that is not present in adopted experimental 

set-up, see Sec. 2.2), the considered experimental data was taken from the literature [15]. The 

mechatronic system under consideration in is a pneumatic servo positioning system. The testing 

arrangement comprises a 5/3-way proportional directional control valve and a rod-less pneumatic 

cylinder. To determine the driving force, two pressure sensors are employed to measure the pressure 

difference between the cylinder's chambers, which is directly proportional to the force being applied. 

The position sensor gauges the initial displacement before sliding begins. Acceleration is measured 

using an accelerometer. Velocity is then calculated by integrating the measured acceleration data. A 

computer equipped with a digital signal processor (DSP card) is utilized to transmit the control signal 

to the proportional valve via a D/A converter and to collect data from all sensors through A/D 

converters. The procedure for assessing friction involves measuring acceleration and subtracting the 

computed inertial forces from the applied forces, which are inferred from the pressure difference 

detected in the cylinder's chambers. 
 

 
Figure 3.1 Experimental set-up in [15]. 
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In this context, an input is given to the valve that let the air flow goes through one of the chambers 

imposing a difference in pressure and consequently a driving force. The piston is subjecting to a 

periodic motion featuring multiple velocity reversal per period within the pre-sliding regime. The 

force applied has not to be greater than the first detach force and the piston must not move. Despite 

the velocity of the piston is null, micro-displacements occur and, in this case, displacement itself can 

be considered equivalent to the asperities deformation: measuring the displacement means measure 

the deformation of the roughness. Friction is only function of the displacement and not depends on 

time or velocity. The experimental hysteresis curve is shown below: 
 

 
 

Figure 3.2 Experimental hysteresis curve found in [15]. 

 
The nonlocal memory aspect of pre-sliding hysteresis friction has been emphasized. At each velocity 

reversal a loop starts. If the module of the displacement at the reversal point is larger than the extremes 

recorded in the stacks, an external loop stars while if at the reversal, the displacement is smaller than 

these extremes, an internal loop take place. It is also possible to spot the virgin curve following the 

curve that start from zero of the coordinate planes and continues until the upper left reversal point. 
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Figure 3.3 Experimental virgin curve in [15]. 

 
 
3.2 Transition regime test 
 
The tests carried out for the transition regime are made on the test bench described in the Sec. 2.2. 

Transition tests are necessary to identify the stick-slip phenomenon. They require low velocity regime 

where the changeover between static and dynamic friction happens. They are performed at different 

supply pressure of the control valve pressure (starting from 1.5 bar up to 6 bar with 0.5 bar of step). 

At each supply pressure value, it is necessary to find out the lowest tension level at which the valve 

triggers the piston's motion. Four tests are considered based on their effectiveness. The various tests 

are listed below: 
 

 Pressure [bar] Output piston 

tension [V] 
Input piston 

tension [V] 
Test 1  

(Stick_Slip_Ps40_Vi56_Vf49_3) 
4.0 5.6 4.9 

Test 2 
(Stick_Slip_Ps60_Vi542_Vf5_1) 

6.0 5.4 5.0 

Test 3 
(Stick_Slip_Ps50_Vi545_Vf48_2) 

5.0 5.5 4.8 

Test 4 
(Stick_Slip_Ps15_Vi59_Vf5_1) 

1.5 5.9 5.0 
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The valve is an electro valve in which the offset is set to 5V. This means that at 5V the corresponding 

position of the valve plug is exactly at the centre and the air doesn’t flow inside the chambers. For 

voltage values (input piston tension) between 0 and 5 the left chamber is supplied and, on the opposite, 

for values between 5 and 10 (output piston tension), the right chamber is filled up. This means that if 

a value in between 0 and 5 is given to the electro valve, the piston will move on the left. The value of 

voltages highlighted in the previous table is the minimum voltage at which the piston breaks the “first 

detach force”.  It is possible to notice that in two test (test 2 and test 3), the voltage at which the valve 

would let the piston go back, is 5.0 V. At this value of tension, air would not flow through the valve 

and piston would remain still, but this does not happen, and the piston moves back in the initial 

position. This is caused by the LVDT rod that pull the cart even if there is not a driving force moving 

it. This LVDT sensor measures the displacement while velocity and acceleration are obtained deriving 

numerically the position. The friction force comes from the equilibrium of the forces by difference of 

the inertial term and the driving force. The driving force is computed knowing the pressure in the 

chambers (through the pressure gauge) and the areas of the two surfaces of the piston. This procedure 

is implemented for all the tests. 
 
3.2.1 Overall Results 
 
At the beginning of each test, the valve is in its rest position, i.e., there is no output or discharge flow 

from the valve (the driving voltage is approximately 5V). Subsequently, the driving voltage of the 

valve is set to the minimum constant value that guarantees the outstroke of the cylinder. In these 

instances, after a time interval that depends on the testing conditions (supply pressure and driving 

voltage of the valve) the cylinder moves generating the motion of the cart. In this way, it was possible 

to experience the presence of the stick-slip phenomenon. Similarly, to induce stick-slip during the 

instroke of the cylinder, once the cart reaches its end stroke, the input voltage is manually changed to 

the minimum and constant value that generates the instroke of the cylinder. During the stick-slip 

process, the cart displacement resembles a stepped trend in both directions. The velocity results reflect 

the displacement behaviour: when the piston stops its motion due to the stiction force, velocity is null. 

During motion, the velocity reports some peaks whose values depends on the supplied pressure. When 

air is introduced into the front chamber, it undergoes compression, resulting in an increase in pressure 

denoted as Pf, while the pressure in the rear chamber, Pr, decreases. Initially, the driving force due to 

the difference in pressure between the chambers, is not enough to overcome the static frictional force, 

causing the piston stiction. Once the pressure force exceeds the breakaway force, the piston initiates 

its movement. Nevertheless, as the piston advances, the volume of the front chamber expands, causing 

a reduction in pressure, and consequently stopping the piston motion. As the continuous supply of air 

into the front chamber and discharge from the rear chamber persists, the pressure in the front chamber, 

increases again, ultimately overcoming the breakaway force and generating the cart motion. 
The friction force shows a trend as a saw tooth in which it ranges between peaks. The amplitude of 

this peaks changes both depending on the position of the piston during its motion and on the supplied 

pressure. Same as the semi-period: the period is not unique and depends on the same factors as the 

velocity and displacement. Each peak corresponds to the start of the motion for the piston. This value 

corresponds to the peaks and if the peaks value changes at each semi-period, it is impossible to find 

a unique for the first detach force. Initially, this value increases when the piston is close to the initial 

position while decreases and maintains almost constant when get closer to the end of the stroke. This 
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probably due to a greater wear in a certain area of the piston stroke: the cylinder worked much more 

in those areas during his work life. 
Moreover, it is possible to notice that when the supply pressure of the valve is increased, stick-slip is 

more evident. The seals adhere much more in high pressure conditions because they are pushed 

against the cylinder liner. These effects the first detach force: higher the pressure, higher the stiction 

force. It is possible to notice that in test 4, at 1.5 bar, stick-slip does not appear in the first half of the 

trial because of the too low pressure.  
 
3.2.2 Test 1 
 
Figure 3.4 shows the experimental test related to test 1. Figures 3.4a, 3.4b, 3.4c, 3.4d, 3.4e and 3.4f 

show the trend of the valve driving voltage, the displacement and velocity of the cart, the pressures 

and air flow of the cylinder chambers, and friction force recorded during the test 1. 
It can be seen (see Figure 3.4a) that, after the application of a constant driving voltage of 5.35 V, the 

cylinder remains in its initial position (see Figure 3.4 b and 3.4c) and it moves only after a resting 

time of about 3.5 s. Here, the system is in presliding regime and there are only microscopic 

deformations of the surfaces asperities. Unfortunately, as said in Section 3.1, the position sensor 

integrated in the experimental set-up does not make it possible to asse the values of these micro-

displacements. This was the time required to regulate the pressure in cylinder chambers till reaching 

the value of the breakaway force. During this first time interval (see Figure 3.4d and 3.4e), the 

pressure in the front chamber increases thanks to the constant inflow provided by the control valve. 

On the contrary, the pressure in the rear chamber decreases since it relates to the discharge port of the 

valve. Accordingly with these pressures trends, the computed friction force (from the equilibrium 

equation of the cart-piston-rod system) gradually increases till the breakaway value.  
As the cylinder moves, it motion stops after few seconds (at about 5,65 s) and this kind of movement 

process continues till the cart reaches its end stroke position (at about 13 s). This is a characteristic 

behaviour of the stick-slip process observed in pneumatic cylinders. The occurrence of this 

phenomenon can be explained by considering the time evolution of the pressures in the cylinder 

chambers. When air is supplied to the front chamber, it is compressed and the pressure 𝑃𝑓 increases 

(in Figure 3.4d), while the pressure 𝑃𝑟 in the rear chamber decreases. In the first 3.5 s, the difference 

between 𝑃𝑓𝐴𝑓 and 𝑃𝑟𝐴𝑟 is not large enough to overcome the stiction friction force so that the piston 

remains stationary (stick). As the difference between 𝑃𝑓𝐴𝑓 and 𝑃𝑟𝐴𝑟 overcome a value of 73.72 N, 

then the piston starts moving (slip). However, as the piston moves, the volume of the front chamber 

expands and the pressure 𝑃𝑓 decreases and thus the piston stops moving (stick). As air continues to 

be fed into the front chamber and discharged from the rear one, the pressure 𝑃𝑓is increased again and 

then overcomes the breakaway force generating the cart motion again. The process is then repeated.  
It is worth noting that (see Figure 3.4e) that the value of the breakaway force varies during the test, 

but globally exhibit a periodic trend. Initially, the value of the breakaway force increases up to a 

maximum value, then gradually reduces to an almost constant value that manifests for some stick-

slip steps. This periodic trend is evidenced both during the outstroke and instroke of the cylinder (see 

Figure 3.4 f). 
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Figure 3.4a: Driving voltage.  

 
Figure 3.4b: Cart displacement. 

 
Figure 3.4c: Cart velocity. 
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Figure 3.4d: Chamber pressures. 

 
Figure 3.4e: Air flow. 

 
Figure 3.4f: Friction force. 
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3.2.3 Other Tests 
 
Since the behaviour experienced in the other tests is quite like that of test 1, the other experimental 

results are reported without any additional comments. 
 
Test 2 

 
 

 
Figure 3.5a: Driving voltage. 

 

 
Figure 3.5b: Cart displacement. 
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Figure 3.5c: Cart velocity. 

 

 
Figure 3.5d: Chamber pressures. 

 
Figure 3.5e: Air flow. 
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Figure 3.5f: Friction force. 

 
 
Test 3 

 

 
Figure 3.6a: Driving voltage. 
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Figure 3.6b: Cart displacement. 

 
Figure 3.6c: Cart velocity. 

 
Figure 3.6d: Chamber pressures. 

 
Figure 3.6e: Air flow. 
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Figure 3.6f: Friction force. 

 
 
Test 4 
 

 

 
Figure 3.7a: Driving voltage. 
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Figure 3.7b: Cart displacement. 

 
Figure 3.7c: Cart velocity. 

 
Figure 3.7d: Chamber pressures. 
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Figure 3.7e: Air flow. 

 
Figure 3.7f: Friction force. 

 
 
3.3 Gross-sliding regime 
 
On the same test bench, but in two different configurations (see Figure 2.11a and 2.11b), gross-sliding 

regime tests were performed. This kind of test was performed in order to study the positioning system 

behaviour under different working conditions: valve supply pressure, driving voltage and frequency. 

These tests were used to draw Stribeck curves and identify the gross sliding parameters that have to 

employed in the numerical models.  
 
3.3.1 First configuration 
The test in the first configuration consists in the application of a sinusoidal control voltage to the 

control valve 𝑉𝑠(𝑡) = 𝑉𝑠0 + 𝛥𝑉𝑠 sin (2𝜋𝑓𝑡). Different operating conditions were considered: supply 

voltage amplitudes Δ𝑉𝑠 and oscillation frequencies 𝑓. The mean driving voltage and supply pressure 

of the valve were taken constant and equal to 5 V and 0.49 absolute MPa. The supply voltage 

amplitudes Δ𝑉𝑠 was varied from 1 to 4 V, whereas the excitation frequency ranged from 0.4 to 7 Hz. 
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The duration of each the test was about 15 s. The physical quantity that are measured and acquired 

were: the position (𝑥) and cart velocity (�̇�), the pressures (𝑃𝑓 and 𝑃𝑟) and the in and out flow (𝐺𝑓 and 

𝐺𝑟) related to the cylinder chambers along with the driving voltage (𝑉𝑠) applied to the valve terminals. 
 
3.3.1.1 Overall Results 
 
At the beginning of each test, the valve is in its neutral position, where there is no output or discharge 

flow from the valve, and the driving voltage is approximately 5V. Starting from this value, the control 

valve, receive a sinusoidal voltage signal produced via LabView. The valve shutter starts to move 

periodically with at the same frequency. Consequently, the cart starts its motion with a certain time 

delay depending on the cylinder dynamics. The cart motion is also periodical, but it is sinusoidal only 

when the excitation frequency is higher than 2 Hz. At low excitation frequencies, the cart 

displacement does not follow a sinusoidal trend, since, at motion reversal, there is a time interval in 

which the piston-cart-rod system sticks. Subsequently, the system starts moving again when the 

pressure force overcomes the breakaway one.  
The velocity reflects the displacement trend: it has a periodic behaviour but, at frequencies lower than 

2 Hz, it does not exhibit a sinusoidal trend due to the system stiction.  
The behaviour of the two pressures 𝑃𝑓 (front chamber) and 𝑃𝑟 (rear chamber) is complementary: when 

the valve is supplied with a control voltage lower than 5V, it provides compressed air to the front 

chamber and connect the rear one to the vent. The opposite occurs when the supply voltage is higher 

than 5 V. When the difference between the pressure in the chambers generates a force that overcome 

the breakaway one, the cart moves.  
Generally, the friction force follows a periodic behaviour, but it is not perfectly sinusoidal. In each 

period, the maximum value of the friction force presents almost the same value since the system 

moves between the same extremes and the interaction between the asperities of the mating surfaces 

reproduce almost identically. 
Regarding Stribeck curves (see Figure 3.11), they modify their shape depending on the excitation 

frequency applied at the valve terminals. At frequency lower than 2 Hz, the Stribeck curves exhibit 

the classical shape that characterize dry and lubricated contact. When the driving force applied to the 

system is lower than the breakaway one, the system sticks. As the driving force exceeds the 

breakaway one, the system exhibits the characteristic Stribeck and viscous effects. Conversely, at 

excitation frequencies higher than 2 Hz, the shapes of the Stribeck curves resembles that of an ellipse 

since the system does not sticks at motion reversal. 
 
3.3.1.2 Test 1 
𝒇 = 𝟏𝑯𝒛, 𝑽𝒔𝟎 = 𝟓𝑽, 𝜟𝑽 = 𝟐𝑽, 𝑷𝒔 = 𝟒 𝒃𝒂𝒓 
 
Figure 3.8 shows the experimental test related to test 1. Figures 3.8a, 3.8b, 3.8c, 3.8d, 3.8e, 3.8f and 

3.8g show the trend of the valve driving voltage, the displacement and velocity of the cart, the 

pressures and air flow of the cylinder chambers, friction force and Stribeck curve recorded during the 

test 1. 
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In Figure 3.8a it is possible to notice that at the beginning of the trial, the input voltage starts its 

sinusoidal shape starting from a value of about 5 V. The piston does not move immediately (see Figure 

3.8b and 3.8c) and stays in the pre-sliding regime until 0.17 s. In this regime, micro-displacements 

occur but they cannot be spotted in the Figures because of the sensor that is not able to see such as 

small movements. During this first time interval (see Figure 3.8d and 3.8e), the pressure in the front 

chamber increases thanks to the constant inflow provided by the control valve. On the contrary, the 

pressure in the rear chamber decreases since it relates to the discharge port of the valve. Accordingly 

with these pressure trends, the computed friction force (Figure 3.8f) gradually increases till the 

breakaway value.  
The cylinder starts its outstroke and instroke motion, when the driving voltage is lower than 4.2 V 

and higher than 5.75 V. Conversely, when the driving voltage ranges from 4.2 to 5.75 V, the system 

sticks since the air flow provided by the valve is not enough to reach a pressure force to overcome 

the breakaway force. At velocity reversal, the system stops for a time interval of about 0.18s. At about 

0.62 s, the driving voltage signal is big enough to increase the force given by the pressure difference 

let the piston starts the motion and the cart starts to move in the opposite direction. This behaviour 

repeats until the end of the data acquisition. 
Figure 3.8g shows the Stribeck curve of test 1.  
 

 
Figure 3.8a: Driving voltage. 
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Figure 3.8b: Cart displacement. 

 
Figure 3.8c: Cart velocity. 

 
Figure 3.8d: Chamber pressures. 



76 
 

 
Figure 3.8e: Air flow. 

 
Figure 3.8f: Friction force. 

 
Figure 3.8g: Stribeck curve. 
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3.3.1.3 Test 2 
𝒇 = 𝟒𝑯𝒛, 𝑽𝒔𝟎 = 𝟓𝑽, 𝜟𝑽 = 𝟐𝑽, 𝑷𝒔 = 𝟒𝒃𝒂𝒓 
 
In test 2, the motion frequency is higher than that in test 1. This produces a different behaviour of the 

system during its motion. In this case, the stiction time are so small that are not visible, and the 

displacement, the velocity, the air flow and pressures follow an almost ideal sinusoidal trend.  

 
Figure 3.9a: Driving voltage. 

 
Figure 3.9b: Cart displacement. 
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Figure 3.9c: Cart velocity. 

 
Figure 3.9d: Chamber pressures. 

 
Figure 3.9e: Air flow. 
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Figure 3.9f: Friction force. 

 
Figure 3.9g: Stribeck curve. 

 
3.3.1.4 Test 3 
 
 𝒇 = 𝟔𝑯𝒛, 𝑽𝒔𝟎 = 𝟓𝑽, 𝜟𝑽 = 𝟐𝑽, 𝑷𝒔 = 𝟒𝒃𝒂𝒓 
Since the behaviour experienced in the test 3 is quite similar that of test 2, the other experimental 

results are reported without any additional comments. 
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Figure 3.10a: Driving voltage. 

 
Figure 3.10b: Cart displacement. 

 
Figure 3.10c: Cart velocity. 
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Figure 3.10d: Chamber pressures. 

 
Figure 3.10e: Air flow. 

 
Figure 3.10f: Friction force. 
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Figure 3.10g: Stribeck curve. 

 
 
 
 

 
Figure 3.11: Stribeck curves comparison. 

 
3.3.2 Second configuration 
 
In the second configuration, one of the cylinder chambers was supplied by a Camozzi pressure 

regulator, whereas the other one was kept plugged. The pressure regulator was controlled with a 

sinusoidal voltage signal V(𝑡) following the equation 𝑉(𝑡)  =  𝑉0  +  𝛥𝑉𝑠𝑖𝑛(2𝜋𝑓𝑡) with V0 = 1.10 ÷ 

4.40 V (Offset), 𝑓 = 1 ÷ 3 Hz (frequency), and ΔV = 0.4 V (amplitude). The plugged chamber was 

initially set to a constant pressure value ranging from 0.2 to 0.5 MPa. To investigate the impact of the 

plugged chamber volume, a 1-liter tank was connected to it in some experiments. The physical 

quantity that are measured and acquired were: the position (𝑥) and cart velocity (�̇�), the pressures (𝑃𝑓 
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and 𝑃𝑟) and the in and out flow (𝑄𝑓 and 𝑄𝑟) related to the cylinder chambers along with the driving 

voltage (𝑉𝑠) applied to the valve terminals. 
 
3.3.2.1 Overall results 
 
The most relevant aspects experienced during the tests performed in this configuration are that: 

• Give the excitation frequency and the amplitude of oscillation of the cart, the friction force is 

lower in the test performed with the aid of the pressure regulator. 
• The pressure in the plugged chamber oscillates between two values of pressure behaving as it 

was a spring. 
• Stribeck curves exhibit a smaller extension and cycle size a frequency increasing. The curves 

are also influenced by the presence of the tank that modify the curve slope.  
 
Test Regolatore_PID_PB2_f1Hz_dV04_1 
 
Figures 3.12 shows the results of a test performed imposing an initial pressure of 0.3 absolute MPa 

in the plugged chamber. Here, the volume of the chamber was increase by connecting a 1-liter tank 

to the plugged chamber. 
Figure 3.12a shows the periodical movement of the cart like a sinusoid. Each peak, corresponds to a 

stiction process in which the driving force due to the difference in pressure between the chamber, is 

not enough to overcome the breakaway force. Figure 3.12b shows the time evolution of the cart 

velocity. It can be seen that some steps when velocity reach zero and those correspond to the stiction 

periods. As already mentioned, the driving force is due to the difference in pressure shown in Figure 

3.12c: at the beginning of the trial the difference is not enough, and the cart does not move but after 

about 0.15s this difference increases causing the cart motion. At about 0.5s this difference decreases 

again, and the cart stops. Air flows trends reflect the chamber pressure behaviour as shown in Figure 

3.12d: when one flow increases, the other must decrease. Generally, the friction force (Figure 3.12e) 

follows a periodic behaviour, but it is not perfectly sinusoidal. In each period, the maximum value of 

the friction force presents almost the same value since the system moves between the same extremes 

and the interaction between the asperities of the mating surfaces reproduce almost identically. In 

Figure 3.12e the Stribeck curve is plotted. 
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Figure 3.12a Cart displacement. 

 

 
Figure 3.12b Cart velocity. 
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Figure 3.12c Chambers pressure. 

 
Figure 3.12d Air flow through the chamber. 

 
Figure 3.12e Friction force. 
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Figure 3.12f Stribeck curve. 

 
Figures 3.13a and 3.13b show the Stribeck curve trend at frequency increasing in the case with the 

tank and without it. Those examples are provided at a constant pressure of 0.1 MPa. 
 

 
Figure 3.13a: Stribeck curves comparison with the tank.  
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Figure 3.13b: Stribeck curves comparison without the tank. 
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CHAPTER 4 
 
This chapter compares the numerical and experimental results of the investigated system. The 

comparison is aimed to validate the numerical models in presliding, transition and gross-sliding 

regimes. The numerical results come from the numerical model detailed in Sec.2.2.  
 
4.1 Pre-sliding regime 
 
The numerical simulation tries to find the friction force acting on a mechatronic system under pre-

sliding regime. In this specific test, the system undergoes micro-displacements while velocity is 

almost null, and the phenomenon of hysteresis with non-local memory appears. In these cases, the 

friction force only depends on the deformation of the asperities of the mating surfaces. Among the 

implemented models, only the Leuven one is able to take into account hysteresis with non-local 

memory. For this reason, in this section, all the numerical results are related to Leuven model. On the 

other hand, the experimental test comes from [15].  
The first step to identify the pre-sliding model parameter is the identification of the virgin curve. This 

curve relates the driving force applied to the movable part of the system and the related micro-

displacement, i.e., the displacements that are measured when the driving force is lower than the 

breakaway one.  
Also the experimental virgin curve was taken from [15]. As in [19], the mathematic formulation to fit 

experimental is : 
 

𝑓(𝑥) = 𝑘1𝑥 − 𝑓1 (exp(−𝑓2 ‧ 𝑥) − 1) 
 

This experimental fitting was performed by Matlab Fitting Toolbox and the estimated coefficients are 

reported in the table below1:  
Coefficient Value 
𝒌𝟏 (𝑵/𝒎) 1.483  ‧ 106 
𝒇𝟏 (𝑵) 5.595 
𝒇𝟐 (𝟏/𝒎) 5.631  ‧ 105 

 
Figure 4.1 compares the experimental and fitted data. 

 

 
1 The values obtained through Matlab Fitting Toolbox were slightly modified by a trial-and-error procedure.  
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Figure 4.1 The fitted virgin curve. 

 

Once the virgin curve has been found, the next step is to acquire the values of z from the experimental 

test and give them as input to the numerical model to find the friction force 𝐹ℎ . 
 

𝐹𝑓 = 𝐹ℎ(𝑧) + 𝜎1 �̇� + 𝜎0𝑧 
 

𝐹ℎ(𝑧) = 𝐹𝑏 + 𝐹𝑑(𝑧) 
 

The term Fh(z) is introduced to take in account the hysteresis effects and substitutes the first term of 

the LuGre equation. This term is different from zero only when the velocity is null. It consists in an 

expression function of the bristle deformation z. Its value at the initiation of a transition curve (such 

as during a velocity reversal) is denoted as Fb. The transition curve that becomes active at a specific 

moment is symbolized as Fd(z). Fd(z) constitutes a symmetrical point-wise function of z that 

consistently increases. The implementation of Fh(z), necessitates the utilization of two memory 

stacks: one to store the ascending-ordered minima of Fh (referred to as stack min), and another to 

house the descending-ordered maxima of Fh (referred to as stack max). These stacks expand during 

velocity reversals and contract when internal loops are closed. The numerical steps to compute Fb, 

Fd(z) are reported in section 2.4. Figures 4.2 and 4.3 compares the experimental and numerical results.  
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Figure 4.2 Friction force on time. 

 

 

 
Figure 4.3 Friction force-displacement. 

 

The friction force resulting from Leuven method follows the experimental one both on time and 

displacement. Figure 4.3 shows the hysteresis with non-local memory phenomenon emphasizing all 

the internal loops as shown in Figures 4.4a and 4.4b, but the two shapes are not coincident.  
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Figure 4.4a Internal loops. 

 
Figure 4.4b Internal loops. 

 
 
4.2 Transition regime 
 
This section compares the experimental and numerical related to a stick slip process. Here, the main 

goal is to evaluate the accuracy of the model prediction in the presence of stick-slip phenomena. The 

tests have been performed in the presence of different and constant supply pressures of the valve 

(from 0.1 to 0.6 relative MPa) and imposing the minimum driving voltage to generate the cart motion. 

The numerical results are obtained through some of the numerical model that have been discussed in 

the thesis: Polito, Dahl and LuGre model. 
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Since the absence of experimental data related to the presliding behaviour of the system, the initial 

identification of the presliding parameter were performed manually through a trial-and-error 

procedure.  
 
As already mentioned in Sec. 3.2.2, the friction force presents a saw tooth trend but with different 

peaks. This difference in peaks is not optimal for a good simulation result, because different peaks 

mean different first detach forces. This involves a different value of the first detach force 𝐹𝑠 at each 

peak. It depends on the fact that the frictional behaviour of mating surfaces is not constant during the 

motion of the cart. To simplify the identification of the model parameters only a portion of the test 

performed at 6 bar, Stick_Slip_Ps60_Vi542_Vf5_1 is considered (between 17.85s and 21.05 s). In 

this time interval, the friction force peaks are similar and comparable with a unique 𝐹𝑠.  
Moreover, it is worth pointing out that the total weight of the cart-rod,-piston system is not the same 

as the gross-sliding regime test, because in this specific case there is not the load cell. So, the weight, 

goes from 0.88 kg to 0.78 kg only for this test. 
The results of displacement, velocity and friction force are compared with the experimental one in 

Figure 4.5. Here below, the model parameters are listed: 
• Polito: 

Coefficient Value 
𝑭𝒔 (𝑵) 𝟏𝟎. 𝟖  
𝑭𝑪𝟏 (𝑵) 7.8 
𝑭𝑪𝟐 (𝑵) 7.8  

𝒗𝒔 (
𝒎

𝒔
) 0.01    

𝜺 (
𝒎

𝒔
) 10−4  

𝒄𝟏 (
𝑵
𝒎

𝒔

) 33 

𝒄𝟐 (
𝑵
𝒎

𝒔

)  25  

𝜹 2 
𝒎𝒂𝒔𝒔 (𝒌𝒈) 0.78 

 
• Dahl model 

Coefficient Value 
𝑭𝑪 (𝑵) 𝟏𝟎. 𝟔 

𝝈𝟎 (
𝑵

𝒎
) 8 ‧ 106  

• LuGre model 
Coefficient Value 
𝑭𝒔 (𝑵) 𝟏𝟏  
𝑭𝑪 (𝑵) 8.3  

𝒗𝒔 (
𝒎

𝒔
) 0.01   

𝜹 2 
𝒎𝒂𝒔𝒔 (𝒌𝒈) 0.78  
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𝝈𝟎 (
𝑵

𝒎
) 104  

𝝈𝟏 (
𝑵
𝒎

𝒔

) 2500  

𝝈𝟐 (
𝑵
𝒎

𝒔

) 30  
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Figura 4.5a Displacement comparison. 

 
Figura 4.5b Velocity comparison. 

 
Figura 4.5c Friction force comparison. 
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The comparison between experimental and numerical displacements emphasizes that the numerical 

models anticipate the cart movements and they do not perfectly match the step sizes.  This can be due 

to the fact that the breakaway force exhibits small variation between one step and another. Regarding 

velocities, it can be seen that the shape of numerical and experimental curves is quite similar but, in 

general, the duration of the experimental peaks is smaller, whereas the amplitude is higher. Polito 

model reproduces regular pulses and Dahl is the best between the three models at follow the 

experimental velocity. Regarding the friction force, Polito and LuGre follow the sawtooth trend but 

with some problems: Polito has numerical instabilities at each peak of the sawtooth, while LuGre 

presents some peaks when the cart starts to slip. Those LuGre peaks may be due to the high values of 

𝜎0 and 𝜎1 that takes place only when the cart sticks and asperities deform. Dahl does not follow the 

sawtooth behaviour but follows a step behaviour with oscillations when 𝐹𝑓 reach the minimum values. 

4.3 Gross sliding regime  
 
In this test, the numerical simulation tries to predict the friction force under gross sliding regime. In 

this regime, velocities are big enough to overcome the transition regime and macro-viscous forces 

come into play. The Stribeck curve can be draw and its parameter can be spotted. The numerical 

models that are considered for this numerical simulation are the Polito and LuGre model. 
 
4.3.1 First configuration 
 
Regarding the first set up (see Figure 2.11a), the considered test is the one performed at 1 Hz, 4.9 bar 

and 𝛥𝑉 equal to 1 V (Sine_10Hz_fs1kHz_49bar_A1_1). The numerical parameters have been found 

through the Stribeck curve (Figure 4.6) while the remaining once were undertaken manually through 

a trial-and-error procedure. 
 

 

 
Figure 4.6 The Stribeck curve. 
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• Polito model 

 
Coefficient Value 
𝑭𝒔 (𝑵) 𝟒. 𝟐  
𝑭𝑪𝟏 (𝑵) 2  
𝑭𝑪𝟐 (𝑵) 2  

𝒗𝒔 (
𝒎

𝒔
) 0.06   

𝜺 (
𝒎

𝒔
) 10−4  

𝒄𝟏 (
𝑵
𝒎

𝒔

) 23  

𝒄𝟐 (
𝑵
𝒎

𝒔

) 7  

𝜹 0.5 
𝒎𝒂𝒔𝒔 (𝒌𝒈) 0.88  

• LuGre model 
Coefficient Value 
𝑭𝒔 (𝑵) 𝟒. 𝟐  
𝑭𝑪 (𝑵) 2  

𝒗𝒔 (
𝒎

𝒔
) 0.06   

𝜹 1 
𝒎𝒂𝒔𝒔 (𝒌𝒈) 0.88  

𝝈𝟎 (
𝑵

𝒎
) 10  

𝝈𝟏 (
𝑵
𝒎

𝒔

) 3  

𝝈𝟐 (
𝑵
𝒎

𝒔

) 23  
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Figure 4.7a Displacement comparison.  

 
Figure 4.7b Velocity comparison. 
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Figure 4.7c Friction force comparison. 

 
Concerning the displacement, the experimental and numerical results are in good agreement. Polito 

model seems to be the most accurate, since LuGre does not stops at motion reversal. In view of this, 

LuGre model does not match very well experimental data when the experimental velocity is equal to 

zero. However, LuGre provides the best results as regard as the friction force trend. The friction force 

computed from Polito model is less accurate since the experimental Stribeck curve exhibit a non-

symmetrical shape. Polito also presents numerical instabilities at motion reversal when the friction 

force reaches its maximum value.  
 
 
4.3.2 Second sconfiguration 
 
Regarding the second set-up (see Figure 2.11b), the experimental test 

(Regolatore_PID_PB2_f1Hz_dV04_1) is chosen in between many tests listed in [20]. It was 

conducted on the second configuration of the test bench detailed in Sec.2.1. The test is performed 

compressing the rear chamber at 2 bar with a frequency input voltage signal of 1 Hz. To perform the 

numerical simulation, Stribeck parameters are needed, and they can acquire from the Stribeck curve. 
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Figure 4.8 Stribeck curve. 

 
Based on the Stribeck curve, the chosen parameters are: 

• Polito model 
 

Coefficient Value 
𝑭𝒔 (𝑵) 𝟒. 𝟐  
𝑭𝑪𝟏 (𝑵) 0.7  
𝑭𝑪𝟐 (𝑵) 2  

𝒗𝒔 (
𝒎

𝒔
) 0.1    

𝜺 (
𝒎

𝒔
) 10−4  

𝒄𝟏 (
𝑵
𝒎

𝒔

) 16  

𝒄𝟐 (
𝑵
𝒎

𝒔

) 13  

𝜹 0.5 
𝒎𝒂𝒔𝒔 (𝒌𝒈) 0.88  

• LuGre model 
Coefficient Value 
𝑭𝒔 (𝑵) 𝟒. 𝟐  
𝑭𝑪 (𝑵) 0.7  

𝒗𝒔 (
𝒎

𝒔
) 0.1   

𝜹 0.5 
𝒎𝒂𝒔𝒔 (𝒌𝒈) 0.88  

𝝈𝟎 (
𝑵

𝒎
) 3000  
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𝝈𝟏 (
𝑵
𝒎

𝒔

) 90  

𝝈𝟐 (
𝑵
𝒎

𝒔

) 15  

 
Regarding the Polito model parameters, the 𝐹𝑠,𝐹𝐶1,𝐹𝐶2 and 𝑣𝑠 factors come directly from the Stribeck 

curve in Figure 4.4. The other parameters are arbitrarily chosen with a trial-and-error procedure. 
Similarly, the LuGre parameters comes both from the Stribeck curve and from an arbitrarily choice.  
Here are the results: 

 

 
Figure 4.9a Displacement comparison. 
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Figure 4.9b Velocity comparison. 

 

 
Figure 4.9c Friction force comparison. 

 
In this case, experimental and numerical results are in good agreement both for Polito and LuGre 

models. Dahl model was not considered due its poor accuracy in providing results for this kind of 

test. It is worth pointing out that the parameter identified in this type of test are quite different from 

those employed in the other gross-sliding test configuration. Hence, the presence of a plugged 

chamber significantly affects the identification process.  
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CONCLUSIONS 
 
Pneumatic actuators are extensively utilized in the industrial applications due to their cost-

effectiveness, versatility, and mechanical simplicity in comparison to other types of actuators. 

Moreover, the utilization of compressed air provides increased flexibility in their application, even in 

potentially hazardous environments. Additionally, air, as the driving fluid, is considered a sustainable 

resource when contrasted with other fluids like oils. 
The primary aim of this research is to investigate the frictional behaviour of pneumatic cylinders for 

servo positioning applications.  
Experimental tests were performed by means of a system consisting of a cart guided by a linear guide 

with recirculating ball bearings, and it is actuated through a double-acting pneumatic cylinder and a 

5/3-ways proportional flow valve. This experimental set-up was used to investigate the frictional 

behaviour of the system in the presence of transition and gross sliding regimes. 
Transition tests was necessary to identify the stick-slip phenomenon. They were performed at 

different supply pressure of the control valve pressure (starting from 1.5 bar up to 6 bar with 0.5 bar 

of step). At each supply pressure value, it is necessary to find out the lowest tension level at which 

the valve triggers the piston motion. 
Gross-sliding tests were performed by considering two different configurations of the test bench. This 

kind of test was performed to study the positioning system behaviour under different working 

conditions: valve supply pressure, driving voltage and frequency.  
Regarding the transition regime test, starting from the rest the valve is set to the minimum constant 

value that guarantees the outstroke of the cylinder in the low velocity regime. In this way, it was 

possible to experience the presence of the stick-slip phenomenon. During the stick-slip process, the 

cart displacement resembles a stepped trend in both directions.  
In the first configuration of the gross-sliding test, a sinusoidal voltage signal makes the valve shutter 

move periodically and the cart starts its motion. At low excitation frequencies, the cart displacement 

does not follow a sinusoidal trend, since, at motion reversal, there is a time interval in which the 

piston-cart-rod system sticks. Subsequently, the system starts moving again when the pressure force 

overcomes the breakaway one. The second configuration behaves very similarly to the first one. 
These tests made it possible to draw Stribeck curves and identify the gross sliding parameters that 

were employed in the implemented numerical models. These mathematical frameworks considers 

both static and dynamic friction models. The so called, Polito model is a static model considering 

stiction, viscous and Coulomb friction. Conversely, Dahl, LuGre and Leuven models are dynamical 

since include a state equation accounts for the deformation of the asperities of the mating surfaces. 
The use of this models reveals large difficulties in identifying friction parameters that are suitable to 

simulate any test condition. In particular, due to the lack of a suitable experimental instrumentation it 

was not possible to identify the friction parameters that governs the behaviour in pre-sliding regimes. 
Conversely, gross sliding test makes it possible to provide satisfactory estimations of the frictional 

parameters that governs the system behaviour in this regime. As a consequence, the implemented 

models are very accurate in the prediction in gross-sliding regime, but they present a room for 

improvements regarding the pre-sliding and transition ones.  
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