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Chapter 1

Introduction

Credit risk is the possibility of losing a lender holds, due to a risk of default on a debt that
may arise from a borrower failing to make required payments [15]. The modelling of this
risk is an indispensable tool utilized by financial institutions worldwide - including banks,
insurance companies and investment firms - to effectively measure, control and manage
the risk associated with lending. The sphere of credit risk though is by no means con-
fined to just loans or borrowed money; it extends to other areas of financial transactions,
including bonds, derivatives, and other financial products. For this reason, this element
of risk has triggered a wave of interest from various stakeholders ranging from academia
to industry players, regulators and policy makers.

Seemingly abstract, credit risk can potentially put banks at the brink of bankruptcy
or stimulate economic crises on a global scale, as the 2008 financial crisis lucidly exhib-
ited. Thus, the ability to properly model and understand credit risk is not only important
but utterly crucial to the health of financial institutions and economy as a whole. Or-
ganizations seek to comprehend credit risk to ensure sound decision-making, to optimize
returns on investment, and to mitigate the possibility of unforeseen financial losses. A
comprehensive understanding of credit risk modelling also assists institutions in regula-
tory compliance. Indeed, regulations such as the ones brought by the Basel III Capital
Accord (2010), highlight the significance of credit risk modelling in calculating the Value
at Risk (VaR) and the associated economic capital.

This thesis focuses on modelling the risk associated a portfolio of corporate bonds, using
and comparing two of the most prominent models: CreditMetrics and CreditRisk+. First,
we aim to explain the mathematical foundations of the two frameworks, highlighting the
differences and similarities in the two approaches. Second, we explain how to parameterise
consistently the inputs of the two framework. Third, we provide step by step implementa-
tions of the two models in their various possible implementations, comparing the results
yielded in the default and loss distributions relative to two sample portfolios (one with
debtors of high quality bonds, one of low). We finally aim to shed light on the possible
discrepancies in risk measure calculations and model choice for financial institutions.
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Introduction

The thesis is organised as follows:

• Chapter 2 introduces the foundational concepts for modeling Credit Risk. It presents
two widely used mathematical frameworks: Structural and Mixture models, along
with their commercial implementations, CreditMetrics and CreditRisk+.

• In Chapter 3, we delve into a practical case study featuring two realistic portfolios.
We implement CreditMetrics and CreditRisk+ under varying modeling assumptions,
initially assuming independence and later incorporating dependency structures. This
chapter reveals the intricacies of maintaining consistency in the implementation,
particularly when dealing with dependencies. We conclude by comparing resulting
distributions, risk measures, and the efficiency of each approach, yielding consistent
results.

• Chapter 4 offers concluding insights into the challenges encountered when model-
ing credit risk and comparing different models. This thesis work highlights that
CreditMetrics is preferable for richer modeling, incorporating credit migrations and
coupons. In contrast, CreditRisk+ excels in efficiently managing extensive debtor
portfolios, especially in retail settings.
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Chapter 2

Credit Risk Modelling

Credit Risk is omnipresent in the portfolio of a typical financial institution, and has been
also at the heart of many recent developments on the regulatory side following the 2008
crisis and the Basel III accords. For this reason the modelling of this risk has been an
active field of research for academia, financial players and regulators. These models are in
fact used to determine the loss distribution of a debt portfolio due to defaults (or credit
migrations), and to compute the associated risk measures, in order to comply with the
required risk-capital allocations [12].

2.1 Definition of Credit Risk
A comprehensive definition of credit risk can be defined as follows [16]: "the possibility
that an unexpected change in the creditworthiness of a counterparty will lead to a cor-
responding unexpected change in the current value of the related credit exposure." This
definition brings to light that credit management not only involves the probability of the
counterparty’s insolvency but also includes the risk of downgrading, which is the possibil-
ity of deterioration of the counterparty’s creditworthiness.

It is possible to identify four components of credit risk: Probability of Default (PD),
Exposure at Default (EAD), Loss Given Default (LGD) and Maturity (M). The estimation
of these variables is expressly required by regulation and is the basis of the internal rating
method introduced with (Basel 2).

• The PD indicates the probability that a counterparty will default within a given
time horizon. This measure is related to the debtor as such, i.e., it is independent of
the type of exposure. The PD distribution can be described by a Bernoulli random
variable, which can take on the two different values of "solvency" or "default".

• The EAD is the expected value of the exposure, conditional on the state of default.
This variable depends on the technical form of the exposure and can therefore be
deterministic or stochastic, when the exposure is not known in the possible states of
default.
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Credit Risk Modelling

• The LGD corresponds to the loss rate in case of default, i.e., the expected value
(possibly conditioned to adverse scenarios) of the ratio, expressed in percentage
terms, between the loss due to default and the EAD. The complement to one of this
variable is called Recovery Rate (RR).

• Maturity is the average, for a given exposure, of the remaining contractual durations
of the payments.

These measures, when appropriately studied, allow us to estimate Expected Losses (EL)
and Unexpected Losses (UL).

• Expected loss can be defined as the mean value of the loss distribution, considered
as a random variable, that an entity supposes to suffer on a single investment or a
portfolio of investments. However, this loss, precisely because it is "expected", cannot
be used to determine the actual degree of risk. It can be calculated as follows:

EL = EAD · PD · LGD (2.1)
Therefore, we can affirm that the expected loss is a function of three elements:
exposure at default, probability of default, and loss given default. The expected loss
concept is applicable both to single exposure and to the measurement of the entire
loan portfolio. To extend the application to the latter case, sum up the individual
exposures present in the portfolio. Specifically:

EL =
nØ

i=1
ELi =

nØ
i=1

PDi · LGDi · EADi (2.2)

We can rewrite the equation in terms of percentages. In this case, we refer to the
expected loss rate (ELR). This refers to the fraction of the portfolio value at risk
obtained by dividing the expected loss by the total value of the exposures in case of
default. Specifically, we have:

ELR = ELqn
i=1 EAD

=
nØ

i=1
wi · LGDi · PDi (2.3)

• The unexpected loss is the average total loss over and above the mean loss. It is
calculated as a standard deviation from the mean at a certain confidence level. It is
also referred to as Credit VaR. The unexpected loss of a portfolio at a 99% confidence
level will be expressed as follows:

UL99% = D99% − EL (2.4)

where D99% represents the 99% VaR quantile, and the VaR is defined as the smallest
x such that the cumulative probability of a loss less than or equal to x is at least α,
fL(l) is the loss distribution function:

V aRα = inf{x ∈ R :
Ú x

−∞
fL(l)dl ≥ α}

We can consider the realizations of losses as random variables whose distribution can be
exemplified in Figure 2.1.
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Figure 2.1. The relation between Expected Loss, Unexpected Loss, and Value at Risk,
adopted from Bank of International Settlements (BIS), taken from [7]

2.2 Credit Risk Models

Quantitative credit risk models can essentially be structured into two categories [12]:
structural (or firm-value) models and reduced-form models.
Merton (1974) stands as the pioneer of all firm-value models. These models suggest that
a firm’s default is related to the association between its assets and owed liabilities at a
specified time end. In structural models, defaults occur when an asset value, represented
by a stochastic variable, falls short of the liability threshold, for these reason, particularly
at portfolio level, they can be referred as threshold models.
On the contrary, reduced-form models don’t explicitly state the mechanism resulting in de-
fault, and assume conditioning independence of defaults given shared underlying stochastic
factors.
In the case of a portfolio of credit exposures, these models mostly employ Monte Carlo
simulation techniques to calculate the distribution of defaults and losses, and the associate
risk measures.

The quantitative modelling of credit risk faces some unique challenges [12].
Firstly, there is an insufficiency of publicly accessible credit data. Facts concerning cor-
porate credit quality are often not well-documented. This inhibits corporate lending,
given that company management typically has better information about the firm’s eco-
nomic outlook and default risk than potential lenders. These information asymmetries
are well-recognized in microeconomical literature. Moreover, the scarcity of data thwarts
the effective use of statistical methods in credit risk, which is amplified given that the risk
management span is usually a minimum of one year. This data deficiency is the principal
barrier to the accurate calibration of credit models.
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Secondly, credit losses exhibit a skewed distribution pattern with the upper tail having
substantial weight. This means that a typical credit portfolio over time will comprise
frequent small profits juxtaposed with infrequent enormous losses. Consequently, a sig-
nificant proportion of risk capital (or economic capital) is needed to maintain such a
portfolio. The economic capital necessary for a loan portfolio (the level of risk capital
deemed permissible by the institution’s shareholders and board of directors, irrespective
of the regulatory framework) often equates to the 99.97% quantile of the loss distribution.

Thirdly, the role of dependence modelling cannot be overlooked. The occurrence of an
excessively high number of defaults from different counterparties within a specific time
frame poses a significant credit risk to a particular bond or loan portfolio. Importantly,
this risk is directly related to the dependency structure of the default events. For a
large portfolio, default dependency critically influences the upper tail of a credit loss
distribution. This behaviour will be further presented in the case study example.

2.3 Structural Models
The structural model for credit risk, sometimes called contingent claims modeling, was
introduced by Merton (1974) and extended by Leland, 1994, Leland and Toft, 1996, An-
derson and Sundaresan, 1996, among others. They are credit risk models which aim to
provide an explicit relationship between default risk and capital structure [19]. Default
occurs whenever a stochastic variable or process, representing an asset value, falls below
a threshold representing liabilities. The main advantage of this representation is the fact
that they provide an endogenous explanation for default. This approach was pioneered
by the works of Black & Scholes (1973) and Merton (1974) which model asset log returns
with a geometric brownian motion process and numerous extensions have been proposed
throughout literature.
The greatest challenge in structural models lies in the determination of the value of the
firm, as corporate debt is not traded. The assumption of asset log returns driven by a
diffusion process allows a closed-form formula between the firm’s value and its equity via
Black & Scholes formula, which can be solved via system of non linear equations.
The Brownian hypothesis has been challenged as it fails to describe historic default data
accurately and produces almost zero default probabilities for short maturities [2], phe-
nomenon known in literature as credit spread puzzle. For this reason sever enhancements
of the model have been proposed throughout the years, better accounting for extreme
market events.

2.3.1 The Merton Model
The intuition behind the model is treating a company’s equity as a call option on its
assets with strike price equal to the book of value of the firm’s liabilities, thus allowing
for applications of Black-Scholes option pricing methods [1].
The value of the firm is considered to be a tradable asset which obeys a lognormal diffusion
process Vt = St +Bt, where:

11



Credit Risk Modelling

• St is the value at time t of equity;

• Bt is the book value of the debt at time t, consisting of a single zero coupon bond
with face value K and maturity T .

The model assumes friction-less markets (no transactional costs or taxes) and the fact
that the firm cannot pay out dividends or issue new debt. At maturity there are two
possibilities:

1. if VT > K there is no default. Debt holders receive K and shareholders receive the
residual ST = VT −K ;

2. if VT ≤ K the value of the firm’s asset is less than its liabilities, so the firm cannot
meet its financial obligations. The firm defaults and debt holders have the first claim
on residual asset, gaining BT = VT , shareholders are left with nothing, so ST = 0.

Therefore, equity value at time T can be written as:

ST = max(VT −K,0) = (VT −K)+ (2.5)

which is the pay-off of a European call option on the firm’s assets VT with strike price
equal to the book value of the firm’s liabilities. Debt value can be written as:

BT = min(VT ,0) = K − (K − VT )+ (2.6)

which is the nominal value of the liabilities minus the pay-off of a European put on VT ,
with strike K.
Under the real world probability, Merton assumes that Vt follows a geometric Brownian
motion of the type

dVt = µV Vtdt+ σV VtdWt. (2.7)

As in [6], using Ito’s lemma:

d(lnVt) = (µ− σ2

2 )dt+ σdWt

lnVT ∼ N

3
lnVt + (µ− σ2

2 )(T − t), σ2(T − t)
4
.

The probability of default is the probability that the market value of the firm’s assets will
be less than the book value of the firm’s liabilities by the time the debt matures:

P (VT < K) = P (lnVT < lnK) = Φ
3
K − E(VT )
σ(VT )

4

PD = Φ
3 ln K

VT
− (µ− σ2

2 )(T − t)
σ

√
T − t

4
Hence it is possible to determine the probability of default knowing Vt,K,µ,σ2

V . The
market value of the firm Vt and its volatility σ are in general not observable, as reliable
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data on the market value of the firm’s debt is in general unavailable. The latter is estimated
by reverse engineering the well-known Black-Scholes formulas. Under this framework, a
credit default at time T is triggered by the event that shareholders’ call option matures
out-of-money, with a risk-neutral probability, therefore the value of equity can be written
as:

St = VtΦ(d1) −Ke−r(T −t)Φ(d2) (2.8)

where
d1 = ln(Vt/K) + (r + σ2

V /2)(T − t)
σV

√
T − t

, d2 = d1 − σV

√
T − t.

From Ito’s lemma the volatility of the market value of the firm can be written as

σV =
3
V

S

4
Φ(d1)σS (2.9)

Rearranging the Black-Scholes formula:

Vt = St +Ke−r(T −t)Φ(d2)
Φ(d1) . (2.10)

As in [5], the first step in implementing the model is to estimate the volatility of the equity
from historical data. The second step is to choose a forecasting horizon and a measure
of the face value of the firm’s debt, in literature the common forecasting horizon is one
year and the face value of the firm’s debt is taken to be the book value of the firm’s total
liabilities. After collecting the value of the risk free rate, system (2.8) and (2.9) can be
solved to find V and σV .

Given the equally spaced time series of N observations of the firm’s market capital-
ization St, Vt and σ can by estimated through maximum likelihood methods or through
iterative ones, such as in Vassalou and Xing [18].

2.3.2 CreditMetrics
CreditMetrics, introduced in 1997 by J.P. Morgan and RiskMetrics Group, belongs to the
structural models since it is based on the model of Merton for the definition of thresholds
for the migration of credit. More explicitly, Merton’s model is extended by assuming that
the assets returns of the firm determine not only its probability of default but also the
probability of migrating to any other credit rating. In the model, portfolio risk is assessed
due to changes in debt value, which are caused by changes in obligor credit quality [14].
As changes in value of the portfolio are not only caused by possible default, but also by
upgrades or downgrade in credit-quality, CreditMetrics falls under the umbrella of mark-
to-market models. Returns are assumed normally distributed, therefore a change in the
credit quality of the firm occurs when its returns fall within certain thresholds in the
normal distribution.
In this approach, migrations and consequently defaults depend of the asset value returns
of the firms, thus it is not necessary to know the value of debt, actives, and volatilities.
CreditMetrics is consequently an "agnostic" model, which takes in input historical values
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for default and credit migration probabilities, and models the asset value returns of the
portfolio with a multivariate normal to incorporate dependencies between borrowers. Each
firm is assigned a discrete risk level, identified by the rating class to which it is assigned to
by the corresponding rating agency (such as Moody’s or Standard & Poor’s), which can
migrate from a class rating to another, given a certain time horizon. The state of default
constitutes an absorbent state, meaning that this state, once entered it is not possible to
have a transition to any other state. Each state has a different likelihood or probability of
occurring, which is derived from historical rating data. Given this premise, it is possible
to build a transition matrix, which contains the migration probabilities from all possible
states at the end of the time period. Finally, it is possible to calculate the value of the
bond given the rating class at the end of the time period.

Risk for a stand-alone exposure

To calculate the distribution of values for a single bond, we present the methodology
explained in [14], and summarised in Figure 2.2.

Figure 2.2. Three steps to calculating the credit risk for a “portfolio” of one bond [14]

Given an exposure of a certain rating, for example BB by Standard & Poor’s, at the end
of the time period either the bond maintained the same credit worthiness, or it migrated
to other states (upgraded to BBB, A, AA, AAA, downgraded to B, CCC, or to default).
Each outcome above has a different likelihood or probability of occurring, derived from
historical rating data, as shown in the example in Figure 2.3.
The next step is calculating the value of the exposure under each possible rating scenario
by finding the new present value of the bond’s remaining cash flows at its new rating.
The discount rate that enters this present value calculation is read from the forward zero
curve that extends from the end of the risk horizon to the maturity of the bond. This zero
curve is different for each forward rating category. The present value bond revaluation
can be calculated as in Formula 3.1.
In the case of default, the amount recovered in is specified by recovery rates, as in Figure
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Figure 2.3. Probability of credit rating migrations in one year for a BBB bond [14]

2.4.

Figure 2.4. Recovery rates by seniority class ( % of face value, i.e., “par”) [14]

The resulting discrete distribution is a set of future values, associated with a corresponding
probability of occurring (as shown in the example in Figure 2.5).
Details of this calculation will be presented in the case study in the following chapter.

Obtaining a distribution of values for a portfolio multiple bonds

Firstly, let’s consider the idea of a portfolio consisting of two bonds. Similar to our previ-
ous approach, we can calculate the distributions of each individual bond and subsequently
combine these to ascertain the year-end estimations of the entire portfolio. Given that
either of the two bonds may possess any of eight potential values within a one-year span
as an outcome of rating shifts, the portfolio may assume 64 (8 x 8) distinct values. The
portfolio’s worth at the risk horizon is determined for each of these 64 states by simply
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Figure 2.5. Distribution of value of a BBB par bond in one year [14]

summing up the values of the individual bonds and linking them to year-end joint prob-
abilities across the 64 unique states.
This becomes a straightforward process if the ratings results of the two bonds operate
independently. In this instance, the joint probability is merely a multiplication of the
individual probabilities. However, in reality, the ratings results of the two bonds are
interrelated, since they are significantly influenced by similar macro-economic elements.
Hence, it’s crucially important to consider the correlation between rating migrations when
assessing the risk of a portfolio, thus resulting in the framework shown in Figure 2.6. As

Figure 2.6. CreditMetrics framework for a Portfolio [14]

the portfolio grows larger, the complexity of the distribution grows exponentially and the
process described above becomes impossibly costly, as there are 8N joint rating states.
For this reason we use simulation in order to calculate the distribution of defaults, losses
and risk measures of a large portfolio.
This can be done using the framework introduced by Merton, and described in section
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2.3.1: the underlying firm value is random with some distribution, and if the value of
assets should happen to decline so much that the value is less than amount of liabilities
outstanding, the firm defaults. This model can be extended to allow for rating migrations,
including in addition to the default threshold credit rating up(down)grade thresholds, as
in Figure 2.7.

Figure 2.7. Model of firm value and generalized credit quality thresholds, taken from [14]

Essentially, the assumption is that the asset value in one year determines the credit rating
(or default) of the company at that time. We assert that the percent changes in asset
value are normally distributed, and parameterized by a mean and standard deviation.
With this assumption it is possible to calculate the thresholds as:

Pr{Default} = Pr{R < ZDef} = Φ
3
ZDef

σ

4
(2.11)

Pr{CCC} = Pr{ZDef < R < ZCCC} = Φ
3
ZCCC

σ

4
− Φ

3
ZDef

σ

4
(2.12)

and so on. To describe the joint evolution of the portfolio, it is possible to incorporate
correlation thanks to the use of the multivariate normal distribution, for example for two
obligors:

Pr{ZB < R < ZBB, Z’BBB < R’ < Z’A} =
Ú ZBB

ZB

Ú Z′A

Z′BBB
f(r, r′; Σ)dr′dr (2.13)

The procedure can be split in the following steps:

1. Calculate asset return thresholds for the obligors in the portfolio, as explained above.
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2. Generate scenarios of asset returns according to the normal distribution, using com-
mands to such as mvnrnd in Matlab and mvrnorm in R to generate the random
numbers.

3. For each scenario associate the new credit state (AAA, AA, BB, etc or 1,2,3, ..)
according to the value of the asset return scenarios.

4. Calculate the value of each exposure in each scenario as above: in the case of migra-
tion through zero curves, in the case of default through recovery rates.

5. Summarise the results: given all the scenarios of possible future portfolio values,
calculate meaningful risk estimates for the distribution of loss, such as mean loss,
volatility (standard deviation), percentile level (VaR).

A realistic implementation is described in the following Case Study chapter.
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2.4 Mixture Models
In the mixture model approach, it is assumed that the default risk of an obligor relies on a
set of common factors, such as macroeconomic variables, which are modeled stochastically.
Once the factors are realized, defaults of individual firms are independent. Dependence
occurs due to the individual default probabilities’ reliance on these common factors.

2.4.1 Poisson mixture models
As in our case study we will be focusing on implementing the industry model CreditRisk+,
let us introduce Poisson mixture models as in [12].

Given some p < m and a p-dimensional random vector Ψ = (Ψ, ...,Ψ), the random
vector Ỹ = (Ỹ1, ..., Ỹm)′ follows a Poisson mixture model with factors Ψ if there are func-
tions λi : Rp −→ (0,∞), 1 ≤ i ≤ m, such that conditional on Ψ = ψ the random vector
Ỹ is a vector of independent Poisson distributed random variables with rate parameter
λi(ψ). We define the M̃ =

qm
i=1 Ỹi and observe that, for small Poisson parameters λi, M̃

is approximately equal to the number of defaulting companies. Given the factors, it is the
sum of conditionally independent Poisson variables and therefore its distribution satisfies:

P (M̃ = k|Ψ = ψ) = exp
A

−
mØ

i=1
λi(ψ)

B
(
qm

i=1 λi(ψ))k

k! . (2.14)

In practice, in the majority of cases it is more common to use one factor models, as they
are more tractable.

2.4.2 Probability generating functions and convolution
In order to derive the loss distributions arising from the CreditRisk + framework, we need
to introduce the concepts of probability generating functions and convolution, as in [13].
Let us consider a discrete random variable X, and it’s the discrete probability distribution
fx = [f0, f1, f2, ..., fR]. It’s probability generating function is defined as:

PX(t) = f0t
0 + f1t

1 + f2t
2 + f3t

3 + ...+ fRt
R, (2.15)

in a more compact writing:

P
(n)
X = E[tX ] =

∞Ø
n=0

tnP [X = n], (2.16)

which also corresponds to the expected value of tX . In the context of credit risk, the
variable X could can signify:

• The number of obligors and the probability that they default or not default during
a given period of time,

• The exposure in the obligors and the probability that they default or not default
during a given period of time.
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Now let’s consider an example of two obligors, where N and K are independent discrete
random variables expressed on non-negative integers. Their sum, symbolized as J =
N + K, has a probability distribution constituting the convolution of the probability
distributions of N and K. This can be mathematically represented as:

Pr{J = j} =
jØ

n=0
Pr{N = n}Pr{K = j − n}, ∀ j = 0,1,2, ..., n. (2.17)

From the perspective of probability generating functions (PGF), the PGF of the sum
(N + K) is a product of the PGFs of N and K due to their independence. This is expressed
as:

PN+K(t) = E[tN+K ] = E[tN tK ] = E[tN ]E[tK ] = PN (t)PK(t). (2.18)

Again, this can be used both to express discrete probabilities tied to portfolio defaults,
and losses.

2.4.3 Convolution by Fast Fourier Transform
An alternative approach to compute the loss distribution, which has the advantage of be-
ing more computationally efficient a more stable, is based on the Fast Fourier Transform
[13].

The Fourier Transform of a variable X, or Characteristic Function, can be defined as:

ϕX(t) = E[eitX ] = PX(eit), (2.19)

where i denotes the imaginary unit with i = sqrt-1. In the multivariate case, the joint
characteristic function (X1, X2, ..., Xk) is defined as:

ϕX1,...,Xk
(t1, ..., tk) = E[ei(t1X1,...,tkXk)] = PX1,...Xk

(eit1 , ..., eitk). (2.20)

More in general:
ϕ(t) =

Ú ∞

−∞
f(x)eitxdx (2.21)

The characteristic function has a key property: for two independent variables, N and K,
the characteristic function of their sum (N + K) equals the product of their individual
characteristic functions. Leveraging this association, one can perform convolutions using
the Fast Fourier Transform algorithm (FFT). Thus, mathematically:

ϕN+K(t) = E[eit(N+K)] = E[eitNeitK ] = E[eitN ]E[eitK ] = ϕN (t)ϕK(t) (2.22)

This is possible as a result of the independence of N and K.
The FFT of the sum of two independent discrete random variables is the product of

the FFTs of the individual variables, given that adequate zeros are appended to each
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probability vector. The FFT, mapping n points to n correlatively, mandates input and
output vectors to maintain the same length.

Generally, a longer vector is needed to adequately represent the sum variable compared
to the components, as the sum variable tends to embrace larger values with non-zero
probability. If not catered for, the tail probabilities for the sum will loop and reveal
itself at the vector’s commencement, necessitating the addition of adequate zeros to each
probability vector’s right end.

FFT Algorithm

Given two probability vectors f = [f0, f1, ..., fm−1] and g = [g0, g1, ..., gk−1], their con-
volution via Fast Fourier Transform can be computed through the following steps [13]:

1. Pad both vectors f and g with zeros such that each has a length of n ≥ m + k.

2. Apply FFT to each of the vectors: f̃ = FFT(f) and g̃ = FFT(g).

3. Compute the product (complex number multiplication), element by element, of the
two vectors: h̃ = f̃ .g̃.

4. Apply the inverse function of the FFT (IFFT) to h̃ to retrieve the probability
vector as a convolution of f and g.

Algorithm 1: Fast Fourier Transform algorithm for convolution

2.4.4 CreditRisk+
CreditRisk+, developed by Credit Suisse Financial Products (CSFP) in 1997, is an in-
dustry example of the Poisson mixture model introduced above. It neither harnesses
traditional market data nor employs transition matrices or other standard inputs for
models like CreditMetrics. The model asserts that defaults are predominantly random
events, and doesn’t use an underlying cause for default events, i.e. does not depend on
firm´s fundamentals but is modelled as an exogenous variable, which follows a Poisson
distribution with stochastic intensity parameter [8].

CreditRisk+ operates as a Poisson mixture model, where the stochastic parameter λi(Ψ)
of the conditional Poisson distribution for firm i equals [12]:

λi(Ψ) = kiwiΨ, (2.23)

with a constant ki > 0, non-negative factor weights wi = (wi1 , ..., wip) adhering toq
j wij = 1, and p-independent Gamma Ga(αj , βj)-distributed factors Ψ1, ...,Ψp.
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The model is interesting, and differs from other industry frameworks, as it allows to
build a closed form for the distribution of losses, yielding fast and accurate results, also
in the case of very large portfolios. Yet, a key trade-off of not employing simulation
is the rudimentary environment it provides to incorporate correlations, which the model
executes through a sector analysis. Once more, we note that the model presumes common
correlation within a sector, not among individual debtors, these are in fact classified into
sub-portfolios, and each sub- portfolio is affected by a specific economic factor.

Default and loss distribution with fixed default rates

Following the implementation described in the CreditRisk + technical document [17],
let’s consider having N independent debtors in a portfolio. Given independence, probabil-
ities of default for each obligor are fixed, and considered input parameters usually taken
from rating agencies. Let’s portray the likelihood of debtor A defaulting as pA and its
probability generating function can be represented with an auxiliary variable z as:

F (z) =
∞Ø

n=0
P (n default)zn (2.24)

It is straightforward to write the probability generating function for a single obligor ex-
plicitly:

FA(z) = 1 − pA + pAz = 1 + pA(z − 1) (2.25)

Since we are considering default events as independent, the portfolio PGF can be written
as the product of individual PGFs, and the logarithm function can be applied to yield:

F (z) =
Ù
A

FA(z) =
Ù
A

(1 + pA(z − 1))

logF (z) =
Ø
A

log(1 + pA(z − 1))
(2.26)

In the limit, this becomes:

F (z) = e
q

A
pA(z−1) = eµ(z−1) (2.27)

as log(1 + pA(z − 1)) ≈ pA(z − 1) when pA are sufficiently small, and µ =
q

A pA,
representing the expected number of defaults in one year for the whole portfolio. It is
possible to expand F(z) in its Taylor series:

F (z) = eµ(z−1) = e−µeµz =
∞Ø

n=0

e−µµn

n! zn. (2.28)

Yielding a probability of n defaults for the portfolio in one year equal to, thus following
a Poisson distribution:

P (n default) = e−µµn

n! (2.29)
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.

To lessen computational costs, CreditRisk+ uses exposure bands instead of actual
exposures, meaning that levels of integer-valued amounts, known as bands, are introduced
into the model. For each exposure, it is rounded to the nearest integer and then to the
closest band. Each debtor’s credit amount is then conveyed to the nearest band before
the loss distribution from these bands is figured out. This roundabout way significantly
reduces computational demands though it sacrifices a bit of accuracy. We can divide the
portfolio into m exposure bands, symbolized by index j for 1 ≤ j ≤ m. According to the
original model, νj , ϵj , and µj collectively symbolize the usual exposure, predicted loss and
predicted default number in exposure band j.

ϵj = νj × µj (2.30)

Therefore, the forecasted loss in terms of default event probability can be stated as follows:

µj = ϵj
νj

=
Ø

A:νA=νj

ϵa
νA

(2.31)

Moreover, let µ symbolize the aggregate anticipated count of default incidents in a
year, then

µ =
mØ

j=1
µj =

mØ
j=1

ϵj
νj
. (2.32)

After having calculated the distribution of defaults, we can proceed to calculate the
distribution of losses due to default events. Let G(z) symbolize the probability generating
function of default losses, expressed in multiples of the unit L of exposure:

G(z) =
∞Ø

n=0
P (AggregateLosses = n× L)zn. (2.33)

Given that the exposures are presumed to be independent, the exposure bands also
are independent. Hence,

G(z) =
mÙ

i=1
Gi(z). (2.34)

The following equation illustrates the probability generating function for the jth band,

Gj =
∞Ø

n=0
P (n defaults)znνj =

∞Ø
n=0

e−µjµn
j

n! = e−µj+µjzνj
. (2.35)

In simple terms, if there’s an occurrence of n defaults in the jth band of the portfolio,
the loss characteristic function may be explained by this formula. As a result:

Gindependent(z) =
mÙ

j=1
e−µj+µjzνj = e

−
qm

j=1 µj+
qm

j=1 µjzνj

. (2.36)
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The above formula represents the loss probability generating function for the portfolio
relative to default losses with a fixed default rate.

Using the FFT algorithm described in the previous section (Algorithm 1), we can
outline the overall portfolio’s loss distribution for a Poisson mixture model employing the
FFT:

1. Decide dimension n of the probability vector f such that it has appropriate length,
as discussed above

2. Establish a probability vector for each band j as:

P (n defaults) = µne−µj

n! ∀n = 0,1,2, ...,2r and j = 1,2, ...,m (2.37)

3. Compute the portfolio’s loss distribution vector via the following formula:

IFFT

 mÙ
j=1

FFT(fj)

 (2.38)

Algorithm 2: Calculation of the loss distribution using FFT algorithm

This implementation differs from Algorithm 1 as each obligor had a dedicated vector
(i.e. f and g). Here (Algorithm 2), we use as many vectors as there are obligors in band j
under the recognition that the default probability remains the same for all obligors within
that band, denoted as µj .

Sector Analysis

As explained in [17], CreditRisk+ models correlation between obligors through the con-
cept of defaults volatility, i.e. incorporating the effects of background factors into the
specification of default rates by allowing the default rate µj itself to have a probability
distribution. Differing from CreditMetrics, CreditRisk+ does not attempt to model cor-
relations explicitly but captures the same concentration effects through the use of default
rate volatilities and sector analysis. The premise is that issuers in each sector have some
common specifics. The rationale underlying the sector analysis is the fact that default
volatilities are driven by some systematic-risk factors, typical for every sector.

• The variability of these default probabilities can be tied to fluctuations in a limited
number of background factors, such as economic conditions, influencing debtor out-
comes. For instance, a declining economy could increase the likelihood of default for
most debtors in a portfolio.

• However, while shifts in the economy or other factors might influence the likelihood,
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they do not guarantee debtor defaults. Regardless of economic circumstances, actual
defaults should still be regarded as relatively scarce events. Thus, the above analysis
concerning rare events proves relevant when properly adjusted. This emphasized
here is that uncertainty stems from factors that can have parallel effects on a large
number of debtors.

Effects of including default rate volatility can be shown in Figure 2.8.

Figure 2.8. Loss distributions of a certain multiple of the chosen unit of
exposure calculated without default rate volatility and with default rate
volatility, taken from [17]

It is important to notice that, as expected, the two distributions have the same mean
loss. However, by incorporating default volatility we allow for a much larger chance of
experiencing extreme losses, evident visually through the fatter tail of the distribution.
Mathematically, the model views each sector Sk : 1 ≤ k ≤ n as driven by a singe under-
lying factor, a random variable xk described by the mean, µk, and its standard deviation,
σk. For each sector, xk represents the average default rate. In CreditRisk+, the key
assumption is that xk has Gamma distribution Xk ∼ Γ(αk, βk), where:

µk = αkβk and βk = σ2
k/µk.

For sector k, we can write the PGF of default events, conditional on xk = x

Fk(z)[xk = x] = ex(z−1) (2.39)
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Given that xk has a certain gamma distributed density function fk(x), the PGF for sector
k is the average of the conditional PGFs over all possible values of the mean default rate:

Fk(z) =
∞Ø

n=0
P (n defaults)zn =

∞Ø
n=0

zn
Ú ∞

x=0
P (n defaults|x)f(x)dx =Ú ∞

x=0
ex(z−1)f(x)d(x).

(2.40)

Plugging in Γ(αk, βk) for f(x)k:

Fk(z) =
Ú ∞

x=0
ex(z−1) e

−x7βxα−1

βαΓ(α) dx = 1
βαΓ(α)

Ú ∞

y=0

3
y

β−1 + 1 − z

4α−1
e−y dy

β−1 + 1 − z

= Γ(α)
βαΓ(α)(1 + β−1 − z)α

= 1
βα(1 + β−1 − z)α

.

(2.41)

As pk = βk

1+βk
, the PGF for sector k can be written and expanded in its Taylor series:

Fk(z) =
3 1 − pk

1 − pkz

4αk

= (1 − pk)αk

∞Ø
n=1

A
n+ αk − 1

n

B
pn

kz
n. (2.42)

The probability of a number n of defaults in each sector is thus:

P (n defaults) = (1 − pk)αk

A
n+ αk − 1

n

B
pn

k . (2.43)

Considering that there is independence between sections, the probability generating func-
tion for default events of the portfolio can be written:

F (z) =
nÙ

k=1
Fk(z) =

nÙ
k=1

3 1 − pk

1 − pkz

4αk

. (2.44)

While, after some calculations, the probability generating function for losses has the closed
form expression:

Gdependent(z) =
nÙ

k=1
Gk(z) =

nÙ
k=1

3 1 − pk

1 − pk

µk

qm(k)
j=1

ϵ
(k)
j

v
(k)
j

zv
(k)
j

4αk

. (2.45)

The above formulas are valid for a portfolio that is divided into mutually independent
classes, each encompassing a set of obligors, driven by one factor.

In general, it is possible to consider a situation where obligors cannot be grouped in
independent classes, but are affected in different ways by systematic factors. This concept
falls under the name of General Sector Analysis, which will not be expanded in this thesis
work.
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Chapter 3

Case Study

CreditRisk+ and CreditMetrics represent two of the most influential benchmark models
for studying credit risk, however, direct comparison is not straightforward. While the two
serve essentially the same purpose, they are constructed quite differently regarding their
mathematical framework, as studied in the previous chapters.
Difficulties in the comparison derive essentially from the different distributional assump-
tions, different techniques for calibration and CreditMetrics allowing a richer model (mark-
to-market approach). Thus, given the same portfolio of credit exposures, the models in
general yield different evaluations of credit risk.

Literature regarding direct comparison of the two credit risk models is not very vast,
and is mainly concerned with analysing the default component of the portfolio credit risk
(the distribution of defaults), thus not considering credit migrations. Previous papers
find out that there is a symmetry of factor transformations that allows to consistently
parametrise CreditRisk+ and CreditMetrics in the case of portfolios with same credit
rating, affected by one risk factor. In particular:

• in Koyluoglu and Hickman [11] theoretical similarities between CreditMetrics and
CreditRisk+ are analysed assuming a simplified framework of homogeneous portfo-
lio and Vasicek representation of asset returns. The study focuses on the default
distribution rather than the loss one.

• similary, Finger [9] compares CreditRisk+ to restricted CrediMetrics for homogenous
portoflios driven by a single economic factor. He arrives to the result that extreme
tails of the default distributions generated by the models are very different.

• Diaz and Gemmil [8] extend Koyluoglu and Hickman [11] by developing a three state
model for CreditMetrics and comparing the loss distribution between the former and
CreditRisk+. They use a portfolio formed by N bonds equally rated, with the same
exposure size, the same time to maturity, and affected by a single economic factor.

In the case of restricted CreditMetrics (considering only default), the difficulty in the
comparison between the models lies in parametrising the inputs in a constituent way:
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• mapping CreditMetrics correlation structure into adequate volatilities for in Cred-
itRisk+. In order to make models comparable, we will introduce a transformation
procedure developed by Koyluoglu and Hickman [11];

• recovery rates: as CreditRisk+ does not analyze ”which obligor” defaulted, it is
impossible to map the number of defaulted obligors to the corresponding recovery
rates of each obligor. Thus, instead of principals, directly LGD is taken as input of
the model.

Even more difficulties arise when trying to map CreditMetrics’ mark to market implemen-
tation, which considers losses arising from default migrations and coupons. The compar-
ison makes sense from a business and solvency perspective, but is hardly mathematically
justifiable.

First, the aim of this case study is to show how the CreditMetrics and CreditRisk+
frameworks are implemented in practice, and how different implementation methods and
assumptions yield more or less similar results. Secondly, we aim to compare the models
in the case of non homogeneous portfolios and different sectors, extending the work done
in previous studies through Monte Carlo simulation.

We start through simple sector analysis with no volatilities in default rates (which maps
to a diagonal correlation matrix in the CreditMetrics framework). We will compare re-
sults given by CreditMetrics in its restricted version (same approach as previous research
papers), in its mark-to-market extension, and CreditRisk+, comparing different implemen-
tation methods described in technical documents and further papers, including both an
analytical approach (based on the probability generation function), its extension through
Fast Fourier Transform, and Monte Carlo simulation.

Then, a more advanced approach will follow where the plain fixed default model will
be upgraded for default volatilities, accounting for multiple independent sectors.

Both the default distribution and the loss distribution are presented, given different mod-
elling assumptions. Pseudo code will be provided in order to bridge the gap between
theory and implementation.

3.1 Portfolio selection
All models are run with a constructed high quality and a low quality portfolio, where all
input assumptions are taken from reference literature, in order to make the examples re-
alistic. To construct a distribution of initial credit ratings, data is taken from Gordy [10].

Other necessary inputs are:

1. probability of default and migration: neither CreditMetrics not CreditRisk+
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Table 3.1. Typical bank portfolio characteristics

Rating AAA AA A BBB BB B CCC µ(sumPD)
High quality 4 6 29 36 21 3 1 3.2109
Low quality 1 1 4 15 40 34 5 0.6587

are methodologies to estimate probabilities of default (PDs). Instead, these probabil-
ities, together with migration probabilities, are important input parameters, usually
obtained from one of the major rating agencies, which publish updated migration
matrices frequently. In our case from the Creditmetrics technical document [14],
shown in Table 3.2.

Initial Rating at year-end (%)
Rating AAA AA A BBB BB B CCC Default
AAA 90.81 8.33 0.68 0.06 0.12 0 0 0
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06
BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20
CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

Table 3.2. Transition matrix for credit rating migration

2. principals: to let the case study be as general as possible, no assumptions are made
on principals, which are chosen randomly between 2M and 15M from each debtor.
The total value of the portfolio is 831.64M.

3. recovery rates: for simplicity, recovery rates are fixed to 20%, although in a real-
life portfolio more case specific assumptions can be very easily incorporated in the
models (es. historical recovery rates per industry, recovery rates per bond seniority,
etc).

4. correlation: first we will assume no correlation to compare CreditMetrics with
CreditRisk+ in the most pure way possible, then we will develop a framework to
map CM’s correlation structure into CR+’s default volatilities. Correlations for the
different sectors will be provided in the section below.
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3.2 CreditMetrics
CreditMetrics’ valuation of the loss distribution due to default is assessed through Monte
Carlo simulation. Thanks to simulation, it is possible for financial institutions to incor-
porate complex portfolio structures and foresee to what degree of exposure the risk is
bearable. The implementation follows the directives given in the CreditMetrics technical
document [14].
We will focus on two kinds of simulation: default loss simulation and mark-to-market
simulation. Even though CreditMetrics is a mark-to-market model, default loss is a very
popular topic among regulators and studies that are based on statistical modeling of
credit risk, in fact allowing a more consistent comparison with further implementations
of CreditRisk+. This same approach is used in Finger [9], Koyluoglu and Hickman [11].

3.2.1 CreditMetrics default loss simulation
The first model we implement is the simplest possible, and the most immediate to directly
compare to our following implementations of CreditRisk+. In this restricted version of
CreditMetrics, the distribution of losses is driven solely by defaults.

Inputs of the model are:

1. Ratings of obligors: given in Table 3.1 for both the high quality and low quality
portfolio;

2. Exposures: uniformly generated between 2M and 15M;

3. Transition Matrix: taken from rating agencies, shown in Table 3.2.

4. Recovery rates: fixed for simplicity at 20%;

5. Correlation Matrix: diagonal, thus assuming independence between borrowers.

Given the inputs, calculation of the loss and default distribution is very simple in Matlab,
and detailed in Algorithm 3. In Matlab environment, 100,000 repetitions were carried
out for both portfolios, also calculating appropriate risk measures. In Figures 3.1 and 3.2
default and loss distributions for the portfolios, which we can notice to be very different,
and a visual indication of the VaR95, VaR99, VaR999.

First of all we notice that the distribution of default is coherent with the total default
probabilities, having means in 3.21 and 0.66 (low and high quality portfolio respectively).
We also see that although the exposure of the portfolios is the same, the different quality
composition yields a very different loss distribution, with much higher risk measures for
the low quality portfolio. A more detailed analysis will be carried in the sections below.
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Data: Principal, Recovery, default_probability, n_firms, n_scenarios
Result: Loss and default distribution
for each firm i from 1 to n_firms do

Calculate the default threshold as norminv(default_probability(i));
end
Generate n_scenarios for each firm using mvnrnd;
for each scenario s do

for each firm do
if scenario(s, firm) > default threshold for the firm then

loss(s, firm) = Principal(firm) - Recovery(firm);
default_count(s, firm) = 1;

end
end

end
Algorithm 3: Loss and Default Distribution CreditMetrics restricted

Figure 3.1. Restricted CreditMetrics - Low quality portfolio

Figure 3.2. Restricted CreditMetrics - High quality portfolio
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3.2.2 Mark to Market CreditMetrics
Mark-to-market analysis is a critical technique for evaluating rates or spreads of debtors
belonging to various rating classes. This method differs from default loss simulation since
it allows us to incorporate the loss attributable to alterations in the creditworthiness of
debtors into the yearly portfolio value calculations, thus determining whether the imple-
mented spreads genuinely address the associated risk. In this section, we will clarify how
CreditMetrics can be utilized to carry out a mark-to-market simulation, and compare
distributions and risk measures to previous implementation. In order to move forward,
additional input parameters are needed:

• coupon rates (annual) are chosen arbitrarily (Table 3.3) to yield a sensible result
with the given spread values. More sophisticated input coupon values could have
been chosen, but do not add to the purpose of this analysis. In a real portfolio, this
input can be easily derived in a real portfolio in the documentation of the each bond;

Table 3.3. Table of coupon values by rating category

Rating Category Coupon Value
AAA 2.00
AA 2.75
A 4.25
BBB 4.75
BB 5.25
B 5.75
CCC 6.25

• maturities: generated randomly between 1 and 5 years;

• yields/spreads: are taken from Atta Mills [3], and shown in Table 3.4.

Table 3.4. One-year forward zero curve for each credit rating category (%)

Year 1 Year 2 Year 3 Year 4
AAA 3.6 4.17 4.73 5.12
AA 3.65 4.22 4.78 5.17
A 3.72 4.32 4.93 5.32
BBB 4.1 4.67 5.25 5.63
BB 5.55 6.02 6.78 7.27
B 6.05 7.02 8.03 8.52
CCC 15.05 15.02 14.03 13.52
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In order to implement CreditMetrics’ mark-to-market framework, we can split the simu-
lation process in the following steps [14]:

1. Generate scenarios. Each scenario corresponds to a possible “state of the world”
at the end of our risk horizon. For our purposes, the “state of the world” is just the
credit rating of each of the obligors in our portfolio.

2. Value portfolio. For each scenario, we revalue the portfolio to reflect the new
credit ratings. This step gives us a large number of possible future portfolio values.

3. Summarize results. Given the value scenarios generated in the previous steps, we
have an estimate for the distribution of portfolio values. We may then choose to
report any number of descriptive statistics for this distribution.

1. Scenario Generation

We are interested in modelling the portfolio value at time T=1 year. In order to do so, we
will simulate future states of the world. The steps to scenario generation are as follows:

• Establish asset return thresholds, as in Equation 2.12, for the obligors in the port-
folio: we calculate thresholds such that we can map obligors to a certain credit-
worthiness given the initial rating, as in Matlab Algorithm 4. Inputs are an object
portfolio_data, a vector containing the number of obligors for each rating category,
states_rating, a vector containing the rating category states, the transition matrix
as detailed in Table 3.2, and the number of firms.
A Matlab implementation is shown in Algorithm 4, resulting in the asset return
thresholds in Table 3.5.

Data: portfolio_data, states_rating, Transition_matrix, n_firms
Result: thresholds
initial_states = constructThresholds(portfolio_data, states_rating);
Function construct_initialstates(portfolio_data, states_rating)

num_firms = sum(portfolio_data);
initial_states = repelem(states_rating, portfolio_data);
return initial_states;

Initialize Thresholds matrix as ones(7, n_firms);
for i = 1 to n_firms do

Compute cumulativeTransition =
cumsum(Transition_matrix(initial_states(i), 1:7));

for j = 1 to 7 do
thresholds(j, i) = norminv(1 - cumulativeTransition(j));

end
end

Algorithm 4: Thresholds Calculation with Initial States
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Table 3.5. Threshold Kernel

AAA AA A BBB BB B CCC
AA -1.33 2.46 3.12 3.54 3.43 2.85
A -2.38 -1.36 1.98 2.70 2.93 3.06 2.85
BBB -2.91 -2.38 -1.51 1.53 2.39 2.70 2.62
BB -3.04 -2.85 -2.30 -1.49 1.37 2.42 2.11
B -2.95 -2.72 -2.18 -1.23 1.46 1.74
CCC -3.54 -3.19 -2.75 -2.04 -1.32 1.02
Default -3.24 -2.91 -2.30 -1.62 -0.85

• Generate scenarios of asset returns according to the normal distribution using ran-
dom numbers generator.

• Map the asset return scenarios to credit rating scenarios as in Algorithm 5: for
example, for a firm initially rated AAA, all scenarios above −1.33 imply the firm
stays in its initial rating category state = 1, all values between −1.33 and −2.38
imply a downgrade to rate AA, so state = 2 etc. Some migrations have probability
0.

Data: n_scenarios, n_firms, thresholds, mu, M
Result: states
scenarios = mvnrnd(mu, M, n_scenarios);
Initialize states matrix as zeros(n_scenarios, n_firms);
for s = 1 to n_scenarios do

for f = 1 to n_firms do
for j = 1 to 7 do

if thresholds(j + 1, f) ≤ scenarios(s, f) ∧
scenarios(s, f) ≤ thresholds(j, f) then

states(s, f) = j;
break;

end
end
if scenarios(s, f) < thresholds(7, f) then

states(s, f) = 8;
end

end
end

Algorithm 5: Mapping Asset Return Scenarios to Credit Rating Scenarios
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2. Portfolio valuation

With respect to the default simulation, we need to calculate the values of the bonds in
all possible states of the world, and then assigning that value for the state emerged by the
simulation. This can be done performing a straightforward present value bond revaluation
using the zero curves in input.

Pbond = Pcoupons + Pfacevalue =
Ø C

1 + r

t

+ F

1 + r

T

(3.1)

In Matlab this can be implemented as in Algorithm 6.

Data: n_firms, rating_cat, maturities, forward_curves, coupons
Result: values
for i = 1 to n_firms do

for r = 1 to rating_cat− 1 do
values(r, i) = bond_value(maturities(i), forward_curves(r,:), coupons(i));

end
end
Function bond_value(maturity, forward_curves, coupon)

Initialize value as coupon;
for i = 1 to maturity do

if i == 1 then
value = coupon;

end
else if i == maturity then

value = value + (100 + coupon)/(1 + forward_curves(i))(i-1) end
else

value = value + (coupon)/(1 + forward_curves(i))(i-1) end
end
return value;

Algorithm 6: Bond Value Calculation

In order to calculate the loss, if the bond didn’t default we take the difference between
the value it would have in its initial state, minus the value at final state. If the bond
defaulted, the loss will be the loss given default.
Finally, percentage value changes are multiplied by the individual exposures. The whole
process is implemented in Matlab as in Algorithm 7.
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Data: initial_states, states, values, n_scenarios, n_firms
Result: loss, final_values, default_count
for i = 1 to n_scenarios do

for j = 1 to n_firms do
loss(i, j) = values(initial_states(j), j) - values(states(i, j), j);
final_values(i, j) = values(states(i, j), j);
if states(i, j) == 8 then

default_count(i, j) = 1;
end

end
end

Algorithm 7: Loss and default Distribution CreditMetrics Mark to Market

3. Results

We now compare the results obtained with the Mark to Market implementation of Cred-
itMetrics, and the previous default only implementation.
While the default distribution if the same for the two frameworks, the default one varies
significantly, as a result of the incorporation of the migration component of risk.

Low quality portfolio

It is possible to notice that:

• the loss distribution doesn’t have a peak on the value 0 (which indicated no defaults
in the portfolio), and accounts for a smoother structure without multiple peaks;

• negative values for losses are possible, accounting for positive gains due to favorable
credit migrations;

• the loss distribution has a slightly longer tail, reflected in a higher values for VaR
measures, and consequently higher estimations of the risk of losses;

• credit migrations do not impact the distribution of defaults.

Restricted CreditMetrics Mark to Market CreditMetrics
Mean Loss 22.59 22.99
VaR 99% 57.88 58.84
VaR 99.9% 71.6 73.45
St. deviation 12.07 13.07
Skewness 0.57 0.57
Kurtosis 3.24 3.24

Table 3.6. Descriptive metrics for the loss distribution of the low quality portfolio
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Figure 3.3. Mark to Market CM - Low quality portfolio

Figure 3.4. Distribution of defaults Figure 3.5. Distribution of losses

Figure 3.6. Restricted CM - Low quality portfolio

Figure 3.7. Distribution of defaults Figure 3.8. Distribution of losses

High quality portfolio

In this case, the loss distribution assumes a very different appearance using the two
models:

• it is possible to notice from the default distribution that in about half of runs, no firm
defaults. This is evident in the loss distribution for the default only implementation
which results highly concentrated on a zero loss;

• in the mark-to-market approach, the distribution results to be much smoother, less
concentrated on null values due to migration, and with a clear bi-modal structure;

• as before, positive values are possible do to favourable credit migrations.
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Restricted CreditMetrics Mark to Market CreditMetrics
Mean Loss 4.90 5.44
VaR 99% 23.71 24.95
VaR 99.9% 32.24 33.78
St. deviation 6.16 6.25
Skewness 1.25 1.24
Kurtosis 4.45 4.56

Table 3.7. Descriptive metrics for the loss distribution of the high quality portfolio

Figure 3.9. Mark to Market CM - High quality portfolio

Figure 3.10. Distribution of defaults Figure 3.11. Distribution of losses

Figure 3.12. Restricted CM - High quality portfolio

Figure 3.13. Distribution of defaults Figure 3.14. Distribution of losses
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3.3 CreditRisk+
In this section we are going to apply model CreditRisk+, as described in the Credit Su-
isse technical document [17] using fixed default rates (thus accounting for independence
between borrowers).
CreditRisk+ has the distinguishing features that it can avoid Monte Carlo simulation,
using instead a numerical algorithm to calculate aggregate risk, and that it was published
as an open methodology document, with the intention of encouraging financial institu-
tions and risk practitioners to develop their own implementations of the model. Since its
introduction, CreditRisk+ has consistently attracted the interest of practitioners, finan-
cial regulators, and academics, resulting in a significant body of literature on the model,
including many enhancements and alternative approaches [20]. We will compare different
implementations in order to measure eventual differences and computational efficiency.

3.3.1 Data preparation
What we need to run CreditRisk+, at least in the basic version without default volatility,
are probabilities of default and the exposures.

• To follow our consistency-preservation principle, we use the same default probabili-
ties as those used in CreditMetrics.

• It is also necessary to adjust exposures, as in banding approaches the model does
not allow to specify which obligor defaulted, thus not making it possible to model
recovery rates to defaults. The data is adjused before hand so that the exposures
only count for the risk part (only the loss given default). This is done by:

exposure = principals− principals ∗ recoveryrates.

Additionally, further difficulties arise when comparing CreditMetrics’ mark-to-market ver-
sion, as CreditRisk+ does not incorporate coupons.

3.3.2 Naif Monte Carlo
In the most Naif implementation possible of CreditRisk+ through simulation, the model

takes in input:

• default probabilities

• exposures

The model works as shown in Figure 3.15, where the event of default is simulated ac-
cording to a Poisson distribution with parameter equal to the default probability, and the
severity of the losses is given by the exposure, minus the recovery rate. This can be easily
implemented as in Algorithm 8.
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What is the frequency of defaults? What is the severity of the losses?

Distribution of default losses

Figure 3.15. CreditRisk+ framework

Data: n_scenarios, n_firms, pd, exposure
Result: loss_distribution, def_distribution
for i = 1 to n_scenarios do

simulated_losses = 0;
defaults = 0;
for m = 1 to n_firms do

num_defaults = poissrnd(pd(m));
if num_defaults > 0 then

def_count = def_count + num_defaults;
end
num_defaults = min(num_defaults, 1);
simulated_losses = simulated_losses + exposure(m) * num_defaults;
defaults = defaults + num_defaults;

end
loss_distribution(i) = simulated_losses;
def_distribution(i) = defaults;

end
Algorithm 8: Loss and default distribution with Naif Monte Carlo for CreditRisk+

Resulting in the distributions shown in Figures 3.16 and 3.19 for defaults and losses
given 50.000 repetitions.
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Figure 3.16. Naif CR+ implementation - Low quality portfolio

Figure 3.17. Distribution of defaults Figure 3.18. Distribution of losses

Figure 3.19. Naif CR+ implementation - High quality portfolio

Figure 3.20. Distribution of defaults Figure 3.21. Distribution of losses

3.3.3 Monte Carlo with Banding
In the official CreditRisk+ documents, in order to reduce the amount of data to be pro-
cessed for large portfolios, the exposures, net of the above recovery adjustment, are divided
into bands of exposure with the level of exposure in each band being approximated by a
common average [17].
The first step in obtaining the distribution of losses from the portfolio in an amenable form
is to group the exposures of the portfolio into bands. This has the effect of significantly
reducing the amount of data that must be incorporated into the calculation.
While banding reduces the computational complexity, it also introduces an approximation
into the calculation. A possible workaround would be choosing a width of the bands that
is small compared with the average exposure size characteristic of the portfolio, the ap-
proximation is insignificant. This however cannot be applied: suppose we choose the size
of band as B = 0.05M , which wouldn’t mean severe rounding error from actual numbers,
we would get a very large numbers of bands m (in fact much higher than the number of
debtors in our portfolio) so that the band approach would lose its purpose as there would
be no grouping. Therefore, we set B = 1M , which can cause a non negligible error.
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The portfolio can be now divided into m exposure bands represented by the index j where
1 ≤ j ≤ m. We adopt the following notation for each band j:

• νj common exposure of the band

• ϵj expected loss of each band

• µj expected number of defaults of each band

We can then write ϵj = νj × µj , µj = ϵj

νj
=
q

A:νA=νj

ϵA

νA
.

Having chosen B = 1M , we round the portfolio according to νj , and extract the unique
exposures. We can follow Algorithm 9 in Matlab to generate exposure bands:

Data: exposure, B, pd
Result: bands
for i = 1 to length(unique_exposures) do

obligors_in_band = (portfolio(:, 1) == unique_exposures(i));
bands(i, 1) =unique_exposures(i);
bands(i, 2) = sum(portfolio(obligors_in_band, 2));
bands(i, 3) = sum(portfolio(obligors_in_band, 1) ·
portfolio(obligors_in_band, 2));

bands(i, 4) = sum(obligors_in_band);
end
bands = sortrows(bands);

Algorithm 9: Exposure Bands Calculation

For the low quality credit portfolio the output for the exposure bands is the one shown
in table 3.8 (we ave a similar result for the high quality portfolio):

Table 3.8. Bands in low quality portfolio

νj µj ϵj # of obligors
2.00 0.31 0.61 9.00
3.00 0.27 0.82 13.00
4.00 0.28 1.11 7.00
5.00 0.16 0.80 9.00
6.00 0.34 2.03 12.00
7.00 0.13 0.90 6.00
8.00 0.68 5.42 9.00
9.00 0.34 3.04 15.00
10.00 0.08 0.75 4.00
11.00 0.55 6.10 12.00
12.00 0.08 1.01 4.00

We notice
q
µj = 3.2109 (

q
µj = 0.6576 in the high quality portfolio), coherently

with the original model.
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The loss distribution is calculated as before (Algorithm 8), but instead of simulating
if each firm defaults or not:

1. first we simulate the number of defaults in each band as a random Poisson with
parameter µj

2. the loss is calculated multiplying the number of defaults times the exposure in each
band νj

3. this is repeated for all bands.

Results are consistent with the previous implementation, and can be seen in Figures 3.22
and 3.25.

Figure 3.22. CR+ with banding implementation - Low quality portfolio

Figure 3.23. Distribution of defaults Figure 3.24. Distribution of losses

Figure 3.25. CR+ with banding implementation - High quality portfolio

Figure 3.26. Distribution of defaults Figure 3.27. Distribution of losses
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3.3.4 Probability distribution using Panjer Recursion
While using simulation for the implementation of CreditRisk+ is common, the frame-
work actually has the distinguishing feature that it can avoid Monte Carlo simulation, as
both the distribution of default rates and default losses can be described mathematically
through probability generating functions.
In fact, the original algorithm proposed by Credit Suisse [17] to implement the Credit-
Risk+ model is based on a recursive formula known as the Panjer recursion. This allows
very fast results in case of large portfolios, but increases the conceptual complexity with
respect to simulation.

As previously illustrated in Section 2.4.4, in this simplest case of fixed default rate, the
probability generating function for the losses G(z) can be expressed as in the multiplies
of unit L of exposure:

G(z) =
∞Ø

n=0
P (AggregateLosses = n× L)zn (3.2)

Assuming the exposure default independently, and consequently the exposure bands, we
can use nice convolution properties:

G(z) =
mÙ

i=1
Gi(z) (3.3)

Yielding the probability generating function for the losses of band j:

Gj =
∞Ø

n=0
P (n defaults)znνj =

∞Ø
n=0

e−µjµn
j

n! = e−µj+µjzνj (3.4)

From the PGF, it is actually possible to derive the actual distribution of losses, this is
done through Panjer Recursion Technique. For n an integer, let An be the probability of
a loss of n × L, or n units from the portfolio. In order to compute An, it is possible to
derive recursive relationships using Taylor series expansions of G(z):

p(lossofnL) = 1
n!
dnG(z)
dzn

|z=0 = An (3.5)

Utilizing Leibnitz’s formula, it is possible to write:

dnG(z)
n!dzn

----
z=0

= dn−1

n!dzn−1

3
G(z) d

dz

Ø
j=1

mµjz
vj

4----
z=0

=

1
n!

n−1Ø
k=0

A
n− 1
k

B
dn−k−1

dzn−k−1G(z) d
k+1

dzk+1

3 mØ
j=1

µjz
vj

4----
z=0

(3.6)

Additionally,
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dk+1

dzk+1

3 mØ
j=1

µjz
vj

4----
z=0

=
I
µj(k + 1)! if k = vj − 1 for some j
0 otherwise

(3.7)

By definition:

dn−k−1

dzn−k−1G(z)
----
z=0

= (n− k − 1)!An−k−1 (3.8)

Yielding:

An =
Ø
k ≤ n− 1,

k = vj for some j

1
n!

A
n− 1
k

B
(k+1)!(n−k−1)!µjAn−k−1 =

Ø
j:vj≤n

µjvj

n
An−vj (3.9)

Relating εj = νj ×µj , we gain a recurrence relationship permitting a fast computation
of the distribution.

An =
Ø

j:vj≤n

ϵj
n
An−vj . (3.10)

To initiate the computation, we have a formula for the initial term, expressing the prob-
ability of zero loss arising from the portfolio:

A0 = G(0) = F (P (0)) = e−ν = e
−
qm

j=1
ϵj
vj (3.11)

The computation of the Panjer coefficients is implemented in Matlab as in Algorithm
10. It is important to note, that unlike all previous sections, the output is not a simulation
of the distribution of losses, but the exact probability distribution of losses for each discrete
loss value. What is particularly powerful is that the calculation depends only on knowledge
of ϵj and νj , which represents a very small amount of data even for a large portfolio
consisting of many exposures.
The output is a vector A(n) which contains the discrete probability of a loss equal to the

coefficient n+1 (as Matlab indexes start from 1 and not 0).
Results are coherent with the results of simulation, as illustrated in Table 3.9, showing
the comparison between the first 20 values yielded by simulation and by Panjer recursion
for the low quality portfolio. A direct comparison with the distribution shapes will be
discussed in the following sections.
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Data: bands, principals
Result: A_n
for j = 1 to size(bands, 1) do

mu_j = bands(j, 2);
v_j = bands(j, 1);
eps_j = bands(j, 3);
sum_A = sum_A - eps_j / v_j;

end
A(1) = exp(sum_A);
for n = 1 to sum(principals) do

sum_A = 0;
for j = 1 to size(bands, 1) do

mu_j = bands(j, 2);
v_j = bands(j, 1);
eps_j = bands(j, 3);
if v_j < n+1 then

sum_A = sum_A + (eps_j / n) * A((n+1) - v_j);
end

end
A(n+1) = sum_A;

end
Algorithm 10: Calculation of Panjer recursion coefficients

3.3.5 Probability distribution using Fast Fourier Transform
In the context of credit risk models, the usefulness of the Panjer recursion is limited by
two numerical issues, as computers does not have infinite precision [4]. First, the Panjer
recursion cannot deal with arbitrarily large numbers of obligors: as the expected number
of defaults in the portfolio increases, the computation of the first term of the recursion
becomes increasingly imprecise; above a certain value for the expected number of defaults
in the portfolio, the value found for the first term of the recursion becomes meaningless.

Second, the Panjer recursion is numerically unstable in the sense that numerical errors
accumulate as more terms in the recursion are computed. This can result in significant
errors in the upper tail of the loss distribution and hence in the computation of the
portfolio’s VaR. Melchiorri [13] developed an algorithm that is numerically more stable
and faster than the standard model described in CreditSuisse, based on the Fast Fourier
Transform.
As the probability generating function for the loss is discrete, it is possible to view the
product of individual loss as a simple convolution that can be computed using the FFT.
The calculation of the loss distribution for the whole portfolio, using FFT, can be done
following these steps:

• the dimension n of the probability vector f is chosen so that the cumulative loss
distribution shall have negligible probability outside the range [0,n]. To this purpose
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Loss in millions Monte Carlo Count Monte Carlo Percent Panjer coefficients
0 1923 3.85% 4.03%
1 0 0% 0%
2 655 1.31% 1.23%
3 592 1.18% 1.11%
4 674 1.35% 1.30%
5 528 1.06% 0.98%
6 938 1.88% 1.88%
7 508 1.02% 1.07%
8 1845 3.69% 3.58%
9 1097 2.19% 2.22%
10 912 1.82% 1.93%
11 2027 4.05% 4.04%
12 1115 2.23% 2.33%
13 1154 2.31% 2.37%
14 1369 2.74% 2.79%
15 1310 2.62% 2.56%
16 1529 3.06% 2.92%
17 1489 2.98% 3.20%
18 1253 2.51% 2.53%
19 1843 3.69% 3.61%

Table 3.9. Comparison between results with Monte Carlo and Panjer coefficients

we have chosen n = 2nextpow2(totalexposure)

• a probability vector is built for each j bands such that:

P (ndefaults) =
µn

j e
−µj

n! , n = 0,1,2, ...,2r

• passing from the probability vector to the loss one requires a good understanding of
probability generating function concepts. P (ndefaults) represents the probability
of having a number n of defaults, and this information is stored in the index of
the vector form. For each band, having n defaults corresponds to a certain loss
amount, maintaining the same probability of occurrence. It is thus possible to pass
from the probability generating function of defaults, to that of losses by working
with the indexes of the vector. This is built by maintaining the same value for the
probability, but shifting the indexes so that they match loss values (which can be
counter intuitive in the beginning!). In our implementation, for each band j, this
yields:

l(loss) =
µn

j e
−µj

n! , n = 0,1,2, ...,2r

The Matlab implementation, detailed in Algorithm 11, requires particular attention, as
indices in vectors start from value 1. This means that probability values will be shifted
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by one unit.

Data: bands, n
Result: loss_distribution_fft, def_distribution_fft
for j = 1 to size(bands, 1) do

l = zeros(1, n);
p = zeros(1, n);
µj = bands(j, 2);
vj = bands(j, 1);
max_def = bands(j, 4);
k = 0;
p(1) = e−µj · µk

j

k! ;
l(1) = e−µj · µk

j

k! ;
for k = 1 to max_def × 3 do

p(k + 1) = e−µj · µk
j

k! ;
l(k · vj + 1) = e−µj · µk

j

k! ;
end
loss_distribution = loss_distribution .* fft(l);
def_distribution = def_distribution .* fft(p);

end
loss_distribution_fft = ifft(loss_distribution);
def_distribution_fft = ifft(def_distribution);

Algorithm 11: Loss and Default Distribution computation with FFT

In Figures 3.28 and 3.31 the resulting density functions, in red the one obtained by Panjer
recursion, in blue coefficients obtained by FFT. It is evident that the two methods are
equivalent (and yield similar distributions to the ones obtained by Monte Carlo simula-
tion).
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Figure 3.28. PGF implementation - Low quality portfolio

Figure 3.29. Distribution of defaults Figure 3.30. Distribution of losses

Figure 3.31. PGF implementation - High quality portfolio

Figure 3.32. Distribution of defaults Figure 3.33. Distribution of losses
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3.3.6 Comparison of results between implementations
Low quality portfolio

It is possible to notice that:

• from a visual perspective, the methods yield similar distributions, thus confirming
the coherency between the different implementations;

• risk measures are similar between CM and CR+ without banding, while introducing
the banding implies an approximation that becomes evident in the VaR calculations;

• banding reduces significantly computational time, and methods based on the calcu-
lation of the pgf (Panjer and FFT) are the most efficient, as shown in Table 3.10.

Figure 3.34. CreditMetrics without
migration

Figure 3.35. CR+ Monte Carlo with-
out banding

Figure 3.36. CR+ Monte Carlo with
banding

Figure 3.37. CR+ Panjer recursion
and FFT
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Table 3.10. Comparison for a low quality portolio

Metric Time VaR99 VaR999
CM w/o migration 0.23 57.88 71.61

CR+ Monte Carlo w/o banding 40.45 56.5 70.92
CR+ Monte Carlo w/ banding 4.75 61 76

CR+ Panjer recursion 0.023 61 77
CR+ FFT 0.039 61 77

High quality portfolio

It is possible to notice that:

• from a visual perspective, the methods yield very similar distributions, again con-
firming the coherency between the different implementations;

• again, risk measures are similar between CreditMetrics and CreditRisk+ without
banding, while introducing the banding implies an approximation that becomes ev-
ident in the VaR calculations, yielding higher values;

• banding reduces significantly computational time, and methods based on the calcu-
lation of the pgf (Panjer and FFT) are the most efficient, as shown in Table 3.11.

Figure 3.38. Credit Metrics without
migration

Figure 3.39. CR+ Monte Carlo with-
out banding
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Figure 3.40. CR+ Monte Carlo with
banding

Figure 3.41. CR+ Panger recursion
and FFT

Table 3.11. Comparison for a high quality portolio

Metric Time VaR99 VaR999
CM w/o migration 0.42 23.7 32.2

CR+ Monte Carlo w/o banding 39.14 23.32 31.56
CR+ Monte Carlo w/ banding 4.4 26 36

CR+ Panjer recursion 0.0076 25 36
CR+ FFT 0.038 25 35

3.4 Sector Analysis

Previously, the default event was modelled as independent, assuming a diagonal structure
in CreditMetrics, and using a fixed default probability rate for CreditRisk+.
The purpose of this section is to incorporate a possible correlation structure between
borrowers. Using the previous implementations frameworks, this can be respectively ac-
complished:

• for CreditMetrics, by modifying the correlation matrix M to describe the correlation
relationship between the borrowers. This implementation can account in a straight
forward way for one-sector, multi-sector independent, and multi-sectors correlated
structures.

• for CreditRisk+, the implementation is not as straightforward, as it models the
effects of background factors by using default rate volatilities that result in increased
defaults, rather than by using default correlations as a direct input.

The fact that CreditRisk+ does not attempt to model correlations explicitly but cap-
tures concentration effects through the use of default rate volatilities, makes a sensible
mapping between the two models a challenging task.
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3.4.1 Setting a common framework for CreditMetrics and Cred-
itRisk+

In this section, we will focusing on building a common framework to compare results from
CreditMetrics and CreditRisk+, following the work of Koyluoglu and Hickman [11], us-
ing simulation to extend results for the distribution of defaults for an non homogeneous
portfolio with multiple independent sectors, in the default only case.
In order to construct a comparable framework for mapping the input parameters, both
models will be slightly reformulated in their implementation with respect to the previous
sections, without changing the fundamentals.

For borrowers affected by a single economic factor, and similar size exposures and
credit ratings, for the realisation of an economic factor X, the conditional probability of
default for CreditMetrics can be written:

pdCM
X = ϕ

5
c1 − √

ρX√
1 − ρ

6
(3.12)

where X ∼ N(0,1), ϕ(c1) = p̄d. In CreditRisk+, the economic factor is assumed to have
Gamma distribution. To have a coherent mapping, Koyluoglu and Hickman modify the
distribution of the economic factor to be normal distributed, and in order the preserve
the gamma distribution of the default rate (key assumption of CreditRisk+), they suggest
the following transformation:Ú ξ

0
Γ(pCR

D ;α; β)dp =
Ú ∞

χ
ϕ(x)dx (3.13)

which yields the following conditional default rate

pdCR
X = Ψ−1(1 − Φ(X);α; β). (3.14)

Now the issue is to parameterize consistently the two models. Koyluoglu and Hickman ar-
gue that means and standard deviations of default must be the same, finding the following
default rate volatility for CreditMetrics, expressed as function of p̄CM

D and ρ.

σ2
CM =

Ú ∞

−∞

3
Φ
5Φ−1(p̄CM

D ) − √
ρX√

1 − ρ

6
− p̄CM

D

42
ϕ(x)dx. (3.15)

This way, given the default probabilities p̄CM
D = p̄CR

D , we have set a correspondence
between the asset correlation ρ, which is taken in input in CreditMetrics, and the default
volatility σCR.

3.4.2 Input parameters
For simplicity of implementation, we sill assume that obligors in the same default rate
bracket, are affected in the same way by a background parameter, thus resulting to be
assigned to the same sector. This assumption of credit quality correlation, introduced
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in Chapter 8 of [14], is purely for design purposes, and can be relaxed accounting for
different correlation structures. Concretely, this means that we are dividing our portfolios
in sub-portfolios with the same probability of default (but different exposures), and then
aggregating the results to get the full portfolio view. This implementation is clearly a
simplification, but shows in a rather simple way that it is indeed possible to map the two
framework’s parameters in a sensible ways for simple cases, and constitutes a base for
further works.

Following the assumption that the higher PD the higher the volatility, we set the
following correlation inputs:

ρ = [0.05, 0.075, 0.1, 0.125, 0.15, 0.175,0.2].

3.4.3 CreditMetrics
In order to calculate the loss distribution for CreditMetrics in a way that allows us to
consistently model and compare the two frameworks, we proceed as follows:

1. For each sector, calculate:
c1 = Φ−1(pd)

2. For each scenario, simulate the background factor as a standard normal random
variable X ∼ N(0,1)

3. For each realisation, calculate the conditional probability of default

pdCM
X = ϕ[

c1 − √
ρX√

1 − ρ
]

4. Simulate the default, as a random binomial with probability pdCM
X

5. If the borrower defaults, calculate the corresponding loss

6. Repeat for each scenario, for each sector calculate αs and βs for CreditRisk+.

It is possible to calculate the conditional probability of default for each scenario, and each
sector, as in Algorithm 12.
Having the conditional default probability for each scenario, we can easily calculate the
loss and default distribution as in Algorithm 13.

3.4.4 CreditRisk+
1. using the same scenarios, calculate the conditional default probability

pdCR
X = Ψ−1(1 − Φ(X);αs; βs)

2. Simulate the default as a random Poisson of parameter pdCR
X
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Data: n_scenarios, n_sectors, c1, rho
Result: pd_conditional_cm
for j = 1 to n_scenarios do

x(j) = randn(1);
for i = 1 to n_sectors do

pd_conditional_cm(j, i) = normcdf
3

c1(i)−
√

rho(i)×x(j)√
1−rho(i)

4
;

end
end

Algorithm 12: Calculation of conditional PDs using Gaussian copula

Data: n_scenarios, n_firms, pd_conditional_cm, sectors, principals,
recovery_rates

Result: loss_cm, default_count_cm
for s = 1 to n_scenarios do

for f = 1 to n_firms do
p = pd_conditional_cm(s, sectors(f));
def = binornd(1, p);
if def == 1 then

loss_cm(s, f) = principals(f) - principals(f) × recovery_rates(f) /
100;

default_count_cm(s, f) = 1;
end

end
end

Algorithm 13: Calculation of loss and default count for each scenario

3. If the borrower defaults, calculate the corresponding loss

4. Repeat for each sector

Firstly, it is necessary to calculate the respective parameters αs and βs so that the model
is consistent with the CreditMetrics implementation (described in Matlab Algorithm 14).

Having the parameters of the Gamma distribution, we can proceed to calculate the con-
ditional probability of default for each scenario and sector (Algorithm 15).
Finally, we can calculate default and loss distributions, as in Matlab Algorithm 16.
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Data: n_sectors, prob_default_rating, rho
Result: variance_k, volatility_k, alpha_k, beta_k
for i = 1 to n_sectors do

variance_cm(x) =3
normcdf

3
norminv(prob_default_rating(i))−

√
rho(i)×x√

1−rho(i)

4
− prob_default_rating (i)

42
×

normpdf (x);
variance_k(i) = integral(variance_cm, −∞, ∞);
volatility_k(i) =

ð
variance_k (i);

alpha_k(i) = prob_default_rating(i)2

variance_k(i) ;
beta_k(i) = variance_k(i)

prob_default_rating(i) ;
end
Algorithm 14: Calculation of parameters for sector-level default distributions

Data: n_scenarios, n_sectors, x, alpha_k, beta_k
Result: pd_conditional_cr
for j = 1 to n_scenarios do

for i = 1 to n_sectors do
pd_conditional_cr(j, i) = gaminv(1 − normcdf (x(j)) , αk(i), βk(i));

end
end

Algorithm 15: Calculation of conditional PDs for each scenario and sector

Data: n_scenarios, n_firms, pd_conditional_cr, sectors, principals,
recovery_rates

Result: loss_cr, default_count_cr, p_sum
for s = 1 to n_scenarios do

for f = 1 to n_firms do
p = pd_conditional_cr(s, sectors(f));
p_sum(s) = p_sum(s) + p;
default_count_cr(s, f) = poissrnd(p);
if default_count_cr(s, f) > 0 then

loss_cr(s, f) = principals(f) - principals(f) × recovery_rates(f) / 100;
end

end
end

Algorithm 16: Calculation of loss and default count for each scenario

3.4.5 Comparison of results
We chose to maintain 50.000 scenarios, although noticing that computational times start
becoming significantly higher due to calculations of the inverse which are costly (225.88
seconds).
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First, we verify that there is indeed consistency in our parameterization, as default mean
and the implied standard deviation are consistent between the CreditMetrics and Cred-
itRisk+ implementations, as visible from Table 3.12.

Default mean default st. dev.
Sector CM CR+ CM CR+
Sector 1 0.0000 0.0000 0.0000 0.0000
Sector 2 0.0000 0.0000 0.0000 0.0000
Sector 3 0.0006 0.0006 0.0009 0.0009
Sector 4 0.0018 0.0018 0.0026 0.0026
Sector 5 0.0106 0.0106 0.0131 0.0132
Sector 6 0.0520 0.0520 0.0497 0.0497
Sector 7 0.1978 0.1978 0.1291 0.1290

Table 3.12. Table of Mean and Standard Deviations for CM and CR
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Low quality portfolio

It is possible to notice how adding correlation effects changes the shape of both the default
and loss distribution. For the default distribution, shown in Figure 3.42:

• the mean probability of default is maintained, yielding 3.22 average defaults per run
as by design;

• we notice a much larger number of scenarios where no borrower defaults;

• we notice scenarios with a much higher number of joint defaults, yielding a distribu-
tion that is more skewed and with a significantly fatter tail;

• while the effect of correlation modifies both the CreditMetrics and CreditRisk+ way
in a coherent way, the two distributions have slightly different shapes due to the
different underlying assumptions of the model.

Figure 3.42. Comparison between the distribution of defaults for the low quality portfolio

Figure 3.43. CreditMetrics Figure 3.44. CreditRisk+

Figure 3.45. CreditMetrics without
correlation

Similar considerations are noticeable in the distribution of losses, Figure 3.46:

58



Case Study

• from a qualitative point of view, the resulting distributions for the two frameworks
are modified by the effect of correlation (volatility) in a similar way;

• scenarios with no defaults yield a much higher number of scenarios without any loss;

• the joint default behaviour yields a distribution that has a much longer and fatter
tail, accounting for scenarios where the loss is up to two times higher;

• coherently with results yielded by Gemmil [8], the CreditMetrics loss distribution
has higher skewness and kurtosis, yielding higher measures for the Value at Risk,
as reported in Table 3.13. This is especially evident for the 0.999 measure, which is
about 25% higher with respect to the CreditRisk+.

Figure 3.46. Comparison between the distribution of losses for the low quality portfolio

Figure 3.47. CreditMetrics Figure 3.48. CreditRisk+

Figure 3.49. CreditMetrics without
correlation
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CreditMetrics CreditRisk+
VaR 95% 70.0809 64.7183
VaR 99% 106.7366 94.7487
VaR 99.9% 160.8724 133.7612
Skewness 1.8597 1.6233
Kurtosis 7.9973 6.5142

Table 3.13. Table of VaR, Skewness, and Kurtosis for losses in the low quality portfolio

High quality portfolio

Although less evident than in the low quality borrower portfolio, also in this case we
notice that introducing sector correlation yields default distributions that have longer
and heavier tails, Figure 3.50, accounting for higher joint defaults for certain background
factors.

Figure 3.50. Comparison between the distribution of defaults for the high quality portfolio

Figure 3.51. CreditMetrics Figure 3.52. CreditRisk+

Figure 3.53. CM without correlation
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It is possible to notice the same for the loss distribution, Figure 3.54, although the change
is again visually less evident than before.

Figure 3.54. Comparison between the distribution of losses for the high quality portfolio

Figure 3.55. CreditMetrics Figure 3.56. CreditRisk+

Figure 3.57. CreditMetrics without
correlation

Regarding risk measures, displayed in Table 3.14, again CreditMetrics determines higher
values for the Value at Risk, although the percentage difference between the two methods
of modelling is less evident than for the previous portfolio. Thus, discrepancies between
capital requirement for institutions using the two different model are less significant for
higher quality portfolios.

CreditMetrics CreditRisk+
VaR 95% 19.6955 19.4930
VaR 99% 33.2950 32.1731
VaR 99.9% 55.0732 49.0928
Skewness 2.2117 2.1603
Kurtosis 9.8675 9.0608

Table 3.14. Table of VaR, Skewness, and Kurtosis for CM and CR
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Chapter 4

Final Considerations

This thesis work aimed to provide insights on the modelling complexity faced by financial
institutions when dealing with credit risk, which, additionally to a portfolio of equity,
faces challenges such as:

• scarcity, lack of data;

• skewed distributions;

• underlying correlation structures between borrowers that can lead to extreme events.

We introduced the theory underlying two main approaches when dealing with modelling
this risk: Structural and Mixture models, and their respective commercial implementa-
tions CreditMetrics and CreditRisk+. We then analysed the resulting default and loss
distributions yielded by both models, considering different input and modelling assump-
tions in two realistic bond portfolios with different exposure sizes, and different credit
qualities (extended previous works that mainly focused on homogeneous portfolios).

As general considerations on implementing a sensible comparison of the models:

• from an initial look, the studied credit risk portfolio models seem to be quite dif-
ferent. However, deeper examination reveals that the models can be assimilated to
a single general framework, which identifies three critical points of comparison: the
default rate distribution, the conditional default distribution, and the convolution /
aggregation technique.

• building coherent models with the two approaches isn’t a trivial task, but requires
adequate preparation of the data, especially regarding exposures, default probabil-
ities and correlation structures. A naive comparison, using parameters estimated
from data using different techniques, is quite likely to produce significantly different
results for the same portfolio. Furthermore, particularities of CreditMetrics, such as
coupons and credit class migrations, are not transferable to CreditRisk+ in a justifi-
able way if not under mathematical workarounds. For this reason we bench-marked
the frameworks using the default-only CreditMetrics model;
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• modelling the dependence structure in a coherent way is especially challenging, as
CreditMetrics takes in input direct asset-value correlation between borrowers, while
CreditRisk+ models dependencies through default volatilities. Mapping the first
into the latter is not straightforward, but can be achieved for single economic factor
dependencies by modifying the underlying Gamma distribution used in CreditMet-
rics to be normally distributed, and then introducing an appropriate transformation,
as first theorised by [11]. This method ensures coherency in the first (mean) and
second moment (standard deviation) of the distribution of defaults. The procedure
deeply modifies the standard implementations of the models;

• given an adequate parameterization of the input data, it is actually possible to
obtain comparable default and loss distributions, and their associate risk measures,
thus enabling the comparison of the results, the efficiency and the implementation
methods of the different models;

• with coherent parameterizations, the models still yield some differences in the es-
timate of risk measures. This is more evident in high confidence intervals (99%,
99.9%).

Diving more in detail into the results:

• CreditMetrics offers a richer model in terms what it is possible to model, incorpo-
rating easily losses (and gains) that may arise from credit quality migrations and
the concept of coupons. This framework is thus indicated for corporate bond port-
folios, where ratings and coupons are easily available data. The effect of including
or omitting migrations is more evident in high quality portfolios, where migration
risk accounts for a larger part in the overall risk measures;

• regarding efficiency, CreditRisk+ is a faster and less expensive approach for calcu-
lating capital requirements, especially when recurring to non simulation implemen-
tations, such as calculating Panjer recursion coefficients or Fast Fourier Transform
coefficients. Some attention need to be into when using the banding approach, as
it can introduce higher (or lower) estimates of the Value at Risk (VaR) due to ap-
proximations. In our case this can account to up to 10% for very high confidence
intervals in low quality portfolios. Given efficiency properties for very large port-
folios, CreditRisk+ may be more suitable for evaluation of different types of debt,
such as retail;

• for incorporating dependencies, if we have data regarding Asset value correlations,
CreditMetrics allows to easily model pairwise relations between borrowers with the
simple use of the multivariate normal distribution. For CreditRisk+ it is relatively
simple to implement dependencies in the case of a single sector, thus having a port-
folio, or a collection of sub-portfolios, with similar default rates and exposed to the
same risk factors. This can be the case of a large retail portfolio exposed to the econ-
omy of a certain country. Incorporating more risk factors becomes more complex,
and is subject to some arbitrate when assigning the weights to each risk component;
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• finally, for the actual estimation of risk measures, discrepancies seem to be almost
negligible in cases of lower confidence intervals and high quality portfolios, coherently
with what is found by [11]. The driver in the case of differences between the models
is the shape of the distribution of default of the models, yielding slightly higher
results for CreditMetrics.

In conclusion, the choice of the model to be implemented largely depends on several
factors:

1. The type of credit risk within the portfolio (e.g., corporate bonds, retail, other).

2. The size of the portfolio.

3. The objective of the measurement (e.g., the need for data on reserves or provisions,
where CreditMetrics provides more information about the size of reserves needed for
non-defaulted exposures [8]).

4. The availability of data (e.g., asset default correlations, default rate volatility).

While this thesis provides an initial exploration of the reconcilable differences between
two of the most important industry models for credit risk modeling, future studies can
explore the capital requirements yielded when dealing with more complex correlation
structures.
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