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Abstract

With advancements in communication technologies, antennas, and solar panel
efficiency, high altitude platforms stations (HAPS) have emerged as promising
solutions for aerial networks, particularly in radio access networks (RANs). These
platforms have the potential to enhance service quality by providing additional
capacity while minimizing grid energy consumption. Innovative allocation strategies
have been under investigation, with a particular emphasis on the application of deep
reinforcement learning (DRL) techniques. By combining deep learning algorithms
with reinforcement learning principles, agents can learn optimal decision-making
policies through interactions with the environment. However, for DRL to achieve
their full potential in optimizing HAP-based aerial networks, a preliminary step
of powerful representation learning is necessary. Representation learning aims to
extract meaningful patterns and abstractions from raw data, setting the stage for
more advanced and efficient learning algorithms. Addressing this need, our research
introduces SOM-TCAN, a hybrid model that combines the clustering capabili-
ties of Self-Organizing Maps (SOM) with the forecasting strengths of Temporal
Convolutional Attention Networks (TCAN). This integrated approach not only
provides precise traffic forecasting but also paves the way for informed and adaptive
decision-making in RAN-HAPs environments. Building upon this groundwork,
the study further delves into the realm of deep reinforcement learning (DRL) to
optimize Weighted Fair Queuing (WFQ) within HAPS. By integrating deep learning
algorithms with reinforcement learning principles, the research proposes a shift in
focus towards WFQ, highlighting the adaptability and potential of DRL in the
landscape of HAPS-integrated aerial networks.
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Chapter 1

Introduction

This initial chapter establishes a foundational understanding of contemporary issues
and challenges associated with the Internet. It equips the reader with essential
knowledge about the global evolution and significance of wireless networks.

Section 1.1 offers a viewpoint on the worldwide expansion of wireless connectivity
and the surge in traffic requirements, presenting contemporary networks with
numerous challenges that need to be addressed. Following this, Section 1.2 explores
the features and applications of the promising 5th generation, emphasizing its key
improvements over the LTE technology. Section 1.3 then outlines the primary
challenges faced in 5G development. Section 1.4 offers a glimpse into the realm of
6G networks, setting the stage for the integration of aerial platforms within the
conventional terrestrial framework. Concluding this chapter, Section 1.5 introduce
HAPS as a super macro base stations (SMBS), emphasizing their transformative
and enabling potential in future network architectures.

1.1 Meeting Future Demands for Connectivity

ICT and IoT-enabled applications are nowadays fundamental, and the number of
connected things is experiencing unprecedented growth. The Author in [1] empha-
sized the evolution of the "Internet-of-Things" and its potential to revolutionize
various aspects of our lives. The emergence of IoT devices spans a wide range
of applications, from optimizing industrial processes and enhancing healthcare
services to enabling smart homes and transforming the way we interact with our
environment. The projected global economic value of these applications by 2035 is
substantial, as illustrated in [2].
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Introduction

In its annual Internet Report, Cisco [3] emphasized that the CAGR of devices
and connections globally stands at 10%. This growth rate outpaces that of Inter-
net users and the overall population. Furthermore, the increasing proportion of
interconnected devices capable of communicating and transmitting data, indicates
the rising prominence of IoT. This emerging trend cements the IoT as one of the
most rapidly expanding global phenomena. Supporting this observation, the cited
report further notes a shift in terminal connections. Machine-to-Machine (M2M)
connections, which are currently the fastest growing at a CAGR of 19%, now
account for half of the total connections in the digital landscape. In addition, by
inspecting the trends among various connected devices in Fig.1.1 We can notice
M2M connections will be the fastest-growing device and connections category.
Smartphones will grow the second fastest, at a 7% CAGR .

Figure 1.1: Global device and connection growth [3]

The 2021 Erricson Mobility Report highlights that by 2028, global mobile traffic,
excluding that from Fixed Wireless Access (FWA), is anticipated to hit 325 EB
monthly [4]. Factoring in FWA, the cumulative mobile network traffic could escalate
to 453 EB monthly by the close of 2028. These forecasts take into account the
phased integration of XR technologies like AR, VR, and MR, primarily towards
the forecast’s tail end. However, a more rapid adoption of these technologies could
lead to data traffic volumes exceeding the current projections. Which could lead to
an average usage per smartphone up to 41 Gb per month.

2
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Figure 1.2: Mobile subscription by technology [4]

Furthermore, as 5th-generation wireless systems continue to evolve and pro-
liferate, there’s a consistent shift of users transitioning from 4G to 5G-enabled
smartphones. In 2022, 5G mobile subscriptions breached the 1 billion mark. With
each smartphone averaging 15 GB of data usage monthly, 5G subscriptions are
projected to dominate the market. The pace of this growth is anticipated to be so
brisk that by 2028, total 5G connections might touch a staggering 5 billion [4] as
shown in Fig.1.2.

1.2 5G Networks: Evolution, Advantages, and
Key Technologies

The evolution towards the fifth-generation (5G) mobile networks commenced as
early as 2019. This shift was driven by the inherent limitations of 4G, such as its
high power consumption, cost inefficiencies, and challenges in supporting a vast
number of concurrent connections. 5G is not just an incremental upgrade; it’s
designed to harness the vast potential of the IoT and serve as a catalyst for the
development of smart cities. With the digital landscape evolving rapidly, there’s an
anticipated surge in global mobile data traffic by the end of 2024. This underscores
the need for a robust network infrastructure capable of handling such massive data
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volumes. This network was designed with eight primary objectives, as outlined
by the International Mobile Telecommunications-2020 (IMT-2020) requirements
issued by ITU and depicted in Fig.1.3.

Figure 1.3: KPIs in evolution from 4G to 5G [5]

Specifically, it aims to surpass 4G in terms of latency, targeting under 1ms
as a standard. Additionally, it seeks to improve spectrum and energy efficiency,
boost mobility, and achieve unparalleled data transfer speeds. One of the defining
characteristics of 5G is its operation across an expansive frequency spectrum.
This ranges from the low bands, which are below 1 GHz, to the mid-bands that
operate below 6 GHz, and extends to the high bands that span between 30Ghz
and 300Ghz [6]. Each of these bands has its unique advantages. For instance, the
low-frequency waves can travel long distances and penetrate obstacles, making
them ideal for widespread coverage. The Third Generation Partnership Project
(3GPP) has played a pivotal role in defining these bands specifically for the 5G New
Radio (5G-NR) air interface. The 5G-NR is designed to significantly enhance the
performance, flexibility, scalability, and efficiency of mobile networks [7]. To ensure
comprehensive coverage, high data rates, and minimal latency, it’s imperative for
5G deployment to utilize both the lower and higher frequency bands. This also
means that the emerging 5G-NR networks, especially those operating at lower
frequencies, must harmoniously coexist with the existing 4G networks [8].
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5G is defined in a set of standardised specifications that are agreed on by
international bodies most notably 3GPP and the ITU. The ITU has defined
criteria for IMT-2020 commonly regarded as 5G and selected a set of compatible
technologies which will support the following use cases [7]:

• eMBB, or Enhanced Mobile Broadband, focuses on user-centric scenarios
involving the access of multimedia content, services, and data. Looking ahead,
this vision entails not only enhancing existing mobile broadband applications
but also introducing new application areas and requirements to provide better
performance and a more seamless user experience. It encompasses various usage
scenarios, including scenarios with extensive coverage and those involving
densely populated areas known as hotspots. In the context of extensive
coverage, the aim is to ensure uninterrupted connectivity even during medium
to high mobility scenarios, significantly elevating user data speeds compared
to current rates.

• uRLLC, which stands for Ultra-Reliable Low Latency Communication, lever-
ages the network for mission-critical applications demanding continuous and
resilient data interchange. Notable examples encompass wireless control of
industrial manufacturing or production processes, remote medical surgeries,
the automation of distribution within smart grids, and ensuring transportation
safety, among others. This utilization scenario imposes rigorous demands on
essential capabilities such as data throughput, latency, and availability to
guarantee the utmost reliability and performance.

• mMTC, or Massive Machine Type Communication, is characterized by a vast
array of interconnected devices, typically engaged in transmitting relatively
small volumes of data that are not time-sensitive. This technology is primarily
geared towards facilitating connectivity for an extensive number of devices,
such as sensors, which typically transmit and receive minimal data quantities.
An mMTC network is intentionally designed to be tolerant of latency, efficient
for transmitting or receiving small data blocks, and capable of operating
on low bandwidth channels. The primary performance requirement for an
mMTC network service is to support an exceptionally high connection density,
reaching up to 1 million devices per square kilometer.

Finally, mMIMO (massive Multiple Input, Multiple Output) plays a pivotal
role. MIMO, a principle integrated into numerous wireless standards, has been
instrumental in enhancing the capacity and dependability of wireless systems. It
was a significant advancement during the 4G era. The massive MIMO approach,
however, takes this a step further. It facilitates the simultaneous transmission and
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reception of a larger number of data streams over a single radio channel. 5G infras-
tructures incorporate mMIMO configurations, such as 8x8 array antennas. These
antennas are designed to be more directive, which translates to superior reliability
and heightened resistance to deliberate interference or jamming. Furthermore,
mMIMO incorporates beamforming, a technique that focuses the signal directly on
the intended devices’ physical locations. This ensures adaptive signal transmission,
as depicted in Fig.1.4. This adaptive approach not only optimizes signal strength
but also minimizes interference, ensuring a seamless communication experience.

Figure 1.4: Coverage comparison between legacy antenna and Massive MIMO [9]

1.3 5G Challenges

The enhanced capacity and data speeds offered by 5G necessitate a broader spectrum
and more advanced spectral technologies than those employed in 3G and 4G
systems [10]. A portion of this additional spectrum comes from the mmWave band.
However, the inherent properties of millimeter wave propagation present challenges.
Specifically, these waves travel over much shorter distances compared to the Low
and Mid bands. As a result, providing coverage for a particular area demands
a significant number of base stations (BSs). This increases the intricacy of the
network infrastructure and amplifies the need for radio equipment installations on
street fixtures like poles and traffic lights.

The diverse requirements of various use cases mean that no single solution can
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cater to all needs. Given the vast differences in system prerequisites, multiple
solutions will be essential. The existing 5G network still falls short in fulfilling
some stringent design criteria, including ultra-reliability, ultra-low latency, and
ultra-secure networks [11]. This has spurred interest in exploring future physical
layers and wireless systems. Beyond terrestrial networks, infrastructure leveraging
satellite and aerial platforms will be crucial to meet coverage and capacity demands.

A significant challenge introduced by 5G is the substantial surge in energy
consumption, leading to increased energy costs. This issue is a focal point for the
networking research community, especially given the alarming annual growth rate
of about 12% in the energy consumption of telecommunication networks [12]. This
escalation is intrinsically linked to the proliferation of 5G BSs . Numerous studies
have delved into methods to reduce BS energy consumption, exploring avenues like
Renewable Energy (RE) integration or resource management tactics. Strategies
such as Resource on Demand (RoD), which employs sleep modes for BSs during low
traffic periods [13], and other sustainable approaches aim to bolster eco-friendliness
while curbing expenses.

1.4 The Rising Demand for 6G Connectivity

5G will soon become insufficient in provided throughput, and more than everything,
in being able to support a large number of connections. In fact, as already discussed
in Section 1.1 connected devices are the category that will experience the highest
overall CAGR in the next future, reaching 500 billion by 2030, about 59 times larger
than the expected world population which is around 8.5 billion [14], but already
being three times larger in 2025. In addition to that, it has to be considered that
a typical 5G communication system can support at most 50 thousand IoTs and
NB-IoT systems per cell, which is already not enough for many applications. The
transformative evolution of wireless systems means that 6G will diverge significantly
from its predecessors, marked by its diverse nature across various domains like
network structures, radio technologies, computational capacities, storage solutions,
and application diversity. Inspired by these trends, in [15] the authors attempt to
conceptualize a road-map for 6G, which is based on the strategic plans of various
standard bodies and is also projected based on the 5G status. The possible overview
of the road-map is depicted in Fig.1.5.
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Figure 1.5: The roadmap of 6G [15]

1.4.1 The requirements of 6G

Enhancing network performance like greater capacity and data rates are essential,
an example of Key Performance Indicators (KPIs) enhancement in the transition
from 5G to 6G is shown in Fig.1.6.

However, we will also mention other that not purely performance oriented
criteria. These were termed as societal requirements in [16].

• As 6G aims for higher capacity, it must further reduce energy per bit and
per area. The 6G energy efficiency goal should align with capacity gains
to maintain overall energy consumption. Comprehensive research is needed,
with a holistic approach to energy efficiency across the entire ICT chain,
encompassing service design and internet protocols

• Resilience, data security, and privacy have always been pivotal in mobile
communication system designs. As telecommunications become integral to
daily life and industries, their significance escalates. 6G must ensure heightened
resilience, security, and privacy, incorporating advanced protection measures
and addressing risks from new 6G features like AI and Thz communications. It
should support local network autonomy during network isolation. In potentially
untrusted multi-party settings, 6G should foster trustworthy networks, ensuring
service and data security across diverse domains. Ultimately, 6G should enable
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Figure 1.6: KPIs between 5G and 6G [14]

network operators to commit to service level agreements detailing quality,
security, and availability standards.

• Expanding network capacity often involves using additional frequency bands,
leading to increased Electro-Magnetic Fields (EMF) exposure. Operators must
adhere to strict EMF regulations. While many countries base their EMF limits
on guidelines from the International Commission on Non-Ionizing Radiation
Protection (ICNIRP) [17], some places, like Italy, Poland, Brussels, and Paris,
have even stricter limits. Current networks operate well below ICNIRP’s
recommendations. However, stricter limits may hinder future wireless network
expansion using current techniques. Essentially, in areas with tight EMF
restrictions, using new frequency bands might require reduced transmit power,
impacting coverage. Thus, 6G design must be EMF-aware, enabling capacity
growth without a significant rise in EMF exposure.
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• New radio access solutions must offer superior performance to provide afford-
able new services. This includes enhanced data rates, improved latency, and
extensive network coverage to maintain service quality. Thus, 6G should incor-
porate innovative mesh networking and integrated access/backhaul systems
for cost-effective, dense network expansion [18]. While 5G uses bands below
6 GHz, a limited new spectrum is anticipated, 6G will need to coexist with
previous generations. 6G will build on the 24-52GHz mmWave bands estab-
lished by 5G and potentially extend to 100GHz or beyond. The sub-terahertz
(sub-THz) or THz spectrum is seen as a key innovation for 6G. Its primary
benefit is the vast spectral availability, enabling high capacity and throughputs
of several Gbit/s. However, this high throughput is likely limited to short
ranges and requires a direct line of sight between transmitters and receivers.
Such bands are ideal for specific scenarios needing substantial data exchange
in particular settings, like ultra-fast downloads or telepresence.

• 6G will integrate all physical devices into computation and manage physical
systems. Through virtualized computing and storage, it will enhance applica-
tion performance, reliability, and latency. With more connected objects, the
ecosystem will need to evolve, demanding more tailored applications. Beyond
standard APIs, fresh programming concepts and streamlined models will
emerge. Network computing will drive the development of new software and
hardware, with applications spanning the network edge, central cloud, and
devices, making 6G a true epicenter of innovation.

1.4.2 Candidate Solutions for 6G

Like each new mobile communication system, 6G will introduce technological
innovation to address the challenges associated with the requirements described
earlier, and support new innovative usages. In this sub-section, we provide more
technical details on key design principles and candidate enablers.

The integration of AI in network operations is anticipated to revolutionize
service delivery, ensuring optimal resource utilization and quick responsiveness.
For AI to function effectively, it requires specialized architectures and processes to
accumulate ample relevant operational data. AI promises to enhance performance
and efficiency across all facets of 6G network operations, including the intricate
signal processing at the physical layer. Addressing challenges like interference
and radio propagation issues demands sophisticated signal processing to maximize
radio resource utilization. Current 6G research is delving into the potential of
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Machine Learning (ML) to elevate the efficiency of this signal processing in both
network infrastructure and end devices. Additionally, the efficiency of AI-focused
hardware might enhance the energy conservation of 6G devices and equipment.
Machine Learning, when applied to the physical layer, has the potential to in-
tuitively understand radio channel attributes and determine the most effective
communication methods, such as modulation patterns. More immediate prospects,
like refining massive MIMO beamforming, seem more developed and are already
being considered for 5G advancements. On the other hand the author in [15]
proposed a potential architecture for 6G as shown in Fig.1.7, in which network
intelligentization, subnetwork evolution, and intelligent radio are embraced.

Figure 1.7: The architecture of 6G [15]

Building on the advancements in 6G networks, semantic communication (SC)
is emerging as a transformative paradigm that promises to reshape the way we
understand and implement wireless communication. Traditional methods, deeply
rooted in Shannon’s theory of information, have long chosen to sidestep the semantic
intricacies of communication. However, as the 6G horizon comes into clearer view,
there’s a shift towards services that are not just about transmitting data but doing
so with an understanding of content, user needs, and semantics [19].

The essence of SC lies in its focus on the message’s inherent meaning during
its transmission. This becomes especially pivotal for applications like intelligent
transportation systems, where the real-time processing of diverse data types, from
videos to radar outputs, is crucial. By integrating SC with state-of-the-art machine
learning models, including deep learning and neural networks, there’s potential to
supercharge the efficiency of signal processing across both network infrastructure
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and end-user devices [19]. Yet, as with all innovations, challenges arise. The
introduction of ’semantic noise’, stemming from written discrepancies, ambiguous
expressions, or adversarial interventions in the semantic channel, poses a significant
hurdle. To navigate these challenges, the development of robust deep learning-
enabled semantic communication systems is underway. These systems, equipped
with calibrated self-attention mechanisms and adversarial training, aim to fortify
the communication process against such semantic disturbances [20].

Another Candidate enabler to provide wireless connectivity with reduced envi-
ronmental impact and controlled EMF exposure are Reflective Intelligent Surfaces
(RIS) . RIS introduces a novel node within the network, distinguished by its "passive"
nature, meaning it doesn’t produce any supplementary radio waves [21]. When
exposed to an incoming radio wave, the RIS reflects it back. It’s essential, from our
perspective, that the network retains control over the RIS and its induced reflection.
One particularly intriguing application for network operators is an RIS that directs
the reflected wave purposefully. By manipulating these smart "reflectors", operators
can mold wireless propagation, crafting "adaptable, smart, and eco-friendly wireless
settings", as articulated in [22]. Studies have shown that such surfaces can bolster
antenna beamforming, enhancing the data speed to the intended device while simul-
taneously reducing EMF exposure near the antenna [23]. RIS present promising
solutions to enhance coverage and data speeds in both internal and external settings
without the need for extra radio wave transmissions. Present-day challenges revolve
around the RIS’s reflective capabilities, energy efficiency, cost-effectiveness, RIS
control, and the coexistence of RIS operators.

Furthermore, we delve into a unique category of devices known for their energy
autonomy, termed Zero-Energy Devices (ZEDs) [24]. Similar to RIS, a ZED
operates in a "passive" manner, meaning it doesn’t produce supplementary radio
waves. Instead, it communicates by reflecting or backscattering ambient waves.
During this process, the ZED modulates the reflected signal to embed a message.
This method eliminates the need for a power amplifier, making the device’s energy
consumption minimal. In fact, the energy requirement is so modest that ZEDs can
harness power from renewable sources, such as ambient light through photovoltaic
cells or even vibrations using piezoelectric materials. This energy-efficient design,
combined with energy-harvesting capabilities, positions ZEDs as a sustainable
solution in the realm of wireless communication. IoT devices, especially sensors,
can benefit from being ZEDs as they often need to be deployed in hard-to-reach or
remote areas where changing batteries or providing power is challenging. However,
the potential applications of ZEDs, and the design of solutions remain at a research
stage.
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Finally, With the evolution in satellite engineering and launch methodologies,
the expenses associated with deploying low-Earth orbit satellite clusters have been
substantially reduced . Coupled with advancements in electronics and antenna
technology, this has led to a notable increase in data transmission rates per
satellite. In this context, High-Altitude Platforms Stations (HAPS), encompassing
various stratospheric airships, are being explored as potential economical means
to provide connectivity across expansive regions, catering to conventional devices
like smartphones and sensors. Should their cost-effectiveness and performance
be validated, satellites and HAPS could play a pivotal role in promoting digital
accessibility. Their expansive coverage, combined with the capability to direct
beams based on traffic demands, positions HAPS-integrated networks as key assets
for enhancing 6G communication’s robustness and uninterrupted service.

1.5 HAPS as a Super Macro Base Station

Due to its expansive coverage footprint, augmented capacity featuring multiple-
MIMO technology, and the ability to provide integral functions such as data
acquisition, computational processing, caching, and data handling, HAPS in its
capacity as a SMBS emerges as a viable deployment option, especially well-suited
for densely populated urban environments that align with the principles of smart
city development. This strategic choice is driven by the pressing need to contend
with escalating traffic demands within intricate urban settings, while simultaneously
addressing the challenges associated with deploying conventional terrestrial BSs.
The forthcoming generation of HAPS-SMBS is poised to equip itself with the
requisite capabilities to tackle the mounting requirements for high capacity, minimal
latency, and advanced computational capabilities, tailored to the unique demands
of densely inhabited metropolitan regions. A representation of the use cases of
HAPS-SMBS networks is depicted in Fig.1.8.

HAPS-SMBS offer the potential to complement terrestrial networks in various
ways [26]:

• In upcoming urban landscapes, the surge in data traffic and user volume will
overwhelm terrestrial BSs. To alleviate this, under-utilised BSs in less dense
areas can serve these overloaded regions. This extended connectivity can be
facilitated using RIS mounted on HAPS. By adjusting the RIS phases, signals
from BSs can be directed to reach underserved users.

• As IoT experiences exponential expansion, it becomes evident that the existing
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Figure 1.8: HAPS-SMBS networks [25]

infrastructure and traditional wireless access architecture design methods are
ill-equipped to handle the escalating demand for wireless systems and services.
In this context, the expansive reach of HAPS presents an optimal solution
for furnishing extensive coverage to accommodate a multitude of IoT devices.
Consequently, HAPS-SMBS emerge as an appealing solution to supplement
terrestrial networks, offering the ability to gather data from IoT devices
efficiently and establish dependable uplink connections with them.

• Supporting Terrestrial Highways and Users: Connected and autonomous vehi-
cles (CAVs) generate significant deep learning computations for autonomous
decision-making. Leveraging HAPS equipped with robust computing power
an offload these AI tasks from CAVs. Beyond their computational strengths,
HAPS offer advantages over traditional networks (TNs) in overseeing vehicle
mobility. Their expansive coverage can notably decrease handover occurrences.
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Chapter 2

Related Work

In this section, representation learning is explored, especially its application to
time series. Methods that are similar to the proposed approach are highlighted,
and a range of related problems within the domain is discussed, positioning the
research within the broader context of existing solutions.

Section 2.1 introduces representation learning and outlines its primary objectives.
Section 2.2 shifts focus to its application in time series, organizing existing methods
into three distinct categories. Sections 2.3 to 2.5 offer a detailed examination of
these categories, highlighting their specific characteristics.

2.1 Representation learning

Representation learning, also known as feature learning, stands as a cornerstone
in the expansive landscape of machine learning. Its primary objective is the
automated extraction of pertinent features or representations directly from raw
data, a concept eloquently explained in [27]. This paradigm shift offers a stark
contrast to traditional machine learning techniques, which often hinge on the
expertise of domain specialists to meticulously craft features, a process that is not
only time-consuming but also requires profound domain-specific expertise.

The allure of representation learning lies in its promise of automation. It allevi-
ates the need for manual feature engineering, empowering models to autonomously
go through data and focus on the most relevant features. This self-reliant ap-
proach to feature extraction has broader implications. For instance, the learned
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representations can be seamlessly repurposed across several tasks, epitomizing the
essence of transfer learning. In this context, features learned from one dataset can
be leveraged to fortify the training of models on related dataset. Moreover, in
the face of high-dimensional data, representation learning emerges as a beacon,
offering tools to distill the data, making it more manageable and interpretable, as
underscored by [28].

Several methods have been pioneered in the realm of representation learning.
Autoencoders, for instance, are a class of neural networks tailored to reconstruct
their input data by compressing it into a lower-dimensional latent space and
subsequently decompressing it . The compressed representation, or the latent space,
captures the most salient features of the data. Variations of autoencoders, such as
Variational Autoencoders (VAEs), introduce a probabilistic approach to encoding
and decoding, allowing for richer and more diverse representations [29]. On the
other hand Word embeddings, like Word2Vec and GloVe, have revolutionized
the field of natural language processing. These techniques generate dense vector
representations of words based on their contextual semantics. Such embeddings
capture syntactic and semantic relationships between words, enabling superior
performance in various linguistic tasks [30].

Despite its successes, representation learning faces challenges. Interpretability
remains elusive, as the features extracted, especially from deep models, are often
hard to decipher. Scalability, especially with increasing data dimensions, is a
concern. Moreover, while supervised scenarios have seen significant advancements,
unsupervised and semi-supervised representation learning remain active areas of
research, with much potential yet to be unlocked [31].

2.2 Time-Series Representation Learning

In the scope of this thesis, we are tackling the domain of time series data, with
a specific emphasis on cellular stations traffic. Time series data, characterized
by its sequential nature, presents unique challenges and opportunities for repre-
sentation learning. The learned latent representations can capture potentially
valuable information within time series and reveal the underlying mechanisms of
the corresponding systems or phenomena. Moreover, these robust representations
play a crucial role in various subsequent tasks, such as time series forecasting [32]
and clustering [33].

As presented in Fig.2.1, we classify the existing representation learning methods
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for time series into 3 categories : hybrid techniques , Supervised learning techniques
and unsupervised learning techniques.

Representation Leaning Methods For Time Series

Supervised
Learning Methods

Section 2.4

LSTM [44]

TCN [45]

Unsupervised
Learning Methods

Section 2.3

DTCR [40]

SOM [41]

Hybrid Learning
Methods

Section 2.5

[50]

Figure 2.1: Taxonomy of time series representation learning methods

Hybrid Techniques combine elements of both supervised and unsupervised
learning to harness the strengths of each. By integrating labeled and unlabeled data,
or by combining different learning paradigms, hybrid techniques aim to achieve
enhanced performance and more versatile representations suitable for a variety of
tasks. In this section we will unravel the work in [34].

Unsupervised Learning operates without the need for labeled data, unsuper-
vised techniques focus on extracting patterns and structures directly from the data
itself. Methods such as autoencoders, which learn to reconstruct input sequences,
or clustering algorithms that group similar sequences, fall into this category. The
goal here is to uncover latent structures and relationships within the time series
without any predefined labels. Consequently, unsupervised learning approaches
are devised to tackle this challenge by creating various pretext tasks that gen-
erate self-generated labels without relying on human supervision. Unsupervised
learning for time series representation learning could be divided into three other
categories [35]: deep clustering, reconstruction-based, and self-supervised learning
methods. However, we will present a method that is associated to Deep clustering a
method which typically combine traditional clustering techniques with deep learning
neural networks, utilizing clustering results as labels for representation learning
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while updating clustering results based on learned representations. Furthermore,
we will introduce an artificial neural network (ANN) known as Self Organizing
Maps (SOM). These methods use clustering results as labels for representation
learning and simultaneously update clustering outcomes based on the learned
representations.

Supervised Learning predicates on the availability of labeled data, supervised
techniques train models to predict specific outcomes based on past data. In the
process, these models learn representations that capture the inherent relationships
and dynamics of the time series. Common models in this category include recurrent
neural networks (RNNs) and Long Short-Term Memory (LSTM) networks, which
are adept at handling sequential data. Convolutional neural networks (CNNs) have
shown potential in catching temporal dependencies for forecasting tasks.

2.3 Unsupervised Learning

The authors in [35] describe approaches that combine clustering with feature learning
to have demonstrated impressive results in unsupervised representation learning [36]
. The core aim is to identify inherent patterns and structures in data without the
need for explicit labels. Classic clustering techniques, including flat clustering [33],
hierarchical clustering [37], and spectral clustering [38], typically use predefined
feature extractors to group similar samples . However, their efficacy diminishes
with time series data due to its inherent complexity and high dimensionality.
Traditional clustering’s reliance on basic distance metrics often falls short in
capturing these complexities. Moreover, handcrafted features can be inconsistent
and lack automation.

Deep neural networks, with their capacity to discern complex data hierarchies,
are apt for handling the nuances of time series data. This has led to the rise of "deep
clustering" which merges conventional clustering with deep learning. This fusion
blurs the lines between clustering and representation learning, enabling iterative
optimization to transform input data into a new latent space [39]. Techniques such
as DTCR [40] utilize auto-encoder foundations, optimizing both reconstruction and
clustering losses. Finally, SOM, a model based method [41], it is a specific type
of ANN used for model-based clustering. Notably, clustering outcomes can act as
self-supervised cues, aiding the self-learning mechanism.
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2.3.1 Deep Temporal Clustering Representation

Deep Temporal Clustering Representation (DTCR) presents a novel approach to
time series clustering by seamlessly blending temporal reconstruction capabilities
with the objectives of the K-Means clustering algorithm. At its essence, it leverages
a sequence-to-sequence (seq-to-seq) model to produce temporal representations
that are specific to each cluster.

Figure 2.2: The general architecture of the Deep Temporal Clustering Represen-
tation (DTCR) [40]

One of the standout features of DTCR is its integration of an auxiliary clas-
sification task. This task serves to improve the encoder’s ability to discern and
differentiate between various temporal patterns. To further refine the learning
process, it introduces a fake-sample generation strategy. This strategy involves the
random shuffling of certain time steps within the data, challenging the model to
recognize and adapt to artificially introduced temporal anomalies. Such a strategy
not only augments the robustness of the model but also ensures that it remains
sensitive to genuine temporal patterns.

The architectural choice of DTCR is also noteworthy. By employing bidirectional
dilated recurrent neural networks as the encoder, it ensures that the resulting
representations are both comprehensive and nuanced. This architecture allows
the model to capture the inherent temporal dynamics present in time series data.
Moreover, the use of dilation ensures that the representations encapsulate multi-
scale characteristics, recognizing patterns that manifest over varying time scales.

As illustrated in Fig.2.2, DTCR consists of three losses and the overall training
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loss LDT CR is defined by:

LDTCR = Lreconstruction + Lclassification + λLK-means (2.1)

where λ is the regularization coefficient. Eq.2.1 is minimized to learn the
cluster-specific representations. Specifically, Lreconstruction makes the representations
reconstruct the input. Lclassification enhances the ability of the encoder. LK-means
encourages the representations to form cluster structures.

2.3.2 Self Organized Maps

SOM [41] is a type of ANN that is trained using unsupervised learning to produce
a low-dimensional (typically two-dimensional), discretized representation of the
input space, called a map, and is therefore a method to do dimensionality reduction.
Self-organizing maps differ from other artificial neural networks as they apply
competitive learning and cooperative learning as opposed to error-correction
learning (such as backpropagation with gradient descent), and in the sense that
they use a neighborhood function to preserve the topological properties of the input
space.

SOM introduced by Kohonen in 1990, is an extension K-means clustering that
doesn’t require initial projection onto a low-dimensional surface. It produces an
easily understandable low-dimensional visualization, even though it represents data
across multiple dimensions. It has been found useful to reveal intricate patterns
and structure in several applications [42]. It is also used in data mining for its
vector quantisation property [43]. As mentioned above, SOM can represent high-
dimensional observable data onto lower dimension latent space, typically on a 2D
square grid as illustrated in Fig.2.3, while preserving the topology of the original
input space. But the map can also be used for projecting new data points and
seeing which cluster belongs to the map, too.
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Figure 2.3: Architecture of a SOM network (reference)

Each neuron i in the map has an associated weight vector wi ∈ Rd of the same
dimensionality as the input data x. This weight vector is initialized randomly and
gets updated during the training process. Each map can be thought as having two
sets of coordinates: an input space which is represented by the weigh vector and
the output space represented by the position of the map.

In each training step, one sample x is chosen, the distance between x and all
the weights vectors wi are computed. The neuron whose weight vector is closest to
the input vector is called the Best Matching Unit (BMU) wbmu:

wBMU = arg min
i

∥x − wi∥2 (2.2)

After finding the BMU, the weight vectors wbmu are updated so that the BMU is
moved closer to the input vector in the input space. Also the topological neighbors of
the BMU are treated similarly. We say that We say that SOM applies competitive
learning because the weight vectors most similar to a data vector is modified so
that it is even more similar to it and coorperative learning because not only the
most similar weight vectors in this case BMUs, but also the neighboring weight
vectors are moved towards the data vector. the SOM update rule for the weight
unit wi is as follows :

wn+1
i = wn

i + αn × hn
BMU,i × (x − wn

i ) (2.3)
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αn = α0(1 − n

T
) (2.4)

Where αn is a decreasing learning rate and T is the training length. Topological
neighborhood structure is promoted via a neighborhood kernel hn

BMU,i that weights
the nodes inversely proportional to their distance with BMU . A Guassian kernel
is often used, which weights the node i as following :

hn
BMU,i = exp

A
−||rBMU − ri||2

2(σn)2

B
(2.5)

σn = σ0(1 − n

T
) (2.6)

Where ri is the projection of the weight vector wi to its corresponding coordinate
on the grid and σ0 denotes the initial standard deviation.

2.4 Supervised Learning

Supervised representation learning in the context of time series data is a pivotal
approach that has gained prominence for its ability to automatically extract mean-
ingful and informative features from temporal sequences, with guidance from labeled
target information. This methodology is particularly vital in dealing with the inher-
ent complexities of time-varying data. A standout technique in this domain is the
use of RNNs, notably LSTM networks, which have exhibited exceptional prowess in
capturing intricate temporal dependencies and patterns within sequential data [44].
These networks utilize specialized memory cells to maintain and update information
over time, making them adept at modeling a wide range of time series phenomena.
Additionally, the Temporal Convolutional Network (TCN) has emerged as an alter-
native approach, employing one-dimensional convolutions to capture hierarchical
features within time series data while maintaining computational efficiency [45].
Such supervised representation learning techniques have found applications in
diverse domains, including finance, where precise forecasting of market trends is
critical, healthcare, for anomaly detection in patient monitoring, and environmental
science, for recognizing complex patterns in climate and ecological data.
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2.4.1 Long Short Term Memory (LSTM)

The authors in [46] have mentionned that RNNs are purposefully crafted to handle
sequential data. A fundamental characteristic shared among these tasks is the
presence of temporal dependencies within the data, which traditional feedforward
neural networks are ill-equipped to capture. RNNs, as a solution to this issue, are
structured to incorporate both past and present data into their architecture. The
key feature of an RNN is its recurrent connection, which forms a loop that connects
the output of a neuron at one time step to the input of the same neuron at the
next time step. This loop enables RNNs to create a form of memory, allowing
them to remember information from earlier steps and use it to influence the current
step’s output. This inherent ability to model sequences makes RNNs exceptionally
powerful in tasks like predicting the next word in a sentence, generating sequences
of text, recognizing speech patterns, and forecasting future values in time series
data.

Figure 2.4: Basic architecture of a RNN for time series forecasting [46]

RNN architectures come in various forms, depending on the number of inputs and
outputs involved: one-to-one (one input and one output), one-to-many (one input
and multiple outputs), many-to-one (multiple inputs and one output), and many-to-
many (multiple inputs and outputs). Frequently encountered RNN configurations
include many-to-one for classification tasks and many-to-many for applications like
machine translation or time series forecasting. Additionally, in the case of time
series data, the length of the input sequence often differs from the size of the output
sequence, which typically corresponds to the number of samples to be predicted.
Fig.2.4 illustrates a basic RNN structure tailored for time series forecasting, where
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xi and x̂i denote the actual and predicted values at time i respectively, while h
represents the prediction horizon .

However, traditional RNNs have some limitations, such as difficulties in learning
long-term dependencies, often referred to as the "vanishing gradient" problem. To
address these limitations, variations of RNNs, such as LSTM networks and Gated
Recurrent Units (GRUs), have been developed. These architectures incorporate
mechanisms that better control and manage information flow over longer sequences,
making them more effective in capturing complex patterns in sequential data. In
order to solve the vanishing gradient problem [44]. Fig.2.5 shows a picture of how
a hidden unit works in a LTSM recurrent network.

Figure 2.5: Hidden unit in LSTM [47]

LSTM uses three gates to keep relevant information and discard the irrelavant
ones. These gates are forget gate f . The forget gate is responsible for deciding
which information from the previous cell state should be retained and which should
be discarded. It takes the previous cell state ct−1, the current input xt and the
previous hidden state ht−1 as inputs and produces an output between 0 and 1
for each element in the cell state. A value of 1 indicates that the corresponding
information should be preserved, while a value of 0 means it should be forgotten.
The forget gate is controlled by a sigmoid activation function. The following
equation shows this procedure :

f t = σ(Wf · [ht−1, xt, ct−1] + bf ) (2.7)

where wf is the weight associated with the input xt, cell value ct−1 and hidden
state ht−1. While bf represents the bias vector .
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Then comes the input gate i determines what new information should be added
to the cell state. It consists of two parts: a sigmoid layer that decides which values
will be updated and a tanh layer that creates a vector of new candidate values
u. These two parts are then combined to update the cell state. The input gate’s
output is controlled by the sigmoid and tanh activation functions.

it = σ(Wi · [ht−1, xt, ct−1] + bi) (2.8)

ct = f t ∗ Ct−1 + it ∗ ut (2.9)

Finally, comes the output gate o that decides what part of the cell state should
be exposed as the network’s output. It takes the current cell state ct and the
current input xt with hidden state ht as inputs and passes them through a sigmoid
activation function. The result is then multiplied by ct after passing through a
tanh function. This produces the output of the new hidden state ht for the current
time step.

ot = σ(Wo · [ht−1, xt, ct] + bo) (2.10)
ht = ot ∗ tanh(ct) (2.11)

LSTM model serves as a robust foundation for various groundbreaking works in
time series representation learning, as the DeepAR model. DeepAR [48] underscores
LSTM’s prowess as the core architecture for time series forecasting. DeepAR’s suc-
cess in providing probabilistic forecasts relies on autoregressive recurrent networks,
primarily built upon LSTM cells, showcasing LSTM’s proficiency in capturing
intricate patterns and uncertainties within time series data.

In essence, LSTM models, with their capacity to model long-range dependencies
and sequential information, have consistently demonstrated their versatility and
power as foundational elements.

2.4.2 Temporal Convolutional Networks

TCNs have gained significant attention in recent years as a powerful tool for time
series analysis and representation learning. TCNs represent a departure from
traditional recurrent and autoregressive models like LSTMs and ARIMA, offering
unique advantages for modeling sequential data. Unlike LSTMs, which rely on
sequential processing and may suffer from vanishing gradient problems, TCNs
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employ one-dimensional convolutions, which allow them to capture long-range
dependencies efficiently. This is particularly valuable for time series data, as
it often contains complex temporal patterns that can span various time scales.
Moreover, TCNs provide parallelism in training and prediction, making them
computationally efficient and well-suited for large-scale applications

The standard Convolution considers future information when computing the
output of a given time step. This issue can be solved by providing a Causal
formulation to convolutions. A formulation in which the present value only depends
on past and present inputs. Causality is easily obtained by padding asymetrically
the input sequence with zeros.

A basic causal convolution has a limited capability to examine past information,
typically constrained to a linear depth within the network. Consequently, its
practicality in sequence-related tasks, particularly those demanding extensive
historical context, becomes a challenge. In addressing this issue, TCN adopts
dilated convolutions. These dilated convolutions offer the advantage of exponentially
expanding the network’s receptive field, enabling more effective handling of longer
historical sequences. For a 1-D sequence input x ∈ Rd and a filter f : {0, ..., k−1} −→
R , the dilated convolution D on element t of the sequence as following :

D(t) =
K−1Ø
i=0

f(i) · xt−d·i (2.12)

Where the dilation factor is denoted as d, along with k representing the filter
size, and s − d · i accounting for the direction of the past, collectively define the
concept of dilation in convolution operations. Essentially, dilation introduces a
fixed step between each pair of adjacent filter taps. As depicted in Fig.2.6 When
d = 1, a dilated convolution behaves identically to a regular convolution. However,
by increasing the dilation factor to values greater than 1, the output at the highest
level of the network becomes capable of representing a broader spectrum of inputs.
This expansion effectively widens the receptive field of a ConvNet, allowing it to
capture more extensive contextual information.

TCN employs a generic residual module because it effectively allows layers to
learn modifications to identity mapping rather than the entire transformation ,
which has shown to be effective in very deep networks The residual block for our
baseline TCN is shown in Fig.2.7

TCNs and LSTMs are both advanced architectures tailored for sequence mod-
eling, yet they present distinct advantages and challenges. TCNs are renowned
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Figure 2.6: A dilated causal convolu-
tion [45]

Figure 2.7: TCN residual block [45]

for their ability to process data in parallel, a feature that stands in contrast to
the sequential nature of LSTMs. This parallelism, coupled with dilated convolu-
tions, equips TCNs to adeptly capture long-range dependencies in data without
a significant increase in parameters. Furthermore, the gradient stability during
TCN training, bolstered by residual connections, often outperforms that of LSTMs,
which, despite their gating mechanisms, can still encounter the vanishing gradi-
ent problem in certain scenarios. TCNs also demonstrate flexibility in handling
sequences of varying lengths and can be more memory-efficient since they don’t
maintain continuous hidden states across time steps, unlike LSTMs.

However, LSTMs possess their own set of strengths. Their intricate gating
mechanisms, including forget, input, and output gates, allow them to regulate
information flow, making them particularly adept at retaining crucial long-term
dependencies and discarding irrelevant data. This inherent memory mechanism
can be invaluable for tasks where context from distant past time steps is pivotal.
Moreover, the sequential processing of LSTMs can offer a more intuitive and
interpretable temporal progression for certain tasks. For short-sequence tasks or
scenarios where long-term dependencies are not as critical, LSTMs might present a
more parameter-efficient alternative.

In essence, while TCNs offer advantages like parallelism, gradient stability,
and flexibility in sequence length, LSTMs shine with their sophisticated gating
mechanisms and inherent memory capabilities.
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2.5 Hybrid Learning

In the realm of time series data analysis, hybrid machine learning models have
emerged as a potent tool for representation learning, seamlessly blending the
strengths of multiple algorithms to capture both linear and non-linear patterns
inherent in sequential data. By integrating architectures like ANNs with classical
time series models such as ARIMA, or combining feature-based representations
with model ensembles, these hybrid approaches offer enhanced accuracy, robustness,
and generalization capabilities. While they harness the pattern recognition prowess
of deep learning and the statistical rigor of traditional models, challenges like model
interpretability and computational efficiency remain. Nevertheless, the strategic
fusion of models in a hybrid framework presents a promising avenue for advancing
time series representation, paving the way for more insightful and accurate data
analyses. In this section, we provide a comprehensive examination of the hybrid
models as delineated by [34].

Figure 2.8: Hybrid model for time series forecasting [34]

Fig.2.8 delineates the architecture of the proposed framework aimed at enhancing
the efficacy of time series models for network traffic prediction. This advanced
methodology refines both the Long Short-Term Memory (LSTM) and Adaptive
Neuro-Fuzzy Inference System (ANFIS) time series models. Empirical data, sourced
from diverse network backbones, serve as the foundation for evaluating the proposed
framework’s methodology. The fuzzy c-means clustering algorithm is employed
to segment the network data, facilitating the identification of homogenous object
characteristics. These homogenous entities are subsequently grouped, with a focus
on five distinct clusters (C1 to C5) based on the inherent data distribution. These
clusters act as preliminary inputs for the Weighted Exponential Smoothing (WES)
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method, which is applied individually to each cluster. From this process, five
predictors (P1 to P5) are derived, which are then amalgamated to produce a
composite predictor, Pn. This predictor, Pn, serves as the input for both the LSTM
and ANFIS time series models. This preprocessing phase is integral to augmenting
the predictive capabilities of the LSTM and ANFIS models for network traffic.
Notably, the proposed framework demonstrates a marked reduction in prediction
errors, yielding results that align more closely with expectations. As a concluding
step, evaluative metrics are utilized to rigorously assess the refined methodology’s
capacity to optimize advanced machine learning algorithms, specifically LSTM and
ANFIS, for network traffic prediction.
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Time Series Analysis

This chapter delves into an analysis of the available data and thoroughly describes
the foundational scenario. It emphasizes the importance of examining the provided
data, aiming to identify specific patterns and overarching trends

Section 3.1 details the terrestrial network for each district of the Milan munici-
pality. It further offers a visual representation of LTE BSs’ placement within the
city, linking examined clusters to specific Milan neighborhoods. Additionally, the
selection of traffic zones for analysis is determined based on varying activities and
anticipated patterns. Following this, Section 3.2 is dedicated to deriving insightful
statistics regarding the selected areas. The primary objective is to identify over-
arching trends, patterns, and behaviors during the examined period, especially
during peak hours and days.

3.1 Spatial Distribution of Base Stations in Mi-
lan’s Traffic Zones

Our data is characterized by its geographical separation where each zone consists
of 7 BS, leading to an aggregate of 112 cells (equivalent to 112 BSs) spread across
16 distinct clusters. To visualize the spatial distribution and scale of these sample
clusters within Milan, the BSs were plotted on a city map. Fig.3.1 illustrates the
positioning of the studied cells within the city’s municipal regions.
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Figure 3.1: location of different BS zones in Milan [49]

In the next section, we will conduct a statistical analysis on the data traffic, based
on several zones in order to better characterize the traffic in different areas. The
traffic zones we’ve opted for are business, Rho, San Siro, FS, and Residential
areas. This selection is intended to compare areas that are distinctly different,
reflecting the varied activities and habits of the individuals within them.

3.2 Statistical Properties per zone

The data sets being examined are sourced from a leading Mobile Network Operator
(MNO) in Italy, specifically related to Milan. These data sets are based on the 5G
technology utilized by this major operator, detailing the traffic demand in bits for
1,420 time instants (observations) per base stations across various districts of Milan,
recorded every hour. This data covers a period of approximately two months in
2020, beginning on April 1st and concluding at 11 pm on Mai 30th.

Fig.3.2 presents the outcomes of the calculations for the mentioned clusters. It
emphasizes the differences in the Cumulative Distribution Functions (CDFs). The
results align with expectations. Specifically, the FS district records the highest
traffic volume, attributed to the Milan Central Train Station, a key mobility hub
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in the city. The Residential area, where people reside, displays more consistent
demand patterns, with a pronounced curve at lower traffic values and a short tail.
Which means that the Residential area does not go through sudden traffic peaks
and that low traffic volumes is more common in the Residential area compared to
the other areas. On the other hand, Rho and SanSiro known for events and fairs,
occasionally experience significant traffic spikes. This is evident, especially for the
Rho district and SanSiro since they are characterised with a very long tail that
reaches high traffic volumes.

Figure 3.2: CDFs of different traffic areas in Milan

The next step involves calculating the average traffic in each area, aggregating
data on both an hourly and daily basis. Fig.3.3 displays the results for the primary
traffic aggregation in each district. A consistent trend across all curves is the evident
drop in traffic volume during the night. From 1 AM on-wards, even the busiest
district sees minimal traffic. Notably, the FS district consistently records high
traffic, a reflection of its significance as previously discussed. Its traffic peaks at 5
PM, likely due to people starting to return from work. Supporting this observation,
the Business district sees a decline in traffic post-3 PM, with its peak at 2 PM.
Conversely, residential areas experience the highest traffic at 9 PM when residents
return home. Similarly, SanSiro’s peak hours align with this, likely due to football
matches drawing large crowds. Lastly, the Rho district sees its maximum traffic in
the afternoon.

Finally, Fig.3.4 showcases the average daily traffic for each cluster under con-
sideration along with the hourly traffic along April and Mai. On one hand, This
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Figure 3.3: Daily traffic average for the chosen districts

visualization emphasizes the fluctuations in daily traffic demand (right). A promi-
nent pattern observed from the graph is the distinction between weekday and
weekend traffic along different zones , with a notable drop in traffic during the
weekends in the Business and FS area. However, the district with the stadium
deviates from this general trend. This is expected since football matches typically
occur on weekends. As evidence, this district sees traffic surges on either Sundays or
Saturday when local teams play. Another unique pattern is seen in the residential
district, where the usual weekday-weekend alternation is inverted. Here, Sundays
and Saturdays generally see higher traffic. On the other hand, the hourly traffic
(left) reaffirms the claims made in the CDF analysis and the interpretations made
by visually inspecting the daily traffic per zones (right). The variance in the
Residential area is less pronounced compared to others, likely due to its dense
population, ensuring consistent traffic. However Rho and SanSiro are characterized
by sudden peaks that far exceed the average traffic, which is due the weekly events
in SanSiro and Fairs in Rho.
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Figure 3.4: Hourly traffic (right) daily average traffic (left)

34



Chapter 4

Methodology

This chapter delves into the models and parameters employed in our methodology.

Section 4.1 provides a comprehensive overview of the standard terrestrial network
scenario for each district of the Milan municipality, detailing both the ground
infrastructure and the on-board capabilities of the HAPS. Furthermore, Section
4.2 details the hybrid model, SOM-TCAN, which integrates a Self-Organized
Mapping backbone for clustering with a Temporal Convolutional Attention Network
for forecasting. Then Section 4.3 introduces an LSTM-based forecasting model,
designed for individual time series training. This model serves as a baseline for
comparison with our primary approach, offering a more direct and straightforward
methodology.

4.1 Scenario Configuarion

In this research, we propose a fusion of the terrestrial network infrastructure of
a densely populated region with an aerial network, consisting of a HAPS that
functions as a HAPS-SMBS. This concept is illustrated in Fig.4.1.

Our design aims to provide coverage to 16 traffic zones in Milan, Italy, using
a singular HAPS equipped with Massive-MIMO technology. This allows for a
dedicated coverage beam for each traffic zone. In Section 3.1, we delved into an
in-depth analysis of network traffic spanning 16 distinct zones in Milan. Each
of these zones is equipped with 7 BSs, cumulatively generating a dataset of 112
unique time series. The core tenets of our research are:
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Figure 4.1: HAPS-SMBS scenario [50]

• Traffic Pattern Analysis: By examining the intricate traffic patterns, we
aim to cluster the BSs. This clustering not only aids in understanding the
underlying network dynamics but also provides insights into peak traffic times
and usage trends.

• Behavioral Representation: Beyond clustering, our goal extends to crafting
a precise representation for each BS.

4.2 SOM-TCAN

Our proposed model, visually represented in Fig.4.2, is crafted to minimize the
number of time series models required for both accurate representation and future
traffic predictions. For the clustering phase, we’ve chosen SOM algorithm. Given
our data’s distribution across the 16 zones, we found that a 4x4 neuron grid for
the SOM was optimal. One of the standout attributes of SOM is its data-driven
approach to determining cluster count, a stark contrast to methods like k-means
which require predefined cluster numbers.

Upon completion of the SOM clustering, each BS’s traffic is mapped to a Best
Matching Unit (BMU) or "winning neuron". It’s essential to note that BSs mapped
to the same BMU exhibit similar traffic patterns, thereby justifying their grouping
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into a cohesive cluster. The BMU’s weights are dynamically adjusted in line with
Eq.2.3 through-out the training phase. This continuous adjustment ensures that
each BMU evolves to become a representative model, accurately reflecting the
traffic patterns of its associated BSs.

Emerging from this methodology are n well-defined clusters. The characteristic
weights of these clusters, ranging from W1 to Wn, form the foundational dataset
for the development of n specialized traffic prediction models based on Temporal
Convolutional Attention Networks (TCAN). This approach, while being resource-
efficient, is also designed with foresight, accommodating the potential for future
expansions or modifications to the BS network in Milan.

To underscore the reliability and precision of our methodology, we’ve incorpo-
rated a comprehensive suite of evaluation metrics. These metrics provide both
quantitative and qualitative assessments, ensuring a multi-faceted evaluation of
our approach’s performance.

BS traffic
Dataset

Self Organised Maps

Cluster 1

Cluster 2

Cluster N

NormalizationW1,W2 ... WN
Training Data 

Normalization

Test Data

Group Data Based on Clusters

TCAN 1

TCAN N

Forecating Models

W1norm, ... WNnorm

Figure 4.2: SOM-TCAN

4.2.1 SOM Clustering

Building on our earlier discussion, the adoption of the SOM offers distinct advan-
tages over traditional clustering techniques. One of the most salient benefits of
SOM is its inherent ability to determine the optimal number of clusters based on
the data’s topology. This feature obviates the often challenging and somewhat
arbitrary task of pre-specifying the cluster count, a common requirement in many
clustering algorithms.
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For our study, we have chosen a 4x4 neuron grid for the SOM. This grid size
aligns with the distribution of our data across the 16 zones, ensuring that each
zone can potentially map to a unique neuron.

However, it’s crucial to acknowledge that while SOM offers flexibility in cluster
determination, certain parameters need to be predefined to ensure the algorithm’s
effective operation. Specifically, the parameters α and σ, as delineated in Eq.2.4
and Eq.2.6 respectively, require prior specification. After careful consideration and
based on preliminary tests, we have chosen α = 0.05 and σ = 0.3 as the optimal
values for our dataset.

Furthermore, the training duration, represented by T , plays a pivotal role in
the convergence and stability of the SOM. A longer training duration often leads
to a more refined clustering outcome. For our study, we have determined that a
training length of T = 50000 steps strikes the right balance between computational
efficiency and clustering accuracy.

Following the training of the SOM on our dataset, we observed a convergence
towards 8 distinct winning neurons. These neurons, having adapted their weights
over the course of the training, effectively represent the primary traffic patterns
within our data. For a detailed breakdown of each winning neuron, we refer to
Table 4.1. This table lists the coordinates of each winning neuron, the number of
samples associated with it, as well as the mean and standard deviation of the traffic
patterns they represent. Complementing this, Fig.4.3 offers a visual representation
of the weights of these neurons. The plot highlights the weight adjustments and
showcases the distinct patterns that each neuron has captured over the training
duration. Together, the table and plot furnish a comprehensive understanding of
the SOM’s clustering results and the inherent traffic patterns within our dataset.

Neurons Number of Samples mean (Gbits) std (Gbits)
(0,1) 2 1.27 0.76
(1,0) 16 3.37 1.55
(1,1) 15 27.81 8.92
(1,2) 15 5.83 2.07
(2,0) 18 13.88 4.49
(2,1) 1 68.90 43.03
(2,2) 16 19.04 8.18
(3,1) 29 9.04 3.45

Table 4.1: Winning Neuron’s Statistics
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Figure 4.3: Weights of winning neurons

Upon examining Table 4.1 and referencing Fig.4.3, it becomes evident that
Neuron (2,1) is uniquely associated with a singular time series. This particular
assignment can be attributed to the pronounced traffic demands exhibited by this
time series during specific time-steps. These demands significantly surpass the
traffic patterns observed in many of the BSs that are mapped to adjacent neurons.

One might wonder why this data sample wasn’t grouped with a neighboring
neuron. The rationale lies in the distribution of the data samples. The neighboring
neurons, each accommodating more than 15 samples, exhibit a certain stability
in their weight profiles. Introducing a time series with such high traffic peaks to
these neurons could disrupt this stability. This poses a challenge for subsequent
forecasting models. Since these models rely on neuron weights for training, the
presence of an anomalous high-peak sample could skew predictions, leading to
sub-optimal performance, especially when confronted with high traffic demands.
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A similar observation can be made for neuron (0,1). This neuron is associated
with two time series samples, both of which are characterized by notably low traffic
demands. Such outliers, if not appropriately clustered, can adversely impact the
efficacy of forecasting models, underscoring the importance of the SOM’s clustering
approach and the selected parameter values.

This distribution and clustering outcome are heavily influenced by the σ and α
values we previously selected. By decreasing the α value, the learning rate would
be reduced, leading to a potential decrease in the number of distinct neurons.
Consequently, the high and low peak data samples might not be isolated as it
currently is, and could instead be grouped with neighboring neurons.

To critically assess the efficacy of the clustering produced by our SOM clustering,
it’s essential to employ metrics that capture the nuances of data structures, both at
a local and global scale. This leads us to the pivotal metrics of trustworthiness
and neighborhood preservation [51].

Trusworthiness serves as a safeguard against the potential pitfalls of dimen-
sionality reduction. When data is projected from a high-dimensional space to a
lower-dimensional one, there’s a risk that points which were distant from each other
in the original space might end up being close in the reduced space. Trustworthiness
quantifies this distortion. For each data point, it identifies those points that have
become its neighbors in the reduced space but weren’t originally its neighbors in
the high-dimensional space. The metric then assigns a penalty based on how close
these new neighbors have become, with closer neighbors incurring a higher penalty.
The formula for trustworthiness, for a given neighborhood size k, is:

Tk = 1 − 2
nk(2n − 3k − 1)

nØ
i=1

Ø
j∈Uk(i)

(r(i, j) − k) (4.1)

Where Uk(i) represents the set of these new neighbors for point i and r represents
the rank of the distance between points i and j in the original high-dimensional
space.

Conversely, Neighborhood Preservation is concerned with the maintenance of
local structures. It evaluates how well the original neighbors of a data point remain
its neighbors after the projection. For each point, it identifies those neighbors from
the high-dimensional space that are no longer its neighbors in the reduced space.
Similar to trustworthiness, it assigns a penalty based on how distant these original
neighbors have become in the reduced space. The formula capturing this is:
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Pk = 1 − 2
nk(2n − 3k − 1)

nØ
i=1

Ø
j∈Vk(i)

(r′(i, j) − k) (4.2)

where Vk(i) denotes the set of original neighbors that are no longer neighbors
in the reduced space for point i and r′ denotes the rank of the distance between
points i and j but in the reduced-dimensional space.

For a comprehensive evaluation, we’ve calculated trustworthiness and neighbor-
hood preservation for various values of k. The results are tabulated in Table 4.2.
It’s worth noting that values closer to 1 for both metrics indicate better preservation
of the data’s structure, signaling the effectiveness of our SOM clustering.

In essence, by employing trustworthiness and neighborhood preservation, we
are ensuring a dual-layered evaluation of our SOM results. While trustworthiness
ensures that no false proximities are introduced, neighborhood preservation guaran-
tees that intrinsic local relationships are upheld. Together, these metrics provide a
robust and comprehensive evaluation framework, ensuring the integrity and quality
of our SOM clustering.

K trustworthiness neighborhood preservation
2 0.863 0.831
3 0.87 0.865
4 0.876 0.88
5 0.882 0.90

Table 4.2: Trustworthiness and neighborhood preservation for SOM evaluation

4.2.2 Normalization

Normalization is a pre-processing technique employed to adjust and modify real
network data. Its primary purpose is to improve time series models by scaling the
data and converting it from one format to another. By using normalization, one
can ensure that larger numeric values don’t overshadow smaller ones. The min-max
approach is specifically used to scale network traffic data, converting it to a scale
ranging from 0 to 1.

z =
3

x − xmin

xmax − xmin

4
× (max − min) + min (4.3)
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4.2.3 Temporal Convolutional Attention Network

Having successfully clustered our data using the SOM, we now transition to the
subsequent phase of our pipeline: forecasting. As previously alluded to, the weights
of each neuron, fine-tuned through the SOM process, will serve as the foundation
for our training. Correspondingly, the time series assigned to each neuron will be
harnessed for testing purposes, ensuring our model’s predictions are grounded in
real-world data patterns.

For this forecasting endeavor, we’ve chosen to employ a Temporal Convolu-
tional Attention Network (TCAN). This model, renowned for its capability to
capture intricate temporal patterns, leverages both convolutional layers to detect
local patterns and an attention mechanism to weigh the significance of different
time steps. By integrating these components, we aim to achieve precise and robust
predictions, further enhancing the utility and effectiveness of our comprehensive
pipeline. There have been attempts to implement such architectures, showcasing
their potential in forecasting [52, 53]

The core of our TCAN is its convolutional layers, which are specifically designed
to capture temporal patterns in time series data. A crucial parameter in these
layers is the dilation rate, which determines how far apart the input values are
taken for each convolution. For our model, we will discuss the dilation rate sequence
in the next chapter since the choice of dilation rate sequence is intrinsically tied
to how far back we wish to look into the past in our input data. Essentially, this
means our model will capture patterns at various scales, from immediate neighbors
to broader, more spaced-out intervals. A higher dilation rate allows the model to
consider more distant past values without increasing the kernel size. Speaking of
which, our chosen kernel size is 2, ensuring that each convolution considers pairs
of data points. For a more in-depth discussion on dilation rates and kernel sizes,
readers are referred to Section.2.4.2. The sequence of dilations directly dictates the
number of stacked residual blocks, with each rate corresponding to a specific block
layered on top of the previous ones.

To visually grasp the architecture and the interplay of these parameters, one
can refer to Fig.4.4, which provides a comprehensive visualization of the TCAN
structure.

Following the convolutional layers, we introduce the Bahdanau attention mecha-
nism as a subsequent layer [54]. This attention mechanism aims to :

1. Refine the model’s focus on specific intervals within the input sequence,
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Addition  

Conv 1x1

Temporal block ( d = 1,k=2)

Causal Conv

Causal Conv

Conv 1x1

ReLu

Addition  Temporal block (d = 2,k=2)

Attention Layer

TCAN 

Norm

ReLu

Norm

Temporal block (d = 16,k=2)

xt xt-1 xt-2

k : Kernel Size
d : dilation rate

Figure 4.4: TCAN architecture

ensuring that the most pertinent temporal patterns are emphasized.

2. Expand receptive fields without the need to add more convolutional layers.

For each time step t in the output of the TCN, an attention score is computed,
capturing the significance of that particular step:

score(ht, st−1) = vT tanh(W1ht + W2hT ) (4.4)

where ht represents the output from the TCN at the time step t, and the internal
state hT is the output form TCN at time step T . The trainable weight matrices
W1,W2 and v adjust the model’s focus on temporal patterns detected by the TCN.
These scores are then normalized using the softmax function to yield attention
weights:

αt = exp(score(ht, hT ))qT
j=1 exp(score(ht, hT ))

(4.5)
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Subsequently, a context vector is derived for each time step:

ct =
TØ

j=1
αjhj (4.6)

Given the context vector ct and the output from TCN ht, the attention vector
at is formed using a fully connected layer with a tanh activation function :

at = tanh(Wcct + Whht) (4.7)

where Wc and Wh are the weights associated with the context vector and TCN
output. This attention vector encapsulates the salient information from the entire
input sequence, emphasizing the most relevant temporal patterns detected by the
TCN. In essence, the Bahdanau attention layer dynamically adjusts the model’s
focus across the input sequence, ensuring that the most relevant temporal patterns,
as identified by the TCN, are accentuated, thereby enhancing the precision of the
forecasts.

4.3 Anticipating the Comparative Analysis: In-
dividual LSTM Training

As we delve deeper into the validation of our SOM-TCAN model, it’s crucial to
set the stage for a comparison. To this end, we’ve developed an LSTM-based
forecasting model, tailored to be trained on each individual time series. This
approach, while more direct and straightforward, serves as a foundational baseline
against which the merits of our hybrid model can be evaluated. The rational for
the LSTM development is the following :

• Baseline Evaluation: Using the individually trained LSTM models provides
a foundational baseline. This allows us to clearly delineate the advantages our
SOM-TCAN model might offer and identify areas where it might fall short.

• Complexity vs. Performance: The SOM-TCAN introduces an intricate
layer through its combination of clustering and representation learning. It’s vi-
tal to determine whether this sophistication indeed offers performance benefits
over the more straightforward LSTM training method.
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• Scalability Insights: Comparing the two strategies offers insights into
their scalability. As the volume and complexity of time series data grow,
understanding how each method adapts becomes crucial.

• Generalization Capabilities: A head-to-head comparison provides clarity
on how well our proposed model generalizes across diverse time series data,
especially when benchmarked against the LSTM based model we’ve developed.

Fig.4.5 describes the model’s architecture. which consists of a two-layered LSTM
cells with size 128 connected to a MLP.
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input:

output:
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output:
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Figure 4.5: LSTM based model architecture
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Results

This chapter presents the thesis’s experimental findings.

Section 5.1 outlines preliminary concepts, detailing the training and validation
data split, the model’s hyperparameters, and the employed loss function. Section
5.2 centers on the key performance indicators used to assess the accuracy of
the proposed model. Section 5.3 discusses the configuration of the TCAN-based
forecasting model, emphasizing the importance of selecting an appropriate look-
back period. Furthermore, Section 5.4 evaluates the performance of the TCAN
model for time series forecasting by contrasting it with two notable models: the
LSTM network and TCN.

Finally, Section 5.5 offers a detailed comparison between the proposed SOM-
TCAN framework and the Baseline approach which consists of a traditional method
using individual LSTM models for each time series. The aim is to highlight the
benefits of the integrated approach, especially in computational efficiency and
forecasting accuracy.

5.1 Dataset Allocation, Validation Split, and Model
Hyper-parameters

As previously discussed in Section 4.2, our methodology leverages the weights
obtained from the SOM as the training dataset, while the time series corresponding
to each neuron serve as the test set. This approach ensures that our model is
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trained on generalized patterns and then evaluated on specific real-world data
points.

For the training phase, it’s essential to further split the SOM weights into
training and validation sets to fine-tune the model and prevent overfitting. To
this end, we allocate 85% of the weight’s observations for training and reserve the
remaining 15% for validation. This split ensures that the model has a substantial
amount of data for learning while also having a separate subset to validate its
performance during the training iterations. By monitoring the model’s performance
on the validation set, we can make necessary adjustments to achieve optimal
forecasting accuracy.

The hyper-parameters for the the proposed forecasting models, play a pivotal
role in influencing their performance. A comprehensive summary of these hyper-
parameters can be found in table 5.1.

Hyper-parameter Value
Number of Epochs 200
Batch Size 32
Loss Function MSE
Optimizer Adam
Early Stopping 20
Learning Rate 10−3

Table 5.1: Summary of Model Hyper-parameters

5.2 Evaluation metrics

Evaluating the performance of forecasting models is paramount to understanding
their efficacy and areas of improvement. Various metrics and evaluators are
employed to assess the accuracy, precision, and reliability of predictions. Here, we
discuss some of the pivotal evaluators used in our analysis:

• Mean Square Error (MSE):

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (5.1)
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• Root Mean Square Error (RMSE):

RMSE =
öõõô 1

n

nØ
i=1

(yi − ŷi)2 (5.2)

• Mean Absolute Error (MAE):

MAE = 1
n

nØ
i=1

|yi − ŷi| (5.3)

• Mean Absolute Relative Error (MARE):

MARE = 1
n

nØ
i=1

-----yi − ŷi

yi

----- (5.4)

Where ŷi is the predicted value, yi is the actual value and n is the number of
observations.

5.3 Optimizing Look-back Period

In the process of configuring our forecasting models, a pivotal decision was the
selection of the appropriate look-back period. The look-back period determines how
many previous time steps the model should consider to make a future prediction.
For our experiments, we specifically evaluated look-back periods of 6, 12, 18, 24,
36, and 48 time steps.

Given the temporal convolutional nature of the TCAN model, the dilation rate
is intrinsically linked to the look-back period. As we varied the look-back, the
dilation rate within the TCAN layers was adjusted to ensure that the model can
effectively capture long-range dependencies and patterns in the data. Notably, with
the change in dilation rate, there was also a corresponding change in the number
of residual blocks in the model. This relationship between the look-back period,
dilation rate, and the number of residual blocks is detailed in Table 5.2.

To empirically determine the optimal look-back period, we conducted experi-
ments with the aforementioned look-back lengths. The performance for each was
evaluated based on the MSE. The results are visualized in Fig.5.1, which plots the
MSE against the different look-back periods for TCAN and LSTM. By analyzing
this trend and pinpointing the look-back that minimized the MSE, we have chosen
24 the most suitable look-back for our forecasting tasks.
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look back dilation sequence number of residual blocks
6 [1,2,4] 3
12 [1,2,4,8] 4
18 [1,2,4,8,16] 5
24 [1,2,4,8,16] 5
32 [1,2,4,8,16,32] 6
48 [1,2,4,8,16,32] 6

Table 5.2: dilation for various look back periods
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Figure 5.1: MSE per look-back

5.4 Benchmarking TCAN Against State-of-the-
Art Models

In order to validate the performance of the TCAN model for time series forecasting,
we compared it against two other prominent models: the LSTM network, and
TCN. Building upon our earlier discussions, it’s pivotal to reiterate that, post-SOM
application, we identified 8 distinct winning neurons, each representing a unique
traffic pattern. For each of these neurons, we trained a dedicated forecasting model
using the corresponding neuron’s weights. This approach ensured that each model
was tailored to the specific characteristics and patterns inherent to the time series
data associated with its respective neuron.
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To provide a global view of our methodology’s overall performance, we aggregated
the results from all 8 models into single values. This aggregation offers a consolidated
perspective, enabling us to interpret the overall efficacy of our approach Table 5.3
summarizes the empirical result of the proposed TCAN against TCN and LSTM.
The implementation has been done in two scenarios. First, the weight of every
winning Neuron is divided into training and validation. TCAN shows the best
results in both scenarios, during the training phase, where the proposed results are
MSE = 0.00.21, RMSE = 0.044, MAE = 0.033 and MARE = 0.123 for training.
Then we calculated the mean value of all the metrics for the separate models. In
the second scenario, the time series linked to each neuron (or cluster) was input
into its corresponding model for testing purposes. The results of TCAN are MSE
= 0.007, RMSE = 0.08, MAE = 0.061 and AMARE = 0.347.

MSE(std) RMSE(std) MAE(std) MARE(std)
Training

TCAN 0.0021(0.0012) 0.044(0.012) 0.033(0.008) 0.123(0.06)
TCN 0.0027(0.00130) 0.058(0.0115) 0.0387(0.0086) 0.164(0.084)
LSTM 0.0035(0.0014) 0.058(0.0124) 0.0438(0.00921) 0.127(0.87)

Validation
TCAN 0.0028(0.00174) 0.051(0.0145) 0.038(0.0113) 0.121(0.068)
TCN 0.0036(0.0022) 0.058(0.016) 0.045 (0.013) 0.173(0.118)
LSTM 0.0036(0.00162) 0.059(0.0129) 0.0499(0.0106) 0.126(0.0857)

Testing
TCAN 0.007(0.0028) 0.08(0.017) 0.061(0.013) 0.347(0.623)
TCN 0.011(0.064) 0.101(0.027) 0.0782(0.0217) 0.69(2.5)
LSTM 0.98(0.0041) 0.097(0.02) 0.075(0.016) 0.69(3.38)

Table 5.3: Empirical results of different forecasting models
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Figure 5.2: Boxplots of test’s data MSE

Fig.5.2 displays the box-plots representing the MSEs of test predictions. It’s
evident that TCAN has a reduced median, as well as lower boundaries for both
the upper and lower quartiles. Referencing Fig.5.3, we present boxplots that
visualize the distribution of performance metrics for samples assigned to each
neuron determined by the SOM clustering. These visualizations encompass results
from the three forecasting models we’ve employed. As depicted in Fig.5.3, the
boxplot for TCAN consistently outperforms others across all neurons. However,
upon closer examination, the LSTM model demonstrates superior lower and upper
quartiles, as well as a maximum value for Neuron (1,1). Furthermore, Neuron
(3,1) under LSTM exhibits more favorable overall statistical measures compared to
TCAN.

Scatter analysis is a graphical method used to depict the relationship between
two sets of data points, often representing actual and predicted values. In the
context of predictive modeling, the slope of the line of best fit (often denoted as
m) in a scatter plot provides insight into the model’s performance. A slope value
of 1 indicates perfect prediction, where predicted values match the actual values.
Values close to 1 suggest that the model’s predictions are closely aligned with
the actual outcomes, while values significantly different from 1 indicate potential
discrepancies.

51



Results

neuron (1, 2) neuron (2, 0) neuron (1, 1) neuron (3, 1) neuron (2, 2) neuron (1, 0) neuron (2, 1) neuron (0, 1)
Neurons

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
SE

Distribution of MSE per Cluster

TCAN
TCN
LSTM

Figure 5.3: Boxplots of test’s data MSE per cluster
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Figure 5.4: Scatter plots for training, validation, and test data (TCAN).

For the analysis conducted with TCAN, the obtained slope values are quite
promising. A slope of 0.93 for test values indicates that the model’s predictions on
unseen data are highly aligned with the actual outcomes, though there’s a slight
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deviation from the ideal. The training data, with a slope of 0.97, showcases an
even closer alignment, suggesting that the model has learned the training patterns
effectively. The validation results, with a slope of 0.96, further confirm the model’s
robustness, as it performs consistently on data it hasn’t been trained on. These
observations are visually evident in Fig.5.4. Overall, these results suggest that
the model provides reliable predictions across different data subsets, with minor
deviations from the ideal scenario.

5.5 SOM-TCAN vs. Baseline: A Comparative
Analysis

In this section, we embark on a detailed comparison between our proposed integrated
model, SOM-TCAN, and the traditional approach of employing individual LSTM
models for each time series. Notably, each LSTM model was trained on a 60%
data cut for training and tested on the remaining 40%. This is in contrast to the
SOM-TCAN approach, where testing was conducted on all timesteps of the samples
assigned to their respective cluster. While this might not be the ideal scenario, it
provides a valuable insight into the performance of our model. The overarching
goal of this comparison is to underscore the benefits of our hybrid model, both in
terms of computational efficiency and forecasting accuracy, over the conventional
method of treating each time series independently. Through this comparison, we
emphasize the advantages of harnessing the inherent patterns and relationships
in the data via SOM clustering, subsequently complemented by the forecasting
capabilities of TCAN.

Turning our attention to accuracy metrics, Table 5.4 provides an aggregated
perspective on the average and standard deviation of forecasting accuracy for both
methodologies. An initial glance reveals that the SOM-TCAN model slightly edges
out the individual LSTM models in terms of MSE, RMSE, MAE and MARE.
Furthermore, SOM-TCAN demonstrates a reduced standard deviation across these
metrics, suggesting a more consistent performance. This consistency might be
attributed to the integrated nature of the SOM-TCAN approach, which capitalizes
on the patterns identified by the SOM and the forecasting prowess of TCAN. On
the other hand, the heightened standard deviation observed for the LSTM models
could hint at certain time series having pronounced values. To further understand
this observation, we propose visualizing the distribution of the MSE for both
strategies using box plots, as depicted in Fig.5.5.

From the boxplots in Fig.5.5, the values between the LSTM baseline and
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Test
MSE RMSE MAE MARE

SOM-TCAN 0.0071(0.0028) 0.08(0.017) 0.061(0.013) 0.347(0.623)
LSTM 0.0074(0.0041) 0.083(0.023) 0.061(0.018) 0.0.363(1.044)

Table 5.4: Comparative Mean and Std accuracy metrics of SOM-TCAN vs.
Individual LSTM Forecasting
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Figure 5.5: MSE’ boxplot of SOM-TCAN vs. Individual LSTM forecasting

our SOM-TCAN model are largely comparable. However, the LSTM baseline is
distinctly characterized by a higher maximum, suggesting a broader range of errors.
This observation aligns with the higher standard deviation noted earlier, further
emphasizing the variability in the LSTM baseline’s performance.

Finally, we delve deeper into the performance nuances of our hybrid model
by examining the boxplots for each time series associated with a specific neuron,
as illustrated in Fig.5.6. This granular perspective allows us to directly compare
the performance of the various TCAN models within our hybrid model against
the results obtained from individually training each time series with an LSTM
model. Upon visually inspecting Fig.5.6, it becomes evident that the boxplots are
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largely comparable. Particularly in densely populated neurons containing many
time series, such as (1,2), (2,0), (1,1), (3,1), (2,2), and (1,0), distinguishing between
the performances of the two approaches becomes challenging. In some neurons, the
LSTM based baseline model exhibits superior performance, while in others, the
SOM-TCAN model takes the lead. This variability is further compounded by the
fact that different aspects of the boxplots might favor different models, making
a clear-cut determination difficult. This observation underscores the competitive
nature of SOM-TCAN , even in regions with a high concentration of time series
data.. Notably, for neurons (2,1) and (0,1), our hybrid model outperforms the
LSTM. This superior performance is somewhat expected given that these neurons
have only 1 and 2 time series assigned to them, respectively.

neuron (1, 2) neuron (2, 0) neuron (1, 1) neuron (3, 1) neuron (2, 2) neuron (1, 0) neuron (2, 1) neuron (0, 1)
Neurons
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Figure 5.6: MSE’ boxplot of SOM-TCAN vs. Individual LSTM forecasting across
different clusters

Upon evaluating the prediction accuracy of both the SOM-TCAN and the
baseline models, the results are notably close. However, the SOM-TCAN model
slightly edges out the Baseline model. Even though the evaluation metrics are
comparable SOM-TCAN shows a reduced standard deviation error, indicating a
more consistent and narrower range of errors.

However, it’s important to contextualize this comparison in terms of model
complexity and scalability. As illustrated in Table 5.5, our SOM-TCAN model
comprises a mere 8 models, each tailored to a specific cluster. In stark contrast, the
Baseline approach necessitates the deployment of 112 distinct models, one for each
individual time series. This disparity underscores the efficiency and compactness
of our proposed hybrid model, especially when considering the negligible difference
in prediction accuracy.
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Table 5.5: Model Count Comparison: SOM-TCAN vs. Baseline

SOM-TCAN BASELINE
Number of Models 8 112

This comparison invites a deeper consideration of the balance between model
simplicity and forecasting accuracy. While the SOM-TCAN might offer slightly
better results, its efficiency and reduced complexity, make a strong argument for
its use in practical scenarios, especially where scalability and ease of deployment
are crucial. To illustrate, consider a scenario where the city decides to add new BS.
With the Baseline approach, a new forecasting model would need to be developed
for each new station. In contrast, with the SOM-TCAN model, the new BS’s data
can simply be plugged into the existing SOM. The BS would then be assigned to
an existing cluster, and the forecasting model corresponding to that cluster can
be immediately utilized. This exemplifies the inherent scalability and adaptability
of the SOM-TCAN approach, making it more suitable for dynamic environments
where the network infrastructure might evolve.
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Chapter 6

Rethinking Deep
Reinforcement Learning for
Weighted Fair Queuing

One approach to dynamically manage and optimize the synergy between RANs and
HAPS is the application of deep reinforcement learning. DRL offers the prospect
of an intelligent, adaptive system capable of making real-time decisions that can
adapt to fluctuating network conditions, ensuring optimal resource allocation and
user experience.

However, as with many ventures, challenges abound. Representing the entire
RAN-HAPS environment within a DRL framework is a task of formidable com-
plexity. The environment encapsulates several variables: fluctuating traffic loads,
diverse user demands, interference, infrastructure constraints, and the innate un-
predictability of wireless channels, to name just a few. An accurate representation
requires a delicate balance, too simplistic, and it fails to capture the nuances; too
intricate, and it becomes computationally infeasible and slow to adapt.

It is within this context that we propose a shift in perspective, a rethinking
of our DRL embedding. Instead of attempting to model the intricate web of the
entire RAN-HAPS environment, could we narrow our focus to a more contained
yet impactful aspect? This work delves into this concept, zooming in on the idea
of tuning the weights of Weighted Fair Queuing (WFQ) within HAP using DRL.
By refining our approach, we aspire to achieve the adaptability and efficiency
promised by reinforcement learning, without the drawbacks of an overly complex
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representation.

6.1 Weighted Fair Queueing (WFQ)

Demers et al [55]. developed the advanced WFQ algorithm, drawing inspiration
from Nagle’s work [56]. WFQ addresses congestion issues in datagram network
gateways. This issue arises when network participants send data packets, with
some consistently sending larger packets than their counterparts. Instead of the
conventional FIFO (first in, first out) approach, WFQ systematically categorizes
datagram sources based on packet size and allocates them to specific queues with
set weights [57]. The decision on which packet to process next is based on its
weight, size, and the queue’s past activity. WFQ ensure fair bandwidth allocation
among different flows while also allowing differentiated services based on assigned
weights, which brings enhanced granularity and adaptability, an example of WFQ
is depicted in Fig.6.1.

Figure 6.1: WFQ

At its core, WFQ is designed to ensure that each flow gets its fair share of the
bandwidth, as defined by its weight. If there are N flows, each with an assigned
weight wi, the fraction of the link bandwidth that flow i should receive is given by:

fi = wiqN
j=1 wj

(6.1)

where fi is the fraction of the link bandwidth for flow i. Each arriving packet is
timestamped based on its expected departure called virtual finish time. This
timestamping ensures that packets from a flow with a higher weight (i.e., higher
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priority) get an earlier finish time and hence are scheduled before packets from
flows with lower weights.

FTi,k = max(ATi,k, FTi,k−1) + Li,k

fi

(6.2)

where FTi,k is the virtual finish time of kth packet of flow i , ATi is the arrival
time of packet and Li,k is the length in bits of the kth in flow i.

Determining the optimal weights for flows remains an ambiguous task, as there
isn’t a universally accepted method for their selection. The choice of weights often
relies on the specific network parameters at hand. Moreover, each fairness metric
introduced in prior research calls for a distinct approach to weight allocation. An
RL agent can be employed to learn and adapt these weights dynamically, optimizing
the network’s performance based on ongoing conditions and objectives.

6.2 Rule-Based Systems for Traffic Prioritization
in Terrestrial-HAPS Integration

As we delve deeper into the integration of terrestrial networks with HAPs, efficient
traffic management emerges as a pivotal concern. This challenge encompasses
not only handling the sheer data volume but also intelligently prioritizing it to
ensure optimal resource utilization and an enhanced user experience. This brings
us to the concept of a Rule-Based System for Traffic Prioritization. Leveraging
the forecasting capabilities of our SOM-TCAN framework, we aim to segment the
forecasted traffic into distinct priority levels: low, mid, and high traffic. These
segments serve as the guiding hand for directing traffic into the appropriate queues
within the WFQ system, ensuring that packets are forwarded based on their priority
level. In the subsequent sections, we will elucidate three strategies meticulously
designed to manage and allocate traffic, optimizing the network for varying traffic
intensities and user demands.

• Low Priority level: One of the primary strategies we propose is the RoD
approach proposed in [13]. The core idea behind this strategy is to optimize
network energy consumption, especially during periods of low traffic. In
traditional terrestrial networks, BS continue to operate even when the traffic
demand is minimal, leading to unnecessary energy consumption. With the
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RoD strategy, when traffic falls below a specified threshold, the corresponding
base station is turned off. Instead of leaving the users in that area without
service, their traffic is seamlessly forwarded to the HAPS. This not only
conserves energy but also ensures uninterrupted service for the users.

• High Priority level: Another pivotal strategy we introduce focuses on
enhancing the QoS while simultaneously optimizing the energy consumption of
the base stations. In many scenarios, base stations can become overwhelmed
due to sudden surges in traffic demand or deteriorating performance metrics.
Such situations can lead to degraded service quality, manifested as increased
packet drops or prolonged wait times for connections. To counteract this, our
strategy monitors both the traffic demand and KPIs such as packet drop rates
and connection wait times. If a base station exceeds a predefined threshold for
these metrics, it indicates potential service degradation. Instead of allowing
the base station to continue operating under high demand, a portion of its
traffic is offloaded to the HAPS. This offloading not only alleviates the load
on the base station, ensuring better QoS for its users, but also optimizes its
energy consumption by reducing the processing demands.

• Middle Priority level: Given that the HAPS can harness solar energy,
it is at its peak power capacity during the afternoon. This provides an
opportune window to offload traffic from terrestrial base stations to the HAPS.
The forecasted traffic is segmented into three clusters : low, mid, and high
traffic. For the mid-traffic cluster, we can identify base stations whose traffic
is increasing at a rate of α compared to previous periods. Since these stations
are experiencing a noticeable increase in demand but might not yet be at their
capacity limits, they are ideal candidates for partial offloading to the HAPS.
This ensures that these stations don’t get overwhelmed if the traffic surge
continues.

as visualized in Fig.6.2. For this clustering of 1-dimensional data, we employed
the Jenks Natural Breaks Classification Method. It is a technique for grouping
data to find the optimal classification of values into distinct categories. The goal is
to minimize the average difference of values within each category from its category
mean, while also maximizing the difference of each category from the means of
other categories [58] .
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Figure 6.2: Clustering of forecasted traffic across various hours and days

From the plot, it’s evident that the high-traffic cluster comprises fewer data
points. Given this observation, it’s feasible to offload some of their traffic to the
HAPS. Even though it’s the afternoon and terrestrial base stations might have
stored energy from solar panels, redirecting traffic to the HAPS is advantageous.
The HAPS, due to its elevated altitude, potentially has a larger energy storage
capacity. Furthermore, if the BSs are connected to the power grid, offloading traffic
to HAPS can help in reducing the load on the grid, leading to more efficient energy
utilization.

However, it’s worth noting that this strategy is aggressive in its approach. Several
parameters, such as the cost of energy, consumption metrics per base station, and the
specific energy storage capabilities of the HAPS, need careful consideration. While
the strategy provides a foundational approach, future work should delve deeper
into these parameters. Through rigorous research and analysis, the strategies can
be fine-tuned to achieve optimal results while ensuring sustainability and efficiency.
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6.3 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning that focuses on
training agents to make sequences of decisions by interacting with an environment.
Unlike supervised learning, where the model is trained with explicit input-output
pairs, RL operates in situations where the correct decision (or action) isn’t known
in advance. Instead, an agent learns from trial and error, receiving feedback in the
form of rewards or penalties. Fig.6.3 visually represents the interacting components.

Figure 6.3: Learning cycle of RL

At its core, RL involves several key components [59]:

1. Agent: The decision-maker that interacts with the environment.

2. Environment: The external system the agent interacts with.

3. State: A representation of the environment at a particular point in time.

4. Action: A decision or move made by the agent.

5. Reward: Feedback received after taking an action in a particular state.

like after-mentions , the aim of the agent is to maximize the reward which is
expressed :

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞Ø

k=0
γkRt+k+1 (6.3)

where γ is the discount factor. To express the anticipated total future reward
after taking an action in state st , it’s beneficial to introduce the concept known as
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the Q-function:

Qπ(s, a) = Eπ

C
Rt + γ

Ø
a′

π(a′|s′)Qπ(s′, a′)|St = s, At = a

D
(6.4)

The Q-function is a fundamental concept in reinforcement learning as it provides
a mechanism to estimate the value of an action without having to know all the
future states and rewards. To determine the best action to take in a given state,
one would typically employ a policy that maximizes the Q-function. This policy,
often denoted as π∗ , is defined as:

π∗(s) = arg max
a

Q(s, a) (6.5)

A fundamental challenge in RL is the trade-off between exploration and ex-
ploitation. Exploration involves trying out new actions to discover their effects,
while exploitation means choosing actions that are known to yield good rewards.
Striking the right balance is crucial for effective learning.

There are various algorithms and methods in RL, but two of the most prominent
are Q-learning and policy gradient methods:

• Q-learning: This is a value-based method where the agent learns a value
function that estimates the expected cumulative reward of taking an action
in a given state. The Q-value function is updated iteratively based on the
Bellman equation.

• Policy Gradient: instead of learning a value function, policy gradient
methods directly optimize the policy. These methods estimate the gradient of
the expected reward concerning the policy parameters and adjust the policy
in the direction of increasing rewards.

Finally, with the advent of deep learning, neural networks have been integrated
into RL, leading to what’s known as DRL. DRL methods, like Deep Q-Networks
(DQN), combine the representational power of deep neural networks with traditional
RL algorithms as illustrated in Fig.6.4, allowing agents to handle environments
with high-dimensional state spaces, like video games or robotic control tasks.
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Figure 6.4: Learning cycle of DRL

6.4 DRL-WFQ

In the evolving landscape of RANs, optimizing traffic management has taken center
stage. A prominent advancement in this realm has been the incorporation of
HAPS to improve RANs’ operations. There have been proposals to utilize DRL
models to harness the potential of these HAPS in augmenting RAN performance
[60, 55]. While this methodology has its merits, it simultaneously faces a series
of complexities and challenges. To address these intricacies, our perspective shifts
towards refining the internal mechanisms of HAPS, specifically targeting the WFQ
system as depicted in Fig.6.5. By shifting our focus on the WFQ within the HAPS,
we aim to simplify the problem, offering a more direct approach to enhancing
network traffic management. The approach in question might provide a couple of
advantages :
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Figure 6.5: from DRL-RANs to DRL-WFQ

1. Simplifying the Problem Space: Leveraging HAPS to aid RANs inherently
broadens the problem space. It encompasses not just the communication
between user equipment and BSs but also the coordination, communication,
and management of HAPS. By shifting the focus of DRL from managing HAPS
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to directly tuning WFQ weights in RANs, we can narrow down and target a
specific optimization problem: ensuring efficient and fair traffic management.

2. Cost-Effectiveness and Enhanced Qos: Optimizing WFQ within HAPS
not only brings about an enhanced QoS but also offers significant financial
savings. During peak demand periods, a substantial fraction of the traffic can
be managed by HAPS, reducing the pressure on groud BSs. This removes
the immediate need to deploy additional BSs, which can be a substantial
investment both in terms of finances and logistics. By ensuring efficient traffic
management through WFQ in HAPS, service providers can achieve better
user experience while also optimizing their infrastructure investments.

In the context of our WFQ system, the DRL agent continuously interacts with
its environment, making decisions, observing outcomes, and refining its strategies.
As we mentioned in Section.6.3, this interaction cycle can be broken down into
four main components: actions taken by the agent, the environment in which
these actions are executed, the states that provide the agent with context, and the
rewards that guide the agent’s learning. Each of these components is critical to
the agent’s effective operation and learning trajectory.

6.4.1 States

In DRL, the state provides an agent with a snapshot of its environment, offering
context to make informed decisions. For a DRL agent working within a WFQ
system, the state must accurately capture the current dynamics of the priority
queues. Various state representations can be considered, The following are some
proposed state representation for each queue:

• Queue Lengths: The number of packets in each of the three priority queues.

• Average Wait Time: Average time the packets have been waiting in the
queue. This can help in understanding congestion or potential for packet drops
due to timeout.

• Incoming Traffic Rate: The rate at which packets are arriving at each
queue. This could give the agent an indication of impending congestion or
potential queue starvation.

• Service Rate: The rate at which packets are being processed and leaving
each queue. This can give insights into how well the system is coping with
the incoming traffic.
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• Packet Drop Rate: If any packets are being dropped due to a full queue,
this could be an important metric to consider.

The state representation should ideally encompass the attributes of the packets
residing in the queues. One significant metric to consider is the Packet Size
Distribution. This involves capturing both the average size of the packets and its
variance within a queue. Nevertheless, incorporating such details might introduce
additional complexity to the model.

6.4.2 Rewards

Designing a suitable reward function is crucial for the effective training of reinforce-
ment learning agents. Given the context an agent aiming to adjust the weights
for WFQ which contains three priority queues , the following are some potential
reward mechanisms:

1. Queue Stability:

• Positive Reward: If none of the queues overflow in a given time step.
• Negative Reward: For every packet that’s dropped due to an overflow.

2. Queue Delay:

• Positive Reward: If the average waiting time of packets in each queue
is below a certain acceptable threshold.

• Negative Reward: Deduct from the reward based on how much the
average waiting time exceeds the threshold.

3. Priority Adherence:

• Positive Reward: If high-priority queues are indeed given more band-
width and low-priority queues are not starved.

• Negative Reward: If a low-priority queue gets more bandwidth than a
higher-priority queue beyond acceptable limits.

4. Throughput:

• Positive Reward: For every packet successfully processed and sent out
from the queues.
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• Negative Reward: If the throughput falls below a certain threshold,
indicating potential underutilization or inefficiency.

It’s worth noting that these reward strategies can be used independently, tailoring
the agent to focus on a specific aspect of the WFQ system. Alternatively, multiple
reward strategies can be combined, allowing the agent to learn and optimize based
on a compound set of criteria. The combination of two or more rewards can provide
a more general view, but care should be taken to balance the relative importance
of each reward to prevent overshadowing or conflicting objectives.

6.4.3 Actions

Finally, the actions determine how the agent modifies or sets the weights for the
queues. For our proposed design, the action space is represented by three continuous
values, each ranging from 0 to 1. These values correspond to the weight assignments
for specific priority queue. By constraining these action values within this range,
we maintain a standardized framework for weight assignments. The DRL agent,
through its interactions with the environment, will learn to select optimal values
within this range to achieve the desired balance and efficiency in the WFQ system.

Nevertheless, Using a range of 0 to 1 for action values in a DRL framework
tailored for WFQ optimization presents both benefits and challenges. The simplicity
of this range is undeniably attractive, making it easy to implement and interpret.
Coupled with certain activation functions like sigmoid in ANNs, this range facilitates
stable training due to natural normalization. Furthermore, the relative differences
between values in this range could be more essential if the weights function as
"priority levels". However, potential issues arise from this fixed boundary. The range
might be restrictive if the WFQ system requires weights with broader flexibility or
if weights have meaningful absolute values for exemple bandwdwidth alocation in
Mbps. Thus, while 0 to 1 is a commonly used range, aligning it effectively with
the specifics of the WFQ system is crucial to ensure optimal outcomes.
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Conclusion

The field of wireless communication is currently experiencing a significant shift,
with the integration of RANs and HAPS being a central focus. This research has
delved into the challenges and opportunities presented by this integration, offering
fresh solutions and insights to navigate its complexities.

Central to our exploration is the SOM-TCAN. This hybrid model brings together
the strengths of Self-Organizing Maps and Temporal Convolutional Attention
Networks. Designed specifically for traffic forecasting, this hybrid model showcases
the benefits of combining unsupervised learning techniques with the power of
deep learning. By effectively segmenting and forecasting traffic, SOM-TCAN
provides a foundation for more informed decision-making in the dynamic RAN-
HAP environment.

Our comparative analyses highlighted the effectiveness of TCAN when pitted
against other forecasting models. When we compared the results with the baseline
model, it became clear that there’s a balance to strike between the simplicity of a
model and its forecasting accuracy. While the baseline model showed results that
were closely matched in some areas, SOM-TCAN stood out in terms of its efficiency,
reduced complexity, and potential for scalability. This makes it a strong contender
for practical applications, especially in scenarios where the network infrastructure
is constantly evolving and adapting to new challenges.

Recognizing the potential of DRL in this domain, we revisited its application,
specifically focusing on WFQ in RANs. The traditional approach of leveraging
HAPS, while promising, introduced layers of complexity. Our proposition was
to narrow our focus, targeting the optimization of WFQ weights within a HAPS
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using DRL. This shift not only simplified the problem space but also offered direct
avenues for enhancing performance.

Moving forward, there are numerous avenues to explore. Exploring other
forecasting models, such as N-BEATS [61] and DeepAR [62], will not only enrich
our comparative analysis but also offer a broader framework to assess the efficacy
of TCAN. The availability of energy consumption data could pave the way for
innovative strategies, optimizing both performance and energy efficiency. And in
the vast expanse of DRL, finding the optimal model remains an exciting endeavor,
promising further enhancements in our approach.
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