
POLITECNICO DI TORINO
Master’s Degree in ICT for smart societies

Master’s Degree Thesis

Efficient Deep Multi-Image
Super-Resolution for low-power devices:

performance optimization through fusion
and registration techniques.

Supervisors

Prof. Diego VALSESIA

Dr. Andrea BORDONE MOLINI

Candidate

Luca DE MATTEIS

October 2023

Abstract

Image super-resolution is a well-known problem in computer vision that aims to
enhance a low-resolution image into a high-resolution one. In recent years, deep
neural networks have achieved remarkable results in tackling image super-resolution
tasks, often employing large models and subsequently huge amounts of computational
resources. However, the wide diffusion of mobile devices and portable photography
necessitates the design of computationally efficient solutions.
This thesis aims to address these challenges by adapting an existing lightweight neural
network designed for single-image super-resolution to perform burst super-resolution
while preserving its mobile-friendly characteristics. The main goal is to improve
the quality of super-resolved images, assessed using the Peak Signal-to-Noise Ratio
(PSNR) metric, by inputting more than one image into the network, while trying to
keep the model’s inference time as low as possible.
To achieve this goal, several elements like fusion techniques and registration strategies
will be studied and compared. Moreover, a way to synthetically generate a burst
image dataset is also exploited, in order to evaluate PSNR performance and compare
the results with those of the original neural network.
This work includes an introduction to the problem statement, a theoretical back-
ground on the used tools, a literature review of methods for both single and multi-
image super-resolution, as well as a description of the developed methodology and
the results achieved.

Keywords Image super-resolution, Burst super-resolution, Convolutional Neural
Networks, Feature fusion, Images registration, PSNR, Inference time.

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Problem statement . 1
1.2 Goal . 3
1.3 Thesis outline . 4

2 Theoretical background 5
2.1 Machine learning . 5
2.2 Deep Learning . 6

2.2.1 The perceptron . 6
2.2.2 Neural Networks . 7
2.2.3 Convolutional Neural Networks 14
2.2.4 Generative Adversarial Networks 15
2.2.5 Residual Networks . 16
2.2.6 Transformer . 17

3 Deep learning models for image super-resolution 20
3.1 Deep learning for image super-resolution 20

3.1.1 Evaluation: Image quality assessment 20
3.1.2 Learning objectives . 22
3.1.3 Upsampling methods . 23

3.2 State of the art review . 24
3.2.1 Single-image super-resolution 25
3.2.2 Lightweight single-image super-resolution 27
3.2.3 Burst super-resolution . 30

4 Methodology 35
4.1 The AI mobile challenge . 35
4.2 NCNet . 35

4.2.1 Training replication . 36
4.3 Dataset synthetization . 38

4.3.1 DIV2K dataset . 38

iii

4.3.2 Zurich RAW-to-RGB dataset 39
4.3.3 Synthetic RGB burst generation 39

4.4 Training details . 40
4.4.1 Resize problem . 40

4.5 Fusion techniques . 40
4.5.1 Early Fusion . 41
4.5.2 Slow Fusion . 42
4.5.3 Results . 42

4.6 Registration techniques . 44
4.6.1 PWCNet . 46
4.6.2 FastFlowNet . 48
4.6.3 Handheld Multi-Frame Super-Resolution algorithm 50
4.6.4 OpenCV . 54
4.6.5 Results . 56

4.7 Model alternatives . 58
4.7.1 Extreme Low-Power Super Resolution 58
4.7.2 MobileSR . 59
4.7.3 Results . 59

4.8 Working with RAW images . 60
4.8.1 Results . 61

5 Conclusions 64

A 66
A.1 Handheld: Accumulation . 66

Bibliography 68

iv

List of Tables

2.1 Examples of activation functions, operating either element-wise or . . 9
2.2 Cost functions examples. 10

4.1 NCNet SISR training results. 37
4.2 NCNet/SwinIR comparison. 37
4.3 NCNet SISR training results. 40
4.4 Slow Fusion technique results. 42
4.5 Early Fusion technique results. 43
4.6 PWCNet training results. 48
4.7 Fasflownet training result. 49
4.8 ICA training results. 53
4.9 OpenCV Fanerback algorithm results. 56
4.10 Registration strategies PSNR FP 32 [dB] results summary. 56
4.11 Inference times. 56
4.12 10k epochs training results. 57
4.13 Models numerical comparison. 60
4.14 Raw images training results. 62
4.15 Models number of parameters comparison. 62

v

List of Figures

1.1 Examples of image restoration tasks: (a) deblurring, (b) draining, . . 2

2.1 Examples of labeled data [2]. 6
2.2 Machine Learning pipeline. 6
2.3 (a) Rosenblatt’s Perceptron, (b) Linear classifier 7
2.4 Neural network layers . 8
2.5 Examples of feedforward and recurrent neural networks 8
2.6 Activation functions examples. 10
2.7 Gradient descent. 11
2.8 CNN architecture example. 14
2.9 Example of 2D convolution with a 3x3 filter. 15
2.10 GAN architecture example. 16
2.11 Residual network example. 16
2.12 Transformer architecture [3]. 17
2.13 Attention mechanism [3]. 18

3.1 SRCNN network architecture [4]. 25
3.2 SwinIR architecture for image restoration proposed by [9]. 26
3.3 Anchor-based plain net architecture [10]. 27
3.4 Examples of residual learning [10]. 29
3.5 QuickSRNet architecture [11]. 29
3.6 PIUnet architecture [12]. 31
3.7 (a) Temporally-equivariant feature extraction (TEFA) block, 31
3.8 FuseNet architecture [13]. 32
3.9 MFCE principle . 33

4.1 NCNet model architecture [16]. 36
4.2 HR images produced . 37
4.3 Mobile AI benchmark application. 38
4.4 Modified NCNet architecture. 41
4.5 Early fusion visual representation [22]. 41
4.6 Slow fusion visual representation [22]. 42
4.7 Slow fusion Tensorboard log. 43
4.8 Early fusion Tensorboard log. 43
4.9 Final architecture. 44
4.10 Not registered images. 46
4.11 Registered images. 46

vi

4.12 PWCNet architecture [23]. 46
4.13 PWCNet Tensorboard log. 47
4.14 FastFlowNet architecture [24]. 48
4.15 Fastflownet tensorboard log. 49
4.16 ICA Tensorbaord training log. 53
4.17 OpenCV Fanerback algorithm tensorboard log. 55
4.18 Ground truth, Low resolution, and SISR produced image details. . . . 57
4.19 Reconstructed image details using PWCNet, FastFlowNet (FFN), and

ICA. 57
4.20 10k epochs training tensorboard log. 58
4.21 ELSR architecture [33]. 58
4.22 MobileSR architecture [35] . 59
4.23 Model alternatives tensorboard log. 60
4.24 Raw training tensorboard log. 61
4.25 Comparison of details of the reconstruced image. 62
4.26 Details of images reconstructed by NCNet, MobileSR, and Fusenet . . 63
4.27 Details of images reconstructed by NCNet, and MobileSR trained on 63

A.1 Accumulation representation [27] . 66

vii

Acronyms

AI
Artificial Intelligence

SISR
Single Image Super Resolution

MISR
Multi Image Super Resolution

BSR
Burst Super Resolution

PSNR
Peak Signal to Noise Ratio

LR
Low Resolution

HR
High Resolution

NN
Neural Network

DNN
Deep Neural Network

CNN
Convolutional Neural Network

ix

Chapter 1

Introduction

This thesis project aims to solve the burst super-resolution task using a lightweight
neural network model, specifically a Convolutional Neural Network one. This project
has been carried out with the aid of Zebra Technologies, which proposed the topic
and provided the computational resources needed to carry out all the studies that
will be explained in the following.

1.1 Problem statement

The image restoration problem is an inverse problem that aims to recover clean
latent images starting from their degraded observations. Since infinite possible
mappings exist between multidimensional degraded observations and the restored
images, most of the time the inverse mappings are unknown, making it an ill-posed
problem.
This results in an infinite solution space that requires regularisation techniques in
order to derive feasible and optimal solutions. There are different sub-problems in
which the image restoration task can be divided:

• Image deblurring: it aims at repairing images degraded by factors such as the
camera motion caused by natural hand movements, or the movement of the
objects depicted in the scene;

• Image denoising: aims at removing noise corrupting the image. Extremely
important for computer vision task that needs denoising as a pre-processing
step;

• Image dehazing: aims to remove the poor visibility of photos due to the
presence of elements like mist, dust, and rain;

• Image super-resolution: aims to reconstruct high-resolution images starting
from their low-resolution versions.

1

Introduction

Figure 1.1: Examples of image restoration tasks: (a) deblurring, (b) draining,
(c) denoising, (d) super-resolution, and (e) dehazing [1].

Image super-resolution
As said before, image super-resolution is the process of reconstruction of a high-
resolution (HR) image starting from at least one low-resolution (LR) image. It is a
fundamental topic in which deep learning models can be employed, bringing many
benefits such as boosting performance and efficiency as well as making applications
more realistic. More formally, given one or more LR images:

x ∈ Rw×h×c (1.1)

the goal is to reconstruct the HR image:

y ∈ Rw×h×c with h ≤ h, w ≤ w (1.2)

Let s ∈ N be a scaling factor, it holds that h = h · s and w = w · s.
Furthermore, let:

D : Rw×h×c → Rw×h×c (1.3)
be the unknown degradation mapping that describes the relationship that holds
between the LR and HR images, taking into account elements like blur type, usually
modeled with bicubic downsampling with different downscaling factors. The objective
is to perform an inverse mapping, even though this problem is ill-posed and a single
LR image can lead to multiple non-identical HR images.
In general, there are two main branches of the image super-resolution problem based
on the amount of information used to reconstruct the image, and each problem is
classified as one of them.

Single-image super-resolution
In the case of Single-image super-resolution, the HR image is reconstructed given a
single degraded observation that corresponds to it. However, due to the ill-posed
nature of the SISR problem, these methods are limited to adding high-frequency
details obtained through the learning process.

2

Introduction

Multi-image super-resolution
Differently from SISR, in Multi-image super-resolution (MISR) more than a single
LR image is utilized for producing one, or in certain cases, even more HR images.
When compared to SISR, MISR has received little attention in recent years, even
though it offers the possibility of reconstructing images with a finer level of detail, by
combining the information coming from different images. Usually, these techniques
have been exploited to address the video super-resolution problem where subsequent
frames provide the additional information needed to solve the task.

Burst super-resolution

Burst super-resolution (BSR) is a particular case of the MISR problem, made popular
with the increasing popularity of burst photography, in which the multiple images
used to reconstruct the HR image depict the same scene and are characterized
by sub-pixel shifts with respect to each other, due for example to camera motion.
They provide in this way different LR samplings of the underlying scene containing
additional signal information when compared to the usage of a single image, which
can be exploited to generate an image that usually has a higher grade of detail
when compared to the SISR case. This key advantage has made BSR an important
problem for real-world applications, and it will be the main focus of this work.

Before the deep learning era, the problem of image SR was tackled by reconstruction-
based and exampled-based methods. However, due to the fast development of
hardware technologies and the thriving of deep learning, SR is now frequently tackled
by solutions based on deep neural networks, which in recent years grew in size and
depth, mainly focused on the SISR task. In this case, the problem translates into
finding a model that minimizes the difference between the estimation of the HR
image and the ground truth under a given loss function. A parallel direction is indeed
trying to design an efficient deep neural network, characterized by a low memory
footprint and low power consumption, able to tackle the BSR problem. Indeed, it
naturally arises as a real-world application due to the increasing popularity of mobile
burst photography, where the captured images have different sub-pixel shifts due to
the natural hand tremors that happen while taking a picture.

1.2 Goal
The main goal of this thesis work is to design a deep learning architecture able to
perform burst super-resolution, achieving a resolution of the reconstructed High-
Resolution image comparable with State-of-the-art models. Moreover, the architec-
ture has to be lightweight enough in order to be deployed on devices that are not
equipped with huge computational resources. Another metric that will be taken into
account is the inference time, with the aim of maintaining it as low as possible.

3

Introduction

1.3 Thesis outline
Aside from this initial introduction, this thesis is organized as follows:

• Chapter 2 contains theoretical background on the fundamental concepts regard-
ing machine learning and deep learning, including a description of the most
common network architectures;

• Chapter 3 is focused on a review of deep learning models for image super-
resolution, while also describing the most utilized metrics in this field;

• Chapter 4 explains the developed methodology, including the obtained results
and a theoretical description of the used tools;

• Chapter 5 concludes this work, highlighting the possible future works and
improvements.

4

Chapter 2

Theoretical background

This chapter is focused on giving an initial theoretical background on the key con-
cepts of machine learning and deep learning, as well as describing the most common
network architectures in the latter field.

2.1 Machine learning
The huge amount of data that is produced nowadays highlights the need for automated
methods of data analysis, which is what machine learning provides. With the term
machine learning (ML), we usually refer to a model representing the mathematical
relationships between the provided data and the desired output, able to detect
patterns and relevant features from the input data, and then use the discovered
patterns to process them and make predictions about future data or to perform
other kinds of decision making, as depicted in figure 2.2. This is achieved by using
algorithms that learn through experience, and according to the type of data used
the machine-learning process can be classified into the following categories:

• Supervised learning: with this particular technique the work is performed
using data labeled with the correct answer that should be produced by the
model. Example of tasks carried out in this way is regression and classification,
also known as pattern recognition;

• Semi-supervised learning: this technique’s learning process is based on
semi-labeled datasets, with one of the advantages being that the amount of
labeled data needed is minimized;

• Unsupervised learning, also known as knowledge discovery, where the
goal is to find interesting patterns in the data, since the learning process is
performed in the absence of available labeled data, meaning that no correct
answers are provided. An example application of this kind of learning process
is clustering;

• Reinforcement learning: meaning that the models make predictions by
getting rewards or penalties based on actions performed in an environment.

5

Theoretical background

Figure 2.1: Examples of labeled data [2].

Recently, ML has become very widespread in research and has been exploited in
a variety of real-world applications such as text mining, spam detection, video
recommendation, image classification, and multimedia concept retrieval.

Figure 2.2: Machine Learning pipeline.

2.2 Deep Learning

In recent years, due to the exponential growth of the amount of available data, as well
as the increase of the computational power provided by the hardware components, the
usage of neural networks has become very common for all the tasks that previously
took into account machine learning algorithms. In the context of ML, the term
Deep Learning (DL) refers to the use of deep neural networks (DNN) with the aim
of solving problems of various natures and entities, which are characterized by a
great number of layers composing the network and consequently a great number of
neurons.

2.2.1 The perceptron

Neural networks were conceived to mimic the structure of the human brain, indeed
the basic component of a neural network is an artificial neuron, which performs a
weighted sum of several inputs that is compared to a threshold in order to produce
an output. The first example of this kind of architecture comes from Rosenblatt’s
Perceptron (1958), which is a linear binary classifier trained using a supervised
learning approach:

6

Theoretical background

(a) (b)

Figure 2.3: (a) Rosenblatt’s Perceptron, (b) Linear classifier

To produce its output, it performs a weighted sum of the received inputs, which
quantifies the importance of that input to the output, and confronts the result with
a threshold named bias:

y =

0, if wT x < b
1, if wT x ≥ b

(2.1)

Since the output is a binary one, it splits the space with a hyperplane. During their
training phase, perceptrons will gradually learn a linear separation in the data: if
the data is not linearly separable, the training task will fail and the perceptron will
not converge to a solution where all data is correctly classified.

2.2.2 Neural Networks
Differently from the perceptron case, a neural network is an architecture composed
of a collection of neurons in which the core operations resemble the ones introduced
by the perceptron, and where the amount of neurons is far greater than one. These
neurons composing the network can be arranged in several layers, as depicted in
figure 2.4, each one with a different function:

• the input layer is the first layer in the architecture, composed of the neurons
taking as input the data to be analyzed;

• a variable number of hidden layers, which are placed between the input and
the output layer, specifically the number of input layers determines how deep
a neural network is;

• the output layer, which is the last layer in the architecture and is made by
the neurons that produce the result.

We refer to a model as a Deep Neural Network when the number of hidden layers
is far greater than one.

7

Theoretical background

Figure 2.4: Neural network layers

Based on the types of connections made among the neurons composing the different
layers, neural networks can be classified into 2 different categories:

1. Feedforward neural networks: in this type of network loops are not allowed,
meaning that the connections follow a sequential flow. In such a way, for all the
layers in the network, except for the input layer, the inputs to a certain layer
correspond to the outputs of the previous layer;

2. Recurrent neural networks, in which connection loops are allowed, meaning
that connections between nodes of the same or previous layers are allowed to
feed information back into the network.

Figure 2.5: Examples of feedforward and recurrent neural networks

8

Theoretical background

Learning process

The parameters that characterize a neural network are its weights, used by the
neurons to perform the weighted sum previously mentioned, and its biases. These
parameters have to be optimized in order to produce a reliable result, and this is
done during the training phase, which is an iterative process that has the goal of
finding the optimal value of the parameters by minimizing errors until the network
is not able to improve its accuracy anymore. This process is defined by a specific
algorithm that involves the use of a specific subset of data, as well as the definition
of a cost function used to measure the errors.

Datasets

The data available for the learning process has to be divided into three main subsets:

1. The training set is the subset used during the training stage;

2. The validation set is also used during the training stage, but differently from
the training set it is used to check the performance of the model and make
decisions on the hyperparameters, mainly to avoid the problem of overfitting;

3. The training set, used for the final testing of the model

The amount and quality of the data available to carry on a learning process is the
key to achieve good results. Indeed, unlike machine learning algorithms, with DNN,
feature extraction, and decision-making are data-driven, meaning that all parts of
the model are learned from training the model.

Activation function

In today’s architecture thresholds are not used anymore, indeed the idea is that small
changes in the inputs have to produce small changes also in the output. This is the
reason why the weighted sum x of the neuron is passed to a non-linear activation
function, some examples of which are reported both in table 2.1 and figure 2.6:

ReLU f(x) =

0 for x ≤ 0
x for x > 0

LeakyReLU f(x) =

0.1x for x ≤ 0
x for x > 0

Sigmoid σx = 1
1+e−x

Table 2.1: Examples of activation functions, operating either element-wise or
vector-wise, depending on the function.

9

Theoretical background

Sigmoid function RELU function Leaky RELU function

Figure 2.6: Activation functions examples.

Cost function

A cost or loss function is used to measure if the output obtained from the NN is
good or bad, some examples of which are reported in table 2.2. It returns a scalar
that quantifies how much the output of the NN is different from the desired output,
and it depends on the type of task that is carried out, even though the goal is always
to try to minimize it as much as possible.

MSE / L2 Loss / Quadratic Loss
qN

i=1 (yi − ŷi)2

N

(Binary) Cross Entropy
(average reduction on higher dimensions)

qN
i=1

qC
j=1 ŷi log (yi,j)

N

Categorical Cross Entropy
(sum reduction on higher dimensions) −qN

i=1 ŷi + log
1qN

i=1
qC

j=1 yi,j

2

Table 2.2: Cost functions examples.

Where y is the output of the network, N is the batch size multiplied by the
number of outputs (e.g. pixels), C is the number of classes, and ŷ is the correct
output.

Gradient descent

The training stage is performed by means of a gradient descent iterative algo-
rithm, which allows finding the values of weights and biases corresponding to a local
minimum of the cost function, starting from any point in the loss function space.
Suppose the objective is to minimize a function C(v) with v = v1, v2, When the
values of the variables are changed, the cost function changes as:

∆C ≃ δC

δv1
∆v1 + δC

δv2
∆v2 (2.2)

10

Theoretical background

The goal is to find ∆v = (∆v1, ∆v2)T such that ∆C is negative. If the gradient of C
is defined as:

∇C ∼= (δC

δv1
,

δC

δv2
)T and so ∆C ≃ ∇C ·∆v (2.3)

Suppose ∆v = −η∇C, where η is called learning rate, then:

∆C ≃ ∇C ·∆v = −η||∆C||2 (2.4)

is always negative, even though the learning rate has to be accurately chosen. Indeed,
a larger learning rate allows for shortening the training time with the risk of lowering
the overall accuracy, on the contrary, a lower learning rate increases the time needed
for training the network, but with the achieved accuracy is better. Then, in order to
minimize C(v), the following update rule of the variables defining the cost function
is followed:

v ← v − η∇C (2.5)

For fixed ||∆v||, the gradient descent algorithm provides the update rule of the
variables that maximize the decrease of C, thus converging to a local minimum of
the cost function. Indeed, the gradient descent algorithm is not particularly efficient
in avoiding local minima, which leads to the learning process stopping, thus avoiding
the improvement of the model.
The basic idea of the gradient descent algorithm has been expanded by more complex
algorithms, such as Stochastic Gradient Descent and the Adam optimizer (listed in
algorithm 1). A fundamental feature of these algorithms involves the estimation of
the gradient of the cost function from a small subset of the training data, called
minibatch.

Figure 2.7: Gradient descent.

11

Theoretical background

Algorithm 1: Adam optimizer algorithm. All operations are element-wise,
even powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 =
0.999, ϵ = 10−8. ϵ is needed to guarantee numerical stability.

Data: α is the stepsize
Data: β1, β2 ∈ [0, 1) are the exponential decay rates for the moment

estimates
Data: f (θ) is the objective function to optimize
Data: θ0 is the initial vector of parameters which will be optimized
/*Initialization */
m0 ← 0 /*First moment estimate vector set to 0 */
v0 ← 0 /*Second moment estimate vector set to 0 */
t← 0 /*Timestep set to 0 */
/*Execution */
while θt not converged do

t← t + 1 /*Update timestep */
/*Gradients are computed w.r.t the parameters to optimize */
/*using the value of the objective function */
/*at the previous timestep */
gt ← ∇θf (θt−1) /*Update of first-moment and second-moment

estimates using */
/*previous value and new gradients, biased */
mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t /*Bias-correction of estimates */

m̂t ←
mt

1− βt
1

v̂t ←
vt

1− βt
2

θt ← θt−1 − α · m̂t√
v̂t + ϵ

/*Update parameters */

end
return θt

/*Optimized parameters are returned */

Backpropagation

Backpropagation is a famous algorithm invented in 1970, which became popular in
1986 with a paper by Rumelhart, Hinton, and Williams since it helps in computing
the gradient of the cost function, thus helping in minimizing the cost function value
by adjusting the values of neurons weights and biases. In order to explain how this
algorithm works, the following elements have to defined:

• wl
jk is the weight associated to the jth neuron in the lth layer, coming from the

kth neuron in the (l − 1)th;

• bl
j is the bias of the jth neuron in the lth layer;

• al
j = σ(q

k wl
jkal−1

k + bl
j) is the activation of the jth neuron in the lth layer,

given a generic non-linearity σ;

12

Theoretical background

• The Hadamard product, which is the element-wise product of two vectors,
described by the ⊙ operator;

• The error δl
j, which is a measure of the error in the neuron:

δl
j = ∂c

∂zl
z

(2.6)

It has to be remarked that the cost function can be written both as an average over
its individual values given the value of a training sample and as a function of the
outputs of the neural network.
For the case in which the training process is performed using minibatches obtained
from the training data, the algorithm follows these steps:

1. Input set of training examples, initial weight/biases. For each s set ax,1

2. Feedforward pass: for each layer l = 2, 3, ..., L compute ax,l = σ(wlax,l−1 + bl)

3. Output error: compute δx,L = ∇aCx ⊙ σ′(wlax,l−1 + bl)

4. Backpropagation: for each layer l = L-1, L-2, ..., 2 compute δx,l = ((wl+)δx,l+1)⊙
σ′(zx,l)

5. Gradient descent: For each layer l = L - 1, L -2, ..., 2 update weight and
biases:

wl ← wl − η

m

Ø
x

δx,l(ax,l−1)T (2.7)

bl ← bl − η

m

Ø
x

δx,l (2.8)

The algorithm shows why the process is denoted as backpropagation, since errors
are computed backward, starting from the final layer.

13

Theoretical background

2.2.3 Convolutional Neural Networks

In the field of DL, Convolutional Neural Networks (CNN) are the most famous and
commonly employed types of architecture for all tasks involving image processing,
including computer vision, face recognition, etc. The usual architecture of a CNN
has several typical features such as local receptive field, shared weights, and pooling
strategy, all of them reported in figure 2.8, where an example architecture is reported.

Figure 2.8: CNN architecture example.

Local receptive field

The main key feature of the CNN lies in the convolutional layer, which is in charge
of performing a convolutional operation between the provided input x and one or
more filters with weight w that produce one or more feature maps:

yn = w ∗ x + b =
Ø
m

wmxn−m + b (2.9)

Due to this operation, an output neuron is not connected to all the input neurons of
the previous layer, but just to a small subset of them, called the local receptive
field, differently from a fully-connected layer. The local receptive field slides by a
number, defined by the stride parameter, of neurons at a time across the entire input
image, and at each step it associates a new region to a hidden neuron in the first
hidden layer. This operation is particularly helpful when the input to the network
is an image since most of the time an image pixel is highly correlated with its
neighbors. It is particularly helpful since it allows for a reduction of the number of
parameters analyzed by the network, making them much easier to train, that is why
CNNs have gained so much popularity for image-related tasks. An example of a 2D
convolution with a 3x3 filter is reported in figure 2.9:

14

Theoretical background

Figure 2.9: Example of 2D convolution with a 3x3 filter.

Figure 2.9 also shows the possibility of going outside the borders of the pixels of
an eventual image and pad the necessary values with zeros or with reflection/sym-
metric padding. It has to be noted though that valid convolutions usually do not
go outside of an image boundary.

Shared weights

Another important property of CNNs lies in the shared weights property, meaning
that the only trainable parameters in a convolutional layer are the filter weights,
and those weights are reused every time the filter shifts its position to cover all the
analyzed image. This reflects the stationarity property of the data since the filters
act as a feature detector and they can be reused regardless of the position inside the
image.

Pooling strategy

In order to further reduce the size of the feature maps produced by the convolution
operation, other strategies such as the pooling strategy can be applied, which
consists of returning only a specific value within the feature map. Consider an
example case of a 2x2 window, for each 2x2 non-overlapping window in the feature
map, only the maximum value is selected in the max pooling case, or the average
of the values in the window for the average pooling case. Moreover, feature maps
can also be upsampled by making use of strategies such as pixel shuffling or grid
resampling + filtering.

2.2.4 Generative Adversarial Networks
The architecture of Generative Adversarial Networks (GAN) has the peculiarity
of being composed of two different sub-networks competing with each other: a
generator G and a discriminator D. The generator sub-network learns how to produce
samples that are as similar as possible to the ones of a given dataset that are used

15

Theoretical background

to try to fool the discriminator, which on the other hand is in charge of trying to
distinguish between samples that have been generated from the ones coming from
the actual dataset. This architecture is trained until the discriminator is no longer
able to distinguish between samples that have been generated from those that are
not. Specifically, the two sub-networks are trained independently in such a way that
the generator learns how to produce better samples, while the discriminator learns
how to recognize the synthetic samples.

Figure 2.10: GAN architecture example.

The primary disadvantage of this kind of network is that sufficient training stability
is hard to reach, reason why regularization terms can be introduced.

2.2.5 Residual Networks
Residual Neural Networks (ResNets) are an improved neural network architecture,
the main feature of which is the introduction of the skip connections, which allows
one to leap over a certain number of layers in the architecture, as depicted in figure
2.11. They are used if an input to a certain layer in the architecture is a good
predictor of the output so that the layer is able to learn a correction, instead of a full
transformation. Estimating the correction is a simpler process, so easier to fit with a
few parameters, and also allows a better flow of information in backpropagation.

Figure 2.11: Residual network example.

The use of skip connections allows for mitigating the problem of vanishing gradients
as well as the degradation problem. Moreover, it allowed the building of much deeper
networks than before containing hundreds of layers instead of a few tens. An
improvement to the ResNets is the introduction of the attention mechanism, which
is used to let the network focus on specific parts on the input sequence, by assigning
different weights to the different parts of the input sequence, leaving room for the

16

Theoretical background

highest weights for the most important parts. There are basically two categories of
attention mechanisms, that can also be applied simultaneously:

• Channel attention: focuses on which channels carry crucial details among
all the existing and lets the network focus more on them. This is achieved by
spatially averaging each feature map and then applying two fully connected
layers, one followed by RELU and one followed by sigmoid, then scaling the
original feature map with the newly computed weights.

• Spatial attention, differently from channel attention, focuses on which posi-
tions of the input feature maps carry the most important details. This results
in a feature map that contains a specific weight associated with each position.

2.2.6 Transformer
The transformer is an encoder-decoder architecture first proposed by Vaswani et al.
[3] solely based on the attention mechanism, using also point-wise, fully connected
layers for both the encoder and the decoder parts, both depicted in figure 2.12

Figure 2.12: Transformer architecture [3].

The left part, depicting the encoder part, is made of 6 layers, each one of them
composed of two sub-layers: the first one is a multi-head self-attention mechanism,
while the second sub-layer is a fully connected feed-forward layer. Specifically, the
output of each sub-layer is:

LayerNorm(x + Sublayer(x)) (2.10)

where Sublayer() is the function implemented by the sub-layer itself, while the +
operator describes the residual connection, and LayerNorm() is the use of a layer

17

Theoretical background

normalization.
Similarly to the encoder part, the decoder is composed of 6 identical layers and
equation 2.10 can be applied also to it. However, differently from the encoder part, a
third sub-layer exists performing multi-head attention over the output of the encoder
part.

Attention sublayer

The attention sublayer of the transformer implements an attention function that maps
a set of key-value pairs to an output, by means of a query vector. Specifically, the
query is used to measure the compatibility of the latter with the keys corresponding
to the input values. The result is the weight associated with each input value and
used for the weighted sum of the input values that returns the output of the function.
The particular type of attention is a multi-head attention, which is a module that
allows running an attention function several times in parallel. An attention function,
specifically a scaled dot-product attention, computes the weights assigned to the
values as the softmax function of the ratio of

√
dk the dot product of the query and

key vectors, where dk is the dimensionality of both keys and query vectors:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.11)

where Q, K, and V are matrices.
Each obtained output is transformed into the expected dimension by multi-head
attention, which also concatenates all of them, allowing the model to join information
coming from different representation subspaces:

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O (2.12)
where

headi = Attention(QW Q
i , QW K

i , V W V
i) (2.13)

Figure 2.13: Attention mechanism [3].

18

Theoretical background

Feed-forward sublayer

The fully-connected feed-forward sub-layer consists of two linear transformations
with a RELU activation function in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.14)

The linear transformation is the same one, even if applied to different positions, thus
using different parameters from layer to layer. This sub-layer can also be described
as two convolution operations with a stride equal to 1.

19

Chapter 3

Deep learning models for
image super-resolution

This chapter aims to give an overview of the most commonly used metrics and
strategies for tackling the image super-resolution task in the field of deep learning.
A focus will be on the useful metrics to quantify the performance of a deep learning
model, as well as the most used loss functions used for training the latter. Moreover,
a literature review of different state-of-the-art deep learning models designed for
image super-resolution is reported, underlining what are the common characteristics
of models designed for solving this problem.

3.1 Deep learning for image super-resolution
In order to enlarge and enhance the quality of an image, a traditional method would
be to enlarge the image and fill the holes between pixels by copying the values from
the closest pixels or by taking the weighted average of the neighboring pixels, which
is the kind of operation performed by the usual interpolation methods. However,
the results are not quite promising, leading to an image that is far from looking
high-resolution, simply looking like a low-resolution image with larger pixels. Even
though the problem might seem virtually impossible, the usage of Neural Networks
has proven to be far superior to traditional methods, capable of hallucinating details
learned from the larger set of images used to train them, learning in this way the
mapping that exists between both the low-resolution and the high-resolution images,
as proposed by the pioneering work by Dong et al. with SRCNN [4]. In this section,
the main metrics used to evaluate a DL model trained to solve the super-resolution
problem will be explained.

3.1.1 Evaluation: Image quality assessment
First of all the metrics used for the performance evaluation of the trained DL models
will be introduced. Many of them fall under the term Image Quality Assesment
(IQA), which refers to any metric that quantifies how realistic the image appears after
applying SR methods. Image assessment can either be subjective or objective, and it

20

Deep learning models for image super-resolution

is a challenging task since it has to take into account many properties associated
with excellent image quality, such as sharpness, contrast, and absence of noise [5]. In
the following are reported some examples of IQA evaluation methods:

• Peak Signal-to-Noise-Ratio (PSNR): It is the ratio between the maximum
possible pixel value L (255 for 8-bit representations) and the Mean Square Error
(MSE) of reference images. Given the approximation ŷ and the ground-truth y,
PSNR is a logarithmic quantity using decibel scale (dB):

PSNR(y, ŷ) = 10 · log10
L2

1
Ny

q
p∈Ωy

[yp − ŷp]2 (3.1)

where p denotes a generic pixel in the analyzed images, while Ωy describes the
set of all valid positions of p, given y, ŷ ∈ Rw×h×c:

Ωy = {(i, j, k) ∈ N3
1|i ≤ h, j ≤ w, k ≤ c}

It is widely used as an evaluation metric for SR models, even though it might
lead to mediocre results in real scenarios, since it focuses on pixel-level differences
instead of the human visual perception, thus poorly correlating with subjectively
perceived quality.

• Structural Similarity Index (SSIM) [6]: it is a better measure of a perceptual
image than the PSNR, since differently from the latter, it does not focus on
pixel-wise differences, but depends instead on an image luminance, contrast, and
structures. For a given image y and its approximation ŷ, the SSIM is computed
as:

SSIM(y, ŷ) = [Cl(y, ŷ)]α · [Cc(y, ŷ)]β · [Cs(y, ŷ)]γ (3.2)

where α, β, γ are all positive constants for weighting the relative importance
of all comparison components related to illuminance, contrast, and structure,
which are computed as:

Cl = S(µy, µŷ, c1) and Cc = S(σy, σŷ, c1) (3.3)

Cs(y, ŷ) = σy,ŷ + c3

σy · σŷ + c3
(3.4)

where, the S present in equation 3.3 is a similarity comparison function proposed
by the authors, given certain scalar variables x and y to compare, and c = (k ·L)2

with 0 < k << 1, defined as:

S(x, y, c) = 2 · x · y + c

x2 + y2 + c
(3.5)

while σ(y,ŷ) present in 3.4 is the empirical covariance computed as:

σ(y,ŷ) = 1
Ny − 1

Ø
p∈Ωy

(yp − µy) · (ŷp − µŷ) (3.6)

21

Deep learning models for image super-resolution

Lastly, µy is the luminance, computed as the mean of the intensity, while σy is
the contrast estimated as its standard deviation:

µy = 1
Ny

Ø
p∈Ωy

yp (3.7)

σy = 1
Ny − 1

Ø
p∈Ωy

[yp − µy]2 (3.8)

Different from the PSNR, it better meets the requirements of human perception
assessment.

3.1.2 Learning objectives
The ultimate scope of training a DL model for SR is to reconstruct an HR image
from an LR one, thus defining the right cost function to minimize is a key point when
training such an architecture. Among all the possible learning objectives, the focus
of this section is on the regression-based ones. They attempt to explicitly model the
relationship between the input to the model and the output, and possible categories
of such loss function are pixel-loss ones, as well as the content-loss ones.

Pixel-loss

Pixel-loss functions focus on the measurement of the pixel-wise difference between
the ground-truth image y and its estimation ŷ produced by the model. Examples of
this kind of function are the ones that follow, note that p denotes a generic pixel in
the analyzed images, while Ωy describes the set of all the possible pixel locations, as
in equation 3.1. :

• Mean Absolute Error (MAE) or L1-loss, which takes the absolute differences
between every pixel in the pair of analyzed images and returns the average
value:

L1(y, ŷ) = 1
Ny

Ø
p∈Ωy

|y − ŷp| (3.9)

• Mean Squared Error (MSE) or L2-loss, which is similar to the L1-loss, but
weights high-value differences higher than low-value ones, due to an additional
square operation, being extremely sensible to extraordinary values in doing so:

L2(y, ŷ) = 1
Ny

Ø
p∈Ωy

|y − ŷp|2 (3.10)

• Charbonnier-loss, defined by:

LCharbonnier(y, ŷ) = 1
Ny

Ø
p∈Ωy

ñ
|y − ŷp|2 + ϵ2 (3.11)

where 0 < ϵ << 1 is a small constant to avoid zero terms.

22

Deep learning models for image super-resolution

Note that multiple variants of these functions exist, depending on the specific task
that has to be carried out. As for the PSNR, pixel-loss functions focus on pixel-wise
differences and do not take into account structural information about the content
of an image, they subsequently allow to reach higher values of PSNR during the
training stages.

Content-loss

Differently from pixel-loss functions, the aim of content-loss functions is to incorpo-
rate image features rather than reaching pixel-level detail. This type of loss function
utilizes the feature maps produced by an external feature extractor, which remains
fixed during the training process, that has been pre-trained on another task, different
from the model that is training. The content loss has indeed the goal of minimizing
the differences between the feature maps produced by the pre-trained network and
the SR model as much as possible. For a given layer l it is defined as:

Lcontent(y, ŷ, l) = ||ϕl(ŷ)− ϕl(y)||2 (3.12)

Thus, the goal of using this loss function is not to generate pixel-perfect estimations,
but instead to produce images whose features are close to the features of the target.

3.1.3 Upsampling methods
A crucial aspect when designing an SR model is the upsampling method used to
increase the spatial size of a certain feature map. which can either be interpolation-
based or learning-based.

Interpolation-based methods

Most SR models utilize interpolation-based methods mainly due to their simplic-
ity, and the most known methods are the nearest-neighbor, bicubic, and bilinear
interpolation. The nearest-neighbor one is the most straightforward since the
interpolated value is based on the nearest pixel values, even though it may result in
block artifacts. Bilinear interpolation on the other hand does not produce block
artifacts, since it produces smoother transitions even though it needs a receptive field
of 2x2. Finally, bicubic interpolation is the one producing the smoothest results,
even though a receptive field of 4x4 and a higher computation time is needed.

Learning-based methods

With learning-based upsampling methods are used to increase the spatial size of the
learned feature maps. An example of this kind of method is the sub-pixel layer
introduced with [7]. It is made of a convolutional layer that takes a feature map as
input and rearranges the output to increase its spatial size. The upsampling is defined
by a scaling factor s, and it is carried out in the channel dimension. Specifically,
given an input feature channel with a number of channels c, it produces an output
with s2 · c channels. Moreover, a convolution operation with zero padding is applied,

23

Deep learning models for image super-resolution

in such a way that the dimensions of the input and the output feature map remain
the same. Finally, it reshapes the feature map to produce a spatially upsampled
output.
Another alternative is attention-based upsampling [8]. It follows the definition of
attention-based convolution (or scaled dot product attention) and replaces the 1x1
convolutions with upsampling methods. In more detail, it replaces the convolution
for the query matrix with bilinear interpolation and the convolution for the key and
value matrix with zero-padding upsampling similar to transposed convolution. It
needs fewer parameters than transposed convolution but a slightly higher number of
operations, which translates into a slower training time.
Besides the choice of the upsampling method to employ in the super-resolution archi-
tecture, another fundamental aspect concerns where placing it in the architecture.
The available possibilities are:

1. Pre-upsampling: upsampling is applied at the beginning of the pipeline.
Afterward, convolutional layers are applied to refine the upsampled input and
extract features;

2. Post-upsampling: upsampling is performed at the end of the pipeline, thus
reducing memory and computational costs. It helps in reducing the model
complexity, and feature extraction is performed in lower dimensional space;

3. Progressive upsampling: unlike the previous alternatives, progressive upsam-
pling gradually increases the feature map size within the architecture. It divides
the upscaling problem into different small tasks, thus fitting the multi-scale SR
problem;

4. Iterative Up-and-Down upsampling: this technique also downsamples the
feature maps produced within the architecture to better understand the mapping
that exists between LR and HR image.

3.2 State of the art review

This second section lists a literature review of some existing deep-learning models
for both the multi and single-image cases of the image super-resolution problem.
Lightweight models deployable on mobile devices will also be described.
The objective is to try highlighting the common strategies and techniques that are
used to efficiently tackle this task. It will become clear how the preferred operation to
transfer the images into feature space is the convolution, and how lightweight models
strongly rely on sequences of convolution operations to also learn the mapping that
exists between the LR and HR image, while more complex networks strongly use
transformer (section 2.2.6) layers. Also, skip connections are widely used to learn
residuals and the most used operation to upsample the feature maps and produce
the super-resolved image is a pixel shuffle layer, usually placed at the end of the
architecture.

24

Deep learning models for image super-resolution

3.2.1 Single-image super-resolution
SRCNN

The pioneering work in the field of deep learning for image super-resolution is the
Super-Resolution Convolutional Neural Network (SRCNN) architecture presented
by Dong et al. [4]. The authors were the first to propose the use of a CNN to
learn the mapping that exists between the input LR image and the output HR
image to reconstruct an image that is as similar as possible to the ground-truth HR
image. The proposed network reached a reconstruction quality comparable to all the
previous existing solutions based on sparse-coding-based methods, while also being
faster and incorporating all the operations previously performed individually into a
single unified workflow.

Figure 3.1: SRCNN network architecture [4].

As depicted in figure 3.1, the proposed pipeline consists of 3 steps used to learn
the mapping between LR and HR images, which are:

1. Patch extraction and representation;

2. Non-linear mapping;

3. Reconstruction;

Even if not depicted, the workflow begins with a pre-processing step in which the
LR image is spatially upsampled via bicubic interpolation.
The first step consists of extracting from the LR interpolated image overlapping
patches that, by means of convolutions followed by RELU activation functions, are
represented as a high-dimensional vector. These vectors comprise a variable number
of feature maps that depend on the dimensionality of the filters used inside the
convolution operation.
In the following step, each one of the high-dimensional vectors previously obtained is
non-linearly mapped onto another high-dimensional vector. This operation results
in a set of vectors that comprises other feature maps that conceptually are the
representation of a high-resolution patch.
Finally, the reconstruction step generates the final HR image by aggregating the
high-resolution patch-wise representations.

25

Deep learning models for image super-resolution

Even with such a lightweight architecture, the SRCNN achieved results greater than
the state-of-the-art sparse-coding-based methods, demonstrating also how all the
operations performed by sparse-coding-based methods could be unified under a single
feedforward architecture.

SWINIR

The SwinIR model is a complex architecture developed by Lian et al. [9] able to
perform different image restoration tasks aside from image super-resolution, such
as image denoising as well as JPEG compression artifacts. Differently from other
state-of-the-art methods that rely on convolution operations, SwinIR is based on the
usage of the Swin Transformer, as depicted in figure 3.2. The representation of the
network architecture highlights how it mainly consists of three modules:

1. Shallow feature extraction;

2. Deep feature extraction;

3. HQ image reconstruction;

Figure 3.2: SwinIR architecture for image restoration proposed by [9].

The shallow feature extraction is performed on given an LR image input of a
certain dimension and number of channels by means of a 3x3 convolutional layer that
allows mapping the image into a feature space of higher dimension. The convolution
layer has also the advantage of allowing better results and leading to a more stable
optimization.
Subsequently the deep feature extraction is performed by a module composed
of a number K Residual Swin Transformer blocks (RSTB) and a final 3 ×
3 convolutional layer, that facilitates the aggregation of the extracted shallow and
deep features.
For what concerns the structure of the RSTB, figure 3.2 (a) shows how it is mainly
composed of a sequence of Swin Transformer Layers (STL), used to extract
intermediate features, and a final convolutional layer, along with a residual connection
used to add the input of the block to the output of the final convolution. To extract
the intermediate features, the STLs first reshape the input into non-overlapping

26

Deep learning models for image super-resolution

local windows, and for each of them separately compute the standard self-attention.
As depicted in figure 3.2 (b) a single swing transformer is composed of 3 modules.
Specifically, in the multihead self-attention (MSA) block the attention function
is performed in parallel for a certain number of times, and the results are then
concatenated. The multi-layer perceptron (MLP) is then used for further feature
transformations and it has two fully-connected layers with GELU non-linearity
between them. Before both the MSA and MLP blocks, a LayerNorm (LN) layer is
added. Moreover, the input and the output of the sequence of the LN and MSA/MLP
layers are added by means of a residual connection.
Finally, the HQ image reconstruction is achieved by a reconstruction module
made of a sub-pixel convolution layer used before upsampling the features if needed
by the task that has been performed. If that is not the case a single convolution layer
is used for reconstruction. However, before this operation, a long skip connection
allows aggregating the shallow features, which mainly contain low frequencies, and
the deep ones, which on the other hand focus on recovering lost high-frequencies,
both extracted in the previous steps. This has the purpose of helping the deep
feature extraction module to mainly focus on recovering high-frequency information.

3.2.2 Lightweight single-image super-resolution
Anchor-Based Plain Net

Anchor-Based Plain Net (ABPN) is a mobile-friendly model able to perform SISR
on mobile devices. Du et al. [10] designed an efficient architecture, depicted in figure
3.3, that after an 8-bit quantization can effectively be deployed on a mobile device.
As shown, it mainly consists of four parts:

1. Shallow Feature Extraction;

2. Deep Feature Extraction;

3. Reconstruciton part;

4. Post-processing part.

Figure 3.3: Anchor-based plain net architecture [10].

27

Deep learning models for image super-resolution

The shallow feature extraction part transfers the image to the feature space
by means of a 3x3 convolutional layer followed by a RELU activation function.
This block is followed by the deep feature extraction part which is composed
of 5 pairs of 3x3 convolutional layers and RELU activations, with a single final
convolutional layer not followed by RELU used to transfer the produced features to
the HR image space. It has to be noted that the convolution-RELU pair resulted in
being the fastest pair to gradually refine details, after several experiments carried
out by the authors.
The output of the last convolutional layer is added to the result of the anchor-based
residual learning to get the super-resolved image. The anchor-based residual
learning (ABRL) is achieved by directly repeating every pixel in the LR space 9
times, generating in this way anchors for every pixel in HR space. It is a special
case of nearest neighbor interpolation, achieved when the scale factor is an integer.
It can be easily realized with one channel concatenation and addition node.
Finally, as a part of the post-processing part, a pixel shuffle layer is used to
upsample the features, while the final clip node is used to restrict those values lower
than 0 and higher than 255. This is crucial in order for the 8-bit quantization to be
performed without errors.
As with other types of residual learning, examples of which are reported in figure
3.4, ABRL is used to produce weights and activations with lower standard deviation.
Residual learning can be mainly split into two categories: image-space residual
learning (ISRL) and feature-space residual learning (FSRL). FSRL is widely
adopted by state-of-the-art models since it performs better in floating-point space, but
ISRL is better for models that have to be quantized to INT8 because, as demonstrated
by the authors, it forces them to learn small residuals, thus leading to a small drop in
performance. ABRL has the advantage of improving the performance of the model
quantized to INT8 compared with FSRL, while also exploiting parallelization thanks
to the multi-branch architecture.

QuickSRNet

Berger et al. [11] developed QuickSRNet, a lightweight architecture for real-time
image super-resolution applications on mobile devices. As depicted in figure 3.5, the
model does not utilize an input-output residual connection in its architecture as the
previous models and is composed of a certain number m of intermediate convolutional
blocks characterized by a number of f feature channels. Since the network has to be
deployed on mobile devices, which is a challenging task due to several constraints
such as compute, thermal, and power constraints, it has to be quantized. In order
to increase the robustness to the quantization process, a RELU activation function
clipped between 0 and 1, as well as a residual learning motivated initialization scheme
is used. The proposed architecture achieved an accuracy-to-latency trade-off better
than existing neural architectures for single-image super-resolution.

28

Deep learning models for image super-resolution

Figure 3.4: Examples of residual learning [10].

Figure 3.5: QuickSRNet architecture [11].

29

Deep learning models for image super-resolution

The residual learning motivated initialization scheme proposed by the authors
makes the input image propagate throughout the entire network. The identity ini-
tialization technique allows each intermediate convolutional layer in the architecture
to simulate a localized skip connection, as depicted in the previous figure:

y = W ⊛ x + x (3.13)

The skip connection is collapsed into the convolution module, and it only works if x
and y have the same dimensions. Therefore it is not directly applicable to the first
and last layer of the architecture since these layers respectively change the number
of channels from 3 to f and f to 3× s2, where s is the upscaling factor.
For these layers, the initialization scheme is modified into either partial identity
initialization or repeat-interleaving identity initialization. In the first case,
the 3 channels in input to the first convolutional module in the architecture are
added to the first 3 channels of the output produced by the same module, in such a
way that the remaining f -3 channels are left unchanged.
In the second case, the first 3-channels of the input to the last convolutional module
are repeat interleaved s2 times and added to the output of the layer, to mimic the
nearest-neighbor upscaling typically performed in the input-to-output connection of
state-of-the-art residual architectures.
All the previous initialization techniques are obtained by adding ones to the kernel
weights of the corresponding convolutional module at the appropriate location.

3.2.3 Burst super-resolution

PIUnet

PIUnet [12] is a neural network designed for solving multi temporal image super-
resolution with the particularity of addressing invariance to permutations in the input
burst and the estimation of the uncertainty in the produced HR image. Indeed, one
of the key features of PIUnet is its invariance to permutations of the LR input
burst of images, since the order of the images within the burst does not carry any
relevant information for producing images with a finer level of detail. The network
takes as input a burst of an arbitrary length of raw LR images, which are assumed
to be roughly registered with each other and it estimates both the HR image and a
corresponding pixel-by-pixel uncertainty value. This is useful for understanding how
good is the generated image, as well as improving the overall model performance. As
illustrated in figure 3.6, this is achieved by means of two parallel heads in the last part
of the architecture that transfer to the two sets of information the features produced
by the backbone of the network. It can also be seen how the uncertainty head does
not use a global skip connection that carries the residuals that are estimated from
bilinear upsampling and by averaging the LR inputs. Moreover, Pixel shuffling is
used as the upsampling technique.

30

Deep learning models for image super-resolution

Figure 3.6: PIUnet architecture [12].

(a) (b)

Figure 3.7: (a) Temporally-equivariant feature extraction (TEFA) block,
(b) Temporally-Equivariant RegNet (TERN) block.

As depicted in red in the network architecture in figure 3.8, 2D convolutions are
shared across the temporal dimension to extract spatial features that are combined
by using self-attention. Indeed, the use of self-attention in the temporal dimension
is proposed by the authors since it constitutes a permutation-equivariant operation
that allows for the combination of the information coming from multiple time instants
exploiting their cross-correlation. As explained in section 2.2.6, self-attention uses
three learnable matrices to project its input feature vector into three different
subspaces, namely the key, query, and value vectors. Moreover, the cross-correlation
matrix between the key and query is used to compute the weights used inside the
weighted sum of the value vectors that generate the output.
In order to maintain equivariance to the permutation of the input burst, is essential
for the 2D convolutions to be shared along the dimension describing the images
composing the burst, namely the temporal dimension. Based on this idea, the authors
designed a module shown in 3.7 (a) called Temporally Equivariant Feature Attention
(TEFA) to compute classic residual feature attention, as well as a temporally-
equivariant extension of the RegNet module called TERN, reported in figure 3.7 (b).
Similarly to RegNet, TERN is used to compute a K×K spatial filter that is different
for each image, but it is the same for multiple feature maps. To compute the values
of this filter, TERN exploits self-attention to compute the cross-correlation of the

31

Deep learning models for image super-resolution

computed features over the temporal dimension, thus obtaining the values. Indeed,
the overall architecture is equivariant to temporal permutations from its input to
the output of the TERN module, and to make it also invariant, the output of TERN
is simply averaged along the temporal axis.
The fact that the model is fully invariant to temporal permutation significantly
improves its performance and data efficiency. Moreover, the uncertainty of the super-
resolved image correlates with temporal variation in the series, and how quantifying
it further improves model performance.

MLB-FuseNet

Multi-Level Burst Fusion Network (MLB-FuseNet) [13] is a neural network architec-
ture for burst SR, that in the same way as PIUnet is capable of extracting features
being invariant to permutations of the input burst. The network takes as input a
burst of T raw registered LR images to generate the corresponding HR image. As
depicted in figure 3.8, the architecture is divided into two branches: the upper one
processes only one of the input T images, which is taken as the reference one, while
the lower branch processes the remaining T − 1 images all at once in a permutation-
invariant way. The features extracted in the bottom branch are used to augment the
features extracted in the top branch.

Figure 3.8: FuseNet architecture [13].

As depicted in the previous figure, both branches begin with a Mosaiced Con-
volution Feature Extractor (MCFE), used to extract high-level features without
disrupting the Bayer color arrangement of the raw input images that have been
previously mosaiced. This is achieved by using a polyphase decomposition where
different kernels work with a stride of 2 and with 4 different initial positions, as
shown in figure 3.9, ensuring in this way that each kernel only sees a consistent
pattern.

32

Deep learning models for image super-resolution

Figure 3.9: MFCE principle

The features estimated in both branches by MCFE are the inputs to two modules
that allow to combine them considering the correct spatial position in the original
Bayer grid. These two modules are the Multi-Level-Fusion (MLF) block in the top
branch, and the Equivariant Multi-Level Fusion (EMLF) block in the bottom
branch, both inspired by the SwinIR architecture [9].
In the lower branch, the equivariant MLF module adapts the SwinIR Deep Feature
Extraction block already explained before to a multi-image case. EMLF is used to
extract features equivariant to temporal permutation, in order to derive a permutation-
invariant representation by averaging in the temporal dimension. To do so, a
temporally equivariant encoder (EENC), followed by a sequence of K Equivariant
Residual Swin Transformer blocks (ERSTBs) and a temporally equivariant decoder
(EDEC) are used. In each ERSTB, the sequence of Swin Transformer Layers
(STLs) previously mentioned is used to extract the spatial features of each image
by exploiting the Spatial Multi-Head Attention (SMHA). The spatial features of
the different images are combined using Multi-Head Attention along the temporal
dimension (TMHA). This operation allows mixing the features of the different images
along the temporal dimension, in a mathematically equivariant way.
The EENC is defined in a similar way: a sequence of 2D convolutional layers is
applied to each frame separately in order to mix up the spatial features obtained by
the MFCE and combine the pixels of the Bayer mosaic, then a TMHA combines the
features of the different images. Similarly, the EDEC is formed by a sequence of 2D
convolutions and a TMHA.
The MLF module in the upper branch of the network is composed of an Encoder
(ENC), 2K Residual Swin Transformer blocks (RSTBs), made of a sequence of
STLs, alternated with fusion modules (FUSE) and a final Decoder (DEC), made of
traditional convolutional layers.
The fusion modules combine the features of the reference frame obtained in the
upper branch with the ones obtained in the lower branch from the other images of
the burst. The fusion is performed by averaging the features of the lower branch
along the temporal dimension and merging, through a 1D convolution after channel
concatenation. These fusion modules allow the upper branch to produce a super-
resolved image guided by the information extracted from the multiple images in the

33

Deep learning models for image super-resolution

lower branch. Multiple stages of the fusion module are used to slowly incorporate the
features of the burst at various levels of abstraction. After the MLF module, there is
a last fusion block that merges the final outputs of the MLF and EMLF blocks.
Finally, the Pixel Shuffle block generates the super-resolved image. There is also a
skip connection composed of demosaicing operation and bilinear upsampling so that
the network only learns a residual correction.

34

Chapter 4

Methodology

The aim of this chapter is to explain the work performed to adapt a SISR model
into a BSR one. The goal is to enhance the performance in terms of PSNR, to
ensure a superior image quality and level of detail while maintaining mobile-friendly
characteristics, as well as trying to keep the inference time as low as possible. Several
operations will be listed, such as the synthetic generation of a dataset of bursts of
RGB and RAW images, as well as a description of the studied fusion and registration
techniques, followed by the results obtained, underlining which are the ones that
satisfied the objectives. Moreover, a comparison between different networks will be
carried out.

4.1 The AI mobile challenge
The Mobile AI challenge is a part of the Mobile AI and AIM Workshops and
Challenges where the participants are asked to develop a lightweight and quantized
deep learning model for the single-image super-resolution problem and evaluate it
directly on mobile devices by means of an AI Benchmark application [14]. The
efficiency of the proposed solutions is evaluated on the Synaptics Dolphin platform
featuring a dedicated NPU that can efficiently accelerate INT8 quantized neural
networks. The score achieved by each model is computed based on its PSNR and
runtime results, thus balancing between the image reconstruction quality and the
efficiency of the model.

4.2 NCNet
Among the participants of the Mobile AI 2022 challenge [15], we selected one to
start our experiments with, which is the efficient fast Nearest Convolution Network
(NCNet) with only 54k parameters designed for real-time single-image super-resolution
[16]. It is lightweight enough to be easily deployed on mobile devices after an 8-bit
quantization, moreover, it is fully compatible with all major mobile accelerators. Its
CNN-based plain network structure is reported in figure 4.1, which also highlights its
most important component, the nearest convolution as residual learning architecture.
NCNet achieved a remarkable trade-off between performance and inference time.

35

Methodology

Moreover, thanks to the exploitation of parallelization, the model’s runtime on mobile
devices is even faster than the traditional bilinear upsampling.

Figure 4.1: NCNet model architecture [16].

As reported before, the plain network is composed of 6 pairs of 3x3 convolutional
layers with RELU activation function, followed by a final 3x3 convolutional layer, all
of them with a number of feature channels fixed to 32. The output of the sequence
of convolutions is then added to the result of the nearest convolution module, right
before the features upsampling performed by a depth-to-space operation.
As said before, the core component of the NCNet architecture lies in the Nearest
Convolution module, similar to the anchor-based residual learning proposed by
[10]. It is implemented by a special 1 × 1 convolution layer with stride 1, character-
ized by the fact that it is not trainable, meaning that the weights set equal to s2

groups of 3 × 3 identity matrix (where s is the upscale factor) and kept fixed during
the training process. Each one of the groups previously mentioned is used to create
an exact copy of the input RGB image, finally resulting in s2 copies. These copies
are crucial in order to reconstruct the HR image through a depth-to-space operation.
This leads to a reconstructed image equal to the one that would be obtained by
means of the nearest interpolation, but since the 1×1 nearest convolution exploits
parallel computations, the HR image is obtained in a much faster way.

4.2.1 Training replication
As a preliminary step, the NCNet training was replicated using the code available at
[17].
The training settings are the same as those reported in [16]. DIV2K (section 4.3.1)
is used both as the training set, composed of 800 image pairs, and the test set, which
contains 100 image pairs. The scale factor is fixed to 3 and the batch size is set to
64, while the patch size of the LR images is also set to 64x64, thus producing an HR

36

Methodology

patch of size 192x192. The Adam optimizer is the selected learning algorithm utilized,
with an initial learning rate of 10−3 decreased by half every 200,000 iterations, for a
total number of iterations set to 500,000. Also, all the weights are initialized using
Xavier initializer. The obtained results are listed in the following table:

Paper Reproduction
PSNR FP32 (db) 30.21 30.15

Table 4.1: NCNet SISR training results.

The obtained result refers to the case in which the network parameters have not
been quantized to INT8 yet, thus referring to the Floating Point 32 (FP32) case.
Even if with a slight difference, the replication allowed to confirm the results reported
in the paper, as well as the validity of the NCNet network.
In the table that follows is reported a comparison carried between NCNet and the
much more complex SwinIR (section 3.2.1) architecture:

Network PSNR FP32 [db] Number of parameters Inference time [ms]
NCNet 30.15 54k 0.629
SwinIR 34.89 886k 169.04

Table 4.2: NCNet/SwinIR comparison.

As for NCNet, SwinIR has been trained on the DIV2K dataset, and the gap
in performance between the two models is evident. However, it can also be seen
how NCNet has much fewer parameters than SwinIR, which translates into a much
faster inference time. Note that the inference times have been measured have been
measured on GPU NVIDIA GeForce RTX 2080 Ti, for a random 3-channel tensor of
size 150× 150.

SwinIr NCNet

Figure 4.2: HR images produced

After the INT8 quantization, the model can effectively be deployed on mobile.
Moreover, by means of the mobile AI benchmark application its inference time. In
figure 4.3 are reported 4 screenshots of the mobile application installed on a Huawei
P smart+ 2019 smartphone.

37

Methodology

Figure 4.3: Mobile AI benchmark application.

The mobile inference time has been measured on a 3-channel input of size 360×640
and resulted in an average value of 450 ms, a value considerably larger than the one
achieved on a desktop GPU.

4.3 Dataset synthetization
Another preliminary fundamental step for the training of a BSR model is to retrieve a
dataset in which a burst of LR images univocally corresponds to a ground truth image.
Since there are few existing real-world datasets where an HR image corresponds to a
burst of LR images, it will be generated synthetically.
For what concerns the training set, the burst of images will be synthesized on the
fly, just before entering the network. This is done to let the model train on images
that always have different displacements between each other, thus resulting in a
greater number of information that it can use to learn the mapping between LR and
HR. On the other hand, the validation set that will be used to measure the PSNR
performance of the model will be pre-generated, thus keeping the displacements
between the images fixed. The DIV2K dataset and The Zurich RAW-to-RGB are
the datasets chosen to perform this process.

4.3.1 DIV2K dataset
DIVerse 2K resolution (DIV2K) image dataset was proposed for the first time during
the New Trends in Image Restoration and Enhancement (NTIRE) 2017 challenge
[18]. The dataset was collected by the authors who manually downloaded 1000
RGB images from several websites that freely shared high-quality 2K resolution
photos. The images present a small amounts of noise and other corruption,
depicting a large diversity of contents, ranging from people, handmade objects, and
environments, to flora and fauna, and natural sceneries including underwater and

38

Methodology

dim light conditions. Since the most common upsampling factors in the image
super-resolution literature are of ×2, ×3, and ×4, all the images were cropped to
a multiple of 12 pixels on both axes. After the 1000 images were gathered, they
were randomly partitioned into 800 for the training set, 100 for the validation set,
and finally 100 for the test set, trying to maintain a good balance firstly in visual
contents and then on the average entropy.

4.3.2 Zurich RAW-to-RGB dataset

Zurich RAW to RGB is a large-scale dataset consisting of 20 thousand photos that
were collected using both a professional Canon camera and a Huawei P20 smartphone
for capturing RAW photos, as well as the resulting RGB images, captured in a variety
of places with different illumination and weather conditions [19]. It is composed of
48043 RAW-RGB image pairs, respectively of size 448×448×1 and 448×448×3, which
are extracted from images that are preliminarily matched, using a non-overlapping
sliding window. The images have then been split into 46.8K for training and 1.2K
for the validation set. Moreover, RAW image patches are additionally reshaped into
224× 224× 4, where the four channels correspond to the four colors of the RGBG
Bayer filter.

4.3.3 Synthetic RGB burst generation

The pipeline followed to synthetically generate the burst of images is based on the
code available at [20]. Originally, the code was conceived for producing a burst of
raw images starting from a single RGB image. However, in this first part of the work,
it has been modified in order to produce, instead, a burst of RGB images given the
input one, with no explicit addition of elements like noise.
A burst of a given length is generated by applying random transformations to a
given HR input image, and the result is downsampled by a given downsample
factor. After having initialized the parameters the procedure is the one that follows:
firstly the image pixel values are scaled to the range [0, 255], in the case they were
ranging from 0 to 1, then a sampling grid is created for the affine transformation,
and it is initialized with the input image dimensions. For the first image of the
burst that has to be created, no random transformations are applied except for a
translation to center the sampling grid. For what concerns the subsequent images in
the burst, random transformations that include translation, rotation, shear, scale,
and aspect ratio changes are applied. This is achieved by relying on the OpenCV
warpAffine function, which applies the affine transformation to the image, defined by
an affine transformation matrix that is generated based on the sampled transformation
parameters. Finally, a border crop is applied to the transformed image, which is then
downsampled based on the downsampling factor. Also, the inverse transformation
matrix and the inverse transformation of the sampling grid are calculated to track
pixel positions.
The resulting image is added to the list of burst images, which after being completed
is stacked into a single tensor.

39

Methodology

4.4 Training details
Once the dataset has been prepared the training process can be carried out. Note
that the baseline for the training code has been provided by [21], which is based on
the usage of the Pytorch python library. Thus, this will be the preferred library that
will be used for the experiments that will follow. The same goes for the parameters
of the training phase that are reported in the following:

• The training set of DIV2K is used to synthetically generate on the fly a burst
of arbitrary length given the ground truth HR image;

• The validation set is pre-generated, for a total of 100 burst-hr images pairs,
used to compute the PSNR;

• Scale factor: 3;

• Batch size: 64;

• Patch size: 64;

• Total iterations: 35k (2500 epochs);

• Loss funtion: L1-loss;

• Training algorithm: Adam optimizer, inital learning rate: 10−3, halved
every 15k iterations.

4.4.1 Resize problem
The process explained 4.3.3 involves a cropping operation and the use of a resizer
for downsampling the image different from the one originally used by the authors
who created the dataset in the first place. This translates into a change in the
performance of the model:

Original DIV2K Resized DIV2K
PSNR (db) 30.21 28.01

Table 4.3: NCNet SISR training results.

Also, the lesser number of pixels available to the model for learning the mapping
from LR to HR results in a worsening of the performance. Note that this case of
SISR is the one that will be taken into account in the following.

4.5 Fusion techniques
The first step for the reconstruction of a single HR image from the input burst
is to utilize a fusion technique, to amalgamate information coming from multiple
images effectively, without relying on any explicit registration between the images.
Thus, the network has been modified as depicted in figure 4.4, where the residual

40

Methodology

is computed using only the first 3 input channels, which corresponds to the image
taken as reference, that in this specific case also corresponds to the only image of
the input burst that is not modified by any transformation. Moreover, it can be seen
how the fusion step counts as a preprocessing step for network input data since
this operation is performed off-line.
The goal of this section is to carry out the comparative analysis of the two fundamental
fusion techniques that were taken under study: early fusion and slow fusion.

Figure 4.4: Modified NCNet architecture.

4.5.1 Early Fusion
One of the most straightforward techniques for the processing of multiple images
inside a CNN is to adapt the temporal depth of the network input layer to the number
of input images, where the temporal depth Dl represents the actual number of images
that constitute the burst [22]. This will enable the consolidation of all temporal
information within the initial layer, allowing all the remaining information within
the network to remain identical to the SISR case. In our specific case, the images,
having size 3×H ×W , are concatenated along the channel dimension, resulting in
an input tensor to the network of size 3 ·D ×H ×W . A visual representation of
this operation is depicted in figure 4.5.

Figure 4.5: Early fusion visual representation [22].

41

Methodology

4.5.2 Slow Fusion

An alternative to the early fusion operation is to partially merge temporal information
in a hierarchical structure. Figure 4.6 shows how the burst of images is slowly fused
into a single tensor that is the input to the network. As for the early fusion case,
also with slow fusion the images are concatenated along the channel dimension, but
in this case, the operation is performed considering just a pair of images, and this is
iterated until a single tensor is created. This results in a much greater quantity of
information that is placed as input to the network.

Figure 4.6: Slow fusion visual representation [22].

Note that early fusion is a special case of slow fusion, where instead of concate-
nating the images in pairs, all of them are processed at once.

4.5.3 Results

In this subsection are reported the results of the NCNet training done with the
specifics reported in section 4.4 for both the early and slow fusion cases, considering
bursts composed of 3, 8, and 16 images. In the following will be also reported the
obtained inference times, measured on a GPU NVIDIA GeForce RTX 2080 Ti, for
an input of size (3· burst length ×150× 150).

PSNR FP32 [dB] Inference time GPU [ms]
Burst size = 3 27.94 0.075
Burst size = 8 27.51 0.438

Table 4.4: Slow Fusion technique results.

The results for a burst size of 16 are missing since the process is killed due to the
excessive dimensionality reached by the fused images.

42

Methodology

Figure 4.7: Slow fusion Tensorboard log.

PSNR FP 32 [dB] Inference time GPU [ms]
Burst size = 3 27.93 0.102
Burst size = 8 27.92 0.238
Burst size = 16 27.88 0.283

Table 4.5: Early Fusion technique results.

Figure 4.8: Early fusion Tensorboard log.

The first important result that emerges is that none of the different combinations
of fusion technique and burst size gave a PSNR score higher than the single-image
case of table 4.3. This can be traced back to the absence of the registration between
the images, therefore, not having filled the displacements between the images does
not allow the network to reconstruct a better image than the single image case. The
increase in the amount of information available for the network has not led to an
improvement, but rather to a worsening due to the fact that the images are poorly
correlated with each other. These results highlight the need of registration when
working with multiple images.
Comparing the two fusion techniques, early fusion resulted in being the fastest fusion

43

Methodology

technique, being also lighter than the slow fusion case. Moreover, the obtained
PSNRs are quite similar, except for the case of burst size = 8. The additional
complexity of slow fusion did not lead to results that were significantly superior to
those of early fusion, being even worse and slower in one case, and even not allowing
to work with a burst of size 16. Since faster and lighter techniques are preferred for
his work, in the following early fusion will be kept as the preferred fusion technique.

4.6 Registration techniques
In real-world scenarios, objects may undergo complex motions, and optical flow
estimation techniques are designed to handle such complex motions. As the last
section highlighted, also in the architecture under study, a registration of the burst
images is needed. This process improves the overall quality of the super-resolved
image and makes it free from motion artifacts, and can be divided into two steps:

1. Optical flow estimation: estimation of a 2-channels vector of the same size as
the input images, which quantifies the misalignments that the depicted objects
may undergo in the two different images;

2. Warping phase: the motion in the images is compensated by means of a
warping operation that uses the optical flow previously estimated, thus aligning
the images and ensuring temporal consistency.

Optical flow estimation can provide sub-pixel accuracy in estimating motion vectors,
which is essential for aligning frames accurately.
The architecture that results can be summarized by figure 4.9, where the NCNet
architecture remains unchanged, but the preprocessing also includes the registration
performed before the early fusion strategy. As for the fusion, the alignment is
performed off-line.

Figure 4.9: Final architecture.

44

Methodology

The aim of this section is to introduce the different registration strategies analyzed,
employing both neural networks and traditional algorithms, as well as comparing
the results achieved.

Warping phase

Before describing the different ways in which the optical flow is estimated, here is
listed the warp function used to align the images using the estimated optical flows.
It has been extracted from the code available at [20], while in figures 4.10 and 4.11
are reported two examples of registered and not registered images. They highlight
how, once the images are aligned, the border are padded with zeros, thus resulting
in black outlines surrounding the image.

1 de f warp (f ea t , f low , mode=’ b i l i n e a r ’ , padding_mode=’ z e ro s ’) :
2 " " "
3 warp an image/ tenso r (im2) back to im1 , accord ing to the o p t i c a l

f low im1 −−> im2
4

5 input f low must be in format (x , y) at every p i x e l
6 f e a t : [B, C, H, W] (im2)
7 f l ow : [B, 2 , H, W] f low (x , y)
8

9 " " "
10 B, C, H, W = f e a t . s i z e ()
11

12 # mesh gr id
13 rowv , co lv = torch . meshgrid ([torch . arange (0 . 5 , H + 0 . 5) , torch .

arange (0 . 5 , W + 0 . 5)])
14 g r id = torch . s tack ((colv , rowv) , dim=0) . unsqueeze (0) . f l o a t () . to (

f e a t . dev i c e)
15 g r id = gr id + f low
16

17 # s c a l e g r id to [−1 ,1]
18 grid_norm_c = 2 .0 ∗ g r id [: , 0] / W − 1 .0
19 grid_norm_r = 2 .0 ∗ g r id [: , 1] / H − 1 .0
20

21 grid_norm = torch . s tack ((grid_norm_c , grid_norm_r) , dim=1)
22

23 grid_norm = grid_norm . permute (0 , 2 , 3 , 1)
24

25 output = F. grid_sample (f ea t , grid_norm , mode=mode , padding_mode=
padding_mode)

26

27 re turn output

45

Methodology

(a) (b)

Figure 4.10: Not registered images.

(a) (b)

Figure 4.11: Registered images.

4.6.1 PWCNet
The first optical flow estimator used is PWCNet, a compact CNN model using
principles like pyramidal processing, warping, and the use of a cost volume, developed
by Sun et al [23], the architecture of which is depicted in figure 4.12.

Figure 4.12: PWCNet architecture [23].

46

Methodology

The first step for the optical flow estimation when provided with two input images
is the creation of pyramids by the neural network, namely a hierarchy of L levels
of feature representations. The lowest level of the hierarchy corresponds to the
input images, and by sequentially applying Convolutional operations the features
are downsampled till reaching the l-th layer.
After the pyramids’ creation, inside the warping layer, at the l-th level, the ×2
upsampled flow from the l+1-th level is used to warp the features of the second
image toward the first image, using bilinear interpolation.
The cost volume layer uses the previously constructed features to generate a
cost volume, which takes track of the matching costs between pixels in the current
image and their counterparts in the other image. Specifically, the matching cost is
determined by measuring the correlation between features extracted from the first
image and the corresponding ones obtained from the second image after the warping
operation has been performed.
The previously computed cost volume, the pyramidal features of the first image,
and the upsampled optical flow from the l+1-th level are the inputs to the optical
flow estimator layer. This layer is a multi-layer CNN responsible for producing
the optical flow at the l-th pyramid level. The number of feature channels remains
consistent across all pyramid levels, with each level’s estimator having its unique set
of parameters rather than goes on until it reaches the desired level.
Finally, the output and the features produced by the optical flow estimator layer are
the inputs to a sub-network known as the Context network, used to produce the
refined flow. The Context network itself is a feed-forward CNN consisting of seven
3× 3 convolutional layers, each utilizing a different dilation constant. Using given a
dilation constant k means that the inputs to a filter in the layer are k units apart in
both the vertical and horizontal directions.
After training NCNet with the same settings already explained in section 4.4 and
the addition of the PWCNet architecture, the results that follow are obtained:

Figure 4.13: PWCNet Tensorboard log.

47

Methodology

PSNR FP32 [dB]
burst length = 3 28.93
burst length = 8 29.67
burst length = 16 29.67

Table 4.6: PWCNet training results.

4.6.2 FastFlowNet
The second alternative for fast optical flow prediction is FastFlowNet, a lightweight
model that follows the widely-used coarse-to-fine paradigm like PWCNet, to estimate
a gradually refined optical flow. However, differently from PWCNet, FastFlowNet
introduced some innovations to reduce model size, thus reducing parameters and
computation costs.
Indeed, as depicted in figure 4.14, the core components of the architecture are the
"Head Enhanced Pooling Pyramid" (HEPP), which substitutes PWCNet’s dual
convolution feature pyramid for enhancing pyramid features of high-resolution, the
"Center Dense Dilated Correlation" (CDDC), proposed for computing cost
volume in a lightweight way, even for the cases in which large search radius are
employed, and finally the "Shuffle Block Decoder" (SBD), employed to compute
the optical flow at each level with significantly cheaper computation.

Figure 4.14: FastFlowNet architecture [24].

HEPP is a module able to extract features initially using convolutions and later
pooling layers. Convolutions are also employed to further refine pyramid features
at a minimal computational cost. This approach results in the creation of six
pyramid levels, each time downsampled by a scale factor of 2, effectively distributing
computation across the different levels.
As PWCNet, also in this case bilinear interpolation-based warping is used to warp the
features of the second input image based on a previously computed flow, upsampled
by 2x. This warping significantly reduces displacement caused by large motions, thus
reducing the search region and simplifying the estimation of small residual flows.
The CDDC layer allows reducing computation when computing large cost volumes,
by downsampling grid points in areas with significant motion, and densely sampling

48

Methodology

search grids around the center. It outputs 53 feature channels, motivated by the fact
that the residual flow distribution primarily focuses on small motions.
Thanks to the compact cost volume generated by CDDC, the maximum feature
channels in the decoder network can be reduced with respect to PWCNet without
encountering issues. To further decrease computational costs, a group convolution
followed by SBD is used. Each decoder network belonging to SBD includes three
shuffle blocks with a group size of 3, efficiently reducing computation with only
marginal drops in accuracy.
After completing the training with FastFlowNet (code available at [25]) the obtained
results are the ones that follow.

Figure 4.15: Fastflownet tensorboard log.

PSNR FP32 [dB]
burst length = 3 29.03
burst length = 8 29.79
burst length = 16 29.94

Table 4.7: Fasflownet training result.

49

Methodology

4.6.3 Handheld Multi-Frame Super-Resolution algorithm
The method “Handheld Multi-Frame Super-Resolution algorithm” by Wronski et al.
[26] is the one used in the Google Pixel 3 smartphone to produce a single high-
quality picture starting from a raw burst of photographs captured by the smartphone
camera.
In this work the implementation done by Lafentre et al. [27] will be tested for
estimating the optical flow without relying on neural networks. Their implementation
is mainly composed of 3 phases:

1. Pre-processing phase: converts raw images into grayscale;

2. Registration stage: in this first step optical flows between the reference image
and each of the remaining images within the input burst are predicted;

3. Accumulation stage: the second step produces the HR image, by merging
together burst images exploiting the optical flows previously computed.

For the scope of this thesis work, only the registration process listed in algorithm 2,
as well as the pre-processing step, will be used. For the sake of completeness, the
accumulation stage will be detailed in the Appendix section. The pre-processing
step exploits a low-pass filter to filter out the frequencies of the images above π

2 , to
convert the raw images into grayscale images with the same size.

Algorithm 2: Registration algorithm [27]
Data: Reference J1, Moving Jn, tile size T , reference radius R
Result: Patchwise flow Vn = {V (1)

n , V (2)
n , ..., V (P)

n }
/*Compute a high-resolution version of the images */
G1 ← ComputeGrayscaleImage(J1);
Gn ← ComputeGrayscaleImage(Jn);
/*Decompose the reference image into a collection of P tiles.

P1 refers to the non-overlapping patches of size T × T that
are a partition of J1. */

P1 ← ToT iles(G1, T);
p← 1;
/*For each tile, predict the local parametric flow */
for p1 ∈ P1 do

/*Predicts a patchwise subpixel translation with BM */
V (p)

n ←MultiScaleBlockMatching(p1, Gn);
/*Predicts a refined patchwise subpixel translation with 3

ICA iterations. */
i← 0;
while i<3 do

i← 0;
V (p)

n ← ICA(p1, Gn, V (p)
n);

end
p← p + 1;

end

50

Methodology

Registration stage

The registration step has the goal of estimating a sub-pixel optical flow to align
all the images composing the burst over a reference one chosen among them. To
do so, each one of the images is partitioned into patches and the optical flows are
estimated between the corresponding patches. This is achieved by relying, again,
on a two-stage strategy: first, a coarse flow with a multi-scale block-matching
(BM) algorithm is predicted, which is subsequently used as an initialization for the
inverse compositional algorithm (ICA), which is a variant of the Lucas-Kanade
(LK) algorithm [28], that is iterated three times in order to reach a satisfying refined
flow with sub-pixel accuracy.

Multi-scale BM algorithm

The multi-scale BM algorithm (algorithm 3) roughly estimates the optical flow
between corresponding patches of the two different images, by using a coarse-to-fine
approach on a 4-level Gaussian pyramid.
At each pyramid level, patch-wise misalignment are estimated and then used to
initialize the next level. Formally, at a given level of the pyramid and for a given
pixel location in the reference image, corresponding patches are extracted from both
the reference image and the second image, in such a way that the tile of the second
image has a larger dimension, that depends on the value of the search radius R.
At the highest level, for a given patch of the reference image, the optical flow is
initialized by considering the 3 closest tiles in the second image, among which, the
first patch is fully contained by construction.
Once the flow has been initialized, the flows of each of the 3 tiles are separately
computed, and to each of them is associated the value of l1 error between p1 and the
matching position in the patch for which the error is being computed. The flow that
minimizes the error is the one chosen as the candidate for the next level. In this way,
at each level are contained all the motions estimated up to that level plus the new
information computed by the latter.

Inverse Compositional Algorithm

The result of the BM algorithm previously explained is an optical flow precise
up to one pixel, whereas the usage of the Inverse Compositional Algorithm (ICA)
(algorithm 4) aims to reach sub-pixel accuracy.
The ICA method solves the problem of finding a new flow estimate as the sum of the
BM initial guess of the optical flow and the subpixel refinement estimated by ICA for
each tile returned by the BM algorithm. The subpixel refinement is obtained after 3
ICA iterations are performed on each one of the input patches. It is necessary to
stop the algorithm if a maximum number of iterations are reached, since the method
may converge very slowly to the solution.
The input parameters of the algorithm are the two images, an initial approximation of
the flow p, and a small constant ϵ, that is used to stop the iterative process, according
to the convergence criterion ||∆p|| < ϵ. It follows a coarse-to-fine strategy by creating

51

Methodology

Algorithm 3: Multi Scale BM algorithm [29]
Data: {I0, ..., IN−1} burst of N downsampled grayscale images, where I0 is

the reference image
Data: {p0, ..., p3} ∈ {1, 2}4 norm power at each pyramid level
Result: Set of aligned tiles at reference image location (i, j)
for k ∈ {0, ..., N − 1} do

Compute Gl
k, l ∈ {0, ...,3}

end
for k ∈ {0, ..., N − 1} do

(u−1, v−1)(i, j)← (0,0)∀i, j ;
for pyramid level ∈ {0, ...,3} do

Divide G0
l in equally spaced tiles;

if l > 0 then
Upsample the previous level alignments (ul1; vl1)(i, j),∀i, j

end
for reference tile T l

0 at location (i, j) do
if l > 0 then

Update the upsampled (ul−1, vl−1)(i, j) by keeping the
alignment that minimizes D1(ul−1, vl−1)among those of the 3
nearest coarse-scale tiles

end
Get all possible (u, v) locations in Gl

k of tiles of size nl × nl in a
search area of size (nl + 2rl)× (nl + 2rl) centered around
(i + ul−1; j + vl−1) ;

Compute all possible distances Dpl(u, v), pl ∈ {1,2};
||µ|| < 1

end
(ul, vl)(i, j)← (ul−1, vl−1)(i, j) + Dpl(u, v); if l<3 then

Compute subpixel displacement vector µ(ul, vl) if ||µ|| < 1 then
(ul, vl)(i, j)← (ul, vl)(i, j) + µ

end
end

end
Associate to the reference tile at finest scale T 3

0 at location (i, j) the tile
T 3

k of Ik at location (i + u3; j + v3)
end

52

Methodology

a pyramid of images, and at each scale, a variant Lucas Kanade algorithm is used to
update the estimation of the optical flow for the next finer scale. Indeed, differently
from the latter the Hessian matrix remains constant during the iterations and
remains constant during the cycle, thus reducing the computational costs. Moreover,
bilinear/bicubic interpolations are used to estimate the neighborhood of the pixel for
which the optical flow is being refined.

Algorithm 4: Inverse Compositional Algorithm [30]
Data: I1, I2, p, ϵ
Result: p
Compute ∇I1(x);
Compute the Jacobian J(x);
Compute ∇I1(x)J(x);
Compute the hessian;
while ||∆p < ϵ|| do

Compute I2(x′(x; p)) using bilinear or bicubic interpolation
Compute I2(x′(x; p))− I1(x)
Compute q

x(∇I1(x)J(x))T I2(x′(x; p))− I1(x)
Solve for ∆p using equation x′(x; p)← x′(x; p) ◦ (x′(x; p))−1

end

After terminating the training stage with the inclusion of the ICA algorithm,
using the code available at [31], as the optical flow estimator the obtained results
are the ones that follow:

Figure 4.16: ICA Tensorbaord training log.

PSNR FP32 [dB]
burst length = 3 28.97
burst length = 8 29.71
burst length = 16 29.71

Table 4.8: ICA training results.

53

Methodology

4.6.4 OpenCV
The other alternative that does not rely on a neural network for the estimation
of the optical flow involves the usage of OpenCV python library, specifically the
method cv2.calcOpticalFlowFarneback. It involves an implementation of the algorithm
proposed by Gunnar Fanerback [32], who developed a two-frame motion estimation
algorithm based on polynomial expansion.
Given two input images, the first step of the algorithm involves approximating the
neighborhood of each pixel x of both images with quadratic polynomials, which can
be done using the polynomial expansion transform:

xT Ax + bT x + c (4.1)

where A is a symmetric matrix, b is a vector, and c is a scalar. These coefficients are
estimated by assigning the highest weights to the neighboring pixels of the analyzed
pixel x, and by letting them decrease according to the distance from x.
The result of polynomial expansion is that each neighborhood is approximated by
a polynomial. Then the idea is to start analyzing what happens if a polynomial
undergoes an ideal translation. Given a certain polynomial f1(x):

f1(x) = xT A1x + bT
1 x + c1 (4.2)

A new signal f2(x) can be constructed considering a global displacement d:

f2(x) = f1(x− d) = (x− d)T A1(x− d) + bT
1 (x− d) + c1 =

= xT A1x + (b1 − 2A1d)T x + dT A1d− bT
1 d + c1 =

= xT A2x + bT
2 x + c2

(4.3)

The unknown displacement d can be derived by equaling the coefficients, which
yields to the following equations:

A2 = A1 (4.4)

b2 = b1 − 2A1d (4.5)

c2 = dT A1d− bT
1 d + c1 (4.6)

Thus, leading to:
2A1d = −(b2 − b1) (4.7)

d = −1
2A−1

1 (b2 − b1) (4.8)

The assumptions that allow reaching the previous expressions are that an entire signal
is a single polynomial and a global translation involves the two signals. Even though
equation 4.8 can be used for real signals, the assumptions that allow obtaining it are
not realistic, these assumptions are then relaxed, thus resulting in the introduction
of some errors. The goal is to try and keep these errors as small as possible, by
changing the global polynomials with local polynomial approximations, achieving
the following expressions:

A(x) = A1(x) + A2(x)
2 (4.9)

54

Methodology

∆b(x) = −1
2(b2(x)− b1(x)) (4.10)

A(x)d(x) = ∆b(x) (4.11)

where d(x) indicates a spatially varying displacement field, not a global displacement
anymore. Even if equation 4.11 could be solved for each pixel in the images, the
authors proceeded to make the assumption that the unknown displacement field
varied slowly over a neighborhood of a pixel, resulting in the possibility of integrating
such information. Thus the objective is to find d(x) satisfying as well as possible
over a neighborhood of x, or more formally minimizing:

Ø
∆x∈I

w(∆x)||A(x + ∆x)d(x)−∆b(x + ∆x)||2 (4.12)

where w∆x is a weight function for the points in the neighbors of the considered
pixel x.
The algorithm robustness can be improved if the displacement field can be parame-
terized according to some motion model, which is straightforward for motion models
that are linear in their parameters.
Another problem with the method is that the local polynomials are assumed to be
at the same coordinates in the two signals that are identical except for the unknown
displacement. However, due to the fact that polynomial expansions are local models,
these will vary spatially, introducing errors that increase with larger displacements.
If prior knowledge about the displacement is known, the polynomial at x of the first
image and the polynomial at x+d(x) in the second image can be compared, where
d(x) is the known a priori displacement field. Then the difference between the real
displacement and its rounded a priori estimate has to be computed. A more precise
a priori estimate means that a smaller difference has to be estimated, thus improving
the chances of a good displacement estimate. There are two different approaches to
do this: iterative displacement estimation and multi-scale displacement estimation.
After incorporating this technique in the pre-processing step of the NCNet training,
the following results are obtained:

Figure 4.17: OpenCV Fanerback algorithm tensorboard log.

55

Methodology

PSNR FP32 [dB]
burst length = 3 27.95
burst length = 8 27.92
burst length = 16 27.93

Table 4.9: OpenCV Fanerback algorithm results.

4.6.5 Results
In the following is reported a summary of the obtained results:

PWCNet FastFlowNet ICA OpenCV
Burst length = 3 28.93 29.03 28.97 27.95
Burst length = 8 29.67 29.79 29.67 27.92
Burst length = 16 29.67 29.94 29.67 27.93

Table 4.10: Registration strategies PSNR FP 32 [dB] results summary.

The most noticeable result is that except for the OpenCV technique, all of the
proposed registration strategies allowed surpassing the PSNR score related to the
SISR case. This underlines how the registration process is essential when working
with a burst of images, to let the neural network take advantage of the great amount
of information in inputs, thus reducing the search space for the reconstruction of the
HR image, which finally results in more detailed than then the Single-Image case.
From table 4.10 it can be understood how working with a burst of 8 images is
the most optimal choice. Indeed, using 16 image bursts does not result in far
superior performances, in some cases it also reaches the same PSNR values as the 8
image case, while the time needed for both the HR image reconstruction, and the
images registration is almost doubled. While using 8 images instead of 3 results in a
noticeable boost in performance, while only slowing down a bit the inference time.
To further compare the studied registration strategies, table 4.11 reports the values
of the different inference times measured on a desktop GPU NVIDIA GeForce RTX
2080 Ti, needed for the estimation of the optical flow of two images of size (3, 150,
150):

Registration method Inference time [ms] Number of parameters[M]
OpenCV 1.584 /

ICA 5.082 /
FastFlowNet 6.675 5.38

PWCNet 8.047 9.37

Table 4.11: Inference times.

The strategies that do not involve the usage of a neural network resulted in being
the fastest. However, they are not optimized for working with a batch of images.
Indeed the training time needed by them is far superior when compared to the time
taken by PWCNet and FastFlowNet.

56

Methodology

The number of parameters of the two neural networks however highlights how these
models are much bigger than NCNet, thus quantizing them and trying to deploy
them on low-power and mobile devices is a very challenging task, almost impossible.
Since ICA is an algorithm already used in a mobile environment, it results in being
the most suitable candidate for a mobile deployment.
To make a visual comparison here are reported some examples of reconstructed
images:

GT LR SISR (PSNR=28.01)

Figure 4.18: Ground truth, Low resolution, and SISR produced image details.

PWCNet (PSNR=29.59) FFN (PSNR=29.79) ICA (PSNR=29.71)

Figure 4.19: Reconstructed image details using PWCNet, FastFlowNet (FFN),
and ICA.

Another experiment, involving a training stage extended for 10k epochs has also
been performed for all the techniques except for the OpenCV, using bursts of 8
images to try to understand if the models could achieve higher PSNR scores. Indeed,
using more epochs resulted in just slightly better results, even though if the training
had continued probably the overfitting problem might have arisen.

PSNR FP32 [dB]
PWCnet 29.88

FastFlowNet 29.93
ICA 29.84

Table 4.12: 10k epochs training results.

57

Methodology

Figure 4.20: 10k epochs training tensorboard log.

4.7 Model alternatives
Other lightweight networks for super-resolution have also been studied, respectively a
lighter and a bigger model compared to NCNet. As the latter, these two other models
have been designed to perform SISR, so before training they have been modified
accordingly to perform BSR. In this subsection, their structure will first be described
and later a training will be done to compare the performances to NCNet.

4.7.1 Extreme Low-Power Super Resolution
The first model is the Extreme Low-Power Super Resolution (ELSR) network [33]
which was developed for tackling the video super-resolution task, with the aim of
being a mobile-friendly network that consumes as little energy as possible, thus
complex operations such as optical flow estimation and multi-frame feature alignment
were initially discarded (code available at [34]). The architecture is reported in the
following:

Figure 4.21: ELSR architecture [33].

Differently from NCNet, the architecture is composed of 6 layers, of which only 5
have learnable parameters, including 4 convolution layers and a Parametric ReLU
activation layer, which has been studied to boost the performance while having
a lower power consumption when compared to other activation functions. In this
architecture, the first convolution has been modified in order to let it accept as

58

Methodology

input a tensor of a number of channels equal to 3× burstlength. The output of the
convolution, as well as, the intermediate feature channels are all set to 6.
As for NCNet, the Pixel-Shuffle operation (also known as depth2space) is used as
the last element in the pipeline to upscale the size of the produced feature maps.
Moreover, it also uses a skip connection to transfer the input features directly to the
last convolution layer for compensating the loss of information.

4.7.2 MobileSR

The heaviest alternative is the mobileSR architecture depicted in figure 4.22 chosen
among the participants of the NTIRE 2022 challenge [35]. The three main modules
of this model are: the convolutional layers, the upsampling layer and the proposed
hybrid module composed of a transformer layer, that combines the qualities of
convolution and multi-head self-attention, and an inverted residual block.

Figure 4.22: MobileSR architecture [35]

The convolution layer is used to map the input to feature space and also in this
case it has been modified to accept a number of channels compatible with the input
bursts of images. The hybrid module is employed to simultaneously extract local and
global information, specifically, it is repeated five times to learn discriminative feature
representation. To upsample the feature maps and produce the HR image multiple
convolution layers are employed, as well as a final upsampling layer, specifically a
pixel shuffle one. The code used to replicate and train this network is available at
[36].

4.7.3 Results

The results of the training stage are reported along with the ones obtained by NCNet,
in order to carry out a comparison. The models have been trained considering bursts
of 8 images, PWCNet as the optical flow estimator, and early fusion as the fusion
strategy.

59

Methodology

Figure 4.23: Model alternatives tensorboard log.

Also for the results that will follow, the inference times have been measured on
desktop GPU NVIDIA GeForce RTX 2080 Ti, needed for an input of size (3*burst
length, 150, 150):

Network Number of parameters Inference time [ms] PSNR FP32 [dB]
NCNet 58k 0.62 29.59
ELSR 3k 0.39 27.65

MobileSR 185k 9.62 31.88

Table 4.13: Models numerical comparison.

Having more than 100k parameters than NCNet and using strategies like self-
attention and elements like transformers, MobileSR achieved a PSNR 1 dB higher
than the one obtained by NCNet. Moreover, the red curve of figure 4.23 suggests
that if the training had been prolonged it would have achieved even better results,
given that, unlike the other two models, the curve has not yet saturated. However,
this model has also resulted in being the slowest, with an inference time far superior
to the other two cases.
For what concerns ELSR, the model resulted in a PSNR even smaller than the SISR
setting of NCNet. Its really small structure made it the fastest model among the
three, even if the difference with NCNet inference time is negligible, resulting in
NCNet being a superior architecture.
It can be concluded that depending on the constraints of the application for which
the model has to be employed one may prefer NCNet or MobileSR, depending on
whether the application requires an image reconstruction process that is faster or
more detailed.

4.8 Working with RAW images
The previous results demonstrated how the models were able to produce detailed HR
images starting from images that presented no other source of corruption. This does

60

Methodology

not hold for a real-world application, where images could present high levels of noise.
In order to test the models’ effectiveness with images captured by real devices the
following changes have been made.

Synthetic RAW burst generation
Differently from before, the models were also tested on images in RAW format.
Indeed, the full pipeline available at [20] gives the ability to generate a burst of RAW
images starting from a single RGB image. Specifically, the generated bursts obtained
by relying on the operations already explained in section 4.3.3 are then mosaicked,
and corrupted by random noise to obtain the RAW burst. The images composing
the resulting bursts have 4 channels corresponding to the ’R’, ’G’, ’G’, and ’B’ values
in the RGGB bayer mosaic.
In this case the Zurich RAW-to-RGB dataset (section 4.3.2) has been employed.

Architecture update
The mosaicking operation, which extracts RGGB Bayer planes from an RGB image,
involves an additional downscaling of the input image by a factor of 2, thus resulting
in a final downscaling of the input image size of 2 · downscalingfactor. To recover
this additional downscaling, at the end of the network architectures has been added
an additional Pixel Shuffle layer.

4.8.1 Results
Different from the settings of section 4.4, in this case, training has been performed by
upscaling the images by a 4x factor, and for 500 epochs, that resulted in more than
350k iterations due to the great number of images composing the Zurich dataset.
This process has been carried out for both the NCNet and the mobileSR architectures,
using also in this case PWCNet as the optical flow estimator and early fusion as the
fusion strategy. The obtained results are the ones that follow:

Figure 4.24: Raw training tensorboard log.

61

Methodology

Network PSNR FP32 [dB] Number of parameters Inference time [ms]
NCNet 34.04 54k 2.096

MobileSR 35.28 185k 10.605

Table 4.14: Raw images training results.

The most noticeable result is a big boost in PSNR that the models achieved, but
this is mainly due to the large number of images that the Zurich dataset is able to
provide. Moreover, working with 4 channel images and a scale factor of 4 translates
to a slighter slower inference time for both the analyzed models.
To carry on a comparison of the produced super-resolved images, a burst of raw
images captured with a Zebra technologies device will be used. Since no GT is
available in this case, the HR image built by Fusenet [13] will be taken as a reference.
Moreover, since the RGB images that correspond to the RAW images are also
available, the models trained on RGB images without noise will also be tested.

LR SISR BSR

Figure 4.25: Comparison of details of the reconstruced image.

The table that follows also summarizes the total number of parameters achieved
by the different combinations:

Model Number of parameters
Fusenet + PWCNet 9.8 M + 9.37 M

NCNet + PWCNet (RAW) 54k M + 9.37 M
MobileSR + PWCNet (RAW) 185k + 9.37 M

NCNet + ICA (RGB) 54k
NCNet + PWCNet (RGB) 54k M + 9.37 M

MobileSR + PWCNet (RGB) 185k M + 9.37 M

Table 4.15: Models number of parameters comparison.

62

Methodology

Fusenet [13]. NCNet RAW train. MobilseSR RAW train.

Figure 4.26: Details of images reconstructed by NCNet, MobileSR, and Fusenet
using PWCNet as optical flow estimator.

NCNet RGB train (ICA). NCNet RGB train. MobileSR RGB train.

Figure 4.27: Details of images reconstructed by NCNet, and MobileSR trained on
RBG images.

It is noticeable how all the models performing BSR are able to produce images
far more detailed than the one reported in figure 4.25, confirming the superiority of
BSR as the technique to produce super-resolved images. Moreover, looking at figure
4.26 it is evident how the models trained to perform denoising to the input images
produce much cleaner and more detailed images with respect to the bottom samples
of figure 4.27 which tend to be much more corrupted by noise and have a lower level
of detail. Indeed, for applications that involve the use in real-world case scenarios
should be advisable to train the network to perform denoising on the input images,
along with super-resolution.
For both the NCNet and the MobileSR architectures the gap in performance with
Fusenet is evident, even though it can be seen from table 4.15 how much bigger the
Fusenet architecture is when compared to mobile-friendly architectures.
The difference in the number of parameters is also reflected in the images produced
in all the cases by the mobileSR model when compared to NCNet. The case that
seems to lack a greater level of detail is the case in which ICA is used as a regis-
tration strategy, even though it is the most lightweight solution for mobile deployment.

63

Chapter 5

Conclusions

This thesis work focused on the Burst Super-Resolution task, a particular case of
the image super-resolution problem, a branch of the image restoration task. The
interest in this task is motivated by the fact that allows reaching a finer level of
details in the high-resolution images reconstructed, compared to the single image
case, furthermore, given the enormous diffusion of mobile photography, it is a task
that can very easily find an application in a real-world scenario. In contrast to this,
however, the models developed in the literature employ huge computational resources,
making their quantization and the subsequent deployment on low-power devices an
almost impossible task. Being less popular than the single-image super-resolution
case, the literature is not as developed as the latter case, thus this work began
by picking a lightweight deep learning model for single-image super-resolution and
adapting it to let it accept a burst of images as input. Changing an architecture
from a single-image one to a burst one also involves the usage of strategies for both
the fusion and the registration of the image features, thus a study and a comparison
of different techniques has been carried out.
The conducted study proved the superiority of burst super-resolution for producing
images more detailed than the ones produced using a single image. However, it
has also been highlighted that to reach such a result burst super-resolution heavily
depends on the registration stage of the images, without which there is no real
advantage for preferring working with multiple images instead of only one image.
Moreover, the image alignment has to be performed well enough for the images to
reach a sub-pixel alignment. This is the most important obstacle for the deployment
of low-power devices since networks used for optical flow estimation have an incredibly
high amount of parameters, making their quantization an almost impossible challenge.
However, strategies that do not rely on neural networks already developed for a
mobile environment also exist, and could also make this task easier, even though
they do not allow them to reach the same level of refinement that neural networks do.
Moreover, it has also been verified that working with images corrupted with noise
beside rotations and translations has the advantage of letting the model understand
how to produce cleaner and more detailed high-resolution images, which is an essential
feature for a real-case scenario. Different models for image super-resolution have
also been compared, underlining how to reconstruct a more detailed image, greater
complexity is required which consequently translates into a greater amount of time

64

Conclusions

to complete the task. Depending on the requirements of the application for which
the model is developed, its various elements have to be chosen accordingly.

Future works
The steps that could be followed to continue this work include trying to understand
how much more complex a model can get using mobile-friendly elements, to reach
a finer quality of details in the produced HR image. Once it is done, it has to be
understood if that model could be quantized for deployment in a mobile environment.
If that is not the case an ablation study has to be conducted trying to understand
the optimal trade-off between model complexity, thus quality in the reconstruction,
and the mobile deployment. Also, the subsequent inference time has to be taken into
account to satisfy the requirements of the application.

65

Appendix A

A.1 Handheld: Accumulation

Once the images composing the input burst are aligned with sub-pixel accuracy to a
reference one, the next step followed by the handheld multi-frame super-resolution
algorithm is to merge all the images together to produce an HR image with a size s
times greater than the starting image, where s is the upscaling factor.
To do so, the images are divided into a certain number of N collections of tiles of size
T × T, whose positions relative to the reference one are known. Then, a memory-
efficient variant of the nearest convolution sequentially aggregates the different tiles
into the final HR image I. More formally:

I(x, y) =
qN

n=1 rn(x, y) q
(u,v)∈N3

n
wn(x, y, u, v)Jn(u, v)qN

n=1 rn(x, y) q
(u,v)∈N3

n
wn(x, y, u, v)

(A.1)

For each LR image, for a given HR pixel (x, y) the values of the closest 3 × 3
neighborhood are accumulated. In this way, each frame is responsible for 9 weighted
observations for generating the HR pixel at (x, y). This strategy is optimal for mobile
devices since it allows optimizing the memory footprint of the algorithm no matter
the burst size being a single image is processed at each time.

Figure A.1: Accumulation representation [27]

66

67

Bibliography

[1] Jingwen Su, Boyan Xu, and Hujun Yin. «A Survey of Deep Learning Approaches
to Image Restoration». In: Neurocomputing 487 (Feb. 2022). doi: 10.1016/j.
neucom.2022.02.046 (cit. on p. 2).

[2] Kevin P. Murphy. Machine learning : a probabilistic perspective. Cambridge,
Mass. [u.a.]: MIT Press, 2013. isbn: 9780262018029 0262018020. url: https:
/ / www . amazon . com / Machine - Learning - Probabilistic - Perspective -
Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=
8-2 (cit. on p. 6).

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention Is All You
Need». In: (June 2017) (cit. on pp. 17, 18).

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. «Image Super-
Resolution Using Deep Convolutional Networks». In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 38 (Dec. 2014). doi: 10.1109/
TPAMI.2015.2439281 (cit. on pp. 20, 25).

[5] Brian B. Moser, Federico Raue, Stanislav Frolov, Sebastian Palacio, Jörn Hees,
and Andreas Dengel. «Hitchhiker’s Guide to Super-Resolution: Introduction and
Recent Advances». In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 45.8 (Aug. 2023), pp. 9862–9882. doi: 10.1109/tpami.2023.
3243794. url: https://doi.org/10.1109%2Ftpami.2023.3243794 (cit. on
p. 21).

[6] Zhou Wang, Alan Bovik, Hamid Sheikh, and Eero Simoncelli. «Image Quality
Assessment: From Error Visibility to Structural Similarity». In: Image Process-
ing, IEEE Transactions on 13 (May 2004), pp. 600–612. doi: 10.1109/TIP.
2003.819861 (cit. on p. 21).

[7] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-Time Single Image and
Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural
Network. 2016. arXiv: 1609.05158 [cs.CV] (cit. on p. 23).

[8] Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman,
Liang-Chieh Chen, Alireza Fathi, and Jasper Uijlings. «The Devil is in the
Decoder: Classification, Regression and GANs». In: International Journal of
Computer Vision 127 (Dec. 2019). doi: 10.1007/s11263-019-01170-8 (cit. on
p. 24).

68

https://doi.org/10.1016/j.neucom.2022.02.046
https://doi.org/10.1016/j.neucom.2022.02.046
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/tpami.2023.3243794
https://doi.org/10.1109/tpami.2023.3243794
https://doi.org/10.1109%2Ftpami.2023.3243794
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://arxiv.org/abs/1609.05158
https://doi.org/10.1007/s11263-019-01170-8

BIBLIOGRAPHY

[9] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Gool, and Radu
Timofte. «SwinIR: Image Restoration Using Swin Transformer». In: (Oct. 2021),
pp. 1833–1844. doi: 10.1109/ICCVW54120.2021.00210 (cit. on pp. 26, 33).

[10] Zongcai Du, Jie Liu, Jie Tang, and Gangshan Wu. «Anchor-based Plain Net
for Mobile Image Super-Resolution». In: (May 2021) (cit. on pp. 27, 29, 36).

[11] Guillaume Berger, Manik Dhingra, Antoine Mercier, Yashesh Savani, Sunny
Panchal, and Fatih Porikli. «QuickSRNet: Plain Single-Image Super-Resolution
Architecture for Faster Inference on Mobile Platforms». In: (Mar. 2023) (cit. on
pp. 28, 29).

[12] Diego Valsesia and Enrico Magli. «Permutation invariance and uncertainty in
multitemporal image super-resolution». In: (May 2021) (cit. on pp. 30, 31).

[13] Martina Cilia, Diego Valsesia, Giulia Fracastoro, and Enrico Magli. «Multi-
Level Fusion for Burst Super-Resolution with Deep Permutation-Invariant
Conditioning». In: ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2023, pp. 1–5. doi: 10.
1109/ICASSP49357.2023.10096252 (cit. on pp. 32, 62, 63).

[14] https://ai-benchmark.com/ (cit. on p. 35).
[15] Andrey Ignatov et al. Efficient and Accurate Quantized Image Super-Resolution

on Mobile NPUs, Mobile AI AIM 2022 challenge: Report. Nov. 2022. doi:
10.48550/arXiv.2211.05910 (cit. on p. 35).

[16] Ziwei Luo, Youwei Li, Lei Yu, Qi Wu, Zhihong Wen, Haoqiang Fan, and
Shuaicheng Liu. «Fast Nearest Convolution for Real-Time Efficient Image
Super-Resolution». In: Feb. 2023, pp. 561–572. isbn: 978-3-031-25062-0. doi:
10.1007/978-3-031-25063-7_35 (cit. on pp. 35, 36).

[17] https://github.com/Algolzw/NCNet (cit. on p. 36).
[18] Eirikur Agustsson and Radu Timofte. «NTIRE 2017 Challenge on Single Image

Super-Resolution: Dataset and Study». In: July 2017, pp. 1122–1131. doi:
10.1109/CVPRW.2017.150 (cit. on p. 38).

[19] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replacing Mobile Camera
ISP with a Single Deep Learning Model. Feb. 2020 (cit. on p. 39).

[20] https://github.com/goutamgmb/NTIRE21_BURSTSR (cit. on pp. 39, 45, 61).
[21] https://github.com/cszn/KAIR (cit. on p. 40).
[22] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes

Totz, Zehan Wang, and Wenzhe Shi. «Real-Time Video Super-Resolution with
Spatio-Temporal Networks and Motion Compensation». In: July 2017, pp. 2848–
2857. doi: 10.1109/CVPR.2017.304 (cit. on pp. 41, 42).

[23] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. «PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume». In: June 2018,
pp. 8934–8943. doi: 10.1109/CVPR.2018.00931 (cit. on p. 46).

[24] Lingtong Kong, Chunhua Shen, and Jie Yang. «FastFlowNet: A Lightweight
Network for Fast Optical Flow Estimation». In: May 2021, pp. 10310–10316.
doi: 10.1109/ICRA48506.2021.9560800 (cit. on p. 48).

69

https://doi.org/10.1109/ICCVW54120.2021.00210
https://doi.org/10.1109/ICASSP49357.2023.10096252
https://doi.org/10.1109/ICASSP49357.2023.10096252
https://ai-benchmark.com/
https://doi.org/10.48550/arXiv.2211.05910
https://doi.org/10.1007/978-3-031-25063-7_35
https://github.com/Algolzw/NCNet
https://doi.org/10.1109/CVPRW.2017.150
https://github.com/goutamgmb/NTIRE21_BURSTSR
https://github.com/cszn/KAIR
https://doi.org/10.1109/CVPR.2017.304
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1109/ICRA48506.2021.9560800

BIBLIOGRAPHY

[25] https://github.com/ltkong218/FastFlowNet (cit. on p. 49).
[26] Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly,

Michael Krainin, Chia-Kai Liang, Marc Levoy, and Peyman Milanfar. «Hand-
held Multi-Frame Super-Resolution». In: CoRR abs/1905.03277 (2019). arXiv:
1905.03277. url: http://arxiv.org/abs/1905.03277 (cit. on p. 50).

[27] Jamy Lafenetre, Gabriele Facciolo, and Thomas Eboli. «Implementing Handheld
Burst Super-Resolution». In: Image Processing On Line 13 (2023). https:
//doi.org/10.5201/ipol.2023.460, pp. 227–257 (cit. on pp. 50, 66).

[28] Simon Baker, Ralph Gross, and Iain Matthews. «Lucas-Kanade 20 Years on: A
Unifying Framework». In: International Journal of Computer Vision 56 (Mar.
2004). doi: 10.1023/B:VISI.0000011205.11775.fd (cit. on p. 51).

[29] Antoine Monod, Julie Delon, and Thomas Veit. «An Analysis and Implementa-
tion of the HDR+ Burst Denoising Method». In: Image Processing On Line
11 (2021). https://doi.org/10.5201/ipol.2021.336, pp. 142–169 (cit. on
p. 52).

[30] Javier Sánchez. «The Inverse Compositional Algorithm for Parametric Regis-
tration». In: Image Processing On Line 6 (2016). https://doi.org/10.5201/
ipol.2016.153, pp. 212–232 (cit. on p. 53).

[31] https://github.com/Jamy-L/Handheld-Multi-Frame-Super-Resolution
(cit. on p. 53).

[32] Gunnar Farnebäck. «Two-Frame Motion Estimation Based on Polynomial
Expansion». In: vol. 2749. June 2003, pp. 363–370. isbn: 978-3-540-40601-3.
doi: 10.1007/3-540-45103-X_50 (cit. on p. 54).

[33] Tianyu Xu, Zhuang Jia, Yijian Zhang, Long Bao, and Heng Sun. ELSR: Extreme
Low-Power Super Resolution Network For Mobile Devices. Aug. 2022 (cit. on
p. 58).

[34] https://github.com/andreacoppari/ELSR-torch (cit. on p. 58).
[35] Yawei Li et al. NTIRE 2022 Challenge on Efficient Super-Resolution: Methods

and Results. 2022. arXiv: 2205.05675 [cs.CV] (cit. on p. 59).
[36] https://github.com/sunny2109/MobileSR-NTIRE2022 (cit. on p. 59).

70

https://github.com/ltkong218/FastFlowNet
https://arxiv.org/abs/1905.03277
http://arxiv.org/abs/1905.03277
https://doi.org/10.5201/ipol.2023.460
https://doi.org/10.5201/ipol.2023.460
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
https://doi.org/10.5201/ipol.2021.336
https://doi.org/10.5201/ipol.2016.153
https://doi.org/10.5201/ipol.2016.153
https://github.com/Jamy-L/Handheld-Multi-Frame-Super-Resolution
https://doi.org/10.1007/3-540-45103-X_50
https://github.com/andreacoppari/ELSR-torch
https://arxiv.org/abs/2205.05675
https://github.com/sunny2109/MobileSR-NTIRE2022

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Problem statement
	Goal
	Thesis outline

	Theoretical background
	Machine learning
	Deep Learning
	The perceptron
	Neural Networks
	Convolutional Neural Networks
	Generative Adversarial Networks
	Residual Networks
	Transformer

	Deep learning models for image super-resolution
	Deep learning for image super-resolution
	Evaluation: Image quality assessment
	Learning objectives
	Upsampling methods

	State of the art review
	Single-image super-resolution
	Lightweight single-image super-resolution
	Burst super-resolution

	Methodology
	The AI mobile challenge
	NCNet
	Training replication

	Dataset synthetization
	DIV2K dataset
	Zurich RAW-to-RGB dataset
	Synthetic RGB burst generation

	Training details
	Resize problem

	Fusion techniques
	Early Fusion
	Slow Fusion
	Results

	Registration techniques
	PWCNet
	FastFlowNet
	Handheld Multi-Frame Super-Resolution algorithm
	OpenCV
	Results

	Model alternatives
	Extreme Low-Power Super Resolution
	MobileSR
	Results

	Working with RAW images
	Results

	Conclusions
	Handheld: Accumulation

	Bibliography

