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1Background

The need for a strong and effective contrast to climate change and pollution is

broadly recognized. The battery value chain is one of the major near-term drivers

to realize the 2°C Paris Agreement goal in the transport and power sectors. Indeed,

batteries can help convert the vehicle market to electric and are needed for a wide

application of renewable energy sources optimizing energy production. According to

[1], batteries could enable 30% of the required reductions in carbon emissions in the

transport and power sectors, provide access to electricity to 600 million people who

currently have no access, and create 10 million safe and sustainable jobs around the

world.

Global battery demand is expected to grow by 25% annually to reach 2,600 GWh in

2030. Batteries play an increasingly important role in three areas:

1. Decarbonizing transport through electrification;

2. Enabling the shift from fossil fuel to renewable power generation as a dispatch-

able source of electricity;

3. Helping to provide access to electricity to off-grid communities.

This means batteries can fundamentally reduce Green House Gas emissions in the

transport and power sectors, which currently comprise roughly 40% of global GHG

emissions, and contribute to the United Nations Sustainable Development Goals.

Between 2010 and 2018, there was a 30% annual growth in battery demand,

culminating in a volume of 180 GWh by 2018. Under the baseline scenario, it is

anticipated that the market will continue to expand at an estimated annual rate of

25%, ultimately reaching a volume of 2,600 GWh by 2030. The primary drivers

behind this increasing demand are the electrification of the transportation sector

and the utilization of batteries within electrical grids (refer to Figure 1.1 for a visual

representation). By the year 2030, passenger cars are expected to constitute the

largest portion of global battery demand, accounting for 60%, followed by the

commercial vehicle segment at 23%. In terms of geographical distribution, China

stands out as the largest market, representing 43% of the total. Consumer electronics,
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Figure 1.1: Global battery industry growth by application and region by 2030. Adopted and
reprinted with authorization from [1]

which currently contribute more than 20% to the market, are projected to hold only

a minor share in the global battery market by 2030.

In the pursuit of enhancing battery technology, several critical challenges must be

addressed to achieve greater efficiency, prolonged cycling life, enhanced total capac-

ity, and accelerated charging rates. These imperatives underscore the significance

of ongoing research and innovation in the realm of battery development. As the

demand for energy storage solutions intensifies within diverse industries, address-

ing these challenges becomes paramount to unlocking the full potential of battery

systems and advancing the energy landscape towards a more sustainable future.

1.1 Introduction to Li-ion batteries

In recent years, there has been significant research on new and innovative energy

storage technologies driven by the increasing demand for portable electronic devices,

electric vehicles, and the need for optimal solutions. The need for large quantities

of batteries, combined with the requirement for miniaturized and high-efficiency

devices, has spurred research into new technologies.

Among the main energy storage devices, Li-ion batteries seem currently the most

viable solution. The main alternatives, such as supercapacitors and fuel cells, are
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not optimal due to the low energy density of supercapacitors [2] and safety issues

associated with both.

The research around rechargeable batteries was born in the 1960s, chemists in

Europe were exploring the chemistry of reversible insertion of lithium into layered

transition-metal sulfides. Further research bring to the light a new revolutionary

technology, that valued the Nobel Prize in Chemistry in 2019 to Akira Yoshino

alongside M. Stanley Whittingham and John B. Goodenough [3].

Li-ion batteries in general are composed of two electrodes, each of which is made

of a material able to form a RedOx couple. One of the two is designed to be easy

to oxidize, and the other to be reduced, Figure 1.2; each of the two half-reactions

is correlated with a standard potential with respect to a reference. To have a

spontaneous reaction the Gibbs free energy has to be lower than 0 (∆G < 0), the

relation between the reduction potential and the Gibbs free energy is shown in the

equation 1.2. The difference between the two potentials is the open circuit voltage

of the cell, Equation 1.1.

The two electrodes are called anode (negative during discharge) and cathode (posi-

tive during discharge), between them there is an electrolyte that allows ions to move

from one electrode to the other, insulating the electrons. To avoid short circuit the

two electrodes are physically separated by a separator, that has to be permeable to

the ions.

∆Ecell = ∆Ered − ∆Eox (1.1)

When we close the circuit, the current starts to flow, and the reaction proceeds. The

reduction potential changes following the Nernst equation 1.3. When the circuit

is closed, allowing current to flow, the electrode potentials change according to

the Nernst equation 1.3, which accounts for non-standard conditions. The Nernst

equation relates the electrode potential (Ered) to the standard potential, temperature

(T ), the Faraday constant (F ), the charge number (z), and the concentrations of the

oxidized ([Ox]) and reduced ([Red]) species:

∆Ered = −∆G

zF
(1.2)

∆Ered = ∆E0
red + RT

zF
ln

3 [Ox]
[Red]

4
(1.3)
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Figure 1.2: Schematic representation of a Lithium-ion battery. Adapted and reprinted from
[3].
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Overall, a battery’s function hinges on the interplay of these electrode reactions.

As the battery discharges, the anode undergoes oxidation, releasing electrons that

flow through the external circuit to the cathode. At the cathode, reduction reactions

occur, consuming the electrons and balancing the charge transfer. This cyclic process

allows batteries to store and release electrical energy, enabling them to power a wide

range of applications.

Currently used Lithium-ion batteries are based on intercalation technology. Interca-

lation electrodes are a class of materials commonly used in rechargeable batteries,

especially lithium-ion batteries. These electrodes work by allowing ions, typically

lithium ions, to be inserted and extracted reversibly into the crystal structure of the

electrode material during charge and discharge cycles. This process is often referred

to as intercalation or intercalation/de-intercalation. The host material has layered

or open-framework structures that can accommodate the insertion of guest ions

between their layers or into their structures without causing significant structural

changes. During charging, lithium ions are extracted from the intercalation host,

creating a potential difference. During discharge, lithium ions are inserted back into

the host material. The process is highly reversible, contributing to the stability and

longevity of intercalation-based batteries. Common intercalation electrode materials

include graphite for the anode in lithium-ion batteries and transition metal oxides or

sulfides for the cathode. Intercalation electrodes offer advantages like high energy

density, good cycle life, and relatively stable performance a brief summary of the

performances is reported in Table 1.1.

Table 1.1: Characteristics of representative intercalation cathode compounds; crystal struc-
ture, theoretical/experimental/commercial gravimetric and volumetric capacities,
average potentials, and level of development. Adapted and reprinted from [4].

Crystal structure Compound Specific capacity (mAh g-1) Volumetric capacity (mAh cm-3) Average Level of
(theoretical/experimental/typical) (theoretical/typical) voltage (V) development

Layered
LiTiS2 225/210 697 1.9 Commercialized
LiCoO2 274/148/145 1363/550 3.8 Commercialized
LiNiO2 275/150 1280 3.8 Research
LiMnO2 285/140 1148 3.3 Research

LiNi0.33Mn0.33Co0.33O2 280/160/170 1333/600 3.7 Commercialized
LiNi0.8Co0.15Al0.05O2 279/199/200 1284/700 3.7 Commercialized

Li2MnO3 458/180 1708 3.8 Research

Spinel
LiMn2O4 148/120 596 4.1 Commercialized
LiCo2O4 142/84 704 4.0 Research

Olivine
LiFePO4 170/165 589 3.4 Commercialized
LiMnPO4 171/168 567 3.8 Research
LiCoPO4 167/125 510 4.2 Research

Tavorite
LiFeSO4F 151/120 487 3.7 Research
LiVPO4F 156/129 484

While Li-ion batteries have revolutionized portable electronics and electric vehicles,

there are limitations that researchers aim to address. These limitations include con-

cerns about energy density, charging time, and safety. Energy density improvements

are crucial for extending battery life and enhancing device performance. Additionally,

faster charging solutions are sought after to minimize downtime and improve user

convenience. Lastly, safety concerns related to overheating and fire risks motivate
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researchers to explore new chemistries that offer enhanced stability. As a result,

the research community is dedicated to developing batteries with higher energy

densities, shorter charging times, and improved safety profiles to meet the evolving

demands of modern technology.

1.2 Conversion battery systems

Battery systems’ electrodes can be categorized into intercalation and conversion

modes [5]. Currently, commercial batteries use intercalation methods, which are

highly stable in cycling and reduce self-discharge, but they partially sacrifice energy

density. On the other hand, the conversion-type [6] is not yet a viable solution

for commercial applications but appears to be a promising approach to increase

capacity and the working rate of current technology. This is because they allow for

the activation of more electrons in each redox process.

Unlike intercalation, conversion involves chemical reactions that cause the electrode

material to change its composition during charge and discharge cycles. In conversion

electrodes, the material undergoes reversible conversion reactions, where the active

species in the electrode material react with ions from the electrolyte to form new

compounds. During discharge, the cathode material is reduced, incorporating ions

from the electrolyte into its structure. During charging, the reverse process occurs,

and the material is oxidized back to its initial state. Conversion electrodes can

offer high capacity due to the more significant change in composition compared

to intercalation electrodes, the reaction usually involves one or more electrons

each. However, they often suffer from challenges related to volume changes, phase

transitions, and mechanical stress during cycling.

For example S, MoS2 and I2 batteries are widely explored system in the conversion

electrode direction.

Sulfur is one of the most abundant elements on earth and it is an electrochemically

active material that can accept up to two electrons per atom at ∼ 2.1 V vs Li/Li+. As

a result, sulfur cathode materials have a high theoretical capacity of ∼ 1675 mAhg−1,

and lithium-sulfur (Li-S) batteries have a theoretical energy density of ∼ 2600 Whkg−1

[7].

Molybdenum disulfide (MoS2) is another promising candidate for conversion-type

batteries due to its unique properties. MoS2 undergoes reversible chemical reactions

during charge and discharge cycles, leading to changes in its composition. This con-

version process allows for the activation of multiple electrons in each redox reaction,
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potentially providing higher capacity compared to intercalation-based batteries. The

theoretical capacity of MoS2 as an active material for conversion batteries has been

studied extensively, with reported values ranging from approximately 650 mAh/g

to 1000 mAh/g [8, 9]. These investigations highlight MoS2’s potential to achieve

substantial energy storage capabilities, making it a subject of ongoing research in

the field of advanced battery materials.

Li-Iodine batteries are also a great option among rechargeable conversion batteries

and their popularity can be attributed to the following factors:

• High theoretical capacity and good operating voltage;

• Good compatibility with electrolytes;

• Low cost and abundance of materials;

• High rate capability.

Rate capability is going to be a crucial element in the next generation of commercial

batteries, in line with the guidelines provided by the US battery consortium, which

require a high charge rate capable of charging 80% of the state of charge in 15

minutes for electric vehicle applications. This aspect bodes well for the future

potential of conversion batteries. The conversion is based on the following reactions,

equation 1.4 and 1.5.

2Li → 2Li+ + 2e− Eox = −3.04V (1.4)

2I+ + 2e− → I2 Ered = −0.54V (1.5)

Conversion electrodes hold significant promise for high-capacity rechargeable bat-

teries, but they also present a wide range of challenges to overcome. One of the

main difficulties lies in accommodating the significant volume expansion that oc-

cur during the conversion reactions. This volume changes can lead to mechanical

stress, destruction of the electrode material, and electrode degradation over multiple

charge-discharge cycles. Additionally, conversion reactions often involve complex

phase transitions, leading to reversible and irreversible structural changes that can

affect the battery’s performance and cycle life. Another challenge is managing side

reactions that can occur between the electrode material and the electrolyte, leading

to capacity fading and reduced efficiency. Researchers are actively working on

addressing these challenges through innovative electrode design, nanostructuring

techniques, and electrolyte optimization to unlock the full potential of conversion-

based batteries for practical applications.
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In addition the shuttling is a major issue with I2 and S, shuttling refers to the

migration of active material from an electrode to the other. The active material

leaves the electrode and react with other components of the battery inducing capacity

fading and poor cycle life. The design of the electrolyte is crucial, indeed the

solubility of the species containing active material is a major issue. Together with

the electrolyte also the cathode can be design to physically or chemically trap the

active species avoiding the dissolution and the consequent side reaction[10, 11].

Another possible approach can be the design of a complex separator able to filter the

migration of ions, avoiding to the active material to travel form the cathode to the

anode. The challenges of this approach relies in finding a separator with extremely

high efficiency that select correctly the ion without slowing down the reaction and

diffusion.

1.3 Next generation Li-Iodine batteries

Focusing on the possibles developments of the Li-Iodine technology, Xianliang Li et

al. [12] unlocked the "second electron" making the second step possible by including

LiCl in the electrolyte. Iodine has three main possible oxidation states exploitable,

I−/I0/I+, and the two characteristic reactions are reported below in Equations 1.3

and 1.3.

First step

I− ↔ I0 + e− (0.54 V vs : SHE)

Second step

I0 ↔ I+ + e− (0.99 V vs : SHE)

The I− is usually obtained from LiI. Instead, to stabilize I+, it is necessary to

introduce very electronegative ions. This can almost double the theoretical capacity.

Iodine also has further oxidation states that currently seem impossible to exploit.

LiCl has a great effect on the stabilization of I+ ions. Unfortunately, LiCl is not

highly soluble in the classic electrolyte solvents, introducing to the research for new

solvents. Moreover, if it is included in the electrolyte, it seems to have a detrimental

effect on the solid electrolyte inter-phase (SEI) layer, increasing the shuttling. In

addition to this, one of the goals for the optimization of the Li − I2 batteries is to

increase the mass of LiI, and along with it, the quantity of LiCl has to increase to

maintain the molar ratio constant, in order to allow a complete reaction. Thus we

will need to dissolve even higher amount of LiCl requiring specific solvents.
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A possible alternative could be to include LiCl in the cathode, which leads to issues

related to binding it and LiI to the carbon coat. Increasing just the amount of LiI

included in the cathode is already challenging, and increasing the amount of both

LiI and LiCl will require a lot of effort.

Cathode

I− − e− → I0

I0 − e− + Cl− → I+Cl−

Anode

2Li+ + 2e− → 2Li

Figure 1.3, is a schematic representation of a Lithium (Anode) - Iodine mono-

Chloride (Cathode), during the charge process. In the following sections all the

components of the unit cell are analyzed.

Figure 1.3: Lithium - Iodine Mono-Chloride battery cell scheme, charge process.

1.3.1 Anode

The anode in a conversion system has to undergo a chemical reaction, reversibly. In

our system, we use a metal lithium anode able to provide a huge amount of capacity,

equation 1.4.
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Usually, the lithium anode can cause the formation of dendrites due to the non-

homogeneous growth of lithium. However, the system we are exploiting does not

form dendrites. This is in particular due to the high stability of the solid electrolyte

interphase (SEI) layer and the good mobility of ions that allows a well spread growth

of the lithium.

Furthermore, Lithium-Iodine batteries have issues due to shuttling, so the formation

of a robust SEI layer is fundamental to obtaining high performances. The oxygen

gas has been found, by Giammona et al. [13], as one possible solution, making the

cells easier to assembly and forming nitrate(Li3N) and iodate(LiIO3) makes the

SEI more robust, suppressing dendritic growth and mitigating the effect of shuttling,

together with the presence of LiNO3 and LiBOB in the electrolyte. The cells that

use this technology are usually named Oxygen assisted Lithium-Iodine battery (OALI)

and had demonstrated superior performance with much less technology requirement

and cheaper production.

1.3.2 Cathode

The cathode reaction of a Li − I2 is reported in equation 1.5 characterized by the

high resistance of the iodine that cause a sluggish reaction, combining conductive

network and iodine species boosts interior charge transfer, leading to a better rate

performances.

Typically, iodine is adsorbed on a host material, such as a carbon coat, to enhance

conductivity. Carbon materials are the most commonly used host for rechargeable

iodine batteries (RIBs),owing their porous structure, high conductivity and low cost.

However, constructing an efficient cathode presents a challenge. It is particularly

difficult to achieve a high quantity of iodine in the carbon without causing cathode

dissolution during cycling. The dissolution of active material in this kind of systems

is usually the main cause of shuttling, and thus of performances vanishing. By

creating chemically and physically sophisticated structures combined with a stable

solid electrolyte interphase (SEI) layer, it becomes possible to achieve dosing of over

60% by weight. Also combining polymer − I2 complex can help maintaining the

high rate capacity stabilizing the cycling life[14].

1.3.3 Electrolyte

The electrolyte has to be carefully designed, the solubility of the iodine species

may cause shuttling causing self discharge and anode passivation. For a suitable

electrolyte, the following requirements have to be satisfied:
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• A wide electrochemical window to avoid side reactions of the electrolyte;

• Moderate interaction between solvent molecules and ions;

• Avoid side reactions with the electrodes or with any intermediates;

• Electron-insulator and ion-conductor.

All these considerations make up the "electrolyte tetrahedron" and all the conditions

have to be considered. To obtain all the requirements, the electrolytes we use include

LiTFSI, LiNO3, LiBOB, LiCl, DOL, DMI, EC, and TEGDME. Each of these

components plays a distinct role in the overall battery system.

The salts, such as LiTFSI (Lithium bis(trifluoromethanesulfonyl)imide), LiNO3

(Lithium nitrate), LiBOB (Lithium bis(oxalato)borate), and LiCl (Lithium chloride),

contribute to the ionic conductivity of the electrolyte. They provide the necessary

lithium ions for the electrochemical reactions, and their selection can significantly

impact the stability and performance of the battery. For instance, the choice of

salts can affect the solubility and stability of the cathode and anode materials, the

formation of the solid electrolyte interphase (SEI) layer. The LiNO3 has the effect

of improving the coulombic efficiency and help with the shuttling forming a robust

SEI layer.

The solvents, including DOL (1,3-Dioxolane), DMI (Dimethyl isophthalate), EC

(Ethylene carbonate), and TEGDME (Tetraethylene glycol dimethyl ether), are

responsible for dissolving the salts and creating a conductive medium for lithium ions

to move between the anode and cathode. Solvent selection is crucial for achieving

the desired properties of the electrolyte, such as high ionic conductivity, low viscosity,

wide electrochemical stability window, and good compatibility with the electrode

materials. Different solvents have varying abilities to solvate the lithium ions and

form a stable SEI layer on the electrode surfaces, which impacts the battery’s overall

performance, safety, and cycle life.

In summary, the careful combination of salts and solvents in the electrolyte is

essential to achieve the desired electrochemical performance, stability, and safety of

the conversion battery system. Each component’s unique properties and interactions

contribute to the overall behavior of the battery, making electrolyte design a critical

aspect of advancing energy storage technologies.

In addition to all this consideration for our system extreme care was used in order

to minimize the solubility of the iodine species.
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1.4 Motivation

In the future, achieving higher capacity, rapid charging, and extended cycle life in

batteries will be of major importance. The energy market is growing in an impressive

way and it will not stop in a mid/long term view. Lithium-Iodine batteries have

potential to become a Next-Gen commercial technology thanks to their stability, high

rate capability and low costs, but in order to achieve this the second step has to be

stably unlocked. In this study, we investigate and analyze the optimization of the

electrolyte and cathode as distinct problems.

The cathode design is a complex task due to the sophisticated structure and the high

solubility of active materials. We propose a design able to integrate all the active

material onto the cathode, allowing the exploitation of two different oxidation states

of iodine, outperforming the our current technology at high rates.

The optimization of the electrolyte for these types of batteries is also complex due to

the numerous variables involved. It presents an excellent opportunity to leverage

machine learning algorithms for formulation design. In general the discovery of

"high entropy" materials can be accelerated by Artificial Intelligence.
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2Experimental methodology

2.1 Materials and Cell Construction

In this work, I used 2032 type coin cells sealed under either an argon or clean, dry

air atmosphere.

To fabricate the cathodes, a slurry of high surface area activated carbon (MSC-30SS,

Kandsai Coke), a high conductivity carbon additive (Ketjen Black (KB), EC600JD,

Lion Chemical), and either styrene-butadiene rubber (SBR, PSBR100, Targray)

and carboxymethylcellulose Sodium Salt (CMC, low viscosity, Sigma Aldrich) in

water or PTFE in alcohol as the binder and base solvent, respectively, was prepared.

Slurries were prepared at between 10-20% solids by weight and spread coated onto

either carbon cloth (Panex PW06, Fuel Cell Store) or stainless-steel foil (10 um

thickness, SS304). Electrode sheets were coated and dried under ambient conditions

with approximate final compositions of 76.5/8.5/13/2 MSC-30SS/KB/SBR/CMC

or 83.5/16.5 KB/PTFE. Carbon electrodes were punched into 11 mm ø disks and

transferred into an argon glovebox where they are stored on a hotplate at 120 °C

until used. Undosed carbon electrodes had an approximate mass loading of 4-6

mg/cm2 and a thickness of 200 – 300 µm. To prepare lithium-iodide electrodes,

carbon disks were individually weighed and dosed, under an argon atmosphere, to

either 40% or 60% loading lithium iodide (approx. 5 and 10 mg/cm2 areal loading)

by weight by sequential addition of lithium iodide from a 150-200 mg/ml solution

in ethanol and then dried at 150 °C for at least 3 hours. Dosed cathodes were then

stored at 150 °C until used.

The electrolytes comprised lithium bis(trifluoromethyl) sulfonylimide (LiTFSI,

BASF) and lithium nitrate (LiNO3, Sigma Aldrich) in a mixed solvent containing a

certain ratio solvents in the total amount 100 µL of electrolyte was used in all cells

that included a QMA separator and 60 µL for the CG2325 separator. All salts were

dried at 150 °C for at least 24 hours under an argon atmosphere prior to use. All

solvents were dried over 3Å molecular sieves, under an argon atmosphere for at

least 24 hours prior to use.

15



Lithium metal (Honjo Metals, 250 µm thickness) anodes were punched to 13 mm

ø for 2325 type coin cells. The Anode was usually polished in air, which should

increase the robustness of the SEI. A Polypropylene/Polyethylene/Polypropylene

trilayer membrane (Celgard 2325) was used as the separator, with separators being

punched into 16 mm disks for the 2325 type coin cells. Also, as a separator, the QMA

Whatman® QM-A quartz filters were often used, being punched into 16 mm disks

for the 2325 type cells.

2.1.1 Cell Evaluation

All electrochemical measurements, including galvanostatic charge and discharge,

cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), were

conducted using EC-Lab® software and a multi-channel potentiostat (BioLogic,

VMP3). All potentials are referenced against Li/Li+. To establish a more uniform

starting condition, as well as to facilitate the formation of the enhanced OALI SEI

layer, cells were first "conditioned" by cycling for 10 cycles at a rate of 0.5 mA/cm2

before moving on to a cycling test at 1 mA/cm2 or a rate test at a variable current

density. Voltage cut-offs were set as 2.0V to 3.6V for cells with a stainless steel

current collector and 2.75V – 3.6V for cells with a carbon cloth current collector.

2.2 Measures and Analysis

2.2.1 Galvanostatic Cycling with Potential Limitation

GCPL (Galvanostatic Cycling with Potential Limitation) is an electrochemical testing

technique used to evaluate the performance and behavior of batteries or energy

storage systems.

In GCPL, the battery or cell undergoes galvanostatic cycling, where a constant

current is applied during charge and discharge processes. However, unlike traditional

galvanostatic cycling, GCPL incorporates an additional potential limitation.

The potential limitation is introduced by imposing a voltage limit on the battery

during cycling. This means that once the battery reaches a specific voltage threshold,

the current is adjusted to maintain that voltage instead of allowing it to exceed or

drop below the limit. This ensures that the battery operates within a predefined

voltage range and avoids reaching extreme or potentially damaging voltages. In my

setup, the voltage window was between 2 and 3.7 V, allowing for the reaction of

iodine.
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By incorporating potential limitation, GCPL provides several advantages. It helps

control the battery’s voltage and prevents overcharging or over-discharging, which

can cause performance degradation or safety issues. It also allows for the exami-

nation of the battery’s behavior and performance under specific voltage conditions,

mimicking real-world scenarios more accurately.

GCPL is commonly used in battery research and development to study the capacity,

efficiency, cycling stability, and degradation mechanisms of battery systems. It

provides valuable insights into the electrochemical behavior and performance of

batteries under controlled voltage conditions.

Formation cycles

All the routine starts with a PEIS, after 5 minutes of rest we start performing the

formation cycles. In our setup, GCPL was set to run 10 formation cycles with a

current of 0.5 mA/cm2, in a voltage window between 2.1-3.7 V. These cycles are

needed for the formation of a robust SEI (Solid Electrolyte Interface) and for the

stabilization of the cell.

Rate Test

The second step is the rate test, where we test the cells at 7 different rates of charge

and discharge, specifically with currents of 0.5 − 1 − 2 − 3 − 4 − 5 − 10 mA/cm2

applied, in a voltage window between 2-3.8 V. Each rate runs for 5 cycles, followed

by a 10-second rest period.

Cycling test

After the rate capability test, the cells undergo a cycling test. In this final section of

our standard test, the cells are charged and discharged until the total capacity drops

below 80% of the initial capacity. The current imposed on the cell is 1 mA/cm2, in a

voltage window between 2-3.8 V. This analysis provides insights into the cycling life

of the cell.
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3Cathode Design and Optimization

After conducting a limited set of experiments focused solely on the dissolution of

LiCl in the electrolyte, it became apparent that addressing the shuttling problem

through this approach posed significant challenges, and the results did not provide

a clear direction for improvement. Consequently, a novel idea emerged: directly

integrating LiCl into the cathode, along with the use of a binder, can facilitate the

formation of a complex structure to mitigate the shuttling issue. The literature sug-

gests that PVP (polyvinylpyrrolidone) is an optimal choice for the binder, a material

already employed in commercial applications [11]. However, the inclusion of the

binder increases the cathode’s resistance. We addressed this issue by introducing

Ketjen Black to the complex cathode. The presence of two salts leads to a lack of

uniqueness in the dosing percentage. Consequently, the ratio of the summed masses

of LiI and LiCl to the total cathode mass is reported as the dosing percentage.

Numerous experiments have been conducted, and their outcomes are detailed in

Appendix-C.

To effectively localize LiCl near LiI, the objective is to deposit it on top of the

cathode. As discussed earlier, the cathode plays a pivotal role in the cell’s opera-

tion. Integrating LiI within the carbon-coated matrix to form a composite cathode

minimizes resistance and enables high-rate performance.

Among the significant challenges to address, briefly discussed in the introduction, the

main one is the high solubility of polar iodide compounds in the electrolyte during

cycling, leading to undesired side reactions that diminish battery performance.

This challenge becomes even more pronounced with the additional presence of

LiCl. To ensure effective integration into the cathode, it is imperative that chloride

compounds remain within the cathode. An initial approach was to employ polymers

to physically and chemically enhance the cathode’s capability to trap both salts

simultaneously.

Creating chemical interactions between PVP and iodine species can enhance sta-

bility by limiting the sublimation and dissolution of iodine. However, the current

performance peaks with low iodine content (10% wt.)[11]. Binders may also pose
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challenges by reducing molecular mobility and hindering diffusion, thus affecting

performance at high rates.

We initiated testing on possible binders, with PVP being the most common choice for

iodine and already commercially utilized in iodine batteries. In parallel, we explored

the prospective of MADQUAT (Poly(2-dimethylamino)ethyl methacrylate) methyl

chloride quaternary salt) as a viable option for integrating LiCl.

3.1 Binder effect

As mentioned in the introduction, iodine is characterized by extremely high volatility.

PVP demonstrates good properties and the capability to bind poly-iodides, which are

typically the primary cause of shuttling.

PVP is widely recognized for its ability to bind with poly-iodides, especially I−
3 , as

shown in Figure 3.1. Similarly, MADQUAT stabilizes the system with Cl− ions, and

we hypothesize that it could have a positive effect by retaining chloride within the

cathode.

To address issues related to the cathode’s conductivity, we also introduce Ketjen

Black.

(a) (b)

Figure 3.1: Chemical structure of PVP-I (left) and MADQUAT (right).

Differently from previously published works, our goal is to achieve a high dosing

percentage, with 60% of the cathode mass composed of LiCl + LiI. This marks the

first instance where both salts have been integrated onto the cathode.

The binders are also present, in conjunction with the carbon coating, but they do

not constitute the entire cathode matrix. This is illustrated by Zhang et al.[11],

20 Chapter 3 Cathode Design and Optimization



Figure 3.2: Schematic depicting of the fabricating process of the polymer-modified
I2/Porous carbon composites. Adopted and reprinted form [11].

who demonstrate, through TEM and FTIR characterizations, the formation of iodine-

based linear inclusion complexes on the surface of composites and good dispersion.

The combined effects of the carbon coating and the binder are depicted in Figure

3.2.

We optimized and tested various systems, and all the results are documented in

Appendix-C. Following the optimization, a comprehensive comparison was conducted

among four different systems. These systems used dosing solutions based on LiCl

and LiI in a molar ratio of 1.2, with KB. Subsequently, we varied the binder, choosing

from PVP, MADQUAT, a mixture of PVP and MADQUAT (1:1 wt.), or the complete

absence of a binder, in this case also the KB was absent. Then the dosing solution was

dissolved in EtOH. The solution was dispensed onto the cathode and then subjected

to baking at 200°C to remove the solvent.

Throughout all the tests, the conditions remained constant. The electrolyte consisted

of LiTFSI, LiNO3, LiBOB, DOL, DMI, TEGDME, and EC. The results were

obtained by conducting the rate test described in the methods section.

(a) (b)

Figure 3.3: Representations of Capacity (left) and Coulombic efficiency (right)
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The obtained results, as plotted in Figure 3.3, do not clearly demonstrate the binder’s

positive effect on performance. MADQUAT appears to have a consistently adverse

effect on performance, degrading capacity at all rates and reducing Coulombic

efficiency. It seems that the cumulative effect of the binder hinders the vital role of

the carbon coating, occupying the pores without yielding any significant impact.

On the contrary, as previously suggested by several papers, PVP appears to have

a positive effect on overall performance. However, it is essential to note that the

carbon coating likely plays the most crucial role, as evidenced by the excellent results

of the ’No Binder’ sample.

Additionally, from the Coulombic efficiency graph, we can gain insight into the

shuttling of iodine and chloride compounds. As shown in the graph, PVP slightly

improves CE, but the effect is not critical. Analyzing the Coulombic efficiency graph

allows us to assess how the choice of the binder reduces shuttling. The trend is

quite constant at all rates and shows that the two best systems are with only PVP or

without binders.

The only point that significantly deviates from the trend is the CE of the cell where

MADQUAT and PVP working together. At high rates, this value is the highest

among all the measurements. Binding chloride into the cathode appears to have

a significant effect at high rates, but in this case, PVP is essential. The MADQUAT

probably occupies a significant portion of the carbon coat pores, hindering the trap

effect of the carbon matrix and making the chemical binding of iodine, provided by

the PVP, more impactful.

The overall capacity under these conditions is reasonable. The effect can be further

interpreted as MADQUAT having a positive impact, maintaining the active material

close to the cathode, but it only slightly slows down the dissolution process of

chloride compounds. Thus, only at high rate the effect is visible. Indeed, the value

associated with only the MADQUAT represents the absolute minimum of CE during

all the test. This is because we cannot trap the iodide compound with either PVP

or the carbon coating, and the binder likely hampers diffusion due to its steric

hindrance.

3.2 Comparison dissolution and integration

The section analyzes the juxtaposition between dissolving LiCl in the electrolyte

and physically integrating it into the cathode. Henceforth, the term dissolution
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will refer to LiCl in the electrolyte, while integration will pertain to LiCl in the

cathode.

We observe how these two different approaches behave and explore the potential

reasons for their differences. One of the primary motivations for integrating LiCl

into the cathode is to minimize the interaction of the SEI with chloride, mitigate

issues related to the low solubility of LiCl, and enhance high-rate performance by

limiting diffusion time.

3.2.1 Integration effect

In this case, the tests are performed using the same electrolyte and the same ratio of

LiI to carbon mass, which is approximately 70

The dosing solution for the cathode that integrates LiCl is composed of LiCl and

LiI, along with PVP and KB dissolved in EtOH.

The electrolyte for the two dissolved cells is supplemented with LiCl in the elec-

trolyte. It’s worth noting that the mass of LiCl must be in a molar ratio higher

than 1.2 with respect to LiI. Specifically, it has a higher molar ratio of LiCl/LiI,

approximately 1.7, compared to the ratio for the integrated system, which is about

1.25.

The comparison is depicted in Figure 3.4, and the trend clearly shows different

behavior.

The performance of the integrated cathodes is nearly as good as the dissolved ones,

especially at low rates, demonstrating the viability of this solution. It may inspire a

new approach to designing the cathode for the Li/ICl system. The conversion is

nearly complete for both the dissolved and integrated systems, with slightly better

performance observed for the dissolved system, particularly when the reaction is

completed, providing slightly better performance while utilizing a higher mass of

active material. A complete conversion had the characteristic that all the iodide

completely react not only form I+ → I0 but also the second step is complete

I0 → I−.

However, upon examining the area within the red square, it becomes evident that

the roles are reversed at high rates. The integrated system appears to be capable of

delivering significantly enhanced performance at higher rates. The primary factors
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influencing this phenomenon are likely the presence of KB and the reduced distance

between the two elements responsible for initiating the second electron release.

When comparing the data from the previous section, it appears that the KB effect

may not have a substantial impact on high-rate performance. Indeed the ’No Binder’

cells of the previous section have no KB but the performance were close to the

others, thus probably the higher conductivity has not a major impact on the high

rate increased performances. Conversely, when observing the capacity values and

the shape of the charge/discharge Galvanostatic curve at elevated rates, it suggests

that only the initial step of the reaction is occurring, as described in Equation 1.5.

However, in the integrated system, at least a portion of the second step can be

harnessed, resulting in a significant capacity increase. This can be attributed to the

reduced diffusion time, allowing the second step to consistently occur even at high

rates.

Figure 3.4: Direct comparison between integrated and dissolved systems.
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3.2.2 Diffusion-Limited Process

Among our primary goals for the batteries, achieving high-rate capability stands

out. As previously discussed, one approach to enhancing the rate capability of a

Li − I − Cl battery could be to localize LiCl in proximity to LiI. This strategy

minimizes diffusion-related limitations for reactants at high rates.

In a simplified one-dimensional scenario, we can describe the diffusion process of

LiCl using Fick’s second law of diffusion:

∂C

∂t
= D

∂2C

∂x2 (3.1)

Where: - C is the concentration of LiCl, - t is time, - D is the diffusion coefficient of

LiCl, - x is the spatial coordinate along the cathode.

The concentration profile of LiCl will evolve over time according to this equation,

influencing the overall availability of reactants for the battery reactions.

By solving this diffusion equation under appropriate boundary conditions (e.g., C

remains constant at the interface between the cathode and electrolyte, and imagining

the two electrodes are extremely far apart, we can assume that the concentration of

LiCl at the anode is constant [LiCl]0), we can determine how the concentration of

LiCl changes over time and distance.

The diffusion of LiCl impacts the rate at which it can react with LiI to form

ICl, which contributes to the overall battery capacity. At higher rates (currents),

this diffusion limitation becomes more pronounced, as the rate of consumption of

reactants at the cathode interface increases. This can result in a decrease in battery

performance, as the reaction rate becomes limited by the availability of LiCl near

the LiI.

In conclusion, localizing LiCl near LiI in the cathode can mitigate diffusion limita-

tions, especially at high rates. This strategy ensures a more efficient utilization of

reactants and contributes to improved rate capability for the battery. By optimizing

the concentration distribution of LiCl in conjunction with other cathode design

considerations, it’s possible to enhance the overall performance of the Li − ICl

battery system.
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4Optimizing LiCl in Electrolyte

The electrolyte serves as a crucial component in batteries, facilitating the flow of

ions between the cathode and anode. Its key properties, such as ion concentration,

composition, and conductivity, can be manipulated to optimize battery performances.

By adjusting the electrolyte’s ion concentration, one can influence the battery’s

energy density and capacity. In particular for our system the presence of LiCl,

obtained by Li et al.[12], as mentioned can significantly improve the energy density

and capacity. Further, altering the electrolyte’s composition can enhance its chemical

stability and safety, reducing the risk of thermal runaway events. In the Li − I

system the electrolyte can also decrease the solubility of active material, reducing

the shuttling issues. Furthermore, optimizing electrolyte conductivity can improve

the battery’s charge and discharge rates, and as for the cathode optimization the

rate capacity is nowadays the main target for the optimization of batteries.

4.1 Design of Experiment

The electrolyte optimization process represents a promising field for the application

of Machine Learning, due to the high number of variables and complexity. This

section focuses on optimizing an eight-component electrolyte, which includes 3 salts

and 4 solvents among those most commonly used for Li-ion batteries, along with

LiCl. For these kind of high dimensional variables space the optimization would be

extremely challenging, and there is also the possibility of not reaching the absolute

maximum of performances.

The conventional approach of optimization would involve changing each variable

while keeping the others fixed.

This is necessary to gain a clear understanding of the impact of each component on

performance (one-factor-at-a-time). However, this method requires extensive work

and may not result in the best optimization[15]. Figure 4.1(a-b-c-d) illustrates how

a human would optimize the system in a 2D variable space, while (e-f) demonstrates

how a machine learning design of experiment should seek the optimum. The set

of figures on the right displays the intensity value for each point. In this approach,

the human seeks the maximum intensity along a random horizontal value (green
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line), and then explores the height where the maximum is located. This can lead

to a maximum (a-b) or, as in the example, not (c-d). In contrast, the design of

experiment can map the space in a more complex manner, as depicted in figure

4.1(f), providing a more comprehensive and accurate description.

In comparison to a conventional optimization process carried out by a human, our

goal was to confirm the advantages of this approach. Specifically, we focused our

attention on one figures of merit: capacity. We also monitored the cycle life for

deeper analysis and confirmation of the actual significance of the capacity data.

Figure 4.1: Design of experiment, confrontation between a human and a machine approach.
Adopted and reprinted from [15].

4.1.1 Salt and solvent concentration ranges

To begin, we have to select data-points well spread and distributed in the vari-

able space. Thus, we have to defined the variable space for optimizing an eight-

component electrolyte. Since our system utilizes a completely liquid electrolyte, we

excluded compositions that are not entirely soluble.

To determine the boundaries, we conducted a solubility tests for each salt in different

mixtures of the four solvents, reported and summarized in Table 4.2. The tests
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involved adding one salt to a solution until no further dissolution was possible,

incrementing by 0.25 M. We determined this point when the salt remained visible

after stirring for 12 hours at 450 rpm.

Subsequently, we created an eight-dimensional grid encompassing the possible

compositions, with variations spaced at intervals of 100 µl of solvent and 0.1 M of

salt.

Table 4.1: Solubility table, of each solvent in different mixtures of solvents(1:1:1:1, 1:1:1:2,
1:1:2:1, 1:2:1:1, 2:1:1:1 by volume of DOL:EC:TEGDME:DMI).

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

LiNO3 3.75 M 3.50 M 3.50 M 2.75 M 4.50 M
LiBOB 3 M 2.25 M 2.75 M 2.75 M 2.75 M
LiTFSI 5 M 5 M 5 M 5 M 5 M
LiCl 2.75 M 2.75 M 2.50 M 2.50 M 3.75 M

Table 4.2: Composition of the different solvents mixtures in µl

Solution DMI [µl] DOL [µl] EC [µl] G4 [µl]
Solution 1 250 250 250 250
Solution 2 200 200 200 400
Solution 3 200 200 400 200
Solution 4 200 400 200 200
Solution 5 400 200 200 200

4.1.2 Data Collection

The data acquisition has a key-role in the accelerate discovery process, the low

variance of the dataset is crucial for a reliable analysis.

All the data points were collected in our lab, the experimental data contain informa-

tion about the molar composition of the electrolyte, and capacity and cycle life of

the battery, during the test.

The measure performed is a "cycle life test", where the battery performs 10 formation

cycles at 0.5 mA/cm2, and then start the test, cycling at 1 mA/cm2 until the cell

fails or the capacity drops below the 80% of the initial value.

The formation cycles should help the formation of a robust SEI layer and optimize

the performances.

The values of capacity used in the process correspond to the initial capacity after the

formation cycles. The cycle life corresponds to the number of cycles above the 80%

of the initial capacity, the formation cycles are not counted.
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Table 4.3: Experimental 28 points, used for training and testing the ML

LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI CAP [mAh/g] CYC

2.9 17.4 7.4 0.7 20.3 10.9 6.8 33.7 6.1 24
1.9 4.4 7.6 5.2 48.5 10.8 3.1 18.4 146.6 20

10.6 5.6 6.7 4.9 50.6 7.8 2.8 11.0 70.4 55
7.1 1.3 14.2 7.7 18.8 19.6 5.8 25.5 72 20
3.0 14.9 8.9 2.4 20.6 11.2 9.9 29.1 11.5 190

15.5 1.7 1.7 0.7 35.0 34.7 5.4 5.3 124.7 30
1.2 9.8 13.6 5.0 34.7 9.3 3.0 23.3 56.3 16

10.5 3.1 1.4 13.4 50.6 9.0 5.8 6.2 128.1 81
5.0 2.9 10.8 4.3 20.3 33.0 10.0 13.7 81.4 73
2.7 17.5 0.7 9.8 18.7 9.8 3.6 37.1 0.7 5
1.9 12.5 0.6 7.2 13.7 30.2 7.2 26.7 4.3 6
8.7 0.6 7.2 3.8 8.2 56.7 3.2 11.6 136.0 45
1.7 11.1 0.4 6.3 12.2 38.7 5.9 23.7 24.6 582
8.9 5.5 15.5 1.3 27.8 9.9 3.1 32.0 107.1 6
0.7 6.7 9.6 12.6 9.5 19.3 3.4 38.2 11.2 136
9.5 17.6 1.3 2.1 9.8 30.2 9.8 19.6 3.4 31
9.0 0.7 10.1 6.9 9.5 41.3 9.9 12.7 0.6 17
1.9 5.1 10.1 7.5 26.5 28.3 3.0 17.7 114.6 81

13.4 2.0 10.7 4.9 27.9 9.9 6.2 24.9 113.1 14
7.5 6.9 13.5 2.5 17.6 37.5 8.8 5.6 103.5 32

10.5 1.3 6.8 3.1 54.1 9.4 3.0 11.9 133.1 20
3.0 7.0 19.1 2.4 20.9 22.3 18.1 7.2 60.6 82
1.1 7.8 16.0 14.1 11.9 12.6 28.4 8.0 14.9 735

11.7 2.5 3.3 16.1 0 12.1 15.7 38.5 9.2 340
2.6 15.8 6.8 0.8 28.1 18.6 3.2 24.1 1.9 82

22.2 1.9 2.6 0.9 46.0 0 19.2 7.2 102.8 4
2.2 5.1 7.3 5.6 56.2 47.7 0 0 153.8 10
6.6 1.7 18.3 9.9 68.0 0 0 29.3 55.8 5

Between all the possible composition we select a well distributed ensemble of

electrolytes, and test those. We collect more than 60 datapoints and the complete

dataset is reported in the Appendix A, then we short list 28 points between those,

minimizig the variability due to experimental uncertainty and errors. The selected

points are reported in table 4.3.

This dataset map the variable space in a unbiased and distributed manner, to confirm

this, we report also the box plot, where for each component is analysed the molar

percentage distribution, figure 4.2.

The 28 points are then summarized in the following table, using the pandas func-

tion df.describe() in python, to evaluate the actual distribution of the electrolyte

compositions.
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Figure 4.2: Box representation of components distribution. The box in the middle of the
plot represents the middle 50% of the data, often referred to as the interquartile
range (IQR).The lines, or whiskers, extend from the box to the smallest and
largest values within 1.5 times the IQR. The triangle represents the average
value, the circles represent the outliers point.

Table 4.4: Statistical description of independent variables

LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI

count 28.000 28.000 28.000 28.000 28.000 28.000 28.000 28.000
mean 6.553 6.799 8.293 5.795 27.362 20.741 7.301 19.367
std 5.249 5.606 5.532 4.335 17.571 14.706 6.369 11.218
min 0.664 0.591 0.423 0.715 0.000 0.000 0.000 0.000
25% 2.119 1.979 3.138 2.418 13.313 9.869 3.143 10.267
50% 5.792 5.308 7.476 4.970 20.754 15.605 5.809 19.021
75% 9.783 10.157 11.468 7.548 37.743 30.900 9.829 27.268
max 22.233 17.582 19.078 16.064 67.980 56.685 28.426 38.532
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Further, we analyse the correlation between the variables and the two figures of merit,

we exploit the Pearson coefficient and the heatmap of the correlation. The Pearson

coefficient evaluate the correlation between two variables, it express between -1 and

1 the correlation, as shown in eq.4.1, 4.2.

cov(X, Y ) =
Ø (X− < X >)(Y − < Y >)

N
(4.1)

corr(X, Y ) = cov(X, Y )
σxσy

(4.2)

This analysis allows us to ascertain macroscopic trends in the performance metrics

associated with each individual electrolyte component. The Pearson coefficient

calculation is carried out sequentially for each variable, and the outcomes are

visually depicted in the two heatmaps shown in Figure 4.3. These heatmaps offer

a preliminary analysis of the variables with the performance metrics and guide

us to understand relationship. As expected, there exists an inverse correlation

between capacity and cycle life. However, this correlation doesn’t entirely preclude

the potential for discovering an optimal trade-off between the two performance

indicators.

(a) (b)

Figure 4.3: Heatmaps for correlation between the 8 independent variables on the left the
variable-capacity PC and on the right the variable-cycling life PC.
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Conversely, LiBOB exhibits a significant inverse correlation with cell capacity within

the tested range. This relationship is particularly evident in Figure 4.4, which show-

cases the Pearson coefficient. Notably, an excessive presence of LiBOB appears to

negatively impact cell performance. Specifically, when LiBOB concentrations ex-

ceed 7%, the correlation becomes even more pronounced, with a Pearson coefficient

of -0.763. However, for concentrations below 7%, establishing a distinct trend isn’t

straightforward, leading to a low Pearson coefficient of 0.044.

This interpretation is admittedly simplified, as it centers on a single variable and

endeavors to establish a linear correlation for a metric that likely possesses at least

one maximum point. Nevertheless, it offers intriguing insights into the characteristics

of salts and their effects on cell performance.

Figure 4.4: Pearson coefficient of LiBOB concentration in molar percentage and capacity.

4.1.3 Machine Learning

For the Machine Learning process, we evaluated several regression supervised learn-

ing algorithms, reported in Appendix-B, and shortlisted three: Linear Regression,

Random Forest Regression, and Support Vector Regression. These models were used
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to fit the data and explore the relationships between electrolyte compositions and

performance metrics.

For the best models, in particular the Random Forest Regressor, we perform a

optimization of the hyperparameter, using Bayes Search CV and Grid Search CV,

both technique implemented in Python using scikit-learn.

One of the primary hyperparameters to consider is the number of trees in the forest,

denoted as "n_estimators". This parameter controls the number of decision trees

that are trained and combined in the ensemble. Bayesian optimization can help find

the optimal value for n_estimators by evaluating its impact on both training and

validation performance.

Another crucial hyperparameter is the depth of each decision tree, known as

"max_depth". This hyperparameter governs the complexity of individual trees

and plays a significant role in preventing overfitting.

The "min_samples_split" and "min_samples_leaf" hyperparameters determine the

minimum number of samples required to split an internal node and the minimum

number of samples required to be a leaf node, respectively. Tuning these hyperpa-

rameters can contribute to improving the Random Forest’s ability to generalize to

new data.

Additionally, the "max_features" hyperparameter controls the number of features

considered for the best split at each node. Bayesian optimization can help pin-

point the optimal value of max_features to enhance model diversity and robust-

ness. By tuning hyperparameters like n_estimators, max_depth, min_samples_split,

min_samples_leaf, and max_features, you can fine-tune your Random Forest model

to achieve the best possible performance for your specific machine learning task.

In particular, we perform 5-fold cross validation where the data are divided in 5-fold,

four are used for training the model and the remaining one is used as validation.

During the 5-fold cross validation the algorithm is tested and the hyperparameter

are modify until a maximum in the accuracy is reached.

The best tuned hyperparameter are then used for the fitting of the datapoints, in the

Random Forest the gain in the accuracy is remarkable, Figure 4.9.

The performances obtained are reported in Figure 4.5, 4.6, 4.7, 4.8, combining the

fitting and the cross validation results, is possible to observe that tuned random

forest obtain the best trade off between under and over fitting.
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Figure 4.5: Fitting MSE performances of the shortlisted methods.

Figure 4.6: Fitting R2 performance of the shortlisted methods.
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Figure 4.7: Cross validation MSE performances of the shortlisted methods.

Figure 4.8: Cross validation R2 performances of the shortlisted methods.
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Figure 4.9: Performances of the tuned and untuned models.

Individual correlations

Now we analyse the influence and correlation, of every possible combination of

input variables with the capacity exploiting the random forest regression, reported

in Table 4.5. The accuracy shows that some isolated variables are able to fit precisely

the behavior of a system that includes many more variables. This highlight the col-

laboration of certain elements that have a coordinated impact on the performances.

For the top two combinations of two salts, we create a three-dimensional visualization

illustrating how the fitted capacity varies with different combinations of the variables.

A high level of accuracy implies the model’s ability to effectively fit the variables and

establish a strong correlation with the performance metric.
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Table 4.5: Best Combinations of variables for capacity, and corresponding average R2, 5
fold cross validation.

LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI Average R2

0 1 0 0 0 0 0 0 0.0672147
0 0 0 0 0 0 1 0 -0.0839108
0 1 0 1 0 0 0 0 0.400458
0 1 0 0 0 0 1 0 0.348557
0 1 0 1 1 0 0 0 0.444567
0 1 0 1 0 0 1 0 0.437912
0 1 0 1 1 0 1 0 0.476795
0 1 1 1 0 0 1 0 0.44902
0 1 1 1 1 0 1 0 0.483798
0 1 0 1 1 1 1 0 0.460001
0 1 1 1 1 1 1 0 0.488435
1 1 1 1 1 0 1 0 0.44927
1 1 1 1 1 1 1 0 0.44563
0 1 1 1 1 1 1 1 0.417142
1 1 1 1 1 1 1 1 0.371607

(a) (b)

Figure 4.10: Two variable correlation, with the capacity. Red dots represent the experimen-
tal points.

With just 28 data points, machine learning is able to achieve a high level of accuracy

for fitting and cross-validation. This demonstrates the viability of our solution. The

careful selection of hyperparameters and the choice of the most suitable algorithm

are clearly critical steps in designing an effective model.

The ability to create a model that can produce such results is promising for future

research steps, especially when working with larger datasets. Artificial intelligence
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will undoubtedly play a significant role in understanding the intricate relationships

between components and performance, where the human eye often struggles to

distinguish between different contributions. These results set us on a promising path

for further discoveries and insights in this field.
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5Conclusion

The focus of my research has been on optimizing both the electrolyte and cathode

components of a promising and high-performing battery system. While there are

still multiple challenges to address, this work demonstrates the potential of using

artificial intelligence (AI) to support discoveries in this field.

Our AI model has achieved remarkable results in fitting and cross-validate the input,

even with a very limited dataset. This suggests that further exploration in this area

could significantly contribute to optimizing not only this specific system but also

the high-entropy materials in general. The choice of an appropriate model and

optimization strategy is crucial, as it relies on collecting well spread data points with

low variability and high reliability.

Exploring new strategies and specific approaches for data analysis in this highly

complex and hard to explore domains is also of utmost importance.

On the cathode optimization side, we’ve gained valuable insights into the potential

of this system. Diffusion and surface phenomena have a direct and noticeable impact

on cell performances. The ability to integrate all active materials onto the cathode

appears to enhance performance at high rates while maintaining good performance

at lower rates. This opens up new possibilities for understanding the underlying

causes and intricate relationships, ultimately offering a path to increasing capacity

and performance.

The research is still an ongoing process and this work is a intermediate step that

can help the future process of optimization and design of next-gen batteries for a

greener. The Lithium-Iodine battery continue to show outstanding performances

and they are increasing their stability and cycling life, they are good candidates for

future high rate application as required by the electric vehicle market.
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6
APPENDIX-A

6.1 Training tests

(a) (b)

(c) (d)

(e) (f) (g)

Figure 6.1: Results of the GCPL for the electrolytes design by the AI trained until January.
(a-b-c-d) Experiment for 30% dosing. (e-f-g) Experiment at 50 %.
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Results of the GCPL for the electrolytes design by the AI trained until January.
(a-b-c) Experiment for 60% dosing. (d-e-f) Experiment at 70 %.

(a) (b)

Figure 6.3: Results of the GCPL for the electrolytes design by the AI trained until March.(a-
b) Experiment for 70 % dosing.

The cells’ Galvanostatic Cycling with Potential Limitation (GCPL) results are pre-

sented in the following figures. Each figure shows the cell’s capacity plotted against

the cycle number. The blue line represents the capacity during charging, the green

line represents the capacity during discharging, and the red line represents the

Coulombic Efficiency, which is the ratio of charge to discharge.

It was observed that the predictions were not consistent with the actual results as

the dosing increased. In fact, the observed trend was opposite to the predicted trend.

This inconsistency can be attributed to the limited number of input elements in the

training dataset.

This confirmation analysis also served as a tutorial, allowing me to work closely with

cell production and enhance my assembly skills.
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6.2 Lithium chloride in electrolyte

The cells were produced to operate a two-electron mechanism, so LiCl has to be

included in the chemical reaction. The first approach was to include LiCl in the

electrolyte, as this solution had already been tested and it avoids making the dosing

process even more complex. The optimized electrolyte composition consisted of the

four salts (LiCl, LiNO3, LiTFSI, LiBOB) and three solvents. The main objective

of this section was to collect a critical dataset for the training of the AI.

We tested many different solvents, salts, and compositions. The first set of exper-

iments used two alternative solvents (E/F) to substitute solvent A while keeping

the salt composition exactly the same. These two new electrolytes were tested, and

the results are reported in figure 6.4. It is clear that solvent E is not working, and

solvent F is not an optimal solution.

(a) (b)

(c) (d)

Figure 6.4: Results trying to substitute the solvent A. Experiment for 55% dosing.(a-b) Cells
using solvent E, (c-d) cells using solvent F.

Meanwhile, we also tested solvent D, which required a change in the separator

compared to our previous results. We switched from the celgard (CG2325) separator

to a quartz microfiber (QMA) separator. This difference should be noted as it

contributes to a more accurate description of the systems. The results obtained

with the new separator and solvent are reported in Figure 6.5, and they indicate a

significant increase in capacity, especially at high rates.
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(a) (b) (c)

Figure 6.5: Capacity during the standard GCPL for three cells using solvent D. Experiment
for 35% dosing. (a) Cycling life without rate test, (b-c) Standard test.

Afterward, we decided to conduct a comprehensive comparison of the effects of the

four solvents (A/B/C/D) by varying the volume ratio of the components. In order

to assess the distinct impacts of the solvents, we created five different electrolytes

using five different mixtures of the four solvents while keeping the salt constant.

All the results were averaged over at least two cells, and the specific capacity was

normalized to the mass of iodine, as depicted in figure 6.8. Upon observing the

graph, it is important to note that the concentration of solvent D was higher in the

K3 formulation. This composition exhibited the highest capacity at high rates, which

is crucial for meeting the requirements of the next generation.

Then, we decided to evaluate the optimal volume by conducting tests using the QMA

separator. The results are depicted in figure 6.7. By examining the Nyquist plots of

the four cells, as shown in figure 6.6, we can analyze the impact of the electrolyte on

the behavior of the cells. Typically, the cells are represented as a series connection

between a resistance and a parallel combination of resistance and capacitor.

It is evident that Cell 1, with a low electrolyte volume, exhibits a high series resistance

of approximately 150 Ω. On the other hand, Cell 2 shows satisfactory results, albeit

slightly worse than those of Cells 3 and 4, particularly in terms of high frequency

resistance. The Nyquist plot for Cell 3 and Cell 4 appears quite similar, with a slight

degradation observed for the 110 µl volume. Based on these findings, it can be

concluded that the optimal electrolyte volume is around 100 µl. However, it is

worth noting that this may pose a concern due to the slightly higher weight of the

electrolyte in comparison to the target values.

Additionally, the electrolyte volume is an important parameter for the AI, and it

needs to be considered in the design of an AI system capable of predicting the

behavior of a full cell. For our electrolyte optimization, this parameter has been

fixed, and henceforth, the electrolyte volume is set at 100 µl.
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From the capacity and shuttling results, we can also observe some detrimental effects

of the solid/liquid ratio. This could be correlated with the amount of LiCl, which has

a negative impact, or with the high quantity of liquid that increases the solubility of

iodine species.

Figure 6.6: Nyquist plot of the electrolyte volumes comparison. (cell 1) 40 µl, (2) 60 µl,
(3) 90 µl, (4) 110 µl

(a) (b)

(c) (d)

Figure 6.7: Capacity during the standard GCPL for 4 different volumes of electrolyte. Ex-
periment for 50% dosing. (a) 40 µl, (b) 60 µl, (c) 90 µl, (d) 110 µl
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The previous results were obtained for low dosing, so we decided to try increasing

the dosing to collect data for high dosing as well. LiCl needs to be added to

the electrolyte to facilitate the second electron reaction, as Cl− can stabilize I+.

Therefore, it is important to maintain a constant molar ratio between the two.

Increasing the concentration of LiCl in the electrolyte is not a trivial task due to its

low solubility in the solvents used. If we want to increase the concentration of LiCl,

we also need to increase the volume of solvent A to ensure complete dissolution.

From the previous results, it appeared that the electrolyte with a high volume

of solvent A (K5) performed less effectively. The results indicate that increasing

the dosing leads to shuttling and lower coulombic efficiency, causing the cells to

stop working almost immediately. On the other hand, the resistance appears to be

relatively low and not limiting.

Figure 6.8: Comparison between capacity [mAh/g] of 5 different electrolytes composition
at different charge/discharge rates. In Particular 0.5 − 1 − 2 − 3 − 4 − 5 −
10 mA/cm2. Experiment for 40% dosing. There are 2 additional formulation
used as reference.

6.3 Data collection

50 Chapter 6 APPENDIX-A



Complete dataset for DoE. COMPOSITION TABLE

NAME_1 NAME_2 LiTFSI LiBOB LiCl LiNO3 DOL EC TEGDME DMI
DC20230519cell1 DC20230519cell2 2.9 17.4 7.4 0.7 20.3 10.9 6.8 33.7
DC20230621cell1 DC20230621cell2 2.9 17.2 7.2 0.7 20.0 10.5 6.8 34.7
DC20230519cell3 DC20230519cell4 1.9 4.4 7.6 5.2 48.5 10.8 3.1 18.4
DC20230621cell3 DC20230621cell4 2.0 4.6 8.4 5.4 47.5 9.8 3.1 19.1
DC20230519cell5 DC20230519cell6 10.6 5.6 6.7 4.9 50.6 7.8 2.8 11.0
DC20230621cell5 DC20230621cell6 10.9 5.8 7.0 5.1 48.5 8.4 2.7 11.4
DC20230519cell7 7.1 1.3 14.2 7.7 18.8 19.6 5.8 25.5
DC20230621cell7 DC20230621cell8 7.1 1.3 14.6 8.0 19.0 19.0 6.1 24.8
DC20230519cell9 DC20230519cell10 3.0 14.9 8.9 2.4 20.6 11.2 9.9 29.1
DC20230621cell9 DC20230621cell10 2.4 14.8 9.0 2.3 21.2 10.7 11.2 28.3
DC20230519cell11 DC20230519cell12 15.5 1.7 1.7 0.7 35.0 34.7 5.4 5.3
DC20230621cell11 DC20230621cell12 15.8 1.1 1.9 0.6 33.5 38.7 2.7 5.7
DC20230523cell1 DC20230523cell2 1.2 9.8 13.6 5.0 34.7 9.3 3.0 23.3
DC20230621cell13 DC20230621cell14 1.2 9.8 13.6 5.0 35.3 8.9 3.3 22.9
DC20230523cell3 DC20230523cell4 10.5 3.1 1.4 13.4 50.6 9.0 5.8 6.2
DC20230621cell15 DC20230621cell16 9.9 1.9 1.4 13.4 53.2 9.2 5.6 5.4
DC20230523cell5 DC20230523cell6 5.0 2.9 10.8 4.3 20.3 33.0 10.0 13.7
DC20230621cell17 DC20230621cell18 5.0 2.8 10.8 4.1 20.0 33.3 10.6 13.4
DC20230523cell7 8.8 14.9 2.0 4.9 18.7 9.8 3.1 37.9
DC20230621cell19 DC20230621cell20 2.7 17.5 0.7 9.8 18.7 9.8 3.6 37.1
DC20230523cell11 DC20230523cell12 2.5 16.3 0.7 9.4 18.4 37.7 9.2 5.7
DC20230621cell21 DC20230621cell22 1.9 12.5 0.6 7.2 13.7 30.1 7.2 26.7
DC20230523cell13 DC20230523cell14 8.9 0.7 7.5 3.8 8.9 55.1 3.2 12.0
DC20230621cell23 DC20230621cell24 8.7 0.6 7.2 3.8 8.2 56.7 3.2 11.6
DC20230523cell8 DC20230523cell9 1.7 11.1 0.4 6.3 12.2 38.7 5.9 23.7

DC20230713cell1 DC20230713cell2 8.9 5.5 15.5 1.3 27.8 9.9 3.1 32.0
DC20230713cell3 DC20230713cell4 0.7 6.7 9.6 12.6 9.5 19.3 3.4 38.2
DC20230713cell5 DC20230713cell6 9.5 17.6 1.3 2.1 9.8 30.2 9.8 19.6
DC20230713cell7 DC20230713cell8 9.0 0.7 10.1 6.9 9.5 41.3 9.9 12.7
DC20230713cell9 DC20230713cell10 17.9 8.6 2.5 7.2 30.2 10.2 16.9 6.5
DC20230713cell11 DC20230713cell12 1.9 5.1 10.1 7.5 26.5 28.2 3.0 17.7
DC20230713cell13 DC20230713cell14 13.4 2.0 10.7 4.9 27.9 9.9 6.2 24.9
DC20230713cell15 DC20230713cell16 7.5 6.9 13.5 2.5 17.6 37.5 8.8 5.6
DC20230714cell1 DC20230714cell2 10.5 1.3 6.8 3.1 54.1 9.4 3.0 11.9
DC20230714cell3 DC20230714cell4 3.0 7.0 19.1 2.4 20.9 22.3 18.1 7.2
DC20230714cell5 DC20230714cell6 1.1 7.8 16.0 14.1 11.9 12.6 28.4 8.0
DC20230714cell7 DC20230714cell8 11.7 2.5 3.3 16.1 0.0 12.1 15.7 38.5
DC20230714cell9 DC20230714cell10 2.6 15.8 6.8 0.8 28.1 18.6 3.2 24.1
DC20230714cell11 DC20230714cell12 22.2 1.9 2.6 0.9 46.0 0.0 19.2 7.2
DC20230714cell13 DC20230714cell14 2.2 5.1 7.3 5.6 56.2 47.7 0.0 0.0
DC20230714cell15 DC20230714cell16 6.6 1.7 18.3 9.9 68.0 0.0 0.0 29.3
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DOSING RESUME TABLE

NAME_1 NAME_2 DOS_1 DOS_2 DOS std_DOS
DC20230519cell1 DC20230519cell2 59.0% 61.0% 60.0% 1.4
DC20230621cell1 DC20230621cell2 57.0% 58.0% 57.5% 0.7
DC20230519cell3 DC20230519cell4 59.0% 60.0% 59.5% 0.7
DC20230621cell3 DC20230621cell4 60.0% 57.0% 58.5% 2.1
DC20230519cell5 DC20230519cell6 63.0% 58.0% 60.5% 3.5
DC20230621cell5 DC20230621cell6 56.0% 56.0% 56.0% 0.0
DC20230519cell7 56.0% NaN 56.0%
DC20230621cell7 DC20230621cell8 60.0% 60.0% 60.0% 0.0
DC20230519cell9 DC20230519cell10 61.0% 60.0% 60.5% 0.7
DC20230621cell9 DC20230621cell10 59.0% 58.0% 58.5% 0.7
DC20230519cell11 DC20230519cell12 58.0% 55.0% 56.5% 2.1
DC20230621cell11 DC20230621cell12 59.0% 58.0% 58.5% 0.7
DC20230523cell1 DC20230523cell2 60.0% NaN 60.0%
DC20230621cell13 DC20230621cell14 58.0% 69.0% 58.0%
DC20230523cell3 DC20230523cell4 60.0% 63.0% 61.5% 2.1
DC20230621cell15 DC20230621cell16 59.0% 59.0% 59.0%
DC20230523cell5 DC20230523cell6 63.0% 64.0% 63.5% 0.7
DC20230621cell17 DC20230621cell18 54.0% 57.0% 55.5% 2.1
DC20230523cell7 60.0% NaN 60.0%
DC20230621cell19 DC20230621cell20 59.0% 56.0% 57.5% 2.1
DC20230523cell11 DC20230523cell12 62.0% 67.0% 64.5% 3.5
DC20230621cell21 DC20230621cell22 59.0% 58.0% 58.5% 0.7
DC20230523cell13 DC20230523cell14 64.0% NaN 64.0%
DC20230621cell23 DC20230621cell24 58.0% 59.0% 58.5% 0.7
DC20230523cell8 DC20230523cell9 63.0% 64.0% 63.3% 0.6

DC20230713cell1 DC20230713cell2 59.6% 60.2% 59.9% 0.0
DC20230713cell3 DC20230713cell4 58.6% 61.9% 60.3% 0.0
DC20230713cell5 DC20230713cell6 60.6% 61.1% 60.9% 0.0
DC20230713cell7 DC20230713cell8 60.3% 59.1% 59.7% 0.0
DC20230713cell9 DC20230713cell10 60.4% 60.4% 60.4% 0.0
DC20230713cell11 DC20230713cell12 59.8% 60.1% 59.9% 0.0
DC20230713cell13 DC20230713cell14 59.8% 60.3% 60.1% 0.0
DC20230713cell15 DC20230713cell16 58.7% 59.4% 59.1% 0.0
DC20230714cell1 DC20230714cell2 59.5% 60.8% 60.2% 0.0
DC20230714cell3 DC20230714cell4 60.5% 57.6% 59.1% 0.0
DC20230714cell5 DC20230714cell6 62.6% 61.8% 62.2% 0.0
DC20230714cell7 DC20230714cell8 60.5% 60.3% 60.4% 0.0
DC20230714cell9 DC20230714cell10 61.3% 62.4% 61.8% 0.0
DC20230714cell11 DC20230714cell12 59.7% 60.0% 59.8% 0.0
DC20230714cell13 DC20230714cell14 62.4% 61.2% 61.8% 0.0
DC20230714cell15 DC20230714cell16 60.7% 62.2% 61.4% 0.0
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PERFORMACES TABLE

NAME_1 NAME_2 CAP_1 CAP_2 CAP std_CAP
DC20230519cell1 DC20230519cell2 6.1 2.1 4.1 2.8
DC20230621cell1 DC20230621cell2 4.7 4.8 4.7 0.1
DC20230519cell3 DC20230519cell4 174.9 146.6 160.7 19.9
DC20230621cell3 DC20230621cell4 141.7 158.5 150.1 11.9
DC20230519cell5 DC20230519cell6 54.1 70.4 62.2 11.5
DC20230621cell5 DC20230621cell6 76.2 64.0 70.1 8.7
DC20230519cell7 72.0 NaN 72.0
DC20230621cell7 DC20230621cell8 51.9 52.8 52.4
DC20230519cell9 DC20230519cell10 10.5 11.5 11.0 0.7
DC20230621cell9 DC20230621cell10 10.0 22.5 16.3 8.8
DC20230519cell11 DC20230519cell12 124.7 133.2 128.9 6.0
DC20230621cell11 DC20230621cell12 99.6 99.5 99.6 0.1
DC20230523cell1 DC20230523cell2 56.3 NaN 56.3
DC20230621cell13 DC20230621cell14 48.6 21.3 48.6
DC20230523cell3 DC20230523cell4 128.1 120.1 124.1 5.7
DC20230621cell15 DC20230621cell16 128.5 133.9 131.2
DC20230523cell5 DC20230523cell6 81.4 111.2 96.3 21.1
DC20230621cell17 DC20230621cell18 113.2 80.2 96.7 23.3
DC20230523cell7 0.1 NaN 0.1
DC20230621cell19 DC20230621cell20 3.8 3.8 3.8 0.0
DC20230523cell11 DC20230523cell12 1.4 0.8 1.1 0.4
DC20230621cell21 DC20230621cell22 4.3 4.9 4.6 0.4
DC20230523cell13 DC20230523cell14 111.1 NaN 111.1
DC20230621cell23 DC20230621cell24 137.0 136.0 136.5 0.7
DC20230523cell8 DC20230523cell9 24.6 9.0 15.1 8.3

DC20230713cell1 DC20230713cell2 96.0 113.4 104.7 12.3
DC20230713cell3 DC20230713cell4 41.1 NaN 41.1
DC20230713cell5 DC20230713cell6 NaN 3.0 3.0
DC20230713cell7 DC20230713cell8 105.5 106.7 106.1 0.9
DC20230713cell9 DC20230713cell10 0.5 0.1 0.3 0.3
DC20230713cell11 DC20230713cell12 100.3 NaN 100.3
DC20230713cell13 DC20230713cell14 72.0 116.7 94.3 31.6
DC20230713cell15 DC20230713cell16 67.6 101.2 84.4 23.8
DC20230714cell1 DC20230714cell2 128.7 128.0 128.4 0.4
DC20230714cell3 DC20230714cell4 64.1 75.9 70.0 8.3
DC20230714cell5 DC20230714cell6 12.1 14.5 13.3 1.7
DC20230714cell7 DC20230714cell8 8.9 12.0 10.4 2.2
DC20230714cell9 DC20230714cell10 1.8 2.3 2.0 0.3
DC20230714cell11 DC20230714cell12 94.9 98.8 96.9 2.7
DC20230714cell13 DC20230714cell14 120.0 140.3 130.1 14.3
DC20230714cell15 DC20230714cell16 55.0 55.1 55.0 0.1
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7APPENDIX-B

7.1 Models comparison

Figure 7.1: Comparison between the predicted capacity and the measured for Linear re-
gression. Fitting (Left) using all the points for training and the same points for
testing. Cross Validation (Right) 5 fold, 4 of them used for the training and the
last one for the testing. Are also reported the values of MSE (mean squared
error) and R2
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Figure 7.2: Comparison between the predicted capacity and the measured for support vector
regression with linear kernel. Fitting (Left) using all the points for training and
the same points for testing. Cross Validation (Right) 5 fold, 4 of them used for
the training and the last one for the testing. Are also reported the values of MSE
and R2

Figure 7.3: Comparison between the predicted capacity and the measured for support vector
regression with Radial basis function kernel. Fitting (Left) using all the points
for training and the same points for testing. Cross Validation (Right) 5 fold, 4
of them used for the training and the last one for the testing. Are also reported
the values of MSE and R2
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Figure 7.4: Comparison between the predicted capacity and the measured for support vector
regression with Sigmoid kernel. Fitting (Left) using all the points for training
and the same points for testing. Cross Validation (Right) 5 fold, 4 of them used
for the training and the last one for the testing. Are also reported the values of
MSE and R2

Figure 7.5: Comparison between the predicted capacity and the measured for support vector
regression with Polynomial kernel with 5 degree of freedom. Fitting (Left) using
all the points for training and the same points for testing. Cross Validation
(Right) 5 fold, 4 of them used for the training and the last one for the testing.
Are also reported the values of MSE and R2

7.1 Models comparison 57



Figure 7.6: Comparison between the predicted capacity and the measured for support vector
regression with Polynomial kernel with 8 degree of freedom. Fitting (Left) using
all the points for training and the same points for testing. Cross Validation
(Right) 5 fold, 4 of them used for the training and the last one for the testing.
Are also reported the values of MSE and R2

Figure 7.7: Comparison between the predicted capacity and the measured for support vector
regression with Polynomial kernel with 10 degree of freedom. Fitting (Left)
using all the points for training and the same points for testing. Cross Validation
(Right) 5 fold, 4 of them used for the training and the last one for the testing.
Are also reported the values of MSE and R2
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Figure 7.8: Comparison between the predicted capacity and the measured for support vector
regression with Polynomial kernel with 15 degree of freedom. Fitting (Left)
using all the points for training and the same points for testing. Cross Validation
(Right) 5 fold, 4 of them used for the training and the last one for the testing.
Are also reported the values of MSE and R2

Figure 7.9: Comparison between the predicted capacity and the measured for Random
forest regressor. Fitting (Left) using all the points for training and the same
points for testing. Cross Validation (Right) 5 fold, 4 of them used for the training
and the last one for the testing. Are also reported the values of MSE and R2
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Figure 7.10: Comparison between the predicted capacity and the measured for Gaussian
regression with exponential kernel. Fitting (Left) using all the points for
training and the same points for testing. Cross Validation (Right) 5 fold, 4 of
them used for the training and the last one for the testing. Are also reported
the values of MSE and R2

Figure 7.11: Comparison between the predicted capacity and the measured for Gaussian
regression with Matern32 kernel. Fitting (Left) using all the points for training
and the same points for testing. Cross Validation (Right) 5 fold, 4 of them
used for the training and the last one for the testing. Are also reported the
values of MSE and R2

7.2 HOT ENCODED TABLE
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Table 7.1: Hot-Encoded table, for different combinations of variable and capacity.

LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI R2

0 1 1 1 1 0 1 1 0.932372

1 1 0 0 1 1 1 1 0.929281

1 1 0 0 0 0 1 1 0.927195

0 1 0 0 0 1 1 1 0.927087

1 1 1 1 0 0 1 1 0.925873

0 1 1 1 1 0 1 0 0.92541

1 1 0 1 1 1 1 0 0.92397

1 1 1 1 0 1 1 0 0.923966

0 1 0 0 0 0 1 1 0.923524

0 1 0 1 1 1 1 0 0.923027

0 1 1 1 0 0 0 0 0.922792

0 1 1 1 1 1 1 1 0.922513

1 1 0 1 1 1 1 1 0.922269

0 1 0 1 0 1 1 1 0.922018

1 1 0 1 0 1 1 1 0.921892

1 1 0 1 0 1 1 0 0.921491

1 1 0 1 0 0 1 1 0.920935

0 1 0 1 0 0 1 1 0.920446

0 1 1 0 0 1 1 1 0.919545

0 1 0 0 1 1 0 1 0.919534

1 1 1 1 1 0 1 1 0.919359

0 1 1 1 0 0 1 1 0.919126

0 1 1 1 0 0 1 0 0.918788

1 1 0 1 0 0 1 0 0.9187

0 1 1 0 0 0 1 1 0.918069

0 1 0 0 1 0 1 1 0.917998

0 1 1 0 0 1 1 0 0.917942

1 1 1 1 1 0 1 0 0.917304

0 0 1 0 0 0 1 1 0.916919

1 1 1 1 1 1 0 0 0.916815

0 0 0 0 0 0 1 1 0.916236

0 1 0 1 1 0 0 0 0.915999

0 1 0 1 0 0 1 0 0.915899

0 1 0 1 1 0 0 1 0.915828

1 1 0 1 1 1 0 1 0.915685

0 1 1 1 1 1 1 0 0.914765

0 1 0 0 1 0 0 0 0.914516

1 1 0 1 1 0 0 0 0.914479
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LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI R2

1 1 0 1 1 0 1 0 0.914

0 1 1 1 0 1 0 0 0.913698

1 1 1 0 1 1 0 1 0.913463

1 1 1 1 1 1 0 1 0.913306

1 1 0 0 0 1 1 1 0.91302

0 1 0 0 1 1 1 1 0.912699

1 1 1 0 0 1 1 1 0.912109

0 1 0 1 1 1 1 1 0.912027

0 1 0 1 1 0 1 1 0.911744

0 1 0 0 1 1 1 0 0.911732

0 1 1 1 0 1 1 1 0.911667

1 1 1 0 0 0 0 1 0.911528

0 0 1 0 0 1 1 1 0.911382

0 0 1 1 0 1 1 1 0.9111

0 1 1 0 1 0 0 1 0.91094

0 1 1 1 0 1 0 1 0.910832

0 1 1 0 1 0 1 0 0.910619

0 1 0 1 0 0 0 1 0.910466

1 1 0 0 1 0 1 1 0.910281

1 0 1 0 0 0 1 1 0.909766

1 1 1 0 1 0 1 1 0.909512

1 1 1 1 0 1 1 1 0.909459

1 1 0 0 0 1 1 0 0.909366

0 1 1 0 1 0 0 0 0.909302

0 1 0 1 0 1 0 1 0.909287

0 0 0 1 0 1 1 1 0.90926

0 1 0 1 0 1 0 0 0.909247

0 1 0 0 1 0 0 1 0.909036

1 1 0 0 1 1 0 1 0.909024

0 1 0 0 0 0 0 1 0.90878

0 1 1 0 1 1 1 1 0.908735

0 1 1 0 1 1 1 0 0.908539

0 1 0 1 1 0 1 0 0.908523

1 1 0 1 1 1 0 0 0.908326

1 1 1 0 1 0 1 0 0.908309

0 1 1 1 1 0 0 0 0.90797

0 1 0 1 0 1 0 1 0.907935

1 1 0 0 1 0 0 1 0.90782

0 1 0 0 0 1 1 0 0.9075
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LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI R2

0 1 0 0 1 1 0 0 0.907191

0 1 0 0 1 0 1 0 0.907149

0 1 1 1 1 1 0 0 0.907059

1 1 0 0 1 1 0 0 0.906836

0 1 1 0 0 0 1 0 0.906681

1 0 0 1 1 1 1 1 0.906680

1 1 1 1 1 0 0 0 0.906572

1 1 1 1 1 1 1 0 0.906456

1 1 0 1 1 0 0 1 0.906086

1 1 1 0 1 0 0 0 0.905409

1 1 0 1 1 0 1 1 0.905233

0 1 0 1 0 0 0 0 0.905139

1 1 1 1 0 0 1 0 0.905117

1 1 1 0 0 0 1 1 0.904844

1 1 1 0 1 1 0 0 0.904391

0 1 0 0 0 1 0 1 0.904316

1 1 1 0 0 0 1 0 0.904210

1 1 1 1 0 0 0 1 0.904106

1 1 1 1 0 1 0 0 0.903795

0 1 0 1 1 1 0 0 0.903507

1 1 0 0 1 0 0 1 0.903327

0 1 0 1 1 1 0 1 0.903245

0 1 1 0 1 1 0 1 0.903182

1 1 1 1 1 0 0 1 0.903132

1 0 0 1 0 0 1 1 0.902721

1 0 0 0 1 1 1 1 0.902698

1 1 1 0 1 1 1 1 0.902662

1 1 1 1 1 1 1 1 0.902068

0 1 0 0 0 0 1 0 0.902066

1 1 1 1 0 0 0 0 0.901931

0 1 1 1 0 1 1 0 0.901454

1 1 0 0 1 1 1 0 0.901434

1 0 1 1 0 1 1 1 0.900504

0 1 1 1 0 0 0 1 0.900486

1 0 0 0 1 1 0 1 0.899949

1 0 1 1 1 1 1 1 0.899129

1 0 0 0 1 0 1 1 0.899054

1 0 0 1 1 1 1 0 0.898860

0 0 1 0 1 1 0 1 0.898693
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LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI R2

1 1 0 1 0 0 0 1 0.898429

0 0 1 0 0 0 0 1 0.898269

1 1 0 0 0 1 1 0 0.897859

1 1 0 1 0 0 0 0 0.897478

0 1 1 0 0 0 0 1 0.897379

1 0 1 0 0 1 1 1 0.897354

1 0 1 0 0 1 1 1 0.897354

0 0 0 0 0 1 1 1 0.897166

1 1 1 0 1 1 1 0 0.896938

0 1 1 1 1 1 0 1 0.896649

1 0 1 1 1 0 1 1 0.896553

1 0 0 0 1 1 1 0 0.896514

1 0 0 1 0 1 1 1 0.895286

0 0 1 0 1 1 0 1 0.895222

0 1 1 1 1 0 0 1 0.895215

1 0 0 1 1 0 1 1 0.895193

0 1 1 0 0 1 0 1 0.895020

1 1 0 1 0 0 0 1 0.894897

0 0 1 0 1 1 1 1 0.894816

1 1 0 1 0 1 0 1 0.894552

0 1 1 0 1 1 0 0 0.894544

0 0 0 0 1 0 1 1 0.894462

1 1 1 0 1 0 0 1 0.894443

0 0 1 1 0 0 1 1 0.894321

1 1 1 0 0 1 1 0 0.894287

0 0 1 0 0 1 0 1 0.893818

1 0 1 0 1 0 0 1 0.893120

1 1 0 0 0 0 1 0 0.892813

1 0 0 0 0 0 1 0 0.892265

0 1 1 0 0 0 0 0 0.892160

1 0 1 1 0 1 0 1 0.892086

1 1 0 0 0 1 0 1 0.892010

1 0 1 0 1 1 0 0 0.891771

1 0 1 1 1 0 0 1 0.891761

1 0 1 0 1 1 1 0 0.891723

1 0 1 1 0 0 0 1 0.891190

1 0 1 0 1 0 1 1 0.891128

0 1 1 0 1 0 1 1 0.890865

1 0 1 1 1 1 1 0 0.890817
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LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI R2

1 0 1 0 1 1 1 1 0.890642

0 0 0 0 1 1 0 0 0.890557

1 1 1 0 0 1 0 1 0.890446

1 0 1 0 1 0 1 0 0.890372

0 0 1 1 1 0 1 1 0.889720

0 0 1 0 1 0 1 1 0.889606

1 0 0 0 1 0 0 1 0.889385

0 1 0 0 0 1 0 0 0.889175

0 0 0 1 0 0 1 1 0.888929

1 1 1 1 0 1 0 1 0.888728

0 0 1 0 1 0 0 1 0.888215

1 0 0 0 1 1 0 0 0.888136

1 0 0 0 0 1 1 1 0.887927

0 1 0 0 0 0 0 0 0.886913

1 1 1 0 0 0 0 0 0.886427

1 0 1 1 1 1 0 1 0.886337

1 1 0 0 0 0 0 1 0.885665

1 0 0 0 1 0 1 0 0.885348

0 0 0 0 1 1 0 1 0.885330

0 1 1 0 0 1 0 0 0.884851

1 0 1 1 0 0 1 1 0.884820

0 0 0 1 1 1 1 1 0.883825

1 0 0 0 0 1 1 0 0.883163

0 0 0 0 0 1 1 0 0.883119

0 0 1 1 1 1 0 0 0.883076

0 0 1 1 1 1 1 1 0.883037

1 0 1 0 1 1 0 1 0.882645

0 0 1 1 0 0 0 1 0.882448

1 0 1 0 0 1 0 1 0.882445

0 0 0 1 1 1 0 0 0.882389

1 0 1 0 0 0 0 1 0.882203

0 0 0 1 1 1 0 1 0.882177

1 1 0 0 0 0 0 0 0.881984

0 0 0 1 1 0 1 1 0.881507

0 0 0 1 1 1 1 0 0.881499

1 0 0 1 1 1 0 1 0.881039

1 0 0 0 1 0 0 0 0.880835

1 0 0 1 1 0 1 0 0.880181

0 0 0 0 1 1 1 1 0.879473
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LiTFSI LiBOB LiCl LiNO3 DOL EC G4 DMI R2

0 0 1 0 1 0 1 0 0.879431

1 1 0 1 0 1 0 0 0.879152

1 0 0 1 1 0 1 0 0.878006

1 0 0 1 1 1 0 0 0.876164

0 0 1 1 1 0 1 0 0.875663

0 0 1 0 0 1 1 0 0.874435

1 1 0 0 0 1 0 0 0.874078

0 0 1 1 0 1 0 1 0.874006

0 0 1 0 1 1 1 0 0.873845

0 0 1 1 1 1 0 1 0.872753
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8APPENDIX-C

8.1 Experimental measures of cathode
optimization

Initially, a set of experiments was conducted with a high dosing percentage (65%),

and pronounced shuttling was observed. This could be attributed to the chloride

concentration or the high iodine concentration, which facilitates dissolution.

Subsequently, the decision was made to decrease the dosing percentage to determine

whether the shuttling issue was influenced by the absolute quantity of salts or the

ratio between the salts and PVP. We compared three potential dosing solutions. The

first solution included PVP, MADQUAT, and carbon black. The two polymers were

intended to bind the two salts, while carbon black played a role in maintaining high

conductance for efficient cycling. The other two dosing solutions did not contain

MADQUAT and had slight composition variations. The results are presented in figure

8.1.

(a) (b) (c)

(d) (e) (f)

Figure 8.1: (a)-(b) Capacity during the standard cycle for the first dosing solution (c)-(d)
Capacity during the standard cycle for the second solution (e)-(f) Capacity
during the standard cycle for the third solution. Experiment for 40% dosing.
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All the cells performed exceptionally well, demonstrating a superiority of the formu-

lation without MADQUAT.

Subsequently, I decided to replicate the experiment to validate the observed trend

and attempt to increase the PVP content. The internal resistance measured using

EIS was relatively low, suggesting potential for increasing the binder mass. We are

also monitoring the impact of the PVP on the LiI/LiCl absorption, with SEM and

characterization for different dosing mass and PVP concentration.

8.2 Solvent amount comparison

(a) (b)

(c) (d)

Figure 8.2: Comparison varying the quantity of solvent EtOH, (c-d) have double solvent
quantity with respect to (a-b). Increase in the efficiency
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8.3 PVP concentration comparison

(a) (b)

(c) (d)

(e) (f)

Figure 8.3: Comparison varying the amount of binder, (a-b) low quantity of PVP, and target
dosing 45%. (c-d) doubled quantity of PVP with respect of (a-b), (c) target
dosing 45%, (d) target dosing 60%. (e) same quantity of (c-d) with increased
KB and LiCl, (e) target dosing 45%. (f) doubled quantity of PVP with respect of
(c-d), (f) target dosing 45%
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8.4 PVP concentration comparison

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.4: Comparison varying the amount of binder, with 60% target dosing. (a-b) no
PVP binder. (c-d) 4 mg of PVP binder. (e-f) 8 mg of PVP binder. (g-h) 16 mg of
PVP binder.
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8.5 PVP and MADQUAT comparison

(a) (b)

(c) (d)

Figure 8.5: Comparison varying the amount of binder, with 60% target dosing. (a) PVP
binder.(b) PVP and MADQUAT (1:1 wt.) binder.(c) MADQUAT binder.(d) no
binder.
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8.6 Increased dosing percentage

(a) (b)

(c)

(d) (e)

Figure 8.6: (a-b) target 60% dosing.(c) target 60% dosing, with increased LiCl. (d-e) target
70% dosing.
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8.7 Integration and dissolution collaboration

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.7: Comparison between LiCl just in the cathode or both in cathode and electrolyte,
target dosing 60%. (a-b-c-d-e-f-g) no binder, (h-i) PVP and KB. (a-b-h-i) no
LiCl in the electrolyte, (c-d) no LiCl in the electrolyte, with slightly different
compositions. (e-f) LiCl in the electrolyte. (g) LiCl in the electrolyte, with
slightly different compositions.
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