POLITECNICO
DI TORINO

POLITECNICO DI TORINO

Master Degree Thesis

Delay Control with Programmable Data
Planes

Relatori
Prof. Paolo GIACCONE
Prof. Andrea BiaNnco

Farhad FATHI

AcADEMIC YEAR 2023-2024

Acknowledgements

I would like to express my deepest gratitude to my supervisors, Prof. Giaccone and Prof.
Bianco, for their invaluable guidance, expertise, and continuous support throughout the
entire research process. Their insightful feedback, encouragement, and mentorship have
been instrumental in shaping the direction and quality of this thesis. I am truly grateful
for their dedication and commitment to my academic growth.

I am also indebted to Alessandro Cornacchia, a Ph.D. student, for his exceptional
assistance and collaboration during this research project. His technical expertise, criti-
cal insights, and willingness to engage in detailed discussions have greatly enriched my
understanding of the subject matter. His contributions have been instrumental in the
success of this work.

I would like to extend my sincere appreciation to the Department of Communication
and Computer Network Engineering at Politecnico di Torino for providing a stimulating
academic environment and access to valuable resources. The support and facilities offered
by the department have played a significant role in the successful completion of this thesis.

Finally, I would like to thank all the individuals who have played a role, however small,
in the completion of this thesis. Your contributions, assistance, and encouragement are
sincerely appreciated.

This work was partially supported by the European Union under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on “Telecom-
munications of the Future” (PE00000001 - program “RESTART”)

Abstract

This thesis looks into the topic of "Delay Control with Programmable Data Planes". The
primary focus is on exploring the potential of programmable switches, specifically BMv2
switches programmed with the P4 language. By investigating the operations that can be
performed inside switch pipelines, the thesis aims to provide a deeper understanding of
how to control the delay of packets in the network.

Through our attempts, we observed that recirculation within the programmable switch
is a potential method for controlling packet delays across the network. In the following, I
developed packet recirculation within programmable switches. Based on the development
of packet recirculation, this study investigates the effect of different recirculation itera-
tions on packet delay. Additionally, we explore the broader consequences of this packet
recirculation approach on network throughput. Initially, we conducted experiments in
a controlled virtual environment. To enhance the depth of our insights, we extend our
experimentation to real scenarios, employing a Linux server. This dual approach enables
us to figure out the variations in outcomes between experiments in virtual and real Linux
environments.

The research employs Mininet, a network emulator, within the virtual Linux envi-
ronment (Ubuntu) and the real Linux server to emulate a simple network topology. The
topology consists of a source host, a destination host, and one or a chain of BMv2
switches. Programmable switches offer flexibility and programmability in their data
plane, which consists of forwarding tables, flow tables, and packet processing capabil-
ities. These switches enable customized forwarding decisions based on defined rules and
match fields such as addresses, ports, or protocol types. The control plane, managed by
a controller, plays a vital role in configuring and orchestrating the behavior of the pro-
grammable switches. By leveraging the flexibility and programmability of these switches,
we can manage forwarding decisions or do other actions, adapt to dynamic network con-
ditions, and achieve our goal.

To evaluate the delay of packets and the performance of the network, experiments are
conducted considering variations in the link parameters and configurations. For changing
link parameters, a traffic controller tool within the Mininet is utilized. Throughput mea-
surements are performed using the widely used IPERF tool, which supports both UDP
and TCP protocols. Network delay is measured using the ping utility, which calculates
round-trip times between the source and a specified destination. These measurements
provide valuable insights into the effects of packet recirculation on the delay of packets
in the network.

The findings from this research contribute to enhancing the understanding of data
plane programmability, how we can use recirculation in it to control the delay of packets,
and the impacts of this on network performance, specifically throughput.

Keywords: Data Plane Programmability, Programmable Switches, BMv2, P4 Lan-
guage, Throughput, Delay, Packet Recirculation, Mininet.

Contents

1 Introduction
1.1 Background and context
1.2 Motivation for Controlling Delay
2 Programmable Data Planes
2.1 Programmable packet processing pipelines
2.2 Programming languages and compilerso L.
3 Related work
4 Delay Control by Packet Recirculation
4.1 Packet Recirculation development L.
4.2 How to Control Delay?
5 Experimental/numerical evaluation
5.1 Methodology
5.2 Numerical results L
6 Conclusion
Bibliography

11
13
14

19

37
38
52

o7
o7
99

83

85

Chapter 1

Introduction

The evolution of next-generation internet technologies, such as 5G and the future 6G, has
resulted in an increasing number of use cases for Software-Defined Networking (SDN).
This novel networking paradigm contrasts with the conventional one, which depends on
specific hardware devices such as routers and switches to regulate network traffic. SDN,
on the other hand, presents a software-based method that enables centralized control
and programmability over these hardware devices through controllers. The separation
of the control plane and the forwarding plane enables more efficient administration, con-
figuration, and orchestration of network resources, liberating us from the confines of
outdated techniques and protocols. SDN provides a flexible and adaptable infrastructure
for routing network traffic and implementing network policies. Network administrators
may flexibly adjust to changing requirements, divert traffic flows, and improve the uti-
lization of resources by separating the control and forwarding operations. Because of its
programmability, administrators may specify network behavior depending on application
requirements, resulting in more efficient and effective network operations.

One of the key devices in SDN that plays a critical role in facilitating communication
in the network is the programmable switch. Programmable switches are the main focus
of this research, as they offer the capability to customize their behavior and functions
through programmability. This research aims to investigate the functions and behavior
of programmable switches and understand their impact on the network. By examining
how programmable switches operate within SDN, valuable insights can be gained in delay
control of the packets in the network.

For investigating the impacts of the behavior and functions of programmable switches,
it is crucial to have an environment where experiments can be conducted. In this research,
a Linux virtual environment was utilized to simulate the experiments. Mininet, a powerful
network emulator, proved to be a valuable tool for conducting these simulations. It
allows for the creation of various network topologies and facilitates the emulation of
programmable switches. One such important component used in the experiments is the
BMv2 switch. This software switch accurately simulates the behavior of programmable
switches, enabling a realistic evaluation of their functions and impact on the network.

To evaluate the effects of programmable switch behavior on network performance,
it is essential to define the concept of performance itself. Two critical parameters that

3

Introduction

provide valuable insights into network performance are delay and throughput. Delay
refers to the time it takes for a packet to travel from the source to the destination, while
throughput measures the amount of data that can be transmitted over a network within
a given timeframe. These parameters serve as key indicators for assessing the efficiency
and effectiveness of network communication.

One of the key aspects that this research focuses on is the recirculation of packets in
programmable switches. Recirculation is a technique employed in P4 switches to handle
packets that require additional processing, such as those needing more than one lookup
or complex processing functions.

Recirculation serves various purposes, including managing latency, enhancing through-
put, and implementing advanced processing functions. In a recirculation-based architec-
ture, the switch redirects packets back to the ingress pipeline for further processing,
introducing the potential for additional latency and delay.

The behavior of recirculation in P4 switches is highly configurable. The P4 language
allows defining conditions under which a packet should be recirculated. Moreover, the
P4 switch can determine how packets should be forwarded once the recirculation period
concludes.

To measure delay and throughput, appropriate tools are required. In this research, two
simple yet powerful tools available within the Mininet network emulator are employed.
For measuring delay, the ping utility is utilized. To measure throughput, the widely used
tool Iperf is employed.

By exploring the behavior and implications of recirculation in programmable switches
and collecting measurements and observations, this research aims to understand how, with
this ability, we can control the delay of packets in the network. Investigating recirculation
also enables valuable insights into how this technique impacts the overall throughput of
the network.

1.1 Background and context

1.1.1 The evolution of networks

In recent times, the world of networking technology has experienced an exhilarating wave
of advancements that have fundamentally transformed how we connect and communicate
in the digital age. These innovations have been like a fast-forward button, reshaping the
very foundations of networking and how we interact with the virtual world around us.

The speed at which these innovations have unfolded is truly remarkable. As our
emphasis on digital interactions has expanded exponentially, networking technologies
have risen to the challenge, pushing the boundaries of what we thought was possible.
This rapid evolution has triggered a chain reaction of game-changing developments, each
contributing to the dynamic landscape of modern communication.

One of the standout achievements has been in the field of high-speed data transmis-
sion. Think about fiber-optic networks, which leverage the speed of light to transmit data
at terrifying rates. This has completely transformed how we interact with digital content,
making seamless streaming, real-time collaboration, and instant sharing of multimedia
an everyday reality.

1.1 — Background and context

Wireless networking hasn’t been left behind either. The shift from traditional Wi-Fi
to the power of 5G cellular technology has been a game-changer. With its remarkably
low latency and unparalleled bandwidth, 5G has opened up a world of possibilities — not
just for smartphones and laptops but for IoT, smart cities, self-driving cars, and even
mind-bending augmented reality experiences.

Then there’s the fascinating world of software-defined networking (SDN), which has
revolutionized how we manage and control networks. By detaching network control from
physical hardware, SDN offers a programmable framework that adapts to changing needs,
streamlining operations and giving a serious boost to security.

These advances, taken together, paint a vivid picture of a networking world that’s
moved far beyond just connecting devices. It’s a world of lightning-fast speeds, intelligent
networks, and unmatched flexibility. As we go into the complexities of controlling delays
in programmable data planes, it’s essential to understand the context of this rapid shift.
This thesis goes deeply into the core of these advancements, investigating their influence
and maximizing the potential of programmable data planes, all while shaping the very
future of networking as we know it.

Traditional Networks

In the traditional network approach, devices like routers and switches held dual respon-
sibilities: making decisions about how data should traverse the network and physically
forwarding the data. Each device operated based on predefined rules and protocols,
communicating with neighboring devices to guide traffic. While this approach was func-
tional, it posed challenges when adapting to changing demands, scaling, and introducing
new services. Manual configuration of each device led to complexity, and network-wide
changes were cumbersome.

SDN

SDN redefined networking as a group of members led by a core component. In this
paradigm, the control plane, responsible for decision-making, was abstracted and cen-
tralized within an SDN controller. Devices in the network -the data plane- followed the
instructions of the controller. This decoupling allowed for dynamic control of traffic flows,
enabling rapid adjustments to changing conditions. The SDN controller became the heart
of network intelligence, managing data movement in response to real-time demands.
Why the Shift to SDN? The transition to SDN was driven by a convincing need
for networks to keep pace with rapidly evolving technology and user demands. Tradi-
tional networks struggled to accommodate the exponential growth of data, the rise of
cloud computing, and the emergence of new applications. SDN emerged as a solution to
these challenges, offering unprecedented agility, adaptability, and efficiency. By separat-
ing control from data forwarding, SDN empowers network administrators to dynamically
shape traffic, respond to security threats, and optimize performance. It simplifies man-
agement, accelerates innovation, and positions networks to embrace future technological
advancements. In essence, SDN represents a leap from a scripted performance to an
orchestrated symphony, where the conductor — the SDN controller — harmonizes the

5

Introduction

complex interplay of data in a way that the traditional approach could not achieve. This
transformation isn’t just about network technology; it’s a paradigm shift that empowers
networks to progress in the dynamic digital landscape.

1.1.2 Network performance

Network performance is a key characteristic of modern communication systems, includ-
ing a variety of factors that collectively characterize the efficiency, dependability, and
responsiveness of data transfer inside a network. Understanding network performance
and its related characteristics is crucial for improving data delivery, providing smooth
user experiences, and ensuring critical applications run efficiently. In this part, we will
look at the important factors that influence network performance.

Latency

Latency, often referred to as network delay, represents the time it takes for a packet of
data to travel from its source to its destination within a network. It is a critical metric in
network performance, influencing real-time applications such as video conferencing, online
gaming, and financial trading. Latency is typically categorized into several components:

Propagation Delay: The time taken for data to traverse the physical distance
between sender and receiver. In practice, this delay is affected by the speed of light
and the medium through which data travels (e.g., fiber optic cable or copper wire).
Propagation delay is largely determined by the physical characteristics of the network.

Transmission Delay: The time required to push all the packet’s bits into the com-
munication channel. It is inversely proportional to the bandwidth of the link and directly
related to the size of the packet. Higher bandwidth and smaller packet sizes result in
reduced transmission delay.

Processing Delay: The time taken by devices within the network (routers, switches,
hosts) to process and forward the packet. This includes tasks such as routing table
lookups, error checking, etc. Minimizing processing delay is essential for efficient data
transmission.

Queuing Delay: The delay incurred when packets wait in queues at network de-
vices, such as routers, before being transmitted. Queuing delay is affected by network
congestion, packet prioritization, and the overall load on network equipment.

Minimizing latency is critical in scenarios where real-time responses are essential, such
as voice and video communication or autonomous vehicles. High-latency networks can
lead to sluggish user experiences, dropped calls, and missed opportunities.

Throughput

Throughput measures the rate at which data is successfully transmitted from source to
destination within a network. It is often quantified in bits per second (bps) and reflects
the network’s capacity to handle data traffic. Throughput is affected by various factors,
including network bandwidth, packet loss, and network congestion.

6

1.1 — Background and context

Bandwidth: Network bandwidth represents the maximum data transfer rate a net-
work link can support. It is a crucial determinant of network throughput. Higher band-
width enables the transmission of larger volumes of data in a shorter time.

Packet Loss: Packet loss occurs when data packets do not reach their destination
due to network congestion or errors. High packet loss rates can significantly degrade
throughput and result in data retransmissions.

Network Congestion: Congestion arises when network resources are insufficient
to accommodate the volume of data traffic. It leads to increased packet queuing and
delays, which can impact throughput. Effective congestion management is essential for
maintaining high throughput.

Optimizing throughput is essential for applications involving large data transfers, such
as file downloads, video streaming, and cloud-based services. A well-performing network
should balance low latency with high throughput to deliver a seamless and responsive
user experience.

Reliability

Reliability in network performance refers to the network’s ability to consistently deliver
data without errors or interruptions. Reliable networks minimize data loss, maintain
low latency, and ensure the consistent availability of network resources. Achieving net-
work reliability often involves redundancy, fault tolerance mechanisms, and effective error
correction protocols.

Jitter

Jitter represents the variation in latency or delay between data packets in a network. In
real-time applications like VoIP (Voice over Internet Protocol) and video conferencing,
consistent and low jitter is crucial. High jitter can result in disruptions and poor quality
in audio and video streams.

Understanding these key parameters of network performance is fundamental for op-
timizing network design, troubleshooting issues, and ensuring the efficient operation of
modern communication systems. In the following sections, we explore how programmable
switches and packet recirculation in them can impact these critical aspects of network
performance.

As we go into the core of influencing network performance and controlling delays
inside programmable data planes, it’s critical to remember that we’re not simply looking
at technical details. We're getting to the heart of what it means to live in a connected
world, where the quality of our relationships, the success of our companies, and the growth
of our society all rely on these fundamental concepts.

1.1.3 The emergence of programmable switches as a key player in mod-
ern network infrastructure

Programmable switches act like advanced controllers in today’s fast-paced digital en-
vironment, constantly controlling data flows and improving network operations. They

7

Introduction

can change and reconfigure instantly, ensuring efficient data transfer and smooth connec-
tion between devices. Because of this flexibility, programmable switches are an essential
component of modern network architecture.

Think of them as digital traffic controllers. They help data flow efficiently, reducing
delays and bottlenecks. Imagine a highway with no traffic jams —that’s what these
switches aim to create in the digital world.

In fact, these switches are key players in modern networks. They’re like the brains
behind the scenes, making sure data gets where it needs to go without getting lost or
taking too long. This is crucial in today’s world, where we need things to happen quickly,
from streaming videos to sending important files.

As we go deeper into this thesis, we’ll explore how these switches work, ensuring that
our networks run smoothly, efficiently, and without any problems.

1.2 Motivation for Controlling Delay

1.2.1 Packet Delay Control by Recirculation within Programmable Switches

The concept of controlling packet delay arose from a fundamental curiosity: Can the
natural sequence of packet receiving inside a network be altered? This thought led us to
imagine scenarios in which packet sequence dynamics may be modified to allow a later
packet to arrive before an earlier one. This imaginative exploration raised the crucial
question: Could programmable switches be the key to directing such temporal reorgani-
zations? The idea of using programmable switches to influence packet delay developed
as a fascinating challenge to this desire. The initial flame was sparked by the contrast of
packet arrival timings at a destination. The theory was simple: if packet A arrived at the
destination before packet B, could we reverse the sequence using programmable switches
to allow packet B to arrive first? With this idea, we set out on a quest to discover a mech-
anism that might actually modify packet flow patterns. The essence of the problem was
a wish to temporarily block the flow of specific packets within programmable switches.
Could we develop a method to keep a packet within a switch while allowing other packets
to pass through unhindered? The desired solution became an idea of recirculation which
is a procedure in which packets are actively looped back into the switch for a certain
period of time. This stop and redirection approach creates an opening for controlling
the precise exit time of packets, allowing for a reorganizing of the sequential delivery
sequence. The goal of controlling packet delay by recirculation arose from the creative
convergence of curiosity and engineering knowledge. It was the result of imagining a new
approach to network management, one that goes beyond existing paradigms to bring in a
new era of dynamic, performed data mobility. The core of this drive characterized every
step of our study as we moved from idea to implementation, pushing us to dig into the
worlds of programmable switches, packet recirculation, and various aspects of temporal
control inside network topology.

1.2 — Motivation for Controlling Delay

1.2.2 Analyzing the impact of Packet Recirculation within Programmable
Switches on network performance

As previously explained, the central motivation driving this thesis is the exploration
of packet delay control through recirculation using programmable switches within the
network. Furthermore, this investigation extends to comprehending the consequential
effects of such mechanisms on network performance, with a specific focus on throughput
and latency.

The importance of efficient network performance and latency in today’s digital land-
scape is crucial. The research aims to understand the dynamics of packet recirculation
within programmable switches, a fundamental concept in network design, and its impact
on network performance and latency. The study aims to uncover insights that can in-
form strategies for controlling delay and improving data transmission efficiency. Through
rigorous analysis and experimentation, the thesis contributes to the broader understand-
ing of network performance management in the context of programmable switches. The
implications of packet recirculation can shape the design, optimization, and utilization
of modern network infrastructures, ultimately facilitating the development of more ef-
ficient and responsive networks to address the demands of today’s data-intensive and
interconnected world.

10

Chapter 2

Programmable Data Planes

Computer networks are the cornerstone of modern technical infrastructures, but because
of their widespread use and variability, it is more difficult to design network systems and
the components that make them up. The demand for programmable networking hardware
that enables operators to modify device functionality through a programming interface
is a result of the conflict between specialization and making network devices commercial-
ized and universal. Network operators are now able to quickly add new features without
having to wait for long release cycles because of the change in the interaction between
device suppliers and network operators. Additionally, programmability enables hardware
manufacturers to devote technical resources to refining a set of clearly defined building
blocks for customized logic. Operators who have to support enormous machine learning,
big data applications, large-scale cloud computing, and the 5G mobile standard will find
this new generation of programmable devices to be of special assistance. For these appli-
cations to handle constantly changing and diverse sets of protocols and services, network
hardware such as switches, middleboxes, and network interface cards (NICs) are needed.
The design, production, testing, and deployment of specialized hardware components are
all necessary for traditional fixed-function devices and are time- and money-consuming
engineering tasks. Rising new functionality is slow and expensive, forcing providers to
only implement features when they are heavily desired, which restricts innovation. It
is inefficient to include each and every network protocol in a device’s packet processing
logic since it uses up valuable memory space and CPU time for capabilities that very few
operators will ever use. These problems are addressed by the advent of programmable
network devices, which enable thorough reconfiguration of packet processing capability.
Devices in both software and hardware should be programmable. The vast array of
processing primitives offered by new software-based network switches, which operate on
general-purpose CPUs, enable reconfigurability and allow pipelines to be created using
conventional programming approaches. On a single commodity server, these switches can
provide forwarding throughput in the order of tens of Gbit/s. A domain-specific language
or a dialect of a general-purpose language can be used to combine numerous low-level
primitives into complicated network operations in programmable hardware components
and devices like programmable NICs and programmable switches. Many questions are
still unsolved despite programmable data plane technology’s increasing acceptance and

11

Programmable Data Planes

appeal. To support the widest range of network applications at the highest performance,
how can we adapt and use fundamental packet processing primitives, expose the compli-
cated processing logic to the operator for simple, safe, and verifiable configuration, and
abstract, replicate, and monitor the transient packet processing states deeply ingrained
in this logic? These issues are now some of the ones that the networking community is
debating the most. The device control plane and device data plane are the functional
divisions found in common network hardware like switches and routers. The device con-
trol plane is in charge of setting packet processing policies and maintaining the device,
whereas the device data plane executes these regulations, frequently with strict perfor-
mance constraints. Through distributed routing protocols, the control planes of various
devices within a network context communicate with one another. The network control
plane has evolved as a conceptually centralized controller with the advent of the Software-
defined Networking (SDN) paradigm, with some device control plane tasks being split off
and relocated to this network-level functionality. The network control plane keeps track
of the data plane’s devices, accepts high-level, network-wide policies via a northbound
controller interface, assembles these intents into per-device packet processing policies,
and then applies these policies to specific devices via a southbound controller interface.
Individual switches in this design receive preset packet forwarding rules from the network
control plane rather than having to build the logic necessary to maintain these poli-
cies locally. Standardized southbound APIs and protocols, such as OpenFlow, ForCES,
and P4Runtime, are used for controller-switch communication. The device control plane
still manages the device data plane and ends control links to the distant network control
plane inside the SDN architecture, therefore it does not entirely disappear. (see Figure
2.1)

SDN
Application

SDN
Application

SDN
Application

Network Control Plane northbound

”
Network | SON interface
southbound | Controller
Device Device Device SDN interface 0\
i
Control Plane [| Control Plane | Control Plane — v ~

I I I | _e | oDevice || Device || Device
ntrol Plan ntrol Plan ntrol Plan
Device Control Plane | | Control Plane | | Control Plane
Data Plane ! ! !
Device Device
Data Plane Data Plane

Network
Control Plane

ne

Device
Data Plane

Device
Data Plane

Network
Data Plal

Network
Data Plane

Device
Data Plane

(a) Conceptual visualization of the difference
between network data plane and device data (b) Separation of network control plane and
plane in traditional network architectures data plane in software-defined networking

Figure 2.1. Traditional vs. SDN-based network architectures. Reproduced from [1]

Device functionality has been transformed, becoming more adaptable and dynamic
thanks to the SDN paradigm. Data plane functionality in typical network equipment
is tightly integrated into hardware and software, making it challenging to alter over the
device’s lifespan. To modify the functionality of the data plane, however, software-based
packet processing systems need significant vendor changes. Almost all data plane ac-
tivities are impacted by this fixed functionality, which also includes fixed entry format

12

2.1 — Programmable packet processing pipelines

and semantics, fewer protocol headers and fields, established queuing rules, and monitor-
ing data. Data plane devices may now be fully or partially modified from the network
control plane thanks to SDN and more generic hardware designs. As a result, the term
"programmable data plane" came to be to describe the new kind of network hardware
that enables dynamic, programmatic changes to the fundamental functioning of packet
processing. A network device’s ability to expose low-level packet processing logic to the
control plane via a defined API is referred to as data plane programmability. This enables
systematic, quick, and thorough reconfiguration. While data plane programmability was
first aimed primarily at switches (particularly in data centers), a broader range of devices
and functions now support low-level programmability. Programmable data plane hard-
ware or software is increasingly utilized for general network processing and middleboxes
(e.g., firewalls or load balancers) in addition to packet switching. At the edge of the net-
work, programmable NICs allow data plane programming. These devices are available
in a variety of architectures, including ASICs, FPGAs, and network processors. Due to
specific hardware elements like Ternary Content Addressable Memory chips (TCAM) for
effective packet matching, hardware platforms have excellent performance. Software data
plane devices use improved algorithms and data structures to carry out processing logic
on a common CPU.

2.1 Programmable packet processing pipelines

The primary function of programmable data planes is flexible packet processing, and
modern packet processing pipelines are based on two essential abstractions: the match-
action pipeline abstraction and the data flow graph abstraction [1]. Early designs for
programmable switches employed data flow graphs, which describe processing logic as
a graph with nodes denoting fundamental computation steps and edges denoting data
flow from one computation stage to the next. Because of this simplicity, a programmer
may easily put together useful programs utilizing a pre-existing cognitive representation
of a graph of processing nodes (see Figure 2.2). A set of lookup tables arranged in a

L2 Processing

Routing match: mac-dst
miss

Access Gontrol
. Routing /' action: set out-port \ .
VN match: mac-src, [N\

y . /
[parser || match: ip-dst

mac-dst, ip-src, ip- [De-
A ‘action: set next-hop ‘

- —)
L3 Processing dst, ip-proto | parser |

Reuting
hit

action: t/ -= 1, set

imac-src, mac-dst,
out-port

Figure 2.2. Simplified match-action table dependency graph for a basic
router. Reproduced from [1]

hierarchical form is used to represent match-action processing. The switch can be told to
rewrite packet contents, encapsulate/decapsulate tunnel headers, discard or forward the
packet, or delay packet processing to later flow tables by using a subset of packet header

13

Programmable Data Planes

fields to do a table lookup. Using a defined API, the programmer configures the flow
tables’ content to dynamically set the behavior of packet processing (see Figure2.3). The

Ingress Pipeline | Queues Egress Pipeline

I I I
L Y 1 11 Packet | 1 (|
" Ingress Mo Ingress | | Pointers | Egress Matoh Egress ||
. | Parsers 2::'0" Deparser | | 1 || | Parsers é\tcllon Deparser | |
! ges ! Packet ! = !
| — | Buffers [=) !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.3. The architecture of an RMT-like switch. Reproduced from [1]

OpenFlow protocol, which permitted the development of just one flow table using a con-
strained number of header fields, popularized the match-action concept for programming
switches. The Reconfigurable Match Tables (RMT) abstraction expands the previously
constrained range of packet processing actions accessible and enables match-action ta-
bles to be created on any header field, thereby overcoming the primary constraints of
OpenFlow ASICs.

2.2 Programming languages and compilers

High-level data plane programming languages that enable the specification of packet pro-
cessing strategies inside a particular switch architecture have gained popularity during
the previous several years. The requirements of operators for more complicated SDN
applications and the capabilities of contemporary, more adaptable, and programmable
line rate networking hardware are what motivate the development of these languages.
The most well-known high-level data plane programming languages are Pyretic, Net-
Core, Maple, and NetKAT. The dilemma of how to describe and change the low-level
architecture and configuration of programmable switching circuits in an expressive and
flexible manner is at the heart of today’s programmable data planes. P4 was the first
and most widely used language abstraction and compiler for expressing low-level packet
processing capability within programmable data planes. Motivated by the limitations
of existing SDN control protocols such as OpenFlow, which only allow for a limited set
of header fields and actions, P4 allows for the definition of packet processing pipelines
that include parsers and deparsers, match-action tables, and low-level operations that are
applied to each packet. By matching on arbitrary bit ranges and performing user-defined
actions, this language abstraction enables protocol-independent packet processing. These
abstract P4 applications are built for a certain underlying data plane target. The built
data plane application is then used to set up the underlying hardware or software target,
and the P4-defined match-action tables are populated at runtime using a control interface
like P4ARuntime. P4 quickly achieved widespread acceptance in the scientific community
and is now employed in a wide range of projects. P4 is a major enabling technology
for extensive and flexible data plane programmability due to the large variety of sup-
ported targets, which vary from software switches to fully reconfigurable ASICs, as well
as widespread industry usage. In Figure 2.4, you can see the comparison of languages

14

2.2 — Programming languages and compilers

and protocols used in programmable data planes.

- N Programmable Switch
Define Policy Configure/Query Rules
e.g., Pyretic, NetCore e.g., OpenFlow, ForCES Data Plane Rules
J SCNIC M+A Table Content
& —‘ Switch Architecture
Parsers, M+A Table Sequence,

Operator ~ Define Data Plane Architecture Actions

e.g., P4, Domino

Figure 2.4. Comparison of languages and protocols used in programmable
data planes. Reproduced from [1]

221 P4

The domain-specific programming language known as Programming Protocol-Independent
Packet Processors (P4) serves the purpose of enabling the programming of packet forward-
ing. P4’s primary design objectives encompass three key aspects [2]. Firstly, it strives for
target independence, ensuring that P4 programs can be compiled for diverse hardware
types, including general-purpose CPUs, FPGAs, system(s)-on-chip, network processors,
and ASICs. Each of these targets necessitates a compiler that transforms the P4 source
code into a compatible switch model. Secondly, P4 emphasizes protocol independence,
meaning that it lacks inherent support for common protocols like IP, Ethernet, and TCP.
Instead, P4 programmers describe the necessary protocol header formats and field names
within the program itself, which are then interpreted and processed by the compiled
program and target device. Lastly, P4 fosters reconfigurability, enabled by its abstract
language model and protocol independence. P4 targets possess the capability to mod-
ify their packet processing methods, even post-deployment, a feature traditionally linked
with general-purpose CPUs and network processors, but now extended to fixed-function
ASICs.

Both OpenFlow and P4 play vital roles within the realm of Software Defined Network-
ing (SDN), where the separation of the control plane from the forwarding plane grants
network operators programmatic control(see Figure 2.5).

OpenFlow, as a widely adopted interface, facilitates the control plane’s management of
various forwarding devices across hardware and software vendors. Initially, the OpenFlow
interface featured a straightforward rule table abstraction that matched packets based on
a limited set of header fields. However, the specification has since grown in complexity to
accommodate numerous header fields and rule table stages, aiming to expose switches’ en-
hanced capabilities to controllers. Proposing a different approach, future switches should
integrate versatile mechanisms for packet parsing and header field matching, accessible
through a unified, open interface. P4 represents an evolution of OpenFlow’s concepts,
introducing the ability to define custom headers and tables, as well as enabling explicit
programming of switching logic’s control flow.

At the heart of P4 lies the fundamental concept of match-action pipelines as you
can see in Figure 2.6. Conceptually, packet or frame forwarding involves a sequence of

15

Programmable Data Planes

SDN Control Plane

Populating: :

Configuration: : i

Installing and !

P4 Program . :

querying rulesi Classic
G OpenFlow
Parser & Table Rule
. Configuration ' Translator

—— -
Target Switch

Figure 2.5. P4 for configuring switches. Reproduced from [2]

table lookups and associated header manipulations, referred to as actions in P4. Actions
involve tasks such as copying byte fields based on lookup results derived from learned
forwarding states. Notably, P4 focuses solely on the data plane of packet forwarding
devices, leaving out specifications for the control plane and communication protocols be-
tween the control and data planes. P4’s approach involves tables to represent forwarding
plane states, necessitating an interface between the control plane and various P4 tables
for state injection and modification.

Components of the P4 Language

A P4 program consists of essential building blocks that collectively define its functionality:

e Headers: Header definitions outline packet structures and assign names to packet
fields. These headers can be customized with field names and arbitrary lengths. For
instance, an Ethernet header definition might include fields like "dest" and "src" each
spanning 48 bits, followed by a 16-bit "type" field. These names are subsequently
used within the P4 program to reference these fields.

e Parsers: The P4 parser, operating as a finite state machine, navigates incoming
byte streams and extracts headers based on a pre-programmed parse graph. For
example, it could extract Ethernet source and destination fields and further process
based on the type field value (e.g., ipv4, ipv6, MPLS).

o Tables: P4 tables hold the state necessary for packet forwarding. Comprising
lookup keys and corresponding actions with their parameters, tables serve various
purposes. An example involves storing destination MAC addresses as lookup keys,

16

2.2 — Programming languages and compilers

-------------- ——

{ *) %
E Parse Control Table Action E
! | Graph Program | Config Set i
N I T I e’
)) v
Forwarding Forwarding
rules rules
i
| P v B L v e}
A U . u
\ N R F T el
P ¥ Match Match ~—» +
U Action F Action P
T E E U
R Ingress Pipeline R Egress Pipeline T
Packet Mods + Packet Mods

Egress Selection

Figure 2.6. match-action pipelines for a programmable switch that is configured with P4
language. Reproduced from [2]

while the related action sets output ports or increments counters. Tables and their
linked actions are typically arranged in a sequence, forming the complete packet
forwarding logic, although a single comprehensive table is feasible in theory.

o Actions: Actions in P4 define manipulations of packet fields and metadata. Here,
metadata represents packet information not directly derived from parsing, like the
input interface of the incoming frame. A sample action might entail "decreasing
IPv4 TTL by one" or "copying MAC address from output port table to outgo-
ing packet header." P4 distinguishes between standard metadata applicable to all
targets and target-specific metadata tailored by specific target authors.

e Control Flow: The control flow in P4 orchestrates table sequencing and facilitates
conditional table execution through if/then/else constructs.

Behavioral Model Framework:

P4 introduces a software reference implementation known as the behavioral model, ini-
tially written in C and generating C code based on P4 program logic. However, due to
slow and complex code generation, a newer version named BMv2 has emerged in C++.
A noteworthy feature of BMv2 is its decoupling of the switch’s C++ code from the P4
program, which is dynamically loaded at runtime. This enables the switch to be com-
piled just once and permits runtime swapping of P4 programs. The BMv2 repository is
designed modularly, promoting the creation of diverse targets with unique features. The
primary objective of BMv2 is to facilitate hardware P4 switch vendors in modeling their

17

Programmable Data Planes

targets and reproducing behavior with different P4 programs. BMv2 switches, or Behav-
ioral Model version 2 switches, represent a groundbreaking advancement in the realm of
computer networking. These switches embody a programmable framework that funda-
mentally alters how network data is handled, offering a versatile canvas for configuring
and orchestrating data flows. BMv2 switches play a pivotal role in the Software-Defined
Networking (SDN) landscape, enabling network engineers to exercise precise control over
packet processing behavior. At the core of BMv2 switches lies their dynamic packet
processing capability. Think of these switches as intricate decision-making nodes within
a network. When a data packet traverses a network, a BMv2 switch meticulously ex-
amines its attributes like a discerning inspector scrutinizing a package’s label. Based
on predetermined instructions, the switch then orchestrates how the packet should be
treated—whether it should be forwarded to a specific destination, subjected to special-
ized processing, or even discarded. One of the defining features of BMv2 switches is their
unparalleled programmability. This entails encoding a set of customized instructions that
dictate the switch’s response to different types of packets. Imagine a versatile maestro
directing an orchestra with unique cues for each instrument—similarly, BMv2 switches are
programmed to execute distinct actions based on packet characteristics. BMv2 switches
prove invaluable for experimentation within a controlled environment. They facilitate the
emulation of network behaviors and interactions, analogous to a virtual sandbox where
engineers can build, modify, and assess intricate network scenarios without disrupting
actual data traffic. BMv2 switches often operate in tandem with the P4 language—a spe-
cialized code that communicates directives to the switch, much like a conductor guiding
musicians with distinct cues. This synergy between the P4 language and BMv2 switches
allows for fine-tuning how packets are processed and routed, fostering adaptability in the
face of evolving network demands.

18

Chapter 3

Related work

In [2], the authors provide a comprehensive exploration of the P4 language and its work-
ings. The paper begins by elucidating the primary objectives behind the development of
P4, focusing on three main goals: reconfigurability, protocol independence for switches,
and the independence of packet processing functions from the underlying hardware.

To set the context, the paper delves into the history of data plane programmability
and SDN, outlining their evolution and the emerging need for a language like P4. It then
proceeds to explain the fundamental concept of programming hardware using P4.

The paper introduces the P4 language by drawing a comparison with the OpenFlow
protocol, highlighting the distinctions between the two in various aspects. It then presents
a model for packet forwarding, which is governed by two critical operations: ’configure’
(programming the parser and specifying header fields for each processing stage) and
'populate’ (defining how the switch should process packets).

The authors emphasize the importance of expressing dependencies between header
fields, as these determine which tables can execute in parallel. They introduce the con-
cept of Table Dependency Graphs (TDGs) for analyzing these dependencies, leading to
a proposed two-step compilation process. At the highest level, imperative programming
languages (P4) that capture the control flow are used to express packet processing pro-
grams. Below this level, a compiler converts the P4 representation to TDGs to aid in
dependency analysis before mapping the TDG to a specific switch target.You can see the
TDG for L2/L3 switch in Figure 3.1

The paper proceeds to provide a detailed explanation of P4 through an example
known as the 'mTag example,” which focuses on MPLS. This example serves to illustrate
essential P4 concepts such as headers, parsers, state machines, tables, match-actions, and
their specifications.

The control part of P4, responsible for specifying the flow of control from one table
to the next, is also elucidated, with a flowchart (Figure 3.2) and pseudocode (Figure 3.3)
provided for clarity for the mTag example.

The paper sheds light on how P4 programs are compiled, mapping target-independent
descriptions to specific switch hardware or software platforms. It covers the compilation
process for parsers and control programs.

Additionally, the paper addresses the implementation of P4 programs across different

19

Related work

types of switches, including software and hardware switches. It underscores the versatility
of P4 in adapting to various switch platforms.

In summary, this paper serves as a foundational resource for comprehending the P4
language and its crucial concepts. The paper’s use of a well-known protocol, MPLS, in
its explanations makes it an invaluable reference for us who want to use the P4 language
to develop functions and new features in programmable data planes step by step using
the guide of this paper.

In [3], the authors offer an extensive examination of P4 and its role within Software
Defined Networks (SDN). The paper begins by tracing the evolution of networks from
traditional to programmable data planes, elucidating the fundamental concepts of pro-
grammable switches and the transformation of networks from legacy to programmable
models.

The paper takes a P4-centric perspective on SDN and references over 75 related re-
search papers. It introduces the motivations for adopting SDN, primarily driven by the

Parser
Virtual Routing L2 Switch
Identification Match:
Bridge ID, Dest MAC
Match: |
VLAN, InPort Action:
set OutPort
Action: :
set metadata (bridge id) Routing
miss
. L3 Interface
Routing Access Control
Match: Match: Match:
Bridge ID, Next Hop Src MAC, Dest MAC,
Ethertype, Dest IP | Routing Action: | Src IP, Dest IP, IP Proto
hit dec TTL,
Action: : Action:
set metadata (next hop) sel [Sr;%&g:,ff MaC] drop

Figure 3.1. Table dependency graph for an L2/L3 switch. Reproduced from [2]

E- Source Local Hit Egress
> Check ==~ Switching | -
Table Table r— Check

dh

Miss: Not Local
W

mTag
Table

Figure 3.2. Flow chart for the mTag example.Reproduced from [2]

20

Related work

control main() {
// Verify mTag state and port are consistent
table (source_check) ;

// If no error from source_check, continue

if (!defined(metadata.ingress_error)) {
// Attempt to switch to end hosts
table(local_switching);

if (!defined(metadata.egress_spec)) {
// Not a known local host; try mtagging
table(mTag_table);

}

// Check for unknown egress state or
// bad retagging with mTag.
table(egress_check) ;

Figure 3.3. Pseudocode for the mTag example Reproduced from [2]

escalating demands for real-time data and application delivery, coupled with the expan-
sion of network infrastructures. It underscores the challenges associated with managing
complex, fixed-function network equipment in the face of rapidly growing network sizes.

The authors emphasize the benefits of SDN in addressing these challenges and fos-
tering network simplification and improved performance. They pose thought-provoking
questions that the networking community is currently grappling with, laying the ground-
work for the paper’s exploration.

The paper then delves into a detailed evaluation of SDN, starting with the OpenFlow
protocol, which has played a pivotal role in configuring SDN-enabled devices. It discusses
the physical separation of control and data planes in SDN, highlighting its advantages
and applications in Network Function Virtualization (NFV) and network services devel-
opment.

Crucially, the paper bridges the gap between SDN and P4, addressing the question
of why SDN requires the P4 language. It underscores the limitations of the OpenFlow
protocol and the need for P4’s upgradability, which enables the addition of functions and
protocols to network devices through software updates, rather than hardware replace-
ment.

The paper then pivots to the core concept of data plane programmability, defining
it as the ability of network devices to expose low-level packet-processing logic through
standardized APIs, enabling systematic reconfiguration. It touches upon various aspects
of data plane programmability, including SDN with data plane programmability, data
plane architectures, abstractions, network monitoring, P4 challenges, and applications.

21

Related work

Notably, the paper highlights the significance of data plane programmability in net-
work monitoring, emphasizing its suitability for applications such as network metering,
measurement, and debugging due to its direct and rapid access to network data.

The challenges associated with P4 language are discussed, with an emphasis on the
importance of abstractions, consistency mechanisms, global state handling, and the dis-
tinction between dynamic behavior and static semantics. The paper underscores that P4
has proven effective in addressing these challenges.

Finally, the paper explores the diverse applications of data plane programmability,
including telemetry, data processing, machine learning, load balancing, and resource pool-
ing.

In conclusion, A Survey on P4 Challenges in Software Defined Networks: P4 Pro-
gramming’ provides an invaluable resource for comprehending P4, SDN, and data plane
programmability. It serves as a comprehensive guide for understanding the development,
current status, and research directions in this critical area of network technology.

In [4], the authors begin by highlighting the increasing challenges in network secu-
rity due to the rapid evolution of technologies like IoT, Al, and cloud computing. They
present statistics illustrating the rising threat landscape and emphasize the growing de-
mands on network security infrastructure. The paper identifies limitations in traditional
network security equipment, such as firewalls, which often lack the agility to adapt to
emerging threats effectively. It then discusses how OpenFlow-based SDN solutions have
been employed for network monitoring and attack detection but are hampered by central-
ized control and communication overhead issues. To address these challenges, the paper
proposes the adoption of programmable data planes, specifically leveraging the power
of P4. Programmable data planes offer advantages such as hardware-independent pro-
grammability and high-speed data processing capabilities, enabling the implementation
of custom defense measures.

The authors delve into the capabilities of P4, including its ability to define data plane
functions to support user-defined protocols and custom packet processing. They highlight
the versatility of P4 in enabling advanced defense measures such as access control, heavy-
hitter detection, and DDoS attack mitigation with minimal performance overhead.

While emphasizing the potential of data plane programmability, the paper also ac-
knowledges its limitations. It serves as a foundational reference for understanding the
evolution of network programmability, particularly in the context of SDN as you can see
in Figure 3.4.

Furthermore, the paper explores P4 in-depth, covering its versions, workflow details
as you can see in Figure 3.5, and the compilation process by the P4 compiler (3.5 - 2).
It provides insights into how P4 programs define data plane behavior (3.5 - 1) and their
deployment on various hardware platforms, including FPGAs.

The paper exemplifies the application of P4 in both academic and industrial settings,
with a focus on traffic management, routing, forwarding functions, and, notably, network
security. It underscores the advantages of P4-based programmable data planes in com-
parison to other approaches in the realm of network security which is the subject of this
paper.

In [5], the authors explore the intricacies of service chaining and how precise control

22

Related work

Programmability Programmability Programmability
API } API % API
il STy |
A ‘ . A !

Control plane

N e |
y 4 Jhraty

| |
Control plane | !
| |
| |

1ol o
. 1
Data plane Data plane ! i Dataplane | i
g o
LIl
N SDN with SDN with
Tradlllmﬁlal fixed-function programmable
networking data plane data plane

Figure 3.4. Traditional network, a fixed-function data plane SDN, and a programmable
data plane SDN. Reproduced from [4]

1
1 P4
1 : P P4 Architectural
H rogram Mo dfl
1

@ Control Plane

2 P4 Runtime A [} A
2 P4 Compiler |:> P
=1 =2
2 g £
Target-specific 3 g _S
configuration E A £
binary =
Z
4 Y v)
Programmable Data Plane
Parser Match-Action Pipeline Deparser
> 1>
— ,
— p 1>
e e L= [=y
| —
— <)
A e B —

Figure 3.5. Workflow model based on P4 programmable data plane. Reproduced from [4]

over packet latency can be achieved by leveraging data plane programmability. The paper
commences by establishing its primary motivation, which revolves around ensuring high-
quality service delivery, particularly with regard to guaranteeing end-to-end latency for
time-sensitive applications.

The paper emphasizes that latency within a service chain in a data center can be
influenced by two main factors: intra-server virtualization inefficiencies, which result in
delays related to the delivery of Virtual Network Functions (VNFs), and congestion events
occurring at intermediate network elements that interconnect these VNFs.

To address these challenges, the paper advocates for the use of P4 and programmable
switches. It argues that effective latency control within service chains necessitates access
to stateful information, such as per-packet flow delay measurements, a level of granularity

23

Related work

that is often unavailable in traditional network switches.

The paper proposes two distinct solutions, both based on P4 pipelines, for controlling
latency within service chains: one for inter-rack service chains and another for intra-rack
service chains. The overarching strategy is to prioritize time-constrained flows and ensure
that their delays remain below predetermined thresholds. Importantly, the research takes
into account scenarios with and without congestion.

Following this introduction, the paper delves into network service function chaining
(SFC) and its relation to Virtual Network Functions (VNFs). It also highlights the key
features of VNFs, such as their roles in traffic engineering and security, while acknowl-
edging the limitations of virtualized services in cloud environments.

The paper identifies a key challenge in the network domain, which is the presence of a
single point of processing due to a central controller that handles all packet management
responsibilities and policy definitions.

The introduction sets the stage for the exploration of data plane programmability
concepts, which are fundamental to the paper’s proposed solutions. It underscores the
use of programmable switches in this context and their role in achieving fine-grained
per-packet treatment without relying heavily on central controllers.

The paper introduces two use cases: Use Case 1 (UC1) and Use Case 2 (UC2). UC1
considers a standalone scenario with a single P4 switch connecting the relevant VNF
chains, while UC2 involves multiple decentralized switches cooperating to serve various
VNFs and employing in-band network telemetry (INT) solutions. (as you can see in
Figure 3.6 that is a combination of both scenarios)

P4 switch P4 switch P4 switch (3 mm

Figure 3.6. Combination of UC1 and UC2 for SFC latency segment
control. Reproduced from [5]

The core idea in UC1 is that different VNFs are connected to the same switch (see
Figure 3.7). To compute the latency that flows experience while traversing various VNFs,
the switch uses an ingress timestamp when the packet arrives from one VNF (interface 1
in Figure3.7) and an egress timestamp when the packet exits all VNFs and reenters the
switch(interface 2 in Figure 3.7). The difference between these timestamps represents the
latency experienced within the VNFs. Additionally, the switch measures and predicts the
time packets spend waiting in queues, which can increase when congestion occurs, thus
affecting latency. The final latency calculation combines these factors.

To manage latency, the paper introduces two thresholds: Priority Latency (PL) and
Drop Latency (DL). Packets with latency below PL are treated normally, while packets

24

Related work

o

.............................

output
interface to
destination

from source

contending traffic

Figure 3.7. stand-alone switch scenario. Reproduced from [5]

with latency between PL and DL are given higher priority for faster delivery. Packets
exceeding DL are considered out of date and are dropped.

The paper further details the algorithm and tables required in P4 switches to im-
plement this latency control mechanism. (The complete implementation is observable in
Figure 3.8)

srcMAC, dstMAC, [nput porl, srclP. Input port, srclP
input port dstlP, L4 porits > dstlR, L4 ports >

~=output port store timestamp priority/drop BE, transit match

Tune DL, PL

Table 0 || Table
Forward [} Store Queuing,
Replication
packs and
; Scheduling

Time spant in peee o

the queus by bit<32= endg_timestamp;

BEftransit bit<19> ang_goept;
packets bit=32> deq_timedelta;

-] bit<19> deq_adepth;
Ingress pipeline j K Egress pipeline

Figure 3.8. Use Case 1: P4 pipelines implementation. Reproduced from [5]

t

In UC2, the approach is extended to encompass multiple switches along the route.
The paper introduces the concept of an INT-enabled domain, where switches can insert
extra headers into selected traffic for switch metadata purposes. The first node adds
an INT extra header to the packet, and the last node extracts this header and uses its
information. The methodology in UC2 essentially builds upon that of UCI1, with the
addition of INT headers to capture relevant data. You can see a general view of this
scenario in Figure 3.9.

25

Related work

SC flow

output
interface to
destination

other traffic,

Figure 3.9. Use Case 2: distributed INT switch scenario. Reproduced from [5]

This study considerably contributes to our research by offering a valuable understand-
ing of the use of headers and metadata within programmable switches for extracting more
information from packets. Although our thesis does not expressly address service chaining
or Network Function Virtualization (NFV), our major focus is on P4 switches. The broad
use of P4 switch features and methodology in this research provides excellent direction,
assisting us in furthering our aims in monitoring latency and other characteristics inside
programmable network devices.

Furthermore, this article serves as a useful resource in our attempt to design function-
ality for programmable switches’ ingress and egress pipelines. The paper’s step-by-step
approach to the exploitation of multiple pipelines and how the programmable switch
manages queues is extremely fascinating. This advice is critical to the advancement of
our research activities, allowing us to work toward the precise goals mentioned in our
thesis.

The paper [6], presents a pioneering approach to addressing the critical issue of estab-
lishing consistent order among operations in distributed systems. Traditionally, achieving
such ordering relied on application-level protocols like Paxos or two-phase locking, but
these methods came with inherent limitations, including scalability challenges, fault tol-
erance issues, and load balancing problems due to the involvement of a single sequencer.

The Hydra protocol, introduced in this paper, revolutionizes network ordering by
leveraging a distributed group of sequencers. This innovative approach employs weakly
synchronized clocks, unique identification numbers for each sequencer to detect message
drops, and periodic timestamp messages to ensure progress, even when some sequencers
are idle. The results showcase Hydra’s superior performance compared to traditional
approaches, boasting significantly higher scalability, shorter sequencer failover times, and
improved network-level load balancing.

The paper also highlights the pressing need for data replication in data centers and the
historical challenges posed by consensus algorithms like Paxos, Viewstamped Replication,
and Raft, which introduced performance and latency overhead. Hydra comes to the res-
cue by routing requests through sequencers, enabling the implementation of lighter-weight

26

Related work

consensus protocols through in-network processing. This groundbreaking innovation ef-
fectively mitigates the associated costs. Unlike conventional network sequencing, which
often involves serialization with scalability challenges, routing complexities, and compat-
ibility issues with application-level recovery mechanisms, Hydra introduces an ingenious
approach. It allows packets to be sequenced through multiple active sequencers imple-
mented in programmable switches, streamlining coordination and efficient message drop
detection.

The deployment strategy employed by Hydra includes both a software implementa-
tion running on end hosts and a P4-based implementation running on an Intel Tofino
programmable switch. This P4-based approach is of particular interest to our research,
as it demonstrates how programmable switches can be used to develop the functions
necessary to achieve the paper’s objectives.

The paper provides statistical evidence demonstrating Hydra’s superiority in packet
ordering performance compared to other protocols. It then delves into the traditional
approach to packet ordering in networks, emphasizing the drawbacks of relying on a
centralized sequencer. The limitations of this method include scalability bottlenecks,
prolonged system downtime, deteriorated data center network properties, and incompat-
ibility with multi-pipeline switches.

Hydra introduces the concept of sequencing with multiple sequencers and outlines de-
ployment options that span end hosts, top-of-rack switches, root switches, and sequencer
appliances. Regardless of the deployment option, Hydra seamlessly integrates with ex-
isting data center routing structures. Each deployment variant is allocated a distinct IP
address and dynamically adaptable routes to account for sequencer changes.

The core abstraction provided by Hydra is a group communication protocol, offering
properties such as partial ordering, unreliable delivery, and drop detection. The paper
proceeds to describe the Hydra algorithm in detail, including the use of physical clocks
for message ordering, combining physical clocks and multi-stamps for drop detection,
ensuring progress with flush messages, and handling sequencer failures. I do not enter
the details of these processes. I just put Figure 3.10 from the paper that explains the
complete algorithm of Hydra with an example. You can see a short explanation of this
algorithm in the capture of the figure.

The most intriguing aspect for our research lies in the efficient implementation of
Hydra sequencers using programmable switches, facilitating in-network sequencing. Hy-
dra deploys a dynamic set of groupcast senders, receivers, and sequencers managed by a
configuration service. Centralized SDN or source routing approaches are used to man-
age groupcast routing, allowing for efficient routing to randomly selected reachable se-
quencers. Hydra sequencers maintain a minimal state, including a unique sequencer 1D, a
sequence number for each receiver group, and a monotonically increasing physical clock.

Hydra groupcast is implemented as an application-level protocol atop UDP, using a
customized Hydra header to facilitate sequencing. Programmable switches play a crucial
role in this implementation by utilizing switch register arrays to store sequence numbers
for receiver groups and efficiently process packet sequencing in parallel. This approach
enables Hydra to scale to a higher number of groups while maintaining efficient processing.

In conclusion, this paper is a valuable resource for our research. It offers insights into

27

Related work

Message Legend
M= (G, L {(LD,2,010],42) M2 =1(G, 2, (1.1}, 42) F ={F, 1, {(1.3).(2,2)}, 80}
Mi=(G. 2 {(1.2)},85) Ma=(G,2, {(1L.4)}. 90, Fr={F 1, {(1,3).(2,4)}, 98}

{}
Delivers (D, 1, 2}

= “ ey
—| M3} |[—— . s .
i elivers (D, 2, 3
Delivers Mz Delivers (D, 2, 3)

My [M My |_F
(0 e KT et PV P

Figure 3.10. An example execution of the Hydra message delivery protocol. At every
step, the state of the Hydra buffer is displayed along with any messages delivered to the
application. Hydra groupcasts are written (G, sequencer, multi-stamp, timestamp), while
flush messages are written (F, sequencer, multi-stamp, timestamp), and DROP-NOTIFI-
CATIONs are written (D, sequencer, sequence-num). A multi-stamp is a set of (group,
sequence-num) tuples. This execution follows a receiver in group 1 receiving messages from
two sequencers, 1 and 2. Transitions between states of the receiver show the message being
received. Reproduced from [6]

the efficient implementation of functions and operations within programmable switches
using P4, which is aligned with our research goals. Additionally, the paper’s sequencing
algorithm, though not directly applicable to our work, provides a valuable reference for
our motivation, where we consider packet ordering and potential reordering using data
plane programmability and recirculation functions within switches.

The paper [7], addresses a critical issue faced by network function deployment, which
is the poor link goodput caused by some network functions, such as firewalls, that process
only packet headers while receiving and transmitting complete packets. This inefficiency
leads to unnecessary consumption of link bandwidth due to transmitting redundant packet
payloads. To overcome this challenge, the researchers propose the "PayloadPark" mecha-
nism, a novel approach that enhances goodput by temporarily storing packet payloads in
the stateful memory of programmable data plane switches. PayloadPark forwards only
packet headers to network function servers, effectively conserving bandwidth between the
switch and the network function server.

The motivation for exploring this concept arises from the fact that PayloadPark em-
ploys P4 and programmable switches in its implementation. Consequently, this paper
becomes a valuable resource for understanding how to leverage P4 and programmable
switches to develop algorithms and operations aligned with their approach.

The paper presents statistics demonstrating how their algorithm significantly improves
goodput in network functions. After this abstract, the authors delve into the concept of
network functions and their use cases. They emphasize that the PayloadPark algorithm is
particularly suitable for header-only and fixed-prefix network functions, often referred to
as shallow network functions, such as NATS, firewalls, and L4 load balancers. However,
it may not be suitable for services requiring deep packet inspection, such as intrusion
detection.

The paper introduces the abstract deployment of PayloadPark that is visible in Figure
3.11 and its two core operations: "Split" and "Merge."

"Split" decouples the incoming packet’s header from its payload, forwarding the header
to the shallow network function chain while temporarily storing the payload in the switch

28

Related work

> ,
——| spur MERGE | ———
—> (NP |>{NFa} >[N |

Figure 3.11. Abstract PayloadPark deployment. Split decouples the packet into header
H and payload P. Shallow NF chain NF1, NF2 ... NFn transforms header H into H’. Merge
reassembles the header H” with payload P. Reproduced from [7]

data plane. "Merge" reunites the potentially modified header from the network function
chain with the payload before forwarding the packet to its destination. These operations
are activated on a per-port basis, with "Split" playing a central role. In this operation, a
unique tag is assigned to the payload, allowing it to be detached from the packet header
and securely stored within the data plane. A distinctive PayloadPark header is appended,
including an "Enable" bit indicating successful payload storage. The "Merge" operation
complements this process by reuniting the payload with the modified header obtained
from the network function chain. The assigned tag serves as a crucial reference point
for locating the stored payload, which is then seamlessly merged with the header. The
PayloadPark header is subsequently removed, and the associated payload-consumed space
is efficiently reclaimed. The PayloadPark headers that are added to the packet header
are observable in Figure 3.12.

I
ETH | 1p |TCP/|ENB | OP | ALIGN | TAG | REMAINING
UDP | (1 bit) |(1bit)| (6 bits) | (48 bits) | PAYLOAD

<

PayloadPark Header

Figure 3.12. PayloadPark header. The Enable (ENB) bit indicates whether the Pay-
loadPark operation is enabled. Opcode (OP) indicates the operation to be performed:
Merge | Explicit Drop. ALIGN bits are for byte alignment. TAG is a unique identifier
for the packet. Reproduced from [7]

The paper highlights that PayloadPark has become feasible thanks to newly available
Reconfigurable Match-Action Table (RMT) switches. These switches are equipped with
programmable ASICs that enable the implementation of in-network optimizations using
domain-specific languages like P4. However, RMT switches come with limitations in
terms of storage resources and per-packet compute and stateful operations, aimed at
ensuring packet processing at line rate.

The research then delves into the details of the PayloadPark algorithm. The architec-
ture of PayloadPark includes critical components such as a packet tagger, a lookup table,
and a payload evictor. These components ensure the robust functioning of PayloadPark,
with the payload evictor responsible for recovering memory occupied by lost or dropped
payloads following the "Split" operation. PayloadPark has been thoughtfully designed to

29

Related work

operate within the constraints of limited storage resources while ensuring efficient network
function. You can see the packet flow in PayloadPark in Figure 3.13.

PKT IN PKT OUT

\v SWITCH DATAPLANE

TOR SPLIT b—) TAGGER ';?’Té_?gg

SWITCH

|
’FRGE’-) LOOKUP TABLE —

k

NE A ne FRAMEWORK

=
Y
I
|
SERVER '_@(_ [NFp [NFy |

Figure 3.13. Packet flow in PayloadPark. Split decouples the packet header and payload,
and stores the payloads in the lookup table. The Merge operation merges the headers from
the NF server with the payloads stored in the lookup table. L2 FWD forwards packets
using L2 forwarding. Reproduced from [7]

One key aspect of our research lies in how they have implemented this algorithm
using the programmable switch data plane (see Figure 3.14). PayloadPark’s versatility is
demonstrated through its integration into the switch data plane architecture, with a focus
on the "Split" operation. This operation generates a tag consisting of two components:
an index (TI) used to locate a vacant storage location for the packet payload and a
generation number (CLK) that distinguishes between evicted and non-evicted payloads.
The metadata table plays a crucial role in determining index availability. If the index
is empty, the CLK value and a predefined expiry threshold (EXP) are written into the
table. The PayloadPark header is then affixed to the packet, with the ENB and tag values
duly updated. If the lookup table entry is occupied, the ENB bit is set to zero, and a
2-byte CRC is included. Payloads are stored in a dedicated payload table, structured as
a two-dimensional array across various memory address tables (MATSs), with the exact
payload storage capacity varying across switches.

The evaluation section of this research investigates the efficiency of the PayloadPark
algorithm. PayloadPark’s approach is notable for its efficient management of memory re-
sources. The "Merge" operation distinguishes between evicted and non-evicted payloads
using the packet tag and effectively reclaims memory by cleaning up long-lived payloads.
The system efficiently handles memory reclamation, ensuring optimized network perfor-
mance.

The validation process forms a critical stage within the PayloadPark workflow, where
stored payloads are rigorously assessed. This process enhances the reliability and accu-
racy of payload integration into validated packets, ensuring the overall robustness of the
PayloadPark system.

In summary, this paper provides valuable insights into addressing the inefficiencies in
network function deployment using P4 and programmable switches. It offers a compre-
hensive overview of the PayloadPark mechanism, including its architecture, operations,

30

Related work

PACKET METADATA PAYLOAD

TAGGER TABLE o TABLE
ol | | [l

STAGE 1 STAGE 2 STAGE 3 STAGE N

Figure 3.14. PayloadPark data plane implementation. The tagger has registers for the
table index (TT), which is an index into the lookup table, and a clock (CLK). The metadata
table contains two values at each index, the value of the clock when the index was occupied
and an expiry threshold (EXP). If the index is available for storing payload, its EXP value
is 0. Payload Blocks (P0, P1 ... PL) are striped across MATSs. Reproduced from [7]

and implementation in programmable switch dataplanes. This information aligns with
our research objectives related to data plane programmability.

The paper [8], focuses on addressing the challenges associated with high-throughput
packet processing in programmable network switches, particularly within the context of
the RMT programmable high-throughput switch architecture. The authors introduce a
method called PRECISION, which leverages Probabilistic Recirculation to identify top
flows on a switch. This technique optimizes access to stateful memory while comply-
ing with RMT constraints, outperforming previous heavy-hitter detection methods that
avoided recirculation. PRECISION offers flexibility and high throughput, making it valu-
able for applications such as load balancing and traffic engineering.

The paper underscores the significance of programmable network switches in deploying
network algorithms like traffic engineering, load balancing, quality-of-service optimiza-
tion, anomaly detection, and intrusion detection. It emphasizes that accurate measure-
ment capabilities are crucial for these applications as they extract valuable information
from traffic for informed decision-making.

The core challenge addressed in this paper is the limitation of SRAM memory for mea-
suring at a 100 Gbps line rate. Traditional heavy-hitter algorithms attempt to overcome
this limitation by storing flow state information for the largest flows. However, this ap-
proach introduces a trade-off between memory space and accuracy. The paper mentions
two categories of solutions for heavy-hitter detection: counter-based and sketch-based
algorithms.

Counter-based algorithms maintain a bounded-size flow cache and can directly solve
the top-k problem. In contrast, sketch-based algorithms implicitly share counters among
multiple flows and require additional efforts to address the top-k problem. While sketch
algorithms are implementable in programmable switches, the paper highlights that sup-
porting top-k measurements motivates deploying counter-algorithms, which present sig-
nificant challenges due to the restrictions imposed by high-performance packet processing.

The Reconfigurable Match Tables (RMT) switch programming model is crucial in

31

Related work

designing measurement algorithms. However, this model introduces limitations such as
limited branching, concurrent memory access, single-stage memory access, and a fixed
number of stages, which the paper details. You can see an illustration of some of these re-
strictions in Figure 3.15 that is provided by the paper. It then introduces the PRECISION
algorithm, emphasizing its compatibility with the RMT high-performance programmable
switch architecture.

. 1!
|ooyl
— e0e
- Stage 1 - Stage 2 - Stage d

(a) Restriction I: Limited in-stage branching

- Memory

:i—>—>

-Stage 1 - Stage 2 - Stage d

(b) Restriction II: Limited memory access within a stage

- Memaory

\—>—>

- Stage 1 - Stage 2 - Stage d

(c) Restriction III: One memory address cannot be accessed from
multiple stages

Figure 3.15. Illustration of some restrictions imposed by RMT pipeline model for design-
ing measurement algorithm. Reproduced from [8]

PRECISION employs probabilistic recirculation, randomly recirculating a small por-
tion of packets from unmonitored flows. When a packet is recirculated, it traverses the
programmable switching pipeline twice. In the first pass, the paper attempts to match
a packet to an existing flow entry; if successful, the counter is incremented. If there’s
no match, the packet is probabilistically recirculated to claim an entry with the new
packet’s flow ID. This approach simplifies memory access without significantly degrading
throughput while maintaining high monitoring accuracy.

32

Related work

The paper then compares PRECISION to previous algorithms in the field of heavy-
hitter detection, emphasizing its advantages and innovations.

Subsequently, the paper delves into a precise definition of the two heavy-hitter prob-
lems investigated: the frequency estimation problem and the top-k problem. It also
defines the concept of a flow in a network based on packet headers and discusses existing
approaches to solving these problems.

The main portion of the paper focuses on the design and implementation of the PRE-
CISION algorithm. It addresses how PRECISION deals with the restrictions imposed by
the RMT switch architecture. One crucial point for your research is how PRECISION
simplifies memory access within RMT switches. The paper highlights that implementing
PRECISION is particularly challenging due to the need to replace an entry after know-
ing the minimum sampled counter value, which is only available after reaching the end
of the pipeline. To overcome this challenge, the paper utilizes the recirculation feature
on switches, allowing packets to traverse the pipeline again and removing conditional
branching for register access. This approach facilitates more versatile packet processing
at the expense of packet forwarding performance.

The paper also explains how recirculated packets are managed and how metadata
is used to distinguish between recirculated packets and regular packets. This recircu-
lation function implemented in programmable switches is a focal point of interest for
my research, as it differs from our approach, which involves recirculating all packets or
customized packets. The approach taken in this paper regarding recirculation in pro-
grammable switches can serve as a foundational reference for my research on developing
our own version of recirculation in programmable switches.

The paper [9] proposes congestion avoidance approaches that use entirely programmable
data planes to reduce end-to-end latency. The programmable switches can monitor
latency-critical flow processing and queuing delays and respond quickly to congestion
by rerouting affected flows. They employ programming languages such as P4. The
data-plane method reduces jitter, average, and maximum latency as compared to non-
programmable approaches. For reliable Internet traffic, consistent feedback and a maxi-
mum delay restriction are required. To decrease end-to-end latency, packets should not
be delayed or rejected by the network. Network delays include propagation, transmis-
sion, processing, and queuing. A trustworthy system necessitates that these delays be
maintained under control and to a minimum.

The research digs into the challenging obstacle of network congestion among nodes,
a widespread problem that causes queuing delays. Traditional congestion control tech-
nologies, such as TCP, need round-trip time for congestion detection, which is often
conducted at sender nodes. Introducing a new paradigm, software-defined networking
(SDN) enables more flexible adaptations to constantly changing network circumstances
via centralized controllers. While SDN has the potential to improve Quality of Service
(QoS) routing and traffic prioritization, it requires continual monitoring and recalibra-
tion. The key problem is to enable forwarding nodes to proactively manage and anticipate
congestion rather than depending on source-based or controller-driven mitigation. A key
component of the study’s strategy is identifying and responding to rising delays at the
switches themselves, which represents a strategic change from source-based intervention.

33

Related work

This method is critical for achieving excellent end-to-end latency and jitter reduction.
Programmable switches, as well as domain-specific programming languages like P4, have
proven to be important tools for this purpose. A hierarchical system is described, with
a local congestion control module monitoring low-latency flows and a central controller
modulating latency thresholds to provide an effective congestion detection and avoidance
mechanism.

The study provides a separate "Congestion Detection and Avoidance" module, as
you see in Figure 3.16, suited for latency-critical flows inside this architecture. This
module monitors processing and queuing delays and automatically redirects traffic to
alternate paths or sends alarms to preceding nodes when delay components increase.
A key finding from the study is that, in accordance with P4 language rules, rerouting
requires controller interaction within the data plane. Register-based techniques are used,
coupled with intelligently maintained meta-data, to ensure interoperability with all P4-
compliant devices.

P4 Switch
Local Congestion Detection 0
. roc.
and Avoidance Module _
~ tque.
if (congested) BB
reconfigure ¥
— .]]]m —
data < r-— > data
BB tproc. fque. BB

Figure 3.16. Detection of congestion in the data plane. Every switch has
a small congestion avoidance module, gathering statistics (processing and
queuing delay). Reproduced from [9]

The research addresses the difficulties that arise from the concurrent processing of
packets from the same flow, a circumstance that can worsen processing delays and lead to
race conditions. To address these issues, the method employs techniques such as packet
copies and packet digests. While both techniques have benefits, the research takes a
different approach by transferring congestion monitoring inside a P4 program and using
digests to notify the local module when delays exceed specified levels. This technique
reduces the possibility of overloading the local control application module and provides
the freedom to adjust parameters such as the number of subsequent packets with rising
delays, as well as queuing and processing delay thresholds.

The full findings of the study on "Fast Network Congestion Detection and Avoidance
Using P4" are linked to the main subject of our thesis, "Delay Control with Programmable
Data Planes." The study’s original methodology and innovative approaches to congestion
mitigation and network performance are critical to our research. The use of programmable

34

Related work

data planes, notably P4, and its accompanying approaches, has the potential to enhance
our research into latency control. The study’s emphasis on proactive detection, targeted
intervention, and dynamic rerouting solutions aligns with our efforts to design more
efficient and responsive networks.

The study [10] delves into a prevalent issue known as Bufferbloat, a condition char-
acterized by the presence of oversized packet buffers within forwarding equipment, which
consequently engenders excessive latencies within networks. The research reveals that
this challenge is effectively mitigated through the application of Active Queue Manage-
ment (AQM) algorithms, such as CoDel and PIE. These algorithms, which exhibit the
capacity to dynamically adjust buffer sizes and alleviate buffer bloat, have demonstrated
their effectiveness in enhancing network performance. Notably, the study underscores a
pertinent limitation wherein contemporary network equipment often lacks access to these
AQM algorithms, potentially hindering their broader deployment.

A pivotal contribution of the study revolves around the implementation of an open-
source CoDel solution within the P4 framework. This implementation has far-reaching
implications, especially in contexts such as traffic shaping within ISP access networks.
The study expounds that Bufferbloat arises due to the accumulation of excessive-sized
packets within a queue as active connections strive to reach TCP window sizes or fill the
queue to its brim, leading to packet drops and subsequent latency spikes. Such latency
spikes disproportionately affect latency-sensitive traffic like voice-over IP, necessitating
effective mechanisms to mitigate them.

The CoDel and PIE AQM algorithms, highlighted by the study, introduce dynamic
feedback mechanisms that intelligently manage queuing delays. Particularly, the CoDel
algorithm, as elaborated in the research, leverages TARGET and INTERVAL parame-
ters to meticulously control the periodic queueing delay, ensuring it remains consistently
beneath the predefined TARGET threshold. This approach, as elucidated by the study,
prevents packet losses and effectively extends the intervals until the desired TARGET
delay is achieved.

A significant achievement of the study is the seamless integration of the CoDel algo-
rithm into the P4 reference pipeline. This integration encompasses both packet processing
and queue storage, thereby enabling efficient management of queuing delays. Importantly,
the research underscores the accessibility and applicability of this solution by revealing its
compatibility with the P4 reference model BMv2. Moreover, the implementation’s ver-
satility is highlighted, as it can operate on Linux-based computers without necessitating
specialized hardware or costly proprietary software.

The study further emphasizes the incorporation of packet timestamping, a crucial
aspect facilitated by the BMv2 architecture. This feature provides essential access to
queueing delay information, thereby contributing to more effective queue management
strategies. In essence, the study illuminates the potential of P4-CoDel as a transformative
solution for alleviating Bufferbloat and enhancing network performance, particularly in
scenarios demanding latency-sensitive traffic management.

35

36

Chapter 4

Delay Control by Packet
Recirculation

The primary focus of my thesis centered around investigating the feasibility of employing
packet recirculation within programmable switches to control delay. The underlying mo-
tivation was rooted in a fundamental question: Could we keep an initial packet within the
switch until a subsequent packet from the sender arrives, and then intelligently forward
the first packet after the later packet? In pursuit of this goal, I embarked on a two-phase
journey. The first phase involved the development of a packet recirculation mechanism
within the BMv2 switch. Initially, I implemented a general recirculation process, wherein
the switch recurrently processed all incoming packets for a predefined number of cy-
cles. To facilitate this, I introduced a packet metadata element, which is an incremental
counter that increases each time a packet re-enters the switch. This counter guides the
recirculation process until the specified cycle count is achieved. Further refinement led to
a more sophisticated approach, where only specific packets were recirculated. I extended
the switch’s capabilities by integrating additional instructions to identify and selectively
process packets with custom headers. This development allowed the switch to efficiently
differentiate between regular and custom packets, applying the recirculation algorithm
only to the custom packets while forwarding the normal ones promptly or discarding
them as needed.

The second phase involved comprehensive testing to evaluate the effects of the recir-
culation algorithm on packet delay and network throughput. To ensure robustness and
relevance, experiments were conducted in both virtual and real environments, employing
the Linux-based operating system. In Linux, using Mininet which is a powerful network
emulation tool, I created experimental topologies comprising source and destination hosts
interconnected by BMv2 switches.

In these experiments, I examined diverse scenarios. Initially, I focused on a single
switch topology to evaluate the influence of packet recirculation on delay and throughput
in a straightforward setting. Subsequently, I extended the investigation to include multi-
switch topologies, exploring the impact of recirculation within more complex network
configurations.

To quantify delay, I made use of the well-known ’ping’ utility, which measures the

37

Delay Control by Packet Recirculation

Round Trip Time (RTT) between source and destination by sending ICMP echo request
and reply packets. This enabled me to analyze how recirculation affected packet delay
under various conditions. For evaluating throughput, I turned to the renowned ’Iperf’
tool, capable of measuring the maximum achievable network throughput. I conducted
experiments utilizing both TCP and UDP protocols, adjusting parameters like recircu-
lation cycles, link bitrate, and sending rates to comprehensively assess their effects on
network performance.

In summary, my work encompassed the design and implementation of a novel packet
recirculation mechanism within the programmable switch, followed by an extensive testing
phase to explore its impact on delay and throughput in diverse network scenarios.

4.1 Packet Recirculation development

In this section, I will explain how the recirculation algorithm works in programmable
switches and detail the development of the recirculation algorithm in these switches.
It is critical to understand how the control plane and data plane of the programmable
switch should function together to enable recirculation. I'll go over each of them. It is
essential to remember that, as previously said, we should program the data plane using
the p4 language. The first strategy that comes to mind and is easier to implement is
to recirculate all received packets a specific number of times. The next step will make
the recirculation algorithm more specific, allowing more control over the mechanism and
allowing the programmable switch to recirculate custom packets as desired.

4.1.1 Strategy 1

Let’s start with a basic yet effective strategy: the switch recirculates all incoming packets
for a certain amount of cycles. The process begins when a packet arrives and encounters
the parser, which is a skilled entity that extracts fields from the packet’s header without
assuming their meanings. These fields form the foundation upon which the switch’s sub-
sequent actions and matches are predicated. In the switch’s architecture, a state machine
navigates the headers’ fields from start to finish. P4 describes this state machine as a
constellation of transitions, each triggered by fields in the current header. Upon reaching
a state for a new header, the state machine extracts the header using its specification and
proceeds to identify its next transition. This parsing commences in the start state, where
the parser unravels the Ethernet header. Depending on the Ethernet type, it moves for-
ward, potentially unlocking the IPv4 state, where the IPv4 field emerges into view. This
is all of our transition in this state machine. For advancing the recirculation strategy,
we do not need any extra work in parsing the packets. The switch parses the packets
in such a way that it is just a simple L2/L3 forwarding device for forwarding packets.
Now, when these extracted fields of the header are in hand, they traverse the ingress
pipeline. In our architecture, the ingress pipeline is responsible for doing anything that is
needed for forwarding the packets to the destination, so the match tables and actions are
defined here based on this responsibility. Which action can be performed on a pipeline
that is responsible for forwarding? it is forwarding, or if it cannot forward the packet,
drop it. So we define these two actions in this pipeline. The match should be done based

38

4.1 — Packet Recirculation development

on the IPv4 header that we extracted from the packet. The forwarding is done based on
the destination address part of the IPv4 header, and the switch makes this forwarding
available if there is a match in this field, which is the IP address of the destination. If
there is no match between this field of the packet header and the forwarding rules that
the controller provides for the switch, it will drop the packet. The forwarding action’s
first act involves determining the egress port which is the gateway to the destination.
Like travelers adapting to different landscapes, packets’ MAC addresses adjust, and their
TTL counts diminish as they traverse each hop. The next scene unfolds within the egress
pipeline that is responsible for recirculation action. The strategy is a recirculation for
every packet, but only for a predefined number of cycles, so no matching table is de-
fined in this pipeline. Here, metadata enters the picture, which is an element bestowed
upon packets to convey their history. For the first encounter with the egress pipeline,
this metadata is zero and is waiting to be increased. Just consider that the number of
recirculations for each packet is determined by a constant value that I defined previ-
ously. As the packet arrives, the egress pipeline investigates this metadata. If it detects a
count of zero, it invokes a predefined recirculation function that is programmed into the
switch. This function marks the beginning of a packet’s cyclic journey, simultaneously
advancing the metadata count. With each cycle, this counter ascends until it meets the
initial recirculation constant. Just for better clarification, the egress pipeline just acts
when the counter metadata of the packet is less than the number of recirculation constant
value; after that, it does nothing, and the packet is forwarded as indicated in the ingress
pipeline.

P4 program for defining the packet-processing pipeline in the first strategy:

The provided P4 program serves as a model for defining the packet-processing pipeline
within a programmable switch when the switch recirculates all the packets for a definitive
number of cycles. This program outlines how incoming network packets are processed,
recirculated, and forwarded based on their headers. Let’s break down and elaborate on
the key components of this program:

e Headers and metadata:

The program begins by defining various headers that include critical information about
the incoming packets, such as Ethernet and IPv4 headers. These headers mirror the
structure of the respective protocol specifications. Additionally, a metadata structure is
introduced to store essential metadata, including a recirculation counter(Figure 4.1).

« Parser:

You can see the code of the parser in Figure 4.2. As I explained before, the parser is an
entity that extracts fields from the packet’s header.

e Deparser:

39

Delay Control by Packet Recirculation

e e e e e e e e e o R R R R e e o o o o o o e
e e e e e e e e e e e e e e e e e

L L

TCP/IP Headers

header ethernet_t

struct header
ethernet_

Figure 4.1. Defining headers in the p4 file

The Deparser ensures that the modified headers are reassembled into the outgoing packet
format before transmission. (see Figure 4.3)

e Checksum verification:

The checksum verification control block validates the integrity of packet headers.
e Ingress processing:

As discussed before, the ingress pipeline is responsible for packet-forwarding decisions. It
defines actions like packet dropping and forwarding. The ingress control block includes
a table called ipv4_Ipm that matches the destination IP address of the IPv4 header.
Depending on the match result, packets can be forwarded, dropped, or subjected to a "no
action" outcome. (see Figure 4.4)

Forwarding process: The process of forwarding within a programmable switch is a
critical mechanism that determines how incoming packets are directed to their intended

40

4.1 — Packet Recirculation development

Figure 4.2. The development of Parser in the p4 file. The parser is responsible for ex-
tracting information from the incoming packet headers. It employs a series of states to
identify the type of packet (Ethernet, IPv4, etc.).

.emit(hdr.
.emit(hd

Figure 4.3. The development of Deparser in the p4 file. The deparser reassembles the
headers into the outgoing packet.

destinations. This process is overseen by the Mylngress control block, operating within
the switch’s ingress pipeline. It ensures efficient data flow across the network.

At the core of this process are the Ethernet header and MAC addresses. The Ethernet
header contains two vital pieces of information: the source MAC address, identifying the
sender, and the destination MAC address, specifying the receiver. These MAC addresses
are fundamental for proper communication, guiding packets to their correct endpoints.
In the MylIngress control block, the ipv4d_forward action plays a key role by adjusting
these MAC addresses to dictate the packet’s path through the switch.

However, the transmission of packets is done like what happens in the IP protocol.
The IPv4 header holds the source and destination IP addresses, needed for routing packets
between networks. The ipv4_ forward uses the destination IP address as a reference point.
This reference determines the action to take, whether forwarding the packet, discarding
it, or taking no action, based on interactions with the ipv4_ Ipm table.

The Time To Live (TTL) parameter, embedded in the IPv4 header, adds an essential

41

Delay Control by Packet Recirculation

action dre

Figure 4.4. Instructions for programming the Ingress pipeline in the programmable switch;
responsible for forwarding the packet to the destination using Ethernet and IP headers

dimension. The TTL sets a limit on a packet’s lifespan. It starts when the sender initiates
the packet and decreases with each switch it encounters. The TTL prevents packets from
staying indefinitely or circulating in loops. The ipv4_forward action lowers the TTL
value, indicating the packet’s progress through the network.

As the forwarding process progresses, the TTL ensures the traversal of the network.
Its decrement signifies meaningful progress toward the destination.

In summary, the forwarding process, guided by Ethernet and IP headers, ensures
seamless data flow, enabling effective communication within the network.

o Egress processing:

The egress pipeline focuses on packet recirculation within the switch. The MyEgress
control block handles recirculation decisions. If the packet’s recirculation counter is below
a predetermined threshold (RECIRCULATE_ TIMES), the packet is recirculated within
the switch. (see Figure 4.5)

e Checksum computation:

The checksum computation control block calculates and updates checksum fields in the
packet headers to ensure their validity. (see Figure 4.6)

42

4.1 — Packet Recirculation development

irculate {

Figure 4.5. Instructions for programming the Egress pipeline and the develop-
ment of recirculation in the programmable switch; responsible for packet recircu-
lation using packet metadata

« Switch architecture:

The program concludes by defining the architecture of the switch using the V1Switch
construct. This encapsulates the parser, checksum, ingress, egress, and deparser compo-
nents in the correct order to form the complete packet-processing pipeline. (see Figure
4.7)

Switch Controller:

Now what should the controller do in this strategy? As I said before, the recirculation is
done for all the packets, so the controller should not perform anything for the recirculation
part. It should just determine how the forwarding should be done. A rule governs this
path: match the IPv4 destination address. With this criterion in hand, the controller
directs the switch with the parameters of forwarding instructions, including the port that
the packet should exit for reaching the next node and the MAC address of the destination
for each packet’s progress.

Think of the control plane as the brain of the switch. It’s a separate part that controls
how the switch operates. In our setup, we have a control plane file that tells the switch
what to do and how to act (see Figure 4.8), which we reference in our network topology
to specify the properties and instructions that guide the switch on how to manage data

43

Delay Control by Packet Recirculation

hdr, inout metadata meta) {

vitch architecture

ViSwitch(
MyParser(),

rifyChecksum(),
yIngress(),
gress(),
omputeChecksum(),
MyDeparser()

) main;

Figure 4.7. Switch architecture in programmable switch

traffic.

The control plane’s instructions are designed to be clear and explicit, ensuring that
packets are processed and routed accurately within the switch. By providing detailed
rules and actions, we enable the switch to make intelligent decisions about how to handle
incoming data.

The actions defined in the control plane are closely tied to the instructions in the data
plane, which determine how the switch’s hardware processes packets. Together, these two
planes collaborate to ensure efficient and effective data forwarding based on the specified

44

4.1 — Packet Recirculation development

conditions.

p4@p4: ~/tutorials/exercises/xrecirc/pod-topo

"target"
"p4info"
"bmv2_js
"table_entrie

"table"
"default_action
"action_name": "
"action_params

"table"
"match": {
"hdr.ipv4.dstAddr":

}

ction_name":
"action_params":
"dstAddr"
"port": 1

"table":

"match": {
"hdr.ipv4.dstAddr":

1,

"action_name":

"action_param
"dstAddr"
"port": 2

Figure 4.8. The Controller of the switch in the state that the switch recirculates all the
packets, the controller just indicates the match-actions for forwarding the packets

e Switch type and log files:

In the control plane file, we begin by specifying that the switch is of the BMv2 type. This
distinction is important as it informs the network infrastructure about the type of switch
being employed. Additionally, we provide addresses to log files that capture important
switch-related information for monitoring and analysis.

¢ Default behavior:

The control plane includes instructions for the default action that the switch should take.
If a packet’s destination doesn’t match any explicitly defined rules, the switch employs
a default action. This can involve actions like dropping the packet to ensure network
integrity.

e Specific Destination Matching:

In our specific configuration, we’ve defined rules to handle packets with certain desti-
nation IP addresses. For instance, if a packet’s destination IP matches "10.0.1.1", the

45

Delay Control by Packet Recirculation

control plane specifies an action named "ipv4_forward." This action involves forwarding
the packet to a designated port (Port 1) and setting the destination MAC address to
"08:00:00:00:01:11". Similarly, if a packet’s destination IP matches "10.0.2.2", the control
plane triggers the same "ipv4_ forward" action, forwarding the packet to Port 2 with a
destination MAC address of "08:00:00:00:02:22".

4.1.2 Strategy 2

This process extends beyond the initial strategy. Within the complex framework, cus-
tom packets are introduced, forming a distinct segment. These packets are characterized
by custom headers, primarily identified by their content_id. The parser’s capabilities
expand to accommodate these custom headers, orchestrating their progression. Subse-
quently, as the egress pipeline checks the metadata of these packets, the controller issues
specific instructions. This involves content_ id-based matching and the execution of ac-
tions tailored to the unique attributes of each custom packet. I begin the second method
by building on the previous strategy’s base. In this method, the parser’s operation evolves
to accommodate the new dynamics. It initiates the transaction in a start state and ex-
tracts the Ethernet field, similar to the previous strategy. However, a new aspect appears
at this point. Depending on the Ethernet type within the header, the parser directs the
transition to different states. If the Ethernet type corresponds to IPv4, it advances to a
state-linked with IPv4. Conversely, if the Ethernet type corresponds to custom data, it
progresses to a state designed for this specific type. This addition of a custom state aug-
ments the parser’s ability to handle distinct data scenarios. Here, a custom header comes
into play, appended to the packet, which in turn is extracted for matching, action execu-
tion, and processing. Upon completion of header parsing, the mechanism transitions to
the processing stage. This phase, like the prior strategy, assigns packet forwarding duties
to the ingress pipeline while assigning recirculation responsibility to the egress pipeline.
The forwarding mechanisms within the ingress pipeline remain consistent with the pre-
vious strategy, with no additional further discussion. However, it is in the egress pipeline
that the distinctions of this second strategy become evident. Here, the process involves
verifying whether the packet contains custom data or not. In the presence of valid and
parsed custom data, the packet assumes the classification of a custom packet. The next
step is controlled by the predetermined number of recirculations, a constant parameter
defined like the previous strategy. To track the number of recirculations, metadata is
added to the custom data, denoted by ingress_ number and egress_number fields within
the custom data header. Further differentiation is achieved through a content_id field,
addressing different types of custom data. The following method examines the avail-
ability of the custom data header in the egress pipeline. If present, the ingress. number
field is incremented, signifying the packet’s progress through the pipeline. Subsequently,
a decision point emerges: to recirculate or forward the packet. If the number of times
the packet has reached the egress pipeline is less than the defined recirculation constant,
a recirculation function is executed. However, if forwarding is indicated, the packet’s
content__id is employed to determine its destination. This distinction is reflected in dif-
ferent IP addresses, one for each content_ id, along with corresponding port numbers for
forwarding. The reasoning for this distinction is to treat custom packets differently from

46

4.1 — Packet Recirculation development

normal packets. Custom packet forwarding is defined based on the content_ id, setting the
foundation for a customized and relevant forwarding mechanism. If, on the other hand,
a packet without custom data, it is subjected to the forwarding mechanism indicated in
the previous approach.

P4 program for defining the packet-processing pipeline in the second strategy:

The given P4 program acts for configuring the packet-processing pathway in a pro-
grammable switch, particularly when the switch recirculates customized packets cycli-
cally. This program defines the procedures for handling incoming network packets, includ-
ing recirculation and forwarding, all of which are dependent on the header characteristics.
Let’s explain the key features of this program in further detail:

¢ Headers and metadata:

In this implemented strategy, the packet headers closely resemble those of the previ-
ous approach, with one key distinction: the introduction of an additional header called
"customData". This customData header comprises four fields: proto_id, content_ id,
ingress_ num, and egress_num. The content_id field determines the type of custom
data, typically represented as a numerical value that defines variations among custom
packets. Ingress_ num signifies how many times a packet enters the egress pipeline, while
egress_num indicates the number of times it exits from the egress pipeline. The proto_id
field is employed by the parser to establish a transition state for custom packets. All other
headers, such as IPv4 and Ethernet, as well as metadata like recirculation counter, are
identical to those utilized in the previous strategy. You can see the complete code for
this part in Figure 4.9

e Parser and Deparser:

The strategy recirculation-based method for custom packets, as previously explained,

provides a separation in the handling of the etherType field within the Ethernet header.

There are two separate options: TYPE_ IPV4, which refers to ordinary packets and ini-

tiates a parser process similar to the previous technique, and TYPE_ CUSTOMDATA,

which refers to custom packets. When the etherType assumes the value of TYPE__CUSTOMDATA,
the finite state machine governing the parser transitions into the "parse_customData"

state. Within this state, the parser extracts the customData header, and its subsequent

action dependent on the "proto_ id" field within this header. If the "proto_id" matches
TYPE_IPV4, the parser selects the "parse_ipv4" state for further processing.

It’s critical to note that "TYPE_IPV4" and "TYPE_CUSTOMDATA' represent con-
stant values predefined in the initial lines of the code. The parser references these values
embedded in the headers to determine the subsequent state to transition to. (see Figure
4.9)

In the deparser component, the only noticeable difference between this method and the
previous one is the necessity of attaching the customData header to the packet payload.
A comprehensive code representation of the parser and deparser components for this
strategy is available in Figure 4.10 for reference.

47

Delay Control by Packet Recirculation

e

Figure 4.9. Defining headers in the p4 file for the strategy that custom packets
are recirculated

e Ingress processing:

The ingress pipeline acts exactly as the previous strategy and is responsible for packet
forwarding.

o Egress processing:

In this strategy, the egress pipeline focuses on packet recirculation within the switch
like the previous strategy. The MyEgress control block handles recirculation decisions.
If the packet’s recirculation counter is below a predetermined threshold (RECIRCU-
LATE_TIMES), the packet is recirculated within the switch.

48

4.1 — Packet Recirculation development

Figure 4.10. This figure illustrates the parser and deparser components of the recircula-
tion-based strategy designed for custom packets. The figure highlights the custom packet
handling, etherType field differentiation, state transitions, and key processing steps.

In the egress pipeline, we have implemented a set of actions specifically tailored for
custom packets. These actions are essential for managing custom packet data as it flows
through the pipeline.

Update__ CustomData Action: This action is responsible for updating two vital
fields within the custom data header: ingress_num and egress_num. Each time a custom
packet enters and exits the egress pipeline, these fields are automatically incremented by
one. This mechanism tracks the passage of custom packets through the pipeline.

CustomData_ Forward Action: The role of this action is straightforward yet cru-
cial — forwarding custom packets to their intended destinations. By specifying the egress
port of the switch, this action ensures custom packets reach their designated endpoints.
The destination of custom packets is determined based on their content_id, ensuring
precise routing.

49

Delay Control by Packet Recirculation

Recirculation Action: When invoked, this action initiates the recirculation process.
Essentially, it allows the egress pipeline to recirculate the packet within the switch one
additional time.

For a comprehensive view of these actions and their implementation, please refer to
Figure 4.11.

Figure 4.11. This figure presents an overview of the actions defined in the egress
pipeline for custom packets. It highlights the roles and functionality of each action,
including updating custom data fields, forwarding custom packets, and initiating re-
circulation. These actions collectively facilitate the efficient handling and routing of
custom packets within the switch’s egress pipeline.

The configuration of the egress pipeline necessitates the definition of tables, matches,
and actions to govern the processing of custom packets. To accomplish this, we begin
by creating a forwarding table where the match condition is based on the content_id
of custom packets. The associated action for these matches is the customdata_forward
action.

Once the table and actions are defined, we need to specify when and how these
match-action pairs apply to incoming packets. This determination depends on whether a
packet is recognized as "custom'. This is determined by inspecting the packet’s header.
Specifically, if the header contains the custom data portion, we classify the packet as
custom, and the egress pipeline proceeds accordingly.

The conditions for applying actions to custom packets are as follows:
Recirculation: When a packet is categorized as custom, it undergoes recirculation

50

4.1 — Packet Recirculation development

within the egress pipeline if the count of times it has entered the egress pipeline is less
than a predefined value (as defined earlier).
Forwarding: After the specified number of recirculations, the packet is forwarded based
on the type of custom packet it represents, determined by its content_id. The associated
customdata_forward action is executed to route the packet appropriately.
Update__CustomData: Upon entry into the egress pipeline, the packet’s counters for
entering and exiting the pipeline are updated using the update_customdata action.

For a detailed view of the rules, matches, and actions governing custom packet pro-
cessing within the egress pipeline, please refer to Figure 4.12.

actions = {
NoAction;

NoAction

size 1824;
default_action

apply {

recirculate_pa

forward_table.apply();

Figure 4.12. This figure provides insight into the critical components of the egress pipeline
configuration for custom packets. It illustrates the forwarding table, match conditions
based on content_id, and the corresponding actions, including recirculation, forwarding,
and updating custom data counters. These elements collectively define the behavior of
custom packets as they traverse the egress pipeline.

Switch Controller:

In terms of the controller’s role in this strategy, the pattern parallels the previous ap-
proach. For normal packets, the controller instructs the switch to execute matching based

51

Delay Control by Packet Recirculation

on the packet’s destination IP address. This results in the switch’s action, which involves
the provision of two parameters: the MAC destination address and the port number for
forwarding. Conversely, for custom packets, the controller mandates the content_ id of
the custom packet as the matching field, directing the switch to execute actions tailored to
the packet’s unique requirements. Additionally, the controller specifies the port number
for forwarding the custom packet to its designated destination. In terms of differentiating
custom packets within this second strategy, an essential distinction is made based on their
intended destination. Consider a custom packet with the content_id of 1. The specified
destination IP address in this situation is x.x.x.x. As a result, the coordinated forwarding
of this unique packet entails routing it through switch port one. When a custom packet
with a content_id of 2 is encountered, the destination IP address converts to y.y.y.y.
Similarly, the packet’s path is routed through the switch’s port 2. This fine distinction in
forwarding techniques is precisely designed to distinguish unique packets from standard
ones, adjusting how they move through the network to their different characteristics. This
precisely designed technique guarantees that each custom packet is treated specifically,
with its path corresponding to its content_id. This solution provides an extra layer of
control, allowing the programmable switch to respond to different packet types dynami-
cally, improving the overall efficiency and usefulness of the recirculation algorithm. You
can see the code for the controller in strategy 2 in Figure 4.13.

4.2 How to Control Delay?

After discussing the development of the packet recirculation algorithm, let’s look at how
it may be employed to control packet delay in a network. As previously explained, this
approach includes defining a constant value to determine how many recirculation cycles
the switch should do for a given packet. The next stage will be to investigate how this
recirculation may be used to impact packet delay. The primary question in our approach
is about the change in packet latency with each successive recirculation. Understanding
this connection is critical because it allows us to determine how many recirculations are
necessary to attain a given delay threshold, such as X ms. However, directly measur-
ing the delay experienced by a packet with each recirculation is a complex task. It’s
not deterministic, requiring an average over multiple packets to obtain a reliable result.
To overcome this challenge, a more realistic approach is to observe the delay from the
perspective of a source host producing packets, which are then transferred to a receiv-
ing destination host. Our programmable switch sits in the midst of this transmission.
Initially, we configure the switch for zero recirculations, which allows us to determine
the initial delay experienced by packets as they traverse the network. By analyzing
the outcomes of this experiment, we can approximate the aggregate delay arising from
host processing, network propagation, and transmission delays. This baseline serves as
a reference including the overall latency introduced by network devices, links, and pro-
cessing. Subsequently, we increment the recirculation count and repeat the experiment,
capturing the delay under various recirculation settings. By comparing the new delay
values against the baseline, we can isolate the additional delay attributed specifically to
the switch due to recirculation. This information is instrumental in comprehending the

52

4.2 — How to Control Delay?

impact of recirculation on delay and allows us to exercise fine control over network perfor-
mance. The classic tool known as Ping comes in assistance when it comes to monitoring
packet latency inside a network. We can easily measure the time it takes for a packet
to transit from a source host to a destination host using the Ping program. This time
interval includes a spectrum of latency contributors, including host processing, network
propagation, transmission via links, and the switch’s involvement in recirculation. To
conduct this evaluation, we construct a network topology comprising a source host, a
destination host, and a programmable BMv2 switch. Our procedure involves configuring
the desired number of recirculations within the switch and subsequently performing Ping
experiments. By analyzing the delay experienced by ICMP packets corresponding to
varying recirculation counts, we can figure out the influence of recirculation on network
delay. Moreover, we can introduce variations in link bitrates and packet sizes to analyze
their impact on our measurements. The manipulation of link bitrates can be facilitated
through a traffic controller tool while adjusting ICMP packet sizes is achievable through
the customization options provided by the Ping utility. This comprehensive approach
ensures a robust evaluation of delay caused by recirculation while accounting for various
network parameters.

You can find the results of the ping experiment in Figure 4.14, which specifically
captures the scenario where the packet size is set at 1200 bytes, and where no specific
number of recirculations has been defined within the programmable switch.

In the ping command used for these experiments, several key options were instru-
mental in shaping the outcomes. The first of these is -s, which allows us to specify the
number of data bytes to be sent. By default, this value is set at 56, translating to 64
ICMP data bytes when combined with the 8 bytes of ICMP header data. The -c option
plays a crucial role by determining the count of ICMP packets. It dictates when the ping
command should stop after sending a set number of ECHO__REQUEST packets. The -i
option, on the other hand, is responsible for setting the interval between sending each
packet. Normally, the default is to wait for one second between each packet, or not to
wait at all in flood mode. However, it’s worth noting that only a super-user can set the
interval to values less than 0.2 seconds. Our experimental approach maintained a con-
sistent packet size of 1200 bytes, with variations in the other options and ping command
instructions tailored to the specific needs of each experiment.

53

Delay Control by Packet Recirculation

_mame"

_params":

d_table”

Figure 4.13. The Controller of the switch in the state that the switch recirculates specific
packets, the controller indicates extra match-actions for recirculating the packets. This
figure illustrates the controller’s essential role in Strategy 2 where the switch recirculates
custom packets, showcasing the differentiated handling of custom packets based on their
content_ id and destination IP address.

54

4.2 — How to Control Delay?

PING 10.0.2.2 (10.0.2.2) 1200(1228) bytes of data.

1208 bytes from 10.0.2.2: icmp_seqg=1 ttl=63 time=1.37 ms
1208 bytes from 10.0.2.2: icmp_seq=2 ttl=63 time=1.18 ms
1208 bytes from 10.0.2.2: icmp_seqg=3 ttl=63 time=1.15 ms
1208 bytes from 10.0.2.2: icmp_seq=4 ttl=63 time=1.88 ms

--- 10.0.2.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms

Figure 4.14. Results of the ping experiment with a packet size of 1200 bytes and no
specific number of recirculations defined in the programmable switch.

55

56

Chapter 5

Experimental /numerical
evaluation

5.1 Methodology

In this section, I present the methodology used to investigate the behavior and perfor-
mance of programmable switches in the context of Software-Defined Networking (SDN). I
aimed to gather significant information on the influence of recirculation in programmable
switches on network packet delay and throughput by creating a complete network setup
and carefully selecting measurement tools. We chose an Ubuntu virtual machine (VM)
as our platform of choice for the tests and then repeated the experiments on a real Linux
server. An Ubuntu VM provides a stable and self-contained environment in which we
may run the complete instance of the Ubuntu operating system in a virtualized environ-
ment. Ubuntu, a famous open-source Linux distribution, has an array of features and
capabilities, making it an excellent choice for network simulation and testing. Moreover,
within the Linux environment, we used the power of Mininet, a highly capable network
emulator. With Mininet, we constructed and emulated various network topologies.

To emulate the network environment for our experiments, we developed the following
key files: BMv2 P4 Switch Configuration File that contains the P4 code that defines
how the BMv2 switch processes incoming packets and then the controller script that
is responsible for defining the high-level network policies and commanding the switch
on where to send the incoming packets based on their headers. I explained completely
the development of instructions for the programmable switch with p4, the way that the
controller commands the switch on our approach and the code of these files in the previous
chapter.

The third part that is essential for simulating our network to see the behavior of
programmable switches in the network and how they can control the delay of packets with
recirculation inside the programmable switch is to define a network topology and make
an appropriate network. Mininet requires a topology definition file written in Python
(e.g., topology.py) to describe the network layout. In this script, we utilized Mininet’s
Python API to define the topology, specifying the hosts, switches, and links.

57

Experimental /numerical evaluation

5.1.1 Network topology overview:

In our network setup, we have two main computers, one acting as the source and the
other as the destination. These computers want to exchange data, and in between them,
we have a BMv2 switch that helps manage this communication. You can see the topology
in the Figure 5.1

—— . P
HOST 1 Switch HOST 2

IP-10.0.1.1/24 IP: 10.0.2.2/24
MAC: 08:00:00:00:01:11 MAC: 08:00:00:00:02:22

Figure 5.1. The network topology configuration when in the network there is one
programmable switch

e Hosts and their interfaces:

Each of the two computers (hosts) has two ways to communicate. One is through their
internal communication loop, called the loopback interface. The second is the interface
that connects them to the switch. This interface helps them send data packets to the
switch, which will then route them to the appropriate destination. Each of these interfaces
has an IP address and a MAC address. In Figure 5.2 you can see how these configurations
are set for the hosts in the topology file.

"hosts":{
"h1": {"ip": "
"commands

Figure 5.2. The configuration of hosts in topology file

e BMv2 Switch and its ports:

The BMv2 switch is like a traffic manager. One of its ports connects to the source host,
while the other connects to the destination host. This switch is programmable, meaning
we can control how it handles data traffic.

58

5.2 — Numerical results

e Link connections and parameters:

There are two important links in our setup. One link connects the source host to the
switch, and the other connects the switch to the destination host (as you can see in Figure
5.3). These links determine how fast data can travel (link bitrate) and how long it takes
for data to move from one end to the other (propagation delay). We can change these
parameters in our experiments to see how they affect the network’s performance.

"switches":{
"s1": { "runtime_json" : "poc 1-runtir
1

"links": [

["h1", "s1-p1"], ["h2", "s1-p2"]

]

Figure 5.3. Set the Controller of the switch and connecting ports with links
together in the topology file

5.1.2 Extended Topology with Multiple Switches:

We expanded our network architecture to include two BMv2 switches after understanding
the single-switch examinations(see Figure 5.4), thereby creating a more intricate setup.
In this extended configuration, the interplay between multiple switches introduces a new
layer of complexity to the network’s dynamics. Specifically, the source host is now con-
nected to the first switch, and this switch is further linked to the second switch. The
second switch, in turn, connects to the destination host. This multi-switch arrangement
allows us to explore the behavior of recirculation when data packets traverse multiple
programmable switches.

fv2_switch 1

Host 1

Figure 5.4. The network topology configuration when in the network there are two
programmable switches

5.2 Numerical results

After providing the structure for packet recirculation algorithm development and imple-
mentation within programmable switches, the focus of this part shifts to evaluating the

59

Experimental /numerical evaluation

real-world impact of this new technique. The preceding sections have shown the mech-
anisms and strategies associated with packet recirculation, demonstrating its ability to
control packet delay and its effect on network performance. The evaluation step now
seeks to experimentally evaluate the results of these theoretical parts through actual
experiments.

In this section, we examine the efficiency of the packet recirculation method in con-
trolling packet delays as well as its wider consequences on network performance. We
investigate how the recirculation process interacts with network dynamics, including link
parameters, traffic patterns, and the varied features of distinct data streams. We want
to provide helpful information about the level of control available over packet delays and
their impact on total network throughput by carefully analyzing the outcomes of these
tests.

The evaluation process comprises a series of interconnected steps, each meticulously
designed to explore different dimensions of the recirculation approach. After an overview
of the experimental environment and methodology in the previous section, I present ac-
tual data from multiple tests done both in a controlled virtual machine and on a real
server in this section. This strategic duality enables us to demonstrate the relevance of
discoveries across the gap between virtual abstraction and real one. This becomes criti-
cal in evaluating the practical feasibility of our suggested technique. This comprehensive
method clarifies differences in processing times, transmission latencies, and other perti-
nent factors, ultimately enriching our understanding of the difference between virtual and
actual scenarios.

As we navigate through the presentation, analysis, and discussion of results, we high-
light the trends, deviations, and implications discovered during the evaluation. Further-
more, we acknowledge the inherent limitations of our experiments, including factors that
could introduce variability into the outcomes. By critically interpreting our findings, we
gain an understanding of the interplay between packet recirculation, delay of packets,
and broader network performance metrics.

Ultimately, the evaluation section aims to bridge the gap between theoretical con-
structs and their practical effects, thereby solidifying the thesis’s contribution to the
understanding and advancement of programmable data plane techniques. Through this
scientific journey, we hope to provide network administrators, researchers, and developers
with an actionable understanding of controlling the delay of packets with programmable
switches.

5.2.1 Analyzing Packet Delay and Processing Times in a Recirculation-
Free Environment

In this initial segment of the results, we go into the fundamental assessment of packet delay
without the influence of recirculation within the BMv2 switch. This investigation aims to
reveal the intrinsic processing and transmission times associated with the switch and host
components, under varying link bitrates. Furthermore, a precise comparison is established
between the theoretically projected outcomes which is explained later in this section
and the experimental results extracted from our conducted experiments. Additionally,
an analysis examines the variances between executing these experiments in the virtual

60

5.2 — Numerical results

environment and the real-world context. This distinction enables us to properly measure
changes in processing and transmission times within these various operational areas.

To begin our investigation, we will investigate the measurement of packet delay in a
topology consisting of a source host, a destination host, and a connecting BMv2 switch.
Our methodology of delay measurement employs the PING tool, which provides us the
Round-Trip Time (RTT), signifying the duration for an ICMP echo request to traverse
from the source host to the destination host and return as an echo reply. This RTT
includes various components such as processing times within devices, transmission dura-
tions, queuing delays, and propagation periods within the network.

For our investigation, we start by estimating the theoretical RT'T values before con-
ducting experiments. By performing the experiments both in a virtual environment
and on a real Linux server, we aim to observe disparities between the experimental and
theoretical RTT values. To comprehend these disparities, it’s essential to outline the
participants of the theoretical RTT.

The propagation delay, indicating the time for a signal to traverse between network
points, as well as the queuing delay, denoting the time a packet waits in network queues
before transmission, can be considered negligible for our purposes. This is attributable
to our topology’s simplicity and the co-location of virtual hosts on the same physical
machine, eliminating the practical significance of distance. Furthermore, the low network
load and immediate processing within the switch mitigate the possibility of congestion,
warranting a negligible queuing delay.

The remaining contributing factors to RTT are the processing and transmission de-
lays. The transmission delay relies on both the link bandwidth connecting the sender
and receiver, as well as the data packet’s size. The calculation for transmission delay
follows the formula: Transmission Delay = Packet Size / Bandwidth, where Packet Size
denotes the data packet size in bits and Bandwidth signifies the channel capacity in bits
per second (bps). for our experiments, we set the packet size equal to 1200 bytes and
firstly, we do the experiments without specifying any link bitrate so the link bitrate would
be the maximum that our system can handle the traffic and the transmission delay would
be negligible. we change the link bitrate to 1Gbps, 1Mbps, 100Kbps, and 10Kbps and
the transmission delay for these link bitrates theoretically would be:

Transmission Delay = Packet Size(bits) / Bandwidth(bps)

NO linkbitrate: Transmission delay = 1228 x 8/c0 ~ 0

Link bitrate = 1Gbit/s: Transmission delay = 1228 x8/10? = 0.000009824 s=0.009824ms
Link bitrate = 1Mbit/s: Transmission delay = 1228 x 8/105 = 0.009824s = 9.824ms
Link bitrate = 100Kbit/s: Transmission delay = 1228 % 8/10° = 0.09824s = 98.24ms
Link bitrate = 10Kbit/s: Transmission delay = 1228 * 8/10% = 0.9824s = 982.4ms

We consider the packet size 1228 bytes because to the ICMP packets that are sent in
the network IP header (20Bytes) and Ethernet header (8Bytes) are added.

To approximate the processing delay, a series of ping experiments were executed with-
out specifying link bitrates. The observed minimum time across these 1000 experiments
provided an effective estimation of the processing time incurred by both hosts and the

61

Experimental /numerical evaluation

switch because, with these settings in our experiment, we can also remove the transmis-
sion delay and make it negligible, and the only component that remains is the processing
delay. By choosing the minimum, we can consider it the processing delay of our compo-
nents; other processing delays, for example, that are caused by the virtual environment
or CPU, have no role in it.

Finally, for estimating RT'T, I sum these components for different link bitrates, and
the results would be:
RTT = Transmission delay + Processing delay + Queuing delay + Propagation delay
Queuing delay = Propagation delay = 0
NO link bitrate: RTT = 0.98ms -> Processing delay = 0.98ms
Link bitrate = 1Gbit/s: RTT = 0.009824 * 4 4+ 0.98 = 1.019ms
Link Bitrate = 1Mbit/s: RTT = 9.824 x4 + 0.98 = 40.276ms
Link Bitrate = 100Kbit/s: RTT = 98.24 x4 + 0.98 = 393.94ms
Link Bitrate = 10Kbit/s: RTT = 4 % 982.4 + 0.98 = 3930.58ms
For computing the RTT in different link bitrates, we multiply, the transmission delay by
4 because the packets cross 4 links to reach the destination and return to the source host.

This comprehensive analysis affords us a foundational understanding of the theoreti-
cal aspects involved in RT'T, enabling a comparison between these theoretical values and
real-world experimentation. Subsequently, the comparison between virtual and real envi-
ronments highlights the small variations in processing times and transmission durations
present in each scenario.

After these computations, as our theoretical values for RTT with different link bi-
trates, it is now time to do the experiments on a virtual Linux machine and a real Linux
server. In these experiments, I conducted a series of "ping" tests using the command "ping
10.0.2.2 -s 1200 -c 1000 -i 0.1". In this command, the source client sends an ICMP echo
request to the destination host, whose IP address is indicated in the command (10.0.2.2),
and -s, -c, and -i are the options of the ping tool. -s indicates the size of ICMP packets
that would be sent to the destination, -c indicates that on the source host, 1000 packets
would be produced and sent, and the -i option indicates that the time period between
sending these packets to the destination would be 0.1 second. To modify the link bitrates,
I employed the "tc qdisc change dev ethX root netem rate Xbit" command across all four
links. In figure 5.5, you can see the results of these experiments and the comparison
between the minimum and average RTT in these experiments for different link bitrates
with the theoretical RTT values for different link bitrates that I computed previously.

I have done all of these steps on the Linux server to see how different the results would
be in a virtual environment and a real one. The difference that we should notice is that
here, when we do the ping experiments without specifying any link bitrates to get the
processing time of hosts and the BMv2 switch, it would be different, and it would change
from 0.98 ms to 2.16 ms, and consequently, we should compute the theoretical values for
RTT again as follows: RTT = Transmission delay + Processing delay + Queuing delay
+ Propagation delay
Queuing delay = Propagation delay = 0
NO link bitrate: Transmission delay = 1228 x8/00 ~ 0 -> RTT = 2.16ms -> Processing
delay = 2.16ms

62

5.2 — Numerical results

RTT for Different Link Bitrates
when the packet size = 1200bytes

- Minimum

Theoretical

3500

3000

2500

2000

RTT (ms)

1500

1000

500 411.97399.26387.54

LT 40.84 435 11 1018 131 098 098

10Kbits 100Kbit/s Mbit/s 1Gbit/s No Limit
Link Bitrate

Figure 5.5. Theoretical RTT vs. minimum and average RTT in Ping experiments when
the packet size is 1200 bytes for the packets with no recirculation in the BMv2 switch with
different link bitrates in the virtual machine

Link bitrate = 1Gbit/s: Transmission delay = 1228%8/10° = 0.000009824s = 0.009824ms
-> RTT = 0.009824 * 4+ 2.16ms = 2.199ms

Link Bitrate = 1Mbit/s: Transmission delay = 1228 x 8/10% = 0.009824s = 9.824ms ->
RTT = 9.824 x4 4 2.16 = 41.456ms

Link Bitrate = 100Kbit/s: Transmission delay = 1228 x 8/10° = 0.09824s = 98.24ms ->
RTT = 98.24 x4 4+ 2.16 = 395.12ms

Link Bitrate = 10Kbit/s: Transmission delay = 1228 x 8/10% = 0.9824s = 982.4ms ->
RTT = 4%982.4 4 2.16 = 3931.76ms

and then do experiments exactly like the ones that I have done before in the virtual
machine. In the figure 5.6 you can see the experiments in this environment and the
comparison between the minimum and average RTT in the Ping experiments on the
Linux server vs. the theoretical values that I computed. In the figure, 5.7 you can see the
comparison between the minimum and average RTT in Ping experiments that have been
done in the virtual machine for different link bitrates vs. the minimum and average RTT
in Ping experiments that have been done on the Linux server for different link bitrates.

Now it is the time for analyzing these experiments and comparisons. Upon analyzing
the graphs, notable trends emerge regarding the processing times of components under
different conditions. Firstly, it becomes evident that there is a noticeable increase in pro-
cessing time when conducting the ping experiments within the Linux server environment.
In the virtual environment, the processing time averages at 0.98 ms, whereas in the Linux
server, this figure notably rises to 2.16 ms.

Furthermore, a surprising correlation between link bitrate and processing delay oc-
curs. As the link bitrate decreases, resulting in increased transmission delay, there is
a corresponding increase in processing delay within the components. This observation
suggests a potential relationship between lower link bitrates and elevated overall process-
ing times. This phenomenon could be attributed to several factors, including increased
processing demands on the components to handle packets and transmit them through the

63

Experimental /numerical evaluation

RTT for Different Link Bitrates
when the packet size = 1200bytes

3981.23976.63931 76 " Minimum
- Average
Theoretical

4000

3500

3000

2500

2000

RTT (ms)

1500

1000

500 402.09399.95395.12

2337 421141456 295 222 219 279 216 216

10Kbitfs 100Kbit/s Mbit/s 16bit/s No Limit
Link Bitrate

Figure 5.6. theoretical RT'T vs. minimum and average experimental RTT in Ping experi-
ments when the packet size is 1200 bytes for the packets with no recirculation in the BMv2
switch with different link bitrates on the Linux server

RTT for Different Link Bitrates
when the packet size = 1200 bytes

000 3976.6777.:3981.2300L.3 - binimum
Minimurn Virtual

- Average

3500 = Average Virtual

3000

2500

2000

RTT (ms)

1500

1000

500 399.95:95 2402.09911.97

211 T 222 295 435 216 279 131

10Kbit/s 100Kbit/s. Mbits 1Gbit/s No Limit
Link Bitrate

Figure 5.7. minimum and average experimental RTT on the Linux virtual machine
vs. minimum and average experimental RTT on the Linux server in Ping experiments
when the packet size is 1200 bytes for the packets with no recirculation in the BMv2
switch with different link bitrates

links to their destination. Additionally, it’s conceivable that the processing times of the
CPU, operating system, Mininet, or the virtual machine itself in the virtual environment
may experience increases when link bitrates decrease, contributing to the observed rise
in overall processing times.

Furthermore, a noteworthy distinction arises when comparing the experiments con-
ducted in the Linux virtual machine with those in the Linux server. In the Linux server
environment, it becomes apparent that the difference between the minimum ping time
and the average time is remarkably low, with these values closely aligning. Conversely,
in the virtual environment, a noticeable disparity exists between these metrics.

64

5.2 — Numerical results

This distinction is primarily attributable to resource limitations in the virtual en-
vironment. Within this constrained setting, the processing times for many packets are
notably influenced by virtualization factors such as resource allocation, virtual memory,
and virtual CPU utilization. Consequently, this leads to a significant increase in the
Round-Trip Time (RTT) for numerous packets, creating a substantial gap between the
minimum RTT and the average RTT. These findings underscore the substantial impact of
resource constraints on processing times within virtualized environments, which in turn
can influence network performance.

5.2.2 Investigating the Impact of Recirculation on Packet Delay in
BMv2 Switches

The subsequent phase of our investigation is centered on exploring the impacts of changing
the number of recirculations within the BMv2 switch on packet delay. This important
part of our study offers a valuable understanding of the relationship between recirculation
instances and packet delays within the programmable switch.

Just as in the previous experiments, this set of trials involves the manipulation of link
bitrates to comprehend the interplay between recirculation instances and varying network
conditions. By varying the number of packet recirculations -namely 0, 1, 3, 7, and 15-
we aim to capture the varying delay patterns introduced as packets traverse through the
switch, with the number of transmissions serving as our metric. It should be noted that
the number of transmissions is always one greater than the number of recirculations,
showing the total number of times a packet crosses the switch. This progression follows
the order of "1, 2, 4, 8, and 16," wherein each subsequent transmission is twice the previous
value. This specific ordering facilitates numerical analysis, which will be elaborated on
in the subsequent result analysis.

It’s essential to emphasize that the number of recirculations directly influences the
complexity of the packet’s route within the switch, impacting its overall delay. For in-
stance, when the number of recirculations is set to zero, the packet traverses the switch
only once, translating to a single transmission with a negligible delay. As we increment
the recirculation count, the number of transmissions grows, providing us with a com-
prehensive understanding of how recirculation instances impact the delay in a multipass
scenario.

This segment of our analysis involves a comparative study of results obtained from
experiments conducted within both a Linux virtual machine environment and an actual
Linux server. The contrast between these two settings will provide an understanding
of the potential variations in processing times and transmission times between the vir-
tual and real environments. Within these experiments, we focus on extracting two key
metrics: the minimum Round-Trip Time (RTT) from a series of 1000 Ping tests for
each recirculation count and link bitrate, as well as the average RTT derived from these
experiments.

Now let’s see the graphs. I put the results of each experiment for each link bitrate
both in the virtual environment and on the Linux server, one beside the other, to make
the comparison easier. The first graph 5.8 is for the ping experiment in the virtual
environment, and the second one 5.9 is for the same experiment on the Linux server

65

Experimental /numerical evaluation

when I did not specify any bitrate for all the links. In these experiments, like before, the
packet size is 1200 bytes, and we have done the Ping experiment 1000 times. In these
experiments, you can see how the delay of the packets in the network from source to
destination, which I indicate as the RTT of packets (y-axis), changes with varying the
number of transmissions in the BMv2 switch (x-axis).

RTT when packet size = 1200bytes
No specified link bitrate

116, 25.08)

Ping Time (ms)

(16,10.66)

(4, 6.89)

Figure 5.8. Minimum and average experimental RTT in the Linux virtual machine in Ping
experiments when the packet size is 1200 bytes for the different number of recirculations
in the BMv2 switch without specifying any link bitrate

RTT when packet size = 1200bytes
No specified link bitrate

116, 403

(16, 32.26)

Figure 5.9. Minimum and average experimental RTT in Linux Server in Ping experiments
when the packet size is 1200 bytes for the different number of recirculations in the BMv2
switch without specifying any link bitrate

Analyse: A closer inspection of the new data reveals more about the link between
packet delay and the number of recirculations within the BMv2 switch. Let’s get started
with the analysis by looking at the outcomes acquired in the virtual environment.

In the initial scenario, when there is no recirculation within the BMv2 switch, the

66

5.2 — Numerical results

minimum Round-Trip Time (RTT) is recorded at 0.97 ms. This delay primarily stems
from the processing times incurred by network components, including the hosts and the
BMv2 switch. However, as the number of transmissions increases to 2, indicating a single
recirculation in the BMv2 switch, the minimum RTT experiences a noticeable increase
to 1.66 ms. This change has an additional impact on the delay: 0.98 ms attributed to
component processing and 0.68 ms associated with the recirculation process. Formulating
this relationship, we arrive at a short equation: delay = 0.98 + 0.68 * X, where X
represents the number of recirculations.

For example, when X equals 3 for three recirculations, the predicted delay is 3.02
ms. Remarkably, the experimental results align closely with this theoretical projection,
demonstrating a delay of 2.97 ms. Likewise, for seven recirculations, which correspond
to eight transmissions, the theoretical delay amounts to 5.74 ms, while the experimental
results yield a value of 5.36 ms. This close concordance between theory and practice
provides valuable guidance on the number of recirculations required for effective packet
delay control.

Notably, these observations also extend to the experiments conducted in the Linux
server environment. In this context, when there is no recirculation, the delay attributed
to component processing is approximately 2.16 ms. However, with one recirculation in the
BMv?2 switch, this delay increases to 4.27 ms. The corresponding theoretical relationship
can be expressed as: delay = 2.16 + 2.11 * X, where X still signifies the number of
recirculations.

For instance, with X set at 3 for three recirculations, the theoretical delay is 8.49 ms,
closely paralleling the experimental result of 8.3 ms. Similarly, for seven recirculations,
the theoretical delay equates to 16.93 ms, aligning remarkably well with the experimental
outcome of 16.13 ms.

Furthermore, the processing delay caused by recirculation in the BMv2 switch in the
Linux server environment is significantly larger, measuring 2.11 ms against 0.68 ms in the
virtual environment. The difference highlights the significant influence of the computing
environment on processing times, demonstrating the complexities of network performance
in different settings.

The next two graphs show the results when changing the link bitrates to 1 Gbps.
The first graph 5.10 shows the results when doing the experiments in the virtual Linux
environment, and the second one 5.11 shows the results when doing the experiments on
the Linux server.

Analyse: This group of graphs shows the Round-Trip Time (RTT) results when the
link’s bitrate is set to 1 Gbps in both the virtual machine and Linux server settings.
These findings enable us to make meaningful comparisons about the influence of network
settings on packet delay control.

Close inspection reveals that the minimum RTT outcomes in these graphs closely
match the outcomes of our previous investigations, in which we did not specify a link
rate. Any differences between these results can be due to the tiny transmission delays
caused by the reduced link bitrate, a reasonable effect that matches our expectations.

When we look at the average RT'T findings in the Linux server environment, we see a
substantial difference. While it is very normal for our studies to show non-deterministic

67

Experimental /numerical evaluation

RTT when packet size = 1200bytes
link bitrate = 1Gbps

116, 30.5T]

Ping Time (ms)

(16, 10.45)
(4,9.75)

Wiy L0

8 10 12 1 16
Number of Transmission

Figure 5.10. Minimum and average experimental RTT in the virtual Linux machine in
Ping experiments when the packet size is 1200 bytes for the different number of recircula-
tions in the BMv2 switch with changing the link bitrates to 1Gbps

RTT when packet size = 1200bytes
link bitrate = 1Gbps

16, 36.6)

(16,32.77)

Ping Time (ms)

Figure 5.11. Minimum and average experimental RTT in Linux Server in Ping experi-
ments when the packet size is 1200 bytes for the different number of recirculations in the
BMv2 switch with changing the link bitrates to 1Gbps

behavior due to the wide range of factors influencing network latency, an interesting pat-
tern occurs. In the Linux server environment, the average RTT values, like the minimum
RTT, have a steady and linear relationship with the number of recirculations. As the
number of recirculations grows, so does the average RTT, indicating that the behavior

follows a predictable pattern.

In the virtual environment, however, a clear difference appears. In the virtual ma-

chine environment, the average RTT figures do not nearly match the minimum RTT
findings. The difference between the average and minimum RTT is unpredictable at each
point on the graphs. This irregular behavior highlights the significant impact of resource
constraints in the virtual environment. Within the virtual machine, where resources like

68

5.2 — Numerical results

CPU and memory are limited, these constraints might cause unforeseen packet process-
ing delays. This phenomenon is not limited to the 1 Gbps connection bitrate studies; it
occurs in all instances in which PING experiments were carried out within the virtual
machine.

In summary, these findings emphasize the effects of computational resources on net-
work performance, particularly in virtualized environments. While the Linux server en-
vironment exhibits stable and predictable behavior in terms of RTT, the virtual machine
environment demonstrates unpredictable fluctuations in average RTT due to resource
limitations.

The following two graphs show the results when changing the link bitrates to 1 Mbps.
The first graph 5.12 shows the results when doing the experiments in the virtual Linux
environment, and the second one 5.13 shows the results when doing the experiments on
the Linux server.

The next two graphs show the results when changing the link bitrates to 100 kbps.
The first graph 5.14 shows the results when doing the experiments in the virtual Linux
environment, and the second one 5.15 shows the results when doing the experiments on
the Linux server.

The next two graphs show the results when changing the link bitrates to 10 kbps.
The first graph 5.16 shows the results when doing the experiments in the virtual Linux
environment, and the second one 5.17 shows the results when doing the experiments on
the Linux server.

Analyze: In addition to the previous analysis, it’s worth emphasizing the effect of de-
creasing link bitrates on packet delay, especially in the context of our virtual environment
experiments. As the link bitrate decreases to 1 Mbps and values below it, we encounter a
unique challenge. In the virtual environment, where the processing delay for each packet
can vary significantly, estimating the delay introduced solely by recirculation becomes a
daunting task. The intrinsic variability in packet processing times makes it challenging to

RTT when packet size = 1200bytes
link bitrate = 1Mbps

116, 79.47)

(4,6029)

(1,56.77) (3, 56,

(16, 51.47)

50
(8, 46.25)
(4,45.07)
a5
(2, 42.63)
(1,41.7)

2 4 6

10 12 1 16

Figure 5.12. Minimum and average experimental RTT in the virtual Linux machine in
Ping experiments when the packet size is 1200 bytes for the different number of recircula-
tions in the BMv2 switch with changing the link bitrates to 1 Mbps

69

Experimental /numerical evaluation

RTT when packet size = 1200bytes
link bitrate = 1Mbps
80 16, 78.75)|

(16, 72.38)|

Figure 5.13. Minimum and average experimental RTT in the Linux Server in Ping exper-
iments when the packet size is 1200 bytes for the different number of recirculations in the
BMyv2 switch with changing the link bitrates to 1 Mbps

precisely quantify the impact of recirculation when controlling packet delay, particularly
in the virtual environment with low link bitrates.

In the graph showing RTT measurements at a 1 Mbps link bitrate in the virtual en-
vironment (see Figure 5.12), we observe an initial increase in packet delay from 41.7 to
42.63 ms with the introduction of the first recirculation, indicating a 0.96 ms difference.
However, this pattern increases with subsequent recirculations. Over the next six recir-
culations, the delay grows from 42.93 to 46.25 ms, marking a 3.32 ms difference. Dividing
this difference across the six recirculations reveals an additional delay of approximately
0.55 ms per recirculation. This variance aligns with our earlier observations, illustrating

RTT when packet size = 1200bytes
link bitrate = 100Kbps

116, 447.45

a40

430 (4, 428.01)

Ping Time (ms)

420

(1, 44097 (16, 412.34

410
(8, 405.72)
(4, 403.92)
(2, 400.86
(1, 399.26]
400

2 4 6 8 10 12 1 16
Number of Transmission

Figure 5.14. Minimum and average experimental RTT in the virtual Linux machine in
Ping experiments when the packet size is 1200 bytes for the different number of recircula-
tions in the BMv2 switch with changing the link bitrates to 100 kbps

70

5.2 — Numerical results

RTT when packet size = 1200bytes
link bitrate = 100Kbps
116, 437.98
—e— minimu m

(16, 432.017)

Figure 5.15. Minimum and average experimental RTT in the Linux Server in Ping exper-
iments when the packet size is 1200 bytes for the different number of recirculations in the
BMv2 switch with changing the link bitrates to 100 kbps

that different packets experience varied processing delays within the switch.

A similar trend is observed in the graphs representing RTT measurements at link
bitrates of 100 Kbps and 10 Kbps in the virtual environment. At 100 Kbps (see figure
5.14), the first recirculation elevates packet delay from 399.26 to 400.86 ms, resulting in a
1.6 ms difference. Subsequent recirculations lead to a delay increase from 400.86 to 405.72
ms, marking a 4.86 ms difference. The additional delay introduced by each recirculation
approximates 0.81 ms when evenly distributed across the six recirculations.

At a link bitrate of 10 Kbps (see figure 5.16), the initial recirculation raises packet

RTT when packet size = 1200bytes
link bitrate = 10Kbps
(8,4022:32)

4010)

(1, 4094:308)

4000

Ping Time (ms)

3990
(16, 3087.13)

(8, 3985.69)
(4, 3983.45)
(2, 3980.31
39801 (1,3977,

2 4 6

10 12 u 16

Figure 5.16. Minimum and average experimental RTT in the virtual Linux machine in
Ping experiments when the packet size is 1200 bytes for the different number of recircula-
tions in the BMv2 switch with changing the link bitrates to 10 kbps

71

Experimental /numerical evaluation

RTT when packet size = 1200bytes
link bitrate = 10Kbps

116, 4021.29)

4020 { —e— average

(16, 40125

4010

4000

Ping Time (ms)

3990

3980

Figure 5.17. Minimum and average experimental RTT in the Linux Server in Ping exper-
iments when the packet size is 1200 bytes for the different number of recirculations in the
BMv2 switch with changing the link bitrates to 10 kbps

delay from 3977.94 to 3980.38 ms, reflecting a 2.44 ms difference. However, this pat-
tern increases with subsequent recirculations, with the delay increasing from 3980.38 to
3985.69 ms over the next six recirculations, resulting in a 5.31 ms difference. Distributing
this difference across the six recirculations shows that each recirculation adds less than
1 ms to the delay. The experiments conducted on the Linux server, on the other hand,
exhibit a more predictable behavior when link bitrates decrease. This predictability is a
consequence of the advantages offered by a real environment where we can estimate and
anticipate processing and transmission delays more effectively, even in scenarios with low
link bitrates. The graph in this context (see figure 5.13) reveals that the processing delay
introduced by recirculation is approximately 2.02 ms, a value closely aligned with the pro-
cessing delay observed in experiments conducted with a 1 Gbps link bitrate (figure 5.11)
and those without specifying link bitrates (figure 5.9)in the Linux server environment,
which was approximately 2.11 ms.

Furthermore, it’s notable that the observed linear increase in delay with an increasing
number of recirculations persists when the link bitrate drops to 100 kbps (see figure 5.15)
and 10 kbps (figure 5.17). In these experiments, the impact of each recirculation remains
consistent, adding approximately 2 ms of delay. These findings on the Linux server
underscore the precision with which we can control packet delay on a real Linux server,
even when link bitrates are extremely low. This outcome carries significant implications
for our research, as it confirms our ability to manipulate packet delay in a controlled and
predictable manner within a real-world network infrastructure.

5.2.3 Exploring the Trade-offs: Delay Control and Network Through-
put

This section embarks on a comprehensive investigation into the delicate balance between
delay control through packet recirculation and its corresponding implications on network

72

5.2 — Numerical results

throughput—a crucial facet of network performance. Network throughput, an important
performance parameter, is the volume of data packets successfully transmitted through
the network per unit of time. Our aim here is to go into how the pursuit of efficient delay
control influences the network’s throughput and explore the resulting trade-offs.

We investigate the influence of packet recirculation on network throughput using
the IPERF tool, a robust network performance measurement utility. This investigation
explores the changes in network performance under varied recirculation instances within
the BMv2 switch using a series of designed tests.

The methodology used in these experiments is similar to that used in earlier sections.
To simulate various network situations, we change the number of packet recirculations
in the BMv2 switch to 0, 1, 3, 7, and 15 while adjusting link bitrates. We provide the
findings of our experiments using both TCP and UDP protocols.

In TCP mode, IPERF utilizes the Transmission Control Protocol to simulate real-
world communication dynamics. This mode evaluates the maximum achievable through-
put for a given connection by simulating data streams from the client to the server.
This simulation aligns with the workings of TCP itself, where the protocol dynamically
determines the sending rate.

UDP mode, on the other hand, examines available bandwidth and packet loss rates
by sending UDP packets from the client to the server. This protocol skips TCP’s error-
checking and congestion control in order to improve network latency. To appropriately
analyze the network’s behavior in this situation, it is critical to specifically describe the
sending rate.

Notably, in these experiments, data collection is performed across 30 IPERF ex-
periments for each scenario, with the results being averaged for accuracy. The IPERF
experiment configuration involves designating one host as the server and another as the
client. It’s essential to highlight that the reported results are representative of the client-
side perspective when it receives the packets from the server. You can see the script for
running IPERF experiments with a TCP connection in Figure 5.18.

The experimental structure maintains the ordering of recirculation instances—0, 1,
3, 7, and 15—as established in previous sections. The range of link bitrates explored
in the IPERF experiments changes as follows: for TCP, the link bitrates encompass
"unspecified," 25 Mbps, and 10 Mbps; for UDP, the rates consist of "unspecified" and
10 Mbps. The chosen command for server-side execution in TCP mode is "iperf -s (-
u)," where the "-u" flag denotes the utilization of the UDP protocol. On the client side,
the command follows the pattern "iperf -c¢ (server-ip) -t 10 (-b X) -r (-u)"—where "-t"
specifies the test duration, "-b" sets the sending rate, and "-r' measures performance in
both upstream and downstream directions. The latter option specifically assesses the
recirculation impact on throughput concerning both client-to-server and server-to-client
transmissions.

n

First, we investigate the results when the protocol that we use for the Iperf connection
is UDP. For UDP, one time we did not set the link bitrates. You can see the graphs for
different sending rates in Figure 5.19

As you can see, when we did not specify any link bitrate, the maximum throughput
that we could achieve when there is no packet recirculation in the programmable switch

73

Experimental /numerical evaluation

#!/bin/bash
Array to store individual bandwidth values
sbandwidths=()
rbandwidths=()
echo "iperf experiment when using TCP™
for i in {1..30} # Run the experiment 3@ times
o
Run iperf and capture the output

result=$(iperf -c 18.8.1.1 -t 18 -r)

Extract the bandwidth value from the iperf output

sbandwidth=$(echo "$result” | awk */sec/{print $(NF-1), $(NF)}'|tr -d *[:alpha:]\/'| head -n 1)
rbandwidth=$(echo "$result” | awk */sec/{print $(7)}'|tr -d ‘[:alpha:]\/'| tail -n 1)

echo "Sender Bandwidth: $sbandwidth”

echo "Receiver Bandwidth: $rbandwidth”

Add the bandwidth to the array
sbandwidths+=("$sbandwidth")

rbandwidths+=("%rbandwidth")
done

Calculate statistics for receiver bandwidth
min_rbandwidth=$(printf ‘%s\n' "${rbandwidths[@]}" | sort -n | head -n 1)
max_rbandwidth=$(printf '%s\n' "${rbandwidths[@]}" | sort -n | tail -n 1)
echo "Receiver Bandwidth Statistics:”
echo "Minimum Receiver Bandwidth: $min_rbandwidth"”
echo "Maximum Receiver Bandwidth: $max_rbandwidth"
for bandwidth in "${rbandwidths[@]}"
do
total_rbandwidth=%(awk "BEGIN {print $total_rbandwidth + $bandwidth}")
done
average_rbandwidth=$(awk "BEGIN {print $total_rbandwidth / ${#rbandwidths[@]}}")
echo "Average Receiver Bandwidth: $average_rbandwidth”
sum_rbandwidth_sq=0
for bandwidth in "${rbandwidths[@]}"
do
diff=$(awk "BEGIN {print $bandwidth - $average_rbandwidth}")
sum_rbandwidth_sq=%$(awk "BEGIN {print $sum_rbandwidth_sg + ($diff)"2}")
done
variance_rbandwidth=$(awk "BEGIN {print $sum_rbandwidth_sq / (${#rbandwidths[@]} - 1)}")
stddev_rbandwidth=$(awk "BEGIN {print sgrt($variance_rbandwidth)}")
echo "Standard Deviation for Receiver Bandwidth: $stddev_rbandwidth™

Figure 5.18. IPERF using the TCP connection experiment’s script

is close to 10 Mbps. So for the next experiment, I set the link bitrate to 10 Mbps to see
the variations in throughput more precisely, so we can analyze them better. You can see
the results for this chain of experiments in Figure 5.20

Analyze: In our IPERF experiments with UDP connections without specifying a link
bitrate, several interesting trends emerge. When the sending rate of the source host is set
to 10 Mbps, we notice that the most achievable throughput is approximately 9.94 Mbps.
This is slightly less than the source’s sending rate due to the additional headers added by
UDP, which reduce the effective throughput to about 96% of the available bandwidth.

As we increase the number of recirculations, particularly in scenarios where both the
sending rate and link bandwidth are 10 Mbps, we observe a decrease in throughput. This
phenomenon occurs for two main reasons:

Delay-Induced Challenges: With recirculation enabled in the BMv2 switch, a delay is
introduced. For instance, if we initially send 10 Mbps of data in the first 10 seconds, the
destination does not receive the entire 10 Mbps due to the delay caused by recirculation.
This leads to an underutilization of the available bandwidth.

Link Saturation: Additionally, the load on the link connected to the output port of

74

5.2 — Numerical results

UDP - Throughput with Confidence Interval(95%)
sample_size = 30
(1.994) (2,988) No link Bitrate

—e— Average
(4,9.093) I Confidence Interval

6, 5.68) Sending Bitrate = 10 Mbit/s

Throughput (Mbit/s)

(1}, 3.38)

(1,1.05) (2,1.05) (4,1.05) (6,1.05) (11, 1.05)

(1,0.099) (2,0.099) (4,0.099) (6. 0.099) Sending Bitrate = 100 Kbit/s (11, 0.099)

2 4 6 8 10
Number of Transmission

Figure 5.19. Average experimental throughput in IPERF experiments when using UDP
connection with different sending rates for the different number of recirculations in the
BMv2 switch without specifying any link bitrate

UDP - Throughput
Link Bitrate = 10Mbit/s

—e— sending Bit Rate = 10 Mbit/s
—e— sending Bit Rate = 9.5 Mbitis
—e— Sending Bitrate = & Mbit/s
Sending Bitrate = 4 Mbit/s
—e— Sending Bitrate = 2 Mbit/s
—e~ sending Bitrate = 1Mbit/s

Average Throughput (Mbit/s)

0 2 4 6 8 10 12 14 16
Number of Transmission

Figure 5.20. Average experimental throughput in IPERF experiments when using UDP
connection with different sending rates for the different number of recirculations in the
BMv2 switch with the link bitrate equal to 10 Mbps

the switch periodically exceeds the link’s capacity, especially when recirculation occurs.
This overload results in packet loss, further reducing the achieved throughput.

However, this decrease in throughput is not universally applicable. For different
sending bitrates, we notice varying behavior:

When we decreased the link bitrate to 10 Mbps and maintained a sending rate of 10
Mbps and 9.5 Mbps, we observed a throughput reduction with just one recirculation due
to the overload on the output link.

However, at a sending rate of 8 Mbps, even with one recirculation, we did not experi-
ence packet loss, allowing the source host to fully utilize its capacity before the throughput
reduction occurred.

75

Experimental /numerical evaluation

A similar situation occurred at a sending rate of 4 Mbps, but the throughput reduction
only became evident after seven recirculations.

For sending rates of 2 Mbps and 1 Mbps, the throughput remained consistent until
15 recirculations. Based on this trend, we anticipate a throughput reduction at a sending
rate of 2 Mbps when recirculation increases to 16.

After analyzing the results for UDP, it is time to see the results for IPERF when it
uses the TCP connection. In TCP, we do not change the sending rate because the TCP
protocol sets this rate automatically based on the mechanism that it uses to provide a
reliable connection. In this series of experiments, we changed the link bitrates, and first,
we did not set any link bitrate. Then, based on the results that I got for the state that
the number of recirculations was 0 and I got something about 25 Mbps for throughput
in the network, I repeated the experiments with setting the link bitrate to 25 Mbps. and
at last, I set it to 10 Mbps in order to have a comparison with the results that we have
done in UDP. You can see the comparison between these results in Figure 5.21

TCP - Average Throughput with Confidence Interval(95%)
(1, 25.68) sample_size = 30

25 —e— No Link Bit Rate limit
—e~ Link Bit Rate = 10 Mbit/s

—e— Link Bit Rate = 25 Mbit/s
I Confidence Interval

| 12.65)

roughput (Mbit/s)

Average Th

H (6.3.89)

(11,221)

Figure 5.21. Average experimental throughput in the IPERF experiments when
using a TCP connection for the different number of recirculations in the BMv2
switch with different link bitrates

In our IPERF experiments with TCP connections, we maintain a constant sending
rate. TCP inherently adjusts its sending rate based on congestion control mechanisms
and other factors. Therefore, our focus here is on observing how different link bitrates
and the number of recirculations impact network throughput.

In this scenario, TCP aims to utilize the available bandwidth to achieve the highest
throughput possible. When recirculation occurs and the data load on the output port
of the switch increases, TCP’s congestion control mechanisms respond by reducing the
sending rate to prevent congestion and packet loss. Consequently, we observe that as the
number of recirculations increases, the throughput decreases continuously.

5.2.4 Enhanced Complexity: Dual Switch Recirculation

Transitioning into an expanded network topology, this section deals with the complexities
introduced by incorporating an additional BMv2 switch. With the evolved structure,

76

5.2 — Numerical results

packets now traverse a two-switch path to their destination, a configuration that demands
an exploration of delay control possibilities and their impact on both delay and network
throughput. By introducing the dual-switch scenario and deploying recirculation within
each BMv2 switch, we aim to uncover the intricacies of managing packet delay across this
new topology.

An important aspect of this investigation is the comparison between single-switch and
dual-switch networks. This strategic contrast provides an atmosphere for understanding
the impact of recirculation within a more complicated network design. We want to know
how the cumulative impacts of dual-switch packet recirculation differ from the simpler
single-switch version.

Incorporating two BMv2 switches into the network introduces a level of complexity
that prompts questions about the interplay between these switches and their combined
impact on packet delay and network throughput. This section bridges that knowledge
gap, offering insights into delay control within a network involving multiple switches.

Using experimental findings, we examine how packet delay is controlled in a dual-
switch scenario. This investigation looks at the impact of recirculation on both delay and
network throughput.

Now let’s investigate the results of these experiments:

The first graph 5.22 shows the average delay of packets when using Ping experiments
1000 times with two BMv2 switches and without specifying any link bitrate and the
comparison with the results with a single switch.

TI6, T066)

Ping Time (ms)

8
Number of Transmission

Figure 5.22. The minimum delay of packets for the network with two BMv2 switches vs.
the delay of packets for the network with a single switch without specifying any link bitrate

In this set of results, we explore the delay introduced by two consecutive programmable
switches compared to a single switch within the virtual environment. The x-axis repre-
sents the number of transmissions, which is one more than the number of recirculations
in the scenario that the network topology contains one programmable switch. In the case
of two switches, the number of transmissions is the sum of recirculations in each switch
plus two. For instance, when there are two transmissions, it corresponds to one recircu-
lation for a single-switch scenario and zero recirculation for each of the two switches in

77

Experimental /numerical evaluation

the dual-switch scenario.

In Figure 5.22, which illustrates the comparison between minimum RTT results in
Ping experiments with varying numbers of transmissions when no link bitrate is spec-
ified, the lines closely parallel each other. This alignment indicates that under these
conditions, the delay of one recirculation introduced by one switch in the network with
one programmable switch scenario is almost equivalent to the processing delay of one
switch within a network having two programmable switches. For example, with one re-
circulation in the BMv2 switch in the single switch scenario, the minimum delay in the
network is nearly equal to the delay when there’s no recirculation in the switches in the
scenario with two switches in the network. This value is approximately 1.66 ms, and this
pattern persists as the number of recirculations increases.

Another important finding from these results is that in scenarios with no recircula-
tion and the packets just traversing the switches with their inherent processing delays,
the delay in the single switch network scenario is 0.97 ms. In contrast, in the dual-
switch network scenario, this delay is 1.66 ms. This 0.69 ms difference highlights the
additional processing time introduced by an extra switch for packet forwarding within
a programmable switch. Essentially, this difference signifies the extra processing time
incurred when a packet traverses one more programmable switch. As discussed earlier,
the starting point of the delay graph for scenarios with no recirculation in a single switch
network, without specifying any link bitrate, encompasses the total processing time of all
components, including hosts and the BMv2 switch, which is 0.97 ms.

In conclusion, subtracting the 0.69 ms processing time of the BMv2 switch from the
0.97 ms delay for the scenario with a single switch reveals that the remaining 0.28 ms
accounts for the processing time of the source and destination hosts.

The second graph 5.23 shows the minimum delay of packets when using Ping exper-
iments 1000 times with two BMv2 switches and with the link bitrate equal to 10 Mbps
and the comparison with the results with a single switch. I did not put the results when
I changed the link bitrate to other variables because they did not give us any extra
conclusion.

Minimum Ping Time
Link Bitrate = 10Mbit/s

¢ ¢

—— T
~e— On

(16,9.91)

Ping Time (ms)

8
Number of Transmission

Figure 5.23. The minimum delay of packets for the network with two BMv2 switches vs.
the delay of packets for the network with a single switch with a link bitrate of 10 Mbps

78

5.2 — Numerical results

The results presented in Figure 5.23, which compares delays in scenarios with one
switch and two switches while varying the link bitrate to 10 Mbps, align closely with
our previous findings. However, it’s important to note a slight difference observed this
time, where the delay for packets traversing two switches is marginally higher. This
discrepancy can be attributed to the phenomenon I previously explained. When we
reduce the link bitrates, the processing time of network components increases. In the
scenario with two switches, we have an additional switch, which results in a greater
number of components. Consequently, with the link bitrates decreasing, the processing
time increases more noticeably due to the larger number of components in the dual-switch
setup.

The results for measuring average throughput using IPERF with the TCP connection
with different link bitrates are shown in Figure 5.24, and the comparison for the through-
put when we use IPERF with TCP between the topology with a single switch and with
two switches can be seen in these different states: without specifying any link bitrate
5.25, link bitrate = 25 Mbps 5.26and link bitrate = 10 Mbps 5.27

TCP - Average Throughput

2 —e— No Link Rate
(2,23.03) —e— Link Rate: 10Mbit/s
—e— Link Rate: 25Mbit/s

roughput (Mbit/s)

Th

(16,2.42)

8 10 12 14 16
Number of Transmission

Figure 5.24. This figure displays the results of measuring average throughput using
IPERF with a TCP connection under different link bitrates in the scenario that the network
consists of two programmable switches.

In Figure 5.24, the graphs illustrate a consistent decrease in throughput as the number
of recirculations increases. In all the experiments, the source host wants to send data at
the highest capacity allowed by the network connections, conforming to the techniques
used by the TCP connection for congestion control and packet loss prevention. When
recirculation happens within the switch, however, the system’s load increases, causing
TCP to restrict the data transfer rate. This behavior is similar to instances in which the
network has a single programmable switch.

It is interesting to note that the maximum achievable throughput of the network
begins at a different point in each scenario of link bitrate setting. For scenarios without
link bitrate specification, this starting throughput is 23.03 Mbps. For a link bitrate of
25 Mbps, the maximum throughput decreases to 21.7 Mbps, and for a link bitrate of
10 Mbps, it drops to 9.39 Mbps. However, as the number of recirculations increases,

79

Experimental /numerical evaluation

these maximum achievable throughput lines begin to converge, reflecting a reduction in
throughput across different link bitrates."

TCP - Throughput
(1,25.68) No Specific Link bitrate

2 —e— Two Switches
(2,23.03) —e— One Switch

roughput (Mbit/s)

Th

(11,2.21) (16, 2.42)

Figure 5.25. The figure illustrates the throughput comparison between network
topologies with a single BMv2 switch and two BMv2 switches when no specific link
bitrate is specified. The connections are TCP.

TCP - Throughput
Link Bitrate = 25Mbit/s

2 —e— Two Switches
~e— One switch

(1,22.38)

(2,21.7)

(A 11.71)(3) 11.64)

ughput (Mbit/s)

Throy

(8,6.218)

8,297 (16,3.5)

(16, 1.44)

Figure 5.26. The figure illustrates the throughput comparison between network
topologies with a single BMv2 switch and two BMv2 switches when the link bitrate
is 25 Mbps. The connections are TCP.

In the following comparisons of throughput measured through IPERF experiments,
where one scenario involves a single switch in the network and the other entails two
switches, a consistent trend emerges. For all link bitrates, both graphs show a similar
decrease in throughput as the number of transmissions increases. However, an important
distinction lies in the achievable throughput at each point on these graphs.

In scenarios with two switches, the throughput is consistently higher than in scenarios
with only one switch. This difference arises due to the additional recirculation introduced
by the presence of one switch in the network. With the same number of transmissions,

80

5.2 — Numerical results

TCP - Throughput
Link Bitrate = 10Mbit/s

—e— Two Switches
—e— One switch

(1.954) (3, 9.393)

(8, 5.448)

Throughput (Mbit/s)

(16, 3.439)

(16,1.45)

Figure 5.27. The figure illustrates the throughput comparison between network
topologies with a single BMv2 switch and two BMv2 switches when the link bitrate
is 10 Mbps. The connections are TCP.

the single-switch scenario involves one more recirculation. Consequently, this leads to an
increased load on the output port of the switch and prompts a more aggressive TCP rate
reduction to avoid congestion and packet loss.

In summary, while both scenarios exhibit a decreasing throughput trend as the num-
ber of transmissions increases, the scenario with one switch consistently achieves lower

throughput at each data point due to the additional recirculation and associated conges-
tion control measures.

81

82

Chapter 6

Conclusion

The primary goal of this thesis was to leverage the capabilities of programmable switches
for the precise control of packet delays within a network. The thesis attempted to answer a
basic question: how can we modify packet order in network service chaining by using data
plane programmability? Drawing on a foundation of knowledge concerning programmable
switches and their data plane programmability, we began the path of understanding their
inner workings and potential.

Extensive research and learning were required to comprehend the behavior of pro-
grammable switches and the complexities of the P4 language. We set out on an endeavor
to get a thorough understanding of these technologies in order to maximize their potential
for our research goals. This first research part was critical since it set the framework for
the development of novel solutions.

Our exploration led to the realization that programmable data planes could offer a
solution. The concept of postponing packet transmission within a programmable switch
until the arrival of another packet, thus allowing us to reorder packets at the destination,
took shape.

The key to this reordering strategy was packet recirculation, which introduced con-
trolled delays in packet transmission. We embarked on a quest to develop and implement
this recirculation concept within programmable switches. Two implementations were con-
sidered: the first, a more general approach, involved recirculating all received packets,
allowing us to investigate the impact of multiple recirculation cycles on packet delay.
The second, a more specific approach, focused on recirculating custom packets while
forwarding others normally, accompanied by additional headers for custom packets.

Following the implementation of packet recirculation, the next phase involved eval-
uating its outcomes. To achieve this, we employed Mininet to simulate diverse network
topologies. The initial segment of the evaluation focused on determining the baseline for
packet delay. In this part, a simplified network topology was employed, consisting of a
single BMv2 programmable switch situated between a source host and a destination host.
Crucially, no recirculation was applied inside the programmable switch. This approach
allowed us to investigate the intrinsic processing delay introduced by the network com-
ponents, particularly the programmable switch and the influence of transmission delay
on packet delays for various link bitrates.

83

Conclusion

The second segment was the most crucial, as it goes deeply into the heart of the
research question: how to effectively introduce controlled delays in packet transmission.
Here, the goal was to assess the impact of recirculation within the programmable switch
on packet delays. The aim was to identify how many recirculations the programmable
switch should apply to packets under different network configurations, including different
link bitrates, to achieve the desired delays. I assessed the effect of packet recirculation
on packet delay using the Ping tool. Furthermore, we examined how packet recirculation
influenced network throughput by employing the Iperf tool for both TCP and UDP
connections.

This evaluation was performed in both virtual Linux environments and on a real
Linux server. The aim was to compare and contrast the results obtained in these two
distinct environments and demonstrate the adaptability of the mechanism implemented
in this research. By showcasing results in both virtual and real environments, this work
serves as a valuable resource for future investigations and research endeavors, providing
understandings that bridge the gap between the virtual and real networking worlds.

The study expanded to incorporate multiple programmable switches within the topol-
ogy, allowing us to explore the effects of employing multiple programmable switches on
packet delay and network throughput. In summary, this study investigates how pro-
grammable switches can be used to apply exact control over packet delays in network
environments. It opens the door to further research and innovation in the constantly
evolving domain of software-defined networking, offering the potential to reshape net-
work and service delivery for a wide range of applications.

84

Bibliography

1]

2]

3]

[4]
[5]

Oliver Michel, Roberto Bifulco, Gabor Rétvari, and Stefan Schmid. The pro-
grammable data plane: Abstractions, architectures, algorithms, and applications.
ACM Comput. Surv., 54(4), may 2021.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87-95, 2014.

Bhargavi Goswami, Manasa Kulkarni, and Joy Paulose. A survey on p4 challenges
in software defined networks: P4 programming. IEEE Access, 11:54373-54387, 2023.
Ya Gao, Zhenling Wang, and Sang-Bing Tsai. A review of p4 programmable data
planes for network security. Mob. Inf. Syst., 2021, jan 2021.

Francesco Paolucci, Davide Scano, Piero Castoldi, and Emiliano De Paoli. Latency
control in service chaining using p4-based data plane programmability. Computer
Networks, 216:109227, 2022.

Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li. Hydra:
Serialization-Free network ordering for strongly consistent distributed applications.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 293-320, Boston, MA, April 2023. USENIX Association.

Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, and Margo
Seltzer. Parking packet payload with p4. In Proceedings of the 16th International
Conference on Emerging Networking EXperiments and Technologies, CONEXT ’20,
page 274-281, New York, NY, USA, 2020. Association for Computing Machinery.
Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Efficient measure-
ment on programmable switches using probabilistic recirculation. In 2018 IEEE 26th
International Conference on Network Protocols (ICNP), number 12, pages 313-323,
2018.

Belma Turkovic, Fernando Kuipers, Niels van Adrichem, and Koen Langendoen.
Fast network congestion detection and avoidance using p4. In Proceedings of the
2018 Workshop on Networking for Emerging Applications and Technologies, NEAT
'18, page 45-51, New York, NY, USA, 2018. Association for Computing Machinery.
Ralf Kundel, Jeremias Blendin, Tobias Viernickel, Boris Koldehofe, and Ralf Stein-
metz. P4-codel: Active queue management in programmable data planes. In 2018
IEEE Conference on Network Function Virtualization and Software Defined Net-
works (NFV-SDN), pages 1-4, 2018.

85

	Introduction
	Background and context
	Motivation for Controlling Delay

	Programmable Data Planes
	Programmable packet processing pipelines
	Programming languages and compilers

	Related work
	Delay Control by Packet Recirculation
	Packet Recirculation development
	How to Control Delay?

	Experimental/numerical evaluation
	Methodology
	Numerical results

	Conclusion
	Bibliography

