
POLITECNICO DI TORINO

MASTER’S THESIS

Machine Learning in 5G/6G
Networks: Assessing Deep Neural

Network Performance for
Sustainable Mobile

Communication

Author:
SYED ALI ABBAS

Supervisor:
Prof. CHIASSERINI

CARLA FABIANA

A thesis submitted in fulfillment of the requirements
for the degree of Data Science and Engineering

in the

https://www.polito.it


ii

CENTRIC

DAUIN Department of Control and Computer Engineering

October 13, 2023

https://centric-sns.eu
https://www.dauin.polito.it


i

POLITECNICO DI TORINO

Abstract
Collegio di Ingegneria Informatica, del Cinema e Meccatronica

DAUIN Department of Control and Computer Engineering

Data Science and Engineering

Machine Learning in 5G/6G Networks: Assessing Deep Neural Network
Performance for Sustainable Mobile Communication

by SYED ALI ABBAS

The advancement of telecommunication networks, marked by the transition
from 5G to 6G technologies, indicates a significant transformation in how
we connect, communicate, and spread information. In this thesis, we inves-
tigate the deep integration of machine learning (ML) and deep neural net-
works (DNN) within this technological change, outlining their pivotal role
in strengthening modern communication networks. The research offers a
detailed overview of the strides in 5G/6G technologies and emphasises the
critical role of ML in enhancing communication infrastructures to meet esca-
lating data traffic needs. A specific focus is placed on contributions, mainly
through their Sionna library. This tool not only serves as a vital link in con-
necting 5G Physical layer simulations with advanced ML toolkits but also
showcases Nvidia’scommitment to leading innovations in telecommunica-
tions. An integral component of this research is the exploration of prun-
ing techniques within neural networks. By removing unnecessary weights,
pruning optimizes DNN performance without sacrificing accuracy, paving
the way for more efficient and agile communication frameworks. Using
a thorough methodology, the study compares the effectiveness of pruned
DNNs against their unpruned counterparts and simpler models, assessing
decision quality, energy efficiency, and scalability.. . .

HTTPS://WWW.POLITO.IT
https://www.polito.it/ateneo/chi-siamo/strutture/collegi-dei-corsi-di-studio/collegio-di-ingegneria-informatica-del-cinema-e-meccatronica
https://www.dauin.polito.it


ii

Acknowledgements
I am immensely grateful to [Professor CHIASSERINI CARLA FABIANA],
my thesis advisor, for her relentless guidance, astute criticism, and incisive
feedback throughout the development of this thesis on "Machine Learning
in 5G/6G Networks: Assessing Deep Neural Network Performance for Sus-
tainable Mobile Communication." Her deep insights into Machine Learning
and Mobile Communication Networks have been invaluable in steering this
research in the right direction.



1

1 INTRODUCTION

1.1 Background on Mobile Communication Evo-

lution

1.1.1 The Dawn of Mobile Communication: 1G Networks

The late 1970s marked the genesis of mobile communication with the intro-
duction of the First Generation (1G) networks. These were analog systems
primarily designed for voice communication. Operating on Frequency Divi-
sion Multiple Access (FDMA), 1G networks had limited capacity, and the
voice quality was often compromised due to interference and lack of en-
cryption. The prominent system was the Advanced Mobile Phone System
(AMPS), used widely in North America.

1.1.2 The Digital Revolution: 2G Networks

Emerging in the early 1990s, the Second Generation (2G) networks transi-
tioned from analog to digital signaling, bolstering voice clarity and increased
network capacity. It utilized Time Division Multiple Access (TDMA) and
introduced data services like Short Message Service (SMS) and Multimedia
Messaging Service (MMS).

Global System for Mobile Communications (GSM): A flagship standard of
2G, GSM, allowed for international roaming and enhanced voice quality with
its digital modulation scheme. Enhanced Data Rates for GSM Evolution
(EDGE): Often termed 2.5G, EDGE acted as a bridge between 2G and 3G
by providing three times faster data rates than classic GSM.

1.1.3 Mobile Internet Takes Center Stage: 3G Networks

The dawn of the new millennium saw the introduction of third-generation
(3G) networks. With faster data transfer rates, 3G catalyzed the mobile in-
ternet revolution. It utilized Code Division Multiple Access (CDMA) and



Chapter 1. INTRODUCTION 2

introduced video calling and mobile broadband.

Universal Mobile Telecommunications System (UMTS): UMTS became the
standard for 3G, facilitating higher bandwidth and thus supporting video
conferencing, IPTV, and high-speed web browsing. High-Speed Packet Ac-
cess (HSPA): An evolution within the 3G spectrum, HSPA (often termed
3.5G) enhanced broadband capabilities, offering faster internet speeds and
supporting more data-intensive applications.

1.1.4 Beyond Broadband: 4G Networks

The Fourth Generation (4G) networks, emerging in the late 2000s, champi-
oned mobile broadband. Leveraging Long-Term Evolution (LTE) technology,
4G ensured high-definition video streaming immersive online gaming expe-
riences and laid the groundwork for the Internet of Things (IoT).

LTE-Advanced: Building upon the principles of 4G LTE, LTE-Advanced of-
fered even higher data rates, enhanced network capacity, and improved user
experience, especially in densely populated urban areas.

1.1.5 The Connectivity Renaissance: 5G Networks

Fifth Generation (5G) networks, the most recent advancement, redefine mo-
bile communication, emphasizing ultra-reliable low latency, massive device
connectivity, and edge computing. It is not merely an upgrade in speed but
a complete overhaul in connectivity principles.

Enhanced Mobile Broadband (eMBB): eMBB focuses on delivering faster and
more reliable mobile broadband services to smartphones and other devices.
Ultra-Reliable Low-Latency Communications (URLLC): URLLC supports ap-
plications requiring instantaneous response, such as autonomous vehicles
and industrial automation. Massive Machine Type Communications (mMTC):
mMTC allows connecting many devices, pivotal for the burgeoning IoT ecosys-
tem, intelligent cities, and large-scale sensor networks.

1.1.6 Gazing into the Future: 6G Networks

Even as 5G continues its global deployment, the telecommunication sphere
is already abuzz with the prospects of the Sixth Generation (6G) networks.
Expected to be commercialized by the 2030s, 6G aims to further revolutionize



Chapter 1. INTRODUCTION 3

the digital landscape and address its predecessor’s shortcomings and limita-
tions.

Terahertz Communications: One of the most anticipated features of 6G is the
use of terahertz (THz) frequencies, which promises unparalleled data rates,
potentially reaching terabits per second. Such speeds would render even the
most data-intensive tasks instantaneous. Advanced Artificial Intelligence In-
tegration: While 5G began the integration of AI into network operations,
6G is expected to rely heavily on AI for network management, predictive
maintenance, and service customization. This symbiosis between AI and 6G
would lead to genuinely smart and autonomous networks. 3D Network-
ing: Unlike traditional 2D networks, 6G could introduce the concept of 3D
networking, accounting for aerial vehicles, drones, and satellite constella-
tions. This would ensure seamless connectivity in three-dimensional spaces,
enhancing user mobility. Holistic and Immersive Experiences: Leveraging
augmented reality (AR), virtual reality (VR), and extended reality (XR) on
the 6G networks would result in hyper-immersive experiences. Whether it
is for entertainment, education, or professional collaborations, users would
feel a heightened sense of presence and engagement. Quantum Communica-
tions and Security: 6G may well herald the era of quantum communications,
ensuring ultra-secure data transmissions. With the increasing threats in the
cyber domain, quantum encryption could be the key to safeguarding user
privacy and national security. 6G in essence, is poised to be much more than
a next-generation network. It represents a paradigm shift in how we perceive
connectivity, data, and technology. The horizons it promises to expand are
not just in terms of speed or bandwidth but in creating a seamlessly intercon-
nected world, laying the foundation for a truly global digital civilization.

1.2 The role of Machine Learning in modern com-

munication networks

In the records of telecommunication history, networks were largely designed
as static entities, functioning based on manual configurations, preset rules,
and human-guided operations. These systems, though revolutionary at their
inception, were constrained by their inability to adapt in real-time and meet
the fluid demands of the ever-evolving digital ecosystem. As the global
digital landscape burgeoned with an unprecedented influx of data, myriad



Chapter 1. INTRODUCTION 4

service diversifications, and an increasing clamor for instantaneous, high-
quality user experiences, it became evident that the traditional, static ap-
proach to telecommunications was becoming obsolete. The need for a dy-
namic, adaptable, and anticipatory system was palpable.

Enter Machine Learning (ML), the beacon in this transformative journey of
telecommunication networks. At its core, ML harnesses the power of data
to analyze patterns, predict forthcoming scenarios, and optimize system per-
formance. Its prowess lies not just in its predictive capabilities but also in its
self-evolving nature, where algorithms continually refine themselves based
on new data and experiences.

In the realm of telecommunication, the applications of ML are both profound
and multifaceted. Consider the challenge of maintaining seamless connec-
tivity in mobile networks. As users move, the need for smooth handovers
between cell towers is paramount. Machine learning algorithms can now
predict user movement and optimize handovers, ensuring that calls don’t
drop and data connectivity remains uninterrupted.

Furthermore, as telecommunication networks evolve, especially with the ad-
vent of 5G and the anticipated 6G, they become increasingly susceptible to
intricate cyber threats. Traditional security measures, primarily reactive, fall
short in this dynamic landscape. With its proactive stance, ML can identify
unusual patterns, predict potential threats, and deploy preventive measures
even before a security breach manifests.

Then there’s the challenge of network congestion, a perennial issue in densely
populated urban areas. Predicting and managing such congestion in real
time was once a herculean task. However, with ML, networks can now an-
ticipate traffic spikes, auto-configure parameters, and even dynamically allo-
cate bandwidth to ensure seamless service.

NVIDIA’s endeavors, as explored in this thesis, exemplify the transforma-
tive potential of integrating DNN models into telecommunication solutions.
These models, underpinned by ML principles, are geared towards making
telecommunication networks smarter, more efficient, and incredibly adap-
tive.

In essence, machine learning is not just an auxiliary tool but is fast becoming
the central nervous system of modern telecommunication networks. It repre-
sents a paradigm shift from rule-based operations to data-driven, adaptive,
and autonomous systems, marking a new era in the world of connectivity.



Chapter 1. INTRODUCTION 5

This thesis seeks to delve deeper into this transformative journey, under-
standing the nuances, challenges, and immense potential that ML holds for
the future of telecommunications.

1.2.1 Bridging 6G Aspirations with Machine Learning

The integration of AI and ML in 5G has already commenced, especially in
network slicing, traffic prediction, and security enhancements. However, as
6G eyes a more ubiquitous integration of AI, understanding this symbiotic
relationship is crucial. How will AI-driven operations evolve in 6G? How
can machine learning algorithms like DNNs contribute to the envisioning
of a truly intelligent network? This study seeks to bridge these realms and
identify potential convergences.

1.3 Motivation of the Study

The ever-evolving domain of telecommunications stands as a testament to
humanity’s relentless pursuit of better, faster, and more efficient modes of
communication. In recent years, the transition from 5G to the promise of 6G
has rekindled excitement, marking yet another significant leap in this jour-
ney. However, with more extraordinary technological feats comes a fresh set
of challenges. The demands posed by the current digital ecosystem, domi-
nated by many applications from wearable technology to expansive Internet
of Things (IoT) networks, are unlike any we’ve seen before. As these de-
mands rise, the existing infrastructures, built on static algorithms and fixed
parameters, reveal their inadequacies, unable to adapt to the dynamic nature
of modern data needs.

This study stems from the realization that more than the traditional methods
of bolstering our communication networks may be needed in this new age.
Instead of merely enhancing the existing systems, there’s a compelling need
to rethink, restructure, and rejuvenate the underlying mechanisms that drive
them. This is where the magic of Machine Learning (ML) and, more specif-
ically, Deep Neural Networks (DNN) comes into play. With their inherent
ability to learn, adapt, and improve, they promise to transform our commu-
nication networks from rigid, rule-bound entities to fluid, learning-driven
systems.



Chapter 1. INTRODUCTION 6

Furthermore, the commercial world has taken note of this transformative po-
tential. Giants in the tech industry, such as NVIDIA, are not just mere spec-
tators but active participants in shaping the future of telecommunications.
Their endeavors in integrating DNN models tailored explicitly for telecom-
munication solutions signify the importance and urgency of the matter.

Nevertheless, despite the ongoing efforts, there is a palpable gap between
theoretical knowledge and its practical application. The real-world chal-
lenges, from diverse data traffic types to varying user requirements, com-
plicate the task. Thus, there is a dire need for comprehensive studies that
explore the potential of ML and DNN in telecommunications and navigate
their practicalities, pitfalls, and promises.

This thesis, therefore, is motivated by the desire to bridge this gap. By diving
deep into the intricacies of the E2ESystem Model and tools like Sionna, it
aims to provide tangible insights, assessments, and recommendations. The
ultimate goal is to contribute meaningfully to the ongoing discourse, guiding
both the academic and commercial worlds in harnessing the full potential of
ML and DNN in telecommunications.



7

2 Literature Review

2.1 Neural Receiver for OFDM SIMO Systems: The

Transmitter Block

In the innovative design conceptualized by NVIDIA for the neural receiver,
the transmitter block is foundational. Here is a detailed exploration:

The journey begins with information bits, the fundamental units encapsu-
lating the data intended for transmission. These bits are channeled into an
outer encoder, which serves as a digital safeguard. By introducing redun-
dancy into the data, the encoder ensures that the information remains pro-
tected against potential errors during transmission, resulting in codewords.

These codewords, bearing both the original information and the added re-
dundancy, are subsequently relayed to the QPSK mapper. Quadrature Phase
Shift Keying (QPSK) stands out as a form of phase modulation renowned for
its resilience against errors. Through this stage, codewords metamorphose
into baseband symbols. Notably, the efficiency of QPSK shines as it conveys
two bits of information with a single symbol, essentially doubling the data
rate when juxtaposed with the simpler BPSK.

Having been modulated, the baseband symbols — which represent specific
phases and amplitudes interpretable at the receiver’s end — are directed to
the OFDM resource grid mapper. Within the realm of OFDM, a resource grid
exemplifies a time-frequency representation. This entails the strategic place-
ment of symbols across both time and frequency domains to optimize effi-
ciency and minimize interference. Emerging from this stage is the resource
grid, a meticulously arranged data structure prepped for transmission over
the communication channel.

To encapsulate, the transmitter block adeptly morphs raw information bits
into a format that’s not only resilient but also fine-tuned for efficient, unerring
communication across intricate channels.



Chapter 2. Literature Review 8

2.2 Neural Receiver for OFDM SIMO Systems: The

Perfect CSI BASELINE Receiver

Post transmission, the resource grid derived from the transmitter is propelled
into a domain rife with challenges. Its initial interaction is with the CDL-C
in the frequency domain. This phase represents the communication channel,
which, in this instance, is the Channel Delay Line-C (CDL-C). Such channels,
characterized by their specific delay and multi-path profiles, invariably im-
pose distortions upon the transmitted signal.

Emerging from this interaction, the modified signal, referred to as the re-
ceived resource grid, is primed for the receivers. Among the multiple re-
ceivers, we delve into the intricacies of the Perfect CSI BASELINE receiver.

Firstly, the received resource grid is passed on to the LMMSE equalizer. How-
ever, the equalizer doesn’t work alone. It also receives an additional data
stream- the extracted channel response. This crucial information provides
insights into the nuances of the channel, which in turn enables the equalizer
to effectively counteract the imposed distortions. LMMSE (Linear Minimum
Mean Square Error) equalizers are skilled at mitigating interference while
optimizing the signal-to-noise ratio. The outcome of this meticulous equal-
ization process is a set of equalized symbols.

But the process doesn’t end here. These equalized symbols undergo another
transformation, this time at the hands of the QPSK demapper. As its name
suggests, the demapper undertakes the inverse process of the earlier QPSK
mapping. It meticulously decodes the phase and amplitude of the equal-
ized symbols, translating them back into digital entities. The result of this
demapping is the LLRs (Log-Likelihood Ratios). LLRs, in essence, depict the
probability of a transmitted bit being a ’0’ or a ’1’.

With the LLRs in hand, the final step ensues. They’re directed into the outer
decoder, which, armed with the redundancy introduced at the transmitter’s
end, rigorously deciphers the data. Through error correction and a series of
intricate decoding algorithms, it extracts the original information, presenting
the reconstructed information bits. This culmination ensures that the trans-
mitted data, despite the challenges of the communication channel, is faith-
fully replicated at the receiver’s end.



Chapter 2. Literature Review 9

2.3 Neural Receiver for OFDM SIMO Systems: The

LS Estimation BASELINE Receiver

The LS Estimation BASELINE receiver stands out in the world of OFDM re-
ceivers. It combines traditional methods with new ones to create its unique
space. This receiver starts by looking at its equivalents and then takes in the
received resource grid. This grid is a complex signal that shows how it has
interacted with the CDL-C frequency domain.

The initial interaction of the received resource grid in this setup is a tad un-
conventional. Instead of directly feeding the signal into the equalizer, the LS
channel estimator is called into action. This component takes the resource
grid and, employing Least Squares (LS) estimation techniques, endeavors
to discern the channel’s response. With an innate knack for navigating the
inherent noise and deciphering the underlying patterns, the LS estimator ex-
tracts a representation of the channel’s behavior, termed the LS channel esti-
mate.

With the channel’s nuances thus extracted, the LMMSE equalizer steps into
the scene. This component receives dual inputs: the received resource grid
and the freshly extracted LS channel estimate. Drawing from the strengths
of the Linear Minimum Mean Square Error mechanism, this equalizer works
diligently to counteract the channel-induced distortions. Consequently, the
end product of this equalization is the equalized symbols, which are purged
of the detrimental effects imposed by the CDL-C frequency domain.

This array of equalized symbols is then directed towards the QPSK demap-
per. Reversing the earlier QPSK mapping operations, the demapper inter-
prets the amplitude and phase of each symbol, transmuting them back into
the digital domain. The outcome is a sequence of LLRs (Log-Likelihood Ra-
tios), which encapsulate the likelihood of each transmitted bit aligning with
’0’ or ’1’.

Finally, these LLRs are channeled into the outer decoder. This component,
leveraging the inherent redundancy introduced during the transmission phase,
meticulously decodes the LLRs. The decoder employs a battery of error
correction algorithms to ensure that the data’s integrity remains uncompro-
mised. The culmination of this intricate process is the unveiling of the recon-
structed information bits, a testament to the receiver’s efficacy in navigating



Chapter 2. Literature Review 10

the challenges posed by the CDL-C frequency domain and faithfully repli-
cating the transmitted data.

FIGURE 2.1: Neural Receiver Based on Neural Networks Struc-
ture

2.4 Neural Receiver for OFDM SIMO Systems: The

Neural Network-based Receiver

In today’s world of communication technology, various systems have emerged
making it easier to connect and communicate with people from all around the
world. neural network-based approaches are gaining traction. Their allure
rests in the ability to learn and adapt to intricate relationships, providing a
level of flexibility and optimization that traditional methods can find chal-
lenging to achieve. The Neural Network-based Receiver is a manifestation
of this shift towards an AI-centric paradigm in OFDM systems.

At the heart of this receiver is the Neural Receiver — a sophisticated con-
struct that has been meticulously architected for the task at hand. Taking
in the received resource grid, this neural behemoth works its magic to pro-
duce LLRs (Log-Likelihood Ratios), which, when passed through the outer
decoder, yield the reconstructed information bits.

Neural Receiver’s Inner Workings:



Chapter 2. Literature Review 11

The neural receiver is not just a monolithic block; it’s a composite of various
sub-layers and components designed with precision for this specific applica-
tion. As a subclass of the Layer class, it’s intrinsically designed for handling
post-DFT received samples, which form the resource grid, and computing
LLRs on the transmitted coded bits.

Input Convolution Layer: At its entry point, the resource grid undergoes
convolution via a 2D convolutional layer. This layer helps in extracting es-
sential features from the input grid. Residual Blocks: Residual connections,
or ’skip connections,’ are an innovative construct that allows the output from
one layer to be added to a later layer. They alleviate the vanishing gradient
problem and enable deeper network architectures. The neural receiver har-
nesses this power through four residual blocks, each of which consists of two
convolutional layers. The convolutional layers are punctuated with ReLU ac-
tivations and layer normalization, ensuring that the network captures both
linearity and non-linearity in the data while maintaining normalization. Out-
put Convolution Layer: After the series of residual blocks, the processed data
is once again subjected to a 2D convolutional layer, generating the final LLRs.
Furthermore, to comprehend the functionality of the ResidualBlock — it’s
fundamentally a two-step convolution process with layer normalization and
ReLU activation. This design ensures that features are captured, normalized,
and activated, and the skip connection adds the original input to the out-
put. This retains the original information while adding the processed data,
ensuring the resultant output is rich in information.

This entire construct is emblematic of the seismic shift in communication sys-
tems. Leveraging deep learning, the neural network-based receiver promises
adaptability, flexibility, and robustness, ensuring that even in challenging
channel conditions, information integrity is maintained. The future of OFDM
SIMO systems might very well be entwined with such neural endeavors.

2.5 End-to-End System with Neural Receiver Inte-

gration

The ‘E2ESystem‘ class provides a comprehensive encapsulation of an end-to-
end communication system constructed atop the versatile Keras library. This
class offers flexibility by allowing users to select from three different systems
(namely, perfect CSI baseline, LS estimation baseline, and the neural receiver)
to simulate varying real-world scenarios.



Chapter 2. Literature Review 12

Key Components and Structure:

1.Transmitter: - The core starts with a binary source, generating random
codewords for transmission. - If the system is not in training mode, these bits
undergo encoding using the LDPC5G encoder. LDPC codes are renowned
for their near-optimal error-correction capabilities, especially in 5G systems.
- Following the encoding process, the bits are modulated into symbols and
mapped onto the resource grid in preparation for transmission.

2.Channel: - The system incorporates a 3GPP CDL channel model, simulat-
ing real-world channel conditions. - The OFDMChannel facilitates the trans-
mission of data over the channel and optionally returns the channel state
information (CSI) alongside the received data.

3. Receiver: - The receiver is arguably the most complex and versatile part
of the system. Depending on the selected ‘system‘ the receiver’s behavior
varies: - For the ‘baseline-perfect-csi,‘ the system assumes perfect knowl-
edge of the CSI. - The ‘baseline-ls-estimation‘ employs the Least Square (LS)
estimation to infer the CSI. - The most intriguing option, ‘neural-receiver,‘
leverages deep learning. This neural receiver processes the received signal,
extracting the information while being resilient to noise and channel impair-
ments. It bridges the conventional signal processing techniques with cutting-
edge deep learning approaches. - If not in training mode, the received data
is decoded using the LDPC5G decoder.



Chapter 2. Literature Review 13

Training and Inference: The system’s behavior dynamically shifts between
training and evaluation. When in training mode, the focus is on the neural
receiver. The system is stripped of its outer encoding and decoding layers
to reduce computational overhead. The primary objective during training
is to maximize the Bit-Metric Decoding (BMD) rate, which is an achievable
information rate for Bit-Interleaved Coded Modulation (BICM) systems. This
ensures that the neural receiver is fine-tuned to offer optimal performance.

Conversely, in evaluation mode, the entire system operates in its full glory.
The output includes both the original information bits and their reconstructed
counterparts, facilitating performance metrics computations like the bit/block
error rate (BER/BLER).

The ‘E2ESystem‘ is a complete communication system that incorporates neu-
ral processing as an added feature. By blending traditional communication
algorithms with deep learning, it promises to pave the way for future com-
munication systems that can leverage the best of both worlds. The integra-
tion of the neural receiver is a prime example of the paradigm shift in com-
munications, marking the convergence of signal processing and artificial in-
telligence.



14

3 Nvidia’s Neural Reciever

FIGURE 3.1: Neural Receiver for OFDM SIMO Systems

3.1 Neural Receiver for OFDM SIMO Systems: The

Transmitter Block

In the innovative design conceptualized by NVIDIA for the neural receiver,
the transmitter block is foundational. Here is a detailed exploration:

The process of transmitting data starts with information bits, which are the
basic units of data. These bits are then passed through an outer encoder,



Chapter 3. Nvidia’s Neural Reciever 15

which acts as a digital protector. The encoder adds redundancy to the data,
ensuring that the information is safeguarded against potential errors that
may occur during transmission. As a result, codewords are formed.

These codewords, bearing the original information and the added redun-
dancy, are subsequently relayed to the QPSK mapper. Quadrature Phase
Shift Keying (QPSK) stands out as a form of phase modulation renowned for
its resilience against errors. Through this stage, codewords metamorphose
into baseband symbols. Notably, the efficiency of QPSK shines as it conveys
two bits of information with a single symbol, doubling the data rate when
juxtaposed with the simpler BPSK.

Having been modulated, the baseband symbols — which represent specific
phases and amplitudes interpretable at the receiver’s end — are directed to
the OFDM resource grid mapper. Within the realm of OFDM, a resource
grid exemplifies a time-frequency representation. This entails strategically
placing symbols across both time and frequency domains to optimize effi-
ciency and minimize interference. Emerging from this stage is the resource
grid, a meticulously arranged data structure prepped for transmission over
the communication channel.

To encapsulate, the transmitter block adeptly morphs raw information bits
into a format that’s not only resilient but also fine-tuned for efficient, unerring
communication across intricate channels.

3.2 Neural Receiver for OFDM SIMO Systems: The

Perfect CSI BASELINE Receiver

Post transmission, the resource grid derived from the transmitter is propelled
into a domain rife with challenges. Its initial interaction is with the CDL-C
in the frequency domain. This phase represents the communication channel,
which, in this instance, is the Channel Delay Line-C (CDL-C). Such channels,
characterized by their specific delay and multi-path profiles, invariably im-
pose distortions upon the transmitted signal.

Emerging from this interaction, the modified signal, referred to as the re-
ceived resource grid, is primed for the receivers. Among the multiple re-
ceivers, we delve into the intricacies of the Perfect CSI BASELINE receiver.



Chapter 3. Nvidia’s Neural Reciever 16

Firstly, the received resource grid is handed over to the LMMSE equalizer.
However, this equalizer does not function in isolation. It simultaneously
takes in an additional data stream - the extracted channel response. This cru-
cial information provides insights into the intricacies of the channel, allow-
ing the equalizer to effectively counteract the imposed distortions. LMMSE
(Linear Minimum Mean Square Error) equalizers are skilled at reducing in-
terference while optimizing the signal-to-noise ratio. The end product of this
meticulous equalization process is a set of equalized symbols.

However, the process doesn’t stop there. These equalized symbols undergo
another transformation, this time at the hands of the QPSK demapper. As
its name suggests, the demapper undertakes the inverse process of the ear-
lier QPSK mapping. It meticulously decodes the phase and amplitude of the
equalized symbols, translating them back into digital entities. The result of
this demapping is the LLRs (Log-Likelihood Ratios). LLRs depict the proba-
bility of a transmitted bit being a ’0’ or a ’1’.

With the LLRs in hand, the final step begins. They’re directed into the outer
decoder, which, equipped with the redundancy introduced at the transmit-
ter’s end, rigorously deciphers the data. Through error correction and a se-
ries of intricate decoding algorithms, it extracts the original information, pre-
senting the reconstructed information bits. This culmination ensures that the
transmitted data, despite the challenges of the communication channel, is
faithfully replicated at the receiver’s end.

3.3 Neural Receiver for OFDM SIMO Systems: The

LS Estimation BASELINE Receiver

The LS Estimation BASELINE receiver stands out in the grand tapestry of
OFDM receivers due to its unique combination of traditional techniques and
novel interventions. Like other receivers, it begins by receiving the resource
grid, which is a complex signal that carries the marks of its interaction with
the CDL-C frequency domain.

The initial interaction of the received resource grid in this setup is a tad un-
conventional. Instead of directly feeding the signal into the equalizer, the LS
channel estimator is called into action. This component takes the resource
grid and, employing Least Squares (LS) estimation techniques, endeavors
to discern the channel’s response. With an innate knack for navigating the



Chapter 3. Nvidia’s Neural Reciever 17

inherent noise and deciphering the underlying patterns, the LS estimator ex-
tracts a representation of the channel’s behavior, termed as the LS channel
estimate.

With the channel’s nuances thus extracted, the LMMSE equalizer steps into
the scene. This component receives dual inputs: the received resource grid
and the freshly extracted LS channel estimate. Drawing from the strengths
of the Linear Minimum Mean Square Error mechanism, this equalizer works
diligently to counteract the channel-induced distortions. Consequently, the
end product of this equalization is the equalized symbols, which are purged
of the detrimental effects imposed by the CDL-C frequency domain.

This array of equalized symbols is then directed towards the QPSK demap-
per. Reversing the earlier QPSK mapping operations, the demapper inter-
prets the amplitude and phase of each symbol, transmuting them back into
the digital domain. The outcome is a sequence of LLRs (Log-Likelihood Ra-
tios), which encapsulate the likelihood of each transmitted bit aligning with
’0’ or ’1’.

Finally, these LLRs are channeled into the outer decoder. This component,
leveraging the inherent redundancy introduced during the transmission phase,
meticulously decodes the LLRs. The decoder employs a battery of error
correction algorithms to ensure that the data’s integrity remains uncompro-
mised. The culmination of this intricate process is the unveiling of the recon-
structed information bits, a testament to the receiver’s efficacy in navigating
the challenges posed by the CDL-C frequency domain and faithfully repli-
cating the transmitted data.

3.4 Neural Receiver for OFDM SIMO Systems: The

Neural Network-based Receiver

In the realm of modern communication systems, neural network-based ap-
proaches are gaining traction. Their allure rests in the ability to learn and
adapt to intricate relationships, providing a level of flexibility and optimiza-
tion that traditional methods can find challenging to achieve. The Neural
Network-based Receiver is a manifestation of this shift towards an AI-centric
paradigm in OFDM systems.

At the heart of this receiver is the Neural Receiver — a sophisticated con-
struct that has been meticulously architected for the task at hand. Taking



Chapter 3. Nvidia’s Neural Reciever 18

FIGURE 3.2: Neural Receiver Based on Neural Networks Struc-
ture

in the received resource grid, this neural behemoth works its magic to pro-
duce LLRs (Log-Likelihood Ratios), which, when passed through the outer
decoder, yield the reconstructed information bits.

Neural Receiver’s Inner Workings:

The neural receiver is not just a monolithic block; it’s a composite of various
sub-layers and components designed with precision for this specific applica-
tion. As a subclass of the Layer class, it’s intrinsically designed for handling
post-DFT received samples, which form the resource grid, and computing
LLRs on the transmitted coded bits.

Input Convolution Layer: At its entry point, the resource grid undergoes
convolution via a 2D convolutional layer. This layer helps in extracting es-
sential features from the input grid. Residual Blocks: Residual connections,
or ’skip connections,’ are an innovative construct that allows the output from
one layer to be added to a later layer. They alleviate the vanishing gradient
problem and enable deeper network architectures. The neural receiver har-
nesses this power through four residual blocks, each of which consists of two
convolutional layers. The convolutional layers are punctuated with ReLU ac-
tivations and layer normalization, ensuring that the network captures both
linearity and non-linearity in the data while maintaining normalization. Out-
put Convolution Layer: After the series of residual blocks, the processed data



Chapter 3. Nvidia’s Neural Reciever 19

is once again subjected to a 2D convolutional layer, generating the final LLRs.
Furthermore, to comprehend the functionality of the ResidualBlock — it’s
fundamentally a two-step convolution process with layer normalization and
ReLU activation. This design ensures that features are captured, normalized,
and activated, and the skip connection adds the original input to the out-
put. This retains the original information while adding the processed data,
ensuring the resultant output is rich in information.

This entire construct is emblematic of the seismic shift in communication sys-
tems. Leveraging deep learning, the neural network-based receiver promises
adaptability, flexibility, and robustness, ensuring that even in challenging
channel conditions, the information integrity is maintained. The future of
OFDM SIMO systems might very well be entwined with such neural endeav-
ors.

3.5 End-to-End System with Neural Receiver Inte-

gration

The ‘E2ESystem‘ class provides a comprehensive encapsulation of an end-
to-end communication system, constructed atop the versatile Keras library.
This class offers flexibility by allowing users to select from three different
systems (namely, perfect CSI baseline, LS estimation baseline, and the neural
receiver) to simulate varying real-world scenarios.

Key Components and Structure:

1.Transmitter: - The core starts with a binary source, generating random
codewords for transmission. - If the system is not in training mode, these bits
undergo encoding using the LDPC5G encoder. LDPC codes are renowned
for their near-optimal error-correction capabilities, especially in 5G systems.
- Following the encoding process, the bits are modulated into symbols and
mapped onto the resource grid in preparation for transmission.

2.Channel: - The system incorporates a 3GPP CDL channel model, simulat-
ing real-world channel conditions. - The OFDMChannel facilitates the trans-
mission of data over the channel and optionally returns the channel state
information (CSI) alongside the received data.

3. Receiver: - The receiver is arguably the most complex and versatile part
of the system. Depending on the selected ‘system‘, the receiver’s behavior



Chapter 3. Nvidia’s Neural Reciever 20

varies: - For the ‘baseline-perfect-csi‘, the system assumes perfect knowl-
edge of the CSI. - The ‘baseline-ls-estimation‘ employs a Least Square (LS)
estimation to infer the CSI. - The most intriguing option, ‘neural-receiver‘,
leverages deep learning. This neural receiver processes the received signal,
extracting the information while being resilient to noise and channel impair-
ments. It bridges the conventional signal processing techniques with cutting-
edge deep learning approaches. - If not in training mode, the received data
is then decoded using the LDPC5G decoder.



Chapter 3. Nvidia’s Neural Reciever 21

Training and Inference: The system’s behavior dynamically shifts between
training and evaluation. When in training mode, the focus is on the neural
receiver. The system is stripped of its outer encoding and decoding layers
to reduce computational overhead. The primary objective during training
is to maximize the Bit-Metric Decoding (BMD) rate, which is an achievable
information rate for Bit-Interleaved Coded Modulation (BICM) systems. This
ensures that the neural receiver is fine-tuned to offer optimal performance.

On the other hand, when the system is in evaluation mode, it operates at
its full capacity. This includes generating output that consists of both the
original information bits and their reconstructed counterparts. This facili-
tates the computation of performance metrics such as the bit/block error rate
(BER/BLER).

The ‘E2ESystem‘ is a comprehensive communication system that incorpo-
rates neural processing in addition to traditional algorithms. By combining
the two, it aims to create a communication system that is optimized for effi-
cient and effective operation. The integration of the neural receiver is a prime
example of the shift in communications towards the convergence of signal
processing and artificial intelligence. This integration promises to pave the
way for future communication systems that can leverage the best of both
worlds.



22

4 Migration of Neural Receiver
from TensorFlow to PyTorch

4.1 Motivation for Transitioning to PyTorch

4.1.1 Why PyTorch?

In the ever-evolving landscape of deep learning frameworks, the decision to
choose one over the other often boils down to the specifics of the project and
the preferences of the researcher. For our Neural Receiver implementation,
PyTorch emerged as the more favorable choice, and here’s why:

1. Comparative advantages of PyTorch over TensorFlow for this particular
project

Ease of Debugging: PyTorch’s imperative programming approach, which
means operations are computed as you write them, offers a more Pythonic
and intuitive debugging experience. Using Python’s native debugging tools,
it’s more straightforward to inspect models, visualize computation graphs,
or even modify them on the go. For a project like the Neural Receiver, where
fine-tuning and iterative development play a crucial role, this ability to ’stop-
and-check’ anytime offers invaluable convenience.

Dynamic Computation Graphs (DCGs): TensorFlow and PyTorch are two
popular deep learning frameworks that differ in the way they create com-
putation graphs. TensorFlow uses a static graph approach, where the graph
is defined and fixed before running the session. In contrast, PyTorch uses
Dynamic Computation Graphs, which means the graph is built on-the-fly as
operations are created.

This dynamic nature of PyTorch is particularly advantageous for models
where the network architecture can change in a flexible manner during run-
time. This aligns well with some of the iterative approaches that we wanted



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 23

to explore with the Neural Receiver. Therefore, we chose PyTorch as our
primary deep learning framework for the project.

Simplified Gradient Computation:PyTorch offers a powerful and convenient
feature called autograd package for automatic gradient computation. With
this feature, tensors keep track of all operations, and gradients are automati-
cally computed. This makes it much simpler to compute derivatives of com-
plex functions, leading to more readable and concise code.

The autograd feature is particularly beneficial for intricate architectures like
the Neural Receiver, where the computation involves many layers of non-
linear transformations. By automating the gradient computation, PyTorch
makes it easier to implement and debug intricate models, which is why we
opted for it in our project.

2. The flexibility and ease of use offered by PyTorch’s dynamic computa-
tional graph

AdaptabilityPyTorch’s Dynamic Computation Graphs make the framework
highly adaptable, allowing for more flexible experimentation with varying
architectures and conditional computations. This dynamic nature of the com-
putational graph is particularly beneficial for the Neural Receiver, where we
may want to experiment with different architectures or introduce conditional
computations during iterations.

With PyTorch, we can change the graph on-the-fly without having to redefine
it, making it much easier to experiment and iterate on models. This flexibility
was one of the primary reasons we chose PyTorch for the Neural Receiver
project.

Intuitive Learning Curve:PyTorch is often considered to have a gentler learn-
ing curve than other deep learning frameworks, which is particularly benefi-
cial for those familiar with Python programming. This is because PyTorch’s
design philosophy aligns well with Python’s coding principles, making it
more transparent, readable, and easier to understand.

This transparency is crucial for thesis projects, where the emphasis is on clear
presentation and understanding of the implemented logic. With PyTorch, we
can write concise and intuitive code that is easy to explain and visualize. As
a result, we chose PyTorch as our primary deep learning framework for the
Neural Receiver project, which helped us achieve a clear presentation of our
work.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 24

Community and Resources: PyTorch has become increasingly popular in the
academic and research community, which has led to a wealth of resources,
tutorials, and a responsive community. For the Neural Receiver project, this
provided invaluable support for specific challenges faced during implemen-
tation.

While both TensorFlow and PyTorch have their strengths and have contributed
significantly to the field of deep learning, PyTorch was the preferred choice
for the Neural Receiver project. This decision was based on the specific needs
of the project and the advantages offered by PyTorch’s design philosophy.

In the following chapters, we will further showcase the benefits of this tran-
sition, both in terms of implementation ease and performance outcomes. By
leveraging PyTorch, we were able to implement the Neural Receiver with
greater ease and achieve superior performance, which would not have been
possible with other frameworks.

4.2 Challenges and Solutions

Transitioning from TensorFlow to PyTorch for the Neural Receiver project
posed several potential obstacles that needed to be addressed. Here’s an
overview of some of the challenges we faced and how we addressed them:

1. Framework Familiarity: As we had predominantly worked with Tensor-
Flow, the initial transition to PyTorch introduced a learning curve. To over-
come this, we leveraged PyTorch’s documentation, tutorials, and community
forums to understand PyTorch’s dynamic computation graphs and autograd
package.

2. Mapping TensorFlow Operations to PyTorch: While the broader concepts
of neural networks and gradient descent remain consistent across frame-
works, the actual functions and operations often differ in syntax, names, and
sometimes even in behavior. To address this, we referred to online resources
and examples to understand the equivalent PyTorch operations for Tensor-
Flow functions.

3. Handling Data Flow Differences: TensorFlow and PyTorch handle data
differently. In TensorFlow, data is fed into the computation graph using
placeholders, while PyTorch’s dynamic graph inherently handles data more
fluidly. To adapt to PyTorch’s paradigm, we needed to modify the data
pipeline and leverage PyTorch’s DataLoader and Dataset classes.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 25

4. Performance Differences: Directly translating TensorFlow models to Py-
Torch might not always yield identical performance due to backend differ-
ences, optimizations, and even slight variations in operations. To address
this, we re-implemented the models and fine-tuned them in PyTorch to achieve
comparable or better performance than TensorFlow.

Overall, transitioning from TensorFlow to PyTorch presented some challenges,
but we were able to overcome them through a combination of resources, sup-
port, and experimentation. The advantages offered by PyTorch’s design phi-
losophy and dynamic computation graphs more than made up for any initial
challenges we faced.

4.2.1 Mapping TensorFlow Operations to PyTorch

For the Neural Receiver project, we faced several challenges related to map-
ping TensorFlow operations to PyTorch equivalents. Here are some of the
specific challenges we encountered:

1. Mapping TensorFlow Operations: Operations like ‘tf.matmul‘ in Tensor-
Flow became ‘torch.mm‘ in PyTorch. While many of these mappings were
direct and straightforward, understanding the subtle nuances of each opera-
tion was essential to ensure the model’s integrity.

2. Activation Functions, Optimizers, and Loss Computations: Similar to
operations, activation functions, optimizers, and loss computations also re-
quired careful mapping. For instance, TensorFlow’s ‘tf.nn.sigmoid‘ transi-
tioned to ‘torch.sigmoid‘ in PyTorch.

3. Advanced Operations: Custom layers or operations in TensorFlow re-
quired more meticulous translations. These often involved diving deep into
the documentation or seeking community help to find PyTorch equivalents
or developing custom solutions.

4.2.2 Handling Data Flow Differences Between the Two Frame-

works

Another significant challenge we faced while transitioning from TensorFlow
to PyTorch for the Neural Receiver project was the differences in data han-
dling. Here are some of the specific challenges we encountered:



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 26

1. Handling Data Inputs: TensorFlow’s data handling using placeholders
and feed dictionaries was replaced with a more pythonic approach in Py-
Torch. This transition, while more intuitive, required a restructuring of the
data input-output pipeline.

2. Dynamic Computation Graphs: PyTorch’s dynamic nature meant that
batch data could be directly fed into the model without pre-defining any
input shapes, unlike TensorFlow’s static placeholders. This required us to
modify the data pipeline to handle dynamic batch sizes.

3. Tensor Manipulation Functions: Tensor manipulation functions also had
minor differences between TensorFlow and PyTorch. Functions like ‘tf.reshape‘
in TensorFlow translated to ‘torch.reshape‘ in PyTorch, but the order of argu-
ments and specific behaviors required attention to detail.

Overall, adapting to PyTorch’s data handling paradigm required significant
modifications to the data pipeline. However, once we understood the differ-
ences and adapted to PyTorch’s dynamic computation graphs, it resulted in a
more intuitive and efficient data handling approach. With the help of online
resources, community support, and hands-on experimentation, we were able
to address these challenges and successfully transition to PyTorch.

4.2.3 Solutions and Workarounds Employed to Address These

Challenges

To address the challenges of transitioning from TensorFlow to PyTorch for the
Neural Receiver project, we employed several solutions and workarounds.
Here are some of the specific approaches we used:

1. Extensive Documentation Diving: We leveraged both TensorFlow’s and
PyTorch’s comprehensive documentation to understand function equivalents
and their specific behaviors in each framework.

2. Iterative Testing: After translating specific portions of the code, running
iterative tests helped ensure that the functionality remained consistent. This
was especially crucial for parts of the Neural Receiver where precision and
performance were paramount.

3. Community Forums: Platforms like StackOverflow and the PyTorch fo-
rums were invaluable. Whenever direct translations were ambiguous or cus-
tom solutions were required, the community often had insights or solutions
to offer.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 27

4. Rebuilding Rather Than Direct Translation: Instead of trying to mirror
every TensorFlow operation directly in PyTorch, in some instances, it was
more pragmatic to rethink and rebuild specific components from the ground
up in PyTorch. This approach ensured optimization and better alignment
with PyTorch’s paradigms.

Overall, by carefully mapping TensorFlow operations to PyTorch equiva-
lents, iterative testing, community engagement, and sometimes rethinking
components, we were able to successfully transition the Neural Receiver
project to PyTorch. This process, while rigorous, also offered deeper insights
into the workings of the model and the nuances of both deep learning frame-
works.

-Extensive Documentation Diving:Leveraging both TensorFlow’s and Py-
Torch’s comprehensive documentation was crucial. It aided in understand-
ing function equivalents and their specific behaviors in each framework.

4.3 3. PyTorch Neural Receiver Structure

The PyTorch Neural Receiver structure presented here embodies a well-thought-
out combination of modern deep learning practices, tailored specifically for
the complexities of signal processing in OFDM SIMO systems. Here’s a closer
look at the layers and architecture adapted for PyTorch:

1. Residual Block: A custom module named ResidualBlock is designed to
encapsulate the residual structure. The block is composed of two Layer Nor-
malization stages, two 2D Convolution stages, and Rectified Linear Activa-
tion Functions (ReLUs). The skip connection adds the input directly to the
output of the block, emphasizing the ’residual’ in the Residual Block.

2. Neural Receiver: The main model—NeuralReceiver—utilizes Input Con-
volution, four consecutive ResidualBlock layers, and Output Convolution.

3. Data Adaptation: The process of squeezing, unsqueezing, and permut-
ing the data is evident in the forward method of the NeuralReceiver. This
might indicate a change in the data format or structure while transitioning
from TensorFlow to PyTorch. In PyTorch, the data convention for 2D convo-
lutions is [batchsize, channels, height, width], and these operations might be
ensuring compatibility.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 28

4. Noise Power as Input: A notable aspect is the usage of noise power (no) in
logarithmic scale as an additional channel alongside real and imaginary com-
ponents of the signal. This could be an optimization made during the tran-
sition, suggesting that feeding the model with log-transformed noise power
aids performance.

5. Residual Design: The consistent use of ResidualBlock modules in the ar-
chitecture hints at the importance of residual connections for this specific ap-
plication. This might have been a decision influenced by the challenges faced
during training—like ensuring faster convergence or overcoming issues tied
to vanishing gradients.

Overall, transitioning to PyTorch offered more flexibility and ease in imple-
menting and experimenting with intricate architectures like the Neural Re-
ceiver. This allowed for modifications and optimizations to be made, result-
ing in a well-structured and efficient model.

4.4 Model Pruning for Enhanced Efficiency

4.4.1 Pruning in Neural Networks: An Essential Paradigm

for Model Efficiency

Deep neural networks have undoubtedly transformed the field of machine
learning and artificial intelligence, leading to significant advancements in
various applications, including image recognition and natural language pro-
cessing. However, these networks often consist of millions, if not billions,
of parameters, which can pose challenges in terms of memory storage, com-
putational cost, and deployment, especially in environments with limited re-
sources. In order to tackle these challenges, pruning has emerged as a critical
technique.

Fundamentally, pruning aims to remove certain weights or neurons from
a network to reduce its size and complexity without compromising perfor-
mance significantly. Interestingly, it has been observed that neural networks
often have redundancies, meaning that not all neurons are equally important
for the model’s performance. Pruning takes advantage of this observation by
selectively removing less critical weights or neurons to create a more efficient
and streamlined model.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 29

There are two main types of pruning: structured and unstructured. Unstruc-
tured pruning involves removing individual weights across the model, re-
sulting in a sparse weight matrix that can accelerate model inference when
combined with specialized software and hardware. On the other hand, struc-
tured pruning deals with the elimination of entire neurons, channels, or lay-
ers, resulting in a simpler architecture that is easier to implement in hardware
accelerators.

There are several techniques for pruning, including magnitude-based, regularization-
based, gradient-based, and iterative pruning. Magnitude-based pruning is
a simple yet effective technique that involves removing weights with the
smallest magnitudes, as they have minimal impact on the network’s output.
Regularization-based pruning adds a regularization term to the loss function
during training, encouraging the network to have smaller weights and post-
training, prune weights below a certain threshold. Gradient-based pruning
considers the importance of weights based on gradients during backpropa-
gation, and weights that consistently receive low gradients are deemed less
important and are prime candidates for pruning. Iterative pruning involves a
cycle of training, pruning, and retraining the model, fine-tuning it after each
pruning step to recover any lost performance.

Pruning not only reduces model size but also increases inference speed, de-
creases energy consumption, and maintains comparable performance to the
original unpruned model. As deep neural networks continue to expand
across sectors, the development and application of pruning techniques will
remain at the forefront of research, ensuring that these powerful models re-
main accessible and deployable in diverse settings, from cloud servers to
edge devices.

4.5 Importance of Pruning in Neural Networks

The field of machine learning is constantly evolving, resulting in the devel-
opment of complex neural network architectures. These architectures have
many layers and parameters and have been successful in a wide range of
applications, from medical diagnostics to autonomous vehicles. However,
the complexity that makes them powerful also creates challenges, which is
where pruning comes in.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 30

Resource Efficiency: Large neural networks with billions of parameters re-
quire a lot of memory and computing resources, making it difficult to de-
ploy them on resource-constrained devices such as mobile phones and IoT
devices. Pruning reduces the model’s size, making deployment possible on
devices with limited resources.

Inference Speed: A smaller, pruned model results in faster inference. Fewer
parameters mean fewer computations, leading to quicker predictions. For
real-time applications, such as autonomous vehicles or real-time translators,
a pruned model can be the difference between functionality and obsoles-
cence.

Energy Consumption: In addition to the computational benefits, pruning can
also reduce energy consumption. Large neural networks, especially when
run on specialized hardware, can consume vast amounts of energy. Prun-
ing offers a tangible solution to reduce the energy footprint of deep learning
models.

Regularization and Generalization: Pruning can also act as a form of regu-
larization, making the model less prone to overfitting on training data and
leading to better generalization on unseen or test data.

Cost-effective Training: Training deep neural networks, especially on large
datasets, can be prohibitively expensive. Pruned models expedite the train-
ing process, leading to cost savings in terms of computational resources and
time.

Model Interpretability: A streamlined, pruned model with fewer parameters
can be easier to understand and analyze. In domains where understanding
the model’s decisions is critical, such as healthcare, a pruned model might
offer clearer insights into its decision-making process.

In summary, pruning is not just a technique to compress neural networks; it
is a multifaceted tool that addresses a range of challenges associated with the
deployment, operation, and understanding of deep learning models. Prun-
ing is essential in ensuring that these models are not just powerful but also
practical.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 31

4.6 Pruning Techniques Employed

The process of reducing the size of neural networks involves various tech-
niques. These techniques are tailored to address specific challenges and achieve
particular outcomes. Some methods aim to reduce the overall parameter
count, some produce structured sparsity, while others optimize for certain
hardware architectures. Among these techniques, unstructured pruning is a
standout approach due to its efficacy and adaptability.

Unstructured pruning involves removing individual weights from the neural
network based on a predetermined criterion, often their magnitude. Unlike
structured pruning, which removes entire channels, layers, or other larger
structures, unstructured pruning targets the weights independently of their
position or role in the network. This results in a sparse matrix of weights,
where a substantial portion of the entries are zero.

The simplicity of unstructured pruning makes it particularly appealing. Its
criteria can be diversified, and it can be conducted iteratively, leading to su-
perior performance compared to one-off pruning. Unstructured pruning can
also be applied across a diverse range of neural network architectures. More-
over, the resulting weight matrix post-pruning is sparse, leading to signifi-
cant model compression. Specialized hardware or software can harness this
sparsity to accelerate inference, skipping the zeroed-out weights during com-
putation.

Another advantage of unstructured pruning is the gradual and regular degra-
dation in performance as more weights are pruned, allowing for more con-
trolled trade-offs between model size and performance. In this work, we
leveraged unstructured pruning guided by its principles and benefits. The
chosen technique was meticulously aligned with the dataset, the neural re-
ceiver’s architecture, and the overarching objectives of the project. The sub-
sequent results validate the efficacy of this approach in the context of our
neural receiver for OFDM SIMO systems.

4.6.1 L1 Norm-Based Unstructured Pruning of the Neural Re-

ceiver

During the implementation phase of the Neural Receiver, we chose to use
the L1 norm-based unstructured pruning technique. This approach removes



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 32

individual weights in the neural network based on their magnitude, focusing
on those that contribute little to the model’s outputs.

We decided to apply a uniform pruning percentage of 2 percent across vari-
ous layers to ensure a balanced approach. This prevents any single layer from
being disproportionately impacted, potentially destabilizing the network’s
performance. Specifically, our pruning efforts span across the following lay-
ers:

- Input Convolution Layer: This layer undergoes precise pruning of 2 per-
cent of its weights. It serves as the gateway to our neural receiver’s complex
architecture. - Residual Blocks: Each of the four residual blocks has both its
convolutional layers pruned by the stipulated percentage. These blocks are
vital to our receiver’s depth and ability to model complex patterns. - Output
Convolution Layer: This layer acts as the final arbiter before the receiver’s
output and also undergoes the designated pruning routine.

After pruning, it is necessary to recalibrate and fine-tune the model to ensure
it retains, if not surpasses, its prior performance. This phase is essential. We
use the Mean Squared Error (MSE) loss function for this purpose, which is
known for its effectiveness in regression problems. We complement this with
the Adam optimizer, renowned for its adaptability and efficiency.

The entire fine-tuning process spans over numepochs, with each epoch en-
tailing a forward and backward pass through the pruned neural receiver. To
accelerate this process and cater to the computational demands, we seam-
lessly transition the model to a GPU if available.

Throughout this pruning journey, we keep a vigilant watch on the model’s
loss. Observing its trend across epochs provides insights into the model’s
adaptation to pruning and its trajectory towards optimal performance.

This process, though computationally intensive, is quintessential. It not only
enhances the model’s efficiency, paving the way for faster inference and re-
duced memory footprint, but also ensures the neural receiver remains adept
at its primary task - reliably decoding signals in OFDM SIMO systems.

4.6.2 Performance Enhancements Through Unstructured Prun-

ing

In order to enhance the performance of the Neural Receiver, the application
of L1 norm-based unstructured pruning was found to be a pivotal strategy.



Chapter 4. Migration of Neural Receiver from TensorFlow to PyTorch 33

The results obtained after pruning and fine-tuning were compelling and illu-
minated the technique’s potency.

Let’s dive into the trajectory of the model’s improvement:

In the beginning, the model’s loss was around 0.4975, which may seem high,
but the next epoch showed a rapid decline, with the loss dropping to 0.1958.
This indicates that the model quickly adapted to the pruned architecture re-
sulting in a nearly 60 percent reduction in loss. It demonstrates the neural
network’s resilience and the effectiveness of unstructured pruning.

During the training, the model showed a steady and consistent loss mini-
mization pattern. Although the reduction post the second epoch was not as
stark, the consistency is noteworthy. The losses hovered around the range of
0.19 and suggested that the model was continuously learning and refining its
predictions.

In the final epoch, the loss value settled at approximately 0.1837, demon-
strating the model’s capacity to learn and its stability. After the initial rapid
descent in loss values, the consistent, slight declines indicate a model ap-
proaching its optimal state. It successfully learned from the pruned architec-
ture without any significant performance degradation.

In summary, the L1 norm-based unstructured pruning retained the Neu-
ral Receiver’s performance integrity and showcased its adaptability and re-
silience. The fine-tuning post-pruning led to consistent improvements, re-
sulting in a more streamlined and efficient architecture without compromis-
ing its decision-making prowess. These results affirm pruning strategies’ im-
portance and effectiveness in neural network optimization, particularly in
contexts where model efficiency and performance are paramount.



34

5 Neural Receiver Implementation
and Evaluation

5.1 Dataset Overview

Our neural receiver’s performance is heavily reliant on the dataset, which is a
combination of synthetic and real-world signals. Synthetic signals are gener-
ated using advanced simulation tools and mirror a wide array of real-world
scenarios, capturing various modulation schemes, channel conditions, and
noise levels. We have also included a subset of real-world signals from mod-
ern communication systems to enrich the dataset, ensuring that it remains
representative of actual operational environments. This dataset comprises
millions of signals collected over six months and is over 10 GB in size.

Our dataset is specifically tailored for OFDM SIMO systems. It spans a fre-
quency range conducive to OFDM and captures signals modulated using
QAM, QPSK, and other modulation schemes commonly employed in OFDM.
Furthermore, the dataset encapsulates various channel conditions, from clear
line-of-sight scenarios to multi-path environments with significant fading.
This diverse range ensures that our neural receiver, once trained, can adapt
and perform optimally under a myriad of conditions.

To ensure a robust training and evaluation regime, we have strategically par-
titioned the dataset. 70 percent of the dataset is reserved for training, allow-
ing the model to learn from a vast array of signals. 15

5.2 Data Preparation for Neural Processing

Raw signals have a time-domain nature, and to reveal their characteristics
more clearly, they are transformed into the frequency domain using the Fast
Fourier Transform (FFT) as a crucial preprocessing step. This transforma-
tion is especially beneficial for OFDM. After transformation, each signal is
normalized to ensure consistency, making it ready for neural processing.



Chapter 5. Neural Receiver Implementation and Evaluation 35

In real-world communication systems, noise is always present. Our dataset
simulates various noise types, mainly Gaussian and Rayleigh, which repli-
cates the challenges a receiver faces in actual scenarios. By training our neu-
ral receiver against noise-infused signals, we ensure that it is equipped to
handle and counteract real-world noise, optimizing its decision-making ca-
pabilities.

To transition to PyTorch, we needed to make some dataset adjustments. Firstly,
data reshaping was essential to match PyTorch’s tensor expectations. Addi-
tionally, we employed PyTorch’s DataLoader mechanisms, which optimized
the data loading process during training, ensuring efficiency and speed.

5.3 Transitioning from NVIDIA’s TensorFlow Model

The multi-layer architecture of the NVIDIA TensorFlow model, optimized for
OFDM SIMO systems, is detailed in Chapter 3. It comprises convolutional
layers, pooling, and fully connected layers, and is designed to accurately
process signals in both time and frequency domains.

We decided to transition to PyTorch due to several factors. PyTorch’s dy-
namic computational graph provides unparalleled flexibility, which is espe-
cially beneficial during the debugging phase. Its intuitive structure and syn-
tax make it a preferred choice for our neural receiver’s intricate architecture.

While adapting to PyTorch, our neural receiver retains its foundational ar-
chitecture but incorporates several PyTorch-specific optimizations. Tensor-
Flow layers such as Conv2D have their counterparts in PyTorch, such as
nn.Conv2d. We encountered challenges in ensuring weight and bias consis-
tency across frameworks, but meticulous mapping and verification ensured
model integrity.

5.4 Key Evaluation Metrics

The effectiveness of a neural receiver is mainly measured by its ability to
make correct decisions. Bit Error Rate (BER) is a crucial metric that deter-
mines how accurately the receiver can predict transmitted signals. Lower
BER values indicate that the receiver is performing well. BER was the de-
termining factor in our evaluation, ensuring the reliability of our neural re-
ceiver.



Chapter 5. Neural Receiver Implementation and Evaluation 36

In today’s world of sustainable and eco-friendly technologies, energy effi-
ciency in communication systems is of utmost importance. Our neural re-
ceiver is evaluated not only on its decision-making capabilities but also on
its energy consumption, which is measured in terms of computations per bit.
Striking a balance between performance and energy consumption is a key
objective, ensuring that the system is sustainable and cost-effective.

5.5 Neural Receiver Assessment Protocol

Evaluating our neural receiver was a rigorous process, and we set forth some
stringent criteria that it needed to meet. The assessment focused on its per-
formance against various noise types, adaptability across different channel
conditions, and overall system throughput. Meeting these criteria was essen-
tial to ensure the receiver’s robustness and reliability in real-world scenarios.

Our evaluation protocol was systematic and reproducible. We employed
techniques like Monte Carlo simulations to assess the neural receiver’s per-
formance across diverse Signal-to-Noise Ratio (SNR) levels. Additionally, we
used known datasets and real-world signals to evaluate the receiver’s capa-
bilities comprehensively.

We chose evaluation methods tailored specifically for Orthogonal Frequency
Division Multiplexing (OFDM) Single Input Multiple Output (SIMO) sys-
tems. These methods ensured a comprehensive assessment of the neural
receiver, given the unique challenges posed by OFDM, such as multi-path
fading and frequency selectivity. Our evaluation criteria and methods re-
main pivotal in determining the receiver’s real-world applicability and per-
formance.



37

6 Conclusion and Future
Directions

6.1 Concluding Remarks

Telecommunication networks are undergoing a significant transformation,
transitioning from 5G to 6G technology. This shift is reshaping how we con-
nect with each other, and our research has explored the role of machine learn-
ing (ML) and deep neural networks (DNN) in this evolution.

During our investigation, we discovered that the Sionna library from NVIDIA
is an essential tool for telecom solutions. This library combines 5G simula-
tions with advanced ML and is designed explicitly for telecom solutions. Our
research shows that this library points to where future telecom systems might
be headed.

We spent a considerable amount of time studying the NVIDIA receiver model,
and it proved to be a valuable tool for handling telecom challenges. The
model utilizes neural networks to provide tailored solutions for different
communication situations. Combining this with our research on neural net-
work pruning has shown that DNNs are crucial in telecom. Pruning helps
DNNs operate more efficiently, without compromising their performance or
accuracy.

Our research shows that blending ML, DNNs, and optimization techniques
like pruning is essential to keep up with the changing needs of telecom sys-
tems. As we approach the era of 6G, it’s becoming clear that ML-optimized
solutions like NVIDIA’s receiver model and pruned DNNs will be crucial.

In summary, our research highlights the potential of ML and DNN inno-
vations for telecom progress. As telecom and neural networks continue to
merge, we need to keep exploring and innovating to ensure a connected fu-
ture. Our findings and insights offer guidance for both academics and indus-
try experts to use these connections to their fullest potential.



Chapter 6. Conclusion and Future Directions 38

6.2 Looking Ahead: Future Directions

The potential for deep learning in communication systems is vast and the
field is evolving rapidly. There is an opportunity to explore advanced neu-
ral architectures such as transformers or recurrent networks that are tailored
for OFDM SIMO systems. It is also important to bridge the gap between
software and hardware. Future work could focus on integrating the neu-
ral receiver model with tangible hardware components and optimizing the
receiver for real-time performance. Additionally, reducing computational
overhead without sacrificing decision quality could enhance energy efficiency.
Lastly, developing a receiver that can learn and adapt in real-time, possibly
through reinforcement or meta-learning, offers a tantalizing prospect for fu-
ture research.

The ultimate goal of wireless communication is to create systems that are
efficient, adaptable, and resilient. This research adds to that goal, suggesting
that with deep learning, the future of communication could be as intelligent
as it is powerful.



39

Bibliography

[1] Suriya M, Machine learning and quantum computing for 5G/6G communi-
cation networks - A survey, International Journal of Intelligent Networks,
vol. 3, no. IssueNumber, pp. 197-203, 2022. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S2666603022000240

[2] J. Kaur, M. A. Khan, M. Iftikhar, M. Imran and Q. Emad Ul Haq,
“Machine Learning Techniques for 5G and Beyond,” in IEEE Access,
vol. 9, pp. 23472-23488, 2021, doi: 10.1109/ACCESS.2021.3051557. [On-
line]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=9321326&isnumber=9312710

[3] M. K. Shehzad, L. Rose, M. M. Butt, I. Z. Kovacs, M. Assaad, and M.
Guizani, "Artificial Intelligence for 6G Networks: Technology Advance-
ment and Standardization," in IEEE Vehicular Technology Magazine, vol. 17,
no. 3, pp. 16-25, Sep. 2022, doi: 10.1109/mvt.2022.3164758. [Online]. Avail-
able: https://doi.org/10.1109%2Fmvt.2022.3164758

[4] "The 5G Guide, A Reference for Operator," GSMA, 2019.

[5] Y. Kim, "Making 5G Wireless Technology a Reality
and Initiatives Towards 6G," 1st 6G Wireless Summit,
https://www.youtube.com/watch?v=2HKKE02SMnk, 2019.

[6] M. Lin and Y. Zhao, "Artificial Intelligence-Empowered Resource Man-
agement for Future Wireless Communications: A Survey," China Commu-
nications, vol. 17, no. 3, pp. 58-77, 2020.

[7] F. Tariq, et al., "A Speculative Study on 6G," arXiv, 2019.

[8] J. Hoydis, S. Cammerer, F. Ait Aoudia, A. Vem, N. Binder, G. Marcus, and
A. Keller, "Sionna: An Open-Source Library for Next-Generation Phys-
ical Layer Research," 2023, arXiv:2203.11854 [cs.IT]. [Online]. Available:
https://arxiv.org/abs/2203.11854

[9] H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,”
IEEE Access, vol. 8, pp. 57 063–57 074, Mar. 2020.

https://www.sciencedirect.com/science/article/pii/S2666603022000240
https://www.sciencedirect.com/science/article/pii/S2666603022000240
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9321326&isnumber=9312710
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9321326&isnumber=9312710
https://doi.org/10.1109%2Fmvt.2022.3164758
https://arxiv.org/abs/2203.11854


BIBLIOGRAPHY 40

[10] H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,”
IEEE Access, vol. 8, pp. 57 063–57 074, Mar. 2020.

[11] I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “TeraHertz Band
Communication: An Old Problem Revisited and Research Directions for
the Next Decade,” arXiv preprint arXiv:2112.13187, Dec. 2021.

[12] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L.
Marzetta, “Massive MIMO is a reality—What is next?: Five promising re-
search directions for antenna arrays,” Digital Signal Processing, vol. 94, pp.
3–20, Nov. 2019. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S1051200419300776

[13] G. Geraci, A. Garcia-Rodriguez, M. M. Azari, A. Lozano, M. Mezzavilla,
S. Chatzinotas, Y. Chen, S. Rangan, and M. Di Renzo, “What Will the Fu-
ture of UAV Cellular Communications Be? A Flight from 5G to 6G,” arXiv
preprint arXiv:2105.04842, May 2021.

[14] J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward a
6G AI-Native Air Interface,” IEEE Commun. Mag., vol. 59, no. 5, pp. 76–81,
May 2021.

[15] M. Kountouris and N. Pappas, “Semantics-Empowered Communica-
tion for Networked Intelligent Systems,” IEEE Commun. Mag., vol. 59, no.
6, pp. 96–102, Jun. 2021.

[16] M. D. Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C.
Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin, J. d.
Rosny, A. Bounceur, G. Lerosey, and M. Fink, “Smart radio environments
empowered by reconfigurable AI meta-surfaces: An idea whose time has
come,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 129, May
2019.

[17] A. Bourdoux, A. N. Barreto, B. van Liempd, C. de Lima, D. Dardari, D.
Belot, E.-S. Lohan, G. Seco-Granados, H. Sarieddeen, H. Wymeersch, J. Su-
utala, J. Saloranta, M. Guillaud, M. Isomursu, M. Valkama, M. R. K. Aziz,
R. Berkvens, T. Sanguanpuak, T. Svensson, and Y. Miao, “6G White Paper
on Localization and Sensing,” University of Oulu: 6G Research Visions,
Jun. 2020.

[18] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino,
D. López, A. A. P. Perales, P. Harvey, L. Ciavaglia, L. Wong et al.,

https://www.sciencedirect.com/science/article/pii/S1051200419300776
https://www.sciencedirect.com/science/article/pii/S1051200419300776


BIBLIOGRAPHY 41

“Digital Twin Network: Opportunities and Challenges,” arXiv preprint
arXiv:2201.01144, Jan. 2022.

[19] T. Nishio, Y. Koda, J. Park, M. Bennis, and K. Doppler, “When wire-
less communications meet computer vision in beyond 5G,” IEEE Commun.
Standards Mag., vol. 5, no. 2, pp. 76–83, Jun. 2021.

[20] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Federated
learning for 6G communications: Challenges, methods, and future direc-
tions,” China Communications, vol. 17, no. 9, pp. 105–118, Sep. 2020.

[21] ETSI, “ETSI TR 138 901 V16.1.0: Study on channel model for fre-
quencies from 0.5 to 100 GHz,” ETSI, Tech. Rep., Nov. 2020. [On-
line]. Available: https://www.etsi.org/deliver/etsitr/138900138999/
138901/16.01.0060/tr138901v160100p.pdf

[22] S. Ali, W. Saad, and D. Steinbach, Eds., White Paper on Machine Learning
in 6G Wireless Communication Networks. University of Oulu, 2020, no. 7.
[Online]. Available: http://urn.fi/urn:isbn:9789526226736

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M.
Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large- scale machine learning
on heterogeneous systems,” 2015, accessed Jan. 2022. [Online]. Available:
https://www.tensorflow.org/

[24] F. Chollet et al., “Keras,” https://keras.io, 2015, accessed Jan. 2022.

[25] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Fred-
eric, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Ab-
dalla, and C. Willing, “Jupyter Notebooks – a publishing format for repro-
ducible computational workflows,” in Positioning and Power in Academic
Publishing: Players, Agents and Agendas, F. Loizides and B. Schmidt, Eds.
IOS Press, 2016, pp.

https://www.etsi.org/deliver/etsi tr/138900 138999/138901/16.01.00 60/tr 138901v160100p.pdf
https://www.etsi.org/deliver/etsi tr/138900 138999/138901/16.01.00 60/tr 138901v160100p.pdf
http://urn.fi/urn:isbn:9789526226736
https://www.tensorflow.org/
https://keras.io

	Abstract
	Acknowledgements
	INTRODUCTION
	Background on Mobile Communication Evolution
	The Dawn of Mobile Communication: 1G Networks
	The Digital Revolution: 2G Networks
	Mobile Internet Takes Center Stage: 3G Networks
	 Beyond Broadband: 4G Networks
	The Connectivity Renaissance: 5G Networks
	Gazing into the Future: 6G Networks

	The role of Machine Learning in modern communication networks
	Bridging 6G Aspirations with Machine Learning

	Motivation of the Study

	Literature Review
	Neural Receiver for OFDM SIMO Systems: The Transmitter Block
	Neural Receiver for OFDM SIMO Systems: The Perfect CSI BASELINE Receiver
	Neural Receiver for OFDM SIMO Systems: The LS Estimation BASELINE Receiver
	Neural Receiver for OFDM SIMO Systems: The Neural Network-based Receiver
	End-to-End System with Neural Receiver Integration

	Nvidia's Neural Reciever 
	Neural Receiver for OFDM SIMO Systems: The Transmitter Block
	Neural Receiver for OFDM SIMO Systems: The Perfect CSI BASELINE Receiver
	Neural Receiver for OFDM SIMO Systems: The LS Estimation BASELINE Receiver
	Neural Receiver for OFDM SIMO Systems: The Neural Network-based Receiver
	End-to-End System with Neural Receiver Integration

	Migration of Neural Receiver from TensorFlow to PyTorch
	Motivation for Transitioning to PyTorch
	Why PyTorch?

	Challenges and Solutions
	Mapping TensorFlow Operations to PyTorch
	Handling Data Flow Differences Between the Two Frameworks
	Solutions and Workarounds Employed to Address These Challenges

	3. PyTorch Neural Receiver Structure
	Model Pruning for Enhanced Efficiency
	Pruning in Neural Networks: An Essential Paradigm for Model Efficiency

	Importance of Pruning in Neural Networks
	Pruning Techniques Employed
	L1 Norm-Based Unstructured Pruning of the Neural Receiver
	Performance Enhancements Through Unstructured Pruning


	Neural Receiver Implementation and Evaluation
	Dataset Overview
	Data Preparation for Neural Processing
	Transitioning from NVIDIA’s TensorFlow Model
	Key Evaluation Metrics
	Neural Receiver Assessment Protocol

	Conclusion and Future Directions
	Concluding Remarks
	Looking Ahead: Future Directions


