
POLITECNICO DI TORINO

Master’s degree
in Mechatronic Engineering

Setup and configuration of a swarm of
autonomous UAVs in an indoor environment for

distributed target estimation and tracking

Supervisors Candidate
Prof. Giorgio Guglieri Davide Morazzo

Dr. Stefano Primatesta 301239

Ing. Enrico Ferrera

October 2023

2

Abstract

The main objective of this thesis project is to develop a working conĄguration for a
swarm of drones in an indoor Ćight environment. The swarm is composed of 4 small
quadcopters, each equipped with an onboard computer that is able to run programs to
control the drone movements, and also to communicate with all the other agents in the
network, like a ground station and the other drones. The Ćight environment consists of a
safety cage where drones can Ćy inside, and a Vicon motion capture system to locate the
position and the orientation of each drone in order to have an external position feedback.
The work concerned both hardware and software aspects of the drones, starting from the
physical wiring of the boards to the software setup of each component, establishing also
a communication framework using ROS 2. Another important aspect of the work is the
integration of the Vicon system in order to accurately estimate the drones’ position. The
secondary objective of this project focuses on the development of a task to be imple-
mented on the former mentioned setup. First, an algorithm is implemented for a diffused
estimation, with an information form Kalman Ąlter, of the position of an ArUco marker
on the ground. Then a Ćocking algorithm is used, in order to control the inter-drone
distances and make the swarm follow the position of the ArUco marker. The aforemen-
tioned algorithms implement the work already proposed by the research group by Fausto
Francesco Lizzio et al. in "Design and SITL Performance of an online Distributed Target
Estimation for UAV Swarm". The aforementioned work has been tested by the authors
only in simulation, therefore the implementation of the proposed algorithms on the drone
environment in the laboratory has both the aim of proving the working setup, and also
collecting the performance of the algorithm in a real-life scenario. This work has been
accomplished in collaboration with Links Foundation which provided all the materials for
the drones and the Ćight environment, which is a part of their Robotics Laboratory.

3

4

Contents

List of Figures 7

Introduction 9

1 State of the art 13

1.1 Multicopter Control . 13
1.2 Kalman Ąlter . 15
1.3 Flocking . 17

2 Drone Hardware Setup 19

2.1 Flight Controller . 20
2.1.1 Mechanical vibrations . 21
2.1.2 PID tuning . 22
2.1.3 RC receiver . 24

2.2 Companion computer . 25
2.2.1 WiFi connectivity . 26
2.2.2 Serial port conĄguration . 27

2.3 OpenMV Onboard Camera . 28

3 Firmware and Software 31

3.1 Ground station software . 32
3.2 ROS 2 conĄguration . 33

3.2.1 Deploy on the companion computer 33
3.2.2 Cross-compilation for armhf architecture 35

3.3 PX4-Autopilot . 37
3.3.1 Build and parameters setup . 38
3.3.2 Motor ordering . 39
3.3.3 Communication using ROS 2 . 39
3.3.4 Position and velocity estimation . 41

3.4 Vicon system . 42
3.4.1 Vicon SDK Implementation . 45

3.5 Safety measures . 47

5

4 Target Estimation and Tracking 49

4.1 Vehicle Handler Node . 50
4.1.1 State Machine . 51

4.2 Computer Vision . 53
4.2.1 ArUco marker pose estimation . 55
4.2.2 Camera Calibration . 56

4.3 Information Form Kalman Filter . 57
4.4 Flocking Algorithm . 60

4.4.1 Parameters tuning . 62

5 Simulation and Testing 65

5.1 Simulation . 65
5.1.1 Simulation Results . 66
5.1.2 Gazebo Environment . 67

5.2 Real implementation . 70
5.2.1 Results . 71

Conclusions 75

A ROS 2 Topics Description 77

Bibliography 79

6

List of Figures

1 Drone fully conĄgured . 10
1.1 FRD coordinate system applied to a drone. [6] 13
1.2 One dimensional angle controller . 14
1.3 PX4-Autopilot position controller. The angle reference is fed to the block

"drone and position controller", represented in Figure 1.2 15
2.1 Layout of the boards and components present on each drone. 20
2.2 Comparison between IMU measurements, Figure (a) shows the high noise

before the improvement, Figure (b) shows the output of the IMU after ad-
ditional damping mounts were used . 22

2.3 Roll rate control performance, Figure (a) shows the high vibrations induced
by the wrong PID tuning. Figure (b) shows the behaviour after the tuning. 23

2.4 Motors actuation command during oscillations created by the angle rate
controller improper tuning. 24

2.5 The remote radio controller . 25
2.6 Custom connectors created to connect the Ćight controller and the camera

module to the companion computer. The red and black wires are for +5V
and GND. The yellow and green wires are for UART TX and RX. 28

3.1 Software stack used for each drone. 31
3.2 XRCE Agent and Client that allows communication from PX4 to ROS 2

nodes. 34
3.3 Estimate of Z position in stationary condition, relying only on IMU mea-

surements . 41
3.4 Drift of the EFK2 height estimate from the Vicon measurement directly

related to IMU excessive vibrations. 43
3.5 The used safety cage for drone Ćight . 44
3.6 Vicon data stream layout . 44
3.7 Comparison of the performances of the two implementation of the Vicon

SDK. The plot shows the packets received by the Ćight controller in a 2
seconds interval. The expected rate is 50 Hz 45

4.1 The ROS 2 nodes instances for a single drone. 50
4.2 State machine logic that controls the drone behaviour. 52
4.3 Diagram of the different reference frames handled with tf2. The camera

frame is not represented. 54

7

4.4 Image from the OpenMV camera of the chessboard, overlayed with the recog-
nised pattern by OpenCV . 57

4.5 The estimate is compared to the bearing angle provided by the measurement
θz and the one predicted θh. At second 534 one angle jumps from −π to π

so the resulting difference without considering the periodicity is very high. . 60
5.1 Estimation result for the X position and velocity in the Gazebo simulation

environment . 66
5.2 Distance between the drones controlled by the Ćocking algorithm during the

simulation. The target distance between each drone is 1 meter. 67
5.3 Velocity in X axis of the drones matching the velocity estimate. Note that

the velocity estimate is not accurate as explained in section 5.1.1. 68
5.4 Model of the Iris drone used in the Gazebo simulation. The white lines in

the front represent the Ąeld of view of the camera. 69
5.5 Gazebo world used to test the ArUco position estimation and the Ćocking

algorithm. The vertical pillars represents a mock-up of the real cage. 69
5.6 Drones in Ćight during the test of the Ćocking algorithm. 71
5.7 Comparison between the raw measurements of the X position given by the

cameras and the resulting estimate of the Kalman Ąlter. 72
5.8 Estimation results of the ArUco marker position and velocity using the

OpenMV camera. 73
5.9 Inter-drone distance during the test of the algorithm with the two real drones. 74

8

Introduction

Drones, also known as UAVs (Unmanned Aerial Vehicles), are unmanned aircraft that are
controlled remotely or autonomously through computer algorithms. These devices have
gained increasing popularity in recent years due to their versatile applications in a wide
range of industries, from aerial photography, to agriculture, security and surveillance, and
more. One important developments in drone technology is the formation of drone swarms.
This involves the coordinated use of multiple drones working together to achieve speciĄc
objectives. Drones in a swarm can communicate with each other and cooperate to perform
complex tasks, such as mapping large areas, material distribution, environmental moni-
toring, and search and rescue. Thanks to their ability to Ćy in inaccessible or dangerous
locations for humans and their Ćexibility, drones and drone swarms are revolutionizing
numerous industries, offering new opportunities and challenges in the Ąeld of technology
and automation.

The main aim of this thesis work is to start from a set of assembled drones and ob-
tain a working swarm of drones able to communicate between them and Ćy reliably in
an indoor controlled environment, ready to have an application deployed and tested on
them. Work has been done on the drones both on the hardware, for example the creation
of physical connections between the various boards were needed, and on the software,
establishing the communication between drones and also to a ground station. The main
elements composing each drone are: a Ćight controller (FC), radio receiver, motor driver
(ESC), companion computer, and a camera module. A more detailed description of the
drones architecture and the process of troubleshooting all the faced problems is described
in chapters 2 and 3.

A key component present in the Ćight environment is the Vicon Motion Capture sys-
tem, that is used to give to each drone a position groundtruth so a precise Ćight is possible.
Motion Capture is a technique that make use of multiple high resolution static cameras
that are positioned in different places of the Ćight area, in such a way that markers can
be placed in any position and they will be detected by multiple cameras. The markers
are special infrared reĆectors that can be easily be differentiated from the scene by the
motion capture cameras. Each camera takes simultaneously a picture and all the frames
are fused together to interpolate the position of all the markers. Each drone is equipped
with a unique rigid constellation of markers, visible in Figure 1 that makes it recognisable
to the system and also allows its orientation can be calculated. This system has very good

9

Introduction

Figure 1: Drone fully conĄgured

performance, allowing high precision on the position estimate, in the order of couple of
millimeters and a high frame rate up to 300 Hz, allowing to obtain an extremely reliable
position groundtruth for most applications. In our case the estimate produced by the
motion capture system is used to feedback to the drone autopilot the current position
measurements that is then fused with other measurements from onboard sensors in order
to make the position estimate more precise and stable. This allows us to control the drone
imposing simple setpoints like position, velocity or acceleration.

In chapter 4 of this thesis is presented the implementation of an algorithm for diffused
target estimation and a Ćocking algorithm, used to command the drones to stay close
together and track the target estimated position. The used target is an ArUco marker and
its position is measured by each drone using the onboard camera. The implementation of
this algorithm was developed and debugged in a simulation environment with Gazebo: the
simulation was made to resemble as closely as possible the real conditions, emulating the
same Ąrmware and communication interfaces as the real drone, thus making the transition
from simulation to the real implementation very easy and reliable.

The implementation of this application is aimed to further test the setup performed on
the drones with a complex task. The developed algorithm for the Kalman Ąlter and the
Ćocking algorithm is heavily based on the work developed in [9], that was only tested in
simulation using ROS 1 and MAVros, and has been implemented in the ROS 2 framework.
The available sensor on the real drones for sensing the target is a down facing camera,
and was simulated with Gazebo in order to correctly integrate this sensor with the used
algorithm. In chapter 4 is presented the development of the algorithm, including the

10

Introduction

work relative to the computer vision necessary to locate the marker. Chapter 5 presents
the simulation implementation and performances, and the deploy and testing on the real
drones.

11

12

Chapter 1

State of the art

1.1 Multicopter Control

The UAV’s used in this thesis work are categorized as multicopters, an aerial vehicle
whose motion is controlled by the downward thrust produced by multiple propellers. A
multicopter is composed of a main body, where the center of mass is and radially extended
arms to hold the motors and propellers. The number of motors can vary depending on the
platform, in this case each drone has 4 motors, hence it can be also called a quadcopter.
Each drone has a reference mobile frame attached to it: the origin positioned in the center
of mass and the axes direction follows a conventions called FRD. The convention FRD
means X axis points forward, Y axis right and Z axis down. Another convention used in
this thesis will be FLU, imposing X pointing forward, Y pointing left and Z pointing up.

The motors of a quadcopter are mounted in a coplanar (XY plane) and parallel way,
and thus they can produce thrust only in the Z axis: this means that the drone cannot
produce directly a force to move horizontally, in fact this type of platform can be viewed
as underactuated. It is still possible to control the drone in all directions, by changing
the direction of the thrust when the body tilts.

Figure 1.1: FRD coordinate system applied to a drone. [6]

A common way to control the horizontal position of these platforms is to control the
attitude, meaning to control the three angles (roll, pitch, and yaw) that deĄne the body
orientation. If the thrust direction is only in the Z axis (the platform is leveled) then no
resultant horizontal force is present. By tilting the body a resultant force is generated in

13

State of the art

the horizontal direction, that depends on the angle of inclination of the body, as shown
in [1] and [20].

Figure 1.2: One dimensional angle controller

To control a multicopter the only variable that can be modiĄed is the motor speed
of each motor, that directly correlates to the produced thrust. The control algorithm
is composed of a cascade of PI or PID controllers, in particular for pitch and roll axis
that are responsible for the horizontal dynamics. Yaw control is much simpler and the
angle error is directly used to compute a torque on the Z axis: this torque is generated
leveraging the motors torque balance. In case of a quadrotor, the net torque from all
the motors should be zero, and this is achieved having 2 clockwise spinning motors and
2 counterclockwise. Imposing the total thrust to remain constant, a difference in speed
between the two pairs result in a net total torque different from zero.

To impose a horizontal acceleration the body tilt angles (roll and pitch) needs to be
controlled to the desired value. There is a direct correlation between the tilt angle and
the horizontal acceleration. The angle control is achieved using an angle rate controller
that generates the reference torques to be applied to the drone body to achieve the desired
angle. Torques on X and Y axes can be easily generated changing the thrust of each motor
individually, and thus the motor speed, taking into consideration the physical parameters
like arm length and motor characteristics. As seen in the diagram in Figure 1.2 the error
terms for the controllers are calculated using the measured angles and angular rates. In
the real drone the measurements are retrieved by the onboard Ineartial Measurement Unit
(IMU) able to provide angular and linear accelerations measurements.

To ignore the non linear transients of the controllers each cascaded controller needs
to have an update frequency much higher than the previous one. For example, in the
implementation of the used autopilot stack the frequency for the angular rate controller
is 1 kHz and for the the angle controller is 250 Hz.

To control other quantities relative to the multicopter like linear velocity and position
the common solution is to use again a cascade of two PID or PI controllers as shown in
Figure 1.3. To compute their relative error, an estimation of these quantities is needed
since sensors usually can’t provide a direct measurement. Estimations are done with
sensor fusion techniques such as Kalman Ąlters, which are covered in Section 1.2.

The most important part of a multicopter are the motors, that are what allows it to
move and change its position. In case of the quadcopter they consist of 4 brushless DC
motors, each directly connected to a propeller. Thrust is proportional to the square of the
rotational speed FZ ∝ n2, so a force can be imposed by simply controlling the rotational
speed. Each motor is controlled with an Electronic Speed Controller (ESC) that takes

14

1.2 – Kalman filter

Figure 1.3: PX4-Autopilot position controller. The angle reference is fed
to the block "drone and position controller", represented in Figure 1.2

care of generating the correct voltages for the motors in order to achieve the desired speed.
In particular the ESC is only a driver that imposes the speeds requested by the Flight
Controller to the motors.

A brushless DC motor is a three phase synchronous motor, meaning it needs three
voltages to be generated with the correct timing and shape in order to work. A speed
controller for a 3 phase brushless DC motor takes as input the speed setpoint and a DC
power input. Then a switching cell stage is needed to impose different voltages on the
motor windings in order to create a rotating magnetic Ąeld [7]. The common technique
adopted for these type of motors is trapezoidal control, also known as six-step. A feedback
on the rotor position is needed to keep the rotating magnetic Ąeld synchronized with the
rotor magnetic Ąeld, in our case this is performed in a sensorless way, analyzing only the
back EMF on the motor windings.

Sensored approaches for estimating the rotor position are also used, for example using
Hall effect sensors or resolvers. They are common on bigger motors, and also the speed
controller needs to support the rotor position sensor as a physical input, which is not the
case with the used ESC. The used ESC already implements all of the techniques needed
to control the motors and no setup is needed.

1.2 Kalman filter

Kalman Ąlter in an algorithm that is able to produce an estimate of an unknown variable
by taking as input multiple sensor measurements and the model of the system and fusing
all the information together. If well designed, the Ąlter estimate is usually more precise
than directly estimating the quantities from the raw measurements of the single sensors.

This method uses the system dynamical model and its inputs to predict the system
states, and also includes all the measurements from actual sensors, weighted proportionally
to their uncertainty. This approach results in being very resilient to external disturbances
and noisy measurements, extracting the most amount of information from the real sensor
measurements when correctly designed and tuned. Each measurement needs a covariance
value associated to it, needed by the Ąlter in order to correctly trust the information
provided from the new data. By increasing or decreasing the covariance associated to
each source of data, the behaviour of the estimate can be changed to rely more or less on
a certain measurements.

15

State of the art

Instances of Kalman Ąlters are used in the drone autopilot software stack in order to
estimate the drone states: the role of the Ąlter in fusing the external position estimate to
obtain a precise and stable Ćight is analyzed in Section 3.3.4.

The standard formulation of the Kalman Ąlter uses the system dynamical model with
state update equation and output equation:

xn+1 = Axn + Bun + ωn (1.1)

yn = Hxn + vn (1.2)

where ωn and vn are additive stochastic white noises. It is composed of two main steps:
the prediction and measurement update.
Prediction step:

x̂n+1,n = Ax̂n + Bun (1.3)

Pn+1,n = FPn,nF T + Q (1.4)

Measurement update step:

x̂n,n = x̂n,n−1 + Kn(zn − Hx̂n,n−1) (1.5)

Kn = Pn,n−1HT (HPn,n−1HT + Rn)−1 (1.6)

Pn,n = (I − KnH)Pn,n−1(I − KnH)T + KnRnKT
n (1.7)

Where K is the Kalman gain, z is the measurement vector, H is the observation matrix,
Q is the process noise covariance, P is the estimated covariance.

The two steps are executed at each discrete time instant: the quantity x̂n+1,n represent
the prediction of the state at the next instant without any information about the n + 1
measurements since they are not yet available. The quantity x̂n,n is the updated state
estimate calculated from the previous state prediction and including the measurement of
the current time instant. The quantity (zn − Hx̂n,n−1) is called innovation and it has a
very important meaning: it contains the new information about the system state, and
in particular when the Kalman Ąlter is the optimal estimator it extract the maximum
possible amount of information from the measurements.

There are multiple formulations of the Kalman Ąlter, and one of them is called in-
formation form. The information form Kalman Ąlter is an equivalent formulation of the
standard Ąlter, as dimonstrated in [2] and [13], where P −1 is propagated instead of P .
The information matrix is deĄned as In = P −1

n,n and represent the certainty of the state
estimate: large I value means high conĄdence in the estimate. The advantages of this
formulation can be seen in terms of computational effort in case of distributed estima-
tions with high number of sensors. The standard form needs the inversion of the R matrix
whose dimension is equal to the number of sensors instead, in the information form, the
largest matrix to invert has size n×n which is the number of the system’s states. Also the
initialization of x̂0 and I0 is easier, since the information matrix can be set to zero or very
close to zero to numerically allow inversion. In fact this means we have no information
about the state estimate when starting the Ąlter.

16

1.3 – Flocking

1.3 Flocking

Flocking is a behaviour of a large number of interacting agents with some common ob-
jectives. This concept can easily be applied to a swarm of drones, with the aim of group
Ćight and coordination between close by agents. Multiple classiĄcations can be done de-
pending on the characteristics of the interaction between the agents, described by [14], for
example the type of information sensed by each agent and centralization of the control.
If agents can sense their position in a global coordinate system, they don’t need to sense
the relative position respect to other agents. If agents can sense their position in a global
coordinate system, they don’t need to sense the relative position with respect to other
agents. This situation is rather complex, requiring speciĄc sensors and elaborate infras-
tructure. A more common situation would have the agents knowing the relative distance
from the close by neighbours.

More precise rules to deĄne a Ćocking behaviour were proposed by Reynolds as de-
scribed in [15]. Those can be considered as a starting point for developing a Ćocking
algorithm. They can be summarized in 3 rules, known also as cohesion, separation and
alignment:

• Flock Centering: attempt to stay close to nearby Ćockmates.

• Obstacle Avoidance: avoid collisions with nearby Ćockmates.

• Velocity Matching: attempt to match velocity with nearby Ćockmates.

A control algorithm can be developed with multiple terms where each one has a different
aim, for example one term for each Reynolds rule. Each agent has dynamic q̈i = ui,
meaning the control input fed to the agent can be interpreted as a force applied to it. In
a simple algorithm proposed by Olfati-Saber [16] the control input is composed of three
terms:

ui = f
g
i + fd

i + f
γ
i (1.8)

In particular the gradient term f g = ∇qi
V (q), fd is a damping term relative to velocity

matching of the swarm and fγ is a navigational feedback term relative to the group
objective [8]. If the navigational term is absent there is no group objective situation and
the algorithm is known as protocol of Ćocking. For example the navigational term can be
given by

u
γ
i = −c1(qi − qr) − c2(pi − pr) (1.9)

where we deĄne a γ-agent that represent a target to track and has state (qr, pr), this is a
secondary objective of an agent. This algorithm embodies all 3 Reynolds rules, but leads to
a correct Ćocking behaviour only in a limited set of initial conditions, and fragmentation is
an issue that can arise. Fragmentation happens when the agents form small and detached
Ćocks instead of a single big one and more complex strategies have to be adopted to avoid
this problem .

17

18

Chapter 2

Drone Hardware Setup

Each drone presents multiple components that needs a software and hardware conĄgura-
tion. The software conĄguration consists in choosing the Ąrmware and software versions
for all the components that are presented later in this thesis work, in order to ensure
compatibility between them. A detailed description of the software setup is presented in
chapter 3.The hardware conĄguration is covered in this chapter. This part of the project
consisted into working on the physical connections between the boards and other details
related to the mounting of the components on the frame. Each drone presents the same
boards and they are all set up in the same way. This allowed to just copy the steps per-
formed on the Ąrst drone onto the others since they are all equal. The main components
present on each drone are:

• Flight controller (FC): the main board responsible for the Ćight of the drone. Mul-
tiple sensors are present onto it and the control algorithm related to the Ćight is run
by this board’s microcontroller.

• Electronic speed controller (ESC): the driver for the motors, taking as input the
velocity setpoint for each motor from the FC. It delivers power directly from the
battery to the motors.

• Companion computer : a general purpose single board computer connected to the
FC. In this application is setup to run ROS 2 and to communicate via WiFi to the
FC.

• Onboard camera: A camera module with an integrated microcontroller that can
communicate with the companion computer to stream the captured images.

The interconnection of the components present on each drone is shown in Figure 2.1.
In this chapter a detailed analysis of each component is presented, explaining their role
and the process needed to make the setup, including all the troubleshooting of the faced
problems.

19

Drone Hardware Setup

Figure 2.1: Layout of the boards and components present on each drone.

2.1 Flight Controller

The Flight Controller (FC) is the main board that allows the Ćight. Its main task is to
control the motors speed in order to Ćy. It is composed by a microcontroller and multiple
sensors directly integrated onto the board, like a barometer, accelerometer and gyroscope.
In particular the board model is an Omnibus F4SD that is suited for small drones and
for manual control, offering very limited sensors capability. This model of FC is in fact
targeted for racing drones. The setup managed to work around its hardware limitations
and make it usable also in an autonomous application. The role of the FC is to impose the
motors speed in order to achieve a stable Ćight, by controlling the body pitch, roll and yaw
angles to the correct setpoints. This is done by reading the onboard sensors and running
control algorithms implemented in the Ąrmware (in this case PX4-Autopilot). The control
algorithms needs a feedback on the controlled quantities and this is achieved using the
sensors implemented onto the FC. The quality of the measurements directly translates
to the stability of the Ćight, and an extreme case of bad sensor readings can result also
in loss of control of the vehicle. The main disturbances that can affect the FC sensors
during Ćight are electromagnetic noise and mechanical vibrations. An effort was made
to reduce these effects on the FC, in order to improve the Ćight quality and reliability:
high mechanical vibrations are one of the causes of wrong estimations of the Kalman Ąlter
used by the autopilot. Electromagnetic interference is generated by the motor control
and the high currents Ćowing into them. Motors are in fact controlled using a voltage
switching technique and this creates a lot of electromagnetic noises due to the high current
Ćowing into the motors windings. Since these quadrotors are quite small, these effects can
be signiĄcant, so for example the choice of a robust protocol to communicate with the
electronic speed controller (ESC) was aimed to avoid possible electrical interference.

The FC directly interfaces with the ESC to control the motor speeds. The ESC takes as
input a command signal for each motor and performs the correct motor control algorithm
to adjust the motors speed. The most commonly used communication protocol is a PWM

20

2.1 – Flight Controller

signal for each motor where the duty cycle is proportional to the requested motor speed.
Another commonly used protocol is DShot, that has been used in this application instead
of PWM. This choice was made because the DShot protocol is supported by the ESC and
has higher performance in terms of resolution and robustness. DShot is a digital protocol,
so it’s much more resilient to electrical noise and is also immune to oscillator drift. The
PWM protocol relies on time measurement to determine the duty cycle, so if the Ćight
controller and the ESC oscillators frequencies are not very close wrong readings can occur.
DShot is a digital protocol so the requested value is encoded in binary and it also has an
higher resolution than normal PWM.

2.1.1 Mechanical vibrations

Mechanical vibrations are a very important aspect to consider in such a small platform:
propellers speeds are very high, so any small imbalance is highly ampliĄed and can affect
the Ćight performance a lot, until complete lost of control. The main component affected
by mechanical vibration is the Inertial Measurement Unit (IMU) sensor. It’s role is to
measure both accelerations and rotational orientation utilizing MEMS (Micro Electro-
Mechanical-Systems) technology. A mass-spring system is built into the silicon chip and
its movements are measured (for example capacitance changes are directly correlated to
the displacement of the mass), so any excessive vibration is directly affecting the quality
of the measurement. The IMU is the most important sensor used to control the drone
in a stable position: it’s the main source of feedback for estimating the vehicle attitude,
needed by the angle controller to keep the drone stable. The common way to reduce
vibrations transmitted to the IMU, and thus improve the measurement quality, is to use a
compliant joint to secure the Ćight controller to the vehicle frame. In particular, a rubber
mount is used. Also great care is needed in making sure that all the parts on the drone
are well secured and nothing is moving because that can also be an important source of
vibrations and may be very hard to identify.

Issues regarding vibrations were encountered: during Ćight high frequency vibrations
were present and the IMU measurement was affected as showed in Figure 2.2(a). In
addition of a quite high noise baseline, some spikes are also visible in particular in Z

axis probably due to unsecured components which sometimes also started to vibrate.
This problem was important to be resolved, since the noise spikes affected greatly the
position and velocity estimates, making the drone drift in a wrong direction uncontrollably.
Multiple solution were tested in order to reduce the effect of the noisy IMU measurements.
The Ąrst approach was to perform a tuning of the Ąlter that estimates the measured
quantities, making it "trust" less these measurements, but it didn’t have any effect. There
are also the possibility to set software Ąlters on the raw sensor data, for example low
pass type that remove the high frequency dynamics. Unfortunately these solution didn’t
had any effect: performing a frequency analysis on the logged data showed that the noise
component was constant in the entire frequency range. This implied that the problem was
not a particular resonance frequency that could be removed. Then the focus was put on
the mounting of the FC to the frame and, in an effort to isolate better the sensors from the
vibrations, the rubber mounting studs that secured the Ćight controller to the frame were

21

Drone Hardware Setup

(a) High noise (b) Low noise

Figure 2.2: Comparison between IMU measurements, Figure (a) shows
the high noise before the improvement, Figure (b) shows the output of
the IMU after additional damping mounts were used

doubled. This solution improved signiĄcantly the IMU performance as shown in Figure
2.2(b). Consequently the position and velocity estimations were a lot more stable, which
was the goal of this troubleshooting since the autonomous control of the drone relies on
these estimates.

Further attempts to improve the mechanical vibrations may be improving the balanc-
ing of the propellers, but better performance may be achieved on a bigger platform. With
the used drones, the frame is quite small (around 20 cm) and is difficult to well decouple
the motor vibrations from the other component since they are very close. The aim of
this troubleshooting however is to improve the quality of the estimations and there is no
need to work further on this aspect, since the resulting position and velocity estimates
improved a lot and the Kalman Ąlter is now able to give a good result when fusing also the
Vicon measurements. The reliability and quality of the position estimation of the drones
is discussed more in depth in later chapters, in particular in section 3.4 when discussing
the integration of the Vicon system.

2.1.2 PID tuning

The control of the drone is done with a cascade of multiple controllers. The main algo-
rithm used are PID type, this require a tuning phase to choose the correct proportional,
derivative and integral weights in order to achieve a stable Ćight. The process of choosing
a correct set of weights for each controller is trial and error, requiring a test after each
change of the parameters to evaluate the performance changes. Furthermore, in case of

22

2.1 – Flight Controller

cascaded controllers the tuning process starts from the fastest controller and then moving
onto the slower ones. In this case the tuning should start from the angle rate controller and
end with the position controller. Each parameter has a different effect of the behaviour of
the control. The proportional gain is related to the responsiveness, and if increased too
much generates oscillations and vibrations. The derivative term dampens the oscillations,
but when increased it reacts more to the noise. Finally the integral term reduces the
steady state error, but again if increased too much oscillations are generated and insta-
bility can occur. The wrong choice of these parameters can cause Ćight instability and
wrong behaviours (for example vibrations). The tuning phase is a particularly important
aspect if high performance and fast response time are required. Since these characteristics
are crucial for racing drones but not for the aim of this thesis work, that tuning aim was
to only achieve a stable Ćight. The PX4-Autopilot software after being deployed for the
Ąrst time on a new Ćight controller does not need a full PID tuning: all the controllers
have already the gains set to values that works in the majority of the cases.

An issue was encountered in the angle rate controller (shown in Figure 1.2) that pro-
duced very strong vibrations in the pitch and roll axes, imposing very high changes in
motor speeds as control input. To achieve a correct behaviour without high oscillations
and overshoots, represented in Figure 2.3b, the proportional gain of the rate controller
was decreased, from 1 to 0.3: this gain was far too high, producing big overshoots of the
controlled quantity.

(a) Before PID tuning (b) After PID tuning

Figure 2.3: Roll rate control performance, Figure (a) shows the high
vibrations induced by the wrong PID tuning. Figure (b) shows the be-
haviour after the tuning.

Another consequence of this wrong behaviour was that the controller, in order to
change quickly the angular rates, it imposed high and fast changing motor speeds to the
motors. From Figure 2.4 is possible to see that the motor control signal goes from 0%

23

Drone Hardware Setup

to as high as 90% multiple times per second, requiring a big torque to be produced by
the motors. This torque is directly proportional to the current Ćowing into the windings.
The resulting high currents Ćowing into the motors generated very high temperatures
into the windings even after just a couple of seconds of Ćight. Maintaining the Ćight for a
longer period had the potential to ruin the motor or the ESC if the maximum operating
temperatures were exceeded. All of the drones during their setup required this step of
tuning of the angle rate controller since it presented always the same issue. It was not
an issue related to a defect of a single drone but the base tuning offered by PX4 is not
fully suited for these particular quadcopters. After performing the PID tuning the Ćight
was very stable, without vibrations and the motor temperatures stopped being a problem
anymore.

Figure 2.4: Motors actuation command during oscillations created by
the angle rate controller improper tuning.

2.1.3 RC receiver

The main intended way to control the drone is using the remote radio controller (RC),
that communicates to the FC using a dedicated radio receiver connected directly to the
FC. In this case its setup supports only data sent towards the FC: information about
the remote radio controller buttons and analog sticks positions are sent to the drone’s
radio receiver. The buttons on the radio controller are directly mapped to functionality
like arming, changing Ćight mode and, of course, imposing the target throttle, roll, pitch
and yaw angles. The one way stream of data allows to use a particular connection called
SBUS that uses only one data pin and has a reserved breakout on the FC. More complex
conĄgurations can be implemented for example sending telemetry data directly to the
radio controller to read useful data directly onto it and perform simple automation tasks

24

2.2 – Companion computer

like return to home or failsafe tasks. This possible conĄguration requires another dedicated
UART port that is not available on the Omnibus F4SD since the one used to connect to
the companion computer is usually reserved for GPS (not used in this conĄguration) and
no other free ports are present.

Figure 2.5: The remote radio controller

The frequency used for the radio controller is 2.4GHz and there are multiple protocols of
transmission usually developed directly by each manufacture. The radio transmitter and
receiver must use the same transmission protocol and frequency to correctly communicate.
Note that the used frequency is the same as 2.4GHz WiFi and no direct compatibility
between the two protocols is present. The transmission power is very high, in order to
achieve long range communication between the radio controller and the FC. The close
distance between the onboard radio receiver and the companion computer WiFi antenna,
suggest a possible electromagnetic interference between the two systems. This topic is
analyzed more in depth in Chapter 2.2.

After the complete setup of the FC the drone is fully capable of Ćying controlled
manually with the radio controller.

2.2 Companion computer

Each drone is equipped with an onboard general purpose computer, called companion
computer, that connects with the Ćight controller and other sensors. Its role is to perform
computations and it communicates directly with the FC. Since it’s mounted inside the
drone, it is particularly suited for latency critical computations that beneĄt from the di-
rect communication instead of relying on a wireless communication to a ground station. In
this case the main role of the companion computer is to enable WiFi communication, not
available directly from the FC. The WiFi communication is used to exchange information
between the drones and also receive data from the Vicon system. It also has the capability
to execute any program in order to be independent from a ground station, in particular
ROS 2 Humble was deployed onto it so there is the possibility to execute any ROS 2

25

Drone Hardware Setup

package, beneĄting in terms of latency due to the direct communication. The impor-
tant hardware limitations of this board have to be taken into account if computationally
intensive tasks need to be performed.

The board model is a NanoPi Neo Air, a single board computer equipped with 512
MB of RAM and a quad-core 32bit ARM processor. Other than WiFi connectivity also
multiple serial ports are present, that are necessary to establish communication to other
boards. The setup of this board starts by Ćashing on an SD card the operating system
image: the OS images are directly provided by the board manufacture, so they can be
deployed directly using and SD card without any additional work. Then using a TTL-
232R serial to USB adapter, the UART0 debug serial port is connected to a computer and
a console of the system can be obtained. Once logged in the operating system the WiFi
connection can be conĄgured and from this point the network protocol SSH was always
used to connect to the board and interact with it.

2.2.1 WiFi connectivity

Establishing the WiFi connection was not trivial at Ąrst: even following precisely the
manual [4], the board did not detect any access point. It only managed to connect if the
board and the WiFi router were very close, but the received signal strength both from
the NanoPi and the router were very weak. For example, from a distance of just a couple
of meters the received signal power measured from the router was -90 dBm. That is very
low and is only expected if distance to the router is much bigger. The board presents a
connector for an external antenna, that is mandatory for WiFi connectivity, but is never
mentioned explicitly into the manual and it was assumed that the antenna was integrated
inside the WiFi chip, like in similar boards (e.g. Raspberry Pi). After connecting a suited
antenna the connection to an access point was then a straightforward process.

WiFi connectivity still presented some issues regarding the stability of the connection,
sometimes stopping the transmission or losing packets, without a clear cause. This prob-
lem affected a lot the Ćight performance since the position estimation relies on the Vicon
measurements that are sent to the drone via WiFi with a precise frequency. The loss of
reception of these data results in a signiĄcant drift in position estimation caused by the
unreliable inertial measurements. This resulted in the drone loss of control when per-
forming an autonomous task that relies on a correct position estimate. A more detailed
description of problems regarding states estimation is discussed in section 3.3.4.

The root cause of this problem is the electromagnetic interference between the 2.4GHz
WiFi band and the 2.4GHz radio link with the radio hand controller. The radio controller
is a FrSKY Taranis Q X7 using the 2.4GHz band transmit to the drone receiver. This
radio link does not comply with the WiFi standard and, in addition with the high trans-
mission power, caused the random disruption of the communication. The solution to this
problem is to change the radio receiver with one that uses the 900 MHz band instead if
the presence of a radio controller is required. The radio controller in this case is only used
as a backup to regain control of the drone in case of unexpected behaviour, or to perform
a Ćight termination (immediate shutdown of the drone). The other possible solution is
to not use the radio controller and also remove the radio receiver connected to the Ćight
controller. In this case the only way to communicate with the drone is via ROS 2. Since

26

2.2 – Companion computer

the Ćight termination action can also be performed via ROS 2, no features are missing if
the radio controller is not present. After identifying this issue the radio receiver was re-
moved and all the issues regarding loss of communication and unreliable packet reception
were resolved. Resolving this issue, and thus greatly improving the reliability of the WiFi
connection, was a crucial step in obtaining a correct setup suitable for offboard control
since without this improvement the behaviour was too unstable and, using the drones in
offboard conĄguration was not feasible.

In order to identify this problem the main indicator was the loss of ROS 2 messages
that were expected with a regular frequency, both towards and from the companion com-
puter. A fundamental tool was the deploy of ROS 2 on the companion computer, which
was not trivial given the 32-bit architecture. Its implementation is described more in
depth in Section 3.2. In order to characterize the frequency of a ROS 2 topic, a builtin
introspection tool for topics was leveraged [19]: this tool shows in real time the average
frequency, and the maximum and minimum time elapsed between messages of a certain
topic. If messages were lost, a higher than expected elapsed time between two messages
was shown by the tool. The messages generated from the ground station (e.g. the Vi-
con measurements) when measured directly from it showed good frequency metrics, but
when measured with the same tool executed on the companion computer they showed
big elapsed time between messages, indicating loss of communication. The same situation
happened for the messages generated by the companion computer (e.g. vehicle real-time
odometry), showing good metrics when measured directly from the companion computer
but losses were encountered when measuring on the ground station. These tests allowed
to identify the wireless communication as the main source of the issue, focusing then the
efforts only on this part allowed the discovery the interference between RC and WiFi.

2.2.2 Serial port configuration

The companion computer is connected to the FC and to the onboard camera with a
UART serial port for each one. UART (Universal Asynchronous Receiver-Transmitter) is
a serial asynchronous protocol using 3 wires: one to receive (RX) one to transmit (TX)
and a reference ground (GND). An additional 4-th wire was used in all the connections
to connect also the 5V supply, so with 4 wires communication and power are established
between the Ćight controller, companion computer and camera module. The described
connections were performed creating custom adapters with wires and connectors, and
studying the FC and NanoPi datasheets in order to locate the correct connection points
to use.

Since the transmission is asynchronous, both terminals have to agree on the same
transmission speed. Choosing a suitable baud rate for the UART connections was not
trivial: a fast enough transmission speed was needed since the publication rate of data
from the FC is very high, but not any value is available. A valid baud rate should be
derived from the UART controller clock frequency divided by an integer number: this is
very important because the transmission is asynchronous so both boards must know the
exact bit time. The encountered issue was that a lot of values that should have been
supported by NanoPi did not allow a proper transmission because the NanoPi clock fre-
quency could not be divided to obtain accurately the requested baud rate. A lot of values

27

Drone Hardware Setup

Figure 2.6: Custom connectors created to connect the Ćight controller
and the camera module to the companion computer. The red and black
wires are for +5V and GND. The yellow and green wires are for UART
TX and RX.

were tested and a working one was found at 921600 bit/s, much higher than the minimum
value speciĄed by the PX4 manual, but able to establish the communication correctly.

The 5V power is distributed by the Ćight controller: the FC is the only board directly
connected to the battery, transforming with a voltage regulator the 11.1 V of the LiPo
battery to 5V. The power is then distributed to other boards by connecting directly to 5V
pins of the FC. This solution is not adequate if the boards needs a lot of power since the
FC is not designed to directly supply high currents to other components. In this case the
companion computer is not very powerful and the power provided by the FC was enough.
If this wasn’t the case, then a power distribution board is needed to correctly supply each
component: this kind of board connects directly to the battery and then can supply all
the boards.

2.3 OpenMV Onboard Camera

In the front of the drone, a down facing camera is present useful to many applications, for
example, the identiĄcation of ArUco Markers. The identiĄcation and the pose estimate
of the ArUco marker is a fundamental part of the estimation task as better described
in chapter 4. The camera module is a OpenMV Cam H7, it features a camera sensor
integrated with an STM32H7 microcontroller. The microcontroller allows to directly ex-
ecute computer vision algorithm and to control the IO pins, without the need to stream
the image to the companion computer. This platform uses as programming framework a
custom version of micro-Python [17]: it is an implementation of Python that is able to
run on microcontrollers and control with a high level API (respect to the usual C/C++
programming) all the IO and camera functionalities. This implementation is useful for
fast prototyping and implementation of machine learning algorithms, where Python is a
very diffused language.

28

2.3 – OpenMV Onboard Camera

The camera is connected to the companion computer with a UART connection, that
also provides the 5V power. A computer vision algorithm is run on the camera module
microcontroller and only the result of the computation are transmitted over the serial link.
In case of the identiĄcation of an ArUco marker, the microcontroller reads the image from
the sensor and locate the marker in pixel coordinates, then only those resulting coordinates
are sent over serial communication. This solution is simple and offloads some computa-
tional resources to the camera microcontroller. It relies, however, on a quite limited device
with very constrained memory. The limited memory offered by the microcontroller man-
dates an important down-scaling of the image, that affects the effective Ąeld of view of the
camera. The original resolution is 640x480 pixels and, after the down-scaling needed to
make the computer vision algorithm work, the resolution is set to 160x120 pixels. The low
resolution is also affecting the capability to correctly recognise the checkerboard pattern,
that is used for the camera calibration process. More details on the camera calibration
are presented in section 4.2.2. In order to avoid to reduce so much the resolution, it’s
possible to serialize the image at full resolution (640x480) and send it over the UART
port, to then make the companion computer perform the computations. The companion
computer offers a much greater computational power and can easily perform the computer
vision algorithm. No libraries were available to correctly handle the serial transmission of
the images from the camera module, so the Ąrst solution was used for simplicity. The low
resolution was a problem only when increasing too much the distance from the marker to
the sensor, otherwise satisfying performance were obtained.

29

30

Chapter 3

Firmware and Software

After the setup described in the previous chapter, all the boards present on the drone are
provided with power and are also connected to each other, in order to exchange information
and perform the intended task. Each board needs a software setup: the main steps are to
correctly choose the Ąrmware for the FC, and setup the companion computer to allow the
integration of PX4 with ROS 2. The fundamental choice that guided most of this part
of setup is in fact the use of PX4-Autopilot on the FC: the Ćight controller is the most
important board allowing the drone to Ćy, so all the other software is chosen ensuring
compatibility with PX4. After PX4-Autopilot was established as the software Ćight stack
to use, then the communication framework was selected: ROS 2 [10] can be directly
integrated with the autopilot Ąrmware and there is currently an active development on
this direction. This communication framework does not use the MAVLink protocol but it
directly interfaces PX4 with the DDS protocol. Finally after setting the ROS 2 version to
Humble the companion computer operating system was set to Ubuntu 20.04 as it offers the
most compatibility with this version of ROS 2 and most importantly is directly available
from the manufacturer to deploy on the NanoPi.

Figure 3.1: Software stack used for each drone.

In this chapter the software setup performed for each major component will be ana-
lyzed, describing also all the troubleshooting needed to establish a reliable ROS 2 com-
munication and to allow execution of nodes on the companion computer.

31

Firmware and Software

3.1 Ground station software

A ground station is a general purpose computer that is wirelessly connected to the aerial
vehicles ans it’s able to communicate with them. The main tasks of a ground station
are monitoring the vehicle telemetry and sending commands in order to perform certain
actions like landing and hovering. Another very important task is the conĄguration of
the vehicle both on the ground and also during Ćight. In particular, with PX4, this rep-
resents the main way of doing the setup and various calibrations. The software used in
this project that offers all the previously mentioned functionalities is QGroundControl. It
runs on a laptop connected to the same network as the drones and it’s able to interface
directly with PX4 with the MAVlink protocol. In this project it was used as the main
tool to conĄgure the autopilot parameters. It is very useful to monitor the drone while
in the air, but a wireless connection transmitting the MAVlink messages is needed. Since
the FC does not have directly the wireless capability, another serial port was needed in
order to route the MAVlink messages via the companion computer (then able to then re-
transmit the messages via WiFi). On the used FC isn’t equipped with another available
UART port (the only one was used to enable ROS 2 communication) so QGroundControl
was not used during Ćights. Connecting, however, the drone to the computer via USB,
enabled the communication from PX4 to QGroundControl that was used for the param-
eters setup: it allowed to perform the majority of actions for conĄguring the autopilot,
from Ćashing a new PX4 Ąrmware version to calibrating the sensors of the Ćight controller.

Another task that can be performed by the ground station is the execution of the
algorithms instead of executing them on the companion computer. Using ROS 2, it
allows to execute the nodes on any platform, provided that is connected to the same local
network, since the topics and messages are visible to every computer. This is very useful
during development especially if the companion computer intended to run the nodes is
not very fast at compiling the source code. In this project the ROS 2 nodes responsible
for interacting with the Vicon server to retrieve the position measurements are executed
on the ground station.This is done because the Vicon SDK library only supports 64-bit
architectures so it can’t be deployed onto the 32-bit companion computer installed on the
drones. This conĄguration introduces a small amount of latency in the samples provided
by the Vicon, since they have to be transmitted through the ground station instead of
directly to the companion computer.

Finally the ground station is used to log into a Ąle all the messages sent over the
ROS 2 framework using rosbag [18], so it will be possible to analyze all the data in a
later moment. The recorded information includes all the messages sent over the ROS 2
framework, for example the telemetry data of all the drones, and also all the commands
sent to and from each node.

32

3.2 – ROS 2 configuration

3.2 ROS 2 configuration

ROS 2 is a powerful tool aimed at the development of robotic applications. This version is
the second generation of the robotic operating system, offering an important redesign re-
spect to ROS 1, focusing on improving aspects related to network transport, architecture,
platform support and others. It offers many features and the most important is inter-
process communication with a publisher subscriber paradigm, or with client and server
requests. Each process is represented by a node and, in order to communicate with other
nodes, it has the ability to publish messages to speciĄc topics or to read messages sent
from other nodes. The main difference from the Ąrst generation is the lack of a central
server (formerly known as roscore): now each node is independent and perform a peer
to peer discovery. Additionally the peer-to-peer discovery implemented in ROS 2 is an
advantage in the case of a swarm of drones: each drone runs an independent instance of
the ROS 2 nodes so, in case of a crash of some nodes, the communication between others
is not affected. This unfortunate scenario would happen in case of the crash of the roscore
server in ROS 1.

In this project ROS 2 had to be integrated with the autopilot stack: topics related
to odometry, vehicle status, etc. are published from PX4. Topics related to external
commands to be executed by the autopilot are published from other nodes, for example
arming, takeoff or setting a position or velocity setpoint. The bridge from PX4-Autopilot
software to the DDS world is done with eProsima Micro-XRCE-DDS Agent, a middle-
ware used to convert a message from DDS to XRCE serialized messages (and vice versa),
to be streamed to the FC via the UART serial connection. A more detailed description
of the communication between FC and companion computer is explained in Section 3.3
as the XRCE software is deeply integrated in PX4. The XRCE agent is executed by the
companion computer and thanks to the DDS protocol the messages are already correctly
broadcasted to the entire local network. At this point a ROS 2 node can be executed
on any computer located in the LAN (e.g. ground station) and it is already able to
communicate correctly with the autopilot. A better solution is to deploy ROS 2 directly
on the companion computer and run on it the nodes that control the respective drone,
in order to decrease latency and prevent issues in case of loss of wireless communication,
making each drone completely independent. The layout diagram of the pieces of software
involved in the ROS 2 to PX4 communication is shown in Ągure 3.2.

3.2.1 Deploy on the companion computer

Multiple challenges were faced in order to deploy ROS 2 on the companion computer: the
system architecture is armhf 32-bit, hence a direct installation with binaries is not sup-
ported by the developers. Other solutions were tested, namely: using a Docker container,
native compilation and Ąnally cross-compiling the source code on a workstation for the
NanoPi architecture.

Docker was the Ąrst solution to be tested, since ROS 2 Docker images are available to
be downloaded and executed. A Docker image contains all the code and dependencies to

33

Firmware and Software

Figure 3.2: XRCE Agent and Client that allows communication from
PX4 to ROS 2 nodes.

run the application, so there is no need to install additional software (other than Docker)
and it abstracts the content of the image from the actual environment where it is executed.
An important aspect to check is the system architecture, that has to be compatible with
the one offered by the image: no images of ROS 2 Humble are available for ARM 32-bit
architecture so this solution had to be abandoned.

Another way to install ROS 2 for non-directly supported platform and operating sys-
tems is to compile the source code locally and generating the binaries to execute. It’s very
important that the compilation is performed by the intended target machine (i.e. NanoPi
board), since the code depends on many other packages installed in the operating system,
but most importantly, the compiled binaries must match the target CPU architecture: a
binary compiled with a 64-bit with x86 architecture machine can’t be executed by a 32-bit
machine with armhf architecture, since the CPU instructions used by the two of them are
completely different and incompatible.

In order to compile the source code, Ąrst the repository containing all the source code
of ROS 2 Humble needs to be downloaded onto the machine and all the packages required
by ROS 2 need to be installed. Then the compilation can start using the dedicated build
tool colcon. Due to the quite limited resources of the NanoPi, the procedure required
hours to progress but it never managed to Ąnish correctly. Analyzing the RAM usage
during compilation, it showed the high demand of memory by the build tool and very
little space was left for the operating system. From the entire 500 MB of RAM available,
more the 400 MB were used to compile the source code, causing the operating system
to crash or to abort the procedure when no free memory was left. A swap partition was
added in order to increase available memory. This particular partition is placed in the
mass storage and is used by the operating system in a similar way to the RAM, having
of course a very low speed. This attempt also resulted in a failed compilation or a crash
of the operating system due to lack of free memory, even when the number of parallel
operations was reduced to the minimum in order to save as much RAM as possible.

34

3.2 – ROS 2 configuration

3.2.2 Cross-compilation for armhf architecture

The last attempt to make ROS 2 available to use on the companion computer was to
perform the compilation procedure on a machine with the capabilities to complete it
successfully, and ensuring that the resulting binaries are fully compatible and able to be
executed by the NanoPi. This technique is called cross-compilation and many details have
to be considered in order to make a system create binaries to be executed on another plat-
form. The main tool to allow this is the correct toolchain, in particular the C and C++
compilers and linkers. They are installed on the workstation directly using the packet
manager since armhf is a common architecture and they are directly available without
the need of further work. The main idea is to use arm-linux-gnueabihf-gcc instead of the
already installed gcc compiler to create the binaries. This package can be executed on the
64-bit workstation but the output is a binary that can be executed by the target archi-
tecture. A further complication is that these steps needs to be executed by the building
tool designed for ROS 2 that is colcon, so a setup of its parameters is necessary. This tool
handles all the dependencies of the code and it’s designed in particular to build ROS 2 and
its packages. Another important aspect to consider is to correctly manage all the code
external dependencies, that have to be installed on the target board and placed in the cor-
rect folders, otherwise the code will not work correctly when executed on the target board.

The environment used for the cross-compilation is a Docker container with Ubuntu
20.04, that matches the operating system present on the NanoPi: using the same version of
the OS makes it easier to match the libraries versions from build environment to the target
operating system (e.g. GLIBC version is very important it’s strictly related to the Ubuntu
version). Another reason to use a Docker container is to have a clean environment without
any other installation or conĄguration, and also to avoid breaking the installation of other
software present on the workstation. All the operations executed on the workstation are
all performed inside the described container. Note that the container architecture is the
same as the workstation, so it is no different from the perspective of the compilation tools
from running outside of it.

The source code is then downloaded onto the container and the build tool needs to
be conĄgured to perform a correct cross-compilation. To conĄgure the build tool, a
Ąle containing CMake instructions and variables to set is passed to it at the start of the
procedure. The main aspects to consider in the CMake conĄguration Ąle are the toolchain
executables to use, the target root Ąle system path and the strategy to Ąnd libraries. The
two latter requirements are needed to correctly solve dependencies during compilation.
The compiler needs to know the location and version of the libraries installed on the
target board. This is accomplished by installing Ąrst all the dependencies on the target
board and then by copying the root Ąle system to the container on the workstation (just
the folders /lib, /usr, /etc are needed). The path of these folders is used by the build
tool (variable CMAKE_SYSROOT) in order to search for the necessary library Ąles. It’s
very important that the libraries are searched in the target root Ąle system and not on the
workstation because they may be found on both systems with the same names, but any
64-bit version of the libraries will make the compilation fail. A very important workaround
used in situations where the tool manages to Ąnd only the workstation system’s library,

35

Firmware and Software

even if present in the target Ąle system, is to create a symbolic link from the desired 32-bit
library Ąle, overwriting the found 64-bit library Ąle. This way, if the library is found on
the 64-bit machine is anyway redirected to the correct Ąle inside the target root folder.
Note that this method can break the installation of software, but since this process is
performed into an isolated container, this issue can be ignored as the container can be
discarded or reset without problems. Another way to Ąx errors due to libraries not found is
to append to the environment variable LD_LIBRARY_PATH the folder path containing
the missing library, in case the folder for some reason is not searched.

CMake variable names Value

CMAKE_SYSROOT /opt/rootfs
CMAKE_C_COMPILER /bin/arm-linux-gnueabihf-gcc
CMAKE_CXX_COMPILER /bin/arm-linux-gnueabihf-g++
CMAKE_FIND_ROOT_PATH_
MODE_PROGRAM

NEVER

CMAKE_FIND_ROOT_PATH_
MODE_LIBRARY

ONLY

CMAKE_FIND_ROOT_PATH_
MODE_PACKAGE

ONLY

CMAKE_FIND_ROOT_PATH_
MODE_INCLUDE

ONLY

PYTHON_SOABI cpython-38-arm-linux-gnueabihf
PYTHON_EXECUTABLE /opt/rootfs/usr/bin/python3.8
CMAKE_CROSSCOMPILING_ EM-
ULATOR

/usr/bin/qemu-arm-static

Table 3.1: Some of the most important CMake variables set to
perform cross compilation and Ąnd libraries in the target Ąle
system.

Another important aspect to consider during the cross-compilation of ROS 2 is the
correct integration of Python in the resulting binaries. Python is an important part of
ROS 2 and is directly integrated with the C++ source code. During the compilation,
the Python installation present on the target Ąle system needs to be used and it also
needs to be emulated because its binaries are 32-bit. This step is mandatory since using
the Python installation present on the workstation will result in a failed procedure. The
correct Python executable to use is set again in the CMake Ąle conĄgured for the cross-
compilation.

Multiple trials were needed to correctly set all the variables that allow to perform a
successful cross-compilation, since no guide was found listing a complete and correct list
of them. The complete list of the used CMake variables and installed packages is present
in the project repository [12].

When the procedure is Ąnished, a folder containing all the ROS 2 binaries will be cre-
ated. To install it on the target board this folder needs to be copied into the actual NanoPi
Ąle system (the binaries produced by the build tool are present in the install/ folder).
Note also that the resulting binaries will work on any machine with the same architecture

36

3.3 – PX4-Autopilot

and the same libraries installed. Once the folder is copied onto the companion computer
ROS 2 is fully functional and can be used in the same way as a normal installation.

A very similar procedure was also developed to cross-compile packages created by
the user but, depending on the size and complexity of the package, it may be not as
necessary. With packages composed of a small source code, in particular if using the
Python library, the NanoPi is fully capable of performing a native compilation of the
package in a completely reasonable time.

3.3 PX4-Autopilot

The chosen Ąrmware for the Ćight controller is PX4-Autopilot. It is an open source project
that supports a great variety of Ćight controllers, and is able to control multiple kinds of
aerial vehicles, for example multicopters and Ąxed wing. This software can also be easily
customized to Ąt any particular application, from the customization of its features to the
tuning of the Ćight performance. PX4 is, in fact, a software stack that covers different
parts of the control of a vehicle, from the controllers to the communication protocols like
MAVLink or ROS 2.

This piece of software is the Ąrmware executed by the Ćight controller and includes
the most important aspects regarding the Ćight of the drone: it manages every aspect of
the Ćight controller, from reading the sensors to executing the main control algorithms,
imposing the motor speeds. It’s also the main software to interface with to command the
drone: it reads inputs from the remote radio controller and also supports other commu-
nication protocols to receive commands sent by other applications. This second feature
is particularly important, since it allows the integration with ROS 2 in order to perform
an offboard control. Regarding the control aspect, PX4 offers different levels of control
of a multicopter: from a low level control, for example imposing directly motor speeds or
angle rates, to position control. Moreover other simple high level tasks are directly sup-
ported, like automatic takeoff and landing or performing a waypoint mission. Depending
on the desired level of control, different parts of the Ćight stack are leveraged, enabling
or disabling different control algorithms and injecting the desired setpoints in the control
loop. For example, in order to achieve an acceleration control, the acceleration setpoint
is sent to PX4 (for example from a ROS 2 node) and, at the same time, the position and
velocity controllers are disabled. The controllers layout is shown in Ągure 1.2 and 1.3.

Another important task accomplished by PX4 is the estimation of multiple quantities
relative to the drone Ćight. Direct measurements are very noisy and the sensors present
on the FC are limited, so the estimation is mandatory in order to derive quantities like po-
sition or velocity. The algorithm used is an extended Kalman Ąlter, referred to as EKF2.
This approach is very useful in particular when integrating to the other measurements
the external position measurements (i.e. Vicon), in order to increase the accuracy of the
estimate.

Flight modes let the user choose different behaviours of the system, offering a direct
control or a higher level of autonomy. Some examples of commonly used modes are:

• Manual: the sticks on the radio controller directly impose the setpoint of the angle

37

Firmware and Software

controller: to make the drone move forward the pitch stick is moved forward to
make it lean forward. It does not require any external position information and it
was heavily used for testing, since does not suffer from position estimate errors.

• Hold: when entering this mode the vehicle current position is set as setpoint of the
position controller, so it remains still in the same position. Using the radio sticks
the position setpoints can be slowly changed so it’s very easy to control.

• Offboard: this mode is for controlling the drone with external commands (e.g. from
the companion computer). It’s the mode used to control the drone from a ROS 2
node running an algorithm. For example, there is the possibility to impose directly
angle rates or to perform a higher level control by imposing a position setpoint,
leveraging the position controller already built into the autopilot stack.

3.3.1 Build and parameters setup

In order to deploy PX4 onto the Ćight controller the main steps to follow are to down-
load the full source code, compile it for the intended board, Ąnally Ćash it onto the Ćight
controller memory. Already built binaries are available directly from the PX4 repository
[5], but some needed features are not included by default like the Kalman Ąlter module.
For the compilation an already available target was available, supporting the Omnibus
F4SD board, but again this build conĄguration did not include some important modules.
The autopilot stack is modular so before compilation it is possible to choose the wanted
functionalities. This mainly affects the Ąnal size of the executable, that needs to Ąt onto
the constrained memory of the FC. An notable limitation of the used Ćight controller is
the limited amount of Ćash storage, as the memory size is 1 MB, so the PX4 executable
needed to be smaller in order to be loaded onto it. The main feature missing from the
default conĄguration was the Kalman Ąlter estimator (EKF2), essential to be able to fuse
external vision measurements. That module when added made the executable too big to
Ąt into the FC memory. A process of trial and error was used, in order to Ąnd a conĄgu-
ration that produced an executable smaller than 1 MB and included the wanted features.
Unused modules like GPS drivers were removed in an attempt to free enough space to
include the estimator module. This phase was harder than expected due to the lack of
clear documentation regarding each module tasks, and due to dependencies between mod-
ules which prevented a successful compilation if some required modules were not included.

The PX4 stack offers a large set of parameters that can be customized in order to
enable or disable some features and also tune the control algorithms. After the deploy of
the autopilot Ąrmware onto the FC, some parameters have to be set regarding mostly the
estimator setup and the vehicle geometry. These parameters can be set using QGround-
Control or using the SD card: a Ąle can be written onto it that is executed at each startup,
so that the speciĄed parameters are set. This solution was used to control more accu-
rately the entire set of parameters used, and also to execute the command to start the
XRCE-DDS Client, a crucial component to allow communication with ROS 2.

38

3.3 – PX4-Autopilot

3.3.2 Motor ordering

Since PX4 can be customized to Ąt any aerial vehicle, it needs a description of the ge-
ometry of the drone, in particular the position of the actuators. This is important to
correctly calculate the speed to impose to each motor, in order to achieve the desired
attitude. The attitude control problem relies on imposing a torque on the drone body
by changing the thrust produced by each motor. The relation of the motor speed (and
thus thrust) to the torque produced on the body, depends on the position and orienta-
tion of the motor respect to the center of mass. In case of a quadcopter then the X

and Y positions of the 4 motors are speciĄed with the parameters CA_ROTOR0_PX,
CA_ROTOR0_PY,CA_ROTOR1_PX ... A mismatch in the PX4 default motor layout
was found due to incorrect wiring of the ESC: the motor number 1 was expected from the
software in the front-right position but it was wired to another motor. This resulted in
a complete instability of the drone, since the required torque needed to control the body
angle rate was generated using the wrong motors, and resulted in a complete inability of
the drone to Ćy. After conĄguring each motor to the actual conĄguration the problem was
solved. An earlier attempt to Ąx this problem was to swap the wires connecting the FC
to the ESC. This resulted in a correct Ćight of the drone, however the software solution
was much more simple to implement that modifying the wiring of each drone.

3.3.3 Communication using ROS 2

The main way of communication of PX4 Ćight stack is using the MAVlink protocol: it is
used both to communicate with QGroundControl software and is also used in the mavros
packages available for ROS 1. Moreover the most diffused software stack to control aerial
vehicles was ROS 1 with mavros package. Recently the PX4 project started supporting
also ROS 2, previously with a bridge called RTPS and later changed to XRCE. This
transition is still in progress during the development of this thesis and the PX4 version
used is the beta version of v1.14 (the latest available). Using the beta version of the
software created a lot of challenges, since the released code sometimes presents bugs and
the documentation was not available or updated to the new changes. The new XRCE
bridge was anyway the best solution in terms of compatibility with ROS 2 and the chosen
operating system version. Attempts were made for using the more established RTPS
bridge, but it was not supported and not working on Ubuntu 22.04. The supported OS
is Ubuntu 20.04, but this mandates a downgrade to ROS 2 Foxy. In order to avoid
downgrading all the pieces of software (especially considering ROS 2 Foxy is reached the
end of life status), the beta version of the autopilot was used.

The new communication stack does not rely on MAVlink or mavros, but it directly
exposes the inner workings of PX4. Inside the autopilot stack, to allow inter-process
communication, a messaging system is used, the uORB messaging where different kinds
of information and commands are exchanged. Using the new communication stack the
XRCE bridge directly maps some of the uORB topics directly to ROS 2 topics. When
a new uORB message is sent from the autopilot stack, for example a message relative to
the vehicle status, it is also sent to the relative ROS 2 topic. A small and conĄgurable

39

Firmware and Software

subset of uORB messages are currently supported for ROS 2 communication. The oppo-
site situation is also possible: an example is the arming command generated by a ROS
2 node. When received by the XRCE Agent, is directly translated and published to the
associated uORB message inside the autopilot stack where the correct process will elab-
orate the message and perform the action. Interacting directly with the inner workings
of the autopilot stack allows to access high frequency and low latency estimations and
sensors measurements, that can be used to more accurately execute an attitude control
algorithm in an offboard ROS 2 node. This communication is in fact aimed to achieve
higher performance in terms of latency and responsiveness. Note that only a small subset
of the uORB messages are interfaced with the XRCE bridge, as only the messages that
are used to command the drone or read status information are available. The cause of
this limit depends on the fact that interacting with the inner working of the stack has a
high probability of introducing errors and crashing the system.

The layout of the communication software can be seen in Figure 3.2. The client side
of XRCE-DDS is directly built inside the PX4 Ąrmware and is run by the Ćight controller
so it has a direct access to the uORB topics and messages. The client then serializes
the messages and transmits them to the agent of XRCE-DDS: here is deserialized and
published on a topic visible to all ROS 2 nodes. The communication between the agent
and the client side of the bridge supports multiple types of transport protocols, like UDP,
TCP, serial, etc. In this application, since the FC and the companion computer are
connected via a UART port, the serial transport is chosen.

uORB topic Frequency [Hz]
VehicleStatus 2
VehicleAttitude 120
VehicleLocalPosition 125
VehicleOdometry 125
FailsafeFlags 2

Table 3.2: Example of uORB topics and the relative publishing
frequency

In Table 3.2 some examples of topics with the relative publication frequency are shown.
The needed bandwidth is directly proportional to the number of topics and more impor-
tantly to their frequency of publication: the serial transmission from the Ćight controller
to the companion computer needs a baud rate fast enough to handle all the published
messages. The baud rate refers to the time a single bit takes to be transmitted, and is
closely related to the bandwidth. If a too low baud rate is used, then the behaviour of the
published topic is unpredictable: the publication frequency is very low and some topics
are completely missing. In case the serial communication does not support a fast rate
of communication, some of the most bandwidth demanding topics can be disabled. By
disabling the topics with a high publication rate and enabling only the ones relative to
status information like VehicleStatus and FailsafeFlags, the needed bandwidth can be as
low as 7 kbps, requiring then also a very low baud rate.

40

3.3 – PX4-Autopilot

3.3.4 Position and velocity estimation

A crucial aspect of the autopilot stack is the implementation of an extended Kalman Ąlter
[3], in the PX4 module called EKF2. The total number of states estimated in the PX4
implementation is 23, which include the position, velocity of the vehicle, attitude, IMU
biases and others. The input of the Ąlter are the measurements taken from the IMU and
other sensors like the barometer and Vicon. Multiple sensors have to be used because pro-
viding an accurate estimation of position and velocity simply using the IMU measurement
is not possible. These quantities, in fact, have to be calculated by means of numerical
integration since the IMU can only provide acceleration measurements. A downside of
numerical integration is the accumulation of measurement errors, which can result in an
unusable position estimate that drifts over time. In particular, the vibrations affecting the
IMU increase the uncertainty of the measurement and this effect is accentuated. In Figure
3.3 is shown the effect of accumulation of errors due to numerical integration, when using
acceleration only data from the IMU: due to the high drift the estimate is not usable for
precise positioning during Ćight.

Figure 3.3: Estimate of Z position in stationary condition, re-
lying only on IMU measurements

To allow a precise position control, an accurate estimate of this quantity is required.
This is done using more measurements that directly measure the position, that is then
fused by the Kalman Ąlter into the Ąnal estimate. There are multiple options to directly
measure position, and a common one is using GPS localization. In this project the position
measurement was retrieved using the the Vicon system, since GPS was not available.
Additionally the Vicon system performance is much better both in terms of accuracy and
latency.

In order to fuse the Vicon measurements into the Ąnal estimate, a setup of the Ąlter

41

Firmware and Software

module is required. This module present a lot of parameters to work with, giving the
possibility to enable different source of data and tune the performance relative to the
accuracy of each data source. The fusion of the external vision measurements is enabled
and a tuning of PX4 parameters is performed in order to let the estimate rely more on the
Vicon measurements rather than the IMU. This is achieved by working on the covariance
assigned to each measurement source: if the covariance is small then the measurement will
have a greater effect on the Ąnal estimate, and vice versa. This had to be done because
of the vibration problem affecting IMU (Section 2.1), that managed to make the estimate
drift from the Vicon direct position measurement even if it was correctly fused. An ex-
ample of this situation is represented in Figure 3.4 where data recorded from a test Ćight
shows a huge difference between the real height (Vicon measurement) and the estimation,
caused by the visible high noise spikes in the acceleration measurement. In order to reduce
this issue, the accelerometer and gyroscope covariances were increased and the covariance
relative to the Vicon measurement was set to a very small value of 1 mm. After reduc-
ing the vibration that affected the FC (section 2.1.1), the estimate quality improved again.

Another important issue encountered in this phase was the difficulty to establish a
robust stream of measurements from the Vicon server to the Ćight controller: if the direct
position measurements are not correctly received, the estimation will continue using only
IMU data and the result will be uncontrolled behaviour of the drone. Particular effort was
put in ensuring that the lateness of the samples was kept low and the frequency remained
at acceptable levels (above 30 Hz), by minimizing losses of packets over the network. If the
previous requirements are not met, then the estimator only relies on IMU measurements
and the position estimate would start to drift from the real value and in case for example
of position control the drone starts to move in a direction dictated by the wrong position
estimate, often resulting in a crash. Using correctly the Vicon SDK to retrieve low latency
measurements, needed for this real-time application, was an important part of improving
the robustness of the position control of the drones.

The main cause of the wrong reception of the Vicon data relies in networking issues
relative to the wireless part, already discussed in Section 2.2.

3.4 Vicon system

The Ćight environment is composed of a safety cage inside of which the drones can Ćy,
needed in case of loss of control of a vehicle: drones will only crash inside the cage,
preventing damage to anything outside. During the Ćight of the drones nobody is inside
the cage and the vehicles are only commanded remotely using the radio controller or
running an offboard control algorithm. Inside the cage a Vicon system is mounted: it’s
composed of 6 cameras that are able to measure the drone’s position and orientation inside
the entire Ćight area.

Drones, the ground station and the Vicon server are all connected to a wireless router
isolated from the internet and from the company network. In a Ąrst attempt, a router
connected with the rest of the network was used, but resulted in an increase of latency and
sporadic loss of messages. In a further attempt to improve the network reliability when

42

3.4 – Vicon system

Figure 3.4: Drift of the EFK2 height estimate from the Vicon
measurement directly related to IMU excessive vibrations.

facing important connectivity issues to the drones, multiple router models were tested.
The most reliable solution found was to have a completely isolated router from other
networks. The ground station and the Vicon server are also connected using Ethernet
cables, so only the drones use a wireless connection. The wired connection of the ground
station to the router also seemed to increase the reliability and lowered the latency of
communication respect to using a wireless one. The node that interacts with the Vicon
server and sends the position information to the drones is executed on the ground station,
so wired connection directly improve the overall latency of the Vicon samples.

The Vicon system allows to measure very accurately the position of the drones inside
the cage, offering a position groundtruth to be used by the autopilot estimator. Special
infrared reĆectors are positioned on each drone and the system can recognise each vehicle
accordingly to the layout of the reĆectors onto it. An example of reĆectors is visible in
Ągure 1, representing the actual conĄguration used. The system falls under the motion
capture category: all the cameras simultaneously take a picture of the Ćight area and the
infrared markers can be easily identiĄed from the scene. Then all the information is then
fused together (directly by the system) and a 3-dimensional position and orientation of
each vehicle is provided.

The aim of using the Vicon system is to retrieve real time measurements of the drones
position, using the provided SDK integrated into a ROS 2 nodes. The SDK library offers
a C++ API to retrieve the data connecting to the server that manages the Vicon cam-
eras. Some simple implementation of the SDK ready to be used with ROS 2 are already
availables: these libraries did not offer a satisfactory performance in terms of latency and
frequency of the data. This issue was made worst by the wireless connectivity problems
induced by the radio controller and wiĄ interference. A big effort was put in obtaining
a good performance by writing a program to interface with Vicon from scratch, directly

43

Firmware and Software

Figure 3.5: The used safety cage for drone Ćight

Figure 3.6: Vicon data stream layout

using the official SDK. The main issue to resolve was to provide a stable stream of low
latency samples to send to the drones. If samples had high latency (200-300 ms) they
were discarded by the EKF2 estimator because they don’t provide additional information
for data fusion. Otherwise if the elapsed time between samples was too high, then the
autopilot estimator recognises the external vision data stream as stopped and proceeded
with only inertial measurements, resulting in a drift of the position estimate.

44

3.4 – Vicon system

3.4.1 Vicon SDK Implementation

In the Ąrst iteration, basic functionality offered by the C++ SDK were implemented into
a ROS 2 node: after getting the position of the drone from the Vicon server, it was
directly translated into the appropriate ROS 2 message and sent to each drone. The topic
used to transmit the position measurement is /fmu/in/vehicle_visual_odometry. This
solution relied on the base class that handles communication to the Vicon server called
ViconDataStreamSDK::CPP::Client. This class returns all the samples recorded by Vicon
in order, without skipping any: when calling the function to retrieve the sample, the
following one from the last function call is returned, independently from the time elapsed
between the calls. The function that retrieve the data is a blocking call, sometimes
stopping the execution unexpectedly for 0.1 seconds, a very high time respect to the
requested 50 Hz rate. This resulted in an accumulation of old samples, that were discarded
due to the high latency. Various solutions were tried in order to improve the performance,
in an attempt to meet the needed requirements: a multi-threading approach was used to
avoid the blocking calls inĆuencing other tasks, First In First Out buffers were used to
store the Vicon samples and interface the various tasks. The old samples were directly
discarded from the buffers, in order to avoid sending old data and speed up the algorithm.

(a) First implementation (b) Second implementation

Figure 3.7: Comparison of the performances of the two implementation
of the Vicon SDK. The plot shows the packets received by the Ćight
controller in a 2 seconds interval. The expected rate is 50 Hz

A lot of troubleshooting was done in this phase to understand the reason of the bad
quality of the received data, but the results were still not good enough to work reliably
with the autopilot. The stream of samples presented regular interruptions, seen in Figure
3.7, even after decoupling all the node’s tasks with multi-threading and FIFO buffers.

45

Firmware and Software

The second implementation of the SDK was again done from scratch, to avoid in-
troducing possible errors present in the Ąrst version. This time the class ViconDataS-
treamSDK::CPP::RetimingClient offered by the SDK was used. This class offers lower
latency performance with respect to the previous one and also offers the possibility to
linearly interpolate between two samples to achieve even higher temporal precision. A
downside is that in order to reduce the latency, a little higher uncertainty on the position
is present, but it is not a problem in this application since the data is then processed by
the autopilot Kalman Ąlter.

The main functionality used is RetimingClient::WaitForFrame() that blocks the exe-
cution until a new sample is available from Vicon. The key difference from the previously
used class is that this function returns the newest sample, and all older samples are
discarded. Again this function is also blocking, because it is waiting for a new sam-
ple, but since the samples are published with a frequency of 100 Hz, the need to use
multiple threads to manage the functions didn’t arise. Then the function Retiming-
Client::UpdateFrame() performs a linear interpolation on the last acquired sample, in
order to improve further the temporal precision.

1 void vicon_rcv (){

2 /* Wait for sample from Vicon */

3 Output_WaitForFrame WaitOutput = vicon_client . WaitForFrame ();

4 if(WaitOutput . Result == Result :: Success)

5 {

6 this -> vicon_client . UpdateFrame ();

7 Frame new_frame = this -> vicon_client . GetFrame ();

8 /* Send Vicon sample to PX4 */

9 if(! new_frame . segments .empty ())

10 {

11 this -> publish_px4_msg (new_frame . segments [0]);

12 }

13 }

14 }

Listing 3.1: Function used to receive data from Vicon an publish it to PX4

The function in listing 3.1 is executed with a frequency of 50 Hz, generating a much
better stream of samples, with very low temporal jitter. The downside is the presence
in the stream of data of outliers: this is not an issue because the Kalman Ąlter easily
removes them, so no prior Ąltering is required. The performance of the second iteration
of the Vicon SDK implementation are shown in Figure 3.7.

The performance obtained with the latter implementation of the Vicon SDK improved
a lot the precision and stability of the estimations performed by the autopilot Kalman
Ąlter. At this point it was possible to safely use the position estimate for example to
control the drone position without risking random drifts or loss of control.

Executing the Vicon-ROS2 node on the ground station computer was mandatory since
the SDK library provided by Vicon only supports 64-bit machines and the companion
computer has a 32-bit architecture. The library provides a shared object Ąle that is
already compiled and ready to be linked with the rest of the project source code. In
order to deploy this node onto the companion computer, an entire cross-compilation of

46

3.5 – Safety measures

the Vicon SDK source code was necessary. Executing the node on the ground station
introduces some latency to the samples provided by the Vicon system, because data is
not directly being trasmitted to the companion computer, however the performance loss
is negligible.

3.5 Safety measures

A very important aspect to consider when Ćying drones are procedures to regain control of
the vehicles in case of unexpected behaviours or to perform a complete shutdown if needed.
In particular, these actions have to be performed remotely because the drones can’t be
handled by hand when Ćying due to the spinning propellers that are very dangerous. In
this project, all the interaction with the drones can happen both with the remote radio
controller (each radio is linked with only one drone) or using commands generated from
an offboard algorithm.

There are multiple situation where a loss of control can happen, but the main source
of unexpected behaviour in this case is the offboard control. The algorithm that is re-
sponsible for controlling the drones may impose wrong commands that result in a crash
into another drone or into the cage walls. An example of possible scenario is the complete
loss of connectivity to the drone when controlling it in offboard mode: if the companion
computer can’t impose waypoints or acceleration commands then a crash can happen.
Note that a message is sent to the autopilot on the topic /fmu/in/offboard_control_mode
with a frequency greater than 2 Hz, representing the liveliness of the computer executing
the offboard algorithm. In case the autopilot stops receiving this message, an autonomous
landing is performed immediately handling situations of complete loss of connectivity.

The two ways to communicate to the drone are using the remote radio controller and
the ROS 2 framework and both have the possibility to switch Ćight mode or terminate the
Ćight if needed. The Ąrst action performed to regain control of the drone if the offboard
control is not performing as expected, is using the remote radio controller connected to
the drone to override the external commands and control the drone manually. This is very
difficult to do because requires good skills in manual control using the radio controller of
the drone.

Another solution to regain the control of the drone if it is still in a stable Ćight condition,
is to switch the Ćight mode to hold mode when the drone is still Ćying and is, for example,
about to collide with another object. This is an autonomous mode that controls the drone
position. The mode change can be triggered both from the radio controller, where a switch
is directly mapped to the mode change, and from the ROS 2 environment. To perform
a mode change using ROS 2, a message is published to the /fmu/in/vehicle_command
topic, instructing a mode change to the desired one. After the drone is hovering in hold
mode, multiple options are available, for example using manual control or performing an
autonomous landing.

The last available option to use is Ćight termination. This command instantly stops all
the motors from spinning and it has to be used only as a last measure. When using this
command the drone receiving it will stop all motors from spinning in any condition is in,

47

Firmware and Software

both in Ćight or not. If the drone receive a Ćight termination command while it is Ćying,
it will to fall to the Ćoor instantly, receiving possible damage. For this reason, it should be
avoided in most cases, using it only if the drone already crashed. When the drone crashes
the motors should stop spinning to avoid hitting the Ćoor and causing more damage but
it doesn’t always happen. This command is very useful in this situation. The Ćight ter-
mination command can be sent from the radio controller with a suited button that is
intended only for this task or also from a ROS 2 node. In order to send this command
to PX4 from ROS 2, the command VEHICLE_CMD_DO_FLIGHTTERMINATION on
the same topic cited before. The main reason to have a radio controller connected to each
drone when using the offboard control is the availability of the Ćight termination button
on a different communication channel other than WiFi.

The main purpose of the presented measures is to regain control of the drones. In
case of a crash, in fact, the drones can suffer a lot of damage, depending on the situation,
and the aim is to try to reduce it to a minimum. During the setup of the swarm and the
development phases, is quite frequent to encounter situation of loss of control since a lot of
unseen issues can arise unexpectedly. An example is the setup phase related to integrating
the Vicon measurements to correctly estimate the drone position. The estimate was not
stable or correct at all at the beginning. A lot of test Ćights were performed and sometimes
they resulted in uncontrolled drifts of the drone that crashed into the walls of the cage.

The safety related to the human operators is already taken care by using the cage: it
is completely enclosed so the drones can’t manage to escape and the only thing that can
happen is the drones suffering damage.

48

Chapter 4

Target Estimation and
Tracking

After the Ąrst part of this thesis project was Ąnished, the drones were ready to Ćy and
be localized by the Vicon system. In order to test the setup, an offboard application was
deployed onto the drones, after being developed and tested with the help of a simulation
environment offered by Gazebo. The implemented application includes two main subjects.
The Ąrst is a diffused estimation, using a information form Kalman Ąlter, of the position
of an ArUco marker positioned on the Ćoor. The position and velocity of the marker
are estimated using the onboard camera of each drone as a source of measurement. The
second subject of the task is the implementation of a Ćocking algorithm that aims to both
control the relative position between the drones and to track the position and velocity
of the marker. This means that the swarm of drones tries to stay above the marker and
match its velocity.

This work was based on the paper [9], implementing the same algorithms for the
Ćocking and for the Kalman Ąlter. The used framework is ROS 2, and the communication
with the drones is done using XRCE-DDS, using the setup described in the previous
chapters. The code was tested in a Gazebo simulation, in particular the simulation was
conĄgured so that the developed ROS 2 nodes don’t need any modiĄcation in order to be
deployed on the real drones. More details on the simulation environment and the obtained
results are described in chapter 5.

Different nodes have been developed for the different parts of the algorithms. In
order to work on multiple drones using the same source code, the nodes use parameters
and name-spaces. All the topics related to a single drone start with a unique identiĄer,
so the same topic can be differentiated across multiple drones. For example, the topic
/estimation, that outputs the estimate of the Kalman Ąlter, is present on every drone and
a unique preĄx is added (e.g. /drone1/estimation, /drone2/estimation, ...). The nodes
can be instantiated with different parameters, for example the drone name-space, and this
allows to reuse the same code and to render trivial the modiĄcation of the number of the
drones. For each drone the main nodes that had been developed in order to execute the
previously mentioned task are:

49

Target Estimation and Tracking

Figure 4.1: The ROS 2 nodes instances for a single drone.

• The Vehicle Handler node interacts with XRCE-DDS and is the responsible to send
commands to the drone like arming and setpoints. Additionally reads the odometry
given by PX4 and translates it to TF2, which will be used by the other nodes to
read information about any transformation. TF2 is a transoform library tool built
into ROS 2.

• The Estimator and Flocking node executes the Kalman Ąlter algorithm, taking as
input the camera readings and outputs the estimate of the marker position. In
this also the Ćocking controller is executed too. It that reads the drone position
(using TF2) and outputs the control input as an horizontal acceleration. The vehicle
handler node will then forward the acceleration control input to the drone.

• The Camera Pose node calculates the position in the 3D space of the ArUco marker,
taking into consideration the camera intrinsic parameters, the drone position and
the reading of the camera sensor. The readings can came from a node that interact
with the Gazebo camera or with the real OpenMV camera, depending if the nodes
are executing in the simulation or on the real drones.

In order to easily start the required nodes with the correct parameters, the launch
system of ROS 2 has been used. This tool allows to specify a conĄguration through a
Ąle where the required nodes are described, including the respective parameters to set
for each node. For example, in case of the Gazebo simulation, all the nodes are executed
on the same computer, so the launch Ąle executes all the nodes for all the drones, each
conĄgured with a different name-space, in order to refer to the correct simulated drone.
In case the algorithms are executed on the companion computer of the real drones, the
launch Ąle will only execute the nodes related to the drone they are launched on.

4.1 Vehicle Handler Node

Interacting with the drones using the XRCE-DDS interface requires to subscribe to the
topics published by PX4, create the messages to send to the drone and receive the odome-
try messages. The role of the vehicle handler node is to interact directly with the assigned
drone (via the name-space) in order to perform the takeoff, landing and other tasks. This

50

4.1 – Vehicle Handler Node

node is the only one that subscribes to the PX4 related topics. For each drone a node
of this type is instantiated so each drone has an independent control logic. In order to
couple a drone to the vehicle handler node, since the PX4 topics have the same name in
each instance, a name-space is set on the topic names published by PX4 and the same
name-space is assigned to the node. This allows the node to send and receive messages
only to the desired target, avoiding mismatches.

Regarding the odometry of the drone, all the nodes described before need the position
information in order to perform calculations and, instead of directly reading the PX4
topic, they use the ROS 2 tool tf2. The odometry message retrieved from PX4 uses
a FRD coordinate system, different from the standard FLU convention. The odometry
message is read from the topic fmu/out/vehicle_odometry, then the position information is
transformed into a FLU reference frame, both the translation and the rotation quaternion.
Finally the transform of the drone position relative to the origin is published to the other
nodes using tf2. Other nodes, to retrieve the position of a drone, read the tf2 transform
from the map frame (Ąxed frame) to the drone frame, for example the frames drone1
or drone2. Depending on what frames are speciĄed the tool automatically takes care of
concatenating the correct transformations.

The commands and the topics needed to be published in order to perform an offboard
control are all handled in this node. The vehicle commands are needed to perform actions
on the drone state. The main performed actions are: arming, disarming, Ćight mode
change, landing, Ćight termination. The commands are published to the topic fmu/in/ve-
hicle_command. Another important aspect to handle which enables offboard control is
the steady publication rate of the OffboardControlMode message to the topic fmu/in/off-
board_control_mode: this message acts as a keep-alive message to ensure the liveliness of
the offboard control computer and also sets the desired control mode. The rate of publi-
cation of this message is handled by a timer offered by the ROS 2 Node class, that every
time it expires publishes the message (in this case 100ms period). Different control modes
can be set, in particular there is the possibility to set different modes on different axes
at the same time. For example, position control can be requested so the drone reaches
the speciĄed coordinates, or acceleration control can be enabled. The acceleration control
mode is used with the Ćocking controller: it outputs an acceleration command and the ve-
hicle handler node sets the control mode to acceleration in the X and Y axes and position
in the Z axis. Doing that the altitude is maintained automatically and the controller only
acts in the horizontal plane. The control setpoints are formatted into a TrajectorySetpoint
message and published to PX4 on the topic fmu/in/trajectory_setpoint.

The drone behaviour is controlled exclusively from this node, using a state machine
to cycle between different states and depending on the state perform different actions.
The states transitions are performed by reading the current state variables of the PX4
autopilot, allowing to reliably perform the intended logic.

4.1.1 State Machine

In order to handle the various Ćight events, like arming, takeoff, landing etc. a simple
state machine has been used. The implemented state machine uses one state variable
that represent the current state, and a timer that on each expiration execute the current

51

Target Estimation and Tracking

state actions and checks the transition condition. To transition to a new state, the state
variable that represent the current state is overwritten with the new value, so on the next
execution the code relative to the new state will be run. The conditions that are checked
in order to transition to another state are based on the current state reported by the
PX4 autopilot on the topic /fmu/out/vehicle_state so, even if some commands are not
correctly executed by PX4, there is an active check on the wanted behaviour of the drone.
There are 5 different states implemented in the state machine and each one represents a
different part of the Ćight:

Figure 4.2: State machine logic that controls the drone be-
haviour.

• IDLE state is executed at startup, here the Ćight mode is set to offboard and the
actual drone Ćight mode is monitored to trigger the next state.

• PREFLIGHT_CHECK state waits for the drone to pass the internal checks and be
ready to be armed. After sending the arming command the state transitions at the
same time when the drone state changes to armed.

• TAKEOFF state sets the control mode to position and impose a setpoint in order
to make the drone rise to the desired altitude without an horizontal position change.
Then the start Ćag for Ćocking allows transition to the next state. This condition
is checked by waiting for a message on the topic /start_Ćocking. The idea is to
manually send a steady rate of messages of type Bool on this topic so the state
transitions to the next one only when intended.

• MISSION state is relative to the execution of the Ćocking algorithm. The acceler-
ation command computed by the Ćocking algorithm on the topic acceleration_cmd
is forwarded to PX4 as an acceleration setpoint, so the algorithm can fully control
the drone. The Ćocking node, in fact, keeps running even if the state machine is
not in this state and its output are simply ignored. In order to remain in this state
a steady rate of publication on the topic /start_Ćocking is expected then, and as

52

4.2 – Computer Vision

soon as it stops, the state is transitioned to a landing. This is done because from
the ground station, where this command is generated, the landing can be triggered
in any moment manually simply by stopping the messages publication.

• LANDING state performs the landing of the vehicle. An automated landing routine
is present and can be activated by sending a VehicleCommand message with com-
mand set to VEHICLE_CMD _NAV_LAND, but it was not working correctly due
to a bug in the PX4 source code. The bug consists in the landing of the drone in the
coordinates (0,0) even if other landing coordinates are imposed. When working with
multiple drones this is an important issue since all of them want to land in the same
spot. This issue was conĄrmed also with a PX4 developer on the official forum. To
work around this issue the landing is performed by imposing a position setpoint with
the current X and Y coordinates of the drone and altitude equal to 0 m. In this way
the drone reaches the ground by slowly descending vertically from the current posi-
tion and automatically disarms after has landed. Note that the topic /start_Ćocking
is read by all the active drones, so when the message stream is stopped all the drones
will detect this event and perform a landing.

• POWEROFF is the last state and it sends a Ćight termination command after
the drone touched the Ćoor. This step is not necessary but it is an added safety
since sometimes the drone does not correctly detect the landing and, consequently it
doesn’t disarm. Additionally, after this command the drone can’t be armed anymore
without a power reset. This prevents the drone from re-arming and taking off in case
of a bug in the code that restarts the state machine in the IDLE state.

4.2 Computer Vision

The aim of the developed task is to estimate accurately the position and velocity of a
certain target and then, with a Ćocking algorithm, move the drone swarm to track the
estimated target position and velocity. The chosen target is an ArUco marker that has
be to located in the space using the onboard cameras, obtaining a measurement of its
position from each drone.

The Ąrst step is to identify the ArUco marker in each video frames captured by the
camera: ArUco markers are easily recognisable from an image since they are made exactly
for this purpose. The library OpenCV offers functionalities to identify and retrieve the
marker position in pixel coordinates, that’s why it has been used with the Gazebo camera,
to identify the marker in the image retrieved from the simulation in pixel coordinates,
that are then fed to the Camera Pose node. The OpenMV camera on the drone directly
allows to perform computer vision algorithms onto its microcontroller, so the marker pixel
coordinates are directly calculated inside the camera without the need for the OpenCV
library. From Ągure 4.1 it’s shown that both the Gazebo camera and the OpenMV camera
sends information to the Camera Pose node: the marker position in pixel coordinates is
published on the topic camera/marker_pos. The message type is Float64MultiArray and
in the Ąrst position stores the marker ID, in the second and third position it stores the
marker (u, v) pixel coordinates. An ArUco marker in fact is also associated with a numeric

53

Target Estimation and Tracking

ID, that can be used to Ąlter the output of the computer vision algorithm and discard
any unwanted results.

The task of obtaining the marker 3D position from a 2D sensor image is performed
taking into consideration some internal characteristic of the camera. A geometric approach
can be used analyzing the projection of a 3D point onto the camera sensor. The projected
point is represented by the sensor with a 2D coordinate (u, v) expressed in pixels, and the
objective is to obtain the space coordinates of the object that generated that projection
on the sensor. Using only a single camera there is still one free variable in the solution:
the depth information is lost when the is image captured, so in order to obtain a unique
solution also the distance from the point to the sensor is a needed datum. In order to avoid
this problem a common solution is to use a stereo camera, that adds more information
and is able to estimate the distance to the target. Another way to estimate the depth
information is knowing the real world size of the target, thus adding an additional equation
to the system to solve and obtaining a unique solution. A more in depth explanation on
the used algorithm to estimate the pose of the marker is explained in subsection 4.2.1.
After obtaining the position of the marker relative to the camera, there is still to consider
the camera position relative to the Ąxed frame in order to obtain the position of the marker
in the Ąxed reference frame. In our case in fact the camera position and orientation is
highly variable because is attached to the drone that is constantly moving. The camera
position and orientation are called extrinsic parameters. The tf2 tool is used to aid this
concatenation of transformations, since it allows to specify the single transformations and
automatically it concatenates them in the correct order.

Figure 4.3: Diagram of the different reference frames handled
with tf2. The camera frame is not represented.

The transformation chain is composed by three reference frames:

1. "drone" represents the transform between the Ąxed frame (map) and the current

54

4.2 – Computer Vision

drone position. It is constantly updated by the Vehicle Handler node when a new
odometry message is received.

2. "drone/camera" is the frame associated with the camera: the camera is not in fact
coincident with the odometry frame and also has a different orientation since it
points downward. A static transformation is published from the drone frame to this
frame, representing the location of the camera on the drone.

3. "drone/marker" is the frame associated with the ArUco marker, is calculated with the
transformation retrieved from the computer vision algorithm that links the camera
to the marker. Also with this transformation the different axes convention used for
optical pose estimation is handled.

Each transformation is published independently and the tool automatically handles
the calculation. In order to obtain the position of the marker in Ąxed coordinates, simply
requesting to the tool the two frames will result in the transformation (from map to
drone/marker) where the translation represent the marker coordinates.

4.2.1 ArUco marker pose estimation

An AruCo marker is a square delimited by a black border, and presents a black and white
matrix that encodes its ID. These characteristics allow to easily recognise it from the scene,
and accurately position the 4 corners in the pixel coordinates. The aim of these markers
is in fact to be easily recognised and accurately estimate their pose only using a camera.
After identifying the pixel coordinates of the four corners of the marker, a correspondence
from the 2D points to a 3D point in the space is needed. The mapping of the points from
the camera reference frame only depends on the camera intrinsic parameters, for example
focal length, etc. The 3D point coordinates can also be expressed in a Ąxed reference frame
(different from the camera frame), especially if the camera is not stationary for example
when mounted on a drone. The camera translation and rotation matrices are used to
express the point coordinates from the camera frame to the Ąxed frame, these are referred
to as extrinsic parameters. These latter parameters are easily retrieved knowing the drone
reference frame and the position of the camera onto the drone. The transformation matrix
that deĄnes the camera position in the Ąxed coordinate frame is:

T = Tdrone · Tcamera =









Rd

xd

yd

zd

0 0 0 1









·









1 0 0 0.08
0 −1 0 0
0 0 −1 0
0 0 0 1









(4.1)

where Rd is the rotation matrix associated with the drone attitude, and Tcamera is the
static transformation from the drone frame to the camera frame. These calculations are
automatically handled by the transform tool mentioned in the previous section.

The intrinsic parameters describe the mapping from the 2D image plane to the 3D

55

Target Estimation and Tracking

world. This mapping is expressed using the camera matrix as:

C =





fx 0 cx

0 fy cy

0 0 1



 (4.2)

where fx and fy are the focal distances, cx and cy represent the optical center. In order to
retrieve this matrix, a process named camera calibration is needed. These parameters de-
pends on the actual camera and parameters used, and the values needs to be extrapolated
from experimental data.

To retrieve the space coordinates of the point projected on the image, an additional
information is needed. The distance from the point needs to be known, since a single
camera looses the depth information. The following equation is used in the algorithm in
order to calculate the position of the marker relative to the camera frame:

xm =





xm

ym

zm



 = C−1 ·





u

v

1



 zd (4.3)

The marker coordinates in the image are represented with u and v. The distance from
the marker to the camera is assumed as equal to the height of the drone zd (this is an
approximation), since the marker height is zero. When a new frame is available from the
camera, the marker is identiĄed in the image and the equation 4.3 is used to calculate the
marker position relative to the camera. Also each time the calculation is performed the
current height of the drone zd is retrieved.

The identiĄcation of the marker inside each camera frame is done using the library
OpenCV. The frame is passed to the function ArucoDetector::detectMarkers(), that returns
the position of all the identiĄed markers in the image. Other functions are available from
the library that can directly perform the pose estimation, given the camera parameters.
The function cv::SolvePnP() can be used to map a point from the image to the 3D
coordinates. This function however was not used because it didn’t work correctly. Multiple
tries with different functions and different parameters were performed, but the functions
of the OpenCV library were not able to provide any working results. Trying different
version of the library didn’t solve the issue either.

In order to retrieve an estimate, the equation 4.3 was directly used to perform the
calculation without using the computer vision library. This approach is much simpler
than the algorithm used to reĄne the estimate that are implemented into the library,
nonetheless it provided satisfactory results, both in simulation and with the real cameras.

4.2.2 Camera Calibration

The camera matrix that maps the image points to the 3D world, is fundamental in the
calculation of the marker pose. The structure of this matrix is represented in equation 4.2.
The camera calibration process aims at retrieving these parameters, and should be done
for each camera to achieve accurate results, even if multiple cameras are the same model
and have the same conĄguration. In order to estimate the intrinsic parameters, a set of

56

4.3 – Information Form Kalman Filter

points with a known world position is needed, along with their respective projections in
the image plane. If the camera perfectly respects the pinhole model and the two set of
points are exactly known, then the solution exists and is unique. However in reality all
of these conditions are not met, in particular the position of the points is known with a
limited accuracy and noise also affects the measure. Depending on how the error related
to each constraint is measured, it is possible to determine or estimate an essential matrix
which optimally satisĄes the constraints for a given set of corresponding image points.
The most straightforward approach is to set up a total least squares problem.

In practice, the calibration of the OpenMV camera was done by leveraging some func-
tionalities of the OpenCV library that implements the aforementioned estimation algo-
rithms to retrieve the camera intrinsic parameters. A chessboard pattern is used: knowing
the real size of the grid, the squares corners are easy to identify and are used to relate the
real point coordinate to its projection on the image. The function cv::FindChessboardCorners()
is used to identify the corners from an image, and then these points are fed to the function
cv::calibrateCamera that retrieves the intrinsic camera parameters, including the distor-
tion coefficients.

Figure 4.4: Image from the OpenMV camera of the chessboard,
overlayed with the recognised pattern by OpenCV

4.3 Information Form Kalman Filter

Using the onboard camera each drone can now provide a measurement on the position of
the marker, as explained in previous sections of this chapter. This measurement is affected
by noise, and fusion of all the drone measurements is done in order to retrieve an accurate
estimate of the marker position and velocity. To accomplish this a Kalman Ąlter is used,
in particular formulated in the information form. Each drone uses a different instance of
the Ąlter (one estimation node for each drone) and the main inputs for the algorithm are
the measurement provided by the drone camera and the information vector and matrix
shared by the other drones. The estimation node is setup so it subscribes to the infor-
mation topic of the other drones and when a new matrix is published, it is copied to a
local variable of the node in order to be used when the calculation is done. The different
estimation nodes in fact don’t execute the Ąlter update in the same exact moment, as it’s
executed only when a new measurement is available from the camera of the same drone.
In particular in the deployment on the real platforms there could also be random delays

57

Target Estimation and Tracking

due to the network, that affect the real-time share of the information matrix between the
nodes. The estimates of each instance of the Ąlter rely on only the data provided by the
camera of the drone they are deployed on, but they share the information matrices and
vectors. Since multiple estimator nodes are executed, each one of them provide a different
estimate of the marker state. The expected result of the information form Ąlter is that
the multiple estimates should converge and be very close. Examples of the performance
in a simulation environment will be presented in section 5.1.1.

The marker is represented with a simple dynamical system, using 4 states that include
the planar position and velocity ξ = [xt, yt, ẋtẏt]

T . The the dynamical model is represented
by:

ξ(k + 1) = F · ξ(k) + w(k) (4.4)

where w(k) is a zero mean white noise and

F =









1 0 ∆T 0
0 1 0 ∆T

0 0 1 0
0 0 0 1









(4.5)

Note that ∆T is the time elapsed between two updates of the Ąlter, and the accuracy
of this value directly inĆuence the accuracy of the velocity estimate. In the algorithm in
order to guarantee a precise time step calculation, each measurement is coupled with a
timestamp of the instant it is created. In particular during the simulation we expect a
certain frame rate but the simulation can slow down and the samples are more spaced in
time. Using a hard coded value for the time between samples leads to a inaccurate velocity
estimation. In order to improve the reliability of the velocity, the time step is calculated
as a difference of timestamps of two successive measurements. Correctly estimating the
velocity is important also for the Ćocking algorithm, since the control input has a term
relative to the velocity matching of the marker. If the velocity estimate is wrong then the
drone speed will be different from the marker one, resulting in an increase of the distance
from the marker and the drone.

The marker position measurements taken from the camera are directly expressed in
the Ąxed frame coordinate, but the Ąlter is conĄgured to work with a particular type of
measurement model called bearing sensor. The relative X and Y coordinates between
the drone and the marker are transformed into a distance and an angle. The distance
is calculated using the Euclidean norm and the angle is calculated using a 4-quadrant
arc-tangent function [11]. This function, given the two coordinates, returns the angle in
the range (−π, +π). The model of the bearing sensor is:

h =

√

(xmarker − xdrone)2 + (ymarker − ydrone)2

arctan


ymarker−ydrone

xmarker−xdrone

)

]

(4.6)

and the measurement model is

z(k) = h(ξ(k)) + v(k) (4.7)

58

4.3 – Information Form Kalman Filter

where v(k) is a zero mean white noise.
The bearing model is calculated in the Camera pose node. After calculating the marker

pose from a new frame, the node will calculate the bearing measurement using equation
4.6, using the relative coordinates between the frame drone and the frame drone/marker.
These data are published on the topic sensor_measure with a Float64MultiArray message,
and then read by the estimation node. Each time a new sample is received the Ąlter
algorithm is executed and the estimate is updated. The algorithm is composed of two
sections, the Ąrst is the prediction step and the second is the update step. In the prediction
step only the system dynamical model is used to have an initial estimate of the system
states. Then the bearing sensor measurements is transformed into Ąxed frame coordinates
and the update step is performed, where the information matrix is calculated and the new
measurement is integrate into the Ąnal estimate. The information matrix and information
vector are calculated as

I = ∇h(ξ(k♣k − 1))T · R−1 · ∇h(ξ(k♣k − 1)) (4.8)

i = ∇h(ξ(k♣k − 1))T · R−1 · (z(k) − h(ξ(k♣k − 1)) + ∇h(ξ(k♣k − 1)) · ξ(k♣k − 1)) (4.9)

then are published on the topic information as a Float64MultiArray. During the setup
of the Ąlter algorithm with the help of the Gazebo simulation environment a particular
edge case in the calculation of the information vector caused signiĄcant oscillations in the
position estimate (around 1 meter of error), that later caused also the Ćocking algorithm
to react to the wrong estimate with oscillations in the drone position. This issue was
caused by not correctly handling the (−π, π) periodicity of the angle in the bearing sensor
model. The angle −π and π represents the same angle, but when performing the simple
difference in equation 4.9 of (z(k) − h(ξ(k♣k − 1)), if the two terms equal two opposite
angles near π then the result is very big. This induces the Ąlter to include in the estimate
a lot of "new" information and results in big oscillations of the Ąnal estimate. An example
of this situation experienced during the Gazebo simulation is shown in Ągure 4.5. The
difference between these two angles can be correctly handled in the following way:

∆θ =















θz − θh − 2π if θz − θh > π

θz − θh + 2π if θz − θh < −π

θz − θh otherwise

(4.10)

After implementing these considerations when performing the difference, the correct dis-
tance between the angles is calculated and the result doesn’t present any unexpected
oscillation.

To perform the Ąnal estimate then the information matrices and vectors published
from the other drones are read and the Ąnal estimate is calculated with:

Y (k♣k) = Y (k♣k − 1) + I +
∑

j

Ij(k) (4.11)

y(k♣k) = y(k♣k − 1) + i +
∑

j

ij(k) (4.12)

59

Target Estimation and Tracking

Figure 4.5: The estimate is compared to the bearing angle pro-
vided by the measurement θz and the one predicted θh. At sec-
ond 534 one angle jumps from −π to π so the resulting differ-
ence without considering the periodicity is very high.

ξ̂(k) = Y (k♣k)−1 · y(k♣k) (4.13)

An advantage of the information form formulation can be seen also in equation 4.11
and 4.12, that are used to calculate the Ąnal estimate. The contribution of the other
drones is taken into consideration by simply summing the information vector and matrix
published by each drone. In this way a lot of other agents can be added to the estimation
easily. Finally the estimate provided by the Ąlter is now directly available to the Ćocking
algorithm (since it runs on the same node) and also is published to the estimation topic
to be recorded and analyzed later. The estimation will be used by the Ćocking algorithm
as a target to follow.

4.4 Flocking Algorithm

An important aspect to consider when dealing with a swarm of drones is the control of
their position. The Ćocking behaviour can be deĄned using the 3 Reynolds rules. These
can be a starting point to deĄne a controller for the position. The Ćocking algorithm
implemented is taken from [9]. The aim of this control algorithm is to create a Ćocking
behaviour, by controlling the inter-drone distance and matching their velocities. The sec-
ondary objective of the controller is moving the swarm to track the position of a deĄned
target that, in this case, is the ArUco marker. The position of the marker is the estimation
provided by the Kalman Ąlter described in the previous section.

60

4.4 – Flocking Algorithm

Each drone is modeled as a double integrator, where qi = [xi, yi]
T and pi = [ẋi, ẏi]

T .
The control input ui = ṗi imposes the planar acceleration of the drone. Note that this
algorithm manages only the horizontal position and velocities. The vertical dynamics
are not considered and during the Ćight a constant altitude is imposed and is managed
directly by the autopilot. PX4 allows to independently setup the level of control of each of
the three axes independently. To achieve the horizontal acceleration control, the position
and velocity controllers of the X and Y axes are disabled and they are kept enabled on
the Z axis. This conĄguration is imposed by correctly generating the TrajectorySetpoint
message. In particular in this situation the message Ąelds are set as follows:

Parameter name X Y Z
position NaN NaN Z

velocity NaN NaN NaN
acceleration ax ay NaN

Table 4.1: Fields of the TrajectorySetpoint message to impose
a position height and a horizontal acceleration setpoint.

The control input is composed of multiple terms:

ui = (ui,d + ui,d,int) + (ui,v + ui,v,int) + ui,t (4.14)

The Ąrst term is relative to the inter-drone distances. The aim is to maintain a pre-
deĄned distance between neighbouring drones, in particular a communication radius is
deĄned and a drone considers as neighbours all the drones inside this circle. The term
ui,d is proportional to the inter-drone distance of only the neighbours drones, and also
an additional function is included in order to make the attractive force weaker than the
repulsive one. The term ui,d,int is an integrator action on the distance between the drones.
Its objective is to remove the steady state offset on the distance created by the former
mentioned controller.

The second term is related to the velocity matching. Again this term is composed by
a component proportional to the difference in velocities of neighbouring drones and an
integral action on the error between velocities. The result is that the drones match their
velocities that is a requirement to create a Ćocking behaviour. The integral action is used
to reduce the oscillations and overshoots.

Finally the last term ui,t includes the target following objective. The control input is
proportional to the distance from the drone to the target position, and also it’s propor-
tional to the difference in velocities. This results in the drone following, in this case, the
position of the ArUco marker and also matching its velocity.

This algorithm is executed by the Estimator and Flocking node that is instantiated
for each drone. This means that each drone runs a separate instance of this same control
algorithm. Each instance is conĄgured to correctly label the drone is running on and
the neighbouring drones. The algorithm is executed with a rate of 20 Hz, using a ROS 2
timer, so the timing is always constant and is not related to the update rate of the Kalman
estimates. At each execution of the control algorithm the latest target position estimate is

61

Target Estimation and Tracking

used, even if the estimate was not updated by the Ąlter. This conĄguration allows to avoid
a situation where the algorithm does not run because the estimate is not updated anymore
when the marker is not in sight. Decoupling the control algorithm execution from the Ąlter
update frequency, provides a steady rate of control inputs that, in case the estimate is not
updated, simply tracks the last known position of the marker. The resulting control input
generated by the algorithm is published on the topic acceleration_cmd for each drone.
This topic is read by the Vehicle Handler node that only forwards the message to PX4
only in the correct moment of the Ćight.

4.4.1 Parameters tuning

Each term used for the computation of the control input in equation 4.14 represent a
different objective of the overall control algorithm. Each term is multiplied by a weight
(not shown in the equation) in order to tune the performance and prefer some objectives
respect to others. The weight values are hard-coded into the source code, so when mul-
tiple instances of the node are executed, each drone has the same weights in the control
algorithm. Since the drones composing the swarm are all equal, then using the same
tuning for all of them is not an issue. On the other hand using different kind of drones
may required a different tuning for each one.

The aim of this phase is to obtain a stable control and also a good performance in
terms of transient, overshoot and oscillations. A trial and error process is used, changing
one parameter at a time and evaluating the effect on the overall performance. This process
has been done in the simulation environment. The weights of the control algorithm are:

Swarming
KP Drones distance proportional term
KI Drones distance integrator term
KD Drones velocity matching term

Target following
C1 Distance to target term
C2 Target velocity matching term
DI Integral term on velocity matching

Table 4.2: The list of weights used in the Ćocking algorithm.

Increasing the value of a weight has the effect of accentuating the importance of that
term in the overall calculation of the control input. For example, increasing the factor
KP increases the strength of the distance control between the drones, imposing higher
accelerations in order to reach the desired distance. Firstly the parameters relative to the
swarming terms were tuned until a stable swarm was created in simulation by 3 drones.
An important aspect considered was to avoid big overshoots in the inter-drone distance,
to avoid the drones to be too close that can lead to a collision. This was accomplished
working mostly on the parameters KI and KD.

After the swarm part of the controller was properly tuned, then the coefficients that

62

4.4 – Flocking Algorithm

regulate the target tracking objective were considered. The parameter with the most effect
is C1. This term attracts each drone to the marker position, so increasing this gain will
result in a stronger attraction. This attraction force works against the inter-drone distance
controller that tries to separate the drones: increasing the attraction to the target position
also affects the distance between the drones during the transient, promoting undershoots
that bring the drones too close. This effect is countered at steady state by the integrator
action ui,d,int.

After the tuning phase in the Gazebo simulation with three drones, the resulting pa-
rameters are:

Parameter Value
KP 0.5
KI 0.01
KD 0.6
C1 0.5
C2 5
DI 0.005

Table 4.3: Parameters values after the tuning, with target spac-
ing between drones of 1 meter.

These parameters were used as a staring point when testing the algorithm on the real
drones. Only 2 real drones were used and the tuning of the parameters didn’t need any
major modiĄcation. The results of the tests are presented in chapter 5.

63

64

Chapter 5

Simulation and Testing

The development of the algorithm described in chapter 4 was aided with the use of a sim-
ulation environment that was essential to validate the correct behaviour of the programs
before trying to test them on the real drones. In particular, the simulation environment
is setup to emulate as close as possible the real setup, so that the implemented pro-
grams can be executed both on the real drones and in the simulation without needing any
changes. The PX4 software is executed as a software in the loop, running on the computer
along with the Gazebo simulator. This chapter presents the simulation environment and
the performances of the Ćocking algorithm and the diffused Kalman estimator, both in
simulation and when deployed on the real drones.

5.1 Simulation

The PX4 software supports being simulated as Software In The Loop (SITL) and offers
a wide variety of supported simulators like Gazebo, jMAVsim, JSBSim and others. The
chosen simulator is Gazebo-Classic, because it is well integrates with ROS 2 and also is
well supported by PX4 with a lot of features and documentation that are not available
with other simulators. A good integration with ROS 2 is mandatory since it is used as the
communication framework with the real drones, and as a way to test the correct interface
between ROS 2 nodes and the autopilot.

The build system used by PX4 offers multiple compilation targets, where most of them
supports different kinds of Ćight controllers and others are intended to compile the source
code to be executed on the computer and integrate it with the chosen simulator. This
feature allows to execute the same source code that will be executed on the real Ćight
controller, offering the same features and the same behaviours. In particular also the
same set of modules chosen for the Ćight controller are included in the SITL version to
further resemble the real scenario. In order to enable the communication with ROS 2,
the XRCE-DDS bridge has to be used: the client side is built into the PX4 executable,
so it is already running with the simulation, then the XRCE-Agent side is executed on
the computer to allow the interface with ROS 2. This setup is the same used in the real
drones, with the only difference being running everything on the same computer. Note

65

Simulation and Testing

that the same topics and messages types are exposed in the ROS 2 environment, allowing
to validate the correct interaction between the developed nodes and PX4. A lot of work
has been done in correctly interacting with the autopilot to perform the desired actions,
like changing modes, experimenting with features etc. and doing it on the simulation is
much easier and safer than directly testing with the real drones.

5.1.1 Simulation Results

The Ćocking algorithm and the diffused estimation have been tested with only 3 simulated
drones due to practical reasons of speed of the simulation. The drones are spawned in
3 different positions on the ground and then the nodes relative to the vehicle handler,
estimator and camera are executed for each drone. After the takeoff, each drone keeps a
steady position and when the marker is in the Ąeld of view of the cameras the estimation
starts. In Ągure 5.1 the estimation of each instance of the Ąlter is shown, only for X axis,
which was the only one used to test the movement of the marker. Although the position
estimate is very close to the real position, the velocity estimate is not. A crucial component
for the velocity estimate is the accurate measurement of the time elapsed between two
measurements and that is probably the cause of the wrong velocity calculation. Moreover,
the simulation does not run in real time, but the experienced speed was around 60% of
the real time speed so if the messages use the system timestamp, the calculated elapsed
time is more that it should be, resulting in a lower velocity estimate.

(a) X position (b) X velocity

Figure 5.1: Estimation result for the X position and velocity in
the Gazebo simulation environment

In an effort to improve the accuracy of the velocity calculation, during the simula-
tion phase, each node was started with the parameter use_sim_time set to true. This
parameter should make the nodes use the simulation time, so even if the simulation is
slower than real time, the time differences between samples should be coherent with the

66

5.1 – Simulation

simulation. Improvements were visible after this step in the accuracy of the velocity, but
the Ąnal result was still not accurate (visible in Ągure 5.1).

After letting the estimate of the marker stabilize from the initial transient, a message
is sent manually on the topic /start_Ćocking that makes each drone start the Ćocking
algorithm to control the position.

Figure 5.2: Distance between the drones controlled by the Ćock-
ing algorithm during the simulation. The target distance be-
tween each drone is 1 meter.

In order to make the Ćocking algorithm work, a phase of tuning of the control param-
eters was necessary, otherwise random parameters cause the behaviour to be completely
unstable. This process is described in section 4.4.1. In Ągure 5.2 is shown the actual
measured distance between the drones during the simulation and is visible the correct
behaviour where each drone distance from each other by 1 meter. Also note that the after
the initial transient, the steady state error between the target distance and the actual dis-
tance tends to zero thanks to the integrator term, shown in equation 4.14. The velocity
matching works correctly as represented in Ągure 5.3 where is visible that the velocity of
the drones follows the estimated velocity of the marker.

5.1.2 Gazebo Environment

By default the when simulating PX4, the instance of PX4 in SITL is attached to a model
of a drone in the Gazebo simulation, so the results are shown with the behaviour of the
simulated drone. The drone model used is an Iris drone (shown in Ągure 5.4), that was
customized to add a down facing camera that streams the images on a ROS 2 topic, in
order to resemble the real drones. Another important aspect that has been simulated is
the use of an external source for the positioning of the drone: by default the simulation

67

Simulation and Testing

Figure 5.3: Velocity in X axis of the drones matching the ve-
locity estimate. Note that the velocity estimate is not accurate
as explained in section 5.1.1.

uses a fake GPS sensor, but it was removed and the PX4 autopilot was setup with the
same conĄguration as the real drone in order to correctly support the external position
estimates. The measurements are taken directly from Gazebo and then are sent on the
fmu/in/vehicle_visual_odometry topic like the Vicon data. In order to customize the
simulation and to add the mentioned modiĄcation, two plugins made for the integration
with ROS 2 are added. The real position of the simulated drone is published on a ROS 2
topic by the plugin libgazebo_ros_p3d.so that was attached to the base link of the drone.
This plugin publishes on a speciĄed topic the position of the link it is attached to (i.e.
the drone’s position ground-truth). Then a node reads this information, performs the
transformation from the Gazebo reference frame FLU to the PX4 reference frame FRD
and Ąnally sends it to the autopilot, emulating the same role of the Vicon. Implementing
this feature was also very useful in order to correctly setup the autopilot to rely on an
external measurement for the position, since the choice of the correct parameters wasn’t
trivial.

Adding a down-facing camera is implemented again by adding a gazebo camera sensor
and a plugin to the model description of the drone. The camera sensor is attached to the
base link of the drone, with the proper rotation and translation to imitate the position in
the real case and also the focal length and resolution are set in order to match the OpenMV
camera module. The plugin libgazebo_ros_camera.so is added to the camera sensor in
order to stream the image and other camera information directly on a ROS 2 topic. The
image is available on the topic camera/image_raw, and the information including the
camera intrinsic parameters are available on the topic /camera/camera_info.

Another important element of the simulation environment is the ArUco marker model.
The presence of the both the marker and simulated cameras in Gazebo allows to test

68

5.1 – Simulation

Figure 5.4: Model of the Iris drone used in the Gazebo simula-
tion. The white lines in the front represent the Ąeld of view of
the camera.

Figure 5.5: Gazebo world used to test the ArUco position esti-
mation and the Ćocking algorithm. The vertical pillars repre-
sents a mock-up of the real cage.

the estimation algorithm in a realistic way, testing also the nodes responsible to identify
and calculate the position of the marker. The model is implemented as a simple box,
with the texture showing an image of a marker. By default it is placed in the origin
of the simulation reference frame and is visible in Ągure 5.5. Furthermore the plugin
libgazebo_ros_planar_move.so is attached to the marker model in order to both impose
linear velocities to it and also retrieve the real position. The velocities are set by publish-
ing a message on the topic /aruco_marker/cmd_vel, and the position can be retrieved
by reading the topic /aruco_marker/odom. This plugin was very useful when testing the
estimation performance in case of marker movements, with the possibility of comparing
the result of the calculations with the real position.

69

Simulation and Testing

Finally the last important aspect of the simulation is the possibility of simulating
multiple drones at the same time, that is an essential feature for testing the Ćocking
algorithm and the diffused estimation. Using a script that is available directly from the
PX4 repository, it is possible to simulate multiple drones in the same simulation. There
are two main steps: the Ąrst is to start multiple instances of PX4 in SITL mode, one
for each simulated drone, then the required number of drone models are spawned into
the Gazebo simulation. Some customization was needed in order to correctly setup the
name-spaces of each drone and conĄguring the interface for ROS 2. This was performed
with the templating tool Jinja that is already used for this task in the PX4 repository.
In particular the drone Gazebo model Ąle (e.g. iris.sdf) presents parameters inside that
are substituted by Jinja before spawning the model into the simulation. For example the
ROS 2 name-space was set as a parameter and substituted accordingly for each spawned
drone, creating a different sdf Ąle for each one. This customization was necessary because
this script uses the same approach to conĄgure MAVlink communication, but it is not still
supporting the new XRCE-ROS 2 bridge.

5.2 Real implementation

After validating the Ćocking algorithm and the Kalman Ąlter in the simulation environ-
ment the next step was to execute this nodes using the real drones. The tests were
performed using only 2 drones in order to be able to validate the correct exchange of in-
formation between the nodes. An important difference from the simulation environment
is the presence of a real network between the drones and the ground station, so there may
be present random delays in sending or receiving the messages.

The intended way of running the ROS 2 nodes would be to execute them on the
NanoPi companion computer of each drone as ROS 2 has been deployed on them, but
this was not accomplished for two main reasons. Firstly running the nodes from the
ground station is much easier if recompilation is needed when changes are made, while on
the NanoPi the compilation is very slow and the only way to interact with it is using a ssh
console. The second and most important reason is that the NanoPi board doesn’t have
the necessary computational power in order to execute the ROS 2 framework. The nodes
can be executed successfully but the initialization uses so many resources that also other
processes stop due to lack of computational power. In particular, it was encountered that
the XRCE-DDS-Agent stops executing for about 30 seconds when the ROS 2 framework
is started. This results in a total loss of communication between PX4 and the offboard
control node, so running the nodes onto the NanoPi was not feasible. In order to avoid
this situation the nodes are simply executed on the ground station and they are able to
work without issues.

The only remaining issue is that the execution of the node that handles the OpenMV
camera is required to run on the NanoPi board. The camera module is in fact directly
interfaced with the companion computer using a serial connection so a node that reads the
serial port data and transmits it onto a ROS 2 topic is needed. This node’s responsibility

70

5.2 – Real implementation

is just to read the serial port where the data containing the position on the camera sensor
of the ArUco marker is sent and send it to the topic camera/marker_pos. Then other
nodes will read the messages and calculate the 3D position of the marker. This node, even
if very simple, faced the same issue of low computational power offered by the NanoPi:
when started all the processes stopped up to 30 seconds resulting in a loss of communi-
cation between the offboard nodes and PX4. In order to resolve this problem and test
the performance of the Kalman Ąlter, fake measurements of the marker position can be
generated and then corrupted with white noise. In this way the camera isn’t used at all
but the other nodes can be tested. Another approach can be to test only the Kalman Ąlter
while the drones are not Ćying but they are still positioned by the Vicon system so, from
the point of view of the Ąlter, the situation is the same as Ćight. Moreover, the drones are
positioned in an elevated position with the help of cardboard boxes so the marker can be
placed under them and be in the Ąeld of view of the cameras. When starting the nodes
on the NanoPi the situation was always of temporary stop of all the processes but since
the drones were not Ćying there was no issue related to loss of communication so, in this
way the estimation can be fully tested with real data taken from the cameras.

The Ćocking algorithm nodes were again executed on the ground station but they were
much easier to test since they don’t rely on the camera module or on any node that needs
to be run on the NanoPi.

5.2.1 Results

The tests performed in the real scenario were very incremental in order to avoid crashes
and identify the issues as soon as possible. The Ąrst step is to test the correct functioning
of a simple offboard control, that included takeoff and landing after a small time of hover
in position. The Vehicle Handler node was used with a little modiĄcation in order to skip
the MISSION state.

Figure 5.6: Drones in Ćight during the test of the Ćocking al-
gorithm.

The test used 2 drones to prove that the multiple instances of the nodes didn’t interfere
and they communicate correctly with each other. The drones correctly responded to the

71

Simulation and Testing

offboard commands provided by the nodes, behaving exactly in the same way as in the
simulation. The workarounds used for the landing routine (avoiding the built-in routine
that had a bug) worked too in the same way as the simulation.

The second step is to test the distributed estimation and it is done as described in the
previous section, by avoiding the Ćight and having the drones positioned on cardboard
boxes. In Ągure 5.8 the estimation data from this test is shown. In particular, the two
Ąlters correctly exchange the information matrix and vector and the two estimates are
very close. Until the time instant at 64 seconds, the marker position is not changed,
then it is moved by hand and the estimate correctly tracks the changes. Sometimes the
marker is out of the Ąeld of view of one drone due to its movement and this can be seen
in the Ągure where some of the data points are missing. A comparison between the raw
measurements of the cameras and the Ąnal estimate is shown in Ągure 5.7 where it is
visible that the two measurements sources presents some offset between each other (8cm
in the worst case) and the resulting estimate is a value between the two.

Figure 5.7: Comparison between the raw measurements of the
X position given by the cameras and the resulting estimate of
the Kalman Ąlter.

During the test, drone’s the movements, instead, didn’t affect at all the estimation,
validating the correct transformations described in section 4.2.1. The only encountered
issue was that, depending on the position of the marker in the Ąeld of view of the camera,
the calculated pose of the marker was not very precise. This effect was present mostly at
the edges of the Ąeld of view and is probably due to the lens distortion of the camera as
this issue was not present in the gazebo environment where the camera was ideal without
distortion. .

Finally, the Ćocking algorithm was tested. In order to decouple this algorithm from the

72

5.2 – Real implementation

(a) (b)

(c) (d)

Figure 5.8: Estimation results of the ArUco marker position
and velocity using the OpenMV camera.

marker position estimate, that could lead to unexpected behaviours in case of not accurate
estimations, the target position used in the algorithm was set to X = 0 and Y = 0 and the
velocities to zero. The expected behaviour is that the two drones should keep the target
distance between each other and also both move close to the origin position (position of
the "simulated" marker).

In Ągure 5.9 is shown the resulting distance between the two drones during the real
Ćight. The weights of the control algorithm were not changed from the values set during
the simulation and were also used for the real test. The behaviour of the control was
already correct, so in order to achieve a better performance not much tuning is needed.
The distance between the drones is correctly controlled, but more oscillations can be seen
due to a lack of Ąne tuning of the control algorithm. Another important consideration is

73

Simulation and Testing

that when the two drones were Ćying at the same time in the cage, their precision of holding
a certain position was reduced with respect to when only one drone was Ćying, possibly
due to the turbulence produced by the two of them. The test was in fact performed
Ćying at low altitude (around 1 meter above the ground) in order to reduce the risk of
damage in case of a crash. In all likelihood, increasing the altitude probably can reduce
the turbulence effects.

Figure 5.9: Inter-drone distance during the test of the algorithm
with the two real drones.

74

Conclusions

The main aim of this thesis work was to obtain a working setup of the drones in the
Robotics Laboratory of the Links Foundation. The Ąnal result is the complete setup of
two drones, that were then used to test the Ćocking and estimation task. After this phase,
two algorithms, a Ćocking controller and a diffused estimation with a Kalman Ąlter, were
developed in ROS 2 following the methods proposed by [9] with the aid of a simulation
environment, conĄgured in Gazebo to closely resemble the real case. The implementation
of the estimation and Ćocking task is aimed at proving the proper operation of the com-
plete setup. Finally testing of the Ćight performance and the validation of the developed
algorithms was performed with the real drones in the laboratory.

The Ąrst phase of the setup of the drones required the most amount of work due
to the time consuming troubleshooting, particularly the communication issues arising
from the WiFi interfering with the radio controller and the correct reception the Vicon
measurements by the drones. The Ąnal phase of testing of the developed algorithms was
very straight forward without any issues relative to the drones. The Ćight performance
of the drones is very satisfactory, as the Ćight is stable and the behaviour is exactly the
same as the one experienced in the simulation. This allowed to focus the efforts only on
the debugging of the algorithms, resulting in a quick and simple Ąnal phase of testing.
This was also due to the extensive work performed in the simulation environment that
was very useful to correctly validate the software before trying it onto the real platforms.
The results of the tests validates the work presented in [9] in a real environment, without
idealities of the simulation environment. Some workarounds had to be implemented due
to limitations of the drone’s hardware, leading to the impossibility of executing the nodes
on the companion computers. As a result, this implementation partially excluded the
interaction of network delays in the communication.

Future developements

Regarding the physical setup of the drones, the majority of difficulties encountered were
caused by the companion computer used. Mainly, the computational power is very limited
and also the 32-bit architecture is not suitable to execute useful software like ROS 2. The
cross compilation was successful, but the computational power is not enough to run the
nodes. Further research could Ąnd an alternative board to use as the companion computer
that is more powerful and that can be correctly integrated with PX4. With the ability of
running nodes on each drone’s companion computer, the communication between nodes

75

Conclusions

can also be tested against possible real network delays, instead of executing everything
on the ground station.

During this project the Modal AI VOXL board was considered as a candidate to be
used as companion computer. Some exploratory work was done with this board trying
to understand if it can be a suitable replacement for the NanoPi, since it offers much
more computational power. It was discarded since the NanoPi offered satisfactory per-
formance to the scope of this project and because it required excessive work and research
to correctly integrate it with the current conĄguration of the drones, both hardware and
software wise. Further work aimed at integrating this board with the existing drones and
PX4 can offer new possibility given the computational capability of the Modal AI boards.

Finally, further work can be done to complete the setup of all the drones present in
the laboratory. Four drones are in fact available, of which only two were completely setup
due to the availability of some components. Completing the setup of all the drones would
be a good opportunity to implement algorithms that can leverage the presence of a more
complex swarm composed by four drones.

76

Appendix A

ROS 2 Topics Description

Topic name Type Description

PX4 topics

fmu/in/vehicle_command VehicleCommand
Used to send PX4 com-
mands from the offboard
node to the autopilot

fmu/in/offboard_control_mode OffboardControlMode

Set the type of offboard
control wanted, like accel-
eration, velocity, position
...

fmu/in/trajectory_setpoiny TrajectorySetpoint

Impose to the autopilot the
desired setpoints of differ-
ent types, depending on
the control mode

fmu/in/vehicle_visual_odometry VehicleOdometry
Odometry sent from an ex-
ternal source to be fused

fmu/out/vehice_status VehicleStatus Status Ćags of PX4

fmu/out/vehicle_odometry VehicleOdometry
Odometry of the drones in-
cluding position velocity,
attitude, angular velocity

Estimation Node topics

sensor_measure Float64MultiArray

Measurement of the ArUco
marker position relative to
the drone in bearing sensor
form

information Float64MultiArray
Information matrix and ar-
ray of the Kalman Ąlter of
each drone

77

ROS 2 Topics Description

acceleration_cmd Float64MultiArray
Acceleration control input
calculated from the Ćock-
ing algorithm

Ćocking_info Float64MultiArray
Detailed values of the
Ćocking algorithm for plot
and logging purposes

/start_Ćocking Bool
Flag that enables the Ćock-
ing algorithm after the
takeoff

Camera topics

camera/image_raw Image
Uncompressed image
streamed from the Gazebo
camera

camera/marker_pos Float64MultiArray

ArUco marker ID and co-
ordinates in the image
plane after recognition by
CV algorithm

camera/camera_info CameraInfo
Camera intrinsic parame-
ters

Table A.1: All the topics used in the algorithm described in chapter 4.
Some PX4 topics that are not used are not included in this list. The
topics that do not start with a "/" will have preĄxed the namespace of
the drone.

78

Bibliography

[1] G. Bressan, D. Invernizzi, S. Panza, and M. Lovera. Attitude control of multirotor
uavs: cascade p/pid vs pi-like architecture. 2019.

[2] Simon Daniel. Optimal State Estimation: Kalman, H-inĄnity, and Nonlinear Ap-
proaches. John Wiley & Sons, 2006.

[3] Frederick E. Daum. Extended Kalman Filters, pages 411Ű413. Springer London,
London, 2015.

[4] Friendly Elec. Nanopi neo air wiki. https://wiki.friendlyelec.com/wiki/

index.php/NanoPi_NEO_Air.
[5] Drone Foundation. Px4 repository. https://github.com/PX4/PX4-Autopilot.
[6] Drone Foundation. Px4-ros 2 user guide. https://docs.px4.io/main/en/ros/

ros2_comm.html, 2023.
[7] Sang-Hoon Kim. Chapter 4 - modeling of alternating current motors and reference

frame theory. In Sang-Hoon Kim, editor, Electric Motor Control, pages 153Ű202.
Elsevier, 2017.

[8] Fausto Francesco Lizzio, Elisa Capello, and Giorgio Guglieri. Implementation and
performance evaluation of a consensus protocol for multi-uav formation with com-
munication delay. 2022.

[9] Fausto Francesco Lizzio, Stefano Primatesta, Haoyu Guo, and Giorgio Guglieri. De-
sign and sitl performance of an online distributed target estimation for uav swarm.
2022.

[10] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074, 2022.

[11] Mahendra Mallick. A note on bearing measurement model. 05 2018.
[12] Davide Morazzo and Ronald Cristian Dutu. swarm_uav_conĄg. https://github.

com/links-cosero/swarm_uav_config, 2023.
[13] Arthur G.O. Mutambara. Decentralized Estimation and Control for Multisensor Sys-

tems. CRC Press, 1998.
[14] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent

formation control. Automatica, 53, Mar 2015.
[15] Reza Olfati-Saber. A uniĄed analytical look at reynolds Ćocking rules. 2004.
[16] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and the-

ory. IEEE Transactions on automatic control, 51, Mar 2006.
[17] OpenMV. Openmv cam micro-python documentation. https://docs.openmv.io/.

79

Bibliography

[18] Open Robotics. Ros 2 - rosbag2. https://github.com/ros2/rosbag2.
[19] Open Robotics. Ros 2 - understanding topics. https://docs.ros.org/

en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/

Understanding-ROS2-Topics.html#ros2-topic-hz.
[20] František ŠolcRadek Baránek. Attitude control of multicopter. 2012.

80

	List of Figures
	Introduction
	State of the art
	Multicopter Control
	Kalman filter
	Flocking

	Drone Hardware Setup
	Flight Controller
	Mechanical vibrations
	PID tuning
	RC receiver

	Companion computer
	WiFi connectivity
	Serial port configuration

	OpenMV Onboard Camera

	Firmware and Software
	Ground station software
	ROS 2 configuration
	Deploy on the companion computer
	Cross-compilation for armhf architecture

	PX4-Autopilot
	Build and parameters setup
	Motor ordering
	Communication using ROS 2
	Position and velocity estimation

	Vicon system
	Vicon SDK Implementation

	Safety measures

	Target Estimation and Tracking
	Vehicle Handler Node
	State Machine

	Computer Vision
	ArUco marker pose estimation
	Camera Calibration

	Information Form Kalman Filter
	Flocking Algorithm
	Parameters tuning

	Simulation and Testing
	Simulation
	Simulation Results
	Gazebo Environment

	Real implementation
	Results

	Conclusions
	ROS 2 Topics Description
	Bibliography

