
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enabling Fine-Grained Security for
Liquid Computing in Multi-Cluster

Kubernetes Environments

Supervisor

Prof. Fulvio RISSO

Candidate

Francesco D’ANZI

October 2023

Summary

Cloud computing has revolutionized the way of deploying and managing ap-
plications. Among the numerous technologies that have emerged to facilitate
cloud-native application deployment, Kubernetes stands out as a cornerstone
for container orchestration, simplifying application scaling and management and
providing organizations with the agility required to thrive in the cloud-native
era.

While Kubernetes serves as a powerful foundation for cloud-native applica-
tions, the need for multi-cluster architectures enabling the creation of federated
clusters that act as a single entity has grown, driven by requirements for geo-
graphic distribution, redundancy and diverse infrastructure resources. “Liquid
computing” is a paradigm that proposes to realize multi-cluster environments,
creating a continuum of computing resources. This concept is followed by Liqo,
an open-source project started at Politecnico di Torino, that allows the building
of multi-cluster topologies within Kubernetes.

The goal of this thesis is to enable fine-grained security for connectivity in
Liqo. The current model of full pod-to-pod connectivity lacks granularity and
control: to address this limitation, the thesis presents a solution that allows a
single cluster in a Liqo environment to selectively contact its pods offloaded
in other clusters and the endpoints of offloaded services hosted by it. This
approach enhances security while maintaining the flexibility and scalability
benefits of liquid computing. The implementation of this solution involves the
development of two custom controllers responsible for enforcing connectivity
restrictions, which manage Iptables firewall rules for each cluster, ensuring
that communication occurs only within the defined constraints. Lastly, it is
presented a practical use case achievable thanks to the new feature: the creation
of data spaces, realized offloading workloads in the cluster that hosts data of
interest.

ii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 The Need for Multi-Cluster Environments 2
1.2 Multi-Cluster and Liqo . 3
1.3 Goal of the thesis . 3
1.4 Structure of the work . 3

2 Kubernetes 5
2.1 Kubernetes: a bit of history . 5
2.2 Evolution of workloads management 6
2.3 Container orchestrators . 7
2.4 Kubernetes architecture . 9

2.4.1 Control plane components 9
2.4.2 Node components . 11

2.5 Kubernetes objects . 12
2.5.1 Labels and Selectors . 13
2.5.2 Namespace . 13
2.5.3 Pod . 14
2.5.4 ReplicaSet . 14
2.5.5 Deployment . 14
2.5.6 DaemonSet . 15
2.5.7 Service . 15
2.5.8 EndpointSlice . 16

2.6 Kubernetes network architecture 17
2.6.1 Container communication within same pod 18
2.6.2 Pod communication within the same node 18
2.6.3 Pod communication on different nodes 18
2.6.4 CNI (Container Network Interface) 18
2.6.5 Pod to service networking 20

2.7 Kubebuilder . 21

iv

3 Liqo 22
3.1 An overview of Liqo . 22
3.2 Liqo Peering . 23
3.3 Liqo Reflection . 23
3.4 Network Fabric . 24

3.4.1 Cross-cluster VPN tunnels 24
3.4.2 In-cluster overlay network 25

3.5 Liqo CRDs . 25
3.5.1 NetworkConfig CR . 25
3.5.2 TunnelEndpoint CR . 26
3.5.3 ForeignCluster CR . 26
3.5.4 ShadowPod CR . 26

3.6 Liqo components . 27
3.6.1 CRD Replicator . 27
3.6.2 Virtual Kubelet . 28
3.6.3 IPAM . 28
3.6.4 Network manager . 29
3.6.5 Liqo Gateway . 29

4 Advanced Networking Concepts and Tools 30
4.1 Linux Namespaces . 30

4.1.1 Namespace kinds . 30
4.2 Linux Network Stack . 31

4.2.1 Netfilter . 31
4.2.2 Iptables . 32
4.2.3 Ipset . 34
4.2.4 Connection tracking . 35

5 Fine-Grained Security for Intra-Cluster Connectivity in Liqo 36
5.1 The Problem . 36

5.1.1 Full pod-to-pod connectivity 37
5.2 Architecture . 38

5.2.1 Problem Area . 38
5.2.2 Intra-cluster traffic segregation 38

5.3 Implementation . 41
5.3.1 Liqo NetNS . 41
5.3.2 OffloadedPod controller 43
5.3.3 ReflectedEndpointslice controller 46
5.3.4 Iptables rules management 52

v

6 Use case: data spaces with Liqo 57
6.1 Data spaces . 57
6.2 Use case overview . 58
6.3 Using Liqo for data spaces . 59

6.3.1 Workflow . 59
6.3.2 Implementation . 61

7 Experimental validation 63
7.1 Data space creation time . 63
7.2 Resource consumption . 64
7.3 Latency . 65

8 Conclusions 68

A NamespaceReconciler 69

Bibliography 84

vi

List of Figures

2.1 Evolution of applications deployments 6
2.2 Container orchestrators use [6]. 8
2.3 Kubernetes architecture . 9
2.4 Kubernetes master and worker nodes [1]. 12
2.5 Kubernetes pods [1]. 14
2.6 Kubernetes Services [1]. 16
2.7 Pod to pod communication within same node. 19
2.8 Pod to pod communication across different nodes. 19
2.9 Container network interface [8] 20

3.1 Network Fabric . 25
3.2 CRD Replicator . 28

4.1 Netfilter stack overview . 31
4.2 Netfilter stack details overview 33

5.1 Liqo full pod-to-pod connectivity between 2 clusters 37
5.2 Liqo network cross-cluster area in a 3 clusters setup 39
5.3 Intra-cluster traffic segregation with offloaded pods 40
5.4 Intra-cluster traffic segregation with offloaded service and local

endpoint . 41
5.5 Intra-cluster traffic segregation with offloaded service and end-

point on a third cluster . 42
5.6 Liqo Gateway overview . 43

6.1 Data spaces with Liqo . 59

7.1 CPU consumption . 65
7.2 Latency with 10 parallel connections 66
7.3 Latency with 100 parallel connections 66

vii

Chapter 1

Introduction

In the contemporary landscape of computing, the rapid evolution of technology
has ushered in a paradigm shift, moving away from traditional on-premises
infrastructure towards more agile, scalable, and flexible cloud-based solutions.
Cloud computing, as a foundational concept, has played a pivotal role in this
transition. It has redefined the way we conceive and manage computational
resources, offering businesses and organizations unparalleled opportunities for
innovation, cost-efficiency, and scalability.

At the heart of cloud-native computing stands Kubernetes, an open-source
container orchestration platform that has gained widespread adoption. Kuber-
netes, often referred to as K8s, revolutionizes the deployment and management
of containerized applications, providing a unified framework for automating
the deployment, scaling, and operation of applications. This powerful tool has
accelerated the development and deployment of software, enabling organizations
to harness the true potential of the cloud.

In recent years, there has been a notable growth of cloud-native solutions to
address the substantial volume of requests that large companies routinely handle
in order to deliver services to millions of users. This approach, when compared
to the traditional monolithic software architecture, has gained prominence. The
fundamental idea behind it is to construct applications by breaking them down
into numerous small, closely related and loosely connected components. These
components can be managed independently, simplifying the overall application
development process. When combined with containerization techniques and
the capabilities provided by container orchestrators, this approach offers un-
paralleled ease of management, which has become widespread in the software
industry.

Among the various orchestrating systems, Kubernetes has assumed a central
role in the realm of cloud computing: its features, user-friendliness and robust
declarative API allow users to effectively manage the dynamic nature of modern

1

Introduction

workloads. Its open-source nature and the availability of developer tools have
contributed significantly to its adoption and, more importantly, to the growth
of the cloud community as a whole. Consequently, cloud-native principles are
no longer limited to large corporations but are increasingly embraced by small
and medium-sized businesses.

As a result, clusters are being employed across various facets of the software
industry, necessitating their interconnection to fully harness their capabilities.

1.1 The Need for Multi-Cluster Environments

The prevalence of Kubernetes is closely tied to its adoption in the cloud:
increasingly, more providers are constructing and offering managed clusters as
a service. On the other hand, Kubernetes also enjoys popularity in on-premise
environments, where it leverages its rich ecosystem to reduce the gap with
public clouds. Additionally, there is a growing interest in edge setups, with a
rising number of projects focused on implementing Kubernetes in lightweight,
geographically dispersed infrastructures.

Following these trends, organizations no longer require isolated clusters;
instead, they seek clusters that can communicate and collaborate, creating
a multi-cluster environment. This approach transforms clusters into entities
similar to nodes within a larger system. A fundamental requirement in this
context is the ability to share resources and dynamically exchange workloads
responsively.

Kubernetes, however, does not inherently support this approach. Its highest
level of abstraction is the “node” entity, typically representing a single physical
machine within a cluster. The essence of a multi-cluster approach in Kubernetes
revolves around enabling individual clusters to share their nodes with other
clusters. This idea allows for the existence of distinct clusters, as perceived by
Kubernetes, while effectively creating a logical, unified cluster for enhanced
cooperation and resource utilization.

Despite the increased complexity, the widespread use of multiple cluster
topologies introduces new and exciting possibilities. These possibilities extend
beyond the basic concept of static application orchestration across multiple
clusters that has been explored thus far. In fact, multi-cluster topologies can
be useful to orchestrate applications across various locations and unify access
to the infrastructure. Among the others, this introduces the intriguing option
of migrating an application from cluster to cluster, transparently and quickly.

2

Introduction

1.2 Multi-Cluster and Liqo
The concept of “liquid computing” refers to the dynamic allocation of computing
resources based on the needs of the user. This approach has become crucial for
companies searching for quick adaptability in their operations. Liqo, an open-
source project initiated at Politecnico di Torino, capitalizes on this concept to
enable the creation of dynamic multi-cluster configurations within Kubernetes.

Liqo approach facilitates the connection of multiple independent clusters,
allowing them to pool resources and workloads while being managed as a unified
entity. By extending the Kubernetes API, Liqo enables the amalgamation of
different clusters into a multi-cluster network of computing nodes. This is
accomplished by establishing automatic peer-to-peer relationships that facilitate
resource and service sharing among disparate and diverse clusters.

A significant advantage of Liqo is its seamless ability to offload workloads
to remote peers without necessitating modifications to Kubernetes or the
applications. This makes multi-cluster computing a natural and transparent
process, where remote clusters are regarded as additional nodes alongside the
local cluster. To facilitate communication between remote pods, Liqo provides
a network framework that enables pod-to-pod connectivity across multiple
clusters.

1.3 Goal of the thesis
Liqo currently adopts a full pod-to-pod connectivity model which may not
always align with the security demands of the multi-cluster topology that is
desired to be implemented. As a consequence the need for finer granularity
and control arises: this work aims to address this gap in connectivity security,
enabling fine-grained traffic control while preserving the innate flexibility and
scalability benefits of Liqo, leveraging also this new feature in a PoC that shows
the possibility to create data spaces.

1.4 Structure of the work
This thesis is structured as follows:

• Chapter 2 provides an overview of Kubernetes, its architecture, and
concepts;

• Chapter 3 provides an overview of Liqo, its architecture features, and
components;

3

Introduction

• Chapter 4 provides a presentation of advanced network concepts used in
the next chapters;

• Chapter 5 provides a description of the architectural changes to Liqo and
its implementation details to enable fine-grained security in a Multi-Cluster
Kubernetes environment

• Chapter 6 describes the possibility of creating data spaces through Liqo,
presenting a proof-of-concept;

• Chapter 7 provides a performance analysis of the proposals in this thesis;

• Chapter 8 provides conclusions about the thesis and future perspectives.

4

Chapter 2

Kubernetes

In this chapter, we delve into the architecture of Kubernetes, providing insight
into its historical development to establish the groundwork for subsequent
discussions. Kubernetes, often abbreviated as K8s, is an extensive framework,
and a comprehensive examination would require substantial time and discussion.
Therefore, we offer here a description of its core concepts and components, with
further details available in the official documentation[1].

2.1 Kubernetes: a bit of history
The Borg [2] system was developed by Google in 2004: it was a small project
that at first just had less than 5 people working on it and was developed
as a collaboration with a new version of Google’s search engine. Borg was
a large-scale internal cluster management system, which “ran hundreds of
thousands of jobs, from many thousands of different applications, across many
clusters, each with up to tens of thousands of machines” [2]. In 2013 Google
announced Omega [3], a flexible and scalable scheduler for large compute
clusters. Omega provided a “parallel scheduler architecture built around shared
state, using lock-free optimistic concurrency control, in order to achieve both
implementation extensibility and performance scalability”. In 2014, Google
introduced Kubernetes as an open-source version of Borg. Joe Beda, Brendan
Burns, Craig McLuckie, and other Google engineers developed Kubernetes.
Borg had a significant impact on its creation and design, and many of its original
contributors had previously worked on it. While the original Borg project was
coded in C++, Kubernetes was built using the Go programming language. In
the year 2015, Kubernetes version 1.0 was officially released. Concurrently,
Google entered into a strategic partnership with the Linux Foundation to
establish the Cloud Native Computing Foundation (CNCF) [4]. Since then,

5

Kubernetes

Figure 2.1: Evolution of applications deployments

Kubernetes has experienced substantial growth, achieving the CNCF graduated
status and gaining widespread adoption within nearly all major corporations.
At the moment, it is the de-facto dtandard for conatiner orchestration [5]

2.2 Evolution of workloads management

Traditional deployment era In the traditional deployment era, organi-
zations ran applications on physical servers. There was no way to define
application constraints to limit resource usage, and some applications would
end up taking most of the resources available, making the remaining applica-
tions starve. This led system managers to deploy one server per application,
increasing costs and maintenance work. At this point, the community rediscov-
ered the abandoned concept of virtualization.
Virtualized deployment era In the virtualized deployment era, developers
had the capability to operate multiple Virtual Machines (VMs) on a single
physical server. This approach ensured that applications remained isolated
from one another, with each application running within its dedicated VM.
Virtualization provided the flexibility to define specific resource constraints
for each VM, establishing robust boundaries that prevented software in one
VM from interfering with the broader system or other VMs. This isolation
contributed significantly to a more stable and secure environment, as applica-
tions could neither disrupt each other’s operation nor freely access confidential
application data. Furthermore, virtualization facilitated enhanced scalability
since application instances could be readily expanded or reduced by creating or
deleting VMs as needed. Each VM encapsulated a complete operating system
and could be tailored to include precisely the required versioned dependencies,
resulting in well-defined compartments that were straightforward to manage,

6

Kubernetes

maintain, and troubleshoot. In summary, this approach reduced the deploy-
ment of physical servers, resulting in cost savings, and allowed organizations to
optimize the utilization of their existing servers, thereby preventing them from
sitting idle or underused
Containerized deployment era The next phase in the progression of
workload deployment marked the emergence of containerization. Containers
operate in a manner akin to VMs, albeit with less stringent isolation properties
that enable different applications to coexist within the same Operating System.
This reduced isolation grants them the “lightweight” classification. Much like
VMs, containers possess their distinct file systems, CPU allocation, memory
allocation, process space, and more. Containers are designed to be decou-
pled from the underlying infrastructure, granting them the crucial advantage
of portability across various cloud environments and OS distributions.The
popularity of containers stems from their set of additional benefits, such as:

• Facilitating agile application creation and deployment due to the ease of
generating container images compared to VM images.

• Enabling continuous development, integration, and deployment through
dependable and frequent container image builds and deployments.

• Supporting application health checks and observability.

• Offering portability across different cloud platforms and OS distributions.

• Emphasizing application-centric management, elevating the abstraction
level to focus primarily on running the application.

• Optimizing resource utilization, leading to higher efficiency and density.

Concurrently, there has been a notable evolution in workload management
methods. Initially, VMs were treated as individual entities, transitioning to a
more generalized “cattle” model, albeit with a significant degree of coupling to
their lifecycles. The evolution continued to a decoupled approach, exemplified
by Kubernetes. Kubernetes employs a declarative approach that articulates
general intentions for the system to apply to all relevant resources, eliminating
the need to manage individual instances. This shift presents a detached
perspective where resources are viewed as commodities that can be created,
terminated, and replaced as necessary

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to
manage them becomes essential; container orchestrators serve this purpose. A

7

Kubernetes

container orchestrator is a system designed to easily manage complex container-
ization deployments across multiple machines from one central location. As we
can see in figure 2.2, Kubernetes is by far the most used container orchestrator.

Figure 2.2: Container orchestrators use [6].

In the following, we provide a description of such system
Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed
using the DNS name or using its own IP address. If traffic to a container
is high, a load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate
the creation of new containers of a deployment, remove existing containers
and adopt all their resources to the new container

• Storage orchestration Kubernetes is provided with a cluster of nodes
that can be used to run containerized tasks. It is possible to set how
much CPU and memory (RAM) each container needs, and automatically
the containers are sized to fit in the nodes to make the best use of the
resources.

• Secret and configuration management It is possible to store and
manage sensitive information in Kubernetes, such as passwords, OAuth
tokens, and SSH keys. It is possible to deploy and update secrets and

8

Kubernetes

application configuration without rebuilding the container images, and
without exposing secrets in the stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster
consists of a set of machines, called nodes, that run containerized applications.
At least one of the nodes hosts the control plane and is called master. Its
role is to manage the cluster and expose an interface to the user. The worker
node(s) host the worker that are the components of the application. The
master manages the worker nodes and the pods in the cluster. In production
environments, the control plane usually runs across multiple machines and a
cluster runs on multiple nodes, providing fault-tolerance and high availability.
Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

Figure 2.3: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for
example, scheduling), as well as detecting and responding to cluster events (for
example, starting up a new pod). Although they can be run on any machine in
the cluster, for simplicity, they are typically executed all together on the same
machine, which does not run user containers.

API server
The API server is the component of the Kubernetes control plane that exposes

9

Kubernetes

the Kubernetes REST API, and constitites the front end for the Kubernetes con-
trol plane. Its function is to intercept REST request, validate and process them.
The main implementation of a Kubernetes API server is kube-apiserver. It
is designed to scale horizontally, which means it scales by deploying more
instances. Moreover, it can be easily redounded to run several instances of it
and balance traffic among them.

etcd
etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm, which allows different machines to work as a coherent group and
survive to the breakdown of one of its members. etcd can be stacked in the
master node or external, installed on dedicated host. Only the API server can
communicate with it.

Scheduler
The scheduler is the control plane component responsible of assigning the pods
to the nodes. The one provided by Kubernetes is called kube-scheduler, but
it can be customized by adding new schedulers and indicating in the pods to
use them. kube-scheduler watches for newly created pods not assigned to a
node yet, and selects one for them to run on. To make its decisions, it con-
siders singular and collective resource requirements, hardware/software/policy
constraints, affinity and anti-affinity specifications, data locality, inter-workload
interference and deadlines.

kube-controller-manager
Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go
down.

• Replication Controller: in charge of maintaining the correct number of
pods for every replica object in the system.

• Endpoint Controller: populates Endpoint objects (which link Services and
Pods) [deprecated and substituted by the EndpointSlice API].

• EndpointSlice Controller: populates EndpointSlice objects (which link
Services and Pods).

10

Kubernetes

• Service Account & Token Controllers: create default accounts and API
access tokens for new namespaces.

cloud-controller-manager
This component runs controllers that interact with the underlying cloud
providers. The cloud-controller-manager binary is a beta feature intro-
duced in Kubernetes 1.6. It only runs cloud-provider-specific controller loops.
You can disable these controller loops in the kube-controller-manager.
cloud-controller-manager allows the cloud vendor’s code and the Kuber-
netes code to evolve independently of each other. In prior releases, the core
Kubernetes code was dependent upon cloud-provider-specific code for function-
ality. In future releases, code specific to cloud vendors should be maintained
by the cloud vendor themselves, and linked to cloud-controller-manager
while running Kubernetes. Some examples of controllers with cloud provider
dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting
with the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing
the Kubernetes runtime environment.

Container runtime
The container runtime is the software that is responsible for running con-
tainers. Kubernetes supports several container runtimes: Docker, containerd,
CRI-O, and any implementation of the Kubernetes CRI (Container Runtime
Interface).

kubelet
An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications

11

Kubernetes

of the Pods and interacts with the container runtime to run them, monitor-
ing their state and assuring that the containers are running and healthy. The
connection with the container runtime is established through the Container
Runtime Interface and is based on gRPC.

kube-proxy
kube-proxy is a network agent that runs on each node in your cluster, imple-
menting part of the Kubernetes Service concept. It maintains network rules
on nodes, which allow network communication to your Pods from inside or
outside of the cluster. If the operating system is providing a packet filtering
layer, kube-proxy uses it, otherwise it forwards the traffic itself.

Addons
Features and functionalities not yet available natively in Kubernetes, but im-
plemented by third parties pods. Some examples are DNS, dashboard (a web
gui), monitoring and logging.

Figure 2.4: Kubernetes master and worker nodes [1].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields:

• apiVersion: the versioned schema of this representation of the object

• kind: a string value representing the REST resource this object represents

• ObjectMeta: metadata about the object, such as its name, annotations,
labels, etc.

12

Kubernetes

• ResourceSpec: defined by the user, it describes the desired state of the
object

• ResourceStatus: filled in by the server, it reports the current state of
the resource

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; once a resource is
created, the system applies the desired state

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name
– List: retrieve all resource objects of a specific type within a namespace

and the results can be restricted to resources matching a selector query
– Watch: stream results for an object(s) as it is updated

• Update: comes with 2 variants

– Replace: replace the existing spec with the provided one
– Patch: apply a change to a specific field

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Labels and Selectors
Labels are key-value pairs attached to a K8s object and used to organize and
mark a subset of objects. Selectors are the grouping primitives which allow to
select a set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates
4 Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-
plane agents

• default: it contains objects and resources created by users and it is the
one used by default

13

Kubernetes

• kube-public: readable by everyone (even not authenticated users), it is
used for special purposes like exposing cluster public information

• kube-node-lease: it maintains objects for heartbeat data from nodes

It is a good practice to split the cluster into many Namespaces in order to
better virtualize the cluster.

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection
of one or more containers which share the same network and storage, and
are scheduled together on the same pod. Pods are ephemeral and have no
auto-repair capacities: for this reason they are usually managed by a controller
which handles replication, fault-tolerance, self-healing etc.

Figure 2.5: Kubernetes pods [1].

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently
in execution. If a pod in the set is deleted, the ReplicaSet notices that the
current number of replicas (read from the Status) is different from the desired
one (specified in the Spec) and creates a new pod. Usually ReplicaSets are
not used directly: a higher-level concept is provided by Kubernetes, called
Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of
pods. For this reason an application is typically executed within a Deployment
and not in a single pod. The listing 2.1 is an example of deployment.

14

Kubernetes

Listing 2.1: Basic example of Kubernetes Deployment [1].
1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 c on t a i n e r s :
18 − name : nginx
19 image : nginx : 1 . 7 . 9
20 por t s :
21 − conta ine rPort : 80

The code above allows to create a Deployment with name nginx-deployment
and a label app, with value nginx. It creates three replicated pods and, as
defined in the selector field, manages all the pods labelled as app:nginx. The
template field shows the information of the created pods: they are labelled
app:nginx and launch one container which runs the nginx DockerHub image
at version 1.7.9 on port 80.

2.5.6 DaemonSet
A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes
are added to the cluster, Pods are added to them. As nodes are removed from
the cluster, those Pods are garbage collected. Deleting a DaemonSet will clean
up the Pods it created. Some typical uses of a DaemonSet are:

• running a cluster storage daemon on every node

• running a logs collection daemon on every node

• running a node monitoring daemon on every node

2.5.7 Service
A Service is an abstract way to expose an application running on a set of
Pods as a network service. It can have different access scopes depending on its

15

Kubernetes

ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type

• NodePort: exposes the Service on a static port of each Node’s IP. The
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>

• LoadBalancer: exposes the Service externally using a cloud provider’s
load balancer

• ExternalName: maps the Service to an external one so that local apps
can access it

Pod

Node

Figure 2.6: Kubernetes Services [1].

The following Service is named my-service and redirects requests coming
from TCP port 80 to port 9376 of any Pod with the app=MyApp label.

2.5.8 EndpointSlice
An EndpointSlice is an abstraction that contains references to a set of network
endpoints of a service. It is created by the kube-controller-manager and
contains a list of IP addresses and ports for each pod that backs the service.
The EndpointSlice provides an alternative that is more scalable and extensible

16

Kubernetes

than the original and deprecated Endpoint resource. It tracks IP addresses,
ports, readiness, and topology information for pods backing a service. Listing
2.2 shows an example of an EndpointSlice resource:

Listing 2.2: Basic example of Kubernetes Service [1].
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : myApp
8 por t s :
9 − pro to co l : TCP

10 port : 80
11 ta rge tPor t : 9376

2.6 Kubernetes network architecture
Kubernetes defines a network model that helps provide simplicity and consis-
tency across a range of networking environments and network implementations.
The Kubernetes network model provides the foundation for understanding how
containers, pods, and services within Kubernetes communicate with each other
[7]. The Kubernetes network model specifies:

1. Every pod gets its own IP address

2. Containers within a pod share the pod IP address and can communicate
with each other freely

3. Pods can communicate with all other pods in the cluster using pod IP
addresses (without NAT)

4. Agents on a node (e.g., system daemons, kubelet) can communicate with
all pods on that node

5. Pods on a node’s host network can communicate with all pods on all nodes
(without NAT)

6. Isolation (restriction of what each pod can communicate with) is defined
using network policies

As a result, pods can be treated much like VMs or hosts (they all have unique
IP addresses), and the containers within pods very much like processes running

17

Kubernetes

within a VM or host (they run in the same network namespace and share an
IP address). This model makes it easier for applications to be migrated from
VMs and hosts to pods managed by Kubernetes. In addition, because isolation
is defined using network policies rather than the structure of the network, the
network remains simple to understand. This style of network is sometimes
referred to as a “flat network”

2.6.1 Container communication within same pod
Containers in a Pod are accessible via localhost, they use the same network
namespace. For containers, the observable host name is a Pod’s name. Since
containers share the same IP address and port space, different ports in containers
for incoming connections must be used. Because of this, applications in a Pod
must coordinate their usage of ports.

2.6.2 Pod communication within the same node
Before the infrastructure container is started, a virtual Ethernet interface pair
(a veth pair) is created for the container. One interface of the veth pair stays
in the host’s namespace (it tagged with vethxxx) while the other interface is
moved into the container’s network namespace and renamed to eth0. These
two virtual interfaces are like two ends of a pipe that everything goes in one
side, comes out on the other.The interface in the host’s network namespace
is attached to a network bridge that container runtime is configured to use.
The eth0 interface in the container is assigned an IP address from the bridge’s
address range. Anything that application running inside the container sends to
the eth0 network interface and comes out at the other veth Interface in host’s
namespace and is sent to bridge. So, any network connected to the bridge can
receive it.

2.6.3 Pod communication on different nodes
Pod IP addresses must be unique across the whole cluster, so the bridges
across the nodes must use non-overlapping address ranges to prevent pods from
different nodes from receiving the same IP address. There are many methods to
connect bridges on different nodes. This can be done with overlay or underlay
networks, or through regular Layer 3 routing (direct routing).

2.6.4 CNI (Container Network Interface)
CNI (Container Network Interface) represents a project within the Cloud Native
Computing Foundation (CNCF). This project comprises a specification and

18

Kubernetes

Figure 2.7: Pod to pod communication within same node.

Figure 2.8: Pod to pod communication across different nodes.

libraries that enable the creation of plugins responsible for configuring network
interfaces within Linux containers. CNI’s primary focus is on managing the
network connectivity of containers and ensuring that allocated resources are
properly reclaimed when a container is deleted. In the context of Kubernetes,
CNI specifications and plugins are utilized to orchestrate networking. Ku-
bernetes, through CNI, can communicate with other containers’ IP addresses
without relying on Network Address Translation (NAT). Whenever a Pod

19

Kubernetes

is initialized or removed, the default CNI plugin is invoked with its default
configuration. This default CNI plugin creates a pseudo interface, attaches it
to the underlying network, assigns an IP address, configures routes, and links
it to the Pod’s namespace. When launching the Kubelet, it is important to
specify the use of the CNI plugin by including the flag –networkplugin=cni.
If the environment does not utilize the default configuration directory located
at /etc/cni.net.d, the CNI plugin can receive the appropriate configuration
directory as a value using the –cni-conf-dir flag. Additionally, the Kubelet
expects to find the CNI plugin binary at /opt/cni/bin, but an alternative
location can be designated using the –cni-bin-dir flag.

Figure 2.9: Container network interface [8]

2.6.5 Pod to service networking
Pod IP addresses are inherently transient and can fluctuate unpredictably in
response to various events such as scaling operations, application failures, or
node reboots. These events have the potential to cause Pod IP addresses to
change without any warning. To tackle this challenge, a Kubernetes Service
effectively manages the state of Pods, enabling the monitoring of a dynamic set
of Pod IP addresses that may evolve over time. Services serve as an abstraction
layer above Pods and assign a single virtual IP address to a collection of Pod
IP addresses. Any traffic directed towards the virtual IP address associated
with a service will be automatically routed to the group of Pods that are linked
to that virtual IP. This architectural design permits the composition of Pods
associated with a service to undergo modifications at any given moment, all
while ensuring that clients only need to be aware of the unchanging virtual IP
address of the service [9].

20

Kubernetes

2.7 Kubebuilder
Kubebuilder [10] is a framework for building Kubernetes APIs using Custom
Resource Definitions (CRDs)

CustomResourceDefinition is an API resource offered by Kubernetes
which allows to define Custom Resources (CRs) with a name and schema
specified by the user. When a new CustomResourceDefinition is created, the
Kubernetes API server creates a new RESTful resource path; the CRD can be
either namespaced or cluster-scoped. The name of a CRD object must be a
valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not
available in a default Kubernetes installation and which frees users from writing
their own API server to handle them. On their own, custom resources simply
let you store and retrieve structured data. In order to have a more powerful
management, you also need to provide a custom controller which executes
a control loop over the custom resource it watches: this behaviour is called
Operator pattern [11]. Kubebuilder helps a developer in defining his Custom
Resource, taking automatically basic decisions and writing a lot of boilerplate
code. These are the main actions operated by Kubebuilder:

1. Create a new project directory

2. Create one or more resource APIs as CRDs and then add fields to the
resources

3. Implement reconcile loops in controllers and watch additional resources

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically)

5. Update bootstrapped integration tests to test new fields and business logic

6. Build and publish a container from the provided Dockerfile

21

Chapter 3

Liqo

This chapter presents the fundamnetal concepts of Liqo [12] and the core
components that constitute its architecture.

3.1 An overview of Liqo

Kubernetes technology plays a prominent role in managing cloud-related tasks.
Cluster configurations are typically designed to provide an abundance of re-
sources, including significant computing power, ample memory, and extensive
storage capacity, often surpassing the immediate requirements for handling
temporary spikes in workload. This surplus capacity represents an untapped
potential that can be harnessed by other clusters experiencing lower resource
demands during specific timeframes. Liqo’s primary objective is to unlock this
latent power by establishing connections between clusters, enabling them to
collaborate effectively in pursuit of their objectives.

To achieve this objective, clusters initiate peering sessions that result in the
formation of a larger virtual cluster that collectively aggregates the resources
exposed by each participating cluster involved in the peering process.

The advantage of Liqo stands in its ability to build upon the core concepts
well-known within the Kubernetes ecosystem, thus extending its capabilities.
In essence, a cluster views its peers as virtual nodes that seamlessly add up to
its physical ones, permitting task scheduling on these nodes without regard to
their actual origins or nature.

The next sections will provide a more in-depth exploration of these concepts,
commencing with a focus on a core element and its setup: the Liqo peering
mechanism.

22

Liqo

3.2 Liqo Peering
When two or more Kubernetes clusters are ready to host workloads, they can
participate in a multi-cluster setup by initiating a peering session between them.
This marks the initiation of the Liqo experience. A Liqo peering operation
combines distinct entities, uniting them into a broader environment with the
capacity to manage more extensive workloads effectively. Consequently, each
participating cluster becomes aware of the presence of other remote peers, rep-
resented by the ForeignCluster Custom Resource (CR). This process involves
the exchange of network parameters and other cluster-related information,
establishing a secure VPN that pods will utilize for intercommunication within
a large, distributed cross-cluster application.

Cluster peerings are not required to be symmetric. Their flexibility allows a
cluster to establish:

• an outgoing peering, so that the cluster can offload its workloads, but
won’t receive any by its pee

• an incoming peering, so that the cluster hosts remote workloads, but
won’t offload any to its peer

• a bidirectional peering, the union of the two above

When an outgoing peering is active, it is of absolut importance to control
what can and cannot be offloaded. This is done by leveraging some native
Kubernetes concepts, namely Namespaces and label selectors, as well as some
logic provided by Liqo to select which namespaces to offload, which pods within
those namespaces to offload, and even which remote peers are the target of this
offloading mechanism: the possibilities are endless. The basic requirement for
starting a peering session is to have access to the remote Kubernetes API server.
This allows clusters to exchange information and create resources remotely.
The result is a VPN that remote pods use to communicate as if they were all
in the same Kubernetes cluster.

3.3 Liqo Reflection
After the establishment of a peering connection, the capacity for workload
offloading is activated through the utilization of the virtual node concept and
namespace extension.

A virtual node serves as a representation of a remote cluster, encapsulating
all its shared resources like CPU and memory. This mechanism allows for a
seamless expansion of the local cluster’s available resources. When a virtual

23

Liqo

node is integrated into the cluster, it is automatically considered by the standard
Kubernetes scheduler when determining the optimal location for executing
workloads.

Furthermore, Liqo facilitates the extension of Kubernetes namespaces beyond
cluster boundaries. When a specific namespace is chosen for offloading, Liqo
automatically generates corresponding twin namespaces within the chosen
subset of remote clusters. These remote twin namespaces serve as hosts for the
offloaded pods and any other resources that belong to the local namespace being
extended remotely. This encompasses elements related to service exposure,
such as Ingress, Service, and Endpoints resources, as well as the storage of
configuration data, including ConfigMaps and Secrets, among others.

3.4 Network Fabric
The network fabric within Liqo is a subsystem that seamlessly extends the
Kubernetes network model across multiple autonomous clusters. This extension
enables offloaded pods to interact with one another as if they were all executing
within the same local cluster.

In particular, the network fabric ensures that all pods within a specific
cluster can communicate with every pod across all the remotely peered clusters.
This communication can occur with or without the need for Network Address
Translation (NAT) translation. Since Liqo accommodates arbitrary clusters
with varying parameters and components (e.g., CNI plugins), it becomes
impossible to guarantee non-overlapping pod IP address ranges (i.e.,PodCIDR).
Therefore, when address ranges do not overlap, it may be necessary to employ
address translation mechanisms to enable NAT-less communication, which is
preferred.

Figure 3.1 provides a high-level illustration of the network fabric established
between two clusters, with the key components elaborated upon in the next
sections.

3.4.1 Cross-cluster VPN tunnels
The linkage between peered clusters is established using secure VPN tunnels
created with WireGuard. These tunnels are dynamically established once the
peering process is complete, based on the negotiated parameters.

The responsibility for setting up these tunnels falls upon the Liqo gateway,
a crucial component of the network fabric. This gateway runs as a privileged
pod on one of the nodes within the cluster. Additionally, it takes care of
populating the routing table and configuring NAT rules, leveraging iptables,
as necessary to address address conflicts.

24

Liqo

Remote ClusterLocal Cluster

Overlay... Overlay...

Viewer does not support full SVG 1.1

Figure 3.1: Network Fabric

Despite executing within the host network, this component relies on a
separate network namespace and policy routing to ensure isolation and prevent
conflicts with the existing Kubernetes CNI plugin. Furthermore, it supports
an active/standby high-availability configuration to minimize downtime in the
event that the primary replica needs to be restarted.

3.4.2 In-cluster overlay network
The overlay network plays a crucial role in routing all traffic that originates
from local pods or nodes and is destined for a remote cluster. This traffic is
directed to the gateway, where it enters the VPN tunnel. Conversely, on the
other end, traffic exiting the VPN tunnel enters the overlay network to reach
the node hosting the target pod.

Liqo employs a VXLAN-based configuration for this purpose, which is set up
by a network fabric component executed on all physical nodes within the cluster.
This component functions as a DaemonSet, ensuring uniform configuration
across all nodes, and is also responsible for managing the necessary routing
entries to ensure accurate traffic forwarding.

3.5 Liqo CRDs
The following subsections present some of the Custom Resources that allow
the peering and reflection features in Liqo.

3.5.1 NetworkConfig CR
This Custom Resource serves as a representation of a set of network parameters,
primarily IP addresses, that are used by clusters to understand how a remote

25

Liqo

peer has reconfigured the local PodCIDR and to ascertain the remote peer’s
PodCIDR. The spec section contains information pertaining to the local cluster,
while the status section records any modifications made to the specifications.
The concept involves one cluster creating this CR and transmitting it to the
remote cluster with which it intends to establish a peering relationship. The
remote cluster processes this CR and annotates the status section with all the
adjustments made to IP address ranges to prevent conflicts. These updates are
then relayed back to the originating cluster.

Simultaneously, a similar process occurs in the reverse direction. The remote
cluster generates a NetworkConfig, fills in its spec section, and transmits it
to the local cluster. The local cluster, in turn, annotates any changes in the
status section to inform the remote cluster of any modifications to the original
specifications.

After both CRs have been processed, a control loop within Liqo reconciles
them to generate the TunnelEndpoint CR.

3.5.2 TunnelEndpoint CR

This CR contains the relevant network configuration to establish a VPN tunnel
with the remote cluster. Thanks to this, pods are able to reach other remote
pods as if they were on the same network.

3.5.3 ForeignCluster CR

This CR represents a remote cluster. It contains details about the peering
session that is in place between two clusters, such as whether the peering was
successfully established and in which direction it is going (outgoing, incoming,
or both). A ForeignCluster is created starting from the NetworkConfig that
the two parties have exchanged and processed.

3.5.4 ShadowPod CR

When a pod is scheduled on a virtual node, in parallel a pod is created in the
remote cluster for the actual workload execution. In the remote cluster, a new
object paired with the remote pod is created: the ShadowPod. This resource,
combined with its controller, guarantees the presence of the pod in the remote
cluster, even in case of connection failures.

26

Liqo

3.6 Liqo components

3.6.1 CRD Replicator
This component is dedicated to the reflection of some Liqo CRs just presented.
To do so, it requires access to the remote API Server. It is a core element as
it implements the network parameter exchange between clusters to set up the
TunnelEndpoint CRs which will later be used respectively to keep track of the
active peering sessions and to ensure remote pod-to-pod communications. The
replicated CRDs are:

• NetworkConfig

• ResourceRequest

• ResourceOffer

• NamespaceMapping

The architecture of the CRD Replicator is complex, but essentially it is reflector:
a data structure that contains the necessary objects and data required to detect
changes within both local and remote namespaces. It accomplishes this by
utilizing local and remote informers. Additionally, the reflector is responsible for
executing the conventional CRUD (Create, Read, Update, Delete) operations
within these namespaces, employing local and remote clients for this purpose.
To elaborate further, when an object, such as a NetworkConfig, is generated
within a namespace that has been enabled for reflection and is equipped with
the appropriate metadata labels, the local reflector (associated with the cluster
that initiated the object’s creation) follows these steps:

1. it detects a new object to be reflected

2. it creates a copy of that object in the remote namespace by using a
preconfigured client to access the remote API serve

3. it listens to any changes occurring in the reflected object, which usually
boils down to a status update performed by the remote cluster controllers,
as happens with NetworkConfig to let the sender cluster know about
possible remappings

4. it listens to any changes occurring in the local original copy, such as a
deletion that needs to propagate to the remote cluster’s namespace so that
the remote copy gets deleted as well

27

Liqo

Figure 3.2: CRD Replicator

3.6.2 Virtual Kubelet
This component is a tailored adaptation of the Virtual Kubelet project [13].
Whenever a peering session is initiated with a remote cluster, a distinct instance
of this component is generated. Once instantiated, it serves a dual purpose: first,
it facilitates the offloading of pods to remote clusters, which are perceived by
the Kubernetes control plane as standard cluster nodes suitable for scheduling
regular tasks. Additionally, this component plays a role in reflecting essential
Kubernetes resources, including Services and Endpoints. When deployed within
a Liqo-enabled namespace, specifically one extended to a remote location, these
resources are continually mirrored to the designated remote peers.

3.6.3 IPAM
This component contains the logic that translates IP addresses back and forth
and keeps track of all the possible remappings between the local cluster and
the remote peers. It is fundamental within Liqo as it knows all the NAT rules
that are used to avoid address conflicts.

28

Liqo

3.6.4 Network manager
The network manager serves as the control plane of the Liqo network fabric.
It operates as a pod and assumes responsibility for negotiating connection
parameters with each remote cluster during the peering procedure. Within its
framework, it incorporates an IP Address Management (IPAM) plugin, designed
to address potential network conflicts by defining high-level NAT rules (which
are enforced by data plane components). Furthermore, it provides an interface
that the reflection logic utilizes to manage the remapping of IP addresses. More
specifically, this functionality is employed for the translation of pod IPs (for
instance, during the synchronization process from the remote cluster to the
local cluster) and also for EndpointSlices reflection (which involves propagation
from the local to the remote cluster).

3.6.5 Liqo Gateway
This component takes on the role of managing connections with other clusters.
All traffic flowing between two clusters engaged in peering must traverse through
this component. While it is possible to have multiple Liqo Gateways, only one
can be active at a time, with the others serving as backup options in case of
failures. The establishment and management of connections between clusters
are executed through VPN tunnels, and this component is responsible for their
administration. Liqo offers support for various VPN drivers (such as Wireguard,
OpenVPN, IPSec), providing an interface for implementing the necessary logic.
However, currently, the only implemented driver is Wireguard.

29

Chapter 4

Advanced Networking
Concepts and Tools

In this chapter are explained some networking concepts and technologies used
for the implementation of the thesis work.

4.1 Linux Namespaces
Namespaces are a feauture within the Linux kernel designed to segment kernel
resources in a way that one group of processes perceives a specific set of resources,
while another group of processes perceives an different set of resources. This
functionality operates by employing the same namespace for a given set of
resources and processes, yet these namespaces point to distinct and separate
resources. It is important to note that resources can exist in multiple namespaces
simultaneously. Examples of such resources encompass process IDs, hostnames,
user IDs, file names, certain identifiers linked to network access, and mechanisms
for interprocess communication. In the realm of Linux containers, namespaces
constitute a foundational element.

4.1.1 Namespace kinds
Since kernel version 5.6, there are 8 kinds of namespaces. Namespace function-
ality is the same across all kinds: each process is associated with a namespace
and can only see or use the resources associated with that namespace, and
descendant namespaces where applicable. This way each process (or process
group thereof) can have a unique view of the resources. Which resource is
isolated depends on the kind of namespace that has been created for a given
process group. Namespace kinds are:

30

Advanced Networking Concepts and Tools

• Mount namespace: controls mount points

• PID namespace: provides processes with an independent set of process
IDs

• Network namespace: allows Linux network stack to behave in isolated
groups

• IPC namespace: allows processes to have separated IPC

• UTS namespace: allows a single system to appear to have different host
and domain names for different processes

• User namespace: related to user privileges

• Control group namespace: hides the identity of the cgroup of which
process is a member

• Time namespace: allows processes to see different system times

4.2 Linux Network Stack

4.2.1 Netfilter
The Netfilter framework within the Linux kernel is the basic building block
on which packet selection systems like Iptables or the newer Nftables are built
upon. It provides a bunch of hooks inside the Linux kernel, which are being
traversed by network packets as those flow through the kernel (see figure 4.1).
Other kernel components can register callback functions with those hooks,
which enables them to examine the packets and make decisions on whether
packets shall be dropped, accepted, or modified.

Figure 4.1: Netfilter stack overview

31

Advanced Networking Concepts and Tools

A network packet received on a network device first traverses the Prerouting
hook. Then the routing decision happens and thereby the kernel determines
whether this packet is destined at a local process (e.g. socket of a server
listening on the system) or whether the packet shall be forwarded (in that case
the system works as a router). In the first case, the packet then traverses the
Input hook and is then given to the local process. In the second case, the
packet traverses the Forward hook and finally the Postrouting hook, before
being sent out on a network device. A packet that has been generated by a
local process (e.g. a client or server software that likes to send something out
on the network), first traverses the Output hook and then also the Postrouting
hook, before it is sent out on a network device.

4.2.2 Iptables
Iptables is a user-space utility program that allows a system administrator
to configure the IP packet filter rules of the Linux kernel firewall. Iptables
uses tables to organize its rules. These tables classify rules according to the
type of decisions they are used to make. For instance, if a rule deals with
network address translation (nat), it will be put into the nat table. Within
each Iptables table, rules are further organized within separate “chains”. While
tables are defined by the general aim of the rules they hold, the built-in chains
represent the netfilter hooks which trigger them, determining when rules will
be evaluated in a packet’s delivery path (4.1).

A fixed set of tables exists, each table containing a fixed set of chains. When
a packet traverses a netfilter hook, the sequence in which each table’s chain
related to the specific hook is called (i.e. priority) is also already fixed. Table
4.1 shows an overview of these information.

Table Contains chains

raw PREROUTING, OUTPUT

mangle PREROUTING, INPUT, FORWARD, OUTPUT, POSTROUTING

nat PREROUTING, (INPUT), OUTPUT, POSTROUTING

filter INPUT,FORWARD,OUTPUT

Table 4.1: Iptables: tables in priority descending order and related chain

Iptables rules are placed within a specific chain of a specific table. As
each chain is called, the packet in question will be checked against each rule

32

Advanced Networking Concepts and Tools

Figure 4.2: Netfilter stack details overview

33

Advanced Networking Concepts and Tools

within the chain in order. Each rule has a matching component and an action
component. The matching portion of a rule specifies the criteria that a packet
must meet in order for the associated action (or “target”) to be executed.
Rules can be constructed to match by protocol type, destination or source
address, destination or source port, destination or source network, input or
output interface, headers, or connection state among other criteria. These can
be combined to create complex rule sets to distinguish between different traffic.
Instead, the action portion of a rule refers to the actions that are triggered
when a packet meets the matching criteria of a rule. Targets are generally
divided into two categories:

• Terminating targets: perform an action which terminates evaluation
within the chain and returns control to the netfilter hook. Depending on
the return value provided, the hook might drop the packet or allow the
packet to continue to the next stage of processing.

• Non-terminating targets: perform an action and continue evaluation
within the chain. Although each chain must eventually pass back a
final terminating decision, any number of non-terminating targets can be
executed beforehand.

There is also a special class of non-terminating target, the jump target, actions
that result in moving to a different chain for additional processing: Iptables
allows to create user-defined chains, possible to reach only by “jumping” to
them from a rule (they are not registered with a netfilter hook). Rules can
be placed in user-defined chains in the same way that they can be placed into
built-in ones. This construct allows for greater organization and provides the
framework necessary for more robust branching.

4.2.3 Ipset
Ipset is a user-space utility program that is used to set up, maintain and
inspect so called IP sets in the Linux kernel. Depending on the type of the set,
an IP set may store IP(v4/v6) addresses, (TCP/UDP) port numbers, IP and
MAC address pairs, IP address and port number pairs, etc. IP sets can be used
via the set match in iptables rules, specifying between source or destination
which IP address or port to use from the packet to match the given set. One
of the standout features of IPset is its ability to efficiently perform this match
operation: by utilizing data structures that optimize searches, such as hash
tables and bitmap maps, IPset ensures that the lookup process is both fast and
resource-efficient.

34

Advanced Networking Concepts and Tools

4.2.4 Connection tracking
Connection tracking, often referred to as “conntrack,” is a core functionality
of the Linux kernel. It is a method for monitoring and maintaining state
information about active network connections. Connection tracking uses a table
containing information about each connection, such as source and destination
IP addresses, port numbers, and the current state; in fact, it assigns a state
to each network connection, with reference to the nature of the traffic. The
connection states are:

• NEW: represents the start of a new connection

• ESTABLISHED: denotes a connection with an existing flow of traffic

• RELATED: used for connections related to an established one

• INVALID: marks packets that are invalid or cannot be classified

• UNTRACKED: packets that are not subject to connection tracking

Connection tracking is closely integrated with Iptables and it is possible to
create more sophisticated rules that take into account the state of connections,
using it as a condition for allowing or denying access.

35

Chapter 5

Fine-Grained Security for
Intra-Cluster Connectivity
in Liqo

This chapter presents in details the proposed solution to enable fine-grained
security for connectivity in Liqo and its implementation.

5.1 The Problem

As described in section 3.4, the Liqo network fabric is in charge of transparently
extending the Kubernetes network model across multiple independent clusters,
such that offloaded pods can communicate with each other as if they were all
executed locally. Traditionally, Kubernetes guarantees that pods on a node
can communicate with all pods on any node without NAT translation. Liqo
broadens this requirement, ensuring all pods in a given cluster can communi-
cate with all pods on all remote peered clusters, either with or without NAT
translation. Indeed, the transparent support for arbitrary clusters, with com-
pletely uncoordinated parameters and components (e.g., CNI) makes impossible
to guarantee non-overlapping pod IP address ranges (i.e., PodCIDR). This
requires the support for IP translation mechanisms, provided that NAT-less
communication is preferred whenever address ranges are disjointed. The figure
5.1 shows an example of a possible 2-cluster topology created by Liqo, resuming
also standard connectivity behaviour in the related table.

36

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

C1 C2

S1

P1
P6

S3

I1

VPN
tunnel

I2

P3

P2
S2

P4

P5

offloaded
namespace

virtual
cluster

S2

Figure 5.1: Liqo full pod-to-pod connectivity between 2 clusters; S1 expose
P1, S2 expose P2, S3 expose P6

5.1.1 Full pod-to-pod connectivity
This full pod-to-pod connectivity provided by Liqo network fabric has a
drawback: it enables to seamlessly contact offloaded pods or multi-cluster
service, but in the meanwhile it also compels clusters engaged in an active
peering session to allow all other possible traffic between them. Such condition
might not be desirable in some cases. For example, looking at the topology in
figure 5.1:

• cluster C2 may wish to share its computational resources with Cluster C1,
thus enabling the offloading of the namespace containing pods P4 and P5
and granting C1 the capability to access these two pods, while preventing
C1’s local pods, such as P3, from reaching their own pods like P6, which
are not taking part of this multi-cluster environment

• conversely, on the other hand, C1 might want to allow pods from C2, such
as P6, to access its own service S2 (and thus its associated endpoint P2)
through offloading, but without granting P6 the ability to contact its own

37

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

pods like P1.

5.2 Architecture
This section provides a detailed presentation of the developed architecture: it
is based on filtering through Iptables (see section 4.2.2) and Ipset (see section
4.2.3 and the focus will be on how to use these tools to enable fine-grained
security for intra-cluster connectivity

5.2.1 Problem Area
The developed architecture will be about the cross-cluster area of the Liqo
network (see figure 5.2). The main component is the gateway(see section 3.6.5),
a pod where all the traffic from the other peered clusters arrives and where
it could potentially be filtered. The connections between gateways are called
peers, each connection between two clusters has its own peer and each peer
is independent from the others. They can be created and destroyed without
affecting the connectivity towards other clusters. This is one of the fundamental
concepts which stands behind the creation and deletion of peerings.

5.2.2 Intra-cluster traffic segregation
The design involves establishing a dynamic management of Iptables filtering
rules within the cluster gateway, following a whitelist approach which allows
traffic exclusively related to pods and services that are engaged in the multi-
cluster topology. To implement this functionality, we can focus on two separate
operations that must be carried out by the gateway:

• allowing a remote cluster to contact exclusively its pods offloaded on
the local one

• enabling a remote cluster to consume services offloaded on it from the
local cluster

Offloaded pods

Looking at the example in the figure 5.3, C2 allows C1 to contact, through its
local pods P1, P2, and P3, only the offloaded pods P4 and P5 while preventing
traffic towards P6. The gateway of C2 should, therefore, have an Iptables rule
for each offloaded pod, accepting packets with the destination IP address of the
offloaded pod and the source IP address within C1 PodCIDR. In practice, for
optimization purposes, a single rule is used. This rule, based on the packet’s

38

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

Gateway

Pod 1

Pod 2

Pod 3

Cluster 1

Gateway

Pod 1

Pod 2

Pod 3

Cluster 2

Gateway

Pod 1 Pod 2 Pod 3

Cluster 3

cross-cluster area

Figure 5.2: Liqo network cross-cluster area in a 3 clusters setup

destination IP address, searches for a match within an Ipset created following
the offloading of the first pod. At the moment, this Ipset contains the IP
addresses of P4 and P5. The Ipset is then updated in accordance with the
offloading or unoffloading of pods by C1 on C2.

It is worth noting that, from the reverse perspective, P4 and P5 cannot
initiate a connection to C1 for security reasons, as they are physically scheduled
on another cluster, even though they logically belong to C1. However, the
passage of response traffic is ensured after they have been contacted by C1,
made possible thanks to an Iptables rule that match the ESTABLISHED
connection tracking state (see section 4.2.4) which, in fact, identify incoming
packets that are part of an established connection, allowing response traffic;
furthermore, this rule match also RELATED conntrack state, useful to allow
possible traffic from a new connection, but associated with an existing one, e.g.
an FTP data transfer, or an ICMP error.

39

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

C1 C2

S1

P1
P6

S3

I1

VPN
tunnel

I2

P3

P2
S2

P4

P5

offloaded
namespace

virtual
cluster

Figure 5.3: Intra-cluster traffic segregation with offloaded pods; S1 expose P1,
S2 expose P2, S3 expose P6; yellow cells in the table highlights the differences
compared to standard Liqo behaviour

Offloaded services

To ensure that a remote cluster can consistently access offloaded services
from the local cluster, the gateway must intervene when the pods serving as
endpoints for such services are not located on that remote cluster. In light of
this condition, we encounter two potential scenarios for the placement of these
pods:

• On the local cluster: in the example shown in the figure 5.4, remote
pod P6 can contact exclusively P2 on C1

• Offloaded on another remote cluster: the figure 5.5 shows an example
in which C1 gateway prevents connection with local pods P1 and P3,
instead allowing traffic towards P2, which is offloaded on C3, as it serves
as an endpoint for S2.

To achieve these behaviours, C1 gateway has a rule that accepts packets with
the source IP address within C2 PodCIDR and destination IP address that

40

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

C1 C2

S1

P1
P6

S3

I1

VPN
tunnel

I2

P3

P2
S2

offloaded
namespace

virtual
cluster

S2

Figure 5.4: Intra-cluster traffic segregation with offloaded service and local
endpoint; S1 expose P1, S2 expose P2, S3 expose P6; yellow cells in the table
highlights the differences compared to standard Liqo behaviour

match within an Ipset, collecting all the endpoints of service S2 that a C2 pod,
like P6, needs to consume S2.

5.3 Implementation
This section delves into the implementation of the proposed architecture,
describing how the gateway is capable of achieving the behaviors previously
outlined.

5.3.1 Liqo NetNS
The gateway is implemented utilizing Linux network namespaces (see
section 4.1) and is contained within the liqo-gateway component, which
operates as a pod in the Liqo namespace.

Typically, when a pod is instantiated, Kubernetes generates a network
namespace specifically dedicated for that pod. However, Kubernetes also
allows for the utilization of the host network namespace if specified within
the pod resource configuration. In the context of Liqo, this approach is

41

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

C1 C2

S1

P1
P6

S3

I1

VPN
tunnel

I2

P3
S2

offloaded
namespace

virtual
cluster

S2

C3

P2
S2

VPN
tunnel

virtual
cluster

I3

Figure 5.5: Intra-cluster traffic segregation with offloaded service and endpoint
on a third cluster; S1 expose P1, S2 expose P2, S3 expose P6; yellow cells in
the table highlights the differences compared to standard Liqo behaviour

advantageous as it enables the application of routing rules between the vxlan
(internal network segment of Liqo) and the cross-cluster section of Liqo
network. Nonetheless, this configuration introduces a problem. The cross-
cluster part of Liqo necessitates the implementation of a series of iptables
rules for each peer, which cannot be aggregated. To prevent the insertion of a
large number of iptables rules into the host network namespace, the liqo-
gateway component creates a dedicated network namespace. As a result,
the liqo-gateway component functions as a pod utilizing the host network

42

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

namespace, autonomously creating an additional network namespace, used to
apply Liqo Iptables rules. This configuration is visualized in figure 5.6.

VXLAN

Liqo Gateway

Liqo NetNSHost NetNS

Routing
rules

IpTables
rules

VPN
interface

Figure 5.6: Liqo Gateway overview

5.3.2 OffloadedPod controller
Part of this thesis work has been dedicated to implementing a custom controller
responsible for managing the Iptables rules that enable remote clusters to reach
their offloaded pods. This controller operates within the liqo-gateway pod
and is named the OffloadedPod controller. It reconciles objects of the type
Pod characterized by the liqo.io/managed-by: shadowpod label in response
to create/delete/update events. Starting from the information of the reconciled
Pod, it generates a PodInfo object (5.1), containing the following data:

• PodIP: the IP address of the pod

• RemoteClusterID: the Liqo unique identifier of the remote cluster that
offloaded the pod

• Deleting: a boolean that is true if the pod does not longer exists

The controller stores them within a sync.Map (concurrent data structure
provided by the Go standard library for safely storing and accessing key-value
pairs), which works as a local cache within the gateway, retaining essential
information about offloaded pods for the management of Iptables rules.

Reconciliation logic

After the controller fetches the Pod object with a GET request to the API
server, the reconciliation logic is as follows (5.2):

• If the Pod object is not found, but there exists a podInfo object in the
cache related to it, a soft delete of the podInfo is performed, thus Deleting

43

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

Listing 5.1: PodInfo struct
1 // PodInfo conta in s in fo rmat i ons u s e f u l to c r e a t e r u l e s a l l ow ing
2 // t r a f f i c towards o f f l o a d e d pods .
3 type PodInfo s t r u c t {
4 PodIP s t r i n g
5 RemoteClusterID s t r i n g
6 Dele t ing bool
7 }

field is set to true to indicate the non-existence of the Pod during the
update of Iptables rules that is initiated. Upon completing the update,
the podInfo object is removed from the cache.

• If the Pod object is found, the corresponding podInfo object is created.
After confirming that the pod is not in the process of being deleted and
that the IP address is not null, it is stored in the cache. Subsequently, the
update of Iptables rules is initiated.

Listing 5.2: Reconcile() function of the OffloadedPod controller
1 // Reconc i l e pods o f f l o a d e d from other c l u s t e r s to the l o c a l one .
2 func (r ∗ Off loadedPodContro l l e r) Reconc i l e (ctx context . Context ,

req c t r l . Request) (c t r l . Result , e r r o r) {
3 var en su r e Ip tab l e sRu l e s = func (netns ns . NetNS) e r r o r {
4 re turn r . EnsureRulesForClustersForwarding (r . podsInfo , r .

e n d p o i n t s l i c e s I n f o , r . IPSHandler)
5 }
6 nsName := req . NamespacedName
7 klog . I n f o f (" Reconc i l e Pod %q " , nsName)
8

9 pod := corev1 . Pod{}
10 i f e r r := r . Get (ctx , nsName , &pod) ; e r r != n i l {
11 i f c l i e n t . IgnoreNotFound (e r r) == n i l {
12 // Pod not found , podInfo ob j e c t found : d e l e t e podInfo

ob j e c t
13 i f value , ok := r . podsIn fo . LoadAndDelete (nsName) ; ok {
14 klog . I n f o f ("Pod %q not found : ensur ing updated

i p t a b l e s r u l e s " , nsName)
15

16 // So f t d e l e t e ob j e c t
17 podInfo := value . (l i q o i p t a b l e s . PodInfo)
18 podInfo . De l e t ing = true
19 r . podsIn fo . Store (nsName , podInfo)
20

21 i f e r r := r . gatewayNetns .Do(en su r e Ip tab l e sRu l e s) ;
e r r != n i l {

44

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

22 re turn c t r l . Result {} , fmt . Er ro r f (" e r r o r whi l e
ensur ing i p t a b l e s r u l e s : %w" , e r r)

23 }
24

25 // Hard d e l e t e ob j e c t
26 r . podsIn fo . De lete (nsName)
27 }
28 }
29 re turn c t r l . Result {} , e r r
30 }
31

32 // Build podInfo ob j e c t
33 podInfo := l i q o i p t a b l e s . PodInfo {
34 PodIP : pod . Status . PodIP ,
35 RemoteClusterID : pod . Labels [l i q ovk . LiqoOriginClusterIDKey

] ,
36 }
37

38 // Check i f the ob j e c t i s under d e l e t i o n
39 i f ! pod . ObjectMeta . DeletionTimestamp . I sZero () {
40 // Pod under d e l e t i o n : sk ip c r e a t i o n o f i p t a b l e s r u l e s and

return no e r r o r
41 klog . I n f o f ("Pod %q under d e l e t i o n : sk ipp ing i p t a b l e s r u l e s

update " , nsName)
42 re turn c t r l . Result {} , n i l
43 }
44

45 // Check i f the pod IP i s s e t
46 i f podInfo . PodIP == " " {
47 // Pod IP address not yet s e t : sk ip c r e a t i o n o f i p t a b l e s

r u l e s and return no e r r o r
48 klog . I n f o f ("Pod %q IP address not yet s e t : sk ipp ing

i p t a b l e s r u l e s update " , nsName)
49 re turn c t r l . Result {} , n i l
50 }
51

52 // Store podInfo ob j e c t
53 r . podsIn fo . Store (nsName , podInfo)
54

55 // Ensure i p t a b l e s r u l e s
56 klog . I n f o f (" Ensuring updated i p t a b l e s r u l e s ")
57 i f e r r := r . gatewayNetns .Do(en su r e Ip tab l e sRu l e s) ; e r r != n i l {
58 klog . Er ro r f (" Error whi l e ensur ing i p t a b l e s r u l e s : %w" , e r r

)
59 re turn c t r l . Result {} , e r r
60 }
61

62 re turn c t r l . Result {} , n i l
63 }

45

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

5.3.3 ReflectedEndpointslice controller
To manage the iptables rules allowing remote clusters to utilize offloaded
services in the scenarios described in Section 5.2.2, another custom con-
troller, the ReflectedEndpointslice controller, is implemented within the
liqo-gateway pod. This controller reconciles objects of the type EndpointSlice
(see section 2.5.8 labeled with endpointslice.kubernetes.io/managed-by:
endpointslice-controller.k8s.io, i.e. only those managed by the vanilla
Kubernetes control plane.

The controller also watches events related to NamespaceOffloading objects,
which are Liqo Custom Resources representing the process of offloading a local
namespace. An event handler has been configured to add the EndpointSlices
from the namespace associated with the NamespaceOffloading to the controller
workqueue for reconciliation. This is necessary because without this mechanism,
EndpointSlices created before the offloading of a namespace or those that
continue to exist following unoffloading would not be reconciled in response to
these events.

The controller stores within a sync.Map, which works as a local cache in the
gateway to retain essential information for the management of Iptables rules, a
map of EndpointInfo objects (5.3) for each reconciled EndpointSlice object.
An EndpointInfo object contains the following data:

• Address: the IP address of an EndpointSlice endpoint

• SrcClusterIDs: the unique identifiers of all the remote clusters that must
be able to contact the endpoint through the gateway

• Deleting: a boolean that is true if the pod does not longer exists

Listing 5.3: EndpointInfo struct
1 // EndpointInfo conta in s in f o rmat i ons u s e f u l to c r e a t e r u l e s

a l l ow ing
2 // t r a f f i c towards s e r v i c e endpoints .
3 type EndpointInfo s t r u c t {
4 Address s t r i n g
5 SrcCluster IDs [] s t r i n g
6 Dele t ing bool
7 }

Reconciliation logic

The reconciliation logic starts fetching the EndpointSlice object through a GET
request to the API server.

46

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

Then, if the Endpointslice object is not found, but exists an entry in the
cache related to it, a soft delete of all the endpointInfo related to it is performed,
therefore, for each one, the Deleting field is set to true to indicate the non-
existence of the EndpointSlice during the update of iptables rules that is
initiated. Upon completing the update, the the entry is removed from the cache
(5.4).

Listing 5.4: Reconcile() function of the ReflectedEndpointslice controller
1 // Reconc i l e l o c a l e n d p o i n t s l i c e s that are a l s o r e f l e c t e d on

remote c l u s t e r s as a r e s u l t o f o f f l o a d i n g .
2 func (r ∗ R e f l e c t e d E n d p o i n t s l i c e C o n t r o l l e r) Reconc i l e (ctx context .

Context , req c t r l . Request) (c t r l . Result , e r r o r) {
3 var en su r e Ip tab l e sRu l e s = func (netns ns . NetNS) e r r o r {
4 re turn r . EnsureRulesForClustersForwarding (r . podsInfo , r .

e n d p o i n t s l i c e s I n f o , r . IPSHandler)
5 }
6 nsName := req . NamespacedName
7 klog . I n f o f (" Reconc i l e Endpo in t s l i c e %q " , nsName)
8

9 e n d p o i n t s l i c e := d i scoveryv1 . Endpo intS l i ce {}
10 i f e r r := r . Get (ctx , nsName , &e n d p o i n t s l i c e) ; e r r != n i l {
11 i f c l i e n t . IgnoreNotFound (e r r) == n i l {
12 // Endpo in t s l i c e not found , e n d p o i n t s l i c e I n f o ob j e c t

found : d e l e t e endpo int In fo o b j e c t s .
13 i f value , ok := r . e n d p o i n t s l i c e s I n f o . LoadAndDelete (

nsName) ; ok {
14 klog . I n f o f (" Endpo in t s l i c e %q not found : ensur ing

updated i p t a b l e s r u l e s " , nsName)
15

16 // So f t d e l e t e ob j e c t
17 endpo in t s In fo := value . (map [s t r i n g] l i q o i p t a b l e s .

EndpointInfo)
18 f o r endpoint , endpo int In fo := range endpo in t s In fo

{
19 endpo int In fo . De l e t ing = true
20 endpo in t s In fo [endpoint] = endpo int In fo
21 }
22 r . e n d p o i n t s l i c e s I n f o . Store (nsName , endpo in t s In fo)
23

24 i f e r r := r . gatewayNetns .Do(en su r e Ip tab l e sRu l e s) ;
e r r != n i l {

25 re turn c t r l . Result {} , fmt . Er ro r f (" e r r o r whi l e
ensur ing i p t a b l e s r u l e s : %w" , e r r)

26 }
27

28 // Hard d e l e t e ob j e c t
29 r . e n d p o i n t s l i c e s I n f o . De lete (nsName)
30 }

47

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

31 }
32 re turn c t r l . Result {} , e r r
33 }
34 /∗ . . . ∗/
35 }

If the EndpointSlice object is found, we proceed to check the existence of
the NamespaceOffloading. If it is not found, it means that the namespace,
and consequently, the service, are not offloaded. Therefore, the endpoints in
this EndpointSlice should not be reachable, and we follow the same deletion
procedure described previously (5.5).

Listing 5.5: Reconcile() function of the OffloadedPod controller
1 // Reconc i l e l o c a l e n d p o i n t s l i c e s that are a l s o r e f l e c t e d on

remote c l u s t e r s as a r e s u l t o f o f f l o a d i n g .
2 func (r ∗ R e f l e c t e d E n d p o i n t s l i c e C o n t r o l l e r) Reconc i l e (ctx context .

Context , req c t r l . Request) (c t r l . Result , e r r o r) {
3 var en su r e Ip tab l e sRu l e s = func (netns ns . NetNS) e r r o r {
4 re turn r . EnsureRulesForClustersForwarding (r . podsInfo , r .

e n d p o i n t s l i c e s I n f o , r . IPSHandler)
5 }
6 nsName := req . NamespacedName
7 klog . I n f o f (" Reconc i l e Endpo in t s l i c e %q " , nsName)
8

9 e n d p o i n t s l i c e := d i scoveryv1 . Endpo intS l i ce {}
10 i f e r r := r . Get (ctx , nsName , &e n d p o i n t s l i c e) ; e r r != n i l {
11 /∗ . . . ∗/
12 }
13

14 // Check e n d p o i n t s l i c e ’ s namespace o f f l o a d i n g
15 nsOf f load ing , e r r := g e t t e r s . GetOffloadingByNamespace (ctx , r .

Cl ient , e n d p o i n t s l i c e . Namespace)
16 i f e r r != n i l {
17 i f c l i e n t . IgnoreNotFound (e r r) == n i l {
18 // Delete endpo int In fo o b j e c t s r e l a t e d to t h i s

e n d p o i n t s l i c e
19 i f value , ok := r . e n d p o i n t s l i c e s I n f o . LoadAndDelete (

nsName) ; ok {
20 // Endpo in t s l i c e not found , e n d p o i n t s l i c e I n f o

ob j e c t found : ensure i p t a b l e s r u l e s
21 klog . I n f o f (" Endpo in t s l i c e %q not found : ensur ing

updated i p t a b l e s r u l e s " , nsName)
22

23 // So f t d e l e t e ob j e c t
24 endpo in t s In fo := value . (map [s t r i n g] l i q o i p t a b l e s .

EndpointInfo)
25 f o r endpoint , endpo int In fo := range endpo in t s In fo

{
26 endpo int In fo . De l e t ing = true

48

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

27 endpo in t s In fo [endpoint] = endpo int In fo
28 }
29 r . e n d p o i n t s l i c e s I n f o . Store (nsName , endpo in t s In fo)
30

31 i f e r r := r . gatewayNetns .Do(en su r e Ip tab l e sRu l e s) ;
e r r != n i l {

32 re turn c t r l . Result {} , fmt . Er ro r f (" e r r o r whi l e
ensur ing i p t a b l e s r u l e s : %w" , e r r)

33 }
34

35 // Hard d e l e t e ob j e c t
36 r . e n d p o i n t s l i c e s I n f o . De lete (nsName)
37 }
38 }
39 re turn c t r l . Result {} , e r r
40 }
41

42 /∗ . . . ∗/
43 }

If the Endpointslice and the NamespaceOffloading are found, the correspond-
ing EndpointInfo objects are created and stored in a Map: for each endpoint in
the EndpointSlice, the ClusterIDs of the clusters from which the endpoint can
be reached are then extracted. This includes all clusters where the Service is
offloaded, except for the one where the pod serving as the endpoint is running
(5.6).

Listing 5.6: Reconcile() function of the OffloadedPod controller
1 // Reconc i l e l o c a l e n d p o i n t s l i c e s that are a l s o r e f l e c t e d on

remote c l u s t e r s as a r e s u l t o f o f f l o a d i n g .
2 func (r ∗ R e f l e c t e d E n d p o i n t s l i c e C o n t r o l l e r) Reconc i l e (ctx context .

Context , req c t r l . Request) (c t r l . Result , e r r o r) {
3 var en su r e Ip tab l e sRu l e s = func (netns ns . NetNS) e r r o r {
4 re turn r . EnsureRulesForClustersForwarding (r . podsInfo , r .

e n d p o i n t s l i c e s I n f o , r . IPSHandler)
5 }
6 nsName := req . NamespacedName
7 klog . I n f o f (" Reconc i l e Endpo in t s l i c e %q " , nsName)
8

9 e n d p o i n t s l i c e := d i scoveryv1 . Endpo intS l i ce {}
10 i f e r r := r . Get (ctx , nsName , &e n d p o i n t s l i c e) ; e r r != n i l {
11 /∗ . . . ∗/
12 }
13

14 /∗ . . . ∗/
15

16 c l u s t e r S e l e c t o r := nsOf f l oad ing . Spec . C l u s t e r S e l e c t o r
17

49

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

18 nodes := v i r tua l kube l e tv1a lpha1 . Vir tua lNodeLis t {}
19 i f e r r := r . L i s t (ctx , &nodes) ; e r r != n i l {
20 re turn c t r l . Result {} , fmt . Er ro r f ("%w" , e r r)
21 }
22

23 // Build endpo int In fo o b j e c t s
24 endpo in t s In fo := map [s t r i n g] l i q o i p t a b l e s . EndpointInfo {}
25 // For each endpoint , f i n d Cluster IDs o f c l u s t e r s that can

reach that endpoint
26 f o r _, endpoint := range e n d p o i n t s l i c e . Endpoints {
27 c l u s t e r I D s := [] s t r i n g {}
28 f o r i := range nodes . Items {
29 i f ∗ endpoint . NodeName == nodes . Items [i] . Name {
30 cont inue
31 }
32

33 matchClusterSe lctor , e r r := n s o f f c t r l .
MatchVirtualNodeSelectorTerms (ctx , r . Cl ient , &nodes . Items [i] , &
c l u s t e r S e l e c t o r)

34 i f e r r != n i l {
35 re turn c t r l . Result {} , fmt . Er ro r f ("%w" , e r r)
36 }
37

38 i f matchCluste rSe l c tor {
39 i f c lus te r ID , found := v i r t u a l n o d e u t i l s .

GetVirtualNodeClusterID(&nodes . Items [i]) ; found {
40 c l u s t e r I D s = append (c lu s t e r IDs , c l u s t e r ID)
41 }
42 }
43 }
44

45 endpo in t s In fo [endpoint . Addresses [0]] = l i q o i p t a b l e s .
EndpointInfo {Address : endpoint . Addresses [0] , SrcCluster IDs :
c l u s t e r I D s }

46 }
47

48 /∗ . . . ∗/
49 }

Finally, after checking the EndpointSlice s not in the process of being deleted,
the Map of EndpointInfo objects is stored in an entry of the cache related to
the EndpointSlice and Iptables rules updating starts.

Listing 5.7: Reconcile() function of the OffloadedPod controller
1 // Reconc i l e l o c a l e n d p o i n t s l i c e s that are a l s o r e f l e c t e d on

remote c l u s t e r s as a r e s u l t o f o f f l o a d i n g .
2 func (r ∗ R e f l e c t e d E n d p o i n t s l i c e C o n t r o l l e r) Reconc i l e (ctx context .

Context , req c t r l . Request) (c t r l . Result , e r r o r) {
3

50

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

4 /∗ . . . ∗/
5

6 // Check i f the ob j e c t i s under d e l e t i o n
7 i f ! e n d p o i n t s l i c e . ObjectMeta . DeletionTimestamp . I sZero () {
8 // Endpo in t s l i c e under d e l e t i o n : sk ip c r e a t i o n o f i p t a b l e s

r u l e s and return no e r r o r
9 klog . I n f o f (" Endpo in t s l i c e %q under d e l e t i o n : sk ipp ing

i p t a b l e s r u l e s update " , nsName)
10 re turn c t r l . Result {} , n i l
11 }
12

13 // Check i f endpoint (s) are no more part o f the e n d p o i n t s l i c e
14 value , loaded := r . e n d p o i n t s l i c e s I n f o . Load (nsName)
15 i f loaded {
16 o ldEndpo ints In fo := value . (map [s t r i n g] l i q o i p t a b l e s .

EndpointInfo)
17 f o r oldEndpoint , o ldEndpointInfo := range o ldEndpo ints In fo

{
18 i f _, ok := endpo in t s In fo [oldEndpoint] ; ! ok {
19 o ldEndpointInfo . De l e t ing = true
20 endpo in t s In fo [oldEndpoint] = oldEndpointInfo
21 }
22 }
23 }
24

25 // Check i f the re aren ’ t new in format ion : in t h i s case i t ’ s
not nece s sa ry ensure i p t a b l e s r u l e s

26 i f l en (endpo in t s In fo) == 0 {
27 // Endpoints f i e l d s o f Endpo ins l i c e yet empty : sk ip

c r e a t i o n o f i p t a b l e s r u l e s and return no e r r o r
28 klog . I n f o f (" Endpoints o f e n d p o i n t s l i c e %q not yet s e t :

sk ipp ing i p t a b l e s r u l e s update " , nsName)
29 re turn c t r l . Result {} , n i l
30 }
31

32 // Store e n d p o i n t s l i c e s I n f o ob j e c t
33 r . e n d p o i n t s l i c e s I n f o . Store (nsName , endpo in t s In fo)
34

35 // Ensure i p t a b l e s r u l e s
36 klog . I n f o f (" Ensuring updated i p t a b l e s r u l e s ")
37 i f e r r := r . gatewayNetns .Do(en su r e Ip tab l e sRu l e s) ; e r r != n i l {
38 re turn c t r l . Result {} , fmt . Er ro r f (" e r r o r whi l e ensur ing

i p t a b l e s r u l e s : %w" , e r r)
39 }
40

41 re turn c t r l . Result {} , n i l
42 }

51

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

5.3.4 Iptables rules management
A significant portion of this work is dedicated to managing the Iptables rules
that implement the previously described behaviors.

Since it is possible to create custom chains in Iptables (as described in
the dedicated section 4.2.2), Liqo creates one when installed, named LIQO-
FORWARD, in the Filter table. Traffic is redirected to this chain from the
standard FORWARD chain, and it contains the rules necessary for the correct
operation of Liqo.

When the first peering is activated, we add the following rule to this chain:

i p t a b l e s −m conntrack −−c t s t a t e ESTABLISHED, RELATED −j ACCEPT

The rule accepting packets marked by connection tracking as:

• ESTABLISHED, necessary to allow response traffic from addresses that
cannot start connection

• RELATED, useful to allow possible traffic from a new connection, but
associated with an existing one,e.g. an FTP data transfer, or an ICMP
error

For each activated peering, and thus for each remote cluster, is then added a
redirect rule to a new custom chain, named LIQO-FRWD-CLS-remoteClusterID.
In this chain are inserted all the rules, dedicated to the specific remote cluster,
that contributes to the functioning of this thesis work, and that we are going
to describe.

OffloadedPod controller rules

Under the hood, the OffloadedPod controller manages Iptables rules through
the buildRulesPerClusterForOffloadedPods() function (5.8). Starting from the
local cache of PodInfo objects, IP addresses are grouped by the cluster from
which the respective pods are offloaded. Then, for each group, an Ipset is
created, the IP addresses are inserted into it, and it is used to create a rule of
the following type:

i p t a b l e s −m s e t −−match−s e t [I p s e t name] dst −j ACCEPT

In practice, this logic creates a rule for each cluster that has offloaded one or
more pods, allowing contact with those pods. This rule is then inserted into
the custom chain corresponding to the cluster.

52

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

Listing 5.8: buildRulesPerClusterForOffloadedPods() function
1 // bui ldRulesPerClusterForOf f loadedPods b u i l d s r u l e s a l l ow ing

t r a f f i c from remote c l u s t e r s towards t h e i r pods o f f l o a d e d on
t h i s c l u s t e r .

2 func bui ldRulesPerClusterForOf f loadedPods (podsIn fo ∗ sync .Map,
ipSetHandler ∗ l i q o i p s e t . IPSHandler) (map [s t r i n g] [] IPTableRule ,
e r r o r) {

3 // Map o f Pod IPs per c l u s t e r
4 i p sPe rC lu s t e r := map [s t r i n g] [] s t r i n g {}
5 // Populate Pod IPs per c l u s t e r
6 podsIn fo . Range (func (key , va lue any) bool {
7 podInfo := value . (PodInfo)
8 klog . I n f o f (" bui ldIPSetPerClusterForOf f loadedPods : %s " ,

podInfo)
9 i f _, ok := ip sPerC lu s t e r [podInfo . RemoteClusterID] ; ! ok {

10 // Add remote c l u s t e r ID key (r e g a r d l e s s o f pod being
de l e t ed or not)

11 i p sPe rC lu s t e r [podInfo . RemoteClusterID] = [] s t r i n g {}
12 }
13 i f ! podInfo . De l e t ing {
14 i p sPe rC lu s t e r [podInfo . RemoteClusterID] = append (

ip sPe rC lu s t e r [podInfo . RemoteClusterID] , podInfo . PodIP)
15 }
16 re turn true
17 })
18 // Map o f IPTables r u l e s and IP s e t s per c l u s t e r
19 ru l e s Pe rC lu s t e r := map [s t r i n g] [] IPTableRule {}
20 // Populate IPTables r u l e s and IP s e t per c l u s t e r
21 f o r c lus te r ID , i p s := range ip sPe rC lu s t e r {
22 ru l e s Pe rC lu s t e r [c l u s t e r ID] = [] IPTableRule {}
23 // Create IP s e t
24 setName := getCluster IPSetForOf f loadedPods (c l u s t e r ID)
25 i p s e t , e r r := ipSetHandler . CreateSet (setName , " ")
26 i f e r r != n i l {
27 klog . I n f o f (" Error whi l e c r e a t i n g IP s e t %q : %w" ,

setName , e r r)
28 re turn n i l , e r r
29 }
30 // Clear IP s e t (j u s t in case i t a l r eady e x i s t e d)
31 i f e r r := ipSetHandler . FlushSet (i p s e t .Name) ; e r r != n i l {
32 klog . I n f o f (" Error whi l e d e l e t i n g a l l e n t r i e s from IP

s e t %q : %w" , setName , e r r)
33 re turn n i l , e r r
34 }
35 i f l en (i p s) > 0 {
36 f o r _, podIP := range i p s {
37 // Add pod ’ s IP entry to IP s e t
38 i f e r r := ipSetHandler . AddEntry (podIP , i p s e t) ; e r r

!= n i l {

53

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

39 klog . I n f o f (" Error whi l e adding entry %q to IP
s e t %q : %w" , podIP , i p s e t .Name, e r r)

40 re turn n i l , e r r
41 }
42 }
43 // Add match−s e t r u l e
44 ru l e sP e rC lu s t e r [c l u s t e r ID] = append (
45 ru l e sP e rC lu s t e r [c l u s t e r ID] ,
46 IPTableRule{
47 "−m" , " comment " , "−−comment " ,
48 // WARNING: Never use double−quotes i n s i d e the

comment , o therw i se IpTableRule par s e r w i l l f a i l
49 fmt . S p r i n t f (" Allows t r a f f i c from ’%s ’ only to

pods o f f l o a d e d by that remote c l u s t e r " , c l u s t e r ID) ,
50 "−m" , setModule ,
51 "−−match−s e t " , i p s e t .Name, " dst " ,
52 "−j " , ACCEPT})
53 }
54 }
55 re turn ru l e sPerC lus t e r , n i l
56 }

ReflectedEndpointslice controller rules

The ReflectedEndpointslice controller internally manages Iptables rules through
the buildRulesPerClusterForEndpointslicesReflected() function 5.9). The local
cache of the controller stores the respective EndpointInfo objects for each
EndpointSlice. The function implements a mapping that, based on the cache,
generates as many Iptables rules as there are EndpointSlices for offloaded
services on that remote cluster. The rules are of the following type:

i p t a b l e s −m s e t −−match−s e t [I p s e t name] dst −j ACCEPT

where Ipset groups the endpoints IP addresses of the specific Endpointslice
that a remote cluster must be able to reach.

Each rule is then inserted into the custom chain corresponding to the cluster.
Listing 5.9: buildRulesPerClusterForEndpointslicesReflected() function

1 // bu i l dRu l e sPe rC lu s t e rForEndpo in t s l i c e sRe f l e c t ed bu i l d s r u l e s
a l l ow ing t r a f f i c towards endpoints o f l o c a l s e r v i c e s r e f l e c t e d
on other c l u s t e r s .

2 func bu i l dRu l e sPe rC lu s t e rForEndpo in t s l i c e sRe f l e c t ed (
3 e n d p o i n t s l i c e s I n f o ∗ sync .Map,
4 ipSetHandler ∗ l i q o i p s e t . IPSHandler ,
5) (map [s t r i n g] [] IPTableRule , e r r o r) {
6 // Map o f endpoint IPs per c l u s t e r

54

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

7 endpo intSet sPerClus te r := map [s t r i n g]map [s t r i n g] [] s t r i n g {}
8

9 // Populate endpoint IPs per c l u s t e r
10 e n d p o i n t s l i c e s I n f o . Range (func (key , va lue any) bool {
11 namespacedName := key . (types . NamespacedName)
12 endpo in t s In fo := value . (map [s t r i n g] EndpointInfo)
13 f o r _, endpo int In fo := range endpo in t s In fo {
14 f o r _, c l u s t e r ID := range endpo int In fo . SrcCluster IDs {
15 i f _, ok := endpo intSet sPerClus te r [c l u s t e r ID] ; ! ok

{
16 endpo intSet sPerClus te r [c l u s t e r ID] = map [s t r i n g

] [] s t r i n g {}
17 }
18 i f _, ok := endpo intSet sPerClus te r [c l u s t e r ID] [

namespacedName . S t r ing ()] ; ! ok {
19 endpo intSet sPerClus te r [c l u s t e r ID] [

namespacedName . S t r ing ()] = [] s t r i n g {}
20 }
21 i f ! endpo int In fo . De l e t ing {
22 endpo intSet sPerClus te r [c l u s t e r ID] [

namespacedName . S t r ing ()] = append (
23 endpo intSet sPerClus te r [c l u s t e r ID] [

namespacedName . S t r ing ()] , endpo int In fo . Address)
24 }
25 }
26 }
27 re turn true
28 })
29

30 // Map o f IPTables r u l e s and IP s e t s per c l u s t e r
31 ru l e s Pe rC lu s t e r := map [s t r i n g] [] IPTableRule {}
32

33 // Populate IP s e t per e n d p o i n t s l i c e and c l u s t e r , and
IPTables r u l e s per c l u s t e r

34 f o r c lus te r ID , endpo int sSet s := range endpo intSet sPerClus te r {
35 ru l e s Pe rC lu s t e r [c l u s t e r ID] = [] IPTableRule {}
36 f o r namespacedName , endpointSet := range endpo int sSet s {
37 namespacedNameChunks := s t r i n g s . S p l i t (namespacedName ,

" / ")
38 i f l en (namespacedNameChunks) != 2 {
39 re turn n i l , fmt . Er ro r f (" i n v a l i d va lue %v " ,

namespacedNameChunks)
40 }
41 setName := fmt . S p r i n t f ("%s−%s " , s t r i n g s . ToUpper (

namespacedNameChunks [1]) , s t r i n g s . S p l i t (c lus te r ID , "−") [0])
42 croppedSetName := k 8 s s t r i n g s . ShortenStr ing (setName ,

IPSetNameMaxLength)
43 // Create IP s e t

55

Fine-Grained Security for Intra-Cluster Connectivity in Liqo

44 i p s e t , e r r := ipSetHandler . CreateSet (croppedSetName ,
setName)

45 i f e r r != n i l {
46 klog . I n f o f (" Error whi l e c r e a t i n g IP s e t %q : %w" ,

setName , e r r)
47 re turn n i l , e r r
48 }
49 // Clear IP s e t (j u s t in case i t a l r eady e x i s t e d)
50 i f e r r := ipSetHandler . FlushSet (i p s e t .Name) ; e r r !=

n i l {
51 klog . I n f o f (" Error whi l e d e l e t i n g a l l e n t r i e s from

IP s e t %q : %w" , setName , e r r)
52 re turn n i l , e r r
53 }
54 i f l en (endpointSet) > 0 {
55 f o r _, ip := range endpointSet {
56 // Add endpoint ’ s IP entry to IP s e t
57 i f e r r := ipSetHandler . AddEntry (ip , i p s e t) ;

e r r != n i l {
58 klog . I n f o f (" Error whi l e adding entry %q to

IP s e t %q : %w" , ip , i p s e t .Name, e r r)
59 re turn n i l , e r r
60 }
61 }
62 // Add match−s e t r u l e
63 ru l e sP e rC lu s t e r [c l u s t e r ID] = append (
64 ru l e sP e rC lu s t e r [c l u s t e r ID] ,
65 IPTableRule{
66 "−m" , setModule ,
67 "−−match−s e t " , i p s e t .Name, " dst " ,
68 "−j " , ACCEPT})
69 }
70 }
71 }
72 re turn ru l e sPerC lus t e r , n i l
73 }

56

Chapter 6

Use case: data spaces with
Liqo

This chapter aims to demonstrate that Liqo, with fine-grained security proposed
by this thesis work, can dynamically create flexible data spaces upon request,
potentially spanning multiple administrative domains. This enables a data
producer to offer its data to potential consumers, without giving up on security
and data ownership/sovereignty rules, and without affecting the possibility of
consumers to read and process.

6.1 Data spaces
Data represents a fundamental asset in our contemporary digital society.
Nonetheless, managing data access and ensuring its security is a complex
endeavor, especially given the distinct roles involved in data production and
utilization. The primary challenges involve controlling access rights and, more
significantly, safeguarding data from unlawful appropriation and duplication,
particularly when handling sensitive information. This intricate landscape can
be examined through the lenses of two critical concepts: data sovereignty
and data gravity

Data sovereignty pertains to the regulation and management of data
flows and the accompanying infrastructure within the jurisdiction of a specific
country [14]. This issue becomes especially relevant when governments are
concerned about the sovereignty of their data, particularly when it is stored in
the cloud. They need to address questions related to data confidentiality and
ensure that government data remains under their jurisdiction even when hosted
abroad [15]. These concepts are equally applicable to universities and businesses
that might have their data stored externally. Furthermore, it is essential to

57

Use case: data spaces with Liqo

mention the European General Data Protection Regulation (GDPR) in this
context. GDPR imposes various obligations on organizations, irrespective of
their location, as long as they process data pertaining to individuals within
the European Union [16]. Additionally, Europe has introduced two significant
legislative acts, namely the Data Governance Act [17] and the Data Act [18].
The former aims to enhance trust in data sharing, strengthen mechanisms to
increase data availability, and address technical barriers to data reuse. The
latter complements the Data Governance Act by providing clarity on who can
derive value from data and the conditions under which this can occur.

Data gravity refers to the capacity of data to draw in applications, services,
and additional data. In this context, individual data components are assigned
both mass and density, and as these attributes grow significantly, the process
of transferring data between locations via a network becomes increasingly
challenging in terms of time, logistics, and cost-effectiveness. This phenomenon
mirrors the behavior of a substantial physical mass that exerts a gravitational
pull on nearby objects – the greater the mass, the more potent the attraction
[19].

Data spaces offer a solution to these issues by establishing a confined
environment where third parties can access and utilize data, but only to
the extent permitted by the data producer, ensuring that only the intended
information is made available to them.

The Open DEI project [20], funded by the EU, released a position paper
outlining a data space as a decentralized infrastructure designed for secure
and trustworthy data sharing within data ecosystems, built upon universally
accepted principles. Users of these data spaces gain the capability to access
data in a manner that is secure, transparent, trusted, user-friendly, and unified.
The authority to grant access and usage rights to the data is vested exclusively
in individuals or organizations with the rightful ownership of the data.

6.2 Use case overview
In a conventional scenario involving two separate administrative entities, one
serving as the data producer and the other as the data consumer, each entity
manages its own cluster. The transfer of raw data occurs between these parties.
Both entities are motivated to uphold control over interactions involving data
and processing services within their respective clusters. Particular attention is
given to the entity that owns sensitive data, which strives to grant access to
this data while concurrently preventing any unauthorized data exfiltration.

To illustrate this use case, let us consider a scenario as depicted in Figure
6.1, involving two clusters. The first cluster, named Pharma, is under the

58

Use case: data spaces with Liqo

ownership of a pharmaceutical company, which requires the execution of its
latest algorithms using patient data. The second cluster, named Hospital,
is managed by a hospital, which possesses the data to be processed (e.g.,
medical records). Hospital is interested in running Pharma’s algorithm on the
patient data but must ensure that this sensitive information remains secure
and inaccessible to Pharma. Presently, the only solution is to transfer the
data to the Pharma application and rely on non-technical means, such as
legal agreements, to prevent data theft. Unfortunately, there are no technical
methods available to ensure Pharma’s compliance with these agreements.

Liqo peering

Hospital

Pharma

Network
Policy

data-svc

data-ns

Req
data-svc

Req
restricted-svc

Data
Processing
Software Res

pharma-app-2

pharma-app-ns

pharma-app-1

pharma-app-2

pod

restricted-svc

restricted-ns

Application
Level
Proxy

Data
Processing
Software

pharma-app-1

Application
Level
Proxy

pharma-app-2

Liqo
Gateway

Liqo
Gateway
Liqo

Gateway

pharma-app-ns

Figure 6.1: Data spaces with Liqo

6.3 Using Liqo for data spaces
In our proposed architecture, Pharma aims to outsource the execution of its
workloads to Hospital while still retaining control over the offloading process
using the capabilities offered by Liqo. Essentially, Pharma’s algorithms are
executed within the Hospital cluster, but Pharma maintains authority over
this application’s lifecycle as if it were running locally. On the other hand,
Hospital wishes to review offloading requests before accepting or rejecting them.
Upon receiving a valid request, Hospital applies various security measures (e.g.,
defining how the offloaded service can communicate with the Pharma cluster,
which will be elaborated on in the following sections) to ensure the secure
execution and monitoring of third-party workloads.

6.3.1 Workflow
This subsection delineates the process of establishing a secure infrastructure-
level data space connecting Pharma and Hospital clusters, enabling data

59

Use case: data spaces with Liqo

consumption through pod offloading while implementing stringent security
measures.

The workflow presupposes that both Pharma and Hospital clusters are
already configured and operational, with Liqo already installed. These clus-
ters initially remain disconnected, requiring the establishment of a peering
connection. To initiate this connection, the Pharma cluster, which intends to
access data in the Hospital cluster, initiates a Liqo peering with the Hospital
cluster. If the Hospital cluster approves the connection, provides Pharma
access to Hospital services located in the “data-space” Kubernetes namespace
(referred to as data-ns in Figure 3). This namespace houses sensitive data and
is external to Pharma’s virtual cluster. Within the extension of its cluster on
Hospital, Pharma can offload pods in the Hospital cluster to collect data and
run its algorithm, facilitating data collection.

Upon initiating the offloading process, Hospital detects it and automatically
enforces a series of security measures to securely host these pods within its
cluster. These measures include the implementation of Kubernetes Network
Policies, a mutating operation on the offloaded pods, and, as largely presented
in chapter 5, the enforcement of firewall rules on the gateway handling connec-
tions. Offloaded pods are granted access to the protected data, allowing them
to manipulate and aggregate data, thus introducing an additional layer to the
data producer cluster.

The aforementioned security rules ensure that all Pharma pods within the
Pharma cluster can only connect to Pharma pods in the Hospital cluster.
Specifically, a set of Network Policies ensures that offloaded pods can only
communicate with selected services while blocking all other requests within the
cluster. This is accomplished through standard Kubernetes APIs. Processed
data is then transmitted to Pharma through the Liqo intra-cluster tunnel. In
this context, the use of a specially crafted application, running in the pod
called pharma-app-2 in the figure, comes into play. This application receives
requests for algorithm results from Pharma, collects the data via the Hospital
service that exposes it, processes the data locally on Hospital, and then responds
to Pharma’s requests with the aggregated results.

The pod offloading process is managed by a Mutating Webhook, which
includes an init container and a sidecar alongside the main application container.
The init container create the necessary Iptables rules to forward all offloaded
pod traffic to the Sidecar container, which acts as a proxy and monitors all
communications, allowing only the desired ones. This mechanism establishes
a robust barrier safeguarding the Hospital cluster against data exfiltration.
The Sidecar intercepts all traffic originating from offloaded pods and directed
outside the Hospital cluster, inspecting the data at the application level.

60

Use case: data spaces with Liqo

6.3.2 Implementation
Liqo Gateway

The Liqo Gateway serves as the final destination of the intra-cluster tunnel
that has successfully completed the peering phase. To ensure the prevention of
data exfiltration for Hospital, particular attention is given to this component
within our architecture. This presents an opportunity to utilize the custom Liqo
Gateway introduced in this work. It monitors pods that have been offloaded
from Pharma, gathers their IP addresses, and adds them to a whitelist. This
whitelist exclusively permits access to these IP addresses by pods belonging to
the Pharma cluster, whether they are local or from a remote cluster. It restricts
connections from all other clusters. The whitelisted IP addresses are then
translated into Iptables rules and applied to the Liqo Gateway in the Hospital
cluster. When offloaded pods are terminated, their respective IP addresses are
removed from the whitelist, and the corresponding Iptables rules are deleted.
As the Liqo Gateway may also function as a Network Address Translator
(NAT) between clusters, the Iptables rules are added outside the secure tunnel.
This means they are applied after the traffic has been decapsulated from the
tunnel. Consequently, the rules also exist outside the NAT, resulting in NAT
transparency in our implementation. The IP addresses used in the rules are
local to the Hospital cluster.

NamespaceReconciler controller

In the Hospital cluster, we require a new custom controller, known as the
NamespaceReconciler controller (A, which oversees the reconciliation of
offloaded namespaces. It identifies offloaded namespaces by recognizing the
labels applied by Liqo and appends a Network Policy (NetPol) and a ConfigMap
to each of the identified namespaces. If a namespace is deleted, the associated
NetPol and ConfigMap are also removed. Since NetPol is a resource, its deletion
results in the removal of the namespace and all the resources within it. The
NetPol is responsible for regulating inbound and outbound traffic within the
namespace where it is deployed. In particular, it allows egress destinations and
ingress sources, whether they are other namespaces or specific resources, labeled
with data-space/netpol-allow=true. This label, assigned by the Hospital
cluster, helps the Hospital determine which traffic should be allowed or blocked.
If the label matches, the traffic is permitted; otherwise, it is blocked. Although
the label is contained within the NetPol, the matching process pertains to
external resources attempting to exchange traffic with the offloaded namespace.
The ConfigMap holds the configuration parameters needed to direct traffic
from each offloaded pod through the Sidecar container[21].

61

Use case: data spaces with Liqo

Mutating Webhook

Lastly, it is implemented a Mutating Webhook performing various tasks
when a pod is offloaded. First, an Init container is inserted into the pod before
the main container when the offloaded pod is scheduled. This Init container
accesses the configuration information stored in the namespace ConfigMap and
sets rules that require all traffic from the main container to pass through the
Sidecar container. Once the Init container has completed its task, the main
container and the Sidecar container are created. This arrangement, enforced
by the Init container, ensures that traffic from the main container is directed
through the Sidecar. In the current implementation, the Sidecar serves as a
traffic monitoring tool without any metrics and is built using the Envoy proxy.

62

Chapter 7

Experimental validation

This chapter presents some performance analyses conducted by comparing
standard Liqo v0.8 with the proof-of-concept introduced in chapter 6. The
proof-of-concept is built upon the same version of Liqo, with the additional
components proposed in this thesis.

Summarizing the basic scenario from (see figure 6.1) which the results are
derived: in the Pharma cluster, a pod is required to access aggregated data
provided by the algorithm starting from Hospital data. After completing the
previously mentioned workflow (described in section 6.3.1), the Pharma cluster
is left with a single pod offloaded on the Hospital cluster that houses the
processing logic. When the Pharma cluster pod seeks access to data, it initiates
communication with the offloaded pod to request the necessary data. This
offloaded pod, in turn, interacts with the service exposed by the Hospital within
the data space, where it has been granted access. The offloaded pod collects
the required data, performs aggregation or analysis as needed, and then returns
the processed information to the requesting pod. All data transmitted back
to the Pharma pods undergoes thorough inspection and verification by the
sidecar, ensuring that no sensitive data is sent (e.g., by verifying the data
against a well-defined data structure). In essence, the offloaded pod functions
as an intermediary, bridging the gap between the Pharma pod and the data
made available by the Hospital cluster.

7.1 Data space creation time
The standard, or vanilla, execution of Liqo follows a two-phase process involving
peering and namespace offloading. In this process, an offloaded namespace
is created, and resources deployed within this namespace can take advantage
of Liqo offloading feature, while resources in other namespaces, which are not

63

Experimental validation

offloaded, cannot.
Our solution also follows the same two-phase process of peering and names-

pace offloading. The time duration for the peering phase is approximately
(3.8098 ± 0.7780) seconds, while namespace offloading takes around (0.3097 ±
0.0738) seconds. It is evident that the peering phase consumes more time.

The third phase is the deployment phase, in which we evaluated the
deployment of a variable number of pods in both the standard Liqo setup and
our proposed solution. The results, as shown in Table 7.1, indicate that the
two scenarios exhibit a striking similarity. This suggests that the inclusion of
Init and Sidecar containers in our solution does not significantly impact the
deployment time.

#Offloaded Pods Vanilla (s) Data space (s)
1 0, 09 ± 0, 023 0.095 ± 0, 021
5 0, 214 ± 0, 077 0, 240 ± 0, 069
10 1, 218 ± 0, 038 1, 214 ± 0, 038
100 31, 945 ± 3, 368 32, 794 ± 6, 346

Table 7.1: Pod deployment time

7.2 Resource consumption
Resource consumption is a crucial metric for assessing the computational
load on a system during data transfer operations. In our study, we aim to
determine if the fine-grained security measures introduced in chapter 5 have
any noticeable impact on the resource consumption of the Liqo Gateway. To
evaluate this, we conducted an analysis based on four distinct scenarios, as
illustrated in figure 7.1. These scenarios were derived from both the standard
Liqo implementation and our proposed solution.

Initially, we collected data during an idle period before initiating a stress
test. This test design allowed us to make a comparative assessment of the four
scenarios. We simulated data transfer between the two clusters using the iPerf
tool [22]. Upon analyzing the results, we observed that our implementation,
referred to as “Data Space” in figure , introduces only a negligible amount
of additional resource consumption, whether during idle or stress conditions,
compared to the standard Liqo implementation. This slight increase in CPU
usage is a reasonable trade-off for the benefits of our proposed solution, which
facilitates data provisioning through data spaces without introducing a signif-
icant resource overhead. We also monitored RAM consumption during our
experiments, and our findings revealed that our solution had no noticeable

64

Experimental validation

0%

5%

10%

15%

20%

25%

30%

35%

Vanilla Idle Vanilla Stress

Data Space Idle Data Space Stress

Figure 7.1: CPU consumption

impact on RAM usage compared to standard Liqo. Consequently, we have not
included the corresponding graph for the sake of brevity.

7.3 Latency
In this context, latency refers to the time duration between a pod’s data request
and the moment the requested data becomes accessible. Our experiment focuses
on scenarios where data is located within a pod, leading us to examine pod-to-
pod communication. We considered three distinct scenarios to determine the
time required for a pod to access data:

• Local: in this scenario, the communicating pods are within the same
cluster, either Pharma or Hospital. These pods use local connectivity for
data exchange. This scenario simulates communication between a pod
seeking data and a pod providing data within the same cluster.

• Remote: this scenario involves pods in different clusters, one in Pharma
and the other in Hospital. This scenario requires the use of Liqo for con-
nectivity, as data transfer must traverse the intra-cluster tunnel. It reflects
communication between pods in separate clusters, offering a comparison to

65

Experimental validation

a situation where Pharma needs to access a remote service in the Hospital
cluster and download relevant data for computation in the Pharma cluster

• Data space: this is the PoC scenario in which, however, we can have a
variable number of offloaded pods acting as proxies, in order to test on
multiple parallel connections.

We collected latency benchmarks using Apache Benchmark [18] with 10K
requests and a varying number of parallel connections. For clarity, we present
results for two instances: one with 10 parallel connections and the other with
100 parallel connections, shown in figure 7.2 and figure 7.3, respectively.

La
te

nc
y

(m
s)

0

2

4

6

8

10

12

14

16

18

20

Local Remote Data Space

Figure 7.2: Latency with 10 par-
allel connections

La
te

nc
y

(m
s)

0

20

40

60

80

100

120

140

160

Local Remote Data Space

Figure 7.3: Latency with 100
parallel connections

As depicted in these figures, pod-to-pod latency increases when pods are in
different clusters compared to when they are within the same cluster. However,
the Data Space scenario requires further consideration. During testing, offloaded
Pharma pods served as proxies, handling all requests to Hospital data, which
introduced noticeable latency. This proxy role enables Hospital to control data
flow, as offloaded pods are located within the data space. When deploying
our solution in this manner, latency increased by up to 37% (median value)
compared to the Remote scenario.

This result prompts a reevaluation of our initial premise. Leveraging the data
gravity inherent in our proposed solution allows for more effective management
of local and remote latencies. By assigning data aggregation or analysis tasks
to the Pharma offloaded pod, the resulting data has a smaller size. In this
setup, communication between the offloaded pod and the data-owning Hospital
pod remains local to the Hospital cluster, resembling the latency behavior of
the Local scenario. However, when the Pharma pod retrieves the aggregated
data from the offloaded pod, the latency resembles that of the Remote scenario.
Although Data Space latency is higher than Local and Remote latencies, data

66

Experimental validation

aggregation helps mitigate this issue by reducing latency within the data
aggregator pod and lowering the total volume of data transferred from Hospital
to Pharma. This reduction in data transfer time can significantly impact the
total cost of the deployment, especially when clusters are hosted on public
cloud providers. While we cannot directly reduce latency, we can achieve a
substantial reduction in the total data transfer time.

67

Chapter 8

Conclusions

The adoption of a multi-cluster approach has evolved into a fundamental
requirement in the industry. The capability to enable various clusters to
collaborate, share resources, and distribute workloads will be a cornerstone
feature in the future of cloud computing.
The thesis has accomplished its initial goal, which was to improve the current
full pod-to-pod connectivity model of Liqo, enabling a fine-grained control that
allows connectivity exclusively to pods and services engaged in the multi-cluster
topology.
Subsequently, a proof-of-concept was presented, which utilizes this new con-
nectivity model and demonstrates the potential to use Liqo for the creation of
data spaces.
This work opens up the possibility of identifying other use cases that require
multi-cluster solutions. Based on these cases, new connectivity models for Liqo
can be designed while maintaining the benefits of flexibility and scalability. The
ability to choose from various models that best suit the user’s needs, aiming to
introduce a certain degree of configurability, could contribute to the increased
adoption of Liqo.

68

Appendix A

NamespaceReconciler

content/code/go/namespace_reconciler_controller.go
1 /∗
2 Copyright 2022 .
3

4 Licensed under the Apache License , Vers ion 2 .0 (the " L icense ") ;
5 you may not use t h i s f i l e except in compliance with the L icense .
6 You may obta in a copy o f the L icense at
7

8 http ://www. apache . org / l i c e n s e s /LICENSE−2.0
9

10 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wr i t ing ,
so f tware

11 d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed .
13 See the L icense f o r the s p e c i f i c language governing permi s s i ons

and
14 l i m i t a t i o n s under the L icense .
15 ∗/
16

17 package c o n t r o l l e r s
18

19 import (
20 " context "
21 " fmt "
22

23 " gopkg . in /yaml . v3 "
24 corev1 " k8s . i o / api / core /v1 "
25 netv1 " k8s . i o / api / networking /v1 "
26 metav1 " k8s . i o / apimachinery /pkg/ ap i s /meta/v1 "
27 " k8s . i o / apimachinery /pkg/ runtime "
28 " k8s . i o / apimachinery /pkg/ types "

69

NamespaceReconciler

29 " k8s . i o / k log /v2 "
30 c t r l " s i g s . k8s . i o / c o n t r o l l e r −runtime "
31 " s i g s . k8s . i o / c o n t r o l l e r −runtime /pkg/ b u i l d e r "
32 " s i g s . k8s . i o / c o n t r o l l e r −runtime /pkg/ c l i e n t "
33 " s i g s . k8s . i o / c o n t r o l l e r −runtime /pkg/ log "
34 " s i g s . k8s . i o / c o n t r o l l e r −runtime /pkg/ p r ed i c a t e "
35

36 " data−space . l i q o . i o / cons t s "
37)
38

39 // NamespaceReconci ler r e c o n c i l e s a Namespace ob j e c t
40 type NamespaceReconci ler s t r u c t {
41 c l i e n t . C l i en t
42 Scheme ∗ runtime . Scheme
43 }
44

45 //+kubebui lder : rbac : groups=core , r e s o u r c e s=namespaces , verbs=get ;
l i s t ; watch ; c r e a t e ; update ; patch ; d e l e t e

46 //+kubebui lder : rbac : groups=core , r e s o u r c e s=namespaces/ status , verbs=
get ; update ; patch

47 //+kubebui lder : rbac : groups=core , r e s o u r c e s=namespaces/ f i n a l i z e r s ,
verbs=update

48

49 //+kubebui lder : rbac : groups=networking . k8s . io , r e s o u r c e s=
ne tworkpo l i c i e s , verbs=get ; l i s t ; watch ; c r e a t e ; update ; patch ; d e l e t e

50 //+kubebui lder : rbac : groups=core , r e s o u r c e s=configmaps , verbs=get ;
l i s t ; watch ; c r e a t e ; update ; patch ; d e l e t e

51

52 // Reconc i l e i s part o f the main kubernetes r e c o n c i l i a t i o n loop
which aims to

53 // move the cur rent s t a t e o f the c l u s t e r c l o s e r to the d e s i r e d
s t a t e .

54 // TODO(user) : Modify the Reconc i l e f unc t i on to compare the s t a t e
s p e c i f i e d by

55 // the Namespace ob j e c t aga in s t the ac tua l c l u s t e r s ta te , and then
56 // perform ope ra t i on s to make the c l u s t e r s t a t e r e f l e c t the s t a t e

s p e c i f i e d by
57 // the user .
58 //
59 // For more d e t a i l s , check Reconc i l e and i t s Result here :
60 // − https : // pkg . go . dev/ s i g s . k8s . i o / c o n t r o l l e r −runtime@v0 . 1 3 . 0 / pkg

/ r e c o n c i l e
61 func (r ∗ NamespaceReconci ler) Reconc i l e (ctx context . Context , req

c t r l . Request) (c t r l . Result , e r r o r) {
62 _ = log . FromContext (ctx)
63

64 nsName := req . NamespacedName
65 klog . I n f o f (" Reconc i l e Namespace %q " , nsName .Name)
66

70

NamespaceReconciler

67 // Network p o l i c y namespaced name
68 npNsName := types . NamespacedName{
69 Namespace : nsName .Name,
70 Name : cons t s . NetworkPolicyName ,
71 }
72 // Config map namespaced name
73 cmNsName := types . NamespacedName{
74 Namespace : nsName .Name,
75 Name : cons t s . ConfigMapName ,
76 }
77

78 namespace := corev1 . Namespace{}
79 i f e r r := r . Get (ctx , nsName , &namespace) ; e r r != n i l {
80 e r r = c l i e n t . IgnoreNotFound (e r r)
81 i f e r r == n i l {
82 klog . I n f o f (" Namespace %q not found : t ry ing to d e l e t e

NetworkPolicy %q and ConfigMap %q " , nsName .Name, npNsName ,
cmNsName)

83 // Delete r e l e v a n t NetworkPolicy and ConfigMap i f found
84 i f e r r := r . de le teNetworkPol i cy (ctx , npNsName) ; e r r != n i l {
85 re turn c t r l . Result {} , e r r
86 }
87 i f e r r := r . deleteConfigMap (ctx , cmNsName) ; e r r != n i l {
88 re turn c t r l . Result {} , e r r
89 }
90 }
91 re turn c t r l . Result {} , e r r
92 }
93

94 // I n t e r c e p t i f the ob j e c t i s under d e l e t i o n and return no e r r o r s
95 i f ! namespace . ObjectMeta . DeletionTimestamp . I sZero () {
96 klog . I n f o f (" Namespace %q i s under d e l e t i o n . Relevant r e s o u r c e s

are going to be de l e t ed as we l l . " , nsName .Name)
97 re turn c t r l . Result {} , n i l
98 }
99

100 // Check the " apply network p o l i c y " l a b e l
101 i f v , ok := namespace . Labe ls [cons t s . DataSpaceApplyNetpolLabel] ;

ok && v == " f a l s e " {
102 // Namespace l a b e l s e t to f a l s e : d e l e t e r e l e v a n t NetworkPolicy

i f found
103 klog . I n f o f (" Namespace %q conta in s l a b e l %q : t ry ing to d e l e t e

NetworkPolicy %q " , nsName .Name, fmt . S p r i n t f ("%s :%s " , cons t s .
DataSpaceApplyNetpolLabel , " f a l s e ") , npNsName)

104 i f e r r := r . de le teNetworkPol i cy (ctx , npNsName) ; e r r != n i l {
105 re turn c t r l . Result {} , e r r
106 }
107 } e l s e {

71

NamespaceReconciler

108 // Namespace l a b e l not s e t to f a l s e : c r e a t e NetworkPolicy i f not
found

109 networkPol icy := forgeNetworkPol icy (nsName .Name)
110 i f e r r := r . createNetworkPol icy (ctx , nsName .Name, networkPol icy)

; e r r != n i l {
111 re turn c t r l . Result {} , e r r
112 }
113 }
114

115 // Check the " apply webhook " l a b e l
116 i f v , ok := namespace . Labe ls [cons t s . DataSpaceApplyWebhookLabel] ;

ok && v == " f a l s e " {
117 // Namespace l a b e l s e t to f a l s e : d e l e t e r e l e v a n t ConfigMap i f

found
118 klog . I n f o f (" Namespace %q conta in s l a b e l %q : t ry ing to d e l e t e

ConfigMap %q " , nsName .Name, fmt . S p r i n t f ("%s :%s " , cons t s .
DataSpaceApplyWebhookLabel , " f a l s e ") , cmNsName)

119 i f e r r := r . deleteConfigMap (ctx , cmNsName) ; e r r != n i l {
120 re turn c t r l . Result {} , e r r
121 }
122 } e l s e {
123 // Namespace l a b e l not s e t to f a l s e : c r e a t e ConfigMap i f not

found
124 configMap , e r r := forgeConfigMap (nsName .Name)
125 i f e r r != n i l {
126 re turn c t r l . Result {} , e r r
127 }
128 i f e r r := r . createConfigMap (ctx , nsName .Name, configMap) ; e r r !=

n i l {
129 re turn c t r l . Result {} , e r r
130 }
131 }
132

133 re turn c t r l . Result {} , n i l
134 }
135

136 // de leteNetworkPol i cy d e l e t e s the NetworkPolicy r e sou r c e in the
r e c o n c i l e d namespace

137 func (r ∗ NamespaceReconci ler) de le teNetworkPol i cy (ctx context .
Context , nsName types . NamespacedName) e r r o r {

138 var networkPol icy netv1 . NetworkPolicy
139 i f e r r := r . C l i en t . Get (ctx , nsName , &networkPol icy) ; e r r != n i l {
140 e r r = c l i e n t . IgnoreNotFound (e r r)
141 i f e r r == n i l {
142 klog . I n f o f (" Skipping not found NetworkPolicy %q in namespace %q

" , cons t s . NetworkPolicyName , nsName . Namespace)
143 } e l s e {
144 klog . Er ro r f (" Error whi l e g e t t i n g NetworkPolicy %q in namespace

%q " , cons t s . NetworkPolicyName , nsName . Namespace)

72

NamespaceReconciler

145 }
146 re turn e r r
147 }
148

149 i f e r r := r . C l i en t . De lete (ctx , &networkPol icy) ; e r r != n i l {
150 klog . Er ro r f (" Error whi l e d e l e t i n g NetworkPolicy %q in namespace

%q " , cons t s . NetworkPolicyName , nsName . Namespace)
151 }
152 klog . I n f o f (" Deleted NetworkPolicy %q in namespace %q " , cons t s .

NetworkPolicyName , nsName . Namespace)
153 re turn n i l
154 }
155

156 // deleteConfigMap d e l e t e s the ConfigMap re sou r c e in the
r e c o n c i l e d namespace

157 func (r ∗ NamespaceReconci ler) deleteConfigMap (ctx context . Context ,
nsName types . NamespacedName) e r r o r {

158 var configMap corev1 . ConfigMap
159 i f e r r := r . C l i en t . Get (ctx , nsName , &configMap) ; e r r != n i l {
160 e r r = c l i e n t . IgnoreNotFound (e r r)
161 i f e r r == n i l {
162 klog . I n f o f (" Skipping not found ConfigMap %q in namespace %q " ,

cons t s . ConfigMapName , nsName . Namespace)
163 } e l s e {
164 klog . Er ro r f (" Error whi l e g e t t i n g ConfigMap %q in namespace %q " ,

cons t s . ConfigMapName , nsName . Namespace)
165 }
166 re turn e r r
167 }
168

169 i f e r r := r . C l i en t . De lete (ctx , &configMap) ; e r r != n i l {
170 klog . Er ro r f (" Error whi l e d e l e t i n g ConfigMap %q in namespace %q " ,

cons t s . ConfigMapName , nsName . Namespace)
171 }
172 klog . I n f o f (" Deleted ConfigMap %q in namespace %q " , cons t s .

ConfigMapName , nsName . Namespace)
173 re turn n i l
174 }
175

176 // createNetworkPol icy c r e a t e s a NetworkPolicy r e sou r c e in the
r e c o n c i l e d namespace

177 func (r ∗ NamespaceReconci ler) createNetworkPol icy (ctx context .
Context , namespaceName s t r i ng , networkPol icy ∗ netv1 .
NetworkPolicy) e r r o r {

178 i f e r r := r . C l i en t . Create (ctx , networkPol icy) ; e r r != n i l {
179 e r r = c l i e n t . IgnoreAl readyEx i s t s (e r r)
180 i f e r r == n i l {
181 klog . I n f o f (" NetworkPolicy %q a l ready e x i s t s in namespace %q " ,

cons t s . NetworkPolicyName , namespaceName)

73

NamespaceReconciler

182 } e l s e {
183 klog . Er ro r f (" Error whi l e c r e a t i n g NetworkPolicy %q in namespace

%q " , cons t s . NetworkPolicyName , namespaceName)
184 }
185 re turn e r r
186 }
187 klog . I n f o f (" Created NetworkPolicy %q in namespace %q " , cons t s .

NetworkPolicyName , namespaceName)
188 re turn n i l
189 }
190

191 // createConfigMap c r e a t e s a ConfigMap re sou r c e in the r e c o n c i l e d
namespace

192 func (r ∗ NamespaceReconci ler) createConfigMap (ctx context . Context ,
namespaceName s t r i ng , configMap ∗ corev1 . ConfigMap) e r r o r {

193 i f e r r := r . C l i en t . Create (ctx , configMap) ; e r r != n i l {
194 e r r = c l i e n t . IgnoreAl readyEx i s t s (e r r)
195 i f e r r == n i l {
196 klog . I n f o f (" ConfigMap %q al ready e x i s t s in namespace %q " ,

cons t s . ConfigMapName , namespaceName)
197 } e l s e {
198 klog . Er ro r f (" Error whi l e c r e a t i n g ConfigMap %q in namespace %q "

, cons t s . ConfigMapName , namespaceName)
199 }
200 re turn e r r
201 }
202 klog . I n f o f (" Created ConfigMap %q in namespace %q " , cons t s .

ConfigMapName , namespaceName)
203 re turn n i l
204 }
205

206 // forgeNetworkPol icy b u i l d s a NetworkPolicy ob j e c t
207 func forgeNetworkPol icy (namespaceName s t r i n g) ∗ netv1 . NetworkPolicy

{
208 re turn &netv1 . NetworkPolicy {
209 ObjectMeta : metav1 . ObjectMeta{
210 Name : cons t s . NetworkPolicyName ,
211 Namespace : namespaceName ,
212 } ,
213 Spec : netv1 . NetworkPolicySpec {
214 // For matching pods in the NetworkPolicy ’ s namespace
215 PodSe lector : metav1 . Labe lS e l e c t o r {
216 // Empty : match a l l
217 } ,
218 PolicyTypes : [] netv1 . PolicyType {
219 netv1 . Pol icyTypeIngress ,
220 netv1 . Pol icyTypeEgress ,
221 } ,
222 I n g r e s s : [] netv1 . NetworkPol icyIngressRule {{

74

NamespaceReconciler

223 From : [] netv1 . NetworkPolicyPeer {
224 // Allow a l l s ou r c e s
225 } ,
226 }} ,
227 Egress : [] netv1 . NetworkPol icyEgressRule {{
228 To : [] netv1 . NetworkPolicyPeer {
229 // OR−ed s e l e c t o r s
230 {
231 // For pods in matching namespaces
232 NamespaceSelector : &metav1 . Labe lS e l e c t o r {
233 MatchLabels : map [s t r i n g] s t r i n g {
234 cons t s . DataSpaceNetpolAllowLabel : " t rue " ,
235 } ,
236 } ,
237 } ,
238 {
239 // For matching pods in the NetworkPolicy ’ s namespace
240 PodSe lector : &metav1 . Labe lS e l e c t o r {
241 MatchLabels : map [s t r i n g] s t r i n g {
242 cons t s . DataSpaceNetpolAllowLabel : " t rue " ,
243 } ,
244 } ,
245 } ,
246 {
247 // AND−ed s e l e c t o r s
248 // For matching pods in matching namespaces (to a l low f o r

DNS q u e r i e s)
249 NamespaceSelector : &metav1 . Labe lS e l e c t o r {
250 MatchLabels : map [s t r i n g] s t r i n g {
251 corev1 . LabelMetadataName : cons t s .KUBE_SYSTEM,
252 } ,
253 } ,
254 PodSe lector : &metav1 . Labe lS e l e c t o r {
255 MatchLabels : map [s t r i n g] s t r i n g {
256 cons t s . K8sAppLabel : cons t s .KUBE_DNS,
257 } ,
258 } ,
259 } ,
260 } ,
261 }} ,
262 } ,
263 }
264 }
265

266 // forgeConfigMap b u i l d s a ConfigMap ob j e c t
267 func forgeConfigMap (namespaceName s t r i n g) (∗ corev1 . ConfigMap ,

e r r o r) {
268 envoyConfig := forgeEnvoyConfig ()
269

75

NamespaceReconciler

270 // Encode ob j e c t in to yaml
271 marshaledEnvoyConfig , e r r := yaml . Marshal (envoyConfig)
272 i f e r r != n i l {
273 klog . Fata l (" Could not marshal yaml , e r r o r : %v " , e r r)
274 re turn n i l , e r r
275 }
276

277 re turn &corev1 . ConfigMap{
278 ObjectMeta : metav1 . ObjectMeta{
279 Name : cons t s . ConfigMapName ,
280 Namespace : namespaceName ,
281 } ,
282 Data : map [s t r i n g] s t r i n g {
283 " keys " : s t r i n g (marshaledEnvoyConfig) ,
284 } ,
285 } , n i l
286 }
287

288 // forgeEnvoyConfig bu i l d s an EnvoyConfig ob j e c t
289 func forgeEnvoyConf ig () ∗EnvoyConfig {
290 re turn &EnvoyConfig{
291 Admin : Admin{
292 Address : Address {
293 SocketAddress : SocketAddress {
294 Address : cons t s .LOCALHOST_ADDR,
295 PortValue : cons t s . AdminPort ,
296 } ,
297 } ,
298 } ,
299

300 Sta t i cResource s : S ta t i cResource s {
301 L i s t e n e r s : [] L i s t e n e r {
302 // Egress TCP l i s t e n e r
303 {
304 Name : " eg r e s s_tcp_ l i s t ene r " ,
305 Address : Address {
306 SocketAddress : SocketAddress {
307 Address : cons t s .LOCALHOST_ADDR,
308 PortValue : cons t s . EgressTcpPort ,
309 } ,
310 } ,
311 Fi l t e rCha in s : [] F i l t e rCha in {
312 {
313 F i l t e r s : [] NameAndConfig{
314 {
315 Name : cons t s . TcpProxyTypeName ,
316 TypedConfig : TypedConfig{
317 Type : cons t s . TcpProxyTypeUrl ,
318 Sta tPr e f i x : cons t s . EgressTcpStatPrefixName ,

76

NamespaceReconciler

319 Clus te r : cons t s . EgressClusterName ,
320 // Log ac c e s s to /dev/ stdout
321 AccessLog : [] NameAndConfig{{
322 Name : cons t s . AccessLogTypeName ,
323 TypedConfig : TypedConfig{
324 Type : cons t s . AccessLogTypeUrl ,
325 } ,
326 }} ,
327 } ,
328 } ,
329 } ,
330 } ,
331 } ,
332 L i s t e n e r F i l t e r s : [] NameAndConfig{
333 {
334 Name : cons t s . Orig inalDstListenerFi l terTypeName ,
335 TypedConfig : TypedConfig{
336 Type : cons t s . Or i g ina lDs tL i s t ene rF i l t e rTypeUr l ,
337 } ,
338 } ,
339 } ,
340 } ,
341 // I n g r e s s TCP l i s t e n e r
342 {
343 Name : " i n g r e s s _ t c p _ l i s t e n e r " ,
344 Address : Address {
345 SocketAddress : SocketAddress {
346 Address : cons t s .ANY_ADDR,
347 PortValue : cons t s . IngressTcpPort ,
348 } ,
349 } ,
350 Fi l t e rCha in s : [] F i l t e rCha in {
351 {
352 F i l t e r s : [] NameAndConfig{
353 {
354 Name : cons t s . TcpProxyTypeName ,
355 TypedConfig : TypedConfig{
356 Type : cons t s . TcpProxyTypeUrl ,
357 Sta tPr e f i x : cons t s . IngressTcpStatPref ixName ,
358 Clus te r : cons t s . IngressClusterName ,
359 // Log ac c e s s to /dev/ stdout
360 AccessLog : [] NameAndConfig{{
361 Name : cons t s . AccessLogTypeName ,
362 TypedConfig : TypedConfig{
363 Type : cons t s . AccessLogTypeUrl ,
364 } ,
365 }} ,
366 } ,
367 } ,

77

NamespaceReconciler

368 } ,
369 } ,
370 } ,
371 L i s t e n e r F i l t e r s : [] NameAndConfig{
372 {
373 Name : cons t s . Orig inalDstListenerFi l terTypeName ,
374 TypedConfig : TypedConfig{
375 Type : cons t s . Or i g ina lDs tL i s t ene rF i l t e rTypeUr l ,
376 } ,
377 } ,
378 } ,
379 } ,
380 // Egress HTTP l i s t e n e r
381 {
382 Name : " eg r e s s_ht tp_ l i s t ene r " ,
383 Address : Address {
384 SocketAddress : SocketAddress {
385 Address : cons t s .LOCALHOST_ADDR,
386 PortValue : cons t s . EgressHttpPort ,
387 } ,
388 } ,
389 Fi l t e rCha in s : [] F i l t e rCha in {
390 {
391 F i l t e r s : [] NameAndConfig{
392 {
393 Name : cons t s . HttpConnectionManagerTypeName ,
394 TypedConfig : TypedConfig{
395 Type : cons t s . HttpConnectionManagerTypeUrl ,
396 Sta tPr e f i x : cons t s . EgressHttpStatPrefixName ,
397 H tt p F i l t e r s : [] NameAndConfig{
398 // Forward
399 {
400 Name : cons t s . DynamicForwardProxyFilterTypeName ,
401 TypedConfig : TypedConfig{
402 Type : cons t s . DynamicForwardProxyFilterTypeUrl ,
403 DnsCacheConfig : DnsCacheConfig{
404 Name : cons t s . DnsCacheConfigName ,
405 DnsLookupFamily : cons t s . Ipv4Only ,
406 } ,
407 } ,
408 } ,
409 // Tap HTTP e g r e s s t r a f f i c
410 {
411 Name : cons t s . HttpTapTypeName ,
412 TypedConfig : TypedConfig{
413 Type : cons t s . HttpTapTypeUrl ,
414 CommonConfig : CommonConfig{
415 AdminConfig : AdminConfig{
416 Conf igId : cons t s . EgressHttpTapConfigId ,

78

NamespaceReconciler

417 } ,
418 } ,
419 } ,
420 } ,
421 // Router
422 {
423 Name : cons t s . RouterTypeName ,
424 TypedConfig : TypedConfig{
425 Type : cons t s . RouterTypeUrl ,
426 } ,
427 } ,
428 } ,
429 RouteConfig : RouteConfig {
430 Name : " egres s_route_conf ig " ,
431 Virtua lHost s : [] Vi r tua lHost {
432 {
433 Name : " egress_forward_host " ,
434 Domains : [] s t r i n g { " ∗ " } ,
435 Routes : [] RouteEntry{
436 {
437 Name : " egress_forward_route " ,
438 Match : Match{
439 Pre f i x : " / " ,
440 } ,
441 Route : Route{
442 Clus te r : cons t s . EgressForwardClusterName ,
443 } ,
444 } ,
445 } ,
446 } ,
447 } ,
448 } ,
449 // Log ac c e s s to /dev/ stdout
450 AccessLog : [] NameAndConfig{{
451 Name : cons t s . AccessLogTypeName ,
452 TypedConfig : TypedConfig{
453 Type : cons t s . AccessLogTypeUrl ,
454 } ,
455 }} ,
456 } ,
457 } ,
458 } ,
459 } ,
460 } ,
461 } ,
462 // I n g r e s s HTTP l i s t e n e r
463 {
464 Name : " i ng r e s s_ht tp_ l i s t en e r " ,
465 Address : Address {

79

NamespaceReconciler

466 SocketAddress : SocketAddress {
467 Address : cons t s .ANY_ADDR,
468 PortValue : cons t s . IngressHttpPort ,
469 } ,
470 } ,
471 Fi l t e rCha in s : [] F i l t e rCha in {
472 {
473 F i l t e r s : [] NameAndConfig{
474 {
475 Name : cons t s . HttpConnectionManagerTypeName ,
476 TypedConfig : TypedConfig{
477 Type : cons t s . HttpConnectionManagerTypeUrl ,
478 Sta tPr e f i x : cons t s . IngressHttpStatPref ixName ,
479 H tt p F i l t e r s : [] NameAndConfig{
480 // Forward
481 {
482 Name : cons t s . DynamicForwardProxyFilterTypeName ,
483 TypedConfig : TypedConfig{
484 Type : cons t s . DynamicForwardProxyFilterTypeUrl ,
485 DnsCacheConfig : DnsCacheConfig{
486 Name : cons t s . DnsCacheConfigName ,
487 DnsLookupFamily : cons t s . Ipv4Only ,
488 } ,
489 } ,
490 } ,
491 // Tap HTTP i n g r e s s t r a f f i c
492 {
493 Name : cons t s . HttpTapTypeName ,
494 TypedConfig : TypedConfig{
495 Type : cons t s . HttpTapTypeUrl ,
496 CommonConfig : CommonConfig{
497 AdminConfig : AdminConfig{
498 Conf igId : cons t s . IngressHttpTapConfigId ,
499 } ,
500 } ,
501 } ,
502 } ,
503 // Router
504 {
505 Name : cons t s . RouterTypeName ,
506 TypedConfig : TypedConfig{
507 Type : cons t s . RouterTypeUrl ,
508 } ,
509 } ,
510 } ,
511 RouteConfig : RouteConfig {
512 Name : " ingre s s_route_con f i g " ,
513 Virtua lHost s : [] Vi r tua lHost {
514 {

80

NamespaceReconciler

515 Name : " ingress_forward_host " ,
516 Domains : [] s t r i n g { " ∗ " } ,
517 Routes : [] RouteEntry{
518 {
519 Name : " ingress_forward_route " ,
520 Match : Match{
521 Pre f i x : " / " ,
522 } ,
523 Route : Route{
524 Clus te r : cons t s . IngressForwardClusterName ,
525 } ,
526 } ,
527 } ,
528 } ,
529 } ,
530 } ,
531 // Log ac c e s s to /dev/ stdout
532 AccessLog : [] NameAndConfig{{
533 Name : cons t s . AccessLogTypeName ,
534 TypedConfig : TypedConfig{
535 Type : cons t s . AccessLogTypeUrl ,
536 } ,
537 }} ,
538 } ,
539 } ,
540 } ,
541 } ,
542 } ,
543 } ,
544 } ,
545 Clus t e r s : [] C lus te r {
546 // Egress c l u s t e r
547 {
548 Name : cons t s . EgressClusterName ,
549 DnsLookupFamily : cons t s . Ipv4Only ,
550 Type : cons t s . OriginalDstType ,
551 LbPolicy : cons t s . Or ig ina lDstLbPol icy ,
552 ConnectTimeout : " 6 s " ,
553 Orig inalDstLbConf ig : Orig inalDstLbConf ig {
554 UseHttpHeader : true ,
555 } ,
556 } ,
557 // I n g r e s s c l u s t e r
558 {
559 Name : cons t s . IngressClusterName ,
560 DnsLookupFamily : cons t s . Ipv4Only ,
561 Type : cons t s . OriginalDstType ,
562 LbPolicy : cons t s . Or ig ina lDstLbPol icy ,
563 ConnectTimeout : " 6 s " ,

81

NamespaceReconciler

564 Orig inalDstLbConf ig : Orig inalDstLbConf ig {
565 UseHttpHeader : true ,
566 } ,
567 } ,
568 // Egress forward c l u s t e r
569 {
570 Name : cons t s . EgressForwardClusterName ,
571 LbPolicy : cons t s . Or ig ina lDstLbPol icy ,
572 ConnectTimeout : " 6 s " ,
573 ClusterType : NameAndConfig{
574 Name : cons t s . DynamicForwardProxyClusterTypeName ,
575 TypedConfig : TypedConfig{
576 Type : cons t s . DynamicForwardProxyClusterTypeUrl ,
577 DnsCacheConfig : DnsCacheConfig{
578 Name : cons t s . DnsCacheConfigName ,
579 DnsLookupFamily : cons t s . Ipv4Only ,
580 } ,
581 } ,
582 } ,
583 } ,
584 // I n g r e s s forward c l u s t e r
585 {
586 Name : cons t s . IngressForwardClusterName ,
587 LbPolicy : cons t s . Or ig ina lDstLbPol icy ,
588 ConnectTimeout : " 6 s " ,
589 ClusterType : NameAndConfig{
590 Name : cons t s . DynamicForwardProxyClusterTypeName ,
591 TypedConfig : TypedConfig{
592 Type : cons t s . DynamicForwardProxyClusterTypeUrl ,
593 DnsCacheConfig : DnsCacheConfig{
594 Name : cons t s . DnsCacheConfigName ,
595 DnsLookupFamily : cons t s . Ipv4Only ,
596 } ,
597 } ,
598 } ,
599 } ,
600 } ,
601 } ,
602 }
603 }
604

605 // SetupWithManager s e t s up the c o n t r o l l e r with the Manager .
606 func (r ∗ NamespaceReconci ler) SetupWithManager (mgr c t r l . Manager)

e r r o r {
607 // namespacePredicate s e l e c t s those namespaces matching the

provided l a b e l
608 namespacePredicate , e r r := pr ed i c a t e . Labe lS e l e c t o rPr ed i c a t e (

metav1 . Labe lS e l e c t o r {
609 MatchExpressions : [] metav1 . Labe lSe lectorRequirement {{

82

NamespaceReconciler

610 Key : cons t s . RemoteClusterIdLabel ,
611 Operator : metav1 . Labe lSe lectorOpExists ,
612 }} ,
613 })
614 i f e r r != n i l {
615 klog . Error (e r r)
616 re turn e r r
617 }
618

619 re turn c t r l . NewControllerManagedBy (mgr) .
620 For(&corev1 . Namespace {} , b u i l d e r . WithPredicates (

namespacePredicate)) .
621 Complete (r)
622 }

83

Bibliography

[1] Kubernetes official documentation. url: https://kubernetes.io/docs/
home (cit. on pp. 5, 12, 14–17).

[2] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. “Large-scale cluster management
at Google with Borg”. In: Proceedings of the European Conference on
Computer Systems (EuroSys). Bordeaux, France, 2015 (cit. on p. 5).

[3] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. “Omega: flexible, scalable schedulers for large compute clus-
ters”. In: SIGOPS European Conference on Computer Systems (EuroSys).
Prague, Czech Republic, 2013, pp. 351–364. url: http://eurosys2013.
tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf (cit.
on p. 5).

[4] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018.
url: https://blog.risingstack.com/the-history-of-kubernetes/
(cit. on p. 5).

[5] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https://blogs.dxc.technology/
2019/01/28/the-five-reasons-kubernetes-won-the-container-
orchestration-wars/ (cit. on p. 6).

[6] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and
security insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-
2019-container-usage-report/ (cit. on p. 8).

[7] Kubernetes Network Model. url: https%20:%20/%20/%20kubernetes%
20.%20io%20/%20docs%20/%20concepts%20/%20cluster-administr
ation/networking/#the-%20kubernetes-%20network-%20model (cit.
on p. 17).

[8] k8s CNI. url: https : / / kubernetes . io / docs / concepts / extend -
kubernetes/compute-storage-net/network-plugins/ (cit. on p. 20).

84

https://kubernetes.io/docs/home
https://kubernetes.io/docs/home
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https%20:%20/%20/%20kubernetes%20.%20io%20/%20docs%20/%20concepts%20/%20cluster-administration/networking/#the-%20kubernetes-%20network-%20model
https%20:%20/%20/%20kubernetes%20.%20io%20/%20docs%20/%20concepts%20/%20cluster-administration/networking/#the-%20kubernetes-%20network-%20model
https%20:%20/%20/%20kubernetes%20.%20io%20/%20docs%20/%20concepts%20/%20cluster-administration/networking/#the-%20kubernetes-%20network-%20model
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/

BIBLIOGRAPHY

[9] Kubernetes Services. url: https://sookocheff.com/post/kubernetes/
understanding-kubernetes-networking-model/ (cit. on p. 20).

[10] Kubebuilder GitHub repository. url: https://github.com/kubernetes-
sigs/kubebuilder (cit. on p. 21).

[11] Kubernetes Operator pattern. url: https://kubernetes.io/docs/
concepts/extend-kubernetes/operator/ (cit. on p. 21).

[12] Liqo documentation. url: https://docs.liqo.io/ (cit. on p. 22).
[13] Virtual Kubelet GitHub repository. url: https://github.com/virtual-

kubelet/virtual-kubelet (cit. on p. 28).
[14] Patrik Hummel, Matthias Braun, Max Tretter, and Peter Dabrock. “Data

sovereignty: A review”. In: Big Data & Society 8.1 (2021). doi: 10.1177/
2053951720982012. eprint: https://doi.org/10.1177/20539517209
82012. url: https://doi.org/10.1177/2053951720982012 (cit. on
p. 57).

[15] Kristina Irion. “Government Cloud Computing and National Data
Sovereignty”. In: Policy & Internet 4.3-4 (2012), pp. 40–71. doi: https:
//doi.org/10.1002/poi3.10. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/poi3.10. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/poi3.10 (cit. on p. 57).

[16] Ben Walford. What is GDPR, the EU’s new data protection law? 2018.
url: https://gdpr.eu/what-is-gdpr/ (cit. on p. 58).

[17] European Commission. The European Data Governance Act. 2022. url:
https : / / digital - strategy . ec . europa . eu / en / policies / data -
governance-act (cit. on p. 58).

[18] European Commission. The European Data Act. 2022. url: https://
digital-strategy.ec.europa.eu/en/library/data-act-proposal-
regulation-harmonised-rules-fair-access-and-use-data (cit. on
p. 58).

[19] Coral Walker and Hassan Alrehamy. “Personal Data Lake with Data
Gravity Pull”. In: 2015 IEEE Fifth International Conference on Big Data
and Cloud Computing. 2015, pp. 160–167. doi: 10.1109/BDCloud.2015.
62 (cit. on p. 58).

[20] Lars Nagel and Douwe Lycklama. Design Principles for Data Spaces -
Position Paper. Version 1.0. July 2021. doi: 10.5281/zenodo.5105744.
url: https://doi.org/10.5281/zenodo.5105744 (cit. on p. 58).

[21] Envoy. url: https://digital-strategy.ec.europa.eu/en/policies
/data-governance-act (cit. on p. 61).

85

https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://docs.liqo.io/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://doi.org/10.1177/2053951720982012
https://doi.org/10.1177/2053951720982012
https://doi.org/10.1177/2053951720982012
https://doi.org/10.1177/2053951720982012
https://doi.org/10.1177/2053951720982012
https://doi.org/https://doi.org/10.1002/poi3.10
https://doi.org/https://doi.org/10.1002/poi3.10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/poi3.10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/poi3.10
https://onlinelibrary.wiley.com/doi/abs/10.1002/poi3.10
https://onlinelibrary.wiley.com/doi/abs/10.1002/poi3.10
https://gdpr.eu/what-is-gdpr/
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/library/data-act-proposal-regulation-harmonised-rules-fair-access-and-use-data
https://digital-strategy.ec.europa.eu/en/library/data-act-proposal-regulation-harmonised-rules-fair-access-and-use-data
https://digital-strategy.ec.europa.eu/en/library/data-act-proposal-regulation-harmonised-rules-fair-access-and-use-data
https://doi.org/10.1109/BDCloud.2015.62
https://doi.org/10.1109/BDCloud.2015.62
https://doi.org/10.5281/zenodo.5105744
https://doi.org/10.5281/zenodo.5105744
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act

BIBLIOGRAPHY

[22] iPerf. url: https://iperf.fr/ (cit. on p. 64).

86

https://iperf.fr/

	List of Figures
	Introduction
	The Need for Multi-Cluster Environments
	Multi-Cluster and Liqo
	Goal of the thesis
	Structure of the work

	Kubernetes
	Kubernetes: a bit of history
	Evolution of workloads management
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Labels and Selectors
	Namespace
	Pod
	ReplicaSet
	Deployment
	DaemonSet
	Service
	EndpointSlice

	Kubernetes network architecture
	Container communication within same pod
	Pod communication within the same node
	Pod communication on different nodes
	CNI (Container Network Interface)
	Pod to service networking

	Kubebuilder

	Liqo
	An overview of Liqo
	Liqo Peering
	Liqo Reflection
	Network Fabric
	Cross-cluster VPN tunnels
	In-cluster overlay network

	Liqo CRDs
	NetworkConfig CR
	TunnelEndpoint CR
	ForeignCluster CR
	ShadowPod CR

	Liqo components
	CRD Replicator
	Virtual Kubelet
	IPAM
	Network manager
	Liqo Gateway

	Advanced Networking Concepts and Tools
	Linux Namespaces
	Namespace kinds

	Linux Network Stack
	Netfilter
	Iptables
	Ipset
	Connection tracking

	Fine-Grained Security for Intra-Cluster Connectivity in Liqo
	The Problem
	Full pod-to-pod connectivity

	Architecture
	Problem Area
	Intra-cluster traffic segregation

	Implementation
	Liqo NetNS
	OffloadedPod controller
	ReflectedEndpointslice controller
	Iptables rules management

	Use case: data spaces with Liqo
	Data spaces
	Use case overview
	Using Liqo for data spaces
	Workflow
	Implementation

	Experimental validation
	Data space creation time
	Resource consumption
	Latency

	Conclusions
	NamespaceReconciler
	Bibliography

