
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Curriculum Software

Master’s Degree Thesis

Development of a Web Application for
Risk Management

Supervisor

Prof. Maurizio MORISIO

Company Tutor

Angelo NESTOLA

Candidate

Marta CORCIONE

October 2023

Abstract

With the increase in complexity of modern business operations, effective risk
management is one of the key factors in ensuring the success of organizations. The
integration of software applications has revolutionized the way companies identify,
assess, and mitigate risks. This study deals with the design, development, and
deployment of a comprehensive Risk Management Tool.
The Web Application was implemented in Orbyta Tech with the objective of
providing a better tool with respect to the ones already on the market. Current
solutions often focus on specific risk domains and historical data, making it difficult
to adapt to different organizational structures and predict risks in real-time. Our
software is based on real-time data and Machine Learning to identify risks and
trends. The tool offers customization and an intuitive interface allowing a pleasant
User Experience. Our Risk Management Tool is composed of different common
sections and modules. This was possible thanks to the Software as a Service (SaaS)
model, which is typically based on a multi-tenant architecture.
The Customer has the possibility to select one or more modules by starting a
subscription. The Dashboard section displays statistics, allowing users to filter by
date. The Project Management section is composed of the elements necessary for
registering a Project in the application. In the Risk Management section, users
can create, modify, and delete risks, causes, impacts, risk categories, Key Risk
Indicators, Risk Breakdown Matrix entries, and mitigations. These features offer
comprehensive control over risk-related data, including searching, filtering, and
Excel exporting capabilities. The Loss Events History section contains the Loss
Events table for managing the company’s previous damaging events. The additional
modules that were implemented as a start are Data Loss Prevention and Asset
Loss and Logistics Risk Management. The former’s objective is to support the
user in managing and mitigating Cyber-related risks, especially the ones related
to data losses and data breaches. The latter, on the other hand, has the goal of
managing risks that may impact the transportation (or storage) of goods by using
risk assessment founded both on external and internal factors. It also gives the
possibility to manage warehouses and shipments and see when a transit crosses a
"Dangerous Zone".
The users of this application are Risk and Project Managers, but also IT and
Logistics Unit operators who have different roles and authorizations.
The Agile methodology guides the development process, ensuring flexibility and
quality.
The C# back-end with Entity Framework Core as the database provider accommo-
dates business logic with a code-first approach, while the Angular front-end offers

an intuitive interface. The ABP.io framework provides a robust layered architecture
and maintains adherence to Domain Driven Design best practices.
Machine Learning was incorporated into the application using ML.NET. Forecast
Algorithms were used to show trends of risk events based on past and present data.
Classifier Algorithms were used to categorize events into predefined classes and
perform predictions on newly inserted user data. Part of the study focused on
researching useful and accurate data sources.
Lastly, the application was tested by adopting an Agile testing approach and
deployed with Azure DevOps.
In conclusion, this study’s aim was to emphasize the importance of effective risk
management software and provide a powerful yet simple solution.

ii

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1

2 Orbyta Tech 5
2.1 Provider profile . 5

2.1.1 Type of provider (Vendor/System integrator) and general
presentation . 5

2.1.2 Key Provider Information 7
2.2 Provider organization overview . 7
2.3 Business Provider Strategy and Profile 9

3 Risk Management Approaches and Tools 11
3.1 Risk Management Overview . 11

3.1.1 The ISO 31000 standard . 12
3.1.2 COSO ERM Framework . 13
3.1.3 COSO’s ERM framework vs ISO 31000 standard 13
3.1.4 The 5 components of risk management 13
3.1.5 Challenges and Limitations of Risk Management 14

3.2 Risk Management Elements . 15
3.2.1 The Risk Register . 15
3.2.2 Impact and Likelihood: The Risk Matrix 16
3.2.3 Metrics: Key Risk Indicators 16
3.2.4 The Risk Breakdown Matrix 16
3.2.5 Loss Events History . 19

3.3 Risk Management Software . 19
3.4 Competitor Analysis . 19

ii

3.4.1 Why Archer? . 19
3.4.2 Key factors driving the need for a new tool 20

3.5 Machine Learning For Risk Management 21
3.5.1 Forecast Algorithms . 21
3.5.2 Classifier Algorithms . 22
3.5.3 Challenges and Considerations 24

4 Methodology and System Architecture 25
4.1 Introduction to Methodology and Design Principles 25
4.2 Software as a Service (SaaS) Model 26

4.2.1 A multi-tenant architecture 26
4.2.2 Advantages and disadvantages of SaaS 27
4.2.3 Why we choose the SaaS Model 27

4.3 Agile Methodology . 28
4.3.1 The Scrum Framework . 29
4.3.2 Agile and Scrum Application during the Project 31

4.4 Testing and Deployment Strategies 32
4.4.1 Testing Strategies . 32
4.4.2 Agile Testing . 33
4.4.3 Continuous Integration and Continuous Delivery (CI/CD) . 34

4.5 Domain Driven Design (DDD) . 36
4.5.1 Key Concepts of Domain Driven Design 38
4.5.2 Benefits of Domain Driven Design 39

4.6 Data Research and Analysis . 39
4.6.1 Data Research . 39
4.6.2 Data Analysis . 40

4.7 Machine Learning Integration . 50
4.8 Requirement Documents and Design Artifacts 50

4.8.1 Stakeholders and Interfaces 51
4.8.2 Class Diagram . 52
4.8.3 Context and Use Case Diagrams 54
4.8.4 Functional Requirements . 56
4.8.5 Non-Functional Requirements 60
4.8.6 Deployment Diagram and System Design 60

5 Implementation Details and Technology Stack 62
5.1 Technology Stack . 62

5.1.1 ABP.io Framework . 62
5.1.2 C# Back-End . 63
5.1.3 Entity Framework Core . 66
5.1.4 Angular Front-End . 68

iii

5.1.5 Lepton UI Theme . 69
5.1.6 Chart.js Library . 70
5.1.7 Leaflet for Maps . 70
5.1.8 Mermaid APIs for Gantt Diagrams 72
5.1.9 Machine Learning with ML.NET 73

5.2 Actual App Functionalities with Screenshots 73
5.2.1 Dashboard . 73
5.2.2 Risk Management . 74
5.2.3 Project Management . 77
5.2.4 Loss Events History . 77
5.2.5 Data Loss Prevention . 78
5.2.6 Asset Loss & Logistics Risk Management 78

5.3 Machine Learning Model Implementation 80
5.3.1 Cyber Crimes Forecast . 80
5.3.2 Asset Crimes Forecast . 83
5.3.3 DataRecovered, ConsumerLawsuit and ArrestProsecution

Classification . 84
5.3.4 Acceptance and Mitigation Classification 88

5.4 Implementation of Agile Testing . 91
5.4.1 C# Unit Testing Example 91
5.4.2 Building the Test Base with Data Seeders 92
5.4.3 Angular End-to-End (e2e) Testing Example 94

5.5 Deployment Implementation . 95
5.5.1 Azure DevOps: Streamlining the Process 95
5.5.2 Terraform: Building Infrastructure as Code 95
5.5.3 Deployment Workflow in Action 96

6 Evaluation and Testing 97
6.1 Evaluation Methodology . 97
6.2 Testing in Real-World Scenarios . 98
6.3 Results, Findings, and Comparison with Requirements 99

7 Conclusions and Future Directions 100

Bibliography 102

iv

List of Tables

3.1 Risk Register example. 17

4.1 The Agile Manifesto . 29
4.2 Stakeholder Roles . 51
4.3 Actor Interfaces . 52
4.4 Dashboard Functional Requirements 57
4.5 Risk Functional Requirements . 57
4.6 Project Functional Requirements 58
4.7 Loss Events Functional Requirements 58
4.8 Data Loss Prevention Functional Requirements 58
4.9 Asset Loss Prevention Functional Requirements 59

5.1 ML.NET Classification Metrics . 89

v

List of Figures

2.1 The Orbyta Group . 5

3.1 Principles, framework and process 12
3.2 The Risk Matrix . 16
3.3 The Risk Breakdown Matrix (RBM) 18
3.4 The Archer Platform . 20
3.5 Cyber crimes in Italy time series forecast. Based on ISTAT data

from 2006 to 2021 and predicting values from 2022 up to 2025. . . . 22
3.6 Classification Algorithm . 23

4.1 Representation of the Scrum Process (Ref: "Analysis of User Stories
and Effort Estimations in Agile Software Development", written by
Rupert Dürre) . 30

4.2 CI/CD . 34
4.3 Domain Driven Design Architecture 38
4.4 On the left the Industry Vertical plot shows the distribution of events

among the top 10 impacted business sectors. On the right, the Actor
Statistics plot shows the distribution of the top 10 threat actors or
affiliation programs causing most of the observed attacks. 42

4.5 The Actor Activities over time plot reports the observed double
extortion attempts grouped by threat actor or affiliation program. 43

4.6 The last update was performed on the 15/06/2023 (observed 9119
events across 176 countries). This chart was taken from the Risk
Management Tool. 43

4.7 Data Recovered, Consumer Lawsuit, Arrest Prosecution. These
charts are taken from the Risk Management Tool. 44

4.8 On the top Top 10 Organization Types affected by Data Breaches.
On the bottom top 10 most popular Breach Methods. These pictures
were taken from the Risk Management Tool. 45

4.9 Asset crimes in Turin time series forecast. Based on ISTAT data
from 2006 to 2021 and predicting values from 2022 up to 2025. . . . 47

vi

4.10 Asset crimes by type in Turin. Based on ISTAT data from 2006 to
2021. This chart was taken from the Risk Management Tool. 48

4.11 Asset crimes in Italy Map by crime rate. 49
4.12 Class Diagram . 54
4.13 Context Diagram . 55
4.14 Use Case Diagram . 56
4.15 Deployment Diagram on the left and System Design on the right. . 61

5.1 RiskManagementApp Backend Solution 65
5.2 Project Dependencies . 65
5.3 EFCore Code-First approach . 67
5.4 Lepton Theme . 70
5.5 Bar Chart used to display risks by category 71
5.6 Transit with risk areas shown on Leaflet Map 71
5.7 Gantt Diagram generated with Mermaid 72
5.8 Risk Dashboard . 74
5.9 The Risk Register . 75
5.10 Form for adding/editing a Risk . 75
5.11 Speedometer to show a KRI . 76
5.12 Form for adding/editing a RBM Entry 76
5.13 Form for adding sections to a Project 77
5.14 Cyber Security Statistics . 78
5.15 Asset Statistics . 79
5.16 Additional Functionalities (Export to Excel button on the top right,

searching and filtering) . 79
5.17 Respectively Data Recovered, Arrest Prosecution and Consumer

Lawsuit Accuracies . 90

vii

Acronyms

DDD
Domain Driven Design

ML
Machine Learning

SaaS
Software as a Service

ERM
Enterprise Risk Management

KRIs
Key Risk Indicators

RBM
Risk Breakdown Matrix

WBS
Work Breakdown Structure

RBS
Risk Breakdown Structure

ISV
Independent Software Vendor

SLA
Service Level Agreement

ix

DoD
Definition of Done

PoC
Proof of Concept

UAT
User Acceptance Testing

CI/CD
Continuous Integration and Continuous Delivery

CI
Continuous Integration

CD
Continuous Delivery

UI
User Interface

UX
User Experience

OOP
Object Oriented Programming

ER
Entity-Relationship

GUIs
Graphical User Interfaces

DTOs
Data Transfer Objects

ORM
Object-Relational Mapping

x

DOM
Document Object Model

MAE
Mean Absolute Error

RMSE
Root Mean Squared Error

e2e
End-to-End

xi

Chapter 1

Introduction

With the increase in complexity of modern business operations, effective risk
management is one of the key factors in ensuring the success of organizations. The
integration of software applications has revolutionized the way companies identify,
assess, and mitigate risks. This study deals with the design, development, and
deployment of a comprehensive Risk Management Tool software.
The Web Application was implemented in Orbyta Tech with the objective of
providing a better tool with respect to the ones already on the market. Current
solutions often focus on specific risk domains and historical data, making it difficult
to adapt to different organizational structures and predict risks. Our objective was
to exploit real-time data to identify risks and trends in a customizable way and
with an intuitive interface for a pleasant User Experience.

One of the main goals of this project, was to create highly modular software,
by separating different risk categories and contexts. This was possible thanks
to the Software as a Service (SaaS) model, which is typically based on a multi-
tenant architecture where a single instance of the application, with different and
customized versions based on customer subscriptions, is shared to all customers,
keeping their personal data and settings isolated. Our Risk Management Tool is
composed of different sections and modules. The sections are common to every
customer and subscription. The customer has the possibility to use one or more
modules by starting a subscription for each module separately or for a number of
them. Common sections are:

• Dashboard: The Dashboard contains charts and insights on user-inserted
data. It’s divided into three tabs:

– Risk Dashboard: The information shown here is related to risks in-
serted in the system and their assessment. This tab includes the Impact-
Likelihood matrix, the foundation of modern Risk Management;

1

Introduction

– Project Dashboard: Here the user can see charts related to projects
that are/will be assessed;

– Loss Events Dashboard: This tab contains information about the Loss
Events History of the company.

• Project Management: The Project Management section is composed of
the elements necessary for registering a Project in the application. These
elements are Project, Sections (sections are parts of a project), and Work Items
(composing a section). After adding or editing a Project with its hierarchy, a
Gantt diagram is generated. Here it’s also possible to add a new Mitigation
Plan: a project with the aim of mitigating a risk.

• Risk Management: This section is the main part of the application. Here
users can actually manage and assess risks using Impact, Likelihood, and
Velocity values. It includes the Risk Register where it’s possible to connect a
risk to other attributes previously added in other subsections such as Causes,
Impacts, and Risk Categories (Reputational, Financial, Operational...), and
LossTypes associated with the risk. Another functionality consists in managing
KRIs and showing them on a Speedometer. Here it’s also possible to add new
Mitigations (the basis for Mitigation plans) and perform the risk assessment
of specific Work Items through the RBM Entries.

• Loss Events History: This section contains the Loss Events table for
managing the company’s previous damaging events and a Loss Type subsection
for categorizing Events on their specific type (e.g Hacking or Theft).

The additional modules that were implemented as a start are:

• Data Loss Prevention: Data Loss Prevention’s objective is to protect
sensitive information from being lost, stolen, or exposed to unauthorized
parties. With the increasing amount of data being generated and shared
across various platforms, it has become more critical than ever to safeguard
valuable information. This module has the goal of supporting the user in
managing and mitigating Cyber-related risks, especially the ones related to
data losses and data breaches. For the moment, it is formed of two subsections:
Cyber Security Statistics and Fields. The Statistics one provides an up-to-date
analysis of the current security situation and supports the user in decision-
making. The Fields subsection allows the user to manage different organization
Fields in which it’s possible to have cyber attacks, in order to have a better
idea of where to apply safety measures.

• Asset Loss & Logistics Risk Management: This section has the goal of
identifying, assessing, and controlling risks that may impact the transportation

2

Introduction

(or storage) of goods and allows the user to view statistics and manage Logistics
expeditions according to the risk assessment. It is composed of different
subsections such as Asset Statistics, showing the current risk assessment based
on the data analysis performed in section 4.6.2; Transits and Stops to manage
shipments and see when a transit crosses a "Dangerous Zone"; Warehouses
and Countries to manage the risks related to items which are not in transit;
Products, to adapt security plans based also on the value of transported goods.

For each entity in the system, an intuitive and coherent browsing experience allows
searching, filtering, and Excel exporting, giving the user the possibility to easily
collect data for producing formal Risk Reports.

The users of this application are Risk and Project Managers, but also IT and
Logistics Unit operators who have different roles and authorizations.

By exploiting data-driven insights, the software can provide more accurate
predictions and assist the Risk Manager in making informed decisions. Part of
the study focused on researching useful and accurate data sources and performing
historical data analysis. However, it’s essential to note that this is just one part
of the complete picture. After the software implementation, historical data will
be seamlessly integrated with real-time data, enabling more accurate predictions
and real-time informed decisions. Currently, data updates are based on API
sources and data streams. By exploiting data-driven insights, the software can
provide more accurate predictions and assist the Risk Manager in making informed
decisions.Machine Learning models were developed, trained, and integrated into the
software. These models will continuously learn from new data, adapting through
changes. Forecast Algorithms were used to show trends of risk events based on
past and present data. Also, Classifier Algorithms were used to categorize events
into predefined classes and perform predictions on newly inserted user data. Part
of the study focused on researching useful and accurate data sources.

The main technology used for the development was the ABP.io framework,
which provides a robust layered architecture and maintains adherence to Domain
Driven Design best practices. The C# back-end, with Entity Framework Core as
the database provider, accommodates business logic with a code-first approach,
while the Angular front-end offers an intuitive interface. Machine Learning was
incorporated into the application using ML.NET, a powerful framework for de-
veloping, training, and testing ML Models in C# without particular Machine
Learning knowledge needed. The User Interface was enriched with many charts
using the Chart.js library and maps for logistics were implemented using Leaflet.
Mermaid APIs were used to generate Gantt diagrams starting from project-related
information inserted by the user in forms. The information was translated into
Markdown Language by a simple algorithm and passed to the APIs. In this way, the
user can construct Gantt diagrams without having to perform additional actions.

The Agile methodology guided the development process, emphasizing flexibility

3

Introduction

and adaptability throughout the software development life-cycle, and the develop-
ment process was significantly enhanced through the implementation of Continuous
Integration/Continuous Development DevOps pipelines. Lastly, the application
was tested by adopting an Agile testing approach and deployed with Azure.

The remainder of this thesis is structured as follows: Chapter 2 describes the
company in which the thesis work has taken place, Orbyta Tech, to provide the
context necessary to understand the needs that led to the creation of the tool.
Chapter 3 provides a literature review of existing risk management methodologies
and software solutions. Chapter 4 details the methodology and design principles
that guided the development process. Chapter 5 focuses on the implementation
details, including the technologies used and the architectural choices made. Chapter
6 discusses the evaluation process and shows the results obtained from testing the
software in real-world scenarios by experts in the field. Finally, Chapter 7 draws
conclusions, and outlines potential areas for future research and development.

In conclusion, this study’s aim was to emphasize the importance of effective risk
management software and provide a powerful yet simple solution.

4

Chapter 2

Orbyta Tech

2.1 Provider profile
2.1.1 Type of provider (Vendor/System integrator) and

general presentation
Orbyta Tech is the technology company of the Orbyta group, which is made up of
seven companies. Thanks to know-how and individual verticalizations, Orbyta is
able to provide its customers with support and advice at 360°, thus covering all
areas of corporate interest.

Figure 2.1: The Orbyta Group

Two macro-brands encompass the group’s offer based on target customers and
sector of action of individual companies:

• Orbyta Technologies: specialized in IT consultancy in the application
and systemic field. Realizes highly complex projects with the most modern

5

Orbyta Tech

technologies and exploiting the most innovative methodologies. Deals with
design, implementation, delivery, integration, application maintenance of
software, hardware and IOT systems. The following companies are part of
the technologies area:

– Orbyta Tech: Specialized in software development and assistance of
systems. It’s capable of creating integrated solutions and designing infor-
mation infrastructures offering consultancy and turnkey projects.

– Orbyta Infogest: deals with designing, supplying and reselling HW,
installing and assisting PCs, servers, storage, internetworking in heteroge-
neous operational environments.

• Orbyta Business Partner: The BP area provides essential services for
businesses. They support customers in compliance and engineering design, in
accounting, administrative, fiscal and financial matters, payroll processing and
provide HR management services in outsourcing, up to providing extrajudicial
and judicial legal assistance.

The strong synergy between the companies of the group allows the company to be
seen as a reliable, prepared and complete partner. The following companies are
part of the business partner area:

• Orbyta Engineering: Offers skilled performance in designing and in manag-
ing constructions in the engineering field and identifies the best customized
solutions, in concordance with legal requirements and with the maximum
simplification of corporate compliance.

• Orbyta Tax&Finance: Specialized in tax and corporate consultancy. It is
able to provide assistance to entrepreneurial activities in matters concerning
managerial management, accounting and all civil and tax obligations.

• Orbyta People: Offers advice on labor matters, administration and human
resource management, payroll processing, time management benefits, welfare
and union relations.

• Orbyta Legal: Offers assistance and judicial and extrajudicial legal ad-
vice, even continuous, with particular regard to management and business
development.

• Orbyta Strategy: It is the internal company of the group which through
its staff contributes to the constant improvement of business processes and
provides integrated services for organization and growth, setting the logic and
managing the Group dynamics.

6

Orbyta Tech

2.1.2 Key Provider Information
Orbyta is a constantly growing group, with a 2022 turnover of 15 million euros.
The group has about 250 employees and is located in various locations: Turin,
Milan, Rome, Lecce. These offices and the presence of consultants located in other
areas allow the company to cover geographically the whole Italian territory. The
process of analyzing and evaluating investments and acquisitions in foreign offices,
particularly in Germany, it’s currently happening.

2.2 Provider organization overview
At Orbyta Technologies people experiment with the avant-garde and create innova-
tion. Partners are guided in the conception, design and development of interactive
and immersive technological processes. The company is characterized by a highly
specialized multidisciplinary expertise in the design, development and implementa-
tion of complex information systems and innovative digital solutions. Moreover, it
has a dedicated team with the goal to support partners and businesses. In Orbyta
experience becomes innovation. The offer is divided into:

• Digital Transformation: guide and support partners in a path of custom
development and digital transformation by locating technological solutions
and IT architectures consistent with growth objectives. Manage every aspect
of the path and coordinate every single activity by constantly monitoring
performance, thanks to important transversal skills and the ability of the
Consulting team to go beyond the schemes, combined with an overview of
business processes.

• Software Development: develop tailor made technological solutions im-
plementing a wide range of IT products and projects in multiple areas of
intervention, with carefully composed teams with specialist skills ranging from
project management to the most up-to-date ICT training. The aim is to
become a reference point for the IT architecture of each partner thanks to the
planning and management capacity of information systems and subsystems of
the team in our software house, Area 51.

• Design & Strategy: Orbyta Tech’s creative team is XLAB, ready to accom-
pany digital growth and develop innovative ideas and omnichannel strategies
with maximum impact. Generate connections with the right mix of User Expe-
rience, digital interface design, Creative Communication and digital marketing.
Work on the boundaries between business, technology and design in all its
forms (Thinking, Human centered, System, Service, Futures, User Experience,
User Interface. . .)

7

Orbyta Tech

The group is composed of pixel perfect and enthusiastic futurists, collaborating
with partners at all stages of the project from analysis to design up to prototyping
and testing phase. The client is a team member, an irreplaceable project partner
in the co-creation of the best digital product. The company’s skills are: User
research, UI/UX Design, Brand Design, Brand Strategy, 3D Design, Creative &
Integrated Communication, Web Experience Development and Metaverse Creation.
The company’s approach:

• Collaboration: smart working, hybrid mode, in presence: being efficient in
every situation, using the best collaboration tools like Trello, FigJam, InVision,
Zeplin and many more.

• Design: using the best design and development tools every day such as Figma,
Sketch, Adobe, Blender, Webflow.

• Innovation: novelties and experiments, oriented towards creating new 3D
environments in the Metaverse to devise new business models.

• Infrastructure Networking: providing networking and enhancement ser-
vices to the security status of the corporate network. Identifying the needs
connecting elements, making the project operational. Working from both
remote and on-site, thanks to the consolidated experience of the Base2 team
and constantly looking for the most innovative technologies that guarantee a
systemic consultancy support and management at large centers data processing
in the banking, insurance and industrial sectors.

• Hardware Reselling: creating customized hardware infrastructures imple-
mented from a continuous path of high added value consultancy that becomes
promoter of change and development in terms of organization and manage-
ment of business flows. Acquiring the need, building the structure, leading in
integration with operations. Building safe and reliable solutions evaluating
from time to time the best technologies available to the Infogest team which
makes use of consolidated partnerships with the main players of reference on
the market such as HP, Microsoft, Fortinet, Vmware, Veeam, Arcserve.

The current organization of Orbyta Tech in 4 Units and Dedicated Teams for
customers and projects with similar technology stacks, makes possible the parallel
and coordinated development of initiatives:

• Intelligent Platform: Design of complex and resilient Cloud Native archi-
tectures, Data Analytics, ML and AI.

• Process Automation: Design and development of software modules on the
Microsoft DotNet stack, Java, Node, Javascript and Python.

8

Orbyta Tech

• Digital & App Innovation: Design and development of web client, desktop
and mobile applications, with different targets and development stacks, such
as Angular, React, Vue, Flutter, ReactNative, Swift, Kotlin.

• Business Consulting: Governance and management of complex projects,
with the application of the best methodologies and development of automated
test phases.

2.3 Business Provider Strategy and Profile
Orbyta Tech operates in the area as a System Integrator and offers consultancy to
large Corporate client companies from various fields, including:

• Banking & Insurance: Design products for every branch of business, from
digital payment services to fraud control, web security and encryption services,
from a template predictive decision-making on financing to an operations asset
management software, up to the creation of an application for managing the
migration of a complex set of data.

• Automotive & Industrial: Work in synergy with partners, international
companies of recognized fame, for the development of: high-speed data stream-
ing and display mechanisms towards remote customers; a complete modeling
of the life cycle of software with complex functions of predictive maintenance,
intrusion detection, mitigation and firmware over the air update; platforms
for the management of complete technical documentation of products with
data profiling and automation capabilities for use by teams; application for
the cross-management of stock availability and supplies purchase in relation
to production times.

• Transportation: Carry out innovative technological projects that contribute
to the relevant need of the transport and logistics sector to carry on a process
of digitization of systems to promote increasingly integrated mobility; to return
punctual and in real time information, to maintain the attractiveness for users
of the services.

• Manufacturing: Structure solutions capable of integrating, harmonizing and
aggregating data from multiple sources with the aim of extracting value and
optimizing workflows. It’s about projects of high strategic value that facilitate
monitoring, verification and control and provide important forward-looking
data.

• Textile & Fashion: Design digital solutions of great strategic impact that
intervene in all phases of the production processes. Technology becomes an

9

Orbyta Tech

essential resource for being competitive in a sector strongly permeated by
craftsmanship and element crucial to consolidate the presence on the market
and satisfy, if not even anticipate customer needs.

• Gaming: Conceive and develop proposals that are characterized as augmented
and virtual experiences, totally immersive, also through the creation and use
of avatars. Design solutions that through gaming elements are oriented to
improve the company performance through user engagement strategies aimed
at multiple goals.

Orbyta Tech mainly deals with: Technical consulting, Business analysis, Research
and development, Software development and operations, Process management and
support, Digital transformation, Data analysis, Cloud, lean processes & new digital
core, IOT and connected services. Orbyta Tech is historically Gold Partner of
Microsoft, cultivates further expertise in the public Cloud area also with Amazon
Web Services (AWS) and Google cloud. As part of the management of multi-cloud
native cloud platforms, the simplification of IT operations and the improving of
software product efficiency, Orbyta Tech is a partner of the Mia Platform company.

10

Chapter 3

Risk Management
Approaches and Tools

3.1 Risk Management Overview
In modern businesses, risk management has emerged as a critical practice for
organizations wanting to ensure project success. This chapter provides an overview
of risk management, its meaning, key components, and the steps involved. But
what constitutes a risk? According to the Stanford University, a risk is «The
possibility that the occurrence of an event will adversely affect the achievement
of the organization’s objectives» [1]. These can range from external factors like
market changes to internal factors such as employee management. The concept of
risk has been synthesized through the following mathematical formula:

R = p × I (3.1)

where:

• p is the probability that a specific unfavorable event for the project’s develop-
ment occurs.

• I is the impact that a specific risk can have within a project. Similarly, impact
can be considered as the magnitude that an event triggers and the resulting
damage that can occur throughout the entire project. [2]

Risk management, on the other hand, is the process of identifying, evaluating,
and prioritizing potential risks that could negatively impact an organization or
an individual, and then developing and implementing strategies to minimize or
mitigate those risks. In simple terms, it’s like planning for the worst case scenarios
and taking steps to prevent or lessen the harm that could result from them. The

11

Risk Management Approaches and Tools

goal of risk management is to ensure that an organization or an individual can
still achieve their goals and objectives even if unexpected events or challenges
occur. There are many approaches to risk management and several frameworks
and standards have been published. The most important standards are the ISO
31000 [3] and COSO’s Enterprise Risk Management (ERM) [4].

3.1.1 The ISO 31000 standard

Released in 2009 and revised in 2018, the ISO standard includes a list of ERM prin-
ciples. It is a framework to help organizations apply risk management mechanisms
to operations, and a process for identifying, evaluating, prioritizing and mitigating
risk. The more recent 2018 standard includes a more strategic approach than the
original. It highlights the important role of senior management in risk management
and the integration of risk management throughout the whole organization [5].

Figure 3.1: Principles, framework and process
[3]

12

Risk Management Approaches and Tools

3.1.2 COSO ERM Framework
Launched in 2004 and updated in 2017, the COSO framework’s goal is to address
the increasing complexity of ERM. It defines key concepts and principles of ERM
and provides clear direction for managing risk. Developed with input from COSO’s
five-member organizations and external advisors, the framework is a set of 20
principles divided into five components:

• governance and culture

• strategy and objective-setting

• performance

• review and revision

• information, communication and reporting

According to the framework, organizing risks by categories can also be helpful. The
COSO defines the following categories:

• strategic risk (e.g., reputation, customer relations, technical innovations);

• financial and reporting risk (e.g., market, tax, credit);

• compliance and governance risk (e.g., ethics, regulatory, international trade,
privacy); and

• operational risk (e.g., IT security and privacy, supply chain, labor issues,
natural disasters)[5].

3.1.3 COSO’s ERM framework vs ISO 31000 standard
While both COSO and ISO 31000 guide risk management, they differ in their
approach and focus. COSO is more focused on internal controls and financial
reporting, while ISO 31000 is more comprehensive and emphasizes the importance
of a risk management process that is integrated into an organization’s overall
management system. Ultimately, the choice between these frameworks will depend
on an organization’s specific needs and requirements.

3.1.4 The 5 components of risk management
There are several ways to structure a risk management process, but all of them
should at least include the following foundation steps.

13

Risk Management Approaches and Tools

1. Risk Identification: Risk identification is the first step in managing risk.
Potential risks the business might face are documented and then categorized.
Identifying risks is fundamental to reducing the likelihood of missing a risk
source, which should be dejected to reduce a risk. Not only current risks
should be considered, but also risks that might happen in the future. This
allows the company to work on present causes.

2. Risk Analysis: The next steps consist of evaluating the two main risk factors:
likelihood and impact. The likelihood is the probability that a risk might
happen, while the impact is the effect of it, also in monetary terms. If the
latter is not possible, different zones can be identified and assigned to factors
(e.g. "low", "medium","high"). The combination of impact and likelihood
values determines mitigation or acceptance. For example, a risk with a high
impact cost but with a very low likelihood could be deprioritized.

3. Response Planning: Response planning consists of deciding, first of all,
if there’s the intention of mitigating the risk, according to previous analysis
values. Next, how to act to reduce it.

4. Risk Mitigation: The previous planning, will now constitute a Mitigation
Plan, a project to mitigate the risk. The organization can determine if it’s
better to act directly on the likelihood value or reduce the impact. Mitigation
plans should be practical and they should aim at reducing the risk score in
the best way possible.

5. Risk Monitoring: The potential impact and probability of occurrence can
change over time, a risk that now does not constitute a threat to the company,
might damage revenues in the future. Risk monitoring is the process of
constantly assessing the risk over time.

It’s important to consider these steps as a process and not as independent
operations. Every stage is crucial in assessing and mitigating the risk, and underes-
timating one could lead to the failure of the whole plan [6].

3.1.5 Challenges and Limitations of Risk Management
Obviously, risk management is not an exact science. It’s mainly based on predictions
and assumptions that might not always hold true. Predicting future risks accurately
is difficult due to inherent uncertainties and organizations face intricate risks
that can be hard to fully manage and extremely rare and unexpected events
are challenging to predict and prepare for. Effective risk management relies on
accurate and relevant data, which might be lacking. Data science is becoming more
and more important, which could lead to an improvement in risk management

14

Risk Management Approaches and Tools

too. Cognitive Biases can lead to underestimating or overlooking certain risks,
that’s why some companies prefer to outsource risk management and personal
judgments can lead to inconsistent risk assessments. Adjourning employees on
new risk management practices and standards is crucial. Organizations need to
recognize these challenges and limitations while implementing risk management
strategies. Mitigating these challenges requires a combination of proper training,
data-driven approaches, adaptable frameworks, and a commitment to fostering a
risk-aware culture.

3.2 Risk Management Elements
Effective risk management involves a systematic approach to identifying, assessing,
mitigating, and monitoring potential risks that could impact a company’s objectives,
projects, or operations. Several key elements are crucial in establishing a robust
risk management plan. Organizations that effectively integrate these elements into
their risk management processes are more likely to succeed in reducing the risk’s
probability and consequences.

3.2.1 The Risk Register
The Risk Register is the collection that captures all identified risks. It contains
detailed information about risks, such as description, causes, impacts, impact,
likelihood, and final score. If a mitigation is in progress, also the status and the
assigned owner can be specified. The Risk Register provides a comprehensive
overview of the risks faced by the company, and it displays the updated assessment.
An example is shown in table 3.1 which has been simplified for readability.

15

Risk Management Approaches and Tools

3.2.2 Impact and Likelihood: The Risk Matrix
The Risk Matrix is a structured graphical representation that catalogs risks based on
their impact and likelihood. By categorizing risks into different levels of severity as
shown in 3.2 identified using colors and risk levels, the Risk Matrix helps prioritize
risks for mitigation. This visual tool enables stakeholders to quickly understand
the importance of different risks to speed up the prioritization process.

Figure 3.2: The Risk Matrix
[8]

3.2.3 Metrics: Key Risk Indicators
Key Risk Indicators (KRIs) are metrics used to quantify risk exposure in operational
risk analysis. They use numerical values and serve as early warning signals, alerting
organizations to deviations from expected risk levels.

3.2.4 The Risk Breakdown Matrix
A Risk Breakdown Matrix (RBM) it’s a tool for quantifying and categorizing risks.
It is built starting from a Risk Breakdown Structure on the x-axis and a Work
Breakdown Structure on the y-axis. In essence, the RBM helps to identify, track,
and manage risks more efficiently and effectively.

16

Risk Management Approaches and Tools

ID Risk Statement Causes Impacts Likelihood Impact Score
1 IT governance and pri-

orities not aligned with
institutional priorities

IT failure
to un-
derstand
institu-
tional
strategy;...

Poor gov-
ernance of
enterprise
IT;...

1 3 3

2 Failure to designate
leadership (e.g., an in-
dividual or individu-
als) for institutional
oversight and strategic
direction for IT opera-
tions

Lack of in-
stitutional
support
for IT
operations

Poor gov-
ernance of
enterprise
IT;...

4 4 16

3 Failure to designate
leadership (e.g., an in-
dividual or individu-
als) for institutional
oversight and strategic
direction for informa-
tion security activities

Lack of in-
stitutional
support for
IT and in-
formation
security
operations

Poor gov-
ernance of
enterprise
information
security ef-
forts;...

2 4 8

4 No succession plan
for key institutional
IT leaders (e.g., CIO,
CISO, CTO, CPO,
etc.)

Lack of in-
stitutional
support
for IT
operations;
human
nature not
to plan for
succession
activi-
ties;...

Leadership
void in the
event of sep-
aration of a
key IT leader
from the
institution

2 5 10

5 Relevant stakeholders
not included in impor-
tant IT investment de-
cisions (e.g., priorities,
technologies, new ap-
plications)

Lack of
senior man-
agement
support;...

Uses of uni-
versity IT
systems that
contravene
good invest-
ment decision
making;...

5 3 15

Table 3.1: Risk Register example.
[7]
17

Risk Management Approaches and Tools

• A Risk Breakdown Structure (RBS) is a tool used in risk management to
divide risks into hierarchical categories. This hierarchical structure helps to
identify the main causes of risks, allowing them to be managed more effectively.
The RBS can also be used to define risk mitigation activities and to assign
specific responsibilities for risk management. In essence, it is a structure that
helps to identify, track, and manage risks more efficiently and effectively.

• A Work Breakdown Structure (WBS) is a hierarchical structure that
breaks down the work required to complete a project into smaller, manageable
tasks and activities. The WBS helps to organize and define the work required
to complete the project and to assign specific responsibilities for each activity.
In summary, the WBS helps to better manage the project, monitor its progress,
and ensure that all activities are completed within the expected time frame.

The value of each entry in the matrix is given by the formula 4.1. By adding up
the values in the columns and sorting the resulting values, it will be possible to
identify the "worst" project risks.

Figure 3.3: The Risk Breakdown Matrix (RBM)
[9]

18

Risk Management Approaches and Tools

3.2.5 Loss Events History
A Loss Events History records past risk events that have affected the company’s
projects. Analyzing historical data helps organizations identify patterns, assess
the success of mitigation strategies, and adjust their risk management approach
accordingly.

3.3 Risk Management Software
Risk management software is an essential tool for organizations that want to
manage their risks effectively and efficiently. It provides a structured approach
to risk management that helps organizations centralize their risk management
activities, improve their visibility into their risk profile, and comply with regulatory
requirements and industry standards.

3.4 Competitor Analysis
In the realm of risk management tools, it’s essential to understand the competi-
tive context. We’ve analyzed several key competitors, including Archer, Resolver,
Project Risk Manager, and nTask, to gain insights into their strengths and weak-
nesses. However, our focus will be on Archer for the reasons described below.

3.4.1 Why Archer?
Archer [10] is an integrated risk management software developed by RSA Security
LLC. that helps assess, monitor, and address risks. It also enables the users to
capture an inventory of Loss Events and near misses and perform a loss event root
cause analysis to understand why the loss occurred and take action to reduce the
likelihood and impact of similar losses in the future. Archer helps establish and
monitor metrics related to each business unit in the organization, and associates
matrices with risks, controls, strategies, objectives, products, services, and business
processes to monitor risk, quality assurance, and performance. The platform is
based on collaboration, visibility, and flexibility and uses risk analytics, machine
learning, and quantification tools.

Our choice to focus on Archer is driven by several key factors. Archer’s extensive
product portfolio and flexible platform align seamlessly with various organizations’
risk management processes. As shown in 3.4 it is composed of different modules,
which can be purchased according to current needs. The Enterprise and Operational
Risk Management module establishes the basics for security, resiliency, regulatory,
compliance, audit, and third-party governance. It has unmatched customization
options, extensive regulatory compliance mapping, and deep integration capabilities.

19

Risk Management Approaches and Tools

Figure 3.4: The Archer Platform
[10]

While competitors bring their own strengths to the table, Archer’s combination of
market presence, innovation, and flexibility positions them as the most suitable
competitor for our organization’s risk management tool. Our decision to focus
on Archer reflects our commitment to achieving the highest standards of risk
management and organizational resilience.

3.4.2 Key factors driving the need for a new tool
• Holistic Risk Integration: Current solutions often focus on specific risk

domains, resulting in fragmented risk assessments. Our tool aims at providing
a comprehensive framework that integrates risks across departments and
processes.

• Advanced Predictive Analytics: Competing tools rely predominantly
on historical data for risk analysis, potentially missing emerging risks. Our
software uses predictive analytics, integrating real-time data and machine
learning to identify nascent risks and trends before they escalate.

• Customization and Scalability: Many existing tools are rigid, making
it difficult to adapt to unique organizational structures. Our tool is based
on customization, allowing users to tailor risk assessments, workflows, and
reporting to their specific needs, ensuring scalability.

20

Risk Management Approaches and Tools

• Intuitive User Experience: Some competitors struggle with complex in-
terfaces that get in the way of user adoption and efficiency. Our tool has an
intuitive user interface designed with User Experience (UX) at its core.

3.5 Machine Learning For Risk Management
«Machine Learning (ML) refers to a system’s ability to acquire, and integrate
knowledge through large-scale observations, and to improve, and extend itself by
learning new knowledge rather than by being programmed with that knowledge.»
[11] Machine Learning (ML) is rapidly transforming risk management across var-
ious industries. By leveraging advanced data analytics and predictive modeling
techniques, ML offers the potential to enhance risk assessment, mitigation, and
decision-making processes. One of the primary applications of ML in risk man-
agement is predictive modeling. ML algorithms can analyze historical data to
identify patterns and trends, enabling organizations to predict future risks more
accurately. For instance, in financial risk management, ML models can forecast
market fluctuations and assess the likelihood of credit defaults based on historical
lending data. Different ML algorithms are used in risk management software. I
will describe below the ones used during this study and their application. I will go
deeper into used technologies and software integration details in the next chapters,
which will focus on the project design and implementation.

3.5.1 Forecast Algorithms
Forecasting is the technique used for predicting future events based on the past
and the present. Later, the resulting values are compared with the actual values
to estimate the accuracy of the algorithm. Time series forecasting is useful to
predict values based on past values observed at a specific time and at a given rate
of observation. Forecasting techniques in machine learning are fundamental for
predicting future risk-related events, which is essential for risk assessment and
mitigation. For example, machine learning models can forecast financial risks
such as stock price movements and currency exchange rates helping people and
companies in making informed investment decisions and managing financial risks.
Another application is supply chain predictions, such as delays in shipments or
shortages of key materials. Accurate forecasts enable companies to plan for and
mitigate these risks. In our study, time series forecasting has been used to analyze
crime events in the past, in particular Cyber Crimes (an example in figure 3.5) and
Assets Related Crimes, to analyze trends, and support Managers in loss events
prevention and mitigation. Yearly data has been used, in order to predict future
years’ data and assess the risk.

21

Risk Management Approaches and Tools

Figure 3.5: Cyber crimes in Italy time series forecast. Based on ISTAT data from
2006 to 2021 and predicting values from 2022 up to 2025.

[12]

3.5.2 Classifier Algorithms
Classification models are used to categorize data into predefined classes or categories.
The data provided is normalized and can be performed on both structured and
unstructured data. Each data entry used to train the model has different attributes,
one of each is the label, a category property that will later be predicted, that can
have two or more possible values. In risk management classification algorithms can

22

Risk Management Approaches and Tools

be employed to detect fraudulent activities in financial transactions. By analyzing
transaction data, these models classify transactions by considering two classes:
legitimate and potentially fraudulent. In this thesis work, classification algorithms
have been used for different purposes:

• The two possible actions to be performed on risk are Acceptance and Mitigation,
which can be considered as two classes and predicted using classifier algorithms.
Suppose we have different previously assessed projects. It’s possible to predict
the correct strategy based on past values, such as assessed risk, likelihood,
impact, and outcome of the project.

• Another application we explored, is related to loss events. It’s possible to
categorize the causes and consequences of a loss event and predict classes
of possible future events. For example, if a company data breach caused a
Consumer Lawsuit, other details on the cyber security event can be analyzed
to predict if a future loss could have the same outcome.

Figure 3.6: Classification Algorithm
[13]

23

Risk Management Approaches and Tools

It’s important to note that machine learning models used for risk management
should be trained on relevant historical data and regularly updated to adapt to
changing factors. Additionally, The choice of the appropriate algorithm depends on
the specific risk management problem and the nature of the data available. Model
validation and ongoing monitoring are essential to ensure the models’ accuracy and
effectiveness in managing risks.

3.5.3 Challenges and Considerations
While ML is being used more and more in the risk management field, there are
several challenges and considerations to keep in mind:

• Data Quality and Quantity: ML models rely on high-quality data. In-
accurate or biased data can lead to erroneous predictions. Also, a sufficient
amount of data is necessary to obtain accurate values.

• Interpretability: Some ML algorithms, such as deep learning neural networks,
can be challenging to interpret. Understanding why a model makes a particular
prediction is crucial in risk management.

• Model Validation: ML models require rigorous validation to ensure their
accuracy and reliability. Validation processes should align with regulatory
requirements.

• Ethical Concerns: The use of ML in risk assessment raises ethical concerns,
especially regarding bias and fairness. Careful consideration is necessary to
avoid discrimination and bias in decision-making.

When used effectively and ethically, ML can enhance decision-making processes
and contribute to improved risk management practices across various domains.

24

Chapter 4

Methodology and System
Architecture

4.1 Introduction to Methodology and Design Prin-
ciples

The road to success in software development is highlighted by the processes and
design principles that guide the process. This chapter acts as an overview, covering
the methodologies, design choices, and priorities that form the foundation of
our software project. As we begin this review we examine the basic principles
underpinning the development process, further clarifying the deliberate choices and
strategies that motivated the work.

Especially in risk management, developing robust software requires a compre-
hensive approach that incorporates best practices, agility, and flexibility. It requires
a combination of innovative design and machine learning capabilities that are
not den. Careful focus on requirements and design elements requires a consistent
strategy that delivers a Software as a Service (SaaS) solution capable of meeting
the multifaceted needs of modern businesses.

In this chapter, we’ll examine the profound impact of the Software as a Service
(SaaS) model on the design, its use, and its advantages and challenges. We
navigate the Agile landscape, illuminating our Agile approach’s impact on iterative
development, collaboration, and project adaptability. We’ll also go deeper into the
testing and deployment methods that have been critical to ensuring the quality
and reliability of our software.

Also, we go deeper into the Domain Driven Design (DDD) phase, a foundational
approach that has shaped the design of our software by emphasizing the importance
of domain modeling. In addition, we explain the seamless integration of machine

25

Methodology and System Architecture

learning, where data-driven insights and predictive analytics enhance the core
functionality of our software.

As we traverse the sections of this chapter, we provide a detailed overview of
the requirements documents and design materials that contributed to the design of
our software. Finally, we’ll draw conclusions on the design choices.

4.2 Software as a Service (SaaS) Model
Software as a Service (SaaS) is a cloud-based service where instead of downloading
software on a desktop PC or business network to run and update, the application is
accessed via an internet browser. The software application could be anything from
office software to unified communications among a wide range of other business
apps that are available. [14] SaaS operates via the cloud delivery model, where a
software provider takes responsibility for hosting the application and its associated
data. This hosting can occur on the provider’s own infrastructure, including servers,
databases, networking, and computing resources. Alternatively, it may involve an
Independent Software Vendor (ISV) partnering with a cloud provider to host the
application within the cloud provider’s data center. The beauty of this approach
lies in its accessibility; users can access the SaaS application from any device
connected to the internet. Typically, SaaS applications are accessed conveniently
through standard web browsers. As a consequence, organizations employing SaaS
applications are relieved from the burden of setting up and configuring the software.
Instead, users only need to pay a subscription fee to use the software. In the SaaS
model, the service provider offers customers access to a network-hosted application
that has been built for SaaS distribution. This application employs a single,
standardized source code that remains consistent for all customers. Any updates,
enhancements, or new features introduced by the provider are uniformly made
available to all users. The storage of customer data depends on the specific Service
Level Agreement (SLA) and can occur locally, in the cloud, or in a combination of
both environments [15].

4.2.1 A multi-tenant architecture
SaaS applications and services commonly adopt a multi-tenant approach. This
means that a single instance of the SaaS application runs on the hosting servers,
serving each subscribing customer or cloud tenant. This single instance maintains a
consistent version and configuration that applies to all customers or tenants. Despite
multiple subscribing customers utilizing the same cloud instance with a shared
infrastructure and platform, data from different customers remains separate.[15]

The multi-tenant architecture of SaaS applications provides several advantages.
It enables cloud service providers to manage maintenance, updates, and bug fixes

26

Methodology and System Architecture

more efficiently and promptly. Instead of implementing changes across numerous
instances, engineers can make necessary modifications for all customers by main-
taining a unified, shared instance. Additionally, multi-tenancy ensures a broader
pool of resources is available to a larger user base without compromising essential
cloud functions like security, speed, and privacy.[15]

4.2.2 Advantages and disadvantages of SaaS
SaaS offers several benefits which lead companies to prefer it with respect to
standard software. Organizations no longer need to install and manage applications
on their own hardware, reducing expenses related to hardware acquisition, provi-
sioning, and maintenance. Additionally, there’s no need to worry about software
licensing, installation, and support. Instead of purchasing software or additional
hardware, customers subscribe to a SaaS service, shifting costs to predictable recur-
ring operating expenses. Users have the flexibility to terminate SaaS subscriptions
whenever they want, stopping recurring costs. Also, SaaS provides high vertical
scalability, allowing customers to access different software components as needed.
SaaS providers handle software updates management, relieving the IT staff from
this burden and SaaS applications are accessible over the internet from any device
and location, offering users flexibility and portability. Those applications are often
customizable and can be seamlessly integrated with other business applications,
particularly those from the same software provider.[15]

While SaaS offers numerous advantages, it also presents some potential challenges
and risks. Businesses may face disruptions when SaaS providers experience service
interruptions, make unwelcome changes to service offerings, or suffer security
breaches. To proactively address these challenges, customers should understand
their SaaS provider’s Service Level Agreement (SLA) and ensure its enforcement.
Customers have limited control over versioning. When a provider adopts a new
application version, it is typically rolled out to all customers. This may require
organizations to allocate additional time and resources for training. Switching SaaS
vendors can be challenging, as it often involves migrating substantial amounts of
data. Some vendors use proprietary technologies and data formats, complicating
data transfer between different cloud providers. Vendor lock-in occurs when
customers find it difficult to transition between service providers due to these
factors. Security is frequently cited as a significant challenge for SaaS applications.
Ensuring data security in a shared cloud environment is crucial for businesses.[15]

4.2.3 Why we choose the SaaS Model
Choosing a Software as a Service (SaaS) model for our risk management tool was
a strategic decision driven by several key factors. First of all, the SaaS model

27

Methodology and System Architecture

aligns well with our goal of providing accessible and convenient risk management
solutions to users. By hosting the application in the cloud, we ensure that our
tool is easily accessible everywhere, allowing collaboration to work with team
members regardless of geographic location. Additionally, the SaaS model enables
us to deliver automated updates and enhancements, ensuring that our users always
have access to the latest features and security enhancements without the hassle of
manual installation. This approach not only simplifies the user experience but also
provides cost savings as organizations can subscribe to our service without the need
for significant hardware investment or complex infrastructure. Furthermore, the
multi-tenant architecture is aligned with our idea of a modular Web Application:
different users can select only the modules they need, and pay a fee according to
chosen services. Overall, the SaaS model increases accessibility, scalability, and
cost, while allowing us to focus on delivering a secure and reliable risk management
solution in line with the evolving needs of users.

4.3 Agile Methodology
Agile methodologies focus more on code and implementation, and less on documents.
The goal of Agile Methodologies is to satisfy the client (not only with respect to
the contract) by giving early and continuous delivery of valuable software, and
giving methodologies able to reduce the cost and the time of software development,
increasing the quality. The Agile methodologies are based on the Agile Manifesto
[16] whose main points are:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

From those principles, it is evident that the highest priority is given to the customer,
welcoming changes in the requirements even late in development, and delivering
working software frequently (from a couple of weeks to months, preferring shorter
timescales). Furthermore, the Agile principles suggest building projects around
motivated individuals, giving them the needed support and an environment with
the needed characteristics. These individuals should communicate quite always
face to face, incrementing the collaboration and communication inside the time.
Agile suggests being as simple as possible, being clearer in code and documentation,
projecting and modeling: the result of such simplicity is a project that is more
readable and easier to modify when needed. The full agile principles are shown in
table 4.1.

28

Methodology and System Architecture

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.
Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.
Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.
Business people and developers must work together daily throughout the project.
Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.
The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.
Working software is the primary measure of progress.
Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.
Simplicity–the art of maximizing the amount of work not done–is essential.
The best architectures, requirements, and designs emerge from self-organizing
teams.
At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Table 4.1: The Agile Manifesto
[17]

During the thesis work, the Agile methodology has been used for the development
of the web application. In particular, the Scrum framework has been adopted.
Such framework is the topic of the next section.

4.3.1 The Scrum Framework
This subsection will follow the official Scrum Guide [18], mentioning the most
important components and principles. Scrum is a lightweight framework for
developing and sustaining complex products. It is based on empirical process
control and as shown in figure 4.1 consists of defined roles, events, artifacts, and
rules.

The Scrum Team includes three fundamental roles:

• Product Owner: Manages the Product Backlog and prioritizes the work.

• Scrum Master: Not a boss - but a leader, who helps the team understand
and implement Scrum principles and practices following the Guide.

29

Methodology and System Architecture

Figure 4.1: Representation of the Scrum Process (Ref: "Analysis of User Stories
and Effort Estimations in Agile Software Development", written by Rupert Dürre)

• Development Team: Self-organizing and cross-functional group responsible
for delivering an increment of the product. Every member has the same value.

Other crucial components of the Scrum framework are the five Scrum Events:

• Sprint: A time-boxed iteration (typically 2-4 weeks) where the Development
Team creates a potentially shippable product increment.

• Sprint Planning: A meeting at the start of the Sprint to plan the work that
will be done during the Sprint.

• Daily Scrum: A short daily meeting (15 minutes) for the Development Team
to synchronize their work and plan for the day.

• Sprint Review: A meeting at the end of the Sprint to inspect and adapt the
product increment.

• Sprint Retrospective: A meeting at the end of the Sprint for the Scrum
Team to reflect on their process and identify areas for improvement.

Finally, we have Scrum Artifacts:

• Product Backlog: An ordered list of all the work that could be done on
the product. The product backlog items are composed using the user stories

30

Methodology and System Architecture

format. A user story is an essential description of a functional requirement. A
typical example of its format is:

As a <actor type>
I want <to do something>
So that some value is created.

• Sprint Backlog: The subset of the Product Backlog selected for the current
Sprint.

• Increment: The sum of all the completed work from previous Sprints, which
must be in a potentially shippable state.

In order to decide when a product increment can be declared shippable, a common
Definition of Done (DoD) must be met for a product increment to be considered
complete and potentially releasable. Also, for every sprint a Sprint Goal must be
defined: a short statement that describes the purpose of the Sprint and what the
Development Team intends to achieve.

Scrum is based on three pillars of empiricism:

• Transparency: Everyone involved in the project should have a clear and
shared understanding of the work and its progress.

• Inspection: It has to be done frequently and attentively on artifacts and
events to detect issues that may bring a deviation to the product goal.

• Adaptation: The team should make continuous improvements based on the
information gathered during the inspection phase.

Scrum emphasizes five values - commitment, courage, focus, openness, and respect
- which help teams work effectively together.

4.3.2 Agile and Scrum Application during the Project
During my thesis experience in Orbyta Tech, I worked in a team where there was
one product owner who also behaved as a scrum master and a team of developers,
in which I was in charge of the main work, while other developers mostly had a
supporting role. This was given to the fact my project was academic research with
the goal of developing a Proof of Concept (PoC). The project was only later shown
to possible customers. The product owner was of course in charge of the Product
Backlog. However, the process was done together with myself, as a chance to
experiment also that side of development. This means that, for academic purposes,
my role varied from that of a Product Owner to that of a Full Stack Developer. The

31

Methodology and System Architecture

user stories format explained in the previous subsection was implemented. For the
sprint planning, we used Azure’s DevOps "Boards" and "Sprints" sections, as later
described in the following section. I attended several meetings with the Product
Owner/Scrum master, to understand requirements and user needs. The product
backlog had some changes over the course of months. As previously explained, we
mainly worked on two modules of the application, which will later be composed
of many more. This is the reason why the product backlog only contains stories
related to these. Most of the time was dedicated to theoretical and technical studies,
to improve both the content and software quality. Every functionality and study
was split into self-assigned tasks, which were completed following our Definition
of Done that consisted of pushing on Git working and end-to-end and unit-tested
code. Daily scrum meetings were set up every day in the morning, informally in
the office where I had to update the other team members about the state of my
work, listing the goals reached, eventual obstacles, and future implementing goals.
After every sprint, a sprint retrospective was performed where the application with
the new features was presented in a meeting and the team members and product
owner participated. Then, a new sprint was planned adding issues to solve in the
product backlog and choosing the other requirements to be delivered in the next
sprint.

4.4 Testing and Deployment Strategies
In the software development process, testing and deployment are critical phases
that ensure a product’s performance and reliability. This section delves into the
strategies employed during the development process, emphasizing the significance
of thorough testing and the streamlined deployment processes.

4.4.1 Testing Strategies
Effective testing is a crucial phase in producing high-quality software. During the
development of our risk management tool, we implemented a multifaceted testing
strategy to validate every aspect of the application. This strategy encompassed
various types of testing, including:

• Unit Testing: At the beginning of our testing process, unit tests were
conducted to verify the correctness of individual code units or modules. This
granular testing approach enabled us to isolate and fix issues early in the
development cycle, ensuring code integrity.

• Integration Testing: To evaluate the interactions between different compo-
nents and modules, integration tests were performed. This ensured that the

32

Methodology and System Architecture

integrated parts of the system functioned seamlessly, and data flowed correctly
between them.

• End-to-End Testing: End-to-end testing was manually performed through
the whole application development. It was used to check that the software
met the functional criteria outlined in our design and requirement documents.

More details on testing implementation will follow in the chapter 5.

4.4.2 Agile Testing
For the project’s development, an Agile testing strategy has been followed. Agile
testing is a fundamental component of the Agile software development methodology.
It’s a dynamic and iterative approach that aligns with Agile principles, emphasizing
collaboration, continuous improvement, and customer-centricity. Unlike traditional
development methodologies, where testing is often a later phase, Agile integrates
testing throughout the entire development lifecycle. One of the core principles of
Agile testing is "early and continuous testing." This means that testing activities
start at the beginning of a project and are maintained throughout its duration.
Testing is not a separate phase but a parallel and integrated part of development.
This approach enables teams to identify and rectify issues promptly, promoting
higher software quality. At the end of each sprint, testing was performed to validate
that the new functionality aligned with user expectations.

Collaboration is another fundamental aspect of Agile testing. It encourages close
cooperation among team members, including developers, testers, product owners,
and stakeholders. Testers work closely with developers to define acceptance criteria,
create test cases, and validate that user stories meet the expected criteria. In the
case of the Risk Management Tool, there wasn’t a specific developer with the role
of the tester. However, while tests were coded by me, the whole team decided the
criteria for which the tests were considered useful to determine a successful sprint.

Frequent regression testing is a necessity within Agile. Since development
involves continuous changes and updates, regression tests are rerun to verify that
new changes haven’t introduced defects into previously working functionality.

Automation is another crucial aspect of Agile testing. Automated testing with
Azure DevOps was implemented to automate repetitive and time-consuming test
cases. This enables testers to focus on exploratory and critical testing. Automated
tests are executed in each iteration, offering rapid feedback on the health of the
software.

User Acceptance Testing (UAT) is often a part of Agile projects, ensuring that the
software aligns with user expectations. UAT is typically performed collaboratively
with business stakeholders to validate that the software meets their specific needs.
Agile testing nurtures a culture of continuous feedback. Testers provide feedback to

33

Methodology and System Architecture

developers regarding defects and issues, while business stakeholders offer feedback
on whether the software aligns with their objectives. This feedback loop is vital
for making necessary adjustments promptly and enhancing the overall quality of
the software. During the project’s development process, continuous feedback was
provided by members of the team testing the application. However, towards the
end of the six months, more people were asked to review the application, including
experts. This helped locate defects and identify possible future developments.

In Agile, quality assurance is a shared responsibility across the team. It’s not
the sole domain of testers but a commitment from all members. Accurate testing
uncovers and addresses software defects, enhancing the application’s stability and
user experience. It ensures that the tool functions as expected, resulting in satisfied
users who can rely on its accuracy and performance.

4.4.3 Continuous Integration and Continuous Delivery (CI/CD)

Figure 4.2: CI/CD
[19]

The development process was significantly enhanced through the implementation
of Continuous Integration (CI) and Continuous Delivery (CD) DevOps pipelines.
CI/CD pipelines are an integral part of modern software development practices,
facilitating automation, collaboration, and the rapid delivery of updates. Our
CI/CD setup allowed for:

• Continuous Integration: Continuous Integration is a development practice
that involves frequently integrating all code changes into a shared source
code repository’s main branch. Each change is automatically tested upon
committing or merging, triggering an automated build process. By adopting
CI, developers can swiftly identify and address errors and security issues in the

34

Methodology and System Architecture

early stages of development. Continuous integration promotes the seamless
integration of code changes, even when multiple developers are collaborating on
the same application. It minimizes the potential for code conflicts, and quick
feedback allows for the prompt resolution of bugs and security vulnerabilities.
CI typically begins with a static code analysis to assess code quality. Once the
code passes these static tests, automated CI processes package and compile
the code for further automated testing. A version control system is essential
within CI to track code changes and maintain version consistency.

• Continuous Delivery: Continuous Delivery is a complementary software
development practice that aligns closely with CI. After the code has undergone
testing and building during the CI process, CD takes over the final stages,
ensuring that the code is packaged for deployment to any environment at
any time. CD encompasses everything from provisioning infrastructure to
deploying the application to testing or production environments. With CD,
the software is constructed to be deployable to production at any moment.
Deployment can be initiated manually, or organizations can transition to
continuous deployment, where deployments are automated as well.

• Continuous Deployment: Continuous Deployment is an advanced stage
that automates the entire deployment process, eliminating the need for human
intervention. In continuous deployment, DevOps teams set predefined criteria
for code releases, and when these criteria are met and validated, the code
is deployed automatically to the production environment. This approach
enables organizations to be agile and introduce new features to users swiftly.
While continuous integration can exist independently of continuous delivery
or deployment, achieving continuous deployment necessitates having a solid
CI foundation. This is because deploying to production at any time requires
fundamental CI practices, such as regularly integrating code into a shared
repository, automating testing and builds, and performing these activities in
small, regular batches.

• Continuous and Automated Testing: Continuous Testing is a fundamental
software testing practice where tests are executed continuously to detect bugs
as soon as they are introduced into the codebase. In a CI/CD pipeline,
continuous testing is typically automated, with each code change triggering
a series of tests to validate that the application behaves as expected. This
approach helps identify issues early in the development process, preventing
them from becoming more complex and costly to rectify later on. Continuous
testing also provides valuable insights to developers about their code’s quality,
enabling them to identify and address potential problems before they reach
production. Continuous testing encompasses various types of tests within

35

Methodology and System Architecture

the CI/CD pipeline, including unit testing to verify individual code units,
integration testing to assess the interactions between different application
modules or services, and regression testing to ensure that previously resolved
bugs do not resurface. [20]

In conclusion, testing and CI/CD pipelines have been instrumental in shaping
the development of our risk management tool, reinforcing our commitment to
delivering a high-quality, dependable, and user-friendly solution. The rigorous
testing processes and streamlined deployment strategies have positioned our tool for
success in real-world risk management scenarios. These strategies were implemented
through Azure DevOps pipelines, more technical details will be explained in chapter
5.

4.5 Domain Driven Design (DDD)
Domain Driven Design (DDD) is a software development methodology that places
the focus on the core domain of a business, aiming to align software systems with the
complexities of that domain. The DDD approach aligns application development
with the SOLID principles, a set of five fundamental principles deeply rooted in
Object Oriented Programming (OOP). These principles were initially introduced
in the publication "Design Principles and Design Patterns" by renowned American
software engineer Robert Martin [21]. The overarching goal of SOLID is to foster
the creation of software that is not only comprehensible but also more maintainable
and extensible.

• The Single Responsibility Principle (S) emphasizes that each module
or class within an application should shoulder the responsibility for just one
specific functionality provided by the application. This principle fosters clarity
and simplicity in code design.

• The Open/Closed Principle (O) dictates that existing and operational
software entities, such as classes, modules, and methods, should be open to
extension while remaining closed to direct modifications. Essentially, alter-
ations to established code should only occur when addressing internal bugs;
otherwise, extension through mechanisms like inheritance is favored.

• The Liskov Substitution Principle (L) asserts that objects of child classes
should be capable of seamlessly replacing objects of their parent classes.
Adhering to this principle ensures that such substitutions won’t compromise
the application’s intended behavior.

• The Interface Segregation Principle (I) advocates for the division of
larger interfaces into smaller, more focused ones. This allows developers to

36

Methodology and System Architecture

concentrate solely on creating methods pertinent to a specific class, thus
avoiding the implementation of unnecessary methods that larger interfaces
might impose.

• The Dependency Inversion Principle (D) introduces the dependency
injection pattern as a solution to a common OOP issue related to tightly
coupled classes. It advocates for the replacement of concrete dependencies
with abstractions, mitigating potential compilation errors that may arise when
instantiating classes with strong dependencies. The dependency injection
pattern provides a practical implementation of this principle.

Adhering to these SOLID principles while applying the DDD approach in software
development leads to more structured, maintainable, and flexible codebases. DDD
was popularized and refined by Eric Evans in his seminal book "Domain-Driven
Design: Tackling Complexity in the Heart of Software" [22]. Halil İbrahim Kalkan’s
"Implementing Domain Driven Design" [23] serves as a practical guide for putting
DDD principles into action and was used as a guide through the development
process, since the ABP.io framework used for coding the application is based on
those guidelines.

There are four fundamental layers of a Domain Driven Based Solution. Business
Logic is divided into two distinct layers: the Domain Layer and the Application
Layer, each serving different aspects of the business logic.

• The Domain Layer is responsible for embodying the core business logic that
is independent of specific use cases within the domain or system.

• The Application Layer, on the other hand, focuses on implementing the use
cases of the application, which can be thought of as user interactions within
the User Interface (UI).

• The Presentation Layer encompasses all UI elements, such as pages and
components, that compose the application’s user interface.

• The Infrastructure Layer plays a supportive role by implementing abstrac-
tions and integrations with third-party libraries and systems, thereby providing
essential support to the other layers.

DDD primarily places its emphasis on the Domain and Application Layers while
treating the Presentation and Infrastructure Layers as secondary elements. These
latter layers are considered to be implementation details, and the core principle
is to ensure that the business layers remain independent of them, minimizing any
dependencies.

37

Methodology and System Architecture

Figure 4.3: Domain Driven Design Architecture
[23]

4.5.1 Key Concepts of Domain Driven Design
DDD is based on some key concepts fundamental for implementing the methodology
in a correct way:

• Ubiquitous Language: DDD emphasizes the importance of establishing
a shared vocabulary between software developers and domain experts. This
language, known as the "ubiquitous language," ensures that everyone involved
in the project understands the domain-specific terms and concepts. It bridges
the gap between business stakeholders and technical teams, facilitating effective
communication.

• Bounded Contexts: DDD recognizes that large software systems often
comprise multiple subdomains, each with its own distinct rules and constraints.
To manage this complexity, DDD introduces the concept of "bounded contexts."
Bounded contexts define explicit boundaries within which a specific domain
model is valid. This allows for the creation of distinct models for different
parts of the system, preventing conflicts and confusion.

38

Methodology and System Architecture

• Aggregate Roots: In DDD, aggregates are clusters of domain objects that
are treated as a single unit. Each aggregate has an "aggregate root" that serves
as the entry point for interacting with the objects within the aggregate. This
concept enforces consistency and encapsulation within the domain model.

• Repositories: Repositories provide a mechanism for accessing and storing
aggregates. They abstract away the details of data storage and retrieval,
allowing developers to work with domain objects without concerning themselves
with the underlying data infrastructure.

• Value Objects and Entities: DDD distinguishes between value objects
and entities. Value objects are immutable objects that derive their identity
from their attributes. Entities, on the other hand, have a distinct identity
that persists over time. Understanding this distinction is crucial for modeling
domain objects effectively.

4.5.2 Benefits of Domain Driven Design
DDD ensures that software systems closely align with the business domain, leading
to solutions that genuinely address business needs. By breaking down complex
domains into bounded contexts and well-defined aggregates, DDD promotes modu-
lar and maintainable code. Moreover, the ubiquitous language helps collaboration
between domain experts and developers, reducing misunderstandings and enhancing
the development process. DDD’s focus on bounded contexts allows for the indepen-
dent development and scaling of different parts of a system. DDD encourages the
creation of a rich domain model, leading to higher code quality and fewer defects.

By embracing DDD principles, developers can build software that stands the
test of time and delivers genuine value to organizations and end-users alike.

4.6 Data Research and Analysis
4.6.1 Data Research
The data research phase of this project played a crucial role in shaping the applica-
tion’s functionalities. Collecting historical data related to the module’s domains
it’s the first step to provide useful support to an organization’s Risk Management.
The data research focused on the two modules of the application which were part
of the thesis project’s studies: Data Loss Prevention (Cyber Security) and Asset
Loss and Logistics Risk Management. Extensive efforts were dedicated to sourcing
and adapting external datasets to provide users with valuable risk assessment
information. Cyber security is a developing field, so multiple academic datasets
were found online. On the other hand, the approach we decided to have for the

39

Methodology and System Architecture

Asset Loss and Logistics Risk Management tool, consisted of creating a connection
between reported crimes that affected material goods and geographical locations.

To meet the specific needs of the Data Loss Prevention module, a variety of
datasets were analyzed, as online open datasets didn’t have enough entries to
consider a single data source. Key data sources included:

• ISTAT «Delitti denunciati dalle forze di polizia all’autorità giudiziaria»: we
used ISTAT’s REST APIs to extract Italy’s data, by selecting the categories
«Delitti Informatici» and «Truffe e frodi informatiche» from the Italian police’s
records. [12]

• Double Extortion Dataset: the double extortion platform’s dataset was used
to analyse data regarding extortion attacks, in particular social engineering
and ransomware. [24]

• The Data Loss Attrition Dataset [25]

• Kaggle Data Breaches Dataset [26]

For the Asset Loss & Logistics Risk Management, the risk assessment drew
extensively from ISTAT REST APIs, with a focus on Italian police reports. In
particular, the nData [27] guide was used to dig deeply into the data from 2006
to 2021. The analysis encompassed complaint categories linked to product, cargo,
and shop damage, including "Arson", "Attack", "Damage", "Arson Damage", "Shop
Robbery", "Shop Theft", and "Truck Theft." [12] Data extraction was conducted
across the entirety of Italy, with API queries tailored to each Italian province. This
was given to the fact that considering other countries would have required more
careful and time-consuming research which wouldn’t have had the same detailed
results (province precision) as the ones we obtained by focusing just on the Italian
territory. The datasets were meticulously adapted and normalized for seamless
integration into the software.

4.6.2 Data Analysis
The Data Analysis phase was used to extract information useful for the implemen-
tation phase, explained in chapter 5, by analyzing the previously listed datasets.
Following the dataset order of the previous subsection, I’ll explain what information
was determined and by using which methodology.

For the Data Loss Prevention module, ISTAT’s data [12] on cyber crimes and
cyber frauds was used to perform a Forecast (as explained in 3.5.1) to assess the
trend and perform predictions, with a horizon of 4 years. Figure 3.5 shows that
cyber crimes in Italy are increasing each year. The consequence of these increasing
numbers should inevitably lead to an improvement in risk prevention measures.

40

Methodology and System Architecture

For example, to prevent cyber crimes, companies should adopt more effective
security measures. At the same time, a solution for cyber fraud could consist of
starting a mitigation plan for instructing employees on social engineering attacks
and sensitive information disclosure. Regarding social engineering attacks, another
dataset that was extremely useful was the double extortion dataset [24]. It is the
most updated dataset found. Every time a new extortion event leading to a data
breach happens, it’s recorded in the database, and statistics are computed. The
study performed on this dataset consisted of observing statistics shown in the
dashboard and observing results that could be useful in assessing cyber risk. In
figure 4.4 we can see two graphics showing the most threatened industries on the
left and the most threatening actors on the right. The first information is useful
in planning mitigations according to the business type, for example, the chart
shows that Business Support Services and Heavy Construction need a better Cyber
Security Protection plan. This could also help in tailoring risk plans according
to third-party and customer relationships. The second chart is useful in knowing
where the risk comes from, this could lead to a more accurate employee instruction
program and a better antivirus and firewall configuration. This analysis can be
enriched by a time chart in figure 4.5, which helps instead in understanding how
these threat actors are evolving over time. Country distribution (figure 4.6)
shows that America and Europe have a higher rate of cyber extortion crime. This
information is also useful in protecting organizations from cyber risk, by protecting
external communications. The next dataset to be analyzed is the Attrition Data
Loss Dataset [25]. The importance of this dataset was given by the more specific
and useful attributes contained in each entry. However, the reliability of the
extracted information must be taken with a grain of salt, since the last entry goes
back to 2008. The value of this dataset is given by the boolean values related
to data loss and the company’s legal repercussions of these types of events. The
three attributes that were evaluated are Data Recovered, Consumer Lawsuit, and
Arrest Prosecution, and the values are shown on the charts in figure 4.7. These
properties were also used as classes to perform predictions on user-inserted values
(see 3.5.2). The last dataset used, the Data Breaches Dataset [26] was used to
go deeper into the most popular breach methods and organization types attacked.
From the charts in figure 4.8 we can see that Web, Healthcare, Financial, and
Government are the most affected organizations, and Hacking, Physical, and Poor
Security are the most diffused breach methods. This last piece of information, once
again, suggests a necessary improvement in companies’ security.

41

Methodology and System Architecture

Figure 4.4: On the left the Industry Vertical plot shows the distribution of events
among the top 10 impacted business sectors. On the right, the Actor Statistics plot
shows the distribution of the top 10 threat actors or affiliation programs causing
most of the observed attacks.

42

Methodology and System Architecture

Figure 4.5: The Actor Activities over time plot reports the observed double
extortion attempts grouped by threat actor or affiliation program.

Figure 4.6: The last update was performed on the 15/06/2023 (observed 9119
events across 176 countries). This chart was taken from the Risk Management
Tool.

43

Methodology and System Architecture

Figure 4.7: Data Recovered, Consumer Lawsuit, Arrest Prosecution. These charts
are taken from the Risk Management Tool.

44

Methodology and System Architecture

Figure 4.8: On the top Top 10 Organization Types affected by Data Breaches.
On the bottom top 10 most popular Breach Methods. These pictures were taken
from the Risk Management Tool.

45

Methodology and System Architecture

I’ll now discuss the data analysis performed on ISTAT’s Asset Crimes Data.
The columns extracted from the APIs were the City, the Year, the type of Crime
("Arson", "Attack", "Damage", "Arson Damage", "Shop Robbery", "Shop Theft",
or "Truck Theft.") and the number of reported crimes during that year in that
place. Unlike Cyber data, Asset data wasn’t analyzed on the whole Italian territory.
However, statistics were performed for each province. As an example, in figure 4.9
the forecast for the city of Turin, and in figure 4.10 the chart shows the different
types of attacks on a pie chart. Computing these statistics on every Italian province
had the goal of comparing them, in order to obtain an "Asset Crime Rate" for
each and obtain the most and least dangerous provinces in which companies can
transport goods. To compare different values, we needed to have comparable
numbers. To achieve these results we used the following normalization formula:

Xnormalized = X − Xminimum

Xmaximum − Xminimum
(4.1)

where:

• X is the number of asset crimes in the current year.

• Xminimum is the lower asset crimes number in all considered years.

• Xmaximum is the higher asset crimes number in all considered years.

After calculating all the values, it was possible to put them on a colored map (figure
4.11), which indicates the likelihood value for asset crimes to happen in different
Italian provinces.

This careful data analysis was performed with the aim of being integrated into
the software, both through automatic machine learning mechanisms and statistical
charts supporting the Risk Managers using the application in their decisions.

46

Methodology and System Architecture

Figure 4.9: Asset crimes in Turin time series forecast. Based on ISTAT data from
2006 to 2021 and predicting values from 2022 up to 2025.

47

Methodology and System Architecture

Figure 4.10: Asset crimes by type in Turin. Based on ISTAT data from 2006 to
2021. This chart was taken from the Risk Management Tool.

48

Methodology and System Architecture

Figure 4.11: Asset crimes in Italy Map by crime rate.

49

Methodology and System Architecture

4.7 Machine Learning Integration
Machine Learning (ML) is integrated into our software development process with
the goal of augmenting the capabilities of our SaaS application in the realm of
risk management. We adopted an Agile methodology, emphasizing flexibility and
adaptability, which aligns well with the iterative nature of ML model development.
We designed, developed, and trained ML models tailored to specific risk management
scenarios discussed together with the team. These models were trained using the
historical data in addition to user-inserted data (if available) previously listed to
recognize patterns, trends, and potential risk factors. For instance, in asset risk
management, ML models can forecast crime trends, aiding in transport decisions.
Risk Managers can rely on these insights to formulate strategies that are informed
and effective.

The design principles followed in the whole ML process were:

• User-Centric Approach: Machine Learning enhances the user experience
by offering data-driven insights in a user-friendly format through charts, maps,
and alerts. Risk Managers can easily grasp and act upon the information
provided, aligning with our user-centric design philosophy.

• Modularity: We’ve designed our application to be highly modular, by
providing a module for Data Loss Prevention and a module for Asset Loss
and Logistics Risk Management and ML fits into this framework. Different
ML models were integrated into different application modules, allowing for
flexible customization based on client requirements and SaaS subscription.

• Continuous Improvement: The adaptive nature of ML aligns with our
commitment to continuous improvement. ML models evolve and adapt by
getting new data from APIs, ensuring our application remains effective in
managing risks over time.

4.8 Requirement Documents and Design Arti-
facts

The risk management software development process was guided by detailed require-
ment documents and design artifacts. These included Entity-Relationship (ER)
diagrams and design documents that outlined the software’s functionalities and
interfaces. The ER diagrams provided a visual representation of the data entities
and their relationships, which helped to identify the key data elements and their
attributes. The design documents described the software’s architecture, modules,

50

Methodology and System Architecture

and interfaces, and provided guidelines for the implementation and testing of the
software.

These documents played a crucial role in shaping the design and development
process of the software. They helped to ensure that the software met the functional
and non-functional requirements of the stakeholders, including the system adminis-
trators and end-users. The requirement documents provided a clear understanding
of the software’s features and functionalities, which helped to prioritize the devel-
opment tasks and allocate resources effectively. The design artifacts provided a
blueprint for the software’s architecture and modules, which helped to ensure that
the software was scalable, maintainable, and extensible.

4.8.1 Stakeholders and Interfaces
In our risk management application, various stakeholders play a role in ensuring
effective risk assessment, mitigation, and overall application management. Table 4.2
provides an overview of these key stakeholders and their respective responsibilities
within the application ecosystem. From Risk Managers who are responsible for
identifying and assessing risks to IT and Logistics Units managing specific types
of loss events, this table elucidates the diverse range of stakeholders contributing
to the success of our risk management solution. Understanding their roles and
responsibilities is fundamental to comprehending the holistic functionality of the
application and its seamless integration into organizational processes.

Stakeholder Name Description
Risk Managers People who identify and assess the risks,

measure the KRIs, start Mitigation Plans,
and associate risks with projects.

Project Managers (From every Unit) People who add the Projects and the Work
Breakdown Structure and want to know
the project risks.

IT Unit People who manage Data Loss Events.
Logistics Unit People who manage Asset Loss Events and

Transits.
System Administrator Person who manages the app.

Table 4.2: Stakeholder Roles

Understanding the interfaces between various actors and the system is vital for
comprehending the application’s functionality. Table 4.3 presents an overview of
the interfaces utilized by actors within the system. Actors, including Users and
System Administrators, interact with the application through logical interfaces,

51

Methodology and System Architecture

such as Graphical User Interfaces (GUIs) of the application. These logical interfaces
facilitate the interaction and data input within the application. Concurrently, the
physical interfaces, typically personal devices, through which these actors access
the logical interfaces, are outlined. This understanding of interfaces is crucial in
grasping how users and administrators engage with our risk management solution.

Actor Logical Interface Physical Interface
User GUIs of the Application Personal Device
System Administrator Enhanced GUIs Personal Device

Table 4.3: Actor Interfaces

4.8.2 Class Diagram
After defining Actors and Interfaces, the next step was to define a class diagram for
data modeling of the structure of the application. In the diagram reported in figure
4.12, the box representing the class includes the name and attributes of the class,
and lines connecting different classes represent relationships. Also, multiplicities of
relationships are specified in the diagram. Since we followed DDD design principles,
some of these classes were implemented as Aggregate Roots while others as Entities.
In addition to the attributes shown in the picture, some entities used in the present
work contain some audit information like the creation, the modification, and the
deletion times, the user who created/deleted/modified an instance of the class,
and the tenant identifier used for the multi-tenancy feature. Those fields have
been omitted for a more understandable diagram and for readability. Let us now
describe the classes used in the application, while their actual implementation will
instead be covered in chapter 5.

• Risk: aggregate root representing a possible risk in the organization. Each
Risk is identified by an Id and some specific information like Name, Description,
and an optional Image. This class also contains attributes related to the risk
assessment: Likelihood, Impact, Velocity, and the final Score given by the
product of the three. Since the Risk is an aggregate root, it is bound to
other classes such as Cause (causes of the risk, a risk can have many causes),
Impact (impacts of the risk, a risk can have many impacts), Field (indicates
possible company fields affected by the risk), RiskCategory (more can be
selected between Strategic, Operational...), and LossType that are identified
by an Id, Name, and Description. The LossType associated with the Risk
also contains a Category which is an Enum and contains categories related to
modules (Data and Asset for now).

52

Methodology and System Architecture

• KRI: This class indicates a metric for the risk. It has an Id and other
fields such as MeasurableKRI (code), Description, FailedCounter (current KRI
value), LowThreshold, MediumThreshold, and HighThreshold. These last
three fields are used to identify when a metric indicates a Low, Medium, or
High Risk. A KRI is associated with a single risk, but a risk can be measured
through many KRIs.

• Mitigation: A class for describing the intention of mitigating a risk. It has
an Id, Name, Description, and a Goal. A Mitigation can be only for a Risk,
but a Risk can have many mitigations.

• Project, Section, WorkItem: Those classes are the ones used for Project
Management. A Project has an Id, Name, and Description. It also specifies
the Business Unit in which the Project takes place and the Expected and
actual Start and End Dates. A Project contains Sections that, together with
standard fields, include a OrderNumber for the execution. Sections Include
WorkItems (also called tasks) described by standard fields and Expected and
actual Dates.

• RBMEntry: This class does exactly what a Risk Breakdown Matrix does, it
connects a WorkItem to a Risk by performing a risk assessment specific to
a single task. It is composed of an Id and a Code, together with assessment
fields (Likelihood, Impact and Score) and an Enum field for deciding if the
risk for that task can be Accepted or should be Mitigated.

• RiskMitigationPlan: This class has the goal of applying a Mitigation to
a RBMEntry. It has an Id, Name, Description, Expected and Actual Dates
and Expected and Actual Residual Risk after the mitigation project. It also
contains a Status field (Created, Ready, In Progress, Success, Fail) and Notes.

• Transit: This class is part of the Asset Risk Management module describing
a shipment. It’s identified by an Id and some details like StartPoint, EndPoint,
Expected and Actual Dates, Driver, Vehicle, and Notes. It’s an aggregate root
because it includes details through the Stop class and the ProductType
class. The Stop class has Id, Name, Location, and Description attributes. A
transit can have from zero to many stops. The same applies to ProductType
containing Id, Name, Code, Description, and a TypeValue used to assess the
risk based on the value of the product.

• LossEvent: A LossEvent is used to describe a damaging consequence of a risk.
It has an Id, a Name, a Date, TotalAffected (number of lost data/products),
LossAmount (economic loss), InsideOutside, Recovered (boolean), Consumer-
Lawsuit, ArrestProsecution, ThirdParty, ThirdPartyName, and Details. This

53

Methodology and System Architecture

class includes details on the LossType and the Country in which the event
happened. If the LossEvent was of Assets it can also include a Warehouse
and ProductType (from 0 to many). A Warehouse has an Id, Name, Address,
City, PostalCode and Telephone.

Figure 4.12: Class Diagram

4.8.3 Context and Use Case Diagrams
The Context Diagram in figure 4.13 and the Use Case Diagram in figure 4.14
respectively represent a High-Level and a Low-Level diagram of system interactions.
The Users interacting with the system are Management Users (Risk and Project
Managers), Logistics Unit Users, and IT Unit Users. Also, the System Administrator
interacts directly with the system for configuration and development. The Use Case
diagram goes into more detail on the way roles and permissions are implemented
in the application. The Risk Manager has access to all those actions related
to managing Risk, Mitigations, and Metrics. On the other hand, the Project
Manager handles all data related to Projects, including Mitigation Plans which
can be managed both by the Project and Risk Manager. All Management users
can execute operations on Fields and Product Types. The Risk Manager can list

54

Methodology and System Architecture

Projects but can’t modify them. Loss Events are uploaded on the system by the
IT and Logistics Unit, depending on the LossType, but the risk manager can list
them. The Logistics Unit is also responsible for Managing Warehouses, Countries,
Transits, and Stops. The System Administrator is allowed to perform all operations
listed above, plus administrative and configuration operations, omitted from the
diagrams. It is fundamental to consider that users can have more than one role.
For example a Manager can be both a Risk Manager and a Project Manager.

Figure 4.13: Context Diagram

55

Methodology and System Architecture

Figure 4.14: Use Case Diagram

4.8.4 Functional Requirements
In this section an extensive list of functional requirements for the Risk Management
Tool will be presented. Each requirement is identified by an ID and described in
detail. These requirements cover various aspects of risk management and a distinct
table for each section and module was created for a better understanding and
readability. As previously said, the tool is composed of a series of sections common
to every customer and some additional modules depending on the subscription fee.
The requirements for the sections are summarized in tables 4.4,4.5, 4.6, and 4.7
while requirements on currently implemented modules are 4.8 and 4.9. They enclose
basic CRUD operations, searching, and filtering together with other operations such
as statistics, predictions, chart generation, and visualization. Transit functionalities
also require maps and alerts. Finally, every CRUD entity allows an Excel export
to compose a formal risk report. Account and role-related functionalities were
omitted, together with SaaS configuration and administration since the development
of those modules was done with the help of the Commercial ABP Licence owned
by the company, which provides pre-made modules and automatic code integration
(more details on technologies and implementation will follow on chapter 5). The

56

Methodology and System Architecture

requirement document was written at the beginning of the thesis work together
with the team. However, we adopted an Agile approach which lead to modifications
and changes in implementation thoughout the whole development process.

ID Description
FR1 Show Statistics on Dashboard FR1.1 Show Risk Management Charts

FR1.2 Show Project Management Charts
FR1.3 Show Data Loss Charts
FR 1.4 Filter statistics by Date

Table 4.4: Dashboard Functional Requirements

ID Description
FR1 Manage Risks FR1.1 Create, Read, Update and Delete Risks

FR1.2 Search and Filter Risks
FR1.3 Export Risk Register to Excel

FR2 Manage Causes FR2.1 Create, Read, Update and Delete Causes
FR2.2 Search and Filter Causes
FR2.3 Export Causes to Excel

FR3 Manage Impacts FR3.1 Create, Read, Update and Delete Impacts
FR3.2 Search and Filter Impacts
FR3.3 Export Impacts to Excel

FR4 Manage Risk Categories FR4.1 Create, Read, Update and Delete Risk Categories
FR 4.2 Search and Filter Risk Categories
FR4.3 Export Risk Categories to Excel

FR5 Manage KRIs FR5.1 Create, Read, Update and Delete KRIs
FR5.2 Search and Filter KRIs
FR5.3 Export KRIs to Excel
FR5.4 Show KRIs by Risk Level
FR5.5 Show KRIs on Speedometer

FR6 Manage RBM Entries FR6.1 Create, Read, Update and Delete RBM Entries
FR6.2 Search and Filter RBM Entries
FR6.3 Export RBM Entries to Excel
FR6.4 Predict Acceptance/Mitigation

FR7 Manage Mitigations FR7.1 Create, Read, Update and Delete Mitigations
FR7.2 Search and Filter Mitigations
FR7.3 Export Mitigations to Excel

Table 4.5: Risk Functional Requirements

57

Methodology and System Architecture

ID Description
FR1 Manage Projects FR1.1 Create, Read, Update and Delete Projects

FR1.2 Add and Remove Sections and Work Items From
Project
FR1.3 Generate Gantt Diagram
FR1.4 Search and filter Projects
FR1.5 Export Projects to Excel

FR2 Manage Sections FR2.1 Create, Read, Update and Delete Sections
FR2.2 Search and filter Sections
FR2.3 Export Sections to Excel

FR3 Manage Work
Items

FR3.1 Create, Read, Update and Delete Work Items
FR3.2 Search and filter Work Items
FR3.3 Export Work Items to Excel

FR4 Manage Risk Mit-
igation Plans

FR4.1 Create, Read, Update and Delete Risk Mitigation
Plans
FR4.2 Search and filter Risk Mitigation Plans
FR4.3 Export Risk Mitigation Plans to Excel

Table 4.6: Project Functional Requirements

ID Description
FR1 Manage Loss
Events

FR1.1 Create, Read, Update and Delete Loss Event
FR1.2 Search and filter Loss Events
FR1.3 Predict Recovered, Consumer Lawsuit and Arrest
Prosecution
FR1.4 Export Loss Events to Excel

FR2 Manage Loss
Types

FR2.1 Create, Read, Update and Delete Loss Types
FR2.2 Search and filter Loss Types
FR2.3 Export to Excel

Table 4.7: Loss Events Functional Requirements

ID Description
FR1 Show Data Loss
Prevention Statistics

FR1.1 Show charts, trends, predictions and statistics on
Data Loss Prevention
FR1.2 Suggest possible mitigations

FR2 Manage Fields FR2.1 Create, Read, Update and Delete Fields
FR2.2 Search and filter Fields
FR2.3 Export Fields to Excel

Table 4.8: Data Loss Prevention Functional Requirements

58

Methodology and System Architecture

ID Description
FR1 Show Asset Loss
Prevention Statistics

FR1.1 Show charts, trends, predictions and statistics on
Asset Loss Prevention
FR1.2 Suggest possible mitigations

FR2 Manage Transits FR2.1 Create, Read, Update and Delete Transits
FR2.2 Search and filter Transits
FR2.3 Export Transits on Excel
FR2.4 Show path on a map and alert the user if the path
crosses a “Dangerous Zone”
FR2.5 Propose a path without “Dangerous Zones”

FR3 Manage Ware-
houses

FR3.1 Create, Read, Update and Delete Warehouses
FR3.2 Search and filter Warehouses
FR3.3 Export Transits to Excel

FR4 Manage Coun-
tries

FR4.1 Create, Read, Update and Delete Countries
FR4.2 Search and filter Countries
FR4.3 Export Countries to Excel

FR5 Manage Product
Types

FR5.1 Create, Read, Update and Delete Product Types
FR5.2 Search and filter Product Types
FR5.3 Export Product Types to Excel

FR6 Manage Stops FR6.1 Create, Read, Update and Delete Stops
FR6.2 Search and filter Stops
FR6.3 Export Stops to Excel

Table 4.9: Asset Loss Prevention Functional Requirements

59

Methodology and System Architecture

4.8.5 Non-Functional Requirements
I will now consider Non-Functional Requirements implemented in the application.

The main requirement considered was Usability, the user should be able to
navigate in a fast and easy way through our software. The application must adopt
a clear and intuitive user interface always showing progress, errors, and success of
actions performed by users. These requirements are implemented through buttons,
colors, menus, popups, and other graphical instruments. The specific User Interface
(UI) and User Experience (UX) implementation will be explained in chapter 5.
Users should always know what is happening when using the application. In this
way, the user is able to see whether the application is responding to his requests or
not.

Another Non-Functional requirement we considered in the development process
was Localization. For this purpose, localization strings for the Italian and English
languages have been configured and in the future, more will be added.

Another fundamental requirement is Portability: our web application is respon-
sive and works on Computers, Tablets, and Mobile devices without any problem.
This requirement is fundamental in ensuring that the user can access and use the
application from everywhere, without having to use a specific instrument.

Also requirements concerning Scalability were crucial in the development
process. The Azure platform, used to deploy the application, gives the possibility
to configure resources based on the user and data load.

The Security Non-Functional Requirement was obtained thanks to the ABP
commercial modules included in the application, which will be better explained in
the next chapter.

4.8.6 Deployment Diagram and System Design
Finally, the last step in Designing our application’s structure was creating a Deploy-
ment diagram to visualize the hardware and the software involved in the execution
and a System Design diagram to visually represent the system’s architecture (figure
4.15).

The Risk Management application is deployed on a Server using Azure App
Service. This means that the Web Application runs on a server without having to
manually configure or maintain it. Everything is done by Azure and the developer
is only responsible for the code. The User accesses the application on his/her device
using an internet connection and runs the tool on a browser. This structure is a
standard SaaS.

The System, on the other hand, has a simple design. It is composed of a
Backend, implemented in C#, and a Frontend, implemented in Angular. In
the next chapter we’ll go deeper on the different modules composing the Backend
structure, following Domain Driven Design (DDD) with the ABP Framework.

60

Methodology and System Architecture

Figure 4.15: Deployment Diagram on the left and System Design on the right.

61

Chapter 5

Implementation Details and
Technology Stack

5.1 Technology Stack
The development of the Risk Management Tool involved the integration of various
technologies to create a comprehensive and user-friendly solution. This section
outlines the primary technologies utilized throughout the project.

5.1.1 ABP.io Framework
The ABP.io Framework is the cornerstone of the entire Risk Management Tool,
providing a comprehensive and adaptable architecture for the application’s devel-
opment.

The ABP Framework is characterized as an opinionated framework. It holds the
belief that certain methodologies in software development inherently offer superior
approaches, thereby steering developers towards those specific paths. It presents
a set of preferences regarding the structure, design patterns, tools, and libraries
to be employed within your solution. While the ABP Framework does maintain a
degree of flexibility, allowing for the integration of different tools and libraries as
well as changes to architectural choices, it is most advantageous when adhering to
its established opinions. [28]

This framework is characterized by its modular approach, allowing the ap-
plication to be divided into discrete modules, each with its own specific set of
responsibilities and functions.

One of the primary advantages of ABP.io’s modular design is its inherent
scalability and maintainability. It enables developers to work on individual modules
without affecting the rest of the application, making it easier to manage and

62

Implementation Details and Technology Stack

update as the project evolves. This modularity is particularly beneficial for the
Risk Management Tool, which encompasses various risk-related domains and
functionalities.

ABP offers a wide array of application modules that can seamlessly integrate
into any software application. For our software we used the Identity module,
facilitating user, role, and permission management, as well as the Account module,
streamlining the implementation of login and registration functionalities within the
application. [28]

Moreover, the ABP.io Framework strongly embraces the principles of Domain
Driven Design (DDD) for the development of SaaS applications. ABP.io’s DDD-
centric approach allows for the creation of a more effective and efficient system.
By closely modeling the software after the problem domain, developers can ensure
that the application is not only functionally robust but also conceptually aligned
with the risk management challenges it tackles. This alignment makes it easier for
users, such as Risk Managers, to interact with the application in a way that makes
sense within the context of their work.

ABP’s application startup template comes with multiple options for the UI
Framework and the Database Provider. You can start with Angular, Blazor, or
MVC (Razor Pages) options as the UI framework, and use Entity Framework Core
(with any database management system) or MongoDB as the database provider.
For the development of the Risk Management Tool, we decided to use Angular for
the UI and Entity framework Core with SQL Server as a database provider.

5.1.2 C# Back-End
The back-end of the application was developed using C#, a versatile and widely
adopted programming language. Entity Framework Core was employed as the
database provider, enabling the application to accommodate complex business logic
with a code-first approach. This approach allowed for the efficient management
of data structures and relationships within the application. As shown in 5.1, the
backend is composed of different application modules, each serving distinct purposes.
These modules are:

• Application: The Application module is a critical part of an ABP.io applica-
tion. It contains application-specific logic, including application services and
application layer functionality. This module is responsible for orchestrating
and coordinating interactions between the presentation layer (the Angular
front-end) and the core business logic found in the Domain module.

• Application.Contracts: The Application.Contracts module complements
the Application module by defining service interfaces and DTOs. These
interfaces and DTOs serve as standardized communication channels between

63

Implementation Details and Technology Stack

different application layers, ensuring a clean separation of concerns. It’s crucial
for maintaining a well-structured and maintainable codebase.

• DbMigrator: The DbMigrator module plays a pivotal role in database
management. It is responsible for handling database migrations and ensuring
that the database schema aligns with the application’s current state. When
changes are made to your application’s data model or schema, the DbMigrator
module helps you update the database seamlessly.

• Domain: The Domain module represents the heart of your application.
It encapsulates the core business logic, data entities, and domain-specific
functionalities. Here, you define your domain objects, application services,
and the rules that govern your application. Changes made within this module
have a direct impact on your application’s behavior.

• Domain.Shared: The Domain.Shared module serves as a repository for
shared resources that need to be accessible across various application layers.
It houses common data structures, enums, and constants, ensuring uniformity
and coherence throughout your application.

• EntityFrameworkCore: When using Entity Framework Core as the database
provider, the EntityFrameworkCore module assists in integrating your domain
entities with the underlying database. It handles tasks related to data per-
sistence, retrieval, and the communication between your application and the
database.

• HttpApi: The HttpApi module is responsible for generating HTTP APIs that
expose your application services. These APIs are designed to be accessible to
external clients, making it easier to integrate your application with different
front-end technologies or other services.

• HttpApi.Client: On the client-side, the HttpApi.Client module provides
strongly-typed HTTP clients. These clients simplify the consumption of
your application’s HTTP APIs. It ensures that communication between the
front-end and back-end is type-safe and efficient.

• Host: The Host module serves as the entry point for your ABP.io application.
It configures and initializes the application, including setting up the dependency
injection container, configuring middleware, and starting the application. This
module is responsible for hosting your application and handling its lifecycle.

The diagram in figure 5.2 shows the essential dependencies between the projects
in the solution [23]. However, in our case, the Web doesn’t exist in the solution.
Instead, an HttpApi.Host application will be in the solution to serve the HTTP

64

Implementation Details and Technology Stack

Figure 5.1: RiskManagementApp Backend Solution

APIs as a standalone endpoint to be consumed by the UI applications via HTTP
API calls. The projects have been explained before. Now, we can explain the

Figure 5.2: Project Dependencies

reasons for the dependencies;

• Domain.Shared is the project that all other projects directly or indirectly
depend on. So, all the types in this project are available to all projects.

• Domain only depends on the Domain.Shared because it is already a (shared)
part of the domain. For example, an enum in the Domain.Shared can be used
by an entity in the Domain project.

65

Implementation Details and Technology Stack

• Application.Contracts depends on the Domain.Shared. In this way, you can
reuse these types in the DTOs.

• Application depends on the Application.Contracts since it implements the
Application Service interfaces and uses the DTOs inside it. It also depends on
the Domain since the Application Services are implemented using the Domain
Objects defined inside it.

• EntityFrameworkCore depends on the Domain since it maps the Domain
Objects (entities and value types) to database tables (as it is an ORM) and
implements the repository interfaces defined in the Domain.

• HttpApi depends on the Application.Contracts since the Controllers inside it
inject and use the Application Service interfaces as explained before.

• HttpApi.Client depends on the Application.Contracts since it can consume
the Application Services as explained before.

• Host depends on the HttpApi since it serves the HTTP APIs defined inside it.
Also, in this way, it indirectly depends on the Application.Contracts project
to consume the Application Services in the Pages/Components.

5.1.3 Entity Framework Core
Entity Framework Core is a central component in the backend architecture of
ABP.io applications, serving as the bridge between the application’s object-oriented
domain model and the underlying relational database. This Object-Relational Map-
ping (ORM) framework simplifies and streamlines database interactions, allowing
developers to work with databases using familiar C# code.

One of the fundamental functions of EF Core in ABP.io is data modeling.
Developers define their data models as C# classes, specifying the structure of their
data entities and the relationships between them. EF Core then takes these class
definitions and translates them into the corresponding database schema, adhering
to the code-first approach. This approach is not only efficient but also promotes
database schema consistency with the application’s domain model.

A significant advantage of using EF Core in ABP.io applications is its database
provider abstraction. This abstraction layer enables developers to work with
various database systems without the need for extensive changes to their code.
This flexibility empowers developers to select the database engine that best aligns
with their project’s requirements, SQL Server in our case. ABP.io leverages this
feature to ensure that developers have the freedom to choose the most suitable
database solution for their specific needs.

66

Implementation Details and Technology Stack

Querying data is another area where EF Core shines in ABP.io applications. It
provides a powerful querying mechanism using LINQ (Language Integrated Query),
which simplifies data retrieval and manipulation. This LINQ support results in
code that is not only expressive but also highly readable, making it easier for
developers to work with data.

Schema management and migration are crucial aspects of database development.
EF Core simplifies the process by automating database schema updates as the
application’s data model evolves. Developers can create migrations to describe
changes to the schema, and EF Core generates the corresponding SQL scripts to
apply those changes as shown in 5.3. This feature is particularly useful in ABP.io
applications, where the architecture encourages iterative development and schema
modifications. Optimistic concurrency control is another valuable feature of EF

Figure 5.3: EFCore Code-First approach
[29]

Core used in ABP.io applications. It enables applications to handle concurrent
data modifications gracefully. When multiple users attempt to modify the same
data simultaneously, EF Core can detect conflicting changes and prevent data
inconsistency issues. This ensures data integrity and reliability.

Performance optimization is essential for any application, especially those dealing
with large datasets. EF Core provides features like lazy loading and eager loading,
allowing developers to fine-tune how data is retrieved from the database. ABP.io
applications benefit from these optimization options to ensure efficient data retrieval
and processing.

EF Core seamlessly integrates with the dependency injection container used
in ABP.io applications. This integration simplifies the management of database
contexts and promotes code maintainability and testability. It enables developers
to inject database contexts into services and controllers effortlessly.

Logging and debugging are vital aspects of application development. ABP.io’s
integration with EF Core includes support for comprehensive logging and debugging
of database operations. Developers can monitor database queries, track errors, and
assess performance metrics, facilitating troubleshooting and optimization efforts.

In essence, Entity Framework Core plays a pivotal role in the backend of ABP.io
applications, empowering developers to interact with databases in a cohesive and

67

Implementation Details and Technology Stack

efficient manner. Its support for data modeling, querying, schema management, per-
formance optimization, and more aligns perfectly with ABP.io’s mission to simplify
application development while upholding best practices in software architecture
and data management.

5.1.4 Angular Front-End
The front-end of our application was constructed using Angular, a JavaScript
framework known for its versatility and ability to create dynamic, responsive web
applications. Angular played a pivotal role in shaping the User Interface (UI) of
our application.

Angular embraces a component-based architecture, meaning the application is
divided into self-contained units called components. Each component encapsulates a
specific part of the UI along with its corresponding functionality. These components
consist of HTML templates, TypeScript code, and CSS styles, making it easier to
manage and maintain even the most intricate user interfaces.

Angular templates, the building blocks of our UI, define how the application’s
layout and structure should appear. These templates are crafted using HTML,
but they’re enriched with Angular directives, which imbue them with dynamic
capabilities. This dynamism allows our templates to render data, respond to user
interactions, and deliver content with grace and efficiency.

To handle business logic and data access, Angular employs services. These
services act as containers for reusable functions, enabling the sharing of data and
functionality across various components. They also facilitate communication with
our back-end, allowing us to retrieve and send data via HTTP requests seamlessly.

Angular’s dependency injection system is another invaluable asset. It facilitates
modularity and testability by allowing components and services to declare their
dependencies explicitly. This practice fosters loose coupling and ensures that
components can be extended or replaced with ease.

Routing is a core feature in Angular. It enables the creation of single-page
applications by managing navigation between different components and views while
preserving the application’s state. This ensures users can move smoothly between
sections of our application without the need for full-page reloads.

Angular offers a suite of directives that enhance the dynamic behavior of our
UI. These directives allow us to manipulate the Document Object Model (DOM)
dynamically. For instance, we can use directives to conditionally display elements,
iterate over lists, or toggle content visibility based on user actions.

Forms are a fundamental aspect of web applications, and Angular excels in this
regard. It provides robust support for creating and validating forms, offering both
Reactive Forms and Template-Driven Forms approaches. These forms empower
us to collect and validate user data efficiently, guaranteeing data integrity and a

68

Implementation Details and Technology Stack

seamless user experience.
While Angular doesn’t prescribe a specific state management library, it accom-

modates various state management approaches. This includes the use of NgRx
for reactive state management using RxJS, as well as services for simpler applica-
tions. Effective state management is crucial for maintaining consistent application
behavior.

Lastly, Angular emphasizes responsive web design principles. This enables us
to create applications that gracefully adapt to different screen sizes and devices.
Leveraging CSS frameworks like Angular Material and Bootstrap, we ensure our
UI components respond effectively to diverse user environments.

5.1.5 Lepton UI Theme
The User Interface (UI) plays an important role in shaping user experiences. This
significance has led to the emergence of various UI themes and templates that
developers can integrate into their applications. In the context of ABP.io, a robust
application framework known for its flexibility and modularity, the choice of a
suitable UI theme becomes a critical decision for developers aiming to create visually
appealing and user-friendly applications.

One such UI theme that has garnered attention within the ABP.io community
is the Lepton Theme. Unlike generic themes, the Lepton Theme is specifically
designed for integration with ABP.io applications. It offers a sleek and modern
appearance characterized by clean layouts, carefully chosen color schemes, and
elegant typography.

The Lepton Theme prioritizes aesthetics by adhering to modern design principles.
Its visually pleasing design contributes significantly to the overall look and feel of
an application.

In today’s digital landscape, where users access applications across various
devices, responsiveness is fundamental. The Lepton Theme ensures that ABP.io
applications adapt seamlessly to diverse screen sizes, from large desktop monitors
to smaller smartphones.

Developers have the freedom to customize it according to their application’s
branding requirements. This flexibility allows for the creation of unique and visually
cohesive user interfaces.

As seen in figure 5.4 the Lepton Theme includes a range of pre-designed compo-
nents and widgets. These components simplify the implementation of common UI
features, such as data tables, charts, and forms.

What distinguishes the Lepton Theme is its seamless integration with the
ABP.io framework. Developers can incorporate the theme into their ABP.io-based
applications with minimal effort, aligning it perfectly with ABP.io’s modular
architecture and design principles.

69

Implementation Details and Technology Stack

Beyond aesthetics, the Lepton Theme contributes to an improved User Interface.
It offers a consistent and intuitive interface, enabling users to navigate through
applications effortlessly. This coherence leads to higher user satisfaction and
engagement.

Figure 5.4: Lepton Theme

5.1.6 Chart.js Library
To enhance the user interface and provide users with visual insights, the Javascript
Chart.js library was employed.

One of the primary use cases for Chart.js in ABP.io applications is the presenta-
tion of data-driven insights. These insights can include various forms of information,
such as statistical data, trends, comparisons, and more. Chart.js offers a wide
range of chart types, including line charts, bar charts, pie charts, and scatter plots,
among others. ABP.io developers can select the most suitable chart type based on
the nature of the data they wish to convey. Integration of Chart.js into ABP.io
applications is accomplished in the frontend part of the application.

In the Risk Management Tool, Chart.js was used in the Dashboard and in the
modules’ statistics sections. An example of a chart can be seen in 5.5.

5.1.7 Leaflet for Maps
For the logistics aspect of risk management, interactive maps were crucial. Leaflet,
a lightweight and versatile JavaScript library, was used to implement maps within
the application. These maps offered real-time visualization of geographical data,

70

Implementation Details and Technology Stack

Figure 5.5: Bar Chart used to display risks by category

including transportation routes (see figure 5.6), "Dangerous Zones," and warehouses
locations, enhancing logistics risk management.

Figure 5.6: Transit with risk areas shown on Leaflet Map

71

Implementation Details and Technology Stack

5.1.8 Mermaid APIs for Gantt Diagrams

Gantt diagrams play a vital role in project management and risk assessment. To
enable users to create Gantt diagrams effortlessly, Mermaid APIs were leveraged.
An algorithm was devised to translate project-related information, input by the user
via forms, into Markdown Language. This Markdown data was then passed to the
Mermaid APIs, allowing users to construct Gantt diagrams seamlessly, eliminating
the need for additional manual steps. An example of a Mermaid Gantt diagram can
be seen in figure 5.7 and the code to generate the Gantt starting from a ProjectDto
can be seen in code snippet 5.1.8.

Figure 5.7: Gantt Diagram generated with Mermaid

1 generateMermaidGanttChartString (project : ProjectDto){
2 var mermaidString = "gantt\n";
3 mermaidString += "\ ttitle " + project .name + "\n";
4 mermaidString += "\ tdateFormat YYYY -MM -DD\n";
5 var sections = project . sections .sort ((a,b)=> a. orderNumber - b

. orderNumber);
6 sections . forEach (s => {
7 mermaidString += "\ tsection " + s.name + "\n";
8 s. workItems .sort ((a,b)=> +new Date(a. expectedStartDate) - +

new Date(b. expectedEndDate)). forEach (w => {
9 mermaidString += "\t" + w.name + " : " + w.

expectedStartDate .split(’T’)[0] + ", " + w. expectedEndDate .
split(’T’)[0] + "\n";

10 })
11 });
12 return mermaidString ;
13 }

Listing 5.1: Code to translate a ProjectDto to a Markdowm language for Mermaid

72

Implementation Details and Technology Stack

5.1.9 Machine Learning with ML.NET

Machine Learning (ML) capabilities were seamlessly integrated into the application
using ML.NET, a powerful and versatile framework specifically designed for de-
veloping, training, and testing ML models within the C# programming language.
ML.NET proved to be an invaluable addition to our software stack, simplifying the
implementation of complex ML models without demanding an extensive background
in Machine Learning.

This integration empowered the application to harness the full potential of ML,
providing predictive and analytical insights that are instrumental in supporting
critical risk management decisions.

ML.NET’s compatibility with various data sources and formats allowed us
to easily incorporate real-time data into our risk assessments, ensuring that our
application remained responsive to dynamic, evolving risks. In section 5.3 I will
go into more detail on the algorithms chosen for the software and the code to
implement them.

5.2 Actual App Functionalities with Screenshots
This section provides an overview of the key functionalities within the Risk Manage-
ment Tool, along with accompanying screenshots to offer a visual representation.

5.2.1 Dashboard

The Dashboard serves as the central hub for accessing key insights and data
visualizations related to risk management. It’s possible to filter insights by date.

It is divided into three tabs:

• Risk Dashboard: This tab, as shown in 5.8, presents a comprehensive view of
risks registered in the system and their assessment. The cornerstone of modern
risk management, the Impact-Likelihood matrix, is prominently featured here.

• Project Dashboard: In this tab, users can access charts and graphs pertaining
to ongoing or upcoming projects that require assessment and risk management.

• Loss Events Dashboard: This section provides valuable information regarding
the historical loss events of the company, allowing for an in-depth analysis of
past incidents.

73

Implementation Details and Technology Stack

Figure 5.8: Risk Dashboard

5.2.2 Risk Management
The Risk Management section is the core of the application, enabling users to
efficiently handle and evaluate risks.

• Risk Register: This feature is where risks are recorded and managed through
the assessment of Impact, Likelihood, and Velocity values (see figure 5.9).
Users can also link risks to other attributes that have been added in vari-
ous subsections, such as Causes, Impacts, Risk Categories, and LossTypes
associated with the risk (see figure 5.10).

• Causes: Here the user can manage possible factors causing the risks.

• Impacts: Functionality to manage possible consequences of the risks.

• Risk Categories: In this subsection possible categories of risks in the Register
are managed (e.g., Reputational, Financial, Operational).

• Key Risk Indicators (KRIs): This subsection allows users to manage and
display Key Risk Indicators on a Speedometer (see figure 5.11), providing an
intuitive visualization of risk levels.

• Mitigations: Users can add new Mitigations, which form the basis for Mitiga-
tion plans.

• Risk Breakdown Matrix (RBM) Entries: The Risk Breakdown Matrix is a
powerful tool for determining the most critical risks in a project. In this

74

Implementation Details and Technology Stack

subsection, as shown in 5.13 it’s possible to connect a Risk to a specific Work
Item and decide whether to Accept or Mitigate it. It’s also possible to modify
assessment values for the specific case, instead of using general risk assessment
values.

Figure 5.9: The Risk Register

Figure 5.10: Form for adding/editing a Risk

75

Implementation Details and Technology Stack

Figure 5.11: Speedometer to show a KRI

Figure 5.12: Form for adding/editing a RBM Entry

76

Implementation Details and Technology Stack

5.2.3 Project Management
This section facilitates the registration and management of projects within the
application, allowing for organized and efficient project oversight.

• Projects: Users can create and edit projects, which serve as containers for
related Sections and Work Items. Sections and Work Items belonging to the
Project can be added directly from the Project’s form, as shown in figure, or
separately. A Gantt diagram is automatically generated based on the project
hierarchy.

• Sections: Sections represent distinct parts of a project and can be organized
hierarchically.

• Work Items: These items make up the sections and are essential for project
planning and execution.

• Mitigation Plans: This feature enables users to create mitigation plans, which
are projects specifically designed to mitigate risks.

Figure 5.13: Form for adding sections to a Project

5.2.4 Loss Events History
In this section, users can manage the company’s historical loss events and categorize
them by specific types.

• Loss Events: Users can access and manage records of previous damaging
events within the company.

• Loss Types: This subsection allows users to categorize loss events based on
their specific types, such as Hacking or Theft.

77

Implementation Details and Technology Stack

5.2.5 Data Loss Prevention
The Data Loss Prevention module focuses on safeguarding sensitive information
from loss, theft, or exposure to unauthorized parties.

• Cyber Security Statistics: Users can gain real-time insights into the current
security landscape and make informed decisions. See figure 5.14

• Fields: This subsection enables users to manage various organizational sectors
susceptible to cyber-attacks.

Figure 5.14: Cyber Security Statistics

5.2.6 Asset Loss & Logistics Risk Management
This section is dedicated to identifying, assessing, and controlling risks that may
impact the transportation or storage of goods.

• Asset Statistics: Users can access up-to-date risk assessments based on thor-
ough data analysis for each Italian province by clicking on the map (see
screenshot 5.15).

• Transits and Stops: This subsection allows the management of shipments and
monitoring when a transit crosses a "Dangerous Zone".

78

Implementation Details and Technology Stack

• Warehouses and Countries: Users can manage risks associated with items that
are not in transit and adapt security plans based on the value of transported
goods.

• Product Types: This feature facilitates the adjustment of security plans and
risk management based on the type and value of transported goods.

Figure 5.15: Asset Statistics

Throughout the application, as seen in 5.16, an intuitive and consistent user
interface ensures ease of use, offering functionalities such as searching, filtering,
and exporting data to Excel, enabling users to efficiently collect information for
formal Risk Reports.

Figure 5.16: Additional Functionalities (Export to Excel button on the top right,
searching and filtering)

79

Implementation Details and Technology Stack

5.3 Machine Learning Model Implementation
In this section, I will go into detail on how Machine Learning (ML) models have
been implemented using ML.NET, by including and describing pieces of code.

5.3.1 Cyber Crimes Forecast

1 var filePath = "path were to save the model";
2

3 // Initialize the MLContext
4 var context = new MLContext ();
5

6 // Load data from the provided source
7 var data = context .Data. LoadFromEnumerable (

CyberCrimesMLForecast . GetModelInput ());
8

9 // Define the forecasting pipeline
10 var pipeline = context . Forecasting . ForecastBySsa (
11 nameof (ModelOutput .Value),
12 nameof (ModelInput . OBS_VALUE),
13 windowSize : 5,
14 seriesLength : 10,
15 trainSize : 16,
16 horizon : 4,
17 confidenceLowerBoundColumn : nameof (ModelOutput . Value_LB)

,
18 confidenceUpperBoundColumn : nameof (ModelOutput . Value_UB)

);

This code serves as the entry point for the program. It initializes the MLContext for
ML.NET and sets the file path for the ML model. It also loads data from a source
using the LoadFromEnumerable method, which calles a method that gets data
from ISTAT’s APIs. The algorithm selected was ForecastBySsa. The forecasting
pipeline is defined, specifying input and output columns, window size, series length,
train size, horizon, and confidence bounds.

• filePath: This variable holds the file path where the ML model will be saved.

• context: The MLContext object is created to manage the ML.NET operations.

• data: Data is loaded from an enumerable source using LoadFromEnumerable.

• pipeline: The forecasting pipeline is defined with various configuration param-
eters.

80

Implementation Details and Technology Stack

1 // Fit the model with the data
2 var model = pipeline .Fit(data);
3

4 // Save the model to the specified file path
5 context .Model.Save(model , data.Schema , filePath);

This section fits the ML model using the defined pipeline and the loaded data. It
then saves the trained model to the specified file path.

• model: The trained ML model.

• context.Model.Save: Saves the model to the specified file path using ML.NET.

1 public static ModelOutput GetModelOutput (int horizon , string
wwwRootPath)

2 {
3 var modelOutput = Predict (wwwRootPath , horizon : horizon)

;
4 return modelOutput ;
5 }
6

7 public static ModelOutput Predict (string wwwRootPath ,
ModelInput ? input = null , int? horizon = null)

8 {
9 var PredictEngine = CreatePredictEngine (wwwRootPath);

10 return PredictEngine . Predict (input , horizon);
11 }
12

13 private static TimeSeriesPredictionEngine <ModelInput ,
ModelOutput > CreatePredictEngine (string wwwRootPath)

14 {
15 var mlContext = new MLContext ();
16 ITransformer mlModel = mlContext .Model.Load($"{

wwwRootPath }\\ wwwroot \\ Models \\ model -asset.zip", out var
schema);

17 return mlModel . CreateTimeSeriesEngine <ModelInput ,
ModelOutput >(mlContext);

18 }

Here, a time series prediction engine is created based on the trained model. This
engine is used to make predictions on new data.

81

Implementation Details and Technology Stack

• PredictEngine: The time series prediction engine created from the trained
model.

• modelOutput: Predictions are made using the Predict method of the engine.

The forecasted values, upper bounds, and lower bounds provide the predictions.

• Value: The forecasted values.

• Value_UB: Upper bounds of the forecasts.

• Value_LB: Lower bounds of the forecasts.

Accuracy

This model’s Evaluation Metrics are:
Mean Absolute Error: 6789,203
Root Mean Squared Error: 34974,648

• Mean Absolute Error (MAE): MAE measures the average absolute difference
between predicted and actual values. Lower MAE indicates better accuracy.
An MAE of 6789.203 suggests that my model’s predictions have an absolute
error of approximately 6,789.203 units. In the context of this data, where the
values range from 102,104 to 316,492, this error represents a relatively small
percentage of the data’s range.

• Root Mean Squared Error: RMSE is similar to MAE but penalizes larger errors
more heavily. An RMSE of 34,974.648 means that my model’s predictions
have a root mean squared error of approximately 34,974.648 units. As with
MAE, in the context of my data, this RMSE value appears reasonable given
the data’s scale.

To provide a more interpretable assessment in terms of a percentage of the data’s
range, we can calculate the relative errors:

• Relative MAE (%): (MAE / (316,492 - 102,104)) * 100 = (6789.203 / 214,388)
* 100 ≈ 3.17%

• Relative RMSE (%): (RMSE / (316,492 - 102,104)) * 100 = (34,974.648 /
214,388) * 100 ≈ 16.31%

Interpreting these relative errors:

• The relative MAE of approximately 3.17% suggests that, on average, my
model’s predictions have an error of about 3.17% of the data’s range. This is
generally considered quite good, especially for time series forecasting.

82

Implementation Details and Technology Stack

• The relative RMSE of approximately 16.31% indicates that my model’s pre-
dictions have a root mean squared error of about 16.31% of the data’s range.
While slightly higher, this is still within an acceptable range for many applica-
tions.

5.3.2 Asset Crimes Forecast
This prediction model is the same as the previous one, except for the input. This
model offers the possibility to select different provinces as input and return the
right prediction based on the model associated with that province. Models are
generated una tantum for every province, and selected based on their code.

1 private static TimeSeriesPredictionEngine <ModelInput ,
ModelOutput > CreatePredictEngine (string provinceCode ,
string wwwRootPath)

2 {
3 var mlContext = new MLContext ();
4 /* insert correct model name here */
5 ITransformer mlModel = mlContext .Model.Load($"{

wwwRootPath }\\ wwwroot \\ Models \\ model_ " + provinceCode + "
.zip", out var schema);

6 return mlModel . CreateTimeSeriesEngine <ModelInput ,
ModelOutput >(mlContext);

7 }

As shown in the code, the CreatePredictionEngine module receives the provinceCode
as an argument and selects the corresponding Model file.

Accuracy

This model’s Evaluation Metrics are:
Mean Absolute Error: 30468,852
Root Mean Squared Error: 36542,474

Let’s interpret the MAE and RMSE values in the context of this data:

• Mean Absolute Error: An MAE of 30,468.852 means that, on average, the
model’s predictions have an absolute error of approximately 30,468.852 units.
In the context of this data, where the values range from 290,787 to 531,168,
this error represents a moderate percentage of the data’s range.

• Root Mean Squared Error: An RMSE of 36,542.474 indicates that my model’s
predictions have a root mean squared error of approximately 36,542.474 units.

83

Implementation Details and Technology Stack

As with MAE, in the context of this data, this RMSE value represents a
moderate percentage of the data’s range.

Now, let’s calculate the relative errors:

• Relative Mean Absolute Error (%): (Mean Absolute Error / (531,168 -
290,787)) * 100 = (30,468.852 / 240,381) * 100 ≈ 12.69%

• Relative RMSE (%): (RMSE / (531,168 - 290,787)) * 100 = (36,542.474 /
240,381) * 100 ≈ 15.21%

Interpreting these relative errors:

• The relative Mean Absolute Error of approximately 12.69% suggests that, on
average, the model’s predictions have an error of about 12.% of the data’s
range. This error rate, while moderate, may still be acceptable for some
applications.

• The relative RMSE of approximately 15.21% indicates that the model’s pre-
dictions have a root mean squared error of about 15.21% of the data’s range.
Similar to Mean Absolute Error, this is a moderate error rate, which can be
considered acceptable for many scenarios.

5.3.3 DataRecovered, ConsumerLawsuit and ArrestProse-
cution Classification

As previously said, classification algorithms were exploited to analyze boolean
values associated with Loss Events. The classification was performed for each of
these classes, but to avoid repetitions, I will use DataRecovered as an example.

1 using Microsoft .ML;
2 using DataRecoveredClassification ;
3 using static Microsoft .ML. DataOperationsCatalog ;
4 using System .Data;
5 using System .IO;
6

7 // Define file paths
8 string _appPath = Path. GetDirectoryName (Environment .

GetCommandLineArgs () [0]);
9 string _dataPath = Path. Combine (_appPath , "..", "..", "..",

"Data", " DataLossNew .CSV");
10 string _modelPath = Path. Combine (_appPath , "..", "..", "..",

" Models ", "model.zip");
11

12 // Initialize MLContext

84

Implementation Details and Technology Stack

13 MLContext _mlContext ;
14 PredictionEngine <DataLoss , DataRecoveredPrediction >

_predEngine ;
15 ITransformer _trainedModel ;
16 IDataView _dataView ;
17

18 // Create an instance of MLContext
19 _mlContext = new MLContext (seed: 0);
20

21 // Load data from a text file
22 _dataView = _mlContext .Data. LoadFromTextFile <DataLoss >(

_dataPath , hasHeader : false , separatorChar : ’;’);

In this section, the code initializes paths for data files and model files. It also
sets up the ML.NET environment, including creating an MLContext, a prediction
engine, and loading data from a text file.

• _appPath: The path to the application directory.

• _dataPath: The path to the data file.

• _modelPath: The path to the ML model file.

• _mlContext: The MLContext object is created to manage the ML.NET
operations.

• _dataView: Data is loaded from a text file using LoadFromTextFile.

1 // Split data into training and testing sets
2 TrainTestData splitDataView = _mlContext .Data. TrainTestSplit

(_dataView , testFraction : 0.2);
3

4 // Build the data processing pipeline
5 var pipeline = ProcessData ();
6 var trainingPipeline = BuildAndTrainModel (splitDataView .

TrainSet , pipeline);

This section splits the loaded data into training and testing sets. It also defines
the data processing pipeline and builds a training pipeline for the ML model.

• splitDataView: Data is split into training and testing sets.

• pipeline: Data processing pipeline is created.

85

Implementation Details and Technology Stack

• trainingPipeline: Training pipeline for the ML model is constructed.

1 IEstimator < ITransformer > ProcessData ()
2 {
3 // Define the data processing pipeline
4 var pipeline = _mlContext . Transforms . Conversion .

MapValueToKey (inputColumnName : " DataRecovered ",
outputColumnName : "Label")

5 // ... More transformations ...
6 . AppendCacheCheckpoint (_mlContext);
7

8 return pipeline ;
9 }

This section defines the data processing pipeline, which includes transformations
on the input data.

• pipeline: The data processing pipeline is constructed, featuring various trans-
formations.

1 IEstimator < ITransformer > BuildAndTrainModel (IDataView
trainingDataView , IEstimator < ITransformer > pipeline)

2 {
3 // Build and train the ML model
4 var trainingPipeline = pipeline . Append (_mlContext .

MulticlassClassification . Trainers . SdcaMaximumEntropy ("
Label", " Features "))

5 . Append (_mlContext . Transforms . Conversion .
MapKeyToValue (" PredictedLabel "));

6 _trainedModel = trainingPipeline .Fit(trainingDataView);
7 _predEngine = _mlContext .Model. CreatePredictionEngine <

DataLoss , DataRecoveredPrediction >(_trainedModel);
8

9 // Create a sample DataLoss object for prediction
10 DataLoss dataLoss = new DataLoss ()
11 {
12 // ... Sample data values ...
13 };
14

15 // Make a prediction using the trained model
16 var prediction = _predEngine . Predict (dataLoss);
17

18 // Display the prediction result

86

Implementation Details and Technology Stack

19 Console . WriteLine ($" =============== Single Prediction
just -trained -model - Result : { prediction . DataRecovered }
=============== ");

20 return trainingPipeline ;
21 }

This section builds and trains the ML model. It also showcases how to use the
trained model to make predictions.

• trainingPipeline: The training pipeline for the model is built, including the
choice of the training algorithm.

• _trainedModel: The ML model is trained using the training data.

• _predEngine: A prediction engine is created for making predictions.

• dataLoss: A sample data instance is created for prediction.

• prediction: A prediction is made using the trained model, and the result is
displayed.

1 void Evaluate (DataViewSchema trainingDataViewSchema)
2 {
3 // Load test data
4 var testDataView = splitDataView . TestSet ;
5

6 // Evaluate the model using test data
7 var testMetrics = _mlContext . MulticlassClassification .

Evaluate (_trainedModel . Transform (testDataView));
8

9 // Display evaluation metrics
10 Console . WriteLine ($" ******************************* ");
11 Console . WriteLine ($"* Metrics for Multi -class

Classification model - Test Data ");
12 Console . WriteLine ($"*------------------------------");
13 Console . WriteLine ($"* MicroAccuracy : {

testMetrics . MicroAccuracy :0.###} ");
14 Console . WriteLine ($"* MacroAccuracy : {

testMetrics . MacroAccuracy :0.###} ");
15 Console . WriteLine ($"* LogLoss : {

testMetrics . LogLoss :#.###} ");
16 Console . WriteLine ($"* LogLossReduction : {

testMetrics . LogLossReduction :#.###} ");
17 Console . WriteLine ($" ******************************* ");

87

Implementation Details and Technology Stack

18

19 // Save the trained model
20 SaveModelAsFile (_mlContext , trainingDataViewSchema ,

_trainedModel);
21 }

This section evaluates the trained model using test data and displays evaluation
metrics. It also saves the trained model to a file.

• testDataView: Test data is loaded for evaluation.

• testMetrics: Metrics for evaluating the model’s performance on test data are
calculated and displayed.

Accuracy

Classification models use metrics defined in table 5.1 to determine accuracies
and the results obtained are shown in picture 5.17. Comparing the values with
the metrics, we’ll see that the accuracy obtained by classification models can be
considered a good starting result.

5.3.4 Acceptance and Mitigation Classification
The Acceptance and Mitigation Classification followed the same approach as the
previous subsection. The Features considered were the ones related to the Project
(the WorkItem at risk) and the Risk and its assessment. Also, the specific RBM
assessment was considered. However, this algorithm didn’t produce accurate results,
since we didn’t have enough data from previously assessed Projects. This means
that this algorithm will be used in practice after a number of users upload their
data and perform their assessments. An alternative could be using synthetic data
as an input, but this wouldn’t produce results as accurate as the results obtained
using actual organization’s data.

88

Implementation Details and Technology Stack

Metric Description
Micro-Accuracy Micro-average Accuracy aggregates the contributions

of all classes to compute the average metric. It is the
fraction of instances predicted correctly. The micro-
average does not take class membership into account,
treating every sample-class pair equally. Closer to 1.00
is better, suitable for class-imbalanced datasets.

Macro-Accuracy Macro-average Accuracy is the average accuracy at the
class level. It computes accuracy for each class and then
takes the average, treating every class equally. Minority
classes are given equal weight as larger classes. Closer
to 1.00 is better, treats all classes equally.

Log-loss Logarithmic loss measures the performance of a classi-
fication model when predictions are probability values
between 0.00 and 1.00. Log-loss increases as predicted
probabilities diverge from actual labels. Closer to 0.00
is better; 0.00 represents a perfect model.

Log-Loss Reduction Logarithmic loss reduction quantifies the advantage of
the classifier over random guessing. It ranges from -inf
to 1.00, with 1.00 indicating perfect predictions and 0.00
indicating mean predictions. For example, a value of
0.20 implies a 20

Table 5.1: ML.NET Classification Metrics
[30]

89

Implementation Details and Technology Stack

Figure 5.17: Respectively Data Recovered, Arrest Prosecution and Consumer
Lawsuit Accuracies

90

Implementation Details and Technology Stack

5.4 Implementation of Agile Testing
In this section, I’ll delve into the practical implementation of Agile testing in the
context of the Risk Management application.

To maintain agility and deliver software updates efficiently, we’ve implemented
a CI/CD pipeline. The testing Implementations described below were executed
at every push on the common repository. In this way, modifications to the code
were followed by automated feedback. Tests were implemented at each Entity and
throughout the whole development process. Following this approach, we ensured
that bugs were discovered as soon as they were created and not only at the end.

5.4.1 C# Unit Testing Example
Below are practical examples of C# unit tests for the Risk Entity. These tests use
the Shouldly library and Xunit framework to verify the application’s functionality:

1 using System ;
2 using System .Linq;
3 using Shouldly ;
4 using System . Threading .Tasks;
5 using Volo.Abp. Domain . Repositories ;
6 using Xunit;
7

8 namespace RiskManagementApp .Risks
9 {

10 public class RisksAppServiceTests :
RiskManagementAppApplicationTestBase

11 {
12 private readonly IRisksAppService _risksAppService ;
13 private readonly IRepository <Risk , Guid >

_riskRepository ;
14

15 public RisksAppServiceTests ()
16 {
17 _risksAppService = GetRequiredService <

IRisksAppService >();
18 _riskRepository = GetRequiredService < IRepository

<Risk , Guid >>();
19 }
20

21 [Fact]
22 public async Task GetListAsync ()
23 {
24 // Act

91

Implementation Details and Technology Stack

25 var result = await _risksAppService . GetListAsync
(new GetRisksInput ());

26

27 // Assert
28 result . TotalCount . ShouldBe (2);
29 result .Items.Count. ShouldBe (2);
30 result .Items.Any(x => x.Risk.Id == Guid.Parse("

bdf95243 -814c -47e3 -8bb6 - ca6e4350a13d ")). ShouldBe (true);
31 result .Items.Any(x => x.Risk.Id == Guid.Parse("

24 ce4eff -0d1e -44be -b83c - c9bd216cd915 ")). ShouldBe (true);
32 }
33 // ... (Other test methods)
34 }
35 }

These tests cover critical aspects of the application, including data retrieval,
record creation, updating, and deletion. By writing unit tests, we ensure that each
component functions correctly and maintains data integrity.

5.4.2 Building the Test Base with Data Seeders
To ensure that the Risk Management application is thoroughly tested, a robust test
base with data seeders is essential. Data seeders help populate the application’s
database with predefined data, allowing to execute tests against a consistent and
known dataset.

Data seeder classes like the following were implemented for each application
entity. Below the data seeder for the Risk Entity:

1 using System ;
2 using System . Threading .Tasks;
3 using Volo.Abp.Data;
4 using Volo.Abp. DependencyInjection ;
5 using Volo.Abp.Uow;
6 using RiskManagementApp .Risks;
7

8 namespace RiskManagementApp .Risks
9 {

10 public class RisksDataSeedContributor :
IDataSeedContributor , ISingletonDependency

11 {
12 private bool IsSeeded = false;
13 private readonly IRiskRepository _riskRepository ;

92

Implementation Details and Technology Stack

14 private readonly IUnitOfWorkManager
_unitOfWorkManager ;

15

16 public RisksDataSeedContributor (IRiskRepository
riskRepository , IUnitOfWorkManager unitOfWorkManager)

17 {
18 _riskRepository = riskRepository ;
19 _unitOfWorkManager = unitOfWorkManager ;
20 }
21

22 public async Task SeedAsync (DataSeedContext context)
23 {
24 if (IsSeeded)
25 {
26 return ;
27 }
28

29 // Insert predefined risk data
30 await _riskRepository . InsertAsync (new Risk
31 (
32 id: Guid.Parse("bdf95243 -814c -47e3 -8bb6 -

ca6e4350a13d "),
33 name: " Example Risk 1",
34 description : " Description for Risk 1",
35 // ... (other properties)
36));
37 ...
38

39 await _unitOfWorkManager . Current .
SaveChangesAsync ();

40

41 IsSeeded = true;
42 }
43 }
44 }

By incorporating data seeders into the testing, it’s possible to maintain a
consistent and controlled environment for testing the application’s functionality
and data integrity.

93

Implementation Details and Technology Stack

5.4.3 Angular End-to-End (e2e) Testing Example
Angular applications also undergo rigorous testing. Here’s an example of an Angular
End-to-End (e2e) test using Protractor:

1 // Example Angular e2e test for the Risk Management
application

2 import { AppPage } from "./ app.po";
3 import { browser , logging } from " protractor ";
4

5 describe ("workspace - project App", () => {
6 let page: AppPage ;
7

8 beforeEach (() => {
9 page = new AppPage ();

10 });
11

12 it(" should display welcome message ", () => {
13 page. navigateTo ();
14 expect (page. getTitleText ()). toEqual (" RiskManagementApp

app is running !");
15 });
16

17 afterEach (async () => {
18 // Assert that there are no errors emitted from the

browser
19 const logs = await browser
20 . manage ()
21 .logs ()
22 .get(logging .Type. BROWSER);
23 expect (logs).not. toContain (
24 jasmine . objectContaining ({
25 level: logging .Level. SEVERE
26 } as logging .Entry)
27);
28 });
29 });

This e2e test simulates user interactions with the application, validating that
the user interface is responsive and that the welcome message is displayed. It also
checks for any browser console errors, ensuring a smooth user experience.

Also, manual e2e tests were performed by different team members, who provided
fast and detailed feedback.

The combination of C# unit tests and Angular e2e tests ensures that the

94

Implementation Details and Technology Stack

application meets user expectations and maintains a high level of quality throughout
its development lifecycle.

5.5 Deployment Implementation
In this section, we’ll dive into how we took the Risk Management application from
development to production. This is where the application becomes accessible to
users.

5.5.1 Azure DevOps: Streamlining the Process
Azure DevOps became our command center for orchestrating the deployment
process. Azure DevOps provided a virtual workspace for our development team.
We used Git repositories to manage our source code. This helped us track changes,
collaborate efficiently, and maintain code integrity.

Our Continuous Integration and Continuous Delivery (CI/CD) pipelines were
the heart of our deployment process. Whenever code changes were pushed to the
Git repository, these pipelines automatically kicked into action. They compiled the
code, ran unit tests, and produced deployment-ready artifacts.

Azure DevOps simplified the deployment process with its release pipelines. These
pipelines were like a set of instructions for deploying our application. They took care
of provisioning infrastructure, deploying code, and configuring environment-specific
settings.

We created distinct environments, such as development and production, within
Azure DevOps. This separation allowed us to test changes in isolated environments
before deploying them to production, reducing the risk of unexpected issues.

Azure DevOps wasn’t just about deploying; it was also about monitoring. We
integrated application monitoring tools, which collected data on how the application
was performing in real-time. This data was invaluable for identifying and addressing
issues quickly.

5.5.2 Terraform: Building Infrastructure as Code
Terraform played a crucial role in ensuring that our infrastructure was provisioned
consistently and predictably. With Terraform, we defined our infrastructure require-
ments as code. This included virtual machines, databases, networking components,
and security policies. These configurations became Terraform scripts.

Our Terraform scripts were version-controlled, just like our application code.
This allowed us to track changes to the infrastructure over time. Before applying
any changes, we could review and test them thoroughly.

95

Implementation Details and Technology Stack

Terraform made it easy to create and manage environments consistently. We
could spin up development, staging, and production environments with identical
configurations.

When we needed to scale our infrastructure up or down, Terraform made
it straightforward. It also ensured that our infrastructure configurations were
reproducible, minimizing configuration drift.

5.5.3 Deployment Workflow in Action
Here’s how the deployment process played out in practice:

1. Source Code Integration: Developers pushed code changes to our Git
repository hosted in Azure DevOps. This triggered our CI pipeline, which
automatically built the application and generated deployment-ready artifacts.

2. Infrastructure Provisioning: Our Terraform scripts, kept in a separate
repository, defined what infrastructure we needed. Whenever we made code
changes or infrastructure updates, Terraform handled the provisioning or
updating of infrastructure components.

3. Deployment Automation: Azure DevOps release pipelines took those
built artifacts and deployed them to our chosen environments. This included
deploying application code, configuring database connections, and setting
environment-specific variables.

4. Testing and Validation: Within the deployment pipeline, we executed
automated tests, including unit tests and end-to-end tests, to validate the
application’s functionality. Any test failures triggered alerts for immediate
attention.

5. Monitoring and Feedback: After deployment, we kept a close eye on the
application’s performance. We collected user feedback and monitored error
rates and user interactions. This continuous feedback loop helped us identify
issues and prioritize improvements.

By combining Azure DevOps for streamlined orchestration and Terraform for
consistent infrastructure provisioning, we ensured that changes to the Risk Man-
agement application could be rapidly deployed to production while maintaining
the application’s reliability and stability.

96

Chapter 6

Evaluation and Testing

In this chapter, we comprehensively evaluate the Risk Management application’s
performance, usability, and adherence to the defined requirements. The evaluation
process involved developers and a Risk Management expert, who collectively
assessed the application. This chapter presents the methodology used for evaluation,
the real-world testing scenarios, the results and findings, and a comparison of the
application’s performance against the specified requirements.

6.1 Evaluation Methodology
The evaluation of the Risk Management application followed a structured method-
ology to ensure a thorough assessment. Before starting the evaluation, the team
identified key components to be tested and evaluated. This methodology included
the following key components:

1. Usability Assessment: Users interacted with the application to evaluate
its user-friendliness, intuitiveness, and overall user experience. Feedback was
collected to identify areas of improvement.

2. Scalability Testing: The application underwent scalability testing to assess
its ability to handle increasing workloads. This involved simulating scenarios
with growing data and user loads to measure performance under stress.

3. Customization Evaluation: We examined the application’s customization
capabilities to determine its adaptability to specific business needs. Feedback
from stakeholders was collected to identify areas for further customization.

4. Requirements Compliance: A thorough review of the defined requirements
was conducted to ensure that the application met the specified criteria. Any
deviations or gaps were noted for future enhancement.

97

Evaluation and Testing

5. Machine Learning Model Accessibility: The accessibility of machine
learning models through the user interface was verified. Any models not
integrated were identified for inclusion.

6. Risk Report Generation: The generation of risk reports was tested to assess
the application’s ability to provide comprehensive risk insights. Feedback was
gathered to enhance report generation capabilities.

7. Multi-Tenancy Assessment: The multi-tenancy feature was assessed. As
it was initially implemented as a Proof of Concept (PoC), its readiness for
production and customer use was examined.

The evaluation process combined both quantitative and qualitative data, provid-
ing valuable insights into the application’s performance and areas for improvement.

6.2 Testing in Real-World Scenarios
Real-world testing scenarios were designed to simulate actual usage conditions and
challenges. These scenarios included:

1. Data Volume Increase: The application was tested with an increasing
volume of historical and evaluation data to assess its response time and
resource utilization as data scaled.

2. User Load Testing: Simulated user loads were applied to determine how the
application performed under various levels of concurrent users. This helped
identify potential bottlenecks. This also helped us to configure a correct Azure
configuration for the deployed software.

3. Customization Requests: Customization requests from potential customers
were evaluated to understand their unique needs and requirements. These
scenarios provided insights into the application’s adaptability.

4. Machine Learning Model Integration: Pending machine learning models
were evaluated for integration into the application to verify their accessibility
and functionality via the user interface. The theoretical analysis of the Accep-
tance/Mitigation classification was performed. Challenges and requirements
for its practical implementation were identified. The integration of loss events
classification into the application was evaluated. Any gaps or missing features
were documented.

5. Risk Reporting: Risk reporting features were used to generate comprehensive
risk reports for real-world data. Feedback from users helped enhance report
generation.

98

Evaluation and Testing

6. Multi-Tenancy Verification: The multi-tenancy feature was verified for its
functionality and reliability as part of a potential customer engagement.

These real-world scenarios allowed us to identify strengths and weaknesses,
ensuring that the application was well-prepared for practical use.

6.3 Results, Findings, and Comparison with Re-
quirements

The evaluation process yielded several key results and findings. Users found the
application to be user-friendly and intuitive, providing a seamless experience for
risk management tasks. The application demonstrated impressive scalability with
the right deployment configuration, handling increased data volumes and user loads
without significant performance degradation. However, stakeholders expressed
the need for further customization to align the application with specific business
requirements.

While many Machine Learning models were accessible via the user interface,
some were yet to be integrated, and this integration was identified as a priority.
The theoretical analysis of the Acceptance/Mitigation classification identified the
need for additional data and refinement before practical implementation. Integra-
tion of loss events classification was deemed essential and marked for immediate
implementation.

The application successfully generated comprehensive risk reports, but user
feedback suggested enhancements to report formatting and customization.

The multi-tenancy feature, initially a Proof of Concept (PoC), requires further
development to fulfill requirements for production and customer use.

A potential customer expressed interest in the product but with specific cus-
tomization requirements, opening opportunities for collaboration.

A critical aspect of the evaluation was comparing the application’s performance
with the defined functional and non-functional requirements. Additional customiza-
tion is required to fully align the application with specific business requirements.
Despite these gaps, the application’s usability, scalability, portability, and overall
performance aligned with or exceeded the defined non-functional requirements.
Furthermore, the expression of interest from a potential customer signifies the
application’s potential value in the market.

99

Chapter 7

Conclusions and Future
Directions

The journey through this thesis had the goal of reaching a comprehensive un-
derstanding of risk management, leading to the development of a Software as a
Service (SaaS) application that encapsulates the essential elements of modern risk
management systems. In this concluding chapter, I will describe the significant
achievements, and the challenges faced, and explore possible future developments.

Our study commenced with a deep theoretical study of risk management, laying
the foundation for the creation of a dynamic SaaS platform. This platform includes
all core components and features crucial for effective risk management, offering a
robust and versatile tool that provides a modern solution without taking lightly
the basis of the subject.

The adoption of Agile methodology and rigorous testing practices played a great
role in our success. Agile principles empowered our development process, ensuring
compliance with defined requirements. The software quality was supported by unit
and integration tests, together with end-to-end testing for the front end.

In the realm of software architecture, Domain Driven Design (DDD) principles
guided our approach, resulting in a well-structured and maintainable codebase.
DDD allowed a development process founded on the Core subject of this thesis: Risk
Management. Our choice of technology stack, ABP.io with C# for the backend and
EFCore, alongside Angular for the front-end, enhanced the application’s reliability
and scalability and gave us the possibility to obtain a high level of security through
authorization and authentication pre-made modules.

The User Interface (UI) is a highlight of the tool, embellished with interactive
charts, maps, and an intuitive dashboard, also thanks to the Lepton Theme. These
features not only enhance User Experience (UX) but also provide valuable insights
for risk assessment.

100

Conclusions and Future Directions

Machine Learning, powered by ML.NET, brought predictive capabilities to the
application. Our ML.NET models demonstrated commendable accuracy, except
for one notable challenge: the algorithm to predict Acceptance or Mitigation for
Risk Breakdown Matrix (RBM) Entries. This challenge is rooted in the scarcity of
historical project assessment data. However, we intend to overcome this problem
in the future by harnessing actual usage data or synthetic data.

Loss events classification models, while implemented, await intuitive integration
into the UI to maximize accessibility.

The deployment was performed through Azure DevOps, orchestrated by Con-
tinuous Integration and Continuous Delivery (CI/CD) pipelines, and facilitated
by Terraform for infrastructure provisioning. This orchestrated approach stream-
lined the process, ensuring consistent and reliable deployment across different
environments.

The application’s robustness was subjected to evaluation by a Risk Manage-
ment Expert. Valuable feedback was received, highlighting the need for improved
reporting. Presently, the application allows for exporting data in Excel tables for
individual entities, but there is a clear demand for a full PDF risk report generation
and customization to fulfill diverse customer needs.

The potential of our SaaS application was further recognized when it attracted
the interest of a possible buyer, affirming its relevance and power on the market.

While we celebrate our accomplishments, it’s essential to acknowledge our
limitations. Acquiring historical data was a notable challenge, and although open-
source APIs and databases were employed, the key to enhanced results requires us
to use real software usage data.

Our study does not end here, it was just the beginning of this software lifecycle.
Future directions include integrating network monitoring tools into the data loss
prevention module with the aim of fortifying our application against potential
threats and attacks. Moreover, we intend to expand the application’s capabilities
to diverse company structures and requirements, enhancing its versatility and
customization.

Additionally, this thesis will be joined with a preceding student’s work in Orbyta
that consisted of web scraping through Google searches. This blending holds the
promise of an integrated Credit Risk Management module to be used during the
Due Diligence of potential partners or customers. A structured result based on
many Google entries could significantly speed up the investigation phase performed
before collaborations occur, reducing the risk of failures.

In closing, this thesis has been a journey of discovery, innovation, and chal-
lenges.

101

Bibliography

[1] Stanford University. Risk. Stanford - Office of the Chief Risk Officer, 2019. url:
https://ocro.stanford.edu/enterprise-risk-management-erm/key-
definitions/definition-risk (cit. on p. 11).

[2] Antonino Trapani. Project risk management frameworks analysis and contin-
gency evaluation criteria. 2019-2020 (cit. on p. 11).

[3] ISO 31000:2018 - Risk management – Guidelines. International Organization
for Standardization, 2018. url: https://www.iso.org/standard/65694.
html (cit. on p. 12).

[4] Committee of Sponsoring Organizations of the Treadway Commission (COSO).
Enterprise Risk Management - Integrated Framework. COSO. 2004. url:
https://www.coso.org/Documents/990025P_ERM_ExecutiveSummary.pdf
(cit. on p. 12).

[5] Linda Tucci. «What is risk management and why is it important?» In: Tech
Target (2021). url: https : / / www . techtarget . com / searchsecurity /
definition/What-is-risk-management-and-why-is-it-important (cit.
on pp. 12, 13).

[6] Kirk Patrick Price. «The 5 Components of Risk Management». In: Kirkpatrick-
Price (2021). url: https://kirkpatrickprice.com/blog/5-components-
risk-management/ (cit. on p. 14).

[7] EDUCAUSE. «IT Risk Register». In: (2015). url: https://library.educa
use.edu/resources/2015/10/it-risk-register (cit. on p. 17).

[8] Patricia Guevara. «A Guide to Understanding 5x5 Risk Matrix». In: (2023).
url: https://safetyculture.com/topics/risk-assessment/5x5-risk-
matrix/ (cit. on p. 16).

[9] David Hillson, Sabrina Grimaldi, and C. Rafele. «Managing Project Risks
Using a Cross Risk Breakdown Matrix». In: Risk Management 8 (Mar. 2006),
pp. 61–76. doi: 10.1057/palgrave.rm.8250004 (cit. on p. 18).

[10] Archer. https://www.archerirm.com/. Year: 2023 (cit. on pp. 19, 20).

102

https://ocro.stanford.edu/enterprise-risk-management-erm/key-definitions/definition-risk
https://ocro.stanford.edu/enterprise-risk-management-erm/key-definitions/definition-risk
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/65694.html
https://www.coso.org/Documents/990025P_ERM_ExecutiveSummary.pdf
https://www.techtarget.com/searchsecurity/definition/What-is-risk-management-and-why-is-it-important
https://www.techtarget.com/searchsecurity/definition/What-is-risk-management-and-why-is-it-important
https://kirkpatrickprice.com/blog/5-components-risk-management/
https://kirkpatrickprice.com/blog/5-components-risk-management/
https://library.educause.edu/resources/2015/10/it-risk-register
https://library.educause.edu/resources/2015/10/it-risk-register
https://safetyculture.com/topics/risk-assessment/5x5-risk-matrix/
https://safetyculture.com/topics/risk-assessment/5x5-risk-matrix/
https://doi.org/10.1057/palgrave.rm.8250004
https://www.archerirm.com/

BIBLIOGRAPHY

[11] Beverly Park Woolf. «Chapter 7 - Machine Learning». In: Building Intel-
ligent Interactive Tutors. Ed. by Beverly Park Woolf. San Francisco: Mor-
gan Kaufmann, 2009, pp. 221–297. isbn: 978-0-12-373594-2. doi: https:
//doi.org/10.1016/B978- 0- 12- 373594- 2.00007- 1. url: https://
www.sciencedirect.com/science/article/pii/B9780123735942000071
(cit. on p. 21).

[12] Istituto Nazionale di Statistica. Delitti denunciati dalle forze di polizia
all’autorità giudiziaria. http://dati.istat.it/Index.aspx?DataSetCode=
dccv_delittips. 2021 (cit. on pp. 22, 40).

[13] «Classification Algorithm in Machine Learning». In: javaTpoint (2021). url:
https://www.javatpoint.com/classification-algorithm-in-machine-
learning (cit. on p. 23).

[14] Brian Turner. «What is SaaS? Everything you need to know about Software
as a Service». In: TechRadar (2020). url: https://www.techradar.com/
news/what-is-saas (cit. on p. 26).

[15] Kathleen Casey Wesley Wesley. «What is SaaS (Software as a Service)?
Everything You Need to Know». In: TechTarget (2022). url: https://www.
techtarget.com/searchcloudcomputing/definition/Software-as-a-
Service (cit. on pp. 26, 27).

[16] Martin Fowler Kent Beck Robert C. Martin. «The Agile Manifesto». In:
agilemanifesto.org (2001). url: http://agilemanifesto.org/iso/en/
manifesto.html (cit. on p. 28).

[17] André Janus. «Towards a Common Agile Software Development Model
(ASDM)». In: SIGSOFT Softw. Eng. Notes 37.4 (July 2012), pp. 1–8. issn:
0163-5948. doi: 10.1145/2237796.2237803. url: https://doi.org/10.
1145/2237796.2237803 (cit. on p. 29).

[18] Jeff Sutherland Ken Schwaber. «The Scrum Guide». In: Scrum.org (2020).
url: https://www.scrum.org/resources/scrum-guide (cit. on p. 29).

[19] Gianluca Tramontana. «Quali differenze tra metodologia Agile, CI/CD e
DevOps». In: gianlucaTramontana (2020). url: https://www.gianlucatr
amontana.it/2020/01/14/quali-differenze-tra-metodologia-agile-
ci-cd-e-devops/ (cit. on p. 34).

[20] What is CI/CD? https://about.gitlab.com/topics/ci-cd/ (cit. on
p. 36).

[21] Robert Martin. Design Principles and Design Patterns. Prentice Hall, 2000
(cit. on p. 36).

103

https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00007-1
https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00007-1
https://www.sciencedirect.com/science/article/pii/B9780123735942000071
https://www.sciencedirect.com/science/article/pii/B9780123735942000071
http://dati.istat.it/Index.aspx?DataSetCode=dccv_delittips
http://dati.istat.it/Index.aspx?DataSetCode=dccv_delittips
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.techradar.com/news/what-is-saas
https://www.techradar.com/news/what-is-saas
https://www.techtarget.com/searchcloudcomputing/definition/Software-as-a-Service
https://www.techtarget.com/searchcloudcomputing/definition/Software-as-a-Service
https://www.techtarget.com/searchcloudcomputing/definition/Software-as-a-Service
http://agilemanifesto.org/iso/en/manifesto.html
http://agilemanifesto.org/iso/en/manifesto.html
https://doi.org/10.1145/2237796.2237803
https://doi.org/10.1145/2237796.2237803
https://doi.org/10.1145/2237796.2237803
https://www.scrum.org/resources/scrum-guide
https://www.gianlucatramontana.it/2020/01/14/quali-differenze-tra-metodologia-agile-ci-cd-e-devops/
https://www.gianlucatramontana.it/2020/01/14/quali-differenze-tra-metodologia-agile-ci-cd-e-devops/
https://www.gianlucatramontana.it/2020/01/14/quali-differenze-tra-metodologia-agile-ci-cd-e-devops/
https://about.gitlab.com/topics/ci-cd/

BIBLIOGRAPHY

[22] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003. isbn: 978-0321125217 (cit. on
p. 37).

[23] Halil İbrahim Kalkan. Implementing Domain Driven Design. Packt Publishing,
2013. isbn: 978-1782160038 (cit. on pp. 37, 38, 64).

[24] M.Eng. Luca Mella. Double Extortion: Cyber Extortion Attack Breach Tracker.
[Online; Thu Sep 07 2023]. 2023. url: https://doubleextortion.com/ (cit.
on pp. 40, 41).

[25] Data Loss Archive and Database (DLDOS). 2007. url: https://attrition.
org/dataloss/ (cit. on pp. 40, 41).

[26] Hishaam Ahmed. List of Top Data Breaches (2004 - 2021). 2021. url: https:
/ / www . kaggle . com / datasets / hishaamarmghan / list - of - top - data -
breaches-2004-2021 (cit. on pp. 40, 41).

[27] nData. Guida all’uso delle API REST di ISTAT. 2022. url: https://ondata.
github.io/guida-api-istat/ (cit. on p. 40).

[28] Halil Ibrahim Kalkan. Mastering ABP Framework. Packt Publishing, 2022.
isbn: 978-1801079242 (cit. on pp. 62, 63).

[29] Entity Framework Tutorial. What is Code-First? https://www.entityfr
ameworktutorial.net/code-first/what-is-code-first.aspx (cit. on
p. 67).

[30] Microsoft ML.NET Documentation. Evaluate your ML.NET model with met-
rics. url: https : / / learn . microsoft . com / en - us / dotnet / machine -
learning/resources/metrics (cit. on p. 89).

104

https://doubleextortion.com/
https://attrition.org/dataloss/
https://attrition.org/dataloss/
https://www.kaggle.com/datasets/hishaamarmghan/list-of-top-data-breaches-2004-2021
https://www.kaggle.com/datasets/hishaamarmghan/list-of-top-data-breaches-2004-2021
https://www.kaggle.com/datasets/hishaamarmghan/list-of-top-data-breaches-2004-2021
https://ondata.github.io/guida-api-istat/
https://ondata.github.io/guida-api-istat/
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx
https://learn.microsoft.com/en-us/dotnet/machine-learning/resources/metrics
https://learn.microsoft.com/en-us/dotnet/machine-learning/resources/metrics

Acknowledgements

I would like to express my deepest gratitude to my family for their support and
encouragement.

To my sister Orsola, your presence has been a constant source of motivation.
To Antonio, your wisdom and precious advice have been my greatest source of

strength.
I extend my heartfelt thanks to my friends, both near and far, for moments of

laughter that provided much-needed breaks from my academic pursuits.
To my supervisor, Professor Maurizio Morisio, for giving me the opportunity to

conclude my university path with challenging and engaging work.
To my company tutor Angelo Nestola and my mentor Xhoi Kerbizi, I am grateful

for your support and for providing me with the opportunity to apply my academic
knowledge to real-world challenges. Your guidance has been instrumental in shaping
my professional growth.

I would also like to thank all my colleagues at the company where I conducted
my thesis research. Your insights, collaboration, and shared dedication to our
projects enriched my learning experience.

To my study group of close friends, "I Duchi Degli Abruzzi", a small community
always changing and growing. Thank you for the study sessions and fun times.
Your friendship has been a light that guided these five years.

This thesis would not have been possible without the contributions and support
of each of you.

Thank you for being a part of this journey.

105

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Orbyta Tech
	Provider profile
	Type of provider (Vendor/System integrator) and general presentation
	Key Provider Information

	Provider organization overview
	Business Provider Strategy and Profile

	Risk Management Approaches and Tools
	Risk Management Overview
	The ISO 31000 standard
	COSO ERM Framework
	COSO's ERM framework vs ISO 31000 standard
	The 5 components of risk management
	Challenges and Limitations of Risk Management

	Risk Management Elements
	The Risk Register
	Impact and Likelihood: The Risk Matrix
	Metrics: KRIs
	The RBM
	Loss Events History

	Risk Management Software
	Competitor Analysis
	Why Archer?
	Key factors driving the need for a new tool

	Machine Learning For Risk Management
	Forecast Algorithms
	Classifier Algorithms
	Challenges and Considerations

	Methodology and System Architecture
	Introduction to Methodology and Design Principles
	SaaS Model
	A multi-tenant architecture
	Advantages and disadvantages of SaaS
	Why we choose the SaaS Model

	Agile Methodology
	The Scrum Framework
	Agile and Scrum Application during the Project

	Testing and Deployment Strategies
	Testing Strategies
	Agile Testing
	CI/CD

	DDD
	Key Concepts of DDD
	Benefits of DDD

	Data Research and Analysis
	Data Research
	Data Analysis

	Machine Learning Integration
	Requirement Documents and Design Artifacts
	Stakeholders and Interfaces
	Class Diagram
	Context and Use Case Diagrams
	Functional Requirements
	Non-Functional Requirements
	Deployment Diagram and System Design

	Implementation Details and Technology Stack
	Technology Stack
	ABP.io Framework
	C# Back-End
	Entity Framework Core
	Angular Front-End
	Lepton UI Theme
	Chart.js Library
	Leaflet for Maps
	Mermaid APIs for Gantt Diagrams
	Machine Learning with ML.NET

	Actual App Functionalities with Screenshots
	Dashboard
	Risk Management
	Project Management
	Loss Events History
	Data Loss Prevention
	Asset Loss & Logistics Risk Management

	Machine Learning Model Implementation
	Cyber Crimes Forecast
	Asset Crimes Forecast
	DataRecovered, ConsumerLawsuit and ArrestProsecution Classification
	Acceptance and Mitigation Classification

	Implementation of Agile Testing
	C# Unit Testing Example
	Building the Test Base with Data Seeders
	Angular e2e Testing Example

	Deployment Implementation
	Azure DevOps: Streamlining the Process
	Terraform: Building Infrastructure as Code
	Deployment Workflow in Action

	Evaluation and Testing
	Evaluation Methodology
	Testing in Real-World Scenarios
	Results, Findings, and Comparison with Requirements

	Conclusions and Future Directions
	Bibliography

