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Abstract

Objective: Vagus Nerve Stimulation (VNS) offers treatment for drug-resistant
epilepsy, but the mechanism underlying its efficacy remains unclear. This study
aimed to uncover microstructural features in VNS responders and non-responders
using diffusion magnetic resonance imaging (dMRI), diffusion models and machine
learning techniques.
Methods: Data were collected from 19 patients with drug-resistant epilepsy. Dif-
fusion tensor imaging and other multi-compartment models (NODDI, DIAMOND
and Microstructure Fingerprinting) were used to compute microstructural metrics
within distinct regions of interest (ROIs) outlined on tractography pathways esti-
mated using FreeSurfer and MRtrix3. We calculated the weighted mean, standard
deviation, skewness, and kurtosis of the metrics along the tracts for summarising
their distribution. Univariate analysis has been performed through non-parametric
statistical tests: Mann-Whitney U rank, Kruskal-Wallis and Barnard exact tests.
Multivariate analysis has been performed by a sequential feature selector to select
the best classifying set of microstructural metrics. The extraction of Radiomics
features has been conducted to get more informative characteristics about the shape
and voxel intensities of the selected regions, feature selection algorithms together
with classification algorithms have allowed us to classify non-responder patients.
Deep Learning methodologies have been applied to classify patients without the
use of precomputed ROIs. A pre-trained 3D encoder was used to reduce the size of
the volumes and classify the responsiveness.
Results: Treatment in non-responders demonstrated a greater mean diffusivity
(MD) in the thalamocortical connections, the fornix, and the anterior commissure
(p < 0.01), as well as the feature selector, selected the fornix as best classifying
features. Wavelet and local binary pattern features have been the most frequently
selected by the Radiomics pipeline, reaching an accuracy above 0.9. Expected re-
sults have been found with deep learning approaches, overfitting has been observed
due to the lack of a large dataset.
Interpretation: Further studies are needed to fully understand the roles of the
corpus callosum, anterior commissure and longitudinal fasciculus in mediating
the effect of VNS. Our results emphasize the potential of microstructural connec-
tions, machine learning and deep learning to guide personalized VNS treatment
adjustments and prediction of non-responders patients to VNS.
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Introduction

Epilepsy is a significant neurological disorder that affects millions of people world-
wide [1]. Up to a third of epileptic patients have drug-resistant epilepsy [2]. In
recent years, Vagus Nerve Stimulation (VNS) has emerged as a promising ther-
apeutic intervention for drug-resistant epilepsy. Despite its clinical effectiveness,
the underlying mechanisms of VNS are poorly understood, particularly concerning
variability in treatment response [3].

Several studies have been conducted to predict the response to VNS. Mithani
et al. [4] employed connectome profiling to identify responders to VNS, using
machine learning algorithms to analyse diffusion data. This approach allowed them
to find more connectivity and robust microstructures in the left-lateralized limbic
system, thalamocortical connections and association fibres. Ibrahim et al. [5]
highlighted the importance of presurgical thalamocortical connectivity in predicting
response to VNS. They used machine learning algorithms to classify responders
and non-responders based on functional MRI data (fMRI). Enhanced connectivity
in thalamocortical connections, anterior cingulate cortex and insular cortex were
found.

Leveraging advanced diffusion magnetic resonance imaging (dMRI) techniques,
including DTI, NODDI [6], DIAMOND [7] and Microstructure Fingerprinting [8],
we quantitatively assess various microstructural metrics within specific regions of
interest (ROI). These advanced models enable the computation of various metrics
representing distinct biological aspects of microstructure.

By employing these techniques, we aim to identify specific biomarkers associated
with responders and non-responders. We extend the method by incorporating
machine learning algorithms to predict responders to VNS based on the relations
of microstructural metrics.

In the following chapters, we will discuss the method used in data collection,
the computation of microstructural metrics using advanced dMRI techniques, the
selection of specific ROIs and the statistical analyses performed. Our goal is to
contribute to a deeper understanding of the neurobiological mechanisms of VNS
response by examining the microstructural alterations induced, thus advancing
personalised treatment approaches for drug-resistant epilepsy.
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Chapter 1

Theoretical background

1.1 Magnetic Resonance Imaging

1.1.1 Magnetic properties of nuclei
Biological organisms and tissues are naturally rich in hydrogen atoms, mostly in
water and fats. Magnetic Resonance Imaging (MRI) principles are based on the
physical properties of hydrogen atoms of the body, allowing the reconstruction of
anatomical, structural, and functional images.

From a classical point of view, an atomic nucleus can be assumed as a sphere
rotating around its axis, as shown in Figure 1.1a. This rotation is called spin and
it is the intrinsic angular momentum of the nucleus, and it can be an integer or a
half-integer depending on the mass number1 and the atomic number2. Spin can be
observed in nuclei belonging to elements with odd atomic numbers or odd mass
numbers. Hydrogen is composed of one proton. Therefore, the spin can take only
the values 1/2 and −1/2 [9].
Since the nucleus is a charged particle, a rotation of it creates a magnetic field.
From this point of view, the particle behaves like a small magnetic dipole, as shown
in Figure 1.1a: µ⃗ = iS where µ⃗ is the intrinsic magnetic momentum that is aligned
on its spin S.
Normally the orientation of µ⃗ is completely random due to thermal random motion,
therefore, the sum of the magnetic momentum is null (∑︁

i µi = 0).
In an external magnetic field B0, a magnetic dipole can take two orientations:
parallel or anti-parallel. The rotation of the particle and the external magnetic
field create a precession around B0 like a spinning top, as shown in Figure 1.1b:

1Mass number: number of protons and neutrons
2Atomic number: number of protons

2



Theoretical background

(a)
(b)

Figure 1.1: (a) Representation of the spin and the magnetic moment [10]; (b) Precessional
motion of a proton spin in an applied magnetic field. [11]

Γ = µ⃗ × B0 where Γ is the torque. The axis rotates around the area of a "cone",
with an angular speed proportional to the applied field following Larmor’s Law:

f0 = γ

2π
B0, (1.1)

γ is the gyromagnetic ratio and it is a characteristic of the nucleus (for the atoms
of hydrogen γ = 42.58 MHz T−1). The frequency of precession is called Larmor
frequency.
From a global point of view, the populations of protons moments create a macro-
scope magnetisation when an external magnetic field is applied, with the direction
equal to the external field, as shown in Figure 1.2 on the right, defined by [9]:

M = 1
V

∑︂
i

µi⃗ . (1.2)

The transversal magnetization in xy plane is null since the components µxy rotates
with distinct phases and overall, they nullify themselves, as shown on the left of
Figure 1.2.
Without the magnetic field, it does not exist any difference between the two
orientations (parallel and anti-parallel), because they are equiprobable, as shown
in Figure 1.2 on the left. With the application of the static magnetic field, the
antiparallel orientation will have higher energy (N ↓) than the parallel orientation
with lower energy (N ↑) since it must be the opposite of the external field. The
occupation ratio of the two energy levels is described by the Boltzmann distribution:

N↑

N↓
= e− ∆E

kT , (1.3)

3



Theoretical background

Figure 1.2: Separation of different energy levels after the application of the external field B0.
The proportion of low-level spins (i.e., parallel to the direction of the external magnetic field)
is greater than the proportion of spins of higher energy (i.e., antiparallel to the direction of the
external magnetic field). [12] Translated.

where k is the Boltzmann’s constant, and T is the absolute temperature in [K].
The energy of a magnetic dipole in a magnetic field B0 can be defined by:

E = −µ⃗ · B0 = −µzB0 ⇒,

where µz = γ h
2π

I, and continuing it:

⇒ EI = −γ
h

2π
IB0,

where h is Planck’s constant, and I is the spin orientation for the Hydrogen.
Knowing that:

∆E = E− 1
2

− E 1
2

= h
γ

2π
B0 = hf0,

we find that there are more spins in E↑ (lower energy) state than in E↓ (higher
energy) state, as shown in Figure 1.2.
The equilibrium macroscopic magnetization is non-zero and is defined by [9]:

M0 =
( γ

2π
)2h2ρB0I(I + 1)

3kT
, (1.4)

where ρ is the spin density3. I = 1/2 for Hydrogen.

1.1.2 Radiofrequency pulse
Measuring the M0 is easier with a variation of itself than a static magnetic field.
Therefore, a variable signal can be generated if controlled oscillations are inducted

3Spin density: number of spins per unit volume
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in the spin system [9]. If a RF pulse is applied at the Larmor frequency (fRF = f0)
we observe a resonance condition 1.3, and if the system resonates with the pulse it
starts to absorb energy 1.4.

B1(t) = 2B1(t) cos(2πfRF t + ϕ)1xy. (1.5)

Figure 1.3: The trajectory of the magnetization
vector. The vector describes a spiral trajectory by
rotating at the Larmor frequency, tilting creates a
transverse component of magnetisation, while the mag-
nitude of the longitudinal component is reduced. [12]

Figure 1.4: Effect of the RF impulse. (a) Initial situation; (b) Longitudinal and transverse
components of the macroscopic magnetization; (c) State of the magnetization after applying a
90°-RF pulse. [12] Arranged.

The flip angle from the initial direction of the magnetization is defined by [9]:

θ = γB1TRF ,

where TRF is the duration of the RF pulse.
Now the magnetization vector can be represented with a longitudinal magnetization
Mz and a transverse magnetization Mxy as in [9]:

M = Mz1z + Mxz1xy. (1.6)
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1.1.3 Relaxation
After applying the RF pulse, it tends to return to the initial state, these phenomena
are called relaxation.

[Longitudinal magnetisation] Mz → M0;

[Transverse magnetisation] Mxy → 0.

Figure 1.5: There is a progressive transi-
tion to the equilibrium from the high level
to the lower level of energy. [10]

The first is the longitudinal relaxation (spin-lattice relaxation or T1-relaxation) in
which the magnetisation recovers to its original M0 because the energy state after
the RF pulse is unstable, it will create a transition of spins from high energy to
low energy, as shown in Figure 1.5. Can be mathematically described by [9]:

Mz(t) = M0 + (Mz(0) − M0)e− t
T1 , (1.7)

where T1 is the time needed by Mz to reach 63% of the initial value M0, as shown
in Figure 1.6.
In the T1-weighted image the signals must depend on the T1 relaxation. Therefore,
the time between the RF pulses must be brief, but sufficient to differentiate the
different tissues, as shown in Figure 1.6. In these scans, the white matter (WM) is
represented in light grey, the grey matter (GM) in a darker shade of grey, and the
fluids in black.

Figure 1.6: The T1 relaxation time is different for types of tissue. [12] Translated.
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The second phenomenon is the transverse relaxation (spin-spin relaxation or T2-
relaxation) and it is characterized by a loss in the coherence of the spin phases, as
shown in Figure 1.7. It can be written as [9]:

Mxy(t) = Mxy(0)e− t
T2 , (1.8)

where T2 is the time needed to Mxy to reduce itself to 37% of the initial value 1.8.

Figure 1.7: After the RF impulse there is a
fast dephasing of the protons. The transver-
sal magnetization Mxy decreases quickly.
[10]

In the T2-weighted image the signals must depend only on the T2 relaxation.
Therefore, we need to wait for the relaxation effects T1 to be exhausted before
reading the signal and sending a new one. In these scans, WM is dark grey, GM is
light grey, and cerebral spinal fluid CSF is white, as shown in Figure 1.8.

Figure 1.8: The T2 relaxation time is different for types of tissue. [12] Translated.

In real conditions of an imperfect homogeneity of the field B0 we see the effective
relaxation time, defined by [9]:

1
T2∗

= 1
T2

+ γ∆B0, (1.9)

where ∆B0 are the inhomogeneities in the magnetic field.

1.1.4 Spin-echo sequence
To obtain images with different types of contrast is needed to control the time
between RF pulses and the time between readings of the signal.
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The first sequence used for clinical purposes is the spin-echo, which consists of a
90° RF pulse, a 180° RF pulse and an echo. It introduces two main parameters:
the Echo time (TE) and the Repetition time (TR). The time between two 90° RF
pulses is defined as TR, while the time between the RF pulse and the spin echo is
defined as TE, as shown in Figure 1.9.

Figure 1.9: Diagram picturing the spin echo sequence. At the time t0 is sent the first 90° pulse
from which TE and TR start, all spins are tipped in the transverse plane. After TE/2 (t1) the
180° pulse flips all the spins with respect to the transversal plane. At the time t2 the spins are
refocused, and they generate a spin echo, this is the Echo Time. After TR at t3, a new spin echo
sequence starts. Translated from [12].

The 180° RF pulse has a double intensity and is called echo impulse. An echo
impulse mirrors all the spins of 180°, therefore, the faster spins and the slower ones
are inverted in position, creating the possibility that all the spins are refocused at
time TE. [9]

Contrast

By varying TE and TR, three types of contrast behaviour can be obtained, as
shown in Figure 1.10:

• TE << T2 and TR = T1 : T1-contrast

• TE = T2 and TR >> T1 : T2-contrast

• TE << T2 and TR >> T1 : ρ-contrast (proton density)

8
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Figure 1.10: Matrix showing the different contrasts obtained with different TE and TR values.
[13]

1.1.5 Spatial coding

To reconstruct the image, it is necessary to select a definite volume of tissue called
voxel4, three operations are needed to locate them in the tissue: selecting the layer
(in the z-direction), selecting the column of the voxel (in the x-direction), and
selecting the row (in the y-direction). These selections are done by linear variations
of the magnetic field along a specific direction called Gradient fields.

To select a slice, a gradient is applied along the z direction, where the magnetic
field changes from a minimum to a maximum, and at the point where the gradient
is null the magnetic field is exactly B0. Therefore, only the nuclei in the condition
of resonance will generate a signal, see Figure 1.11.

Figure 1.11: The effect of the gradient Gz is to resonate only
the protons belonging to the slice in which the gradient is null
(null point), only they have a field B = B0 with a frequency
equal to the Larmor frequency. [12]

4A voxel is the 3D expansion of a pixel
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Using a gradient in the x-direction (Gx) creates a signal that is the sum of the
associated signals with different frequencies. This gradient is called the frequency
encoding gradient because the spins assume a precession frequency depending on
the gradient. Successively, a gradient is applied along the y direction (Gy), called
Gradient of phase encoding, it changes the spin phase depending on the gradient,
as shown in Figure 1.12. In this way, each element of the section is different from
the other by phase or frequency.

The raw data from these signals are collected in matrices that represent the
k-space in the frequency domain, in which Gy selects the row and Gx scans it and
saves it in the matrix. This sequence must be repeated n times for each line of the
k-space to fill it, as shown in Figure 1.12. Then the inverse Fourier transform is
applied to retrieve the image in the spatial domain.

Figure 1.12: Gradients Gx and Gz, temporal diagram, and k-space. [12] Arranged.

1.2 Diffusion-Weighted MRI
Sequences of Diffusion-Weighted MRI (DW-MRI) can supply motion-dependent
contrast of water molecules in tissues, which can significantly alter some brain
diseases. These sequences are also known as Diffusion Weighted Imaging (DWI) or
diffusion MRI (dMRI).

1.2.1 Pulse Gradient Spin Echo
The Pulsed Gradient Spin Echo (PGSE) sequence is the main diffusion-weighted
sequence used, it is composed of two magnetic gradients, before and after the 180°
RF pulse of the classic spin echo sequence. When the first diffusion gradient is
applied, the water molecules are dephased and the second gradient, after the 180°
RF pulse, will rephase the magnetisation, as shown in Figure 1.13. The difference
in gradient intensity which is subject to the water molecule is proportional to the
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distance travelled on the time between the two gradients and the gradient intensity.
Therefore, the protons that move faster will have a greater dephase.[12]

The intensity of a voxel can be described by the Stejskal-Tanner equation as
defined in [14], in which the signal will be equal to the intensity of a T2-weighted
image, reduced by a quantity that depends on the diffusion of the molecules.

I = I0 · e−bP GSE ·D, (1.10)
where I is the intensity of the received signal, I0 is the intensity of the base signal
(T2-weighted), bP GSE is the factor of sensibility (parameters of PGSE sequence),
and D is the coefficient of diffusivity (intrinsic characteristic of the tissue).

bP GSE = (γGδ)2(∆ − δ

3)[s/mm2], (1.11)

where G is the diffusion gradient intensity, δ is the duration of the diffusion gradient
and ∆ is the time between the first diffusion and the second.

Figure 1.13: Between
the two diffusion gradi-
ents is present the 180°
RF pulse, therefore the
second gradient is equal
to the first one because
the spin was already
flipped by the 180° RF
pulse. [12]

The diffusion can be affected even by pressure, temperature, and molecular interac-
tions, and DW-MRI cannot distinguish between these different causes. Furthermore,
if the path followed during diffusion is random rather than linear, the signal will be
only a measure between the starting point and the endpoint. For these reasons, D
is not correct and should be replaced by a coefficient called the apparent diffusion
coefficient (ADC) [12].

I = I0 · e−bP GSE ·ADC . (1.12)
Moreover, parts of the brain have free diffusion in all directions while in others the
movement of water molecules is contained between tissues. For example, diffusion
in WM will be higher along the direction of the axons rather than the perpendicular
direction, the diffusion is called anisotropic. While, if the diffusion does not have
any preferential direction, such as in the CSF, the diffusion is called isotropic, see
Figure 1.14. In this case, the Stejskal-Tanner equation as defined in [14] becomes:

I = I0 · e−bP GSE ·ĝT Dĝ, (1.13)
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where ĝ is the gradient direction vector.

Figure 1.14: In the WM, the diffusion of the
water molecules is free along the axon fibres, but
it is reduced perpendicularly to the fibres. This
is a case of Anisotropic diffusion. [10]

DWI collects data only from several gradient directions. The number of gradients
depends on how many angles the 360-degree circle can be cut. For example, DWI
with 12 gradient directions will take a scan every 30 degrees.[15]

1.2.2 Diffusion Tensor Imaging
One of the most popular and widely used mathematical models to describe the
primary orientation of white matter axon path is called diffusion tensor imaging
(DTI). This model was introduced in 1994 [16] and it consists of estimating an
effective diffusion tensor (D) within a voxel, which allows it to represent its
properties with a 3D ellipse. The diffusion tensor is described by a 3x3 symmetric
tensor that uses 6 PGSE sequences, one for each different orientation of the diffusion
gradient, because Dyx = Dxy, Dzx = Dxz and Dzy = Dyz.

D =

⎛⎜⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎟⎠ . (1.14)

Using the eigen decomposition of D, eigenvectors and eigenvalues are computed
and they are used to represent an ellipse in 3 orthogonal directions, as shown in
Figure 1.15. The eigenvalues λi are the likelihoods of the diffusion direction of a
voxel. The largest eigenvalue(λ1) is the principal direction of axons in that voxel.

D = QΛQ−1,

Λ =

⎛⎜⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎟⎠ . (1.15)

The result of DW-MRI is difficult to visualise in a single image. To summarise the
information, the eigenvalues are used to compute some metrics that characterise
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Figure 1.15: Isotropic and anisotropic tensor shapes that are characterized by the eigenvalues
of D (λ1, λ2, λ3). [17]

each voxel. The most used are the Mean Diffusivity (MD) and the Fractional
Anisotropy (FA) and they are computed by the Trace of the diffusion matrix as
defined in [14]:

MD = Tr(D)
3 = λ1 + λ2 + λ3

3 , (1.16)

FA =
√︄

3
2

√︂
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2√︂

λ2
1 + λ2

2 + λ2
3

. (1.17)

The MD is proportional to the Trace and it quantifies the amplitude of the ellipse,
or how much a particle is free to move, it is expressed in mm2/s. Therefore, the
MD does not give any information about the directions, but on how much free
water is contained in a voxel. MD is considered to be an indicator of WM damage.
The FA is a metric between 0 and 1 and it measures the degree of anisotropy in a
voxel. The more the eigenvalues are similar, the more FA tends to 0. On the other
hand, a fully anisotropic diffusion will have a value of 1.

Other metrics exist, such as the Axial Diffusivity (AD) and the Radial Diffusivity
(AD), defined in [14]. AD is expressed in mm2/s, and it is the diffusivity along the
principal axis of the diffusion ellipsoid. While the RD is a measure used to express
the diffusivity perpendicular to the principal direction of diffusion, expressed in
mm2/s.

AD = λ1, (1.18)

RD = λ2 + λ3

2 . (1.19)

Both FA and MD can be represented on the diffusion direction maps. The CSF
will have a high MD since the water is free to move in all directions, while the WM
will have a high FA because oriented in a single direction. The image obtained
from FA is called FA map and it is often displayed as RGB FA maps, in which
colours are used to stand for the principal direction of the diffusion (Red: left-right;
Green: anterior-posterior; Blue: superior-inferior).
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Metrics interpretation

The FA in WM measures the axonal integrity and organization in voxels with a
single fibre population, it may be an indicator of packing of fibres, coherence in the
main preferred diffusion direction [18] and myelination in a voxel [19]. The MD
and the FA are often used as complementary measures [19].
The MD in WM is an indicator of fibre damage (cell membrane deterioration), it is
similar for both GM and WM and higher for CSF [20].
AD tends to be variable in WM changes and it measures axonal damage and
degeneration. The RD in WM measures the degree of myelination and changes
in the axonal diameters or density may also influence RD. A higher RD indicates
demyelination and a higher AD can mean “a reduction in crossing fibres that results
in a higher principal axis of diffusion because fibres running in other directions are
no longer present” [21].

Limitations of DTI

The main limitation of the DTI model is that water molecules follow a Gaussian
distribution. Therefore, only a bundle of fibres can be modelled inside each voxel,
but a complex organisation of fibres is present in every voxel. For example, a voxel
having two crossing fibres is modelled by a large diffusion tensor rather than two
narrow tensors, as shown in Figure 1.16. Therefore, in these voxels, the DTI model
does not hold the assumption of a Gaussian distribution, and the resulting FA does
not reflect the actual anatomical microstructure. [12]

Figure 1.16: In the cases of fanning, crossing, kissing, and bending the DTI model is not capable
to distinguish the differences. [12]

1.2.3 Tractography
Tractography is a technique to estimate the pathways of white matter fibres in
the brain using data from DW-MRI. At first, tractography was introduced by
[22] using his proposed DTI model [16] [23]. But DTI assumes that white matter
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fibres have a single orientation (tensor) within each voxel, which can lead to false
trajectory results in regions with crossing fibres, as explained in 1.2.2 and shown in
Figure 1.16 [24]. To resolve these limitations more advanced algorithms such as
Constrained Spherical Deconvolution (CSD) [25] are used.

CSD estimates the fibre orientation distribution (FOD) from diffusion data.
This distribution value supplies information on other independent direction signals
present within a voxel. In the CSD model, the signal S(θ, ϕ) is assumed as
convolution over the unit sphere between the FOD F (θ, ϕ) and the response
function R(θ), as defined in [26] and shown in Figure 1.17a:

S(θ, ϕ) = F (θ, ϕ) ⊛ R(θ). (1.20)

(a) 2D illustration of a voxel having two fibre popula-
tions. It can be expressed as a convolution over the
unit sphere of an axially symmetric response function
R(θ) with a fibre orientation density function F (θ, ϕ).
In this case F (θ, ϕ) = 1

2 δ(θ1, ϕ1) + 1
2 δ(θ2, ϕ2). [26]

(b) Real parts of the spherical harmonics up to the
third order (n = 0,1,2,3), for degree between −3 ≤
m ≤ 3, with lobes in cyan colour showing positive
values and lobes in red colour showing negative values.
[27]

To estimate the FOD using CSD, it is first necessary to write the FOD as a linear
combination of spherical harmonic basis functions 1.17b. Then the FOD F (θ, ϕ)
can be obtained by performing the spherical deconvolution [28].
CSD supports only data acquired from a single shell5 and can supply high-quality
FOD estimates in voxel having WM only, in other cases the results may be
unreliable and noisy. In [29] was developed a new model Multi-shell Multi-tissue
CSD (MSMT-CSD), which considers also extra-cellular and other tissues for each
voxel.

Deterministic and Probabilistic Tractography

There are two different strategies used in fibre tractography: deterministic and
probabilistic algorithms, as shown in Figure 1.18. Both obtain as input diffusion

5In dMRI, a "shell" refers to a set of diffusion-weighted images acquired using the same b-value
or a range of b-values. Multi-shell dMRI refers to the acquisition of diffusion-weighted images
using multiple b-values (e.g., b=0, b=1000, b=2000, b=3000 [s/mm2])
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data or a FOD, and starting from seed points they follow a preferred diffusion
direction.

Deterministic tractography is a straightforward approach that involves tracking
the dominant direction of diffusion in each voxel of the brain. Given a seed point
exists a unique streamline. However, deterministic tractography is sensitive to
noise and crossing fibres (e.g., the DTI model).

Probabilistic tractography models the distribution of pathways rather than a single
deterministic solution, and the resulting tractography is based on a probability
distribution of pathways. Due to the distribution, a seed point can generate
different pathways to the target. Probabilistic tractography can supply a more
robust estimate of the tracts in the brain (e.g., MSMT-CSD model). [30] For these
reasons, we will use probabilistic algorithms in this study.

Figure 1.18: A Basic example shows
the difference between deterministic
and probabilistic tracking models. [31]

1.3 DW-MRI Microstructural models

1.3.1 NODDI (Neurite Orientation Dispersion and Density
Imaging)

Dendrites and axons can be called neurites. Neurite Orientation Dispersion and
Density Imaging (NODDI) is a three-compartment tissue model that models the
microstructure complexity of neurites. Such indices of neurites supply more specific
markers of brain tissue microstructure than DTI. [6]

NODDI distinguishes three types of microstructural environments: intra-cellular,
extra-cellular and CSF compartments. Each compartment gives rise to a separate
normalized MR signal Ai combined as:

A = (1 − νiso)(νicAic + (1 − νic)Aec) + νisoAiso, (1.21)
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where Aic, Aec, Aiso, and νic, νiso are the normalized signals and volume fractions
of intra-cellular, extra-cellular and CSF compartments, respectively.

Figure 1.19: Different compartments modelled by NODDI. The non-tissue compartment is
modelled by isotropic diffusion. The intra-neurite compartment models the fascicles as orientally
dispersed sticks, while the space around the fascicles is modelled by an anisotropic diffusion model.
[32]

The intra-cellular compartment models the space delimited by the membrane
of neurons. This space is modelled by cylinders of zero radii (sticks), and their
orientation distribution can range from highly parallel to highly dispersed. A
Watson distribution models the orientation distribution function as:

f(n) = M(1
2 ,

3
2 , κ)−1eκ(µn)2

, (1.22)

where M is the hypergeometric function, µ is the mean orientation, and κ measures
the orientation dispersion around µ. The normalized signal Aic is expressed as
follows:

Aic =
∫︂
S2

f(n)e−bd∥(q·n)2
dn, (1.23)

where q is the gradient direction and b is the b-value, f(n)dn gives the probability
of finding sticks along orientation n. The e−bd∥(q·n)2 term gives the signal atten-
uation due to unhindered diffusion along a stick with intrinsic diffusivity d∥ and
orientation n.

The extra-cellular compartment models the space around the neurons which is
occupied by distinct types of glial cells and additionally, GM and cell bodies [6].
The diffusion motion is modelled by a Gaussian anisotropic distribution and the
normalized signal is modelled with a tensor since the perpendicular diffusivity is
considered:

log Aec = −bqT (
∫︂
S2

f(n)D(n) dn)q, (1.24)

where D(n) is the diffusion tensor with the principal diffusion direction n, diffusion
coefficients d∥ and d⊥ parallel and perpendicular to n, respectively.
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The CSF compartment models the space occupied by CSF and is modelled as
isotropy Gaussian diffusion with diffusivity diso:

Aios = e−bdiso . (1.25)

Model parameters

The complete set of parameters for the NODDI model is composed of intra-
cellular volume fraction (νic) also called Neurite Density Index (NDI), parallel
diffusion coefficient (d∥), concentration parameter of Watson distribution (κ), mean
orientation of Watson distribution (µ), isotropic volume fraction (νiso), isotropic
diffusivity (diso) [6]. The diffusivities are fixed to typical values6 and the remaining
parameters are estimated. Furthermore, it is possible to compute the Orientation
Dispersion Index (ODI) [6], which quantifies the angular variation of the orientation
of the neurites, and that is defined as:

ODI = 2
π

arctan(1
κ

). (1.26)

Model output

The outputs of the model are:
• icvf: Thresholded intra-cellular volume fraction
• ODI: Fibre orientation dispersion index
• fbundle: Fibre bundles volume fraction
• fextra: Extra-cellular volume fraction
• fintra: Intra-cellular volume fraction
• fiso: Free water volume fraction

where
(fextra + fintra) + fiso = fbundle + fiso = 1. (1.27)

Metrics interpretation
fintra stands for the intra-neurite compartment and can measure axonal regeneration.
fextra measures the variation of microglial cells which can be interpreted as an
integrity measure of myelination. An increase in fiso describes cell shrinkage and a
decrease in tissue volume fraction. The ODI metric in WM may indicate loss of
tissue structural integrity. While in the context of GM, it may reflect the degree of
complexity of dendritic trees [33].

6The diffusivities are fixed to respective typical values: d∥ = 1.7 × 10−3mm2s−1 and diso =
3 × 10−3mm2s−1
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Limitations
NODDI focuses on explicitly modelling the fascicle dispersion with a Watson
distribution of sticks in each voxel, but this assumption is inconsistent with the
know tissue microstructure: fascicles with various microstructures have been seen
in the brain. Furthermore, it ignores intra-axonal radial diffusivity and considers
only a single fascicle compartment per voxel, while fascicle crossing with an angle
> 40◦ occurs in 60 − 90% of the voxels. Quoting what was written by Scherrer et
al. [7], “NODDI can capture crossing fascicles as increased dispersion but cannot
characterize each of them separately”.

1.3.2 DIAMOND

The signal arising from a voxel is composed of signals arising from multiple com-
partments. The DIstribution of 3D Anisotropic MicrOstructural eNvironments
in Diffusion-compartment imaging (DIAMOND) is a hybrid biophysical model of
tissues that combines multicompartment and statistical modelling to supply insight
into each compartment in each voxel [7].

It is inspired by the statistical framework of [34] which describes the diffusion of
microstructural environments in a voxel with a 1D probability distribution, which
explains the fraction of spin packets with a certain diffusion value in the voxel.
From ’The basic of MRI’ book [35] “a spin packet is a group of spins experiencing
the same magnetic field strength”.

(a) (b) (c)

Figure 1.20: (a) Example of a voxel in which an isotropic (red) and two anisotropic (blue
and green) compartments are mixed in DIAMOND; (b) The corresponding probability density
function of diffusivities is composed of a mixture of delta functions; (c) Peak-shaped distributions
of diffusivities. [7]
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DIAMOND requires the estimation of the number of tissue compartments in each
voxel, which enables direct assessment of compartment-specific diffusion character-
istics such as the compartment to mean diffusivity (cMD), axial diffusivity (cAD),
and radial diffusivity (cRD).

The matrix-variate distribution P (D) gives the probability of the spin packet
described by a 3D diffusivity D in the voxel [7]. Therefore, if a voxel consisted of
exactly one homogeneous microstructural environment characterised by a tensor
D0, then P (D) would be a delta function P (D) = δ(D − D0) and the model would
be equivalent to DTI. While, if it consisted of several identifiable homogeneous
microstructural environments, a mixture of delta functions would be used [7], as
shown in Figure 1.20b. Then the diffusion signal Sk is modelled by:

Sk = S0

∫︂
D∈Sym+(3)

P (D) exp(−bkgT
k Dgk) dD, (1.28)

where Sym+(3) is the set of 3x3 SPD7 matrices, gk is the orientation of the diffusion
gradient and bk is the b-value of the sequence.

In reality, each microstructural environment is never homogeneous. DIAMOND
uses a matrix-variate Gamma (mv-Γ) distribution centred in D0 to model the
population of spin packets, as shown in Figure 1.20c. The distribution shape can
be modelled by the shape κ > p−1

2 and Σ ∈ Sym+(3) Sigma parameters [7].

Pκ,Γ(D) = |D|κ−(p+1)/2

|Σ|κΓp(κ) exp(−trace(Σ−1D)), (1.29)

where | · | is the matrix determinant and Γp is the multi-variate gamma function.
Its expectation is D0 = κΣ, and the shape parameter κ decides the concentration
of the density around the mean value D0.
A heterogeneity index (cHEI) can be computed following the same transform as
ODI in NODDI [6]: cHEI(κ) = 2/π arctan(1/κ).

Considering Np populations each of them with a mv-Γ distribution Pκj ,Σj
(D)

with j ∈ [1, ..., Np] the matrix-variate distribution is defined as [7]:

P (D) =
Np∑︂
j=1

fjPκj ,Σj
(D), (1.30)

where fj is the occupation fractions and ∑︁Np

j=1 fj = 1.

7SPD: symmetric positive-definite matrices 3x3
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Combining 1.28 and 1.30 and using the Laplace transformation, the following
model is found [7]:

Sk = S0

Np∑︂
j=1

fjD(D0
j , κj), (1.31)

where D(D0, κ) = S0(1 + bkgT
k D0gk

κ
)−κ.

Model output

Considering only two compartments and the CSF, the resulting outputs of the
model are:

• Fractions of all the population fj and the CSF fraction;
• Fibre population tensor tj for each compartment;
• Heterogeneity index cHEI for each population and CSF.

From the tensor arrays, it is possible to compute the eigenvalues and DTI metrics
for each voxel (see Section 1.2.2) for each compartment (cMj). Therefore, we have
DTI metrics for each compartment that can be merged with a weighted sum, as in
the following formula:

wM = f0 ∗ cM0 + f1 ∗ cM1

ftot

= f0 ∗ cM0 + f1 ∗ cM1

f0 + f1
. (1.32)

Metric interpretation

Compartmentalized DTI metrics (wFA, wMD, wAD, wRD) can be extracted from t0
and t1 and they differ from the values obtained using DTI since more compartments
are considered in a single voxel. They have the same interpretation of DTI metrics.

Limitations

To summarise, DIAMOND focuses on capturing the distribution of 3D diffusivity
arising from each tissue compartment, and it requires the estimation of the number
of tissue compartments (Np) in each voxel, that is, the number of mv-Γ components.
The estimation of Np could be the only limitation of this model.

1.3.3 Microstructure fingerprinting
Microstructure fingerprinting (MF) is a model that uses Monte Carlo simulations
to estimate physically interpretable microstructural parameters, both in single and
in crossing fascicles of axons in each voxel [8]. It is a multi-compartment model,
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each voxel is composed of different structures. The fingerprints are pre-computed
DW-MRI signals that simulate a wide collection of a possible configurations of
fibres in a voxel. At each voxel, the best sparse combination of fingerprints is found
through an optimization solver, giving us microstructural parameters. [8]

MF is based on the superposition principle of crossing bundles, as shown in
Figure 1.21. It assumes that the DW-MRI signal S of each voxel is composed of
independent contributions of K bundles of axons with different orientations uk

occupying fractions νk of the physical volume and a partial volume νCSF of CSF
[8]. S can be expressed as:

S = M0

[︄
K∑︂

k=1
νkAfasc( Ωk, Tk, uk; g) + νcsfAcsf ( Dcsf , Tcsf ; g)

]︄

=
K∑︂

k=1
wkAk + wcsfAcsf

, (1.33)

where M0 is the initial transverse magnetization of the voxel, Ak := Afasc( Ωk, Tk, uk; g)
is the normalized DW-MRI signal of the k-th fascicle, modelled by a Monte Carlo
simulation, that would arise from an environment composed of fascicles with pa-
rameters Ωk and Tk, and wk is its weight defined as 1.34. Water is assumed to
diffuse freely and isotropically with a scalar diffusivity Dcsf .

wk = M0νk ⇐⇒ νk = wk∑︁K+1
k=1 wk

. (1.34)

Figure 1.21: The total signal is the sum of the attenuation of each compartment weighted by
the respective volume fractions. [36]

The dictionary is composed of DW-MRI signals (fingerprints) obtained by Monte
Carlo simulations of the random walk of water molecules in environments defined
by hexagonal packing of impermeable cylinders with different microstructural pa-
rameters Ωk that represents axons [8]. The fascicles are modelled by an axonal
radius (r) and separation between the cylinders (s), as shown in Figure 1.22.

Fascicle can be described by its intra-axonal volume fraction (or fibre volume
fraction fvf ), defined as the ratio between the area of axons within the hexagon
and the area of the hexagon 1.35, and by extra-axonal diffusivity Dex. The total
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Figure 1.22: Representation of
hexagonal packing of cylinders. At
the left is a representation of the
area of axons within the hexagon
Aaxons⊂hexagon, and at the right is
the area of the hexagon Ahexagon.
[37]

fibre volume fraction stands for the total fraction of water inside the axons in the
voxel:

fvffasc = Aaxons⊂hexagon

Ahexagon

= 2π√
3

(︃
r

s

)︃2
. (1.35)

A standard dictionary along the orientation k = 0, C0 = [A0
1 . . . A0

N ] ∈ RM×N is
composed by concatenation of all the combinations of the possible fingerprints (fvf
and Dex). [38]

After pre-computing the standards dictionary, the optimal combination of configu-
rations is found at run-time. The run-time method consists in concatenating all
the rotations of C0 along each population and then solving a sparse optimisation
problem to find the best combination of fingerprints and orientations. The sparsity
constraint ensures that only one fascicle is chosen out of all fascicles for a specific
orientation [39]. The sparsity constraint problem can be defined as:

(ĵ1, . . . , ĵK) = argmin
1≤j1,...,jK≤N

min
w≥0

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦y −

[︂
A1

j1| . . . |AK
jK

|Acsf

]︂
·

⎡⎢⎢⎢⎢⎣
w1
...

wK

wcsf

⎤⎥⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦, (1.36)

where y is the measured signal, and Ak
jk

= {Afasc (Ωjk
, Tk, uk; gi(t))}M

i=1 , 1 ≤ jk ≤
N is the signal from a fascicle with orientation uk and microstructural parameters
defined with index j. Finally, ĵk is the index of the best fingerprint in the k-th
direction.
From the optimal fingerprints and the weights, it is possible to extract the metrics
by:

νk = wk

(wk + wk′) ; fvfk = fvfĵk
; Dex,k = Dex,ĵk

.

Model output

Considering K = 2 the outputs of the model are:
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• ν0, ν1: Volume fractions of fascicles 0 and 1
• νtot: Volume fractions of total fascicles
• νcsf : Volume fraction of CSF
• fvf0, fvf1: Fiber volume fractions of the fascicles 0 and 1
• fvftot: Fiber volume fractions of all fascicles
• Dex,0, Dex,1: Extra-axonal diffusivity of fascicles 0 and 1
• Dex,tot: Extra-axonal diffusivity of total fascicles

where
ν0 + ν1 + νcsf = νtot + νcsf = 1. (1.37)

Based on the estimated metrics, the weighted total fibre volume fraction within a
voxel can be computed as:

wfvf = ν0 · fvf0 + ν1 · fvf1

νtot

= ν0 · fvf0 + ν1 · fvf1

ν0 + ν1
. (1.38)

Limitations

The use of single scalars r and s to characterise the intra-axonal signal and the
assumption of its impermeability is an overestimation of the axons. Furthermore,
the sparsity constraints do not allow mixtures of fingerprints to reconstruct the
signal arising from a single fascicle of axons, this could be a limitation for fascicles
with different microstructural properties in different subregions. [39]

1.4 Radiomics
We need to identify a reproducible technique capable of extracting quantitative fea-
tures from the image volumes computed by the microstructural models. Radiomics
is a practice where medical images are converted into mineable data, explaining
different properties of the selected tissue, such as shape and heterogeneity, and
used to predict outcomes [40] [41].

Hundreds of features are extracted from a single region by radiomics technique and
can be subdivided into statistical-based, texture-based, and shape-based.
Statistical-based features express the distribution of the voxel intensities by ordinary
metrics such as first-order statistics.
Texture-based features characterize different properties of matrices computed from
voxel intensities. The matrices are Gray Level Co-occurrence Matrix (GLCM),
Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM),
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Neighbouring Gray Tone Difference Matrix (NGTDM), and Gray Level Dependence
Matrix (GLDM).
Shape-based features describe geometric properties of the 2D or 3D regions [40].

Before the feature extraction, several image transformations can be applied to
the original volume to extract various properties of the tissues.
The high number of features creates data redundancy between them, requiring
feature selection and dimensionality reduction [40]. The typical workflow followed
in Radiomics is represented in Figure 1.23.

Figure 1.23: Radiomics workflow. First, ROI is defined, then for each ROI a large number of
features are extracted. Extracted features can be applied to different type of models. [40]

1.5 Statistical Test

To decide whether exist differences between two or more groups, statistical testing
is a tool to reach this target. A statistical test assumes a null hypothesis H0 and an
alternative hypothesis Ha. The idea is to find whether the data sufficiently support
the null hypothesis H0. A measure that tells us if the null hypothesis is rejected or
not is the p-value, it is the probability of no difference. The p-value measures how
likely the difference between the groups is due to change. A small p-value means
that this observation would be unlikely under H0, therefore it is rejected. Usually,
a threshold of 5% or 1% for the p-value is used to reject H0.
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1.5.1 Parametric and Nonparametric statistical test
Statistical tests are divided into two categories: parametric and nonparametric
tests.
Parametric tests work only if some assumptions are held by the data that they are
testing, these assumptions:

• Normality: it assumes that each group is normally distributed. For a dataset
with more than 30 samples for the group, usually, the normality can be assumed
and can be checked by using a Q-Q plot. For a small dataset with less than 30
samples for each group, the Shapiro-Wilk test and/or Anderson-Darling
test can be used to determine the normality assumption.

• Equal variance: assumes that the variance of each group is almost equal. It
can be checked using a boxplot or through the F-test or Levene’s test.

• Independence: it assumes that the observation in each group is independent
of observations in the other group.

• No outliers: it assumes that there are no outliers in any group. It can be
checked by a boxplot or through the Grubbs’s Test.

If the data do not hold these hypotheses for both groups, parametric tests do not give
a statistically important result and nonparametric tests are needed. Nonparametric
tests do not have assumptions to hold and for these reasons, they can be used
even for small sample sizes. The drawback is that nonparametric tests have lower
statistical power than their parametric equivalents.

1.5.2 Comparison tests
Comparison tests look for differences among group means. T-test is used to
compare the means of two independent groups, while ANOVA compares the mean of
two or more groups. The respective non-parametric tests are the Mann-Whitheny
rank test as an alternative t-test and the Kruskal-Wallis test as an alternative
ANOVA test.

1.5.3 Independence test
When both the input variables and the output variables are categorical, it is possible
to use a statistical test to know if there is a relationship between them. A test
is Chi-squared based on the Contingency table between the input variable and
the output variable. The contingency table summarises the samples putting the
value of the variables on the rows and columns, respectively. Each cell in the table
corresponds to the frequency of the observation.
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The Chi-Square test assumes as a null hypothesis H0 that the two categorical
variables are not related.
Fisher exact test and Barnard exact test are alternatives that can be used
to determine the dependence.
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Chapter 2

Epilepsy

2.1 Overview of Epilepsy

Epilepsy is a brain disorder characterized by a lasting predisposition to generate
spontaneous epileptic seizures and has many neurobiological, cognitive, and psy-
chosocial consequences [42]. Epilepsy affects over 50 million people worldwide,
making it one of the most common neurological diseases globally [1]. More than
75% of those with active epilepsy are untreated [43].

Epilepsy incidence is bimodally distributed with two peaks: the first in the
paediatric population less than 5 years old, and the second in people over the age
of 50 years. The incidence is higher in low-income countries than in high-income
countries, thanks to a contribution of poor hygiene, poor basic sanitation, and a
higher risk of infection [44]. Regardless of the geographical location, the prevalence
of active epilepsy is usually between 4 and 12 per 1000, with a risk factor that
varies with age [45].

The risk of death for a person with epilepsy is higher compared to the non-
epileptic population. Mortality in epilepsy can be divided into direct (e.g., status
epilepticus, injuries, sudden unexpected death [46]) or indirect (e.g., suicide, drown-
ing) disease-related death [47].
Sudden Unexpected Death in Epilepsy (SUDEP) is one of the causes of epilepsy-
related death, “it refers to the death of an epileptic patient that is not due to
trauma, drowning, status epilepticus, or other known causes but for which there is
often evidence of an associated seizure” [48, 49]. The exact cause of SUDEP is not
well understood, but it is thought to be related to abnormalities in the electrical
activity of the brain during seizures, which can affect the heart and breathing [50].
SUDEP is most seen in people with uncontrolled seizures, particularly those with
generalized tonic-clonic seizures [50].

Epilepsy rarely stands alone, and the presence of comorbidities is the norm:

28



Epilepsy

from Thijs et al., “more than 50% of people with epilepsy have one or several
added medical problems” [44]. These comorbidities include not only psychiatric
conditions (e.g., depression, anxiety disorder, psychosis, autism spectrum disorder,
dementia) but even somatic conditions (e.g., type 1 diabetes, arthritis, digestive
tract ulcers) [51].

Definitions
Epilepsy

The given definition of Epilepsy is usually practically applied as having two un-
provoked seizures occurring more than 24h apart. But the International League
Against Epilepsy (ILAE) proposed that epilepsy be a disease of the brain due to
any of the following conditions:

• “At least two unprovoked seizures that occurred more than 24 hours apart”
[42].

• “A single unprovoked seizure if recurrence risk is high (>60% over the next 10
years)” [42].

• “Diagnosis of epilepsy syndrome” [42].

Seizure

From Wikipedia and the World Health Organization, “an epileptic seizure is the
clinical manifestation of an abnormal, excessive, purposeless, and synchronized
electrical discharge in the neurons, that may lead to involuntary movement that
may involve a part of the body (partial) or the entire body (generalized)” [1, 52].
Another type of generalized seizure is the absence seizure which is accompanied by
loss of consciousness with periods of blanking out or staring into space for a few
seconds [53].

Pathophysiology
A seizure can be conceptualised as occurring when there is a distortion of the
normal balance between excitation and inhibition within a neural network [54].

In focal epilepsies, focal functional disruption results in seizures that begin
in a localised fashion in one hemisphere, commonly limbic or neocortical, which
then spread by recruitment of other brain areas. The site of the focus, the speed
and extent of spread define the clinical manifestation of the seizure [55, 56]. For
generalized epilepsies the electrical discharges affect both hemispheres of the brain,
typically losing consciousness [57].
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Seizures are not only caused by an increase in excitation or a loss of inhibition.
But, an increase in inhibition can also be a cause of seizures in some circumstances,
such as the absence of seizures [58].

Types of epilepsy
Classification is made of three levels: seizure type, epilepsy type, and epilepsy
syndromes. [56]

Seizure type

From Thijs et al. [44] “seizures are first classified by onset as either focal, generalized,
or unknown”, as shown in Figure 2.1.

• Focal Onset: Usually limited to a specific brain region, called the focus.
Focused seizures are divided into degrees of awareness: retained awareness
and impaired awareness [44]. From the article of Fisher et al. about the
classification of seizure types “retained awareness means that the person is
aware of self and environment during the seizure, even if immobile” [56]. In
addition, focal seizures are sub-grouped as those with motor and non-motor
manifestations.

• Generalized Onset: Affects most or all of the brain. Typically, congenital
and occurs simultaneously in both hemispheres of the brain. They are often
accompanied by impaired awareness. Motor and non-motor (absence) seizures
are distinct types of generalized seizures [44].

• Unknown: It is the case in which the onset is missed or obscured.

Epilepsy type

Epilepsies are divided into focal, generalized, combined generalized and focal, and
unknown, as shown in Figure 2.2. The category combined epilepsy is used for those
presenting both types of seizures.

Causes of epilepsy
Each type of classification can have different causes, as shown in Figure 2.2:
structural, genetic, infectious, metabolic, immune, and unknown. Established
acquired causes include serious brain trauma, stroke, tumours, and brain problems
resulting from an earlier infection. [44, 56]
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Figure 2.1: The International League Against Epilepsy. [59]

Figure 2.2: The International League Against Epilepsy. [44, 56]

Treatments

For most people with epilepsy, Anti-epileptic drugs (AEDs) are the first line of
treatment. However, it has been reported that AEDs are effective in only 60-70%
of individuals, a percentage that is further reduced in low-income countries [55].

Up to a third of individuals with epilepsy are refractory to AEDs [2]. From
the article written by Kwan et al., “drug-resistant epilepsy (DRE) may be defined
as failure of adequate trials of two tolerated, appropriately chosen and used at
correct dosage antiseizure drug schedules to achieve sustained seizure freedom”
[60]. In those cases, alternative non-pharmacological treatments including surgery
and/or neurostimulator interventions should be considered. When surgery is not
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possible because of the presence of multifocal or generalized epilepsy or whenever
the epileptogenic focus lies in areas that cannot be removed, neurostimulation
techniques are palliative options [61].

Three neurostimulation devices are approved by the Food and Drug Adminis-
tration (FDA) for the treatment of DRE [62].

• VNS (Vagus Nerve Stimulation) is a device placed under the skin and sends
intermittent signals to the vagus nerve. It is not brain surgery and is approved
for the treatment of epilepsy when surgery is not possible. [63]

• RNS (Responsive Neurostimulation) is a device that can record seizure activity
directly from the brain and delivers stimulation to stop seizures. RNS is
implanted near the seizure focus on the skull. It delivers pulses only when
detects abnormal activity in the seizure focus. [63]

• DBS (Deep Brain Stimulation) sends signals to brain electrodes to stop signals
that trigger a seizure. The connected DBS electrodes are typically placed
inside the thalamus, and the electrical pulses are delivered constantly or not.
[63]

Figure 2.3: Graph showing a possible way to select the best neurostimulation device depending
on the epilepsy type. [62]

2.2 Vagus Nerve Stimulation
Vagus Nerve Stimulation (VNS) showed positive effects in multiple other med-
ical conditions, including essential tremors gastroparesis [64], chronic tinnitus,
stroke, post-traumatic stress disorder [65], chronic pain, Parkinson’s disease, eating
disorders, multiple sclerosis, migraine, and Alzheimer’s disease [66, 67].
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VNS was implanted first time in four epilepsy patients by Penry and Dean in
1988 [68]. After several large clinical studies, it was approved for seizures by the
European Community in 1994 and FDA in 1997. Clinical trials prove that 24 to
48 months after implantation of the device, 60% of the patients were considered
responders and 8% of the implanted patients were seizure-free [3]. Responders (R) to
VNS will be defined as those who experience a > 50% reduction in seizure frequency
after VNS [5], partial responders (PR) who experience a reduction between 30%
and 50% in seizure frequency and non-responders (NR) who experience a < 30%
reduction in seizure frequency. Although VNS is used in clinical practice, the exact
mechanism of its effect in modulating seizures is still poorly understood.

VNS consists of a device implanted in the upper left thoracic region with a
helical electrode placed around the left cervical nerve, which delivers intermittent
electrical impulses to activate the vagus nerve, as shown in Figure 2.4. Studies
in dogs show that right-sided VNS result in a greater degree of bradycardia as
compared to left-sided VNS because the right vagus nerve innervates more densely
in the heart [69]. Because of those studies, VNS is suggested only for stimulating
the left vagus nerve.

Side effects of VNS are commonly limited to coughing and/or hoarseness of
the voice. In a study, voice alternation was reported in 66% of patients on high
stimulation and 30% on low stimulation and cough was reported in 45% of patients.
[70] To avoid cardiac side effects, a cuff electrode can be implanted on the left vagal
nerve.

Figure 2.4: A Kate Campbell illustration [71] of the
vagus afferent network. Schematic diagram showing the
important brainstem centres and subcortical and cortical
structures. [72]
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Vagus Nerve Anatomy and Connections
The vagal nerve is the longest cranial nerve and exerts a wide range of effects on the
body. It includes two nerves, the left and right vagus nerves and both sensory and
motor fibres. The vagal nerve is a mixed nerve made up of 75% sensory(afferent)
fibres responsible for the seen side effects (e.g., coughing, difficulties or swallowing,
voice modification effects), and 25% efferent fibres which send feedback from the
heart, lungs, stomach, and upper bowel [73].

The vagal nerve is composed of afferents neurons projecting to the nucleus tractus
solitarius (NTS), which sends fibres to other brainstem nuclei that modulate the
activity of subcortical and cortical circuitry [72], as shown in Figure 2.4. The
vagus afferent network is considered by Hanchem et al. as “the reason for VNS
efficacy” [72]. The NTS receives direct inputs from the vagal nerve and projects to
other brainstem nuclei: the locus coeruleus (LC), dorsal raphe nucleus (DRN), and
parabrachial nucleus (PBN) [74].

The LC is characterized by widely diffused projections to both subcortical
and cortical structures. The projections of the LC are small unmyelinated fibres,
forming a wide anteroposterior branching network to reach the raphe nuclei, the
cerebellum, and many areas of the midbrain and forebrain regions. The main
source of norepinephrine is the LC [75, 76]. NE is a neurotransmitter that has been
associated with the clinical effects of VNS by preventing seizure development and
by inducing long-term plastic changes that could restore the normal function of
the brain circuitry. Indeed, short bursts of VNS increase neuronal firing in the LC,
leading to elevations in NE concentrations. [77]

Studies have shown an indirect projection of the LC to the DRN, which sends
widespread projections to upper cortical regions. DRN appears to have a more
delayed response to VNS [72].

From a study done by Hanchem, Wong and Ibrahim [72] “Vagal afferents link
the PBN to NTS and LC. Stimuli are sent from the PBN to the thalamus, insular
cortex, amygdala and hypothalamus. Furthermore, PBN regulates thalamocortical
circuity and can be involved in seizure generation”.

The Vagus Afferent Network
Structural and Functional connectivity

Structural connectivity and functional connectivity are two different ways to
describe the relations between brain structures. Structural connectivity refers to
the anatomical organization of the brain by fibre tracts that connect different
brain regions [78]. Functional connectivity refers to the statistical dependence
or correlation of neural activity patterns between different brain regions [79].
Structural connectivity is often measured by dMRI. Functional connectivity is
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often measured by electroencephalography (EEG) or functional magnetic resonance
imaging (fMRI)1 [78].

The main difference between structural connectivity and functional connectivity
is that structural connectivity reflects the physical architecture of the brain, while
functional connectivity reflects the dynamic interactions of neural activity, as shown
in Figure 2.5. Functional connectivity can appear from direct or indirect structural
connections, as well as from external inputs or intrinsic dynamics.

Figure 2.5: Differences between structural and functional connectivity [80].

Functional connectivity results in VNS

In a study done by Liu et al., the VNS treatment response was associated with
thalamic activation measured by BOLF fMRI [81]. The importance of thalamocor-
tical connections increased after a study by Ibrahim et al., which used resting-state
functional MRI (rs-fMRI) data pre-VNS implantation and it found “an association
of greater VNS efficacy with larger connectivity between the thalami to the anterior
cingulate cortex and left insular cortex” [5]. Functional connectivity in MEG2 also
supports the role of intrinsic thalamocortical connectivity in R, was found that a
functional network is significantly more active in R [4, 83].

1fMRI is a non-invasive neuroimaging technique that detects the changes in blood oxygenation
and flow that occur in response to neural activity

2Magnetoencephalography: from Wikipedia “is a functional neuroimaging technique that maps
brain activity by recording magnetic fields produced by electrical currents occurring naturally in
the brain, using sensitive magnetometers” [82].
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Structural connectivity results in VNS

Significantly greater FA was seen in R (lateralized to the left), particularly within
anterior and retro-lenticular limbs of the internal capsule, anterior, superior, and
posterior corona radiata, and posterior thalamic radiation [4].

In a study of 56 children done by Mithani et al. [4], “significantly greater FA
(within the left side) was observed in R in the left internal capsule, external capsule,
corona radiata, posterior thalamic radiation, fornix and stria terminalis, superior
longitudinal fasciculus, inferior longitudinal fasciculus, and inferior front-occipital
fasciculus”. The mean FA value in these tracts was 0.352 (standard deviation (SD)
= 0.048) in R and 0.309 (SD = 0.064) in NR. No significant voxels were seen in
the right hemisphere. Furthermore, no statistically significant differences were
registered in any other DTI parameters, including MD, RD, and AD. Healthy
controls showed that the profile of R was more closely related to healthy children
than NR. The mean FA value in significant tracts for matched controls was 0.377
(SD = 0.0274) in healthy controls [4].
A study conducted on a 4-year-old boy with intractable epilepsy 10 months after
implantation of VNS showed increased FA in the right fimbria-fornix at the level
of both cerebral peduncles. [84]

Tracts of interest
Thalamocortical connections are believed to be an important substrate of VNS
responsiveness because they modulate cortical excitability, making the brain less
susceptible to seizures. The thalamus receives direct inputs from the NTS and
PBN [85].

The limbic system is a collection of neuronal structures involved in controlling
emotion, memory, behaviour, and motivation. The fornix is the main efferent tract
of the hippocampus that projects to the mammillary bodies, nucleus accumbens,
septal nuclei, anterior thalamic nuclei, and cingulate cortex. While the stria
terminalis forms the major input tract from the amygdala to the hypothalamus.

Association fibres are defined in Gray’s anatomy book [86] as “fibres linking
different cortical areas in the same hemisphere”. They may enable transmission of
the modulatory stimulus to epileptogenic and/or symptomatogenic regions, which
would be augmented by increased WM microstructure in those tracts.

Thalamocortical radiations

Thalamocortical radiations are fascicles of nerves that connect the thalamus with
the cerebral cortex. These fibres start from different nuclei of the thalamus and
connect different cerebral cortex areas. They are parallel to each other, and they
can be divided into four main pathways: anterior thalamic radiations, posterior
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thalamic radiations, superior thalamic radiations, and inferior thalamic radiations
[87]. Different pathways are shown in Figure 2.6.

Figure 2.6: Visualization from a sagit-
tal view of the thalamocortical radi-
ations of a subject of the study. In
cyan the anterior thalamic radiation,
in red and green the posterior thalamic
radiation respectively for the parietal
and occipital lobe, in yellow the supe-
rior thalamic radiation, and in blue and
purple the inferior thalamic radiation
respectively for the tracts to the insula
and to the temporal lobe.

Fornix and Stria Terminalis

The fornix is a part of the limbic system and is a C-shaped bundle of nerve fibres
that act as the major output tract of the hippocampus. [88] The stria terminalis
(ST) is a fasciculus of fibres running along the lateral margin of the thalamus.
It is the major output pathway of the amygdala. [89] Both fornix and ST are
represented in Figure 2.7

Figure 2.7: Illustration of anatom-
ical structure and boundaries of ST
and fornix. [90]
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Association fibres

The Superior Longitudinal Fasciculus (SLF) is a bundle of tracts that connects the
lobes of a hemisphere, as shown in Figure 2.8a, it can be divided into three separate
components. The first (SLF I) is in the WM of the superior parietal and superior
frontal lobes. The second, (SLF II) occupies the central core of the WM above the
insula. While the last one, (SLF III) is situated in the WM of the parietal and
frontal opercula. [91]

The inferior longitudinal fasciculus (ILF) is an associative WM pathway that
connects the occipital and temporal-occipital areas to the anterior temporal areas,
as shown in Figure 2.8b.

(a) (b)

Figure 2.8: Representation of longitudinal fascicles: (a) SLF; (b) ILF. [92]
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Methods

3.1 Data

3.1.1 Subjects
Our study is made up of 19 subjects with medically intractable epilepsy and
implanted with a cervical VNS device. Participants ranged in age from 21 to 65
years. Of these 8 are R, 4 are PR, and 7 are NR.

Subject 3 has a congenital malformation, subject 12 has insular atrophy, and
subject 19 had an amygdalohippocampectomy associated with a resection of a right
temporo-occipital dysplasia.

Subject 16 was excluded from the analysis of tracts generated by TRACULA by
FreeSurfer, further explained in Section 3.4.1, since the software did not extract
all the tracts for unknown reasons. In Appendix C the Regions Of Interest (ROI)
where the subject is excluded are highlighted in yellow, and in the analysis done in
Section 4.3, the subject is excluded since it considers all the regions.

3.1.2 Data acquisition
The MRI acquisitions were realized following the LivaNova guidelines, requiring
the neurostimulators to be turned off during the acquisitions. A trained neurologist
used the programming system to set the device’s output current to 0 mA and turn
off the sensing before the patients entered the MRI acquisition room.

The imaging data were acquired using the SIGNA™ Premier 3T MRI system
(GE Healthcare, Milwaukee, WI, USA), with a 48-channel head coil.
T1-anatomical images were acquired using a Magnetization Prepared - RApid
Gradient Echo (MPRAGE) sequence with the following parameters: TR = 2186ms,
TE = 2.95ms, FA = 8◦, TI = 900ms, bandwidth = 244.14Hz, matrix size = 256
x 256, 156 axial slices, imaging frequency = 127.77Hz, voxel size = 1 x 1 x 1 mm3,
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acquisition time = 5:26 min.
T2-weighted images were acquired to improve the patient-specific segmentation of
specific structures, further discussed in Section 3.3.1. The T2-weighted images were
acquired using a Spin-Echo (SE) sequence: TR = 2.5ms, TE = 91ms, FA = 90ř,
matrix size = 255 x 255, 141 sagittal slices, voxel size = 1 x 1 x 1 mm3, acquisition
time = 2:01 min.
Diffusion MRI data were acquired with a PGSE sequence with the following
parameters: TR = 4837ms, TE = 80.5ms and flip angle = 90◦. A multi-shell
diffusion scheme was used and was composed of 64 gradients at b = 1000, and 32
gradients at b = 2000, 3000 and 5000 [s · mm−2], interleaved with 7 b0 images. The
in-plane FOV was 220 x 220 mm2 and the data contained 68 axial slices with a
2mm thickness (no inter-slice gap, 2mm isotropic voxels). A multi-slice excitation
scheme was used during the acquisition with a hyperband slice factor of 3 to reduce
the acquisition time. The total acquisition time was 13:33 min.
The images files were initially in DICOM format (.dcm), and they have been
converted into NIfTI (.nii.gz) with the MRIcroGL software using the command
dcm2niix.
Anatomical images are composed of files in NIfTI format containing the measured
signals. T1 and T2 images are shown in Figure 3.1 and Figure 3.2.

Figure 3.1: Anatomical volume slices of a T1 in the sagittal, frontal, and axial views

Figure 3.2: Anatomical volume slices of a T2 in the sagittal, frontal, and axial views

Diffusion files are composed of a NIfTI file and a JSON file plus two text files
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(.bval) and (.bvec) having the b-values and the b-vectors. Axial slices at different
b-values are shown in Figure 3.3.

(a) (b) (c) (d) (e)

Figure 3.3: Raw diffusion volume slices of a patient for a b-value of: (a) 0s/mm2; (b) 1000s/mm2;
(c) 2000s/mm2; (d) 3000s/mm2; (e) 5000s/mm2.

3.2 Preprocessing of DW-MRI images
Analysing the b0 volumes of the DW-MRI set of volumes is possible to see a darker
zone in the slices with respect to the rest of the image, as shown in Figure 3.4,
this artifact can be solved using a bias field correction. Therefore, it is possible
to reduce the Rician noise usually present in the MRI volumes and correct the
eddy current-induced distortions. Susceptibility-induced distortion is estimated
and then corrected at the same time as the eddy current correction. After a visual
inspection, no Gibbs ringing artifact was found in the images.

(a) (b)

Figure 3.4: Axial slice of b0 diffusion image,
where is possible to see an intensity inhomogene-
ity in the frontal lobe: (a) Before the correction,
in the frontal lobe is possible to see a darker area.
(b) After the correction, the correction adjusts
the intensity inhomogeneity but does not solve
it completely.

To correct all the artifacts recognised, we use the library ElikoPy [93, 94].
ElikoPy is a Python library for preprocessing dMRI images and skull stripping. In
Figure 3.5 is represented the Pipeline used in the library to preprocess the volumes.

For preprocessing, all corrections except the Gibbs-ringing artifact removal were
performed. ElikoPy also has a mandatory step which is skull stripping to avoid
noise coming from the skull. Therefore, the brain-extracted images were used for
the computation of the microstructural metrics. The susceptibility field correction
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Figure 3.5: Representation of all the preprocessing steps done by the ElikoPy pipeline. [95]

is done by using the T1 image, even if the T1 and dMRI are not aligned here we
do not need to register them because the registration is done automatically by
ElikoPy. The results and comparisons between before and after the preprocessing
are shown in Figure 3.4.

Workflow
All the methods and steps used to retrieve the diffusion metrics along the tracts
are summarised in the following Figure 3.6.

3.3 Region-Of-Interest extraction
To extract the tracts of interest and the (ROI) selected after studying the literature
about brain regions involved in the antiepileptic effects of VNS, we must define
a method that could automatically extract ROI in a batch of patients. Different
methods are used for ROI and tracts extraction, as explained in the following
section.

3.3.1 ROI extraction with FreeSurfer
For ROI extraction, we use FreeSurfer [96–109], which is an open-source neu-
roimaging toolkit with many functions including labelling regions of the brain and
registration. To extract the regions, we do a parcellation of the whole brain through
FreeSurfer that allows us to save specific ROIs.
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Figure 3.6: Graph explaining all the methods and steps used to extract the model metrics for
each tract.
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To label the brain we use the Freesurfer command recon-all taking as input
the T1 image and the name of the subject, then the algorithm can improve the
quality of segmentation if a T2 image is given as input. In our study, all epileptic
patients had a T2 image, therefore, it was used.

Internally recon-all does a preprocessing of the T1 images including motion
correction, non-uniform intensity normalization, Talairach transformation, normal
intensity normalization and skull-stripping. Then, the T2 image is normalized
and registered in the T1 space. As output, we will have many volumes including
the segmented brain aseg.mgz and the segmented brain with cortical parcellation
aparc+aseg.mgz, the algorithm segments the cortex also with different atlases: the
Densika-Killiany Atlas (that was used in the present study) or the Destrieux Atlas.
As output, the software also gives us the preprocessed brain from the T1 volume
in brain.mgz, later used for the registration.

FreeSurfer gives the possibility to segment the thalamus into different thalamic
nuclei. The parcellation is based on the result of recon-all and can be computed
using the script segmentThalamicNuclei.sh [110]. As output, we will have the
labelled thalamic nuclei ThalamicNuclei.mgz in the T1 space. The volume of
the thalamus, as can be seen in Figure 3.7b, differs from the volume extracted
by recon-all pipeline, this is because different analyses are used by the two
algorithms. The estimates made by the script have been proven more accurate
than the pipeline [110], for this reason in the study we consider the thalamic region
as the union of all the thalamic nuclei, as shown in Figure 3.7c.

The segmented volume gives different labels for each ROI, to visualise and
recognise their names, we use freeview that through a Look Up Table it distin-
guishes the different zones, as shown in Figure 3.7. Then to extract them we use
mri_extract_label giving as input the value of the regions to be extracted. The
extracted brain regions are 3D binary masks in the T1 space, as shown in Figure
3.7c. The full list of ROI extracted from FreeSurfer can be found in Appendix A.

(a) (b) (c)

Figure 3.7: Images of a subject brain: (a) Whole brain segmentation with FreeSurfer, with the
thalamus shown in dark green, (b) Segmentation of the different sub-regions of the thalamus
(different thalamic nuclei), (c) 3D-visualization of the thalamic nuclei after segmentation.
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Registration FreeSurfer ROI

To avoid interpolation of the collected diffusion data, we keep fixed the diffusion
image and transform the T1 from its space to the space of the dMRI image. Since
different b0 images are present, we use the mean of them as fixed dMRI image, this
is done thanks to two MRtrix3 tools: dwiextract with -bzero parameters and
mrmath mean with -axis 3 parameter. Then, we use the command bbregister
from FreeSurfer to compute the transformation matrix from the mean of the
preprocessed b0 image to the preprocessed skull stripped T1 image given by
FreeSurfer and use it to transform the T1 image and the segmented brain into the
diffusion space using an inverse transformation through the command mri_vol2vol.

The program bbregister uses a boundary-based cost function to register images
of different modal within-subject, it performs a rigid transformation (6 degrees of
freedom).

After the computation of the transformation matrix, mri_vol2vol moves an
input image into the space of the fixed image. One of the features is that the
input image can keep its resolution after the transformation with –no-resample
parameter. This characteristic is used to generate better tracts when the ROIs
are used to define regions of inclusion and/or region of exclusion during the
tractography.
Registration results are shown in Figure 3.8.

(a) (b)

Figure 3.8: Registration of T1 into the dMRI space: (a) Before the registration. (b) After the
registration

3.3.2 ROI extraction and definition from Atlases in MNI
space

For the tractography, we need to define the regions of inclusion and exclusion from
where the streamlines must pass through or not. FreeSurfer does not give the
parcellation of all the regions we need, for example, the mammillary body or the
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internal capsule, for this reason, we use the pre-segmented regions on MNI spaces
available on FSL. The full list of ROI extracted from the atlases can be found in
Appendix A. FSL is a library with different tools for the analysis of MRI, fMRI
and dMRI brain images, and it offers a tool called fsleyes where we can visualize
the MNI152 T1 images1 and extract different regions from the different atlases
present on it. The atlases that we used are JHU ICBM-DTI-81 White-Matter
Labels, Juelich Histological Atlas and XTRACT HCP Probabilistic Tract Atlas.

The ROIs defined in the atlases are not binary masks, but heatmap masks,
where the intensity of each voxel is the probability that it belongs to a specific ROI
(in the MNI space). To use all of them we do an average of them and threshold
the voxels removing the ones with probability ≤ 0.1, as n in Figure 3.9. It is
not possible to directly use them as regions of the patient’s brain because, in our
dataset, many patients have damaged brain structures, therefore we reconstruct
them through tractography.

Hand-drawn slice of ROI

The extracted ROIs from the atlases are both subcortical structures and fibre
bundles. The ROIs of a fascicle are not used directly, but, since we want to find
them through the tractography, we use hand-drawn slices of them as inclusion
regions to redirect the pathfinding during the tractography. The slice regions were
hand-drawn using the MRtrix3 toolbox with the visualization tool MRview and the
tool ROI editor. The planes are drawn so that they cut the extracted region, as
shown in Figure 3.9c, to guide the tract to follow a path and cover all our selected
regions till the end region. The strength of this method is that the planes are
drawn only one time in the MNI space and used for all the subjects.

Registration into the space of the subject

As for the anatomical images of the patient we need to register the ROI and the
drawn slices into the space of dMRI images. This is a different case than before
because the MNI space an averaged, therefore, a non-rigid registration was needed
for the registration. We divide the registration into two parts: from the MNI space
to the T1 space of the subject (using the reprocessed T1 image given by FreeSurfer),
and then from the T1 space of the subject to the dMRI space. The process is
better explained in Section 3.2.

To reach our result, we use ANTs software, which is considered a state-of-the-
art medical image registration toolkit. The transformation matrix from the T1

1MNI152 is a T1 image derived from averaging 152 structural images after high-dimensional
nonlinear registration into the common MNI152 coordinate system
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(a) (b) (c)

Figure 3.9: Method used for the extraction of the Fornix based on the parcellation of the
MNI152 T1 image defined in FSLeyes atlases (a) superimposition of the fornix probabilistic map
in the Juelich Histological Atlas (blue) and the XTRACT HCP Probabilistic Tract Atlas (red);
(b) computation of the mean probability between the two atlases; (c) hand-drawn planes to refine
the tractography of the fornix.

space of the subject to the dMRI space was already computed in Section 3.3.1
through bbregister, which gives us the T1 image in the dMRI space. While the
transformation matrix from MNI space to the T1 in dMRI space is computed with
ANTs by a symmetric normalization transformation and elastic regularization with
the option ElasticSyN. We register the regions with nearest neighbour interpolation
and resample to the dMRI space, therefore we lose the high resolution of the masks.
Results are shown in Figure 3.10.

(a) (b) (c)

Figure 3.10: Worst case scenario of registration in a patient with congenital malformation: (a)
Axial view of the registration of the T1 image (red) into the dMRI patient space (blue). (b) Axial
view of the registration of MNI152 T1 image (red) into T1 registered (blue) in the dMRI space.
(c) Coronal view of the registration of MNI152 T1 image (red) into T1 registered (blue) in the
dMRI space.
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3.4 Tractography
To generate the streamlines that connect different regions of the brain we used
TRACULA implemented in FreeSurfer and the library MRtrix3 which gives many
tools for the processing of diffusion-weighted images.

3.4.1 Tractography using FreeSurfer
TRACULA (TRActs Constrained by UnderLying Anatomy)[111–113] is a tool from
FreeSurfer, for automatic reconstruction of the major tract based on DW-MRI data.
TRACULA needs the cortical and sub-cortical parcellation from T1 data given
from the commands recon-all and segmentThalamicNuclei.sh, and it uses the
relative positions of anatomical structures with respect to each other to reconstruct
the tractography of the main pathways. The pathways are computed using the
command tract-all, which needs a configuration file where is specified the dMRI
image and its b-value information.
TRACULA follows different steps for the reconstruction of the pathways:

1. Preprocessing of the raw images, with the parameter -prep. Since we have
already done the preprocessing with ElikoPy we skipped some of these steps.
The preprocessing steps are: image corrections, image quality assessment,
intra-subject registration, tensor fit, inter-subject registration and estimation
of anatomical neighbourhood priors for the pathways of interest.

2. Ball-and-stick model fitting, by the parameter -bedp.

3. Pathway-of-interest reconstruction, using the parameter -path.

4. Statistical measures on the tracts, through the parameter -stat. We use this
step for the data used for plotting Figure 3.24.

All computed streamlines are grouped in the merged_avg[...].mgz, as shown
in Figure 3.11a. For every single tract exists a file having a probability map of
the tract called path.pd.nii.gz and a file having only voxels with the highest
probability called path.map.nii.gz. We will use the latter map to compute our
metrics as in the second step of Section 3.4.3. An example of the two files for a
tract is shown in Figures 3.11b and 3.11c.

TRACULA gives the tractography of 42 pathways connections2 including the
fornix, the cingulum, the longitudinal fasciculus, and the anterior thalamic radiation.

2White-matter tract atlas. URL: https://dmri.mgh.harvard.edu/tract-atlas/ (visited
on 08/05/2023)
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(a) (b) (c)

Figure 3.11: Output of tract-all steps: (a) 3D view of all the tracts given from the -path
parameter after TRACULA execution. (b) Probability map of the Fornix tract. (c) In blue the
voxels with the highest probability in the Fornix tract.

But it does not give the rest of the thalamic radiations: posterior thalamic radiation,
superior thalamic radiation, and thalamo-insular tracts. For this reason, we need
to generate the streamlines using tckgen of MRtrix3. Tracts in common with
TRACULA are also generated, as the SLF, the ILF and the fornix, and the results
are compared in Appendix C.

As already mentioned in Section 3.1.1, TRACULA did not compute all the tracts
for subject 16, in Appendix C the non-computed tracts for him are highlighted in
yellow. Therefore, in the analysis of these tracts, this subject will be excluded.

3.4.2 Tractography using MRtrix3
The tract regions that are extracted using MRtrix3 are listed in Section 3.4.4. The
program tckgen of MRtrix3 supplies both deterministic and probabilistic tracking
algorithms, see Section 1.2.3. The iFOD2 algorithm is used in our study, it is a
probabilistic algorithm that takes as input a FOD. The FOD is computed using
the MSMT-CSD model, implemented in MRtrix3 and it can be visualized as the
distribution of water diffusion in each voxel, as shown in Figure 3.12.

There are two different methods for reconstructing fibre bundles: Targeted
tracking and Tract selection. [114]

• Targeted Tracking: the streamline generation is constrained by different
parameters, like seed, inclusion, exclusion, and target regions, that the tract
must follow. Usually, the generation is done unidirectionally from the seed
to the target, and vice versa from the target to the seed, and then the tracts
are joined together. The benefit of this method is that it can produce a
dense reconstruction for small paths. However, in some situations, unexpected
results can be obtained, such that no tract or noisy unrealistic paths are
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Figure 3.12: Visualization of FOD for each voxel.

reconstructed. Another drawback is that the tract must be re-generated every
time a change is made.

• Tract selection: Divide the reconstruction into two parts, it performs the
whole brain tracking and then applies the constraints to isolate the tract of
interest. The advantages are that it does not need to regenerate the tract
at every change, so it is faster in the debug phase, and it allows the user to
visualise the tracts with different ROIs without further computations. The
disadvantage is that for small tracts with a complex structure, this method
may not reconstruct many streamlines (or even no streamline) or streamline
of no interest.

The ideal way is to use both methods in separate phases of the study, in the
design phase use the tract selection method to fine-tune all the parameters for
the algorithm and the regions of inclusion and exclusion. Then once the best
parameters are found, use the Target tracking to find all the tracts.

The MRtrix3 tool tckgen gives as output a tract file in the format .tck, it is a
format designed by MRtrix3 and not all the tools for track visualization support it.
Another popular format is .trk from Trackvis [115]. Since we need both types for
the analysis and visualisation, we use DiPy [116] for the conversion.
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3.4.3 False positive connections
One of the major problems of probabilistic tractography is the presence of false
positive connections [117].

• The false continuity issue consists of streamlines that continue even after the
target. A way to solve this problem is adding the argument -stop to the
algorithm, and it stops as soon as the target is reached.

• Another difficulty is the tracts that correctly connect the source to the target
but follow a path that is not anatomically correct to our expectations. In
this case, the Anatomically-constrained tractography (ACT) [118] framework
can be used to prune only anatomically correct tracts. To use it we need
to add the arguments -act [5tt_vol] -backtrack -crop_at_gmwmi, where
the 5tt volume is a five-tissue-type (5TT) file. It contains a 4D image
composed of five 3D volumes each of which corresponds to a different tissue
type: cortical GM, sub-cortical GM, WM, CSF and pathological tissue.
The 5TT file can be generated by using the MRtrix3 command 5ttgen fsl
passing as argument T1 and T2 images. As before, it is registered in dMRI
space with the transformation matrix computed in Section 3.3.1, as shown in
Figure 3.13.

(a) (b) (c) (d)

Figure 3.13: Slice of an axial view of a subject of 5tt image, in yellow the corresponding tissue.
(a) Cortical GM. (b) Sub-cortical GM. (c) WM. (d) CSF.

We use ACT or -stop depending on the tract.
From the literature exist some other correction algorithms, for example, TIP
(Topology-Informed Pruning) Algorithm discussed in [117]. They compute the
density map of the tracts and then remove the voxels with low-track density.

The approach used in our study is based on densities and is composed of two
steps.
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1. The first step removes the streamlines that are too short or too long with
respect to the mean length. We use the Interquartile Range (IQR) method
where any streamlines that are shorter than 1.5 IQR below Q1 (first quartile)
or longer than 1.5 IQR above Q3 (quartile) are considered outliers, as shown
in Figure 3.14.

2. The second step is thresholding voxels with low-track density. The density func-
tion is computed using the tool from UNRAVEL [119, 120] get_streamline_density()
that computes for each voxel the number of streamlines passing through it,
then we scale the values with a MinMaxScaler in the range [0, 1] and remove
all the voxels with a value below a default threshold of 0.1. When a limited
number of tracts is obtained, the path is noisy and has high uncertainty, as
shown in Figure 3.14. We want to filter voxels where streamlines pass through
and are coherent with other streamlines’ directions, for this, we introduce the
concept of near streamlines and compute a score for each voxel depending on
how many streamlines pass close to it. The score is computed by convolving a
3D Gaussian kernel of 3x3x3 voxels. It generates a blurred weighted map that
then is thresholded as explained before.

3.4.4 Tracts of interest
This section explains the parameters and the inclusion and exclusion regions used
to extract the tracts that were discussed in Chapter 2.2. All the settings used to
generate the tracts can be consulted in Appendix B.

Stria Terminalis

Anatomical landmarks described in Chapter 2.2 were used to tract the ST. We set
as seed region the mask of the amygdala extracted with FreeSurfer and as target
the Bed Nucleus of Stria Terminalis extracted through the Atlases in MNI space.
Then to constrain the tract to follow a path some drawn planes were inserted as
inclusion regions, and the thalamus as exclusion region. ST was excluded during
the study because it coincided with the tract of the Fornix since the resolution of
the DW-MRI images is not high enough.

Fornix

Tracts of the Fornix arising from the hippocampus go over the thalamus and
descend to the Mammillary body, as explained in Section 2.2. The hippocampus
from the FreeSurfer parcellation was set as seed masks, and a plane intersecting the
Mammillary body is set as the target region since it is not present in the FreeSurfer
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(a) (b)

(c) (d)

(e)

Figure 3.14: Example for the fornix of the steps used to correct the extracted voxels from the
tracts. (a) Streamlines without correction. (b) Streamlines with length removal correction, longer
and shorter paths are removed with the IQR rule. (c) Visualization of extracted voxels from
tractography without any correction, red voxels are the ones that do not respect the IQR. (d)
Visualization of extracted voxels after the length removal correction. (e) Region of the tract after
the threshold of voxels with high streamline density. In green the voxels were kept, in red they
were removed.

labelling table. The method used to draw the plane is explained in Section 3.3.2.
To correctly direct the path some planes cutting the Fornix are inserted as inclusion
regions. As exclusion regions are used the Thalamus and the Lateral Ventricle are
eroded by one voxel. The used Regions are shown in Figure 3.15.
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Figure 3.15: Visualization of Fornix tract and
all the regions used to generate it. In green is
the Thalamus, in yellow is the Hippocampus, in
red is the Lateral Ventricle, and in blue are the
registered inclusion planes initially drawn in the
MNI152 space.

Superior Longitudinal Fasciculus

The SLF is composed of three segments, but for extraction, we consider all of them
as a unique fascicle. We set the seed region in the frontal lobe and as target region
in the parietal lobe, using the WM mask (generated in FreeSurfer) as the target
region to improve the prediction of the tracts. The frontal and parietal lobes are
built by combining different regions of the FreeSurfer cortex parcellation. Occipital
and temporal lobe regions were used as exclusion regions since some tracts ended
in them. Regions and tract are shown in Figure 3.16. The lobe mapping is done by
following an approximate mapping of ROIs to the lobes, described in the Appendix
of [121].

(a) (b)

Figure 3.16: (a) Sagittal and (b) axial views of the SLF, with the frontal and parietal lobes
(the seed regions) highlighted in green.
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Inferior Longitudinal Fasciculus

The ILF is computed the same way as the SLF. The occipital lobe was used as
the seed region, and the temporal lobe as the target region for the tracking. The
avoidance regions used are the frontal and the parietal lobes. The regions used for
the tractography and the final tracts are shown in Figure 3.17.

(a) (b)

Figure 3.17: (a) Sagittal and (b) axial views of the ILF, with the occipital and temporal lobes
(the seed regions) highlighted in green.

Thalamocortical radiations

As discussed in Section 2.2 other tracts of interest are the connections between
the thalamus and the cortex. Thalamocortical radiations are divided into anterior,
posterior, superior, and inferior thalamic radiation. The posterior thalamic radia-
tions can be further divided into posterior thalamic radiations projecting ending
up in the parietal and the occipital lobes. The inclusion and exclusion regions are
explained hereunder and were previously described in [87].

• Anterior thalamic radiations: they start from the thalamus, pass through the
anterior limb of the internal capsule, and arrive in the frontal lobe, as shown
in Figure 3.18a.

• Posterior thalamic radiations: this tract connects the thalamus with the
parietal and occipital lobe through the posterior limb of the internal capsule,
as shown in Figures 3.18b and 3.18c.

• Superior thalamic radiations: they start from the thalamus, pass through the
posterior limb of the internal capsule, and arrive in the central gyrus, as shown
in Figure 3.18d.
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• Inferior thalamic radiations: this tract connects the thalamus with the insular
cortex through the sublenticular part of the internal capsule, as shown in
Figure 3.18e.

(a) (b) (c) (d) (e)

Figure 3.18: Different views of thalamic radiations. In green is the thalamus, in yellow the
anterior limb of the internal capsule, in red the posterior limb of the internal capsule and in
blue the retrolenticular portion of the internal capsule. (a) Sagittal view of the anterior thalamic
radiations. (b, c) Sagittal view of the posterior thalamic radiations to parietal lobe (b) and to
occipital lobe (c). (d) Coronal view of the superior thalamic radiations. (e) Axial view of the
inferior thalamic radiations to the insular cortex, in light yellow the insular cortex and in light
blue a plane that was drawn to refine the tractography.

3.5 Microstructure estimation
In this section, we discuss the different metrics that can be estimated by different
microstructure models. All of them are estimated using the ElikoPy library, which
wraps the execution of them. DTI maps were obtained with DiPy Library, they
are illustrated in Figure 3.19. The NODDI model was applied to the data using
the DMIPY library [122, 123], and the output maps are shown in Figure 3.20.
DIAMOND maps were computed using Benoit Scherrer’s model [7], and they
are shown in Figure 3.21. The MF model was performed using the Python code
provided by Rensonnet G [8, 124] in the ElikoPy library, which gives as input a
pre-computed dictionary made available by Nicolas Delinte. The output maps are
shown in Figure 3.22.

(a) (b) (c) (d)

Figure 3.19: Slices of an axial view of a subject with different DTI metrics. (A) FA; (b) MD;
(c) AD; (d) RD.
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(a) (b) (c) (d) (e) (f)

Figure 3.20: Axial view of a subject with different NODDI metrics. (A) icvf; (b) ODI; (c)
fbundle; (d) fextra; (e) fintra; (f) fiso

(a) (b) (c) (d) (e) (f) (g)

(h)

Figure 3.21: Slices of an axial view of a subject with different DIAMOND metrics. (A) wFA;
(b) wMD; (c) wAD; (d) wRD; (e) frac_f0; (f) frac_f1; (g) frac_ftot; (h) frac_csf

3.6 Feature extraction from the metric maps
In this section, we will discuss the method used to extract a significant value from
each metric map per ROI and tract of interest. For each region, we extract FA,
AD, RD, and MD from DTI, icvf, ODI, fbundle, fextra and fintra from NODDI,
wFA, wAD, wRD, wMD and frac_ctot from DIAMOND and fvf_tot, wfvf and
frac_ftot from MF.

In total 17 different metrics were extracted. Three types of study have been
done:

• Study with biological interpretation: we study the distribution of the
metrics in the extracted regions. To characterize a distribution, we compute
the weighted mean, weighted SD, weighted skewness, and weighted
kurtosis, which are defined as the first four moments.

The SD measures the amount of variation of a set of values from the mean.
Skewness measures the asymmetry of a distribution concerning a normal
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(a) (b) (c) (d) (e) (f) (g)

(h)

Figure 3.22: Axial view of a subject with the estimated MF metrics. (A) fvf_f0; (b) fvf_f1; (c)
fvf_tot; (d) wfvf; (e) frac_f0; (f) frac_f1; (g) frac_ftot; (h) frac_csf

distribution. A distribution with positive skew has a long tail on the right
side, while with a negative skew, it has a long tail on the left side [125]. The
term kurtosis measures the propensity to produce outliers [126].

• Study without biological interpretation: we extract the features defined
in the radiomics approach. As explained in Section 1.4, radiomics features
include statistical features such as mean, SD, skewness, and kurtosis that differ
from the attributes obtained in the extraction with biological interpretation
because radiomics ones are not weighted on density maps.

• Deep learning classification: we use the computed 3D metrics map to
train a deep learning model capable of classifying R and NR, without using
ROI and feature extraction.

3.6.1 Metric extraction from ROI

The ROIs selected for the study are the thalamus, hippocampus, amygdala, accum-
bens, putamen and pallidum. They are taken from the FreeSurfer parcellation and
registered on the diffusion map space using trilinear interpolation, to give a lower
weight to voxels that are on the margin of the region because they will be a wrong
approximation due to the up-scaling. Therefore, the masks are used as a density
map for the computation of the weighted metrics. Higher density (weight) will
give more importance to a determinate voxel than others. An example is shown in
Figure 3.23.
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(a) (b)

Figure 3.23: Visualization of the Thalamus region before and after the trilinear interpolation.
(a) In green the Thalamus registered in dMRI space and same resolution of T1. (b) Heatmap of
the Thalamus registered and upscaled in dMRI space with the trilinear interpolation, is possible
to see the green region not upscaled in the background.

3.6.2 Metric extraction from tractograms

The tracts of interest are the tracts discussed in Section 3.4.4. To extract the
weights from them we use the same method as explained in Section 3.4.3 to keep
only the most important voxels of a tractogram.

Unlike ROI, the extracted tract passes through different zones in the brain, therefore
it has different values depending on the point on the pathway, as shown in Figure
3.24a and Figure 3.24c. The analysis in this study takes an approximation of it
without considering the spatial information (see Limitation Section 5.5), as shown
in Figure 3.24c and Figure 3.24d. Using the four moments explained above, we try
to get all the information on the distribution along the pathway.

3.7 Statistical Analysis

Since the study aims to assess differences in microstructural features between R and
NR to VNS, we need a tool capable of telling us if the differences have statistical
significance. To reach our aim, we use a comparison test for the means of two
independent samples as explained in Section 1.5.2.
A comparison test quantifies the difference between the distribution of two samples
to decide if the two populations are statistically different.

• Null hypothesis: H0 : µ2 = µ1

• Alternative hypothesis Ha : µ2 /= µ1
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(a) (b)

(c) (d)

Figure 3.24: Two examples of distribution of FA values along the pathway of interest: (a) the
fornix tract; (c) the optic radiation tract. On the right are the distributions of values on the tract.
The horizontal lines are the mean of the tracts. Data taken from TRACULA by FreeSurfer, and
idea inspired to tract plots of FreeSurfer. URL: https://dmri.mgh.harvard.edu/tract-atlas/
(visited on 08/05/2023).

Due to the relative number of patients included in the present study, the
hypotheses to use a parametric test were not held, as discussed in Section 1.5.1,
therefore Mann-Whitney U rank test was used to assess the statistical difference
in diffusion metrics between R and NR.

In the case we compare the means between R, PR, and NR we cannot anymore
use the Mann-Whitney U rank test since we have more than two groups. The
Kruskal-Wallis test is used to compare two or more groups. It is a nonparametric
test, chosen for the same reason as the one described above.

To check if the patient’s categorical information is related to being a R or not,
Chi2, Fisher and Barnard tests are used. Due to its suitability for small datasets
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(in comparison to Chi2 or the Fisher tests), the Barnard test was used to compare
categorical information of R and NR. The drawback of Barnard’s exact test is that
it works only for 2x2 contingency matrices.

The statistical analyses were conducted using the scipy.stat library: mannwhitneyu()
was used to compare statistical features between R and NR; kruskal() for Kruskal-
Wallis testy; barnard_exact() to check differences in categorical variables between
R and NR.

3.8 Selection of interpretable features
The purpose of the study is to find the best microstructural features able to classify
the two classes of subjects, R, and NR. To select the best microstructural features,
we use different machine learning (ML) algorithms and the sequential feature
selection algorithm.

3.8.1 Scaling
Different extracted metrics have different scales, and most ML algorithms work
only with scaled features. Therefore, we need to scale our data before going further.
Different scaling approaches have been used: standard scaler, min max scaler and
robust scaler. The best accuracy was found using the standard scaler. A robust
scaler works like a min max scaler and can be useful when outliers are present in
the dataset.

3.8.2 Algorithms and hyperparameters
ML algorithms need different hyperparameters, they control how the parameters
are chosen during the learning process and they depend on the model. Therefore,
hyperparameters can improve the quality of an algorithm if they are chosen correctly.
The optimization of hyperparameters is done using the grid search approach,
defining first all the different values that we want to try and then all the combinations
are tried, choosing at the end the best combination that gives the highest score.
Since our dataset is small, we do not have a real view of the samples in the feature
space, therefore we need to regularize the algorithms as much as possible, and
linear models are preferred over nonlinear ones. The tuned algorithms used in this
study are from scikit-learn [127] and are the following:

• Logistic Regression

• Linear SVM
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• SVM with polynomial kernel

• SVM with rbf kernel

3.8.3 Feature Selection Algorithm
The purpose of the study is to find the subset of microstructural features capable to
differentiate between R and NR subjects, therefore we cannot apply dimensionality
reduction algorithms like PCA or ICA, because the obtained features would not be
interpreted as microstructural features anymore, but as a transformation of one
or more of them. In this study, we select only the features that most influence
the decision of the classification without transforming them. Sequential Feature
Selection algorithm (SFS) by mlxted [128] with the floating method [129] is used in
this study. After the selection, new scores are computed on the algorithm trained
on the selected features, and decision boundaries are displayed.

3.8.4 Scoring approximation
An approximation of balanced accuracy, log loss and AUC scores are used to select
the best model. Thanks to the small number of samples present in the dataset, score
approximations are computed through the Leave One Out (LOO) CV technique.
After the probability estimation of the 18 models trained in the LOO CV loop,
the results are stacked and considered as a single batch. The metrics scores are
computed on the computed batch.

3.9 Radiomics pipeline for classification
In this part of the study, we do not pose any limitations on the biological interpre-
tation of the extracted features. Therefore, as explained in Section 1.4, to derive as
much as possible information from the ROI we use different image transformations
for our metric maps. PyRadiomics [130] is the tool used to extract Radiomics
features. The image transformation done by PyRadiomics and used on our metric
maps are:

• Original, no filter is applied;
• Wavelet, decomposition and approximation of wavelet transform done by

PyWavelet [131];
• Laplacian of Gaussian image, it is obtained by convolving the image with the

second derivative;
• Square of image intensities;
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• The square root of image intensities;
• The logarithm of absolute intensities plus one;
• Exponential of absolute intensities;
• The Image gradient;
• Local Binary Pattern in 3D using spherical harmonics.

The exact computation and explanation of the transformations are in the PyRa-
diomics documentation API 3. For each of them, PyRadiomios extract the features
already discussed in Section 1.4, which amount to about a thousand features.

Considering all the models and all the tracts and regions extracted by FreeSurfer,
the number of extracted features reached a million and a half in this study. Therefore,
a massive dimensionality reduction is necessary to extract representative and
informative features since Radiomic features are frequently redundant. The strategy
and different models implemented to extract informative features are explained in
the following sections.

3.9.1 Constant, duplicate and outlier features
A fixed filtering of constant, duplicate and unreliable features is performed. From
PyRadiomics documentation some of the features computed are symmetrical to
other features or unreliable, so we filter them. The removed features are joint aver-
age, sum average, sum squares, minimum, maximum, 10 percentile, 90 percentile,
interquartile range, range, maximum 2D diameter column, maximum 2D diameter
row, maximum 2D diameter slice, and maximum 3D diameter.
Many features on the dataset are almost constant and redundant, we resolved this
problem by dropping all the features with these characteristics using a Python
library for feature engineering and selection: Feature-engine 4. The used meth-
ods are DropConstantFeautes() and DropDuplicateFeatures(). A feature is
considered constant if at least 62% of its values are equal.

The features where outliers are present are dropped using the Median Absolute
Deviation (MAD) rule 5. Since our study has a limited set of samples, the MAD
rule is known as more robust than the z-score rule since it is based on the median
instead of the mean. The maximum deviation from the median imposed for this
study is 3.

3PyRadiomics: pyradiomics.readthedocs.io
4Feature-engine python libary: feature-engine.trainindata.com
5Explanation of MAD algorithm: https://eurekastatistics.com/

using-the-median-absolute-deviation-to-find-outliers/

63

pyradiomics.readthedocs.io
feature-engine.trainindata.com
https://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/
https://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/


Methods

After the fixed reduction techniques, the features are scaled in the same range
by a robust scaler offered by Sci-kit Learn [127], chosen for the limited number of
samples of our dataset.

3.9.2 Univariate filtering
Univariate filters select the features that better perform for a given metric. Different
typologies of univariate filtering were tried:

• F-ratio
• Kendal correlation
• Relief F
• Spearman correlation
• Mannwhiten
• Mannwhite + Kruscal

The first four are computed using the Python library ITMO_FS6, which provides
a large set of feature selection algorithms. The last two univariate filters are based
on non-parametric tests and they select the features with p-values less than 0.05,
as explained in Section 3.7, and they are followed by a correlation selection that
keeps only features that correlate less than 0.95. The correlation selection is done
using the SmartCorrelatedFeatures() function of the Feature-engine library. Up
to one thousand features were extracted by this selection.

3.9.3 Multivariate filtering
Multivariate filters select the set of features that together maximize a given metric.
Different multivariate filtering algorithms were tried:

• CFR: maximize the correlation and minimize the redundancy
• Conditional infomax feature extraction (CIFE)
• Dynamic change of selected feature (DCSF)
• Interaction capping (ICAP)
• Max relevance and max independence (MRI)
• Minimum redundancy maximum relevance (MRMR)

6ITMP_FS documentation: iitmo-fs.readthedocs.io

64

iitmo-fs.readthedocs.io


Methods

These algorithms are offered by the Python library ITMO_FS, and they are used
to select only 20 features.

SFS is applied to reduce the number of features, the same algorithm as in Section
3.8.3 was used, with 3-fold CV, and AUC-score as the scoring function.

3.9.4 Classification algorithms
Differently from the study with biological interpretation, here we used a higher set
of algorithms with hyperparameter optimization. The algorithms selected for this
analysis are the following:

• Logistic regression with 3-fold CV hyperparameters tuning and negative log
loss scoring function.

• RBF-SVM classifier with 3-fold CV hyperparameters tuning and AUC-score
scoring function.

• k-nearest neighbours classifier with 3-fold CV hyperparameters tuning and
negative log loss scoring function.

• Multi-layer perceptron classifier with 3-fold CV hyperparameters tuning and
negative log loss scoring function;

• Gaussian Naive Bayes.

3.9.5 Scoring approximation
Same scoring approximation method as in Section 3.8.4 was applied.

3.10 Deep Learning classification
One of the main problems of classifying NR from R patients was defining the ROI
or the tract to look for any change in a metric. Deep learning is a solution to this
problem since it does not need a region of interest, but through training, it can
learn where to see to distinguish between the two classes. The library used for this
analysis is PyTorch7. PyTorch requires a Dataset class where inputs and targets
can easily accessed, and a DataLoader where, through the Dataset, it gives a batch
of the inputs and targets. Then, a good model is required to extract information
from 3D images or potentially a vector of volumes (considering more metric maps
per subject). These problems are being asked in the following sections.

7PyTorch libary: https://pytorch.org/
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3.10.1 Volumes menagement
The management of volumes was done through the library TorchIO 8 [132]. It
is an open-source library for efficient loading, preprocessing, augmentation and
patch-based sampling of 3D medical images in deep learning. TorchIO implements
different classes to represent a subject in a Dataset class.

The first are the Image classes where the volume information is stored, they
are the ScalarImage and the LabelMap classes. They use a lazy loading approach,
therefore the data is not loaded from disk when the classes are instantiated, but
when they are needed for computation. A subject can have more than one image,
in our case a subject has many model metric maps, and together with the target
value, they are stored in the Subject class.

Different instances of Subjects are grouped into the SubjectDataset class that
directly inherits properties from the PyTorch Dataset.

Figure 3.25: Representation of Image, Subject and SubjectsDataset classes in TorchIO [132]

Since SubjectDataset class is a subclass of PyTorch Dataset class it can be
passed to the DataLoader. As soon as the DataLoader request a batch of data the
images are loaded in memory and the transformations are applied.

3.10.2 Image transformations
Before feeding the model with the volumes, they can be preprocessed and augmented
with volume transformation. TorchIO gives a large set of functions for preprocessing
and augmentation in the CPU. However, it does not give a function for registering
all the images in a common space.

8TorchIO library: https://torchio.readthedocs.io/
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Before the preprocessing steps, images are registered with ANTs in the common
space HCP1065 with a Rigid transformation of the FA map. During the registration
an interpolation of the volume resampled itself to a 1mm per voxel, this will be
then adjusted by resampling the volume into 2mm per voxel.

After registration, the following preprocessing steps are applied:
• Reorder the volume data to a canonical orientation (RAS+);
• Resampling the volume to a 2mm per voxel space;
• Cropping or Padding the volume to a fixed size;
• Standardization of the voxel intensities;

The generalization ability of the model was increased by using augmentation
methods. Furthermore, the augmentation transformation was used to increase the
size of the dataset. The transformations were applied only after the splitting of
the dataset in training, validation and training set. The following transformations
were applied to the training set through TorchIO:

• Random affine transformation: the volume is randomly scaled, rotated and
translated with a probability of 0.8;

• Random anisotropy: it simulates an image acquired with random anisotropic
spacing with a probability of 0.2;

• Random biasfield: it adds a random bias field artifact with a probability of
0.2;

• Random blur: it blurs the volume with a random Gaussian filter with a
probability of 0.2;

• Random gamma: it randomly changes the contrast of the image with a
probability of 0.2;

• Random noise: it adds a random Gaussian noise with a probability of 0.2;
• One Random motion or Random Ghosting or Random Spike: simulates one

of these artifacts with a probability of 0.1;
• Random swap: it swaps random cubes of the volume of prefixed dimension

with a probability of 0.1.

3.10.3 Model
To model our classification model was used MONAI9 framework. MONAI is a
PyTorch-based, open-source framework for deep learning in healthcare imaging,

9MONAI main page: https://monai.io
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part of the PyTorch Ecosystem. MONAI framework presents different domain-
specific models for healthcare imaging, including state-of-the-art transformer-based
3D Segmentation algorithms like UNEST.

Training a deep model without having pre-trained weights and a big dataset as
in our case did not give good results. For this reason, transfer learning is applied
from a similar domain. The weights of a pre-trained UNEST model for volumetric
brain segmentation with T1 images from MONAI Model Zoo were chosen for our
study. UNEST model has a design similar to U-net for 3D images. The pre-trained
model takes as input a 96x96x96 volume and returns a segmented brain with the
same dimensions, as shown in Figure 3.26.

Figure 3.26: The network architecture of UNEST Base model [133].

To change the model behaviour from segmentation to classification, we cut the
U-shape in the point between the encoder and decoder sections, where the spatial
information is reduced and the feature information is increased. The lowest part
of the model reduces the volume from 1x96x96x96 to 1024x3x3x3. We continue
the reduction by adding a non-pre-trained 3D convolution block with dropout
and ReLU activation, reducing the dimensions to 2048x1x1x1. After, a flatter
transformation is applied followed by a fully-connected linear layer, that takes as
input 2048 features and returns a single output value for binary classification.

The loading phase from CPU to GPU is the bottleneck of this model since
the loading and the transformations of a batch take up to 2 minutes with all the
metrics, while 10 seconds with a single metric. The bottleneck can be reduced
using a higher number of workers in the DataLoader, in this study 8 CPUs were
used.

Overall, there is a trade-off between speed, memory and multiple metrics consid-
eration, this model is oriented to high speed and reduced memory usage for each
patient, but it is needed to choose the metric to use.
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Results

The analysis conducted is divided into two parts: the first in which the PR are
considered as R and the second where the NR, PR and R are treated as distinct
groups.

4.1 Statistical Analysis of Categorical features
We start by analysing categorical features, such as the sex of the subject, if it takes
benzodiazepines and the typology of epilepsy as discussed in Section 2.1.

The contingency table summarises the frequencies of the categorical features, as
explained in 1.5.3. It is possible to see it through a bar plot, as shown in Figure
4.1.

(a) (b) (c)

Figure 4.1: Box plots of contingency matrix

Considering both PR as R or NR, through a Bernard exact test, all the possible hy-
potheses are rejected. Therefore, considering our samples, the R are not dependent
on sex, typology, or benzodiazepines.

We cannot say anything about statistical dependency considering three distinct
groups, NR, PR, and R since Bernard’s exact test works only for a 2x2 contingency
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matrix and Chi2 does not have enough samples to give us a statistical answer, as
explained in Section 3.7.

4.2 Statistical Analysis of Microstructural fea-
tures

In this section, we show the results by ROIs and fascicles, and for each of them, the
microstructural features are compared between R and NR. Multiple test corrections
can be applied to have more statistical power, Bonferroni and Benjamini Hochberg
were tried, but none of the p-values survived the correction. Therefore, to have
higher statistical power on our results, only p-values lower than 0.01 are considered
significant, without any corrections.

Due to the numerous tracts explored and the different diffusion metrics extracted,
only the significant tracts already discussed in the literature were shown in the
present section. A full table with the details of all statistical tests for the different
tracts and all diffusion metrics can be consulted in Appendix C.

4.2.1 Anterior Thalamic Radiation
The anterior thalamic radiation goes from the thalamus to the frontal lobe through
the anterior limb of the internal capsule, as shown in Figure 3.18.

Microstructure Fingerprinting

A higher frac_ftot was found in R compared to NR (right: p = 0.003), as shown
in Figure 4.2a, as well as a corresponding lower frac_csf (right: p = 0.003).
To avoid redundancy for the rest of the analyses, only the frac_tot will be reported,
without reporting the frac_csf since a linear relationship exists between them
and equal p-values are obtained for these metrics.

DIAMOND

A higher wAD was found in NR compared to R (right: p = 0.009), as shown in
Figure 4.2b.

NODDI

Statistical mean differences have been found in the mean of NODDI metrics:

• A lower ODI was found in NR compared to R (left: p = 0.003, right: p = 0.003),
as shown in Figure 4.2c.
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• A lower fintra was found in NR compared to R (right: p = 0.004), as shown
in Figure 4.2d.

DTI

Statistical mean differences have been found in the mean of DTI metrics.

• A greater MD was found in NR compared to R (right: p = 0.009), as shown in
Figure 4.2e.

• A greater AD was found in NR compared to R (left: p = 0.006, right: p = 0.003),
as shown in Figure 4.2f.

4.2.2 Posterior Thalamic Radiation - Parietal
The posterior thalamic radiation goes from the thalamus to the parietal lobe
through the posterior limb of the internal capsule, as shown in Figure 3.18.

DTI

Statistical mean differences have been found in the mean of DTI metrics:

• A greater MD was found in NR compared to R (right: p = 0.006), as shown in
Figure 4.3a.

• A greater AD was found in NR compared to R (right: p = 0.003), as shown in
Figure 4.3a.

4.2.3 Posterior Thalamic Radiation - Occipital
The posterior thalamic radiation goes from the thalamus to the occipital lobe
through the posterior limb of the internal capsule, as shown in Figure 3.18.

NODDI

Statistical mean differences have been found in the mean of NODDI metrics:

• A lower fintra was found in NR compared to R (right: p = 0.005), as shown
in Figure 4.4a.

• A lower icvf was found in NR compared to R (left: p = 0.005, right: p =
0.004), as shown in Figure 4.4b.

• A greater fextra was found in NR compared to R (left: p = 0.004, right:
p = 0.005), as shown in Figure 4.4c.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Box plot of diffusion metrics in the left and right anterior thalamocortical radiations
in R and NR: (a) frac_ftot mean; (b) wAD mean; (c) ODI mean; (d) fintra mean; (e) MD mean;
(f) AD mean.

DTI

Statistical mean differences have been found in the mean of DTI metrics:

• A greater MD was found in NR compared to R (right: p = 0.005), as shown in
Figure 4.4d.
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(a) (b)

Figure 4.3: Box plot of diffusion metrics in the right posterior thalamocortical radiations in R
and NR: (a) MD mean; (b) AD mean.

• A greater RD was found in NR compared to R (right: p = 0.006), as shown in
Figure 4.4e.

• A greater AD was found in NR compared to R (right: p = 0.009), as shown in
Figure 4.4f.

4.2.4 Inferior Thalamic Radiation - Insula
The inferior thalamic radiation goes from the thalamus to the insular cortex passing
through the sublenticular part of the internal capsule, as shown in Figure 3.18.

NODDI

Statistical mean differences have been found in the mean of NODDI metrics:
• A lower icvf was found in NR compared to R (left: p = 0.005, right: p =

0.0002), as shown in Figure 4.5a.

• A greater fextra was found in NR compared to R (left: p = 0.002, right:
p = 0.0003), as shown in Figure 4.5b.

DTI

Statistical mean differences have been found in the mean of DTI metrics:
• A greater MD was found in NR compared to R (right: p = 0.004), as shown in

Figure 4.5c.

• A greater AD was found in NR compared to R (right: p = 0.003), as shown in
Figure 4.5d.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Box plot of diffusion metrics in the left and right posterior thalamocortical radiations
in R and NR: (a) fintra mean; (b) icvf mean; (c) fextra mean (d) MD mean; (e) RD mean; (f)
AD mean.

4.2.5 Fornix

The fornix goes from the hippocampus to the mammillary body passing over the
thalamus, as explained in Section 2.2.
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(a) (b)

(c) (d)

Figure 4.5: Box plot of diffusion metrics in the left and right inferior thalamocortical radiations
in R and NR: (a) icvf mean; (b) fextra mean; (c) MD mean; (d) AD mean.

NODDI

Statistical mean differences have been found in the mean of NODDI metrics:

• A lower icvf was found in NR compared to R (left: p = 0.009, right: p =
0.006), as shown in Figure 4.6a.

DTI

Statistical mean differences have been found in the mean of DTI metrics.

• A greater MD was found in NR compared to R (left: p = 0.0004, right:
p = 0.0004), as shown in Figure 4.6b.

• A greater RD was found in NR compared to R (left: p = 0.0004, right:
p = 0.0001), as shown in Figure 4.6c.

• A greater AD was found in NR compared to R (left: p = 0.008, right: p = 0.006),
as shown in Figure 4.6d.
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Statistical mean differences have been found considering the three classes:

• On MD (left: p = 0.006, right: p = 0.005), as shown in Figure 4.6e.

• On RD (left: p = 0.007, right: p = 0.004), as shown in Figure 4.6f.

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Box plot of diffusion metrics in the left and right fornix: (a) icvf mean; (a) MD
mean in R and NR; (b) RD mean in R and NR; (c) AD mean in R and NR; (a) MD mean in R, PR
and NR; (b) RD mean in R, PR and NR.
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4.2.6 Superior Longitudinal Fasciculus
The SLF goes from the frontal lobe to the parietal lobe, and it is divided into three
sub-fascicles: SLF I, SLF II, and SLF III, as explained in Section 2.2 For this tract
is used the heat map is computed by TRACULA since it can compute the three
tracts separately, as explained in Section 3.4.1. Subject 16 was excluded from the
analysis for this tract, as explained in Section 3.4.1.

NODDI

Statistical mean differences have been found in the mean of NODDI metrics:

• A lower fbundle was found in NR compared to R in SLF I (right: p = 0.008),
as well as a corresponding lower fiso (right: p = 0.008), as shown in Figure
4.7a.

(a)

Figure 4.7: Box plot of diffusion metrics in the left and right SLF in R and NR: (a) fiso mean
of SLF I.

4.3 Selection of interpretable features
In this section, we show the result of the SFS to find the best subset of features
capable of correctly classifying R and NR.
The selection was made using only the mean of microstructural features in the
region.
In the case of the Logistic Regression, the most frequent features selected during
the SFS were:

• the RD mean of the right accumbens area
• the weighted FA mean in the temporal body of the corpus callosum
• the MD and AD mean of the left fornix
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• the mean of the total fibre volume fraction in the anterior commissure.
• the RD mean of the right fornix

The model reached an accuracy of 0.643 and an AUC score of 0.610. The three most
frequent features selected by SFS with Logistic Regression are shown in Figure 4.8.

Figure 4.8: Most frequent selected features by SFS with Logistic Regression: RD mean of the
right accumbens area; weighted FA mean in the temporal body of the corpus callosum; AD mean
of the left fornix.

An equal frequency of selected features was found in the SFS with the Linear SVM
algorithm. The model reached an accuracy of 0.643 and an AUC score of 0.571.

SFS with RBF SVM reached an accuracy of 0.812 and an AUC of 0.779. The most
frequent features selected were:

• the mean of the total fibre volume fraction of the premotor body of the corpus
callosum
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• the mean of the extra-cellular volume fraction of the left posterior thalamo-
cortical radiation to the occipital lobe

• the MD mean of the left fornix

The most frequent features selected by SFS with RBF SVM are shown in Figure
4.9.

Figure 4.9: Most frequent selected features by SFS with RBF SVM: mean of the total fibre
volume fraction of the premotor body of the corpus callosum; mean of the extra-cellular volume
fraction of the left posterior thalamocortical radiation to the occipital lobe; MD mean of the left
fornix

Selecting the features with an SVM with a polynomial kernel the most frequent
features selected were:

• the mean of the total fraction of fibres in the right inferior longitudinal
fasciculus

79



Results

• the AD mean of the right accumbens area
• the AD mean of the right extreme capsule

The model reached an accuracy score and an AUC score of 1. The three most
frequent features selected by SFS with SVM with polynomial kernel are shown in
Figure 4.10.

Figure 4.10: Most frequent selected features by SFS with polynomial kernel SVM: mean of
the total fraction of fibres in the right inferior longitudinal fasciculus; AD mean of the right
accumbens area, AD mean of the right extreme capsule

4.4 Responsiveness Prediction with Radiomics
In this section, we show the results of the Radiomics pipeline introduced in the
Method Section 3.9 to classify unseen patient between R and NR.
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The optimal model pipeline was determined by training the combination of all
univariate and multivariate filters.
The best algorithms are shown in the Figure 4.11, the scores of the rest of the
algorithms are shown in Appendix D.

(a) (b)

Figure 4.11: AUC scores computed from the combination of all univariate and multivariate
filters. (a) Scores computed using Logistic Regression algorithm; (b) Scores computed using
Gaussian Naive Bayes algorithm. Both models are followed by an SFS which reduces the number
of features into a set that contains the optimizing features with a length variable between one
and fifteen.

The best results were obtained using the non-parametric test filtering with AUC
scores above 0.9.
By training singularly the best models, confusion matrix and scores were obtained,
as shown in Figure 4.12:
An ensemble model has been built on both Gaussian models since a good AUC
score was found in the first and good accuracy in the latter. The confusion matrix
and scores are shown in Figure 4.12d.

Hierarchical clustering

A similar pipeline used for radiomics classification was used before applying hierar-
chical clustering. The most relevant result was found by selecting only the features
from frac_csf_mf. The result is shown in Figure 4.13.

Confirming the results of the classification models, most of the selected features
come from the wavelet transformation.
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(a) Logistic Regression
Mannwhiten + Kruskal + DCSF + SFS

AUC=0.909, Acc=0.929, Log Loss=0.470

(b) Gaussian NB
Mannwhiten + MRI + SFS

AUC=0.961, Acc=0.857, Log Loss=0.342

(c) Gaussian NB
Mannwhiten + Kruscal + DCSF + SFS

AUC=0.857, Acc=0.929, Log Loss=1.589

(d) Gaussian NB
Ensemble

AUC=1, Acc=1, Log Loss=0.198

Figure 4.12: Confusion matrix of the four best classification models: (a) Logistic Regression with Mannwhiten,
Kruscal and DCSF filters; (b) Gaussian NB with Mannwhiten and MRI filters; (c) Gaussian NB with Mannwhiten,

Kruscal and DCSF filters; (d) Ensemble model of the fusion of the two Gaussian NB models.

4.5 Responsiveness Prediction with Deep Learn-
ing

In this section, we show the results of the Deep Learning model introduced in the
Method Section 3.10 to classify unseen patients between R and NR. The model
was trained using a single channel: wfvf.

Different models were trained using a Grid Search, batch size was fixed to 16
volumes per batch and the training and validation datasets were augmented with
an increase of sample size of 20 times. Learning rates raged between 5 · 10−3 and
1 · 10−6 in an SGD optimizer with a momentum of 0.9 and a learning rate scheduler.
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Figure 4.13: Heatmap and hierarchical clustering of the features filtered by frac_csf_mf.
On the left, the targets are divided into R (dark green), PR (light green) and NR (red). On
top, the model type represents the microstructural model from where the features come from:
Microstructure Fingerprinting (Green). After, the image type explains the transformation applied
to the image to get the feature: original (blue), exponential (orange), gradient (green), lpb-3D
(purple), logarithm (pink), square (grey), square root (olive), wavelet (cyan).

The learning rate scheduler every n batch decremented the learning rate by a
gamma factor. Different scheduler step sizes and gamma factors were tried:

• Gamma: 0.1, 0.3, 0.01
• Batch step size: 7, 15, 25
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Training and validation scores are shown in Figure 4.14.

(a) Train accuracy scores (b) Validation accuracy scores

(c) Train AUC scores (d) Validation AUC scores

(e) Train Log Loss (f) Validation Log Loss

Figure 4.14: Train and validation scores. Smoothed curve in the foreground.

The training set reached an accuracy and AUC of 1 while the validation set had
an accuracy of 0.7 and an AUC score of 0.85, these result where obtained using
a batch size of 16, learning rate equal to 1 · 10−4 with decay of 1 · 10−2 every 7
epochs in a AdamW optimizer. The size of the training and validation set were
augmented with a multiplier factor of 20 times the original size.
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Chapter 5

Discussion

In this chapter, we discuss the result extracted from the earlier Chapter 4.

5.1 Univariate analysis
Differences in values between R and NR can be observed by analysing each tract
metric individually.
Globally greater MD and AD were observed in NR in the right anterior, posterior
(projecting to the parietal lobe), and inferior (projecting to the insular cortex)
thalamocortical radiations, right optic radiation, and anterior commissure.
Greater MD, RD and AD were found in NR in the right posterior thalamocortical
radiations (projecting to the occipital lobe) and left and right fornix.
Greater RD was recorded in NR in the prefrontal body and the splenium of the
corpus callosum and in the right extreme capsule.
Greater AD and decreased ODI were seen in NR in the anterior thalamocortical
radiation.
Lower fraction of intra-cellular volume and greater fraction of extra-cellular volume
were observed in NR in the posterior (projecting to the occipital), and inferior
(projecting to the insular cortex) thalamocortical radiations, left optic radiation
and middle longitudinal fasciculus.
A case of lower CSF volume fraction was found in NR in the right SLF I.
Greater fraction of CSF (MF) was recorded in NR in the parietal and premotor
body of the corpus callosum and the right side of anterior thalamocortical radiation.
Fornix, anterior commissure and right anterior thalamocortical radiation were the
only tracts capable of better distinguishing between the three classes R, PR and
NR through DTI metrics.
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In the present study, no differences in FA and fvf values were seen between R
and NR. A previous study by Mithani et al. [4] reported greater FA values in an
array of tracts (including left internal and external capsule, anterior, superior and
posterior corona radiata, posterior thalamic radiation, fornix and ST, SLF, ILF,
and inferior, fronto-occipital fasciculus) in R compared to NR. Our findings are
not coherent with Mithani et al. results since the method by which the data are
taken is different, they used a combination of tract-based spatial statistics (TBSS)
analysis and regions taken from atlases in MNI152 space to compute their values.

Greater SD was found in NR in the MD of the central, parietal, and premo-
tor parts of the corpus callosum body, in ODI of ILF, and in the fibre fraction of
the posterior thalamocortical radiations (projecting to the parietal lobe). While a
lower SD of the weighted fibre volume fraction was registered in NR in the right
SLF II and right arcuate fasciculus.

Model metrics observations

In the NODDI model, the thresholded intra-cellular volume fraction was capable
to find more statistical differences between R and NR than the non-thresholded
one. The only exception was the right anterior thalamocortical radiation, where
the non-thresholded intra-cellular volume fraction has a lower p-value than the
thresholded one.

Statistical test analysis did not find many differences in DIAMOND metrics,
but in some tracts, it confirmed the results found by the DTI model. This was the
case of the right anterior thalamocortical radiation where the increase of AD was
confirmed by the increase of wAD. DIAMOND was considered to be more reliable
since it considers more compartments in a single voxel.

No differences were found in the MF metric fibre volume fraction, which was an
accurate metric of the integrity of the fibre bundle.

5.2 Multivariate analysis

5.2.1 Interpretable features
Based on DTI metrics, a previous study done by Mithani et al. [4] included a
training cohort of 38 children and a validation cohort of 18 children with DRE.
They used tracts regions taken from the intersection of the FA skeleton recovered
from a TBSS analysis and the JHU ICBM DTI-81 White Matter Atlas, from where
they retrieved an estimation of the classification accuracy of 89.5% (AUC = 0.93).
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Our analysis of microstructure means showed the great potential of dMRI models
to predict the treatment response in patients with DRE. The fitted classification
models on the weighted mean selected more frequently the fornix tract and the
accumbens area.

The SFS with polynomial kernel selected the fornix tract 7 times over 18 models.
While Accumbens area 5 times over 18 models. We consider the fornix tract an
important region to identify R or NR patients with DRE. Despite the Accubens area
being one of the most selected ROI from the SFS algorithm it cannot discriminate
a patient alone. As we can see in the univariate analysis it has only the left side
RD mean p-value lower than 0.01. This is one of the powers of SFS which can find
patterns in a multidimensional context.

The classification models built in the study are robust since an accurate classifi-
cation was achieved with a lower number of patients and considering only three
features. However, more robust and reliable models could be built using larger
datasets, which could give the possibility to add a validation cohort and a more
precise approximation of the accuracy of the model in predicting R.

5.2.2 Radiomics

No literature was found on the use of radiomics feature extraction from DTI model
maps.

Different feature selection models were tried with different classification al-
gorithms to extract informative features. From the obtained results, statistical
univariate filtering was well suited for the task of reducing the feature size.

It is possible to see from the previous analysis that the patients can be classified
with a high accuracy considering only the mean, but through the feature selection
done by the radiomic models hardly it was selected.

The model based on Logistic Regression and Gaussian (DCSF) most frequently
selected the Size-Zone Non-Uniformity Normalized feature from the wavelet
transform of the RD in the Right Hippocampus and the wavelet transform of the
wfvf in the Right Thalamus. The first was selected 50% of the time and the latter
20% of the time. Size-Zone Non-Uniformity Normalize measures the variability
of size zone volumes throughout the image, with a lower value indicating more
homogeneity among zone size volumes in the image [130].

Overall, in all of the models, the best-selected features were found in the wavelet
and local binary pattern 3D transforms.
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Hierarchical clustering

A hierarchical clustering was applied to the radiomic features after the statistical
test filtering. From the resulting heatmaps and clusters is possible to see a possible
pattern in the responsiveness to the treatment. One of the best results is the
heatmap taken by filtering only the features of the fraction of CSF volume from
the Microstructure Fingerprinting model, and it correctly groups similar patients.
It is possible to note that most of the features selected in the filtering steps come
from the wavelet transform.

5.2.3 Deep Learning

Deep Learning models showed great potential in classifying patients despite the
few samples available in our dataset. The weights of the pre-trained encoder model
were a good initialization for the model, even if the input images were different
from our task. The training set in many models reached an accuracy and AUC of 1
in less than 300 steps. But, the validation never got over a mean accuracy of 0.7.

From these results, we can see that the model easily overfit, even with regular-
ization techniques, due to the lack of a robust dataset.

5.3 Biological interpretations

In all of the tracts discussed above in Section 4.2, there was a higher MD in NR,
suggesting fibre damage in the WM tracts [14, 20, 134].

Some of the tracts had also demonstrated a greater AD in NR patients, this can
be explained by saying that the analysed tract was crossed by other fibres fascicle
and one of the two was damaged or reduced favouring the highlighting of the other
tract in the voxel. Therefore, a greater AD and a lower ODI can be observed.

A greater MD was observed in conjunction with a greater RD in NR, together
with a greater fraction of extra-cellular volume and a lower fraction of intra-cellular
volume, this effect can be associated with variations in the fraction of microglial
cells [135], which influence the myelination of the fibres [136].

Differences in the SD along the tract, from the seed to the target, mean that the
variation of the metric around the mean value differs between R and NR. It can be
interpreted as damage, reduction, or demyelination (depending on the metric) at a
specific point in the tract that makes the value more stable or variable around the
mean.
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5.4 Explanation of the desynchronising effect
Epilepsy is characterized by abnormal synchronous neuronal firing in the brain,
which can lead to seizures. It has also been shown that R demonstrate global
neural desynchronisation after chronic stimulation and that this desynchronisation
is responsible for the antiepileptic effects of the therapy. Cortical desynchronisation
may serve as a mechanism to mitigate the spread of seizures [137].

The Corpus callosum and anterior commissure are a bundle of nerve fibres that
connect the two hemispheres of the brain, the latter is smaller than the corpus
callosum and connects the two temporal lobes. The corpus callosum is the main
propagation pathway between the two hemispheres, for this reason, callosotomy
is used to prevent bilateral spread and synchronisation [138]. A study by Lieb et
al. [139] suggests that the anterior commissure had no contribution to the spread
between the hemispheres. Based on the DTI and NODDI metrics, fibre damages
and demyelination were found in the anterior commissure and the temporal body of
corpus callosum of NR compared to R. While, based on MF metrics, a greater CSF
was found in the parietal and premotor body of corpus callosum of NR compared
to R. Further research is needed to understand the role of these two tracts in
mediating the antiepileptic effect of VNS.

It has been shown that VNS alters the structure function of the limbic system [4]
which can be associated with the therapeutic mechanism of VNS [140, 141]. In our
study, in NR the fornix had a lower myelin and a greater damage compared to the
R. On both sides of the fornix, greater variance was found in MD of NR respect
to R, meaning that the damage of the fibres could interest only a sub-segment of
the entire tract. Increased connectivity in the fornix predicts positive treatment
outcomes [4], showing the importance of this tract in the antiseizure effects of VNS.

From the studies done by Ibrahim et al., the vagus afferents project to the thalamus,
which has long been involved in seizure activity [5, 137]. Furthermore, alterations
in thalamocortical connections are involved in epileptogenesis. Thalamocortical
radiations, therefore, play a significant role in VNS antiseizure effects [5, 142].

In our study, thalamocortical radiations were divided into anterior, posterior,
superior, and inferior. No differences have been found between R and NR in the
superior thalamocortical radiations.

Based on DTI, NODDI and MF metrics, a lower fraction of crossing fibres
was found on the left side of the anterior thalamocortical radiation of NR, and a
reduction and damage of fibre were found on the fibres of the right side. Therefore,
the damage and the reduction of fibre fraction were lower in the left hemisphere
but still greater compared to R.
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Similar results were found in the posterior thalamic radiation which in our study
is divided into radiation to the parietal and occipital lobes. Left posterior thalamic
radiations had a demyelination in NR compared to R in the tracts projecting to
the occipital lobe, and no statistical differences in the tracts projecting to the left
parietal lobe. Based on the DTI and NODDI metrics in NR compared to R, fibre
demyelination was registered on both sides of the projection to the occipital lobe,
but fibre damage was only found in the right hemisphere. Compared to anterior
thalamic radiation, in NR the left side has less damage compared to the right, but
still greater than in R. The same results were found in the study by [4] where
a more robust WM microstructure was observed in R in the posterior thalamic
radiation.

Inferior thalamocortical radiation projecting to the insular cortex in NR con-
cerning R presents demyelinated fibres on both sides with damage on the right
side.

From the study by Mithani et al., [4] “It is possible that effective modulation
of cortical excitability through indirect thalamic stimulation via the vagus nerve
is facilitated by robust thalamocortical white matter tracts”. Therefore, from our
study, the modulation was stronger in the left hemisphere, but still lower in NR
compared to R.

In general, thalamocortical radiations have minor damage to the side correspond-
ing to the implantation side of the device. The higher integrity on the left side
compared to the right side may reflect the neuroplasticity effects of the therapy.
However, this hypothesis remains to be proved by longitudinal studies assessing
changes in microstructure over time in the left and right white matter tracts,
independently.

From the study conducted by [4] the hemisphere association fibres were reported
with greater FA in R, including the superior and inferior longitudinal fasciculus.
In our study, we found a lower CSF fraction on the right side of SLF I of NR
concerning R, without any variation of FA. Having a decrease of CSF means having
an increase of fibre fraction, which is in contrasts with the results of Mithani et al.
[4] where NR had a lower FA which means a reduction of axonal integrity.

From [4] “It is possible that association fibres enable the transmission of the
modulatory stimulus to the epileptogenic and/or symptomatogenic regions of the
brain, which would be increased by the increased microstructure of white matter
in those tracts”. In NR the SLF I can better transmit the modulatory stimulus
between regions on the right side of the brain compared to R. SLF I was the only
tract where the fibre conditions of NR were better than R. Further research is
required to explain better the role of these tracts in mediating antiepileptic effect
of VNS.
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As we showed DTI and NODDI metrics were useful to characterise the WM
tracts microstructure in DRE patients with implanted VNS. These techniques
could help to develop new biomarkers of VNS response to better understand the
mechanisms of action of the therapy and the requisites to become R to VNS.

5.5 Limitations
In this section, we explain the limitations of our study.

Sample size

First, the main limitation of the study was the number of subjects at our disposal.
As mentioned in Section 3.1.1, we have only 19 samples. The statistical student
t-test is a parametric test and assumes that the data is normally distributed,
this assumption does not hold with small datasets. For those reasons, we need
nonparametric tests. However, the inferences they make are not as strong as with
parametric tests. Furthermore, training a ML model capable of classifying the
population with a few samples is an arduous task, for this reason, high regularisation
terms and only linear models are used in this study. Therefore, an increasing number
of patients available for this study would allow a higher accuracy both in statistical
tests and in classification tasks. With a larger sample size, it would be possible
to divide the dataset into training and validation cohorts and, therefore, assess
a more precise approximation of the model scores. Furthermore, having a larger
number of patients would allow us to study R and NR alone (since in our results
they would be completely separable) and consider the case of PR separately, to
understand in which regions it behaves like R or NR.

Healthy control inclusion

A further study could include the healthy control (HC) patients where their
microstructural features are compared with R, PR, and NR. Possible expected
results could be that R and PR have characteristics more similar to those of HC
than those of NR. In this study, the comparison between HC and epileptic patients
was not performed due to time reasons.

Registration

Another important limitation was the use of MNI152 atlases for regions that were not
covered by FreeSurfer. Many of the regions used as inclusion regions in tractogram
generation were taken from probabilistic atlases in the MNI152 space. Therefore,
the MNI ROIs must be registered in the diffusion patient space, bringing some
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imperfections into regions where the patients’ brains present important lesions.
To reduce the impact of the error a diffeomorphic transformation with elastic
regularization (ElasticSyN) is used. An example of registration in a subject with
a congenital malformation is shown in Figure 3.10. The development of a tool
capable of labelling subcortical structures more precisely is an improvement over
what FreeSurfer already does, increasing the number of regions would improve the
definition of seed and target regions.

Tractography

There were many limitations in computed tractography using MRtrix3. A higher
resolution of the dMRI images would increase the quality of the tractography and
would allow us to tract the ST that in this study was excluded for resolution
reasons. Then, the correction method proposed in Section 3.4.3 excludes many
voxels near the seed and the target region if these two were defined as spread
regions. For example, in the entire SLF most of the removed ’outliers’ were near
the seed and target regions, since the frontal and parietal lobes have a large surface
area, the probability of a tract passing near them is lower than in the middle of the
tract. The same problem was found in the anterior thalamic radiation, where the
frontal lobe was set as the target. An extreme solution could be the one used by
FreeSurfer, where the path with the highest probability is used, but it would not
work properly since it keeps only one tract excluding all the other feasible paths of
a fascicle. A trade-off solution would be between our solution and FreeSurfer, in
which instead of keeping the voxels with a probability higher than a threshold, are
kept only the tracts with a probability higher than a threshold.

Metric distribution and evolution

In this study, we have analysed only the distribution of a metric value in the region,
excluding the spatial information. Along the pathway of a tractogram the value
of metric changes depending on the position in the tract, as shown in Figure 3.24
of Section 3.6.2. Further studies can consider spatial information in tract regions
by analysing changes along the path or considering only a subsegment of it. It
is expected that different regions follow a main shape that could differ between
patients. For example, in Figure 5.1 the evolutions of FA and MD of the right SLF
III are shown. In Figure 5.1a the mean of MD along the path is different for R and
NR, a result that is consistent with our analysis where a p-value of 0.02206 was
found for the mean. While in Figure 5.1c is shown the FA along the path, in our
analysis we did not find any difference between the means, but here a depression
in a subsegment of the tract is visible in NR. In Figure 5.1b and Figure 5.1d same
results but considering the three classes. Therefore, this type of analysis could give
more precise results about the exact point where axonal damage is present. These
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plots are done by using DTI metrics from TRACULA that compute them with
the parameter -stat. For time reasons we did not implement it with the result of
MRtrix3 and for all the other models (NODDI, DIAMOND, MF).

(a) (b)

(c) (d)

Figure 5.1: Evolution of MD (a, b) and FA (c, d) metrics along the right SLF III pathway,
considering PR as R (a, c) or separately (b, c).

Deep Learning Limitation

A limitation of the modified UNEST model for classification is that it cannot
accept more than a volume per subject. The model accepts a volume with a single
channel, while in our study multiple channels are present considering all the model
metrics extracted in DTI, NODDI, DIAMOND and Microstructure Fingerprinting.
Therefore, the computed model metrics cannot be analysed together in this model.

A possible solution to the multi-channel problem is to use different encoders
as the number of types of maps. The feature extracted for each of them is then
concatenated in a single input that feeds a fully connected NN.
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The management of volumes is extremely important since many maps are
computed per subject and each of them has big sizes. With time, brain images are
always better defined with increasing size. Good libraries that give the possibility
to preprocess the volumes in GPU are needed to reduce the size of the bottleneck
due to the CPU preprocessing.
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Conclusion
Quantifying biomarkers that can find potential R to VNS gives a deeper under-
standing of the neurological mechanism of VNS.
Multi-compartment dMRI models (NODDI, DIAMOND and MF) were used to
generate possible biomarkers. These models have never been used in the literature
to quantify brain differences in DRE patients with implanted VNS.

By combining dMRI models with statistical analysis and ML models, we built
different classifiers that can discriminate between R and NR with high accuracy.
Using different ML models we have analysed the strengths and weaknesses of each.
However further studies must be done with more samples to confirm the obtained
results and improve Deep Learning scores.
Taking PR as R, the fornix was the metric with the highest difference between R
and NR. Greater integrity was found in WM of R in thalamocortical radiations,
the fornix and anterior commissure with respect to NR. Taking into account the
DTI metrics, the right lateralised thalamocortical radiations were found to be more
different between R and NR. Considering NODDI metrics, no differences were
found between the two sides, but only demyelination was found in thalamocortical
radiations and middle longitudinal fasciculus.

It was seen that DTI and NODDI had a greater discriminatory capability than
DIAMOND and MF for drug-resistant epileptic patients. DIAMOND and MF are
multi-compartment models that consider different compartments in each voxel,
and the latter is the most biologically interpretable. An greater CSF (MF) was
observed in NR in the corpus callosum and anterior thalamocortical radiation.

We showed that microstructural connections together with ML may play a
key role to classify R and NR and to find biomarkers. Therefore, we advance
personalised treatment approaches by adjusting the parameters of VNS or reducing
unnecessary VNS implantations.
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Appendix A

Extracted regions

ROI from FreeSurfer
Here below are reported all the regions extracted from FreeSurfer and their number
associated with the FreeSurfer Look Up Table (LUT): 1.

• Hippocampus: left {17}, right {53}
• Amygdala: left {18}, right {54}
• Accumbens: left {26}, right {58}
• Putamen: left {12}, right {51}
• Pallidum: left {12}, right {52}
• Thalamus: left {8103-8134}, right {8203-8234}

(All the nuclei from the thalamus segmentation)
• Lateral Ventricle: left {4}, right {43}
• White matter: left {2}, right {41}
• Brain stem: {16}
• Ventral lateral anterior thalamic nuclei2: left {8128}, right {8228}
• Ventral lateral posterior thalamic nuclei: left {8129}, right {8229}
• Medial geniculate thalamic nuclei: left {8115}, right {8215}

1FreeSurfer color LUT https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
AnatomicalROI/FreeSurferColorLUT (Accessed on 17/08/2023)

2Name association by the original article: https://arxiv.org/pdf/1806.08634.pdf (Ac-
cessed on 05/08/2023)
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Extracted regions

• Insular cortex: left {1035}, right {2035}
• Frontal lobe: superior frontal cortex, rostral and caudal middle frontal cortex,

pars opercularis, pars triangularis, and pars orbitalis, lateral and medial
orbitofrontal cortex and frontal pole. Precentral and paracentral cortex are
not considered.
left {1028, 1027, 1003, 1018, 1019, 1020, 1012, 1014, 1032}, right {2028, 2027,
2003, 2018, 2019, 2020, 2012, 2014, 2032}.

• Temporal lobe: superior, middle, and inferior temporal cortex, banks of
the superior temporal sulcus, fusiform gyrus, transverse temporal cortex,
entorhinal and temporal pole. Without considering the parahippocampal
cortex.
left {1030, 1015, 1009, 1001, 1007, 1034, 1006, 1033}, right {2030, 2015, 2009,
2001, 2007, 2034, 2006, 2033}.

• Parietal lobe: superior parietal cortex, inferior parietal cortex and precuneus.
Without considering postcentral and supramarginal cortex.
left {1008, 1029, 1025}, right {2008, 2029, 2025}.

• Occipital lobe: lateral occipital cortex, lingual gyrus, cuneus and pericalcarine.
left {1011, 1013, 1005, 1021}, right {2011, 2013, 2005, 2021}.

• Supramarginal gyrus: left {1031}, right {2031}
• Gyrus central: left {1022, 1024}, right {2022, 2024}

ROI from MNI space
Here below are reported all the regions taken from the Atlases in MNI space.

• Fornix:

– Juelich Histological Atlas
– XTRACT HCP Probabilistic Tract Atlases

• Mammillary body:

– Juelich Histological Atlas

• Anterior limb of the internal capsule:

– JHU ICBM-DTI-81 White-Matter Labels

• Posterior limb of the internal capsule:
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Extracted regions

– JHU ICBM-DTI-81 White-Matter Labels

• Retrolenticular portion of internal capsule:

– JHU ICBM-DTI-81 White-Matter Labels

• SLF I:

– XTRACT HCP Probabilistic Tract Atlases
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Appendix B

Settings for tractography
with MRtrix3

1 {
2 "antThalRadiation":
3 {
4 "seed_images": ["thalamus"],
5 "include_ordered" : ["AntLimbIntCapsule", "frontal-lobe"],
6 "stop" : false,
7 "act" : true,
8 "angle" : 15
9 },

10 "postThalRadiation-parietal":
11 {
12 "seed_images": ["thalamus"],
13 "include_ordered" : ["PostLimbIntCapsule", "parietal-lobe"],
14 "exclude" : ["VLa", "VLp"],
15 "stop" : false,
16 "act" : true,
17 "angle" : 10
18 },
19 "postThalRadiation-occipital":
20 {
21 "seed_images": ["thalamus"],
22 "include_ordered" : ["PostLimbIntCapsule", "occipital-lobe"],
23 "exclude" : ["VLa", "VLp", "plane1-SLF1"],
24 "stop" : false,
25 "act" : true,
26 "angle" : 10
27 },
28 "supThalRadiation":
29 {
30 "seed_images": ["thalamus"],
31 "include_ordered" : ["PostLimbIntCapsule", "gyrus-central"],
32 "stop" : false,
33 "act" : true,
34 "angle" : 15
35 },
36 "infThalRadiation-insula":
37 {
38 "seed_images": ["thalamus"],

110



Settings for tractography with MRtrix3

39 "include_ordered" : ["RetroLenticularIntCapsule", "plane-insula", "insula"],
40 "exclude" : ["MGN", "temporal-lobe-dilated-1", "parietal-lobe-dilated-1",

"gyrus-central-dilated-1", "frontal-lobe-dilated-1", "supramarginal-dilated-1", "brainStem"],↪→
41 "stop" : false,
42 "act" : true,
43 "angle" : 15
44 },
45
46 "sup-longi-fasci":
47 {
48 "seed_images" : ["frontal-lobe"],
49 "include_ordered" : ["parietal-lobe"],
50 "masks" : ["cerebral-white-matter", "frontal-lobe", "parietal-lobe"],
51 "exclude" : ["occipital-lobe-dilated-1", "temporal-lobe-dilated-1",

"gyrus-central-dilated-1", "plane-insula"],↪→
52 "angle" : 10,
53 "stop" : false,
54 "act" : true
55 },
56 "inf-longi-fasci":
57 {
58 "seed_images" : ["occipital-lobe"],
59 "include" : ["temporal-lobe"],
60 "masks" : ["cerebral-white-matter", "occipital-lobe", "temporal-lobe"],
61 "exclude" : ["frontal-lobe-dilated-1", "parietal-lobe-dilated-1",

"gyrus-central-dilated-1"],↪→
62 "angle" : 10,
63 "stop" : false,
64 "act" : true
65 },
66
67 "fornix":
68 {
69 "seed_images" : ["plane-mammillary-body"],
70 "include_ordered" : ["plane-ort-fornix", "plane-fornix", "hippocampus"],
71 "exclude" : ["Thalamus-eroded-1", "Lateral-Ventricle-eroded-1"],
72 "angle" : 15,
73 "stop" : true,
74 "act" : false
75 }
76 }

111



Appendix C

P-values tables

In the following tables, the next notation is used:

• Nothing: Not significant, 0.05 < p ≤ 1

• * : 0.01 < p ≤ 0.05

• ** : 0.001 < p ≤ 0.01

• *** : p ≤ 0.001
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD

tc
kg

en
()

by
M

R
tr

ix
3

left-thalamus 0.14956 0.45090 0.41847 0.21598 0.26792 0.35542 0.48357 0.21598 0.00649** 0.09778 0.01792* 0.41847 0.02247* 0.21598 0.00649** 0.00649** 0.00359**
right-thalamus 0.26792 0.41847 0.51643 0.24121 0.09778 0.24121 0.38662 0.02782* 0.01105* 0.05992 0.01792* 0.32518 0.00649** 0.07111 0.00853** 0.01105* 0.00649**

left-hippocampus 0.51643 0.41847 0.38662 0.29590 0.21598 0.35542 0.38662 0.32518 0.02782* 0.01417* 0.05992 0.48357 0.26792 0.19223 0.00359** 0.00060*** 0.01792*
right-hippocampus 0.32518 0.41847 0.32518 0.09778 0.24121 0.48357 0.48357 0.35542 0.08367 0.01792* 0.21598 0.19223 0.45090 0.11342 0.02782* 0.04156* 0.04156*

left-amygdala 0.38662 0.24121 0.38662 0.45090 0.01105* 0.24121 0.45090 0.21598 0.09778 0.04156* 0.13071 0.45090 0.48357 0.01417* 0.00853** 0.00853** 0.01105*
right-amygdala 0.41847 0.48357 0.45090 0.29590 0.21598 0.32518 0.32518 0.29590 0.08367 0.05992 0.09778 0.38662 0.51643 0.17012 0.05992 0.07111 0.05992
left-accumbens 0.21598 0.45090 0.41847 0.41847 0.26792 0.05013 0.32518 0.03417* 0.01792* 0.07111 0.01792* 0.17012 0.24121 0.14956 0.01417* 0.00649** 0.01417*

right-accumbens 0.29590 0.41847 0.41847 0.32518 0.29590 0.35542 0.41847 0.21598 0.09778 0.17012 0.05992 0.38662 0.26792 0.19223 0.08367 0.07111 0.07111
left-putamen 0.02782* 0.48357 0.51643 0.04156* 0.51643 0.14956 0.24121 0.29590 0.05013 0.07111 0.08367 0.21598 0.08367 0.41847 0.00853** 0.01792* 0.00089***

right-putamen 0.03417* 0.17012 0.26792 0.05013 0.48357 0.05992 0.11342 0.09778 0.00649** 0.00853** 0.00853** 0.32518 0.05992 0.08367 0.00359** 0.00262** 0.00853**
left-pallidum 0.08367 0.45090 0.29590 0.38662 0.24121 0.24121 0.35542 0.48357 0.04156* 0.02782* 0.05992 0.29590 0.26792 0.24121 0.01792* 0.01792* 0.05013

right-pallidum 0.01417* 0.48357 0.38662 0.19223 0.05013 0.32518 0.11342 0.38662 0.02247* 0.02782* 0.02247* 0.32518 0.45090 0.05013 0.01792* 0.00649** 0.14956
left-antThalRadiation 0.02782* 0.51643 0.48357 0.13071 0.45090 0.21598 0.38662 0.13071 0.04156* 0.03417* 0.09778 0.41847 0.00262** 0.35542 0.02782* 0.09778 0.00649**

right-antThalRadiation 0.00262** 0.51643 0.38662 0.05013 0.35542 0.08367 0.45090 0.00853** 0.03417* 0.00359** 0.14956 0.17012 0.00262** 0.32518 0.00853** 0.05013 0.00262**
left-postThalRadiation-parital 0.08367 0.41847 0.38662 0.41847 0.08367 0.21598 0.17012 0.48357 0.01105* 0.05992 0.01105* 0.32518 0.29590 0.14956 0.01105* 0.11342 0.02247*

right-postThalRadiation-parital 0.05013 0.41847 0.48357 0.21598 0.26792 0.08367 0.24121 0.04156* 0.01105* 0.05013 0.02247* 0.29590 0.01417* 0.48357 0.00649** 0.08367 0.00262**
left-postThalRadiation-occipital 0.03417* 0.48357 0.45090 0.09778 0.26792 0.11342 0.08367 0.38662 0.00488** 0.02247* 0.00359** 0.11342 0.29590 0.24121 0.01105* 0.03417* 0.07111

right-postThalRadiation-occipital 0.01105* 0.48357 0.51643 0.08367 0.32518 0.02782* 0.26792 0.09778 0.00359** 0.00488** 0.00488** 0.35542 0.13071 0.35542 0.00488** 0.00649** 0.00853**
left-supThalRadiation 0.07111 0.41847 0.35542 0.05992 0.29590 0.45090 0.45090 0.41847 0.05013 0.11342 0.07111 0.48357 0.13071 0.45090 0.08367 0.21598 0.09778

right-supThalRadiation 0.01792* 0.41847 0.38662 0.14956 0.51643 0.21598 0.48357 0.21598 0.02782* 0.03417* 0.05013 0.48357 0.11342 0.32518 0.01105* 0.07111 0.02782*
left-infThalRadiation-insula 0.26792 0.45090 0.29590 0.51643 0.26792 0.13071 0.11342 0.41847 0.00488** 0.08367 0.00187** 0.45090 0.09778 0.45090 0.01417* 0.01417* 0.02247*

right-infThalRadiation-insula 0.14956 0.41847 0.45090 0.45090 0.48357 0.07111 0.38662 0.04156* 0.00187** 0.03417* 0.00262** 0.13071 0.08367 0.48357 0.00359** 0.04156* 0.00262**
left-sup-longi-fasci 0.08367 0.41847 0.45090 0.48357 0.14956 0.45090 0.19223 0.51643 0.04156* 0.19223 0.04156* 0.08367 0.51643 0.26792 0.09778 0.21598 0.19223

right-sup-longi-fasci 0.08367 0.51643 0.51643 0.11342 0.11342 0.24121 0.24121 0.48357 0.04156* 0.24121 0.04156* 0.02247* 0.35542 0.19223 0.04156* 0.07111 0.13071
left-inf-longi-fasci 0.04156* 0.41847 0.41847 0.35542 0.24121 0.08367 0.21598 0.14956 0.05013 0.04156* 0.03417* 0.11342 0.51643 0.45090 0.02782* 0.09778 0.02247*

right-inf-longi-fasci 0.01792* 0.51643 0.45090 0.29590 0.03417* 0.13071 0.07111 0.14956 0.01417* 0.01792* 0.01417* 0.07111 0.04156* 0.04156* 0.01417* 0.01417* 0.13071
left-fornix 0.17012 0.32518 0.32518 0.48357 0.26792 0.32518 0.38662 0.35542 0.00853** 0.08367 0.02782* 0.38662 0.09778 0.24121 0.00038*** 0.00038*** 0.00853**

right-fornix 0.26792 0.26792 0.19223 0.35542 0.38662 0.51643 0.41847 0.45090 0.00649** 0.01792* 0.09778 0.48357 0.11342 0.41847 0.00038*** 0.00014*** 0.00649**
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acomm (Anterior commissure) 0.32518 0.51643 0.48357 0.38662 0.29590 0.19223 0.29590 0.13071 0.00089*** 0.04156* 0.00187** 0.13071 0.02247* 0.41847 0.00060*** 0.01792* 0.00131**
cc.bodyc (Corpus call. body central) 0.03417* 0.45090 0.35542 0.17012 0.14956 0.38662 0.29590 0.32518 0.01417* 0.14956 0.04156* 0.07111 0.21598 0.45090 0.01792* 0.09778 0.05013

cc.bodyp (Corpus call. body parietal) 0.00853** 0.48357 0.38662 0.32518 0.11342 0.14956 0.19223 0.48357 0.01792* 0.01417* 0.02782* 0.29590 0.41847 0.32518 0.01105* 0.03417* 0.03417*
cc.bodypf (Corpus call. body prefrontal) 0.05992 0.21598 0.21598 0.11342 0.48357 0.48357 0.24121 0.09778 0.05013 0.03417* 0.29590 0.26792 0.13071 0.48357 0.02247* 0.19223 0.00853**
cc.bodypm (Corpus call. body premotor) 0.00853** 0.48357 0.38662 0.32518 0.11342 0.14956 0.19223 0.48357 0.01792* 0.01417* 0.02782* 0.29590 0.41847 0.32518 0.01105* 0.03417* 0.03417*

cc.bodyt (Corpus call. body temporal) 0.01417* 0.45090 0.48357 0.13071 0.11342 0.04156* 0.11342 0.13071 0.00131** 0.00853** 0.00187** 0.26792 0.17012 0.32518 0.00359** 0.01105* 0.01417*
cc.genu (Corpus call. genu) 0.24121 0.21598 0.24121 0.24121 0.26792 0.51643 0.45090 0.24121 0.07111 0.14956 0.14956 0.38662 0.09778 0.26792 0.05992 0.29590 0.02782*

cc.rostrum (Corpus call. rostrum) 0.32518 0.26792 0.26792 0.38662 0.51643 0.38662 0.45090 0.48357 0.04156* 0.13071 0.08367 0.32518 0.29590 0.41847 0.05992 0.24121 0.08367
cc.splenium (Corpus call. splenium) 0.05013 0.51643 0.48357 0.48357 0.32518 0.09778 0.26792 0.24121 0.01792* 0.05992 0.01417* 0.24121 0.29590 0.45090 0.02782* 0.13071 0.00853**

mcp (Middle cerebellar peduncle) 0.01417* 0.11342 0.11342 0.04156* 0.35542 0.51643 0.19223 0.29590 0.24121 0.05013 0.21598 0.29590 0.14956 0.26792 0.13071 0.26792 0.11342
lh.af (Arcuate fasciculus) 0.11342 0.45090 0.38662 0.26792 0.24121 0.21598 0.17012 0.35542 0.02782* 0.05013 0.01792* 0.19223 0.19223 0.26792 0.04156* 0.19223 0.05992
rh.af (Arcuate fasciculus) 0.01105* 0.51643 0.51643 0.19223 0.38662 0.38662 0.38662 0.41847 0.02782* 0.01105* 0.04156* 0.19223 0.32518 0.21598 0.02782* 0.03417* 0.13071
lh.ar (Acoustic radiation) 0.17012 0.32518 0.35542 0.21598 0.51643 0.11342 0.24121 0.05013 0.00649** 0.17012 0.01417* 0.51643 0.08367 0.48357 0.02247* 0.11342 0.01417*
rh.ar (Acoustic radiation) 0.17012 0.32518 0.38662 0.32518 0.38662 0.04156* 0.24121 0.05992 0.01417* 0.09778 0.02247* 0.48357 0.38662 0.32518 0.01792* 0.05992 0.05013

lh.atr (Ant. thalamic radiations) 0.04156* 0.41847 0.35542 0.11342 0.26792 0.35542 0.45090 0.05992 0.03417* 0.05013 0.05992 0.45090 0.02247* 0.35542 0.02782* 0.11342 0.00359**
rh.atr (Ant. thalamic radiations) 0.02247* 0.32518 0.29590 0.05992 0.35542 0.35542 0.38662 0.05992 0.05013 0.04156* 0.08367 0.24121 0.03417* 0.35542 0.01105* 0.17012 0.00187**
lh.cbd (Cingulum bundle dorsal) 0.09778 0.35542 0.29590 0.45090 0.29590 0.45090 0.21598 0.29590 0.00649** 0.13071 0.01417* 0.11342 0.35542 0.48357 0.02247* 0.08367 0.11342
rh.cbd (Cingulum bundle dorsal) 0.11342 0.32518 0.29590 0.32518 0.19223 0.38662 0.38662 0.21598 0.02782* 0.08367 0.05013 0.07111 0.51643 0.41847 0.02782* 0.14956 0.07111

lh.cbv (Cingulum bundle ventral) 0.09778 0.45090 0.38662 0.24121 0.24121 0.45090 0.29590 0.21598 0.01417* 0.13071 0.00853** 0.45090 0.48357 0.35542 0.01417* 0.04156* 0.17012
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.12315 0.32950 0.26801 0.26801 0.36212 0.50000 0.36212 0.43005 0.21258 0.23947 0.21258 0.36212 0.23947 0.36212 0.08956 0.14272 0.14272
rh.cst (Corticospinal tract) 0.10546 0.23947 0.21258 0.26801 0.10546 0.50000 0.26801 0.14272 0.18747 0.23947 0.18747 0.50000 0.05210 0.07545 0.14272 0.23947 0.06297

lh.emc (Extreme capsule) 0.06297 0.39571 0.43005 0.26801 0.46490 0.23947 0.32950 0.06297 0.03463* 0.14272 0.05210 0.46490 0.12315 0.43005 0.03463* 0.08956 0.02206*
rh.emc (Extreme capsule) 0.05210 0.39571 0.29808 0.08956 0.29808 0.18747 0.50000 0.02206* 0.07545 0.10546 0.06297 0.39571 0.06297 0.29808 0.01339* 0.18747 0.00569**

lh.fat (Frontal aslant tract) 0.04267* 0.18747 0.21258 0.36212 0.43005 0.32950 0.46490 0.32950 0.08956 0.18747 0.08956 0.10546 0.23947 0.39571 0.14272 0.18747 0.08956
rh.fat (Frontal aslant tract) 0.03463* 0.36212 0.29808 0.23947 0.23947 0.50000 0.32950 0.29808 0.10546 0.07545 0.08956 0.03463* 0.23947 0.50000 0.04267* 0.08956 0.12315

lh.fx (Fornix) 0.36212 0.26801 0.43005 0.36212 0.26801 0.10546 0.07545 0.08956 0.04267* 0.26801 0.00415** 0.21258 0.02778* 0.36212 0.01339* 0.01339* 0.00770**
rh.fx (Fornix) 0.14272 0.39571 0.46490 0.21258 0.32950 0.43005 0.26801 0.46490 0.01021* 0.06297 0.10546 0.36212 0.36212 0.23947 0.00295** 0.00569** 0.01021*

lh.ilf (Inf. longi. fasci.) 0.06297 0.46490 0.50000 0.23947 0.32950 0.02778* 0.21258 0.02206* 0.01728* 0.02206* 0.01339* 0.23947 0.01339* 0.39571 0.01339* 0.08956 0.00569**
rh.ilf (Inf. longi. fasci.) 0.01339* 0.39571 0.39571 0.10546 0.18747 0.21258 0.18747 0.43005 0.04267* 0.03463* 0.07545 0.50000 0.46490 0.29808 0.02778* 0.18747 0.14272

lh.mlf (Middle longi. fasci.) 0.21258 0.43005 0.46490 0.16415 0.39571 0.16415 0.26801 0.10546 0.00569** 0.05210 0.00569** 0.18747 0.07545 0.32950 0.01339* 0.12315 0.01728*
rh.mlf (Middle longi. fasci.) 0.02206* 0.39571 0.36212 0.26801 0.32950 0.02778* 0.14272 0.12315 0.00415** 0.01021* 0.00569** 0.10546 0.32950 0.50000 0.00770** 0.03463* 0.01339*

lh.or (Optic radiation) 0.08956 0.43005 0.50000 0.32950 0.43005 0.08956 0.21258 0.10546 0.00569** 0.05210 0.00569** 0.05210 0.07545 0.36212 0.01021* 0.08956 0.02778*
rh.or (Optic radiation) 0.04267* 0.43005 0.43005 0.07545 0.39571 0.39571 0.43005 0.29808 0.00415** 0.03463* 0.05210 0.46490 0.12315 0.50000 0.00415** 0.03463* 0.00770**

lh.slf1 (Sup. longi. fasci. I) 0.12315 0.16415 0.21258 0.32950 0.43005 0.32950 0.29808 0.46490 0.10546 0.26801 0.07545 0.14272 0.29808 0.46490 0.07545 0.50000 0.06297
rh.slf1 (Sup. longi. fasci. I) 0.43005 0.21258 0.21258 0.02206* 0.26801 0.29808 0.39571 0.39571 0.29808 0.46490 0.23947 0.00770** 0.46490 0.46490 0.32950 0.39571 0.32950

lh.slf2 (Sup. longi. fasci. II) 0.04267* 0.46490 0.46490 0.29808 0.29808 0.32950 0.21258 0.39571 0.03463* 0.08956 0.03463* 0.18747 0.29808 0.29808 0.10546 0.23947 0.08956
rh.slf2 (Sup. longi. fasci. II) 0.04267* 0.39571 0.43005 0.43005 0.36212 0.36212 0.39571 0.29808 0.02206* 0.07545 0.02206* 0.06297 0.36212 0.29808 0.05210 0.12315 0.18747

lh.slf3 (Sup. longi. fasci. III) 0.10546 0.36212 0.36212 0.32950 0.50000 0.50000 0.26801 0.50000 0.07545 0.18747 0.05210 0.23947 0.43005 0.29808 0.23947 0.14272 0.23947
rh.slf3 (Sup. longi. fasci. III) 0.02206* 0.43005 0.29808 0.39571 0.39571 0.39571 0.43005 0.21258 0.03463* 0.01339* 0.03463* 0.08956 0.50000 0.36212 0.02206* 0.07545 0.10546

lh.uf (Uncinate fasciculus) 0.18747 0.46490 0.46490 0.43005 0.32950 0.18747 0.23947 0.29808 0.02206* 0.12315 0.01339* 0.26801 0.16415 0.50000 0.01728* 0.06297 0.05210
rh.uf (Uncinate fasciculus) 0.32950 0.36212 0.32950 0.32950 0.46490 0.39571 0.43005 0.23947 0.06297 0.16415 0.04267* 0.18747 0.08956 0.46490 0.02206* 0.16415 0.01339*

Table C.1: Table of Mann-Whitney U rank test p-values of MEANS of the distribution of
metrics. As rows all the extracted ROI, as columns the models metrics. Highlighted in yellow
are the TRACULA regions where the p-values are computed without considering the patient
VNSLC_16. In red the values computed with alternative = "less" (the distribution of non-
responder subjects is stochastic less than the distribution of responder subjects), in green the
values computed with alternative = "greater" (the distribution of non-responder subjects
is stochastic greater than the distribution of responder subjects), the rest is computed with
alternative = "two-sided" and non-statistical significant.
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD
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left-thalamus 0.19223 0.32518 0.32518 0.51643 0.32518 0.35542 0.17012 0.17012 0.13071 0.35542 0.17012 0.45090 0.09778 0.38662 0.00359** 0.00488** 0.05013
right-thalamus 0.48357 0.38662 0.48357 0.35542 0.29590 0.45090 0.08367 0.11342 0.21598 0.21598 0.17012 0.26792 0.03417* 0.38662 0.02247* 0.01792* 0.02247*

left-hippocampus 0.35542 0.48357 0.38662 0.32518 0.45090 0.32518 0.48357 0.17012 0.38662 0.29590 0.45090 0.45090 0.11342 0.45090 0.09778 0.11342 0.14956
right-hippocampus 0.38662 0.48357 0.41847 0.17012 0.35542 0.11342 0.14956 0.13071 0.41847 0.08367 0.17012 0.24121 0.35542 0.45090 0.07111 0.13071 0.04156*

left-amygdala 0.48357 0.45090 0.17012 0.26792 0.35542 0.14956 0.45090 0.09778 0.45090 0.21598 0.51643 0.51643 0.13071 0.19223 0.14956 0.45090 0.11342
right-amygdala 0.48357 0.38662 0.51643 0.19223 0.41847 0.45090 0.35542 0.45090 0.48357 0.29590 0.48357 0.48357 0.24121 0.19223 0.08367 0.19223 0.01417*
left-accumbens 0.13071 0.02247* 0.03417* 0.24121 0.00262** 0.35542 0.01792* 0.51643 0.07111 0.17012 0.05992 0.17012 0.05013 0.04156* 0.09778 0.07111 0.11342

right-accumbens 0.35542 0.45090 0.41847 0.51643 0.48357 0.29590 0.48357 0.07111 0.35542 0.51643 0.32518 0.38662 0.38662 0.21598 0.48357 0.48357 0.29590
left-putamen 0.00024*** 0.48357 0.21598 0.00649** 0.48357 0.32518 0.32518 0.45090 0.45090 0.21598 0.45090 0.09778 0.07111 0.32518 0.48357 0.11342 0.32518

right-putamen 0.02247* 0.01105* 0.08367 0.04156* 0.00038*** 0.17012 0.26792 0.45090 0.26792 0.48357 0.45090 0.11342 0.00131** 0.00488** 0.21598 0.38662 0.45090
left-pallidum 0.01105* 0.04156* 0.07111 0.02782* 0.38662 0.26792 0.24121 0.24121 0.01105* 0.32518 0.00853** 0.00853** 0.26792 0.26792 0.35542 0.01417* 0.35542

right-pallidum 0.03417* 0.17012 0.29590 0.05013 0.35542 0.45090 0.35542 0.24121 0.21598 0.51643 0.05992 0.00038*** 0.13071 0.48357 0.29590 0.00359** 0.35542
left-antThalRadiation 0.05013 0.29590 0.17012 0.17012 0.41847 0.41847 0.45090 0.14956 0.13071 0.19223 0.03417* 0.09778 0.13071 0.11342 0.05992 0.00488** 0.21598

right-antThalRadiation 0.02247* 0.45090 0.26792 0.13071 0.04156* 0.26792 0.19223 0.35542 0.02782* 0.05992 0.00488** 0.05013 0.00187** 0.51643 0.01105* 0.00187** 0.04156*
left-postThalRadiation-parital 0.00488** 0.29590 0.21598 0.26792 0.14956 0.24121 0.41847 0.32518 0.51643 0.11342 0.24121 0.26792 0.05992 0.05992 0.07111 0.01417* 0.14956

right-postThalRadiation-parital 0.00089*** 0.13071 0.14956 0.13071 0.29590 0.35542 0.51643 0.24121 0.29590 0.13071 0.04156* 0.14956 0.38662 0.05992 0.05992 0.00089*** 0.07111
left-postThalRadiation-occipital 0.07111 0.13071 0.07111 0.26792 0.11342 0.48357 0.32518 0.45090 0.38662 0.11342 0.45090 0.29590 0.32518 0.02782* 0.32518 0.01417* 0.51643

right-postThalRadiation-occipital 0.01792* 0.48357 0.45090 0.13071 0.17012 0.38662 0.26792 0.41847 0.41847 0.21598 0.26792 0.26792 0.26792 0.29590 0.38662 0.01417* 0.32518
left-supThalRadiation 0.13071 0.35542 0.24121 0.45090 0.24121 0.09778 0.21598 0.24121 0.38662 0.11342 0.45090 0.32518 0.19223 0.51643 0.24121 0.13071 0.11342

right-supThalRadiation 0.02782* 0.24121 0.24121 0.17012 0.41847 0.51643 0.26792 0.13071 0.32518 0.05013 0.14956 0.09778 0.29590 0.24121 0.08367 0.02247* 0.08367
left-infThalRadiation-insula 0.19223 0.41847 0.45090 0.45090 0.35542 0.48357 0.41847 0.41847 0.41847 0.45090 0.26792 0.41847 0.41847 0.09778 0.04156* 0.00853** 0.09778

right-infThalRadiation-insula 0.19223 0.26792 0.17012 0.32518 0.48357 0.07111 0.21598 0.38662 0.26792 0.07111 0.32518 0.38662 0.29590 0.14956 0.11342 0.01417* 0.29590
left-sup-longi-fasci 0.08367 0.29590 0.24121 0.35542 0.35542 0.35542 0.41847 0.35542 0.41847 0.02247* 0.51643 0.29590 0.26792 0.38662 0.14956 0.19223 0.38662

right-sup-longi-fasci 0.00262** 0.05013 0.05013 0.29590 0.13071 0.45090 0.35542 0.41847 0.38662 0.09778 0.38662 0.41847 0.21598 0.13071 0.13071 0.05992 0.45090
left-inf-longi-fasci 0.08367 0.24121 0.19223 0.26792 0.01105* 0.51643 0.41847 0.07111 0.13071 0.32518 0.21598 0.48357 0.00008*** 0.00262** 0.13071 0.01417* 0.03417*

right-inf-longi-fasci 0.13071 0.51643 0.51643 0.21598 0.02782* 0.38662 0.17012 0.21598 0.45090 0.26792 0.41847 0.26792 0.00024*** 0.03417* 0.19223 0.02247* 0.19223
left-fornix 0.04156* 0.32518 0.11342 0.17012 0.35542 0.05013 0.35542 0.09778 0.00359** 0.38662 0.01105* 0.02782* 0.32518 0.32518 0.01417* 0.05013 0.04156*

right-fornix 0.24121 0.26792 0.11342 0.21598 0.48357 0.14956 0.48357 0.17012 0.05013 0.08367 0.13071 0.51643 0.48357 0.11342 0.00488** 0.03417* 0.01417*
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acomm (Anterior commissure) 0.45090 0.21598 0.14956 0.38662 0.48357 0.51643 0.24121 0.35542 0.11342 0.09778 0.24121 0.41847 0.17012 0.48357 0.21598 0.05992 0.21598
cc.bodyc (Corpus call. body central) 0.00853** 0.48357 0.41847 0.24121 0.26792 0.45090 0.32518 0.41847 0.32518 0.01105* 0.35542 0.24121 0.24121 0.45090 0.00089*** 0.01105* 0.05013

cc.bodyp (Corpus call. body parietal) 0.01792* 0.41847 0.24121 0.14956 0.05013 0.38662 0.35542 0.13071 0.35542 0.09778 0.41847 0.11342 0.05013 0.32518 0.00089*** 0.01105* 0.04156*
cc.bodypf (Corpus call. body prefrontal) 0.35542 0.45090 0.17012 0.41847 0.38662 0.38662 0.32518 0.32518 0.48357 0.32518 0.45090 0.29590 0.11342 0.48357 0.05013 0.26792 0.09778
cc.bodypm (Corpus call. body premotor) 0.01792* 0.41847 0.24121 0.14956 0.05013 0.38662 0.35542 0.13071 0.35542 0.09778 0.41847 0.11342 0.05013 0.32518 0.00089*** 0.01105* 0.04156*

cc.bodyt (Corpus call. body temporal) 0.05992 0.48357 0.35542 0.14956 0.14956 0.13071 0.41847 0.05992 0.48357 0.21598 0.24121 0.14956 0.09778 0.29590 0.01792* 0.03417* 0.01792*
cc.genu (Corpus call. genu) 0.51643 0.45090 0.48357 0.19223 0.21598 0.29590 0.17012 0.24121 0.35542 0.21598 0.38662 0.45090 0.41847 0.14956 0.29590 0.41847 0.17012

cc.rostrum (Corpus call. rostrum) 0.24121 0.32518 0.29590 0.48357 0.24121 0.41847 0.13071 0.11342 0.17012 0.09778 0.21598 0.51643 0.32518 0.02247* 0.45090 0.41847 0.17012
cc.splenium (Corpus call. splenium) 0.02247* 0.51643 0.29590 0.09778 0.02782* 0.29590 0.48357 0.01417* 0.38662 0.24121 0.26792 0.04156* 0.00853** 0.41847 0.24121 0.07111 0.00853**

mcp (Middle cerebellar peduncle) 0.24121 0.32518 0.32518 0.38662 0.21598 0.13071 0.29590 0.45090 0.38662 0.48357 0.38662 0.19223 0.38662 0.17012 0.17012 0.29590 0.41847
lh.af (Arcuate fasciculus) 0.14956 0.02782* 0.04156* 0.11342 0.05992 0.45090 0.14956 0.41847 0.24121 0.41847 0.32518 0.29590 0.48357 0.51643 0.14956 0.48357 0.11342
rh.af (Arcuate fasciculus) 0.24121 0.00262** 0.00359** 0.48357 0.02782* 0.32518 0.24121 0.21598 0.14956 0.29590 0.21598 0.35542 0.19223 0.14956 0.38662 0.41847 0.45090
lh.ar (Acoustic radiation) 0.38662 0.05992 0.05992 0.51643 0.45090 0.29590 0.35542 0.45090 0.13071 0.32518 0.19223 0.45090 0.24121 0.48357 0.38662 0.14956 0.29590
rh.ar (Acoustic radiation) 0.26792 0.35542 0.32518 0.29590 0.19223 0.38662 0.48357 0.41847 0.41847 0.29590 0.35542 0.38662 0.08367 0.38662 0.11342 0.02782* 0.07111

lh.atr (Ant. thalamic radiations) 0.05013 0.48357 0.38662 0.51643 0.17012 0.29590 0.51643 0.24121 0.26792 0.19223 0.09778 0.38662 0.11342 0.14956 0.17012 0.01417* 0.26792
rh.atr (Ant. thalamic radiations) 0.29590 0.17012 0.05992 0.19223 0.38662 0.48357 0.26792 0.51643 0.26792 0.21598 0.11342 0.11342 0.26792 0.17012 0.11342 0.01105* 0.08367
lh.cbd (Cingulum bundle dorsal) 0.09778 0.26792 0.26792 0.32518 0.45090 0.19223 0.45090 0.35542 0.38662 0.09778 0.48357 0.29590 0.41847 0.29590 0.17012 0.08367 0.35542
rh.cbd (Cingulum bundle dorsal) 0.05992 0.48357 0.45090 0.48357 0.24121 0.19223 0.48357 0.29590 0.38662 0.17012 0.32518 0.45090 0.17012 0.29590 0.19223 0.08367 0.17012

lh.cbv (Cingulum bundle ventral) 0.21598 0.32518 0.41847 0.13071 0.26792 0.32518 0.45090 0.45090 0.29590 0.32518 0.45090 0.17012 0.32518 0.38662 0.09778 0.14956 0.19223
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.36212 0.08956 0.08956 0.26801 0.23947 0.18747 0.07545 0.18747 0.43005 0.46490 0.43005 0.10546 0.12315 0.39571 0.26801 0.50000 0.36212
rh.cst (Corticospinal tract) 0.16415 0.10546 0.07545 0.36212 0.04267* 0.18747 0.05210 0.50000 0.43005 0.46490 0.50000 0.39571 0.12315 0.43005 0.46490 0.43005 0.21258

lh.emc (Extreme capsule) 0.12315 0.26801 0.26801 0.46490 0.50000 0.21258 0.36212 0.14272 0.32950 0.29808 0.32950 0.32950 0.46490 0.26801 0.02778* 0.01021* 0.06297
rh.emc (Extreme capsule) 0.16415 0.36212 0.43005 0.16415 0.43005 0.29808 0.18747 0.39571 0.43005 0.12315 0.39571 0.18747 0.50000 0.36212 0.05210 0.03463* 0.10546

lh.fat (Frontal aslant tract) 0.02206* 0.39571 0.36212 0.06297 0.12315 0.07545 0.18747 0.23947 0.12315 0.32950 0.07545 0.07545 0.29808 0.36212 0.23947 0.36212 0.14272
rh.fat (Frontal aslant tract) 0.46490 0.50000 0.50000 0.21258 0.36212 0.26801 0.46490 0.18747 0.21258 0.26801 0.23947 0.36212 0.16415 0.16415 0.46490 0.14272 0.43005

lh.fx (Fornix) 0.43005 0.26801 0.08956 0.14272 0.43005 0.43005 0.46490 0.46490 0.05210 0.21258 0.03463* 0.26801 0.26801 0.18747 0.02778* 0.08956 0.01339*
rh.fx (Fornix) 0.26801 0.39571 0.36212 0.39571 0.36212 0.07545 0.29808 0.05210 0.43005 0.06297 0.07545 0.21258 0.29808 0.29808 0.01728* 0.07545 0.00569**

lh.ilf (Inf. longi. fasci.) 0.46490 0.10546 0.12315 0.32950 0.18747 0.39571 0.10546 0.18747 0.08956 0.39571 0.21258 0.39571 0.26801 0.46490 0.23947 0.04267* 0.08956
rh.ilf (Inf. longi. fasci.) 0.50000 0.39571 0.36212 0.18747 0.26801 0.29808 0.32950 0.46490 0.18747 0.43005 0.29808 0.32950 0.10546 0.12315 0.43005 0.14272 0.23947

lh.mlf (Middle longi. fasci.) 0.50000 0.16415 0.12315 0.26801 0.16415 0.39571 0.14272 0.50000 0.12315 0.43005 0.18747 0.32950 0.32950 0.32950 0.14272 0.21258 0.18747
rh.mlf (Middle longi. fasci.) 0.12315 0.32950 0.23947 0.08956 0.16415 0.43005 0.29808 0.23947 0.21258 0.21258 0.21258 0.18747 0.05210 0.29808 0.10546 0.04267* 0.10546

lh.or (Optic radiation) 0.43005 0.06297 0.03463* 0.32950 0.29808 0.36212 0.21258 0.29808 0.26801 0.32950 0.39571 0.46490 0.39571 0.26801 0.26801 0.18747 0.21258
rh.or (Optic radiation) 0.12315 0.39571 0.26801 0.06297 0.32950 0.43005 0.29808 0.39571 0.46490 0.36212 0.23947 0.08956 0.16415 0.23947 0.39571 0.21258 0.50000

lh.slf1 (Sup. longi. fasci. I) 0.26801 0.14272 0.23947 0.32950 0.21258 0.23947 0.50000 0.46490 0.26801 0.04267* 0.46490 0.21258 0.06297 0.06297 0.18747 0.08956 0.06297
rh.slf1 (Sup. longi. fasci. I) 0.04267* 0.23947 0.36212 0.32950 0.07545 0.29808 0.43005 0.26801 0.32950 0.01021* 0.12315 0.39571 0.02206* 0.14272 0.06297 0.02778* 0.36212

lh.slf2 (Sup. longi. fasci. II) 0.50000 0.05210 0.04267* 0.26801 0.07545 0.46490 0.26801 0.43005 0.50000 0.14272 0.50000 0.18747 0.36212 0.21258 0.23947 0.36212 0.21258
rh.slf2 (Sup. longi. fasci. II) 0.08956 0.00569** 0.00770** 0.39571 0.26801 0.32950 0.36212 0.16415 0.46490 0.05210 0.46490 0.32950 0.36212 0.14272 0.16415 0.23947 0.50000

lh.slf3 (Sup. longi. fasci. III) 0.32950 0.23947 0.23947 0.26801 0.43005 0.21258 0.26801 0.43005 0.29808 0.50000 0.43005 0.46490 0.12315 0.21258 0.43005 0.39571 0.16415
rh.slf3 (Sup. longi. fasci. III) 0.07545 0.01021* 0.02778* 0.46490 0.50000 0.36212 0.39571 0.36212 0.32950 0.36212 0.50000 0.46490 0.50000 0.50000 0.46490 0.12315 0.36212

lh.uf (Uncinate fasciculus) 0.43005 0.21258 0.26801 0.46490 0.39571 0.32950 0.26801 0.39571 0.39571 0.46490 0.46490 0.46490 0.46490 0.32950 0.46490 0.08956 0.05210
rh.uf (Uncinate fasciculus) 0.43005 0.46490 0.50000 0.43005 0.26801 0.46490 0.43005 0.21258 0.39571 0.39571 0.46490 0.23947 0.23947 0.43005 0.16415 0.12315 0.04267*

Table C.2: Table of Mann-Whitney U rank test p-values of STANDARD DEVIATIONS
of the distribution of metrics. As rows all the extracted ROI, as columns the models metrics.
Highlighted in yellow are the TRACULA regions where the p-values are computed without
considering the patient VNSLC_16. In red the values computed with alternative = "less"
(the distribution of non-responder subjects is stochastic less than the distribution of responder
subjects), in green the values computed with alternative = "greater" (the distribution of
non-responder subjects is stochastic greater than the distribution of responder subjects), the rest
is computed with alternative = "two-sided" and non-statistical significant.
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD

tc
kg

en
()

by
M

R
tr

ix
3

left-thalamus 0.45090 0.41847 0.51643 0.21598 0.21598 0.05992 0.24121 0.35542 0.01105* 0.01417* 0.08367 0.41847 0.01417* 0.41847 0.09778 0.17012 0.41847
right-thalamus 0.41847 0.41847 0.51643 0.38662 0.01105* 0.01105* 0.29590 0.11342 0.00853** 0.13071 0.19223 0.32518 0.29590 0.21598 0.07111 0.51643 0.45090

left-hippocampus 0.48357 0.45090 0.19223 0.41847 0.21598 0.13071 0.24121 0.21598 0.29590 0.24121 0.45090 0.29590 0.29590 0.29590 0.01105* 0.14956 0.09778
right-hippocampus 0.29590 0.14956 0.24121 0.11342 0.38662 0.05992 0.19223 0.02782* 0.45090 0.21598 0.45090 0.48357 0.24121 0.09778 0.00649** 0.02247* 0.08367

left-amygdala 0.48357 0.08367 0.01105* 0.21598 0.32518 0.04156* 0.05992 0.09778 0.45090 0.45090 0.26792 0.32518 0.14956 0.48357 0.26792 0.26792 0.41847
right-amygdala 0.41847 0.38662 0.41847 0.38662 0.14956 0.07111 0.03417* 0.14956 0.51643 0.48357 0.41847 0.21598 0.45090 0.35542 0.02782* 0.01417* 0.48357
left-accumbens 0.45090 0.26792 0.24121 0.21598 0.35542 0.02782* 0.03417* 0.05992 0.19223 0.41847 0.17012 0.24121 0.24121 0.51643 0.32518 0.45090 0.51643

right-accumbens 0.04156* 0.09778 0.17012 0.21598 0.48357 0.41847 0.41847 0.41847 0.19223 0.51643 0.45090 0.38662 0.19223 0.32518 0.14956 0.24121 0.21598
left-putamen 0.24121 0.38662 0.38662 0.19223 0.26792 0.14956 0.21598 0.32518 0.11342 0.38662 0.02782* 0.11342 0.35542 0.14956 0.08367 0.32518 0.11342

right-putamen 0.09778 0.08367 0.32518 0.48357 0.51643 0.29590 0.03417* 0.19223 0.24121 0.32518 0.26792 0.45090 0.45090 0.08367 0.01792* 0.29590 0.48357
left-pallidum 0.35542 0.24121 0.19223 0.38662 0.19223 0.05992 0.14956 0.45090 0.05013 0.14956 0.08367 0.45090 0.51643 0.13071 0.35542 0.29590 0.45090

right-pallidum 0.45090 0.11342 0.11342 0.35542 0.19223 0.48357 0.07111 0.41847 0.17012 0.19223 0.11342 0.29590 0.21598 0.02782* 0.13071 0.35542 0.24121
left-antThalRadiation 0.35542 0.05992 0.13071 0.05013 0.21598 0.17012 0.41847 0.26792 0.38662 0.41847 0.11342 0.21598 0.51643 0.51643 0.29590 0.08367 0.19223

right-antThalRadiation 0.38662 0.07111 0.07111 0.26792 0.01105* 0.01792* 0.35542 0.03417* 0.38662 0.13071 0.51643 0.45090 0.29590 0.26792 0.32518 0.05992 0.35542
left-postThalRadiation-parital 0.45090 0.32518 0.14956 0.45090 0.45090 0.24121 0.32518 0.17012 0.48357 0.32518 0.11342 0.14956 0.05992 0.26792 0.14956 0.08367 0.51643

right-postThalRadiation-parital 0.45090 0.24121 0.21598 0.13071 0.24121 0.41847 0.13071 0.29590 0.05992 0.38662 0.26792 0.24121 0.38662 0.38662 0.01105* 0.04156* 0.17012
left-postThalRadiation-occipital 0.51643 0.13071 0.13071 0.19223 0.41847 0.45090 0.45090 0.19223 0.26792 0.26792 0.09778 0.24121 0.13071 0.41847 0.17012 0.41847 0.17012

right-postThalRadiation-occipital 0.21598 0.45090 0.38662 0.29590 0.41847 0.35542 0.32518 0.05992 0.41847 0.26792 0.26792 0.26792 0.05992 0.32518 0.08367 0.41847 0.48357
left-supThalRadiation 0.41847 0.13071 0.21598 0.21598 0.24121 0.17012 0.26792 0.09778 0.41847 0.48357 0.35542 0.14956 0.21598 0.24121 0.29590 0.11342 0.09778

right-supThalRadiation 0.24121 0.29590 0.13071 0.14956 0.21598 0.05013 0.35542 0.02782* 0.35542 0.24121 0.17012 0.19223 0.38662 0.24121 0.17012 0.32518 0.32518
left-infThalRadiation-insula 0.19223 0.26792 0.19223 0.38662 0.11342 0.29590 0.07111 0.38662 0.13071 0.08367 0.04156* 0.51643 0.13071 0.17012 0.29590 0.38662 0.08367

right-infThalRadiation-insula 0.07111 0.32518 0.11342 0.26792 0.41847 0.32518 0.45090 0.26792 0.26792 0.13071 0.01792* 0.29590 0.13071 0.01792* 0.14956 0.41847 0.26792
left-sup-longi-fasci 0.26792 0.14956 0.08367 0.19223 0.35542 0.17012 0.38662 0.41847 0.45090 0.14956 0.21598 0.08367 0.26792 0.38662 0.13071 0.13071 0.17012

right-sup-longi-fasci 0.26792 0.09778 0.08367 0.03417* 0.48357 0.48357 0.26792 0.11342 0.45090 0.48357 0.05992 0.00649** 0.19223 0.45090 0.03417* 0.14956 0.51643
left-inf-longi-fasci 0.14956 0.11342 0.17012 0.35542 0.35542 0.48357 0.38662 0.45090 0.21598 0.45090 0.26792 0.14956 0.19223 0.35542 0.29590 0.51643 0.38662

right-inf-longi-fasci 0.13071 0.13071 0.14956 0.32518 0.09778 0.35542 0.07111 0.51643 0.38662 0.17012 0.48357 0.11342 0.09778 0.14956 0.41847 0.32518 0.38662
left-fornix 0.24121 0.41847 0.29590 0.32518 0.35542 0.48357 0.17012 0.38662 0.00488** 0.11342 0.08367 0.19223 0.04156* 0.45090 0.38662 0.19223 0.11342

right-fornix 0.41847 0.17012 0.38662 0.51643 0.51643 0.35542 0.08367 0.51643 0.00853** 0.38662 0.13071 0.32518 0.19223 0.32518 0.13071 0.29590 0.05013
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acomm (Anterior commissure) 0.26792 0.41847 0.51643 0.51643 0.29590 0.05013 0.26792 0.24121 0.00187** 0.35542 0.00089*** 0.14956 0.38662 0.41847 0.07111 0.21598 0.01792*
cc.bodyc (Corpus call. body central) 0.09778 0.11342 0.17012 0.51643 0.38662 0.32518 0.11342 0.48357 0.14956 0.05013 0.24121 0.26792 0.38662 0.45090 0.51643 0.04156* 0.32518

cc.bodyp (Corpus call. body parietal) 0.05013 0.11342 0.11342 0.09778 0.41847 0.19223 0.05013 0.38662 0.24121 0.51643 0.05992 0.21598 0.05992 0.48357 0.24121 0.05013 0.05013
cc.bodypf (Corpus call. body prefrontal) 0.26792 0.07111 0.13071 0.41847 0.21598 0.48357 0.19223 0.41847 0.38662 0.48357 0.45090 0.29590 0.07111 0.45090 0.29590 0.11342 0.51643
cc.bodypm (Corpus call. body premotor) 0.05013 0.11342 0.11342 0.09778 0.41847 0.19223 0.05013 0.38662 0.24121 0.51643 0.05992 0.21598 0.05992 0.48357 0.24121 0.05013 0.05013

cc.bodyt (Corpus call. body temporal) 0.04156* 0.51643 0.32518 0.21598 0.19223 0.03417* 0.05992 0.13071 0.01105* 0.48357 0.00131** 0.09778 0.11342 0.24121 0.32518 0.45090 0.41847
cc.genu (Corpus call. genu) 0.26792 0.14956 0.11342 0.45090 0.21598 0.19223 0.29590 0.35542 0.29590 0.45090 0.38662 0.51643 0.11342 0.17012 0.45090 0.51643 0.08367

cc.rostrum (Corpus call. rostrum) 0.41847 0.14956 0.13071 0.17012 0.35542 0.26792 0.38662 0.48357 0.13071 0.45090 0.08367 0.13071 0.41847 0.45090 0.26792 0.19223 0.26792
cc.splenium (Corpus call. splenium) 0.08367 0.38662 0.48357 0.11342 0.41847 0.00649** 0.14956 0.01105* 0.00359** 0.32518 0.00038*** 0.17012 0.26792 0.41847 0.19223 0.09778 0.32518

mcp (Middle cerebellar peduncle) 0.45090 0.26792 0.17012 0.17012 0.17012 0.26792 0.24121 0.35542 0.11342 0.26792 0.19223 0.45090 0.05013 0.02782* 0.17012 0.03417* 0.32518
lh.af (Arcuate fasciculus) 0.11342 0.26792 0.38662 0.35542 0.51643 0.03417* 0.48357 0.32518 0.48357 0.32518 0.21598 0.19223 0.45090 0.38662 0.26792 0.29590 0.05013
rh.af (Arcuate fasciculus) 0.13071 0.19223 0.21598 0.19223 0.48357 0.32518 0.29590 0.19223 0.29590 0.45090 0.05992 0.08367 0.14956 0.45090 0.45090 0.11342 0.35542
lh.ar (Acoustic radiation) 0.19223 0.09778 0.17012 0.01792* 0.26792 0.29590 0.35542 0.24121 0.48357 0.19223 0.19223 0.19223 0.02247* 0.19223 0.14956 0.45090 0.51643
rh.ar (Acoustic radiation) 0.19223 0.29590 0.26792 0.45090 0.51643 0.41847 0.48357 0.38662 0.48357 0.32518 0.26792 0.45090 0.41847 0.29590 0.19223 0.38662 0.00262**

lh.atr (Ant. thalamic radiations) 0.41847 0.07111 0.05992 0.21598 0.29590 0.29590 0.21598 0.24121 0.41847 0.48357 0.45090 0.29590 0.05992 0.38662 0.11342 0.21598 0.32518
rh.atr (Ant. thalamic radiations) 0.07111 0.07111 0.13071 0.19223 0.11342 0.35542 0.41847 0.13071 0.48357 0.41847 0.26792 0.24121 0.14956 0.48357 0.24121 0.05992 0.35542
lh.cbd (Cingulum bundle dorsal) 0.35542 0.26792 0.35542 0.35542 0.35542 0.35542 0.21598 0.09778 0.11342 0.05013 0.08367 0.24121 0.02247* 0.35542 0.48357 0.45090 0.48357
rh.cbd (Cingulum bundle dorsal) 0.32518 0.14956 0.21598 0.45090 0.32518 0.26792 0.45090 0.51643 0.48357 0.29590 0.14956 0.24121 0.19223 0.45090 0.29590 0.24121 0.07111

lh.cbv (Cingulum bundle ventral) 0.05013 0.38662 0.41847 0.13071 0.38662 0.35542 0.35542 0.41847 0.38662 0.41847 0.24121 0.09778 0.41847 0.38662 0.29590 0.41847 0.26792
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.05210 0.50000 0.50000 0.14272 0.43005 0.50000 0.36212 0.18747 0.08956 0.14272 0.05210 0.10546 0.03463* 0.29808 0.16415 0.43005 0.10546
rh.cst (Corticospinal tract) 0.02778* 0.14272 0.26801 0.08956 0.36212 0.12315 0.08956 0.46490 0.05210 0.07545 0.02206* 0.03463* 0.14272 0.21258 0.50000 0.39571 0.21258

lh.emc (Extreme capsule) 0.12315 0.08956 0.08956 0.46490 0.39571 0.32950 0.43005 0.07545 0.29808 0.50000 0.21258 0.29808 0.08956 0.43005 0.36212 0.29808 0.29808
rh.emc (Extreme capsule) 0.16415 0.16415 0.14272 0.21258 0.23947 0.06297 0.29808 0.21258 0.36212 0.16415 0.36212 0.43005 0.23947 0.32950 0.21258 0.36212 0.12315

lh.fat (Frontal aslant tract) 0.01728* 0.23947 0.26801 0.23947 0.36212 0.12315 0.36212 0.29808 0.16415 0.46490 0.16415 0.43005 0.29808 0.46490 0.32950 0.26801 0.29808
rh.fat (Frontal aslant tract) 0.14272 0.14272 0.07545 0.18747 0.46490 0.36212 0.43005 0.18747 0.21258 0.46490 0.36212 0.10546 0.18747 0.46490 0.00569** 0.50000 0.18747

lh.fx (Fornix) 0.39571 0.50000 0.32950 0.21258 0.26801 0.02206* 0.06297 0.07545 0.00060*** 0.50000 0.00770** 0.21258 0.14272 0.36212 0.04267* 0.16415 0.14272
rh.fx (Fornix) 0.21258 0.26801 0.29808 0.26801 0.39571 0.50000 0.02206* 0.46490 0.10546 0.43005 0.32950 0.32950 0.05210 0.46490 0.29808 0.21258 0.39571

lh.ilf (Inf. longi. fasci.) 0.10546 0.29808 0.16415 0.46490 0.32950 0.26801 0.29808 0.43005 0.43005 0.29808 0.16415 0.50000 0.36212 0.23947 0.46490 0.43005 0.32950
rh.ilf (Inf. longi. fasci.) 0.39571 0.29808 0.23947 0.46490 0.18747 0.16415 0.36212 0.06297 0.32950 0.26801 0.21258 0.50000 0.50000 0.12315 0.18747 0.14272 0.08956

lh.mlf (Middle longi. fasci.) 0.32950 0.18747 0.21258 0.39571 0.39571 0.05210 0.26801 0.46490 0.43005 0.23947 0.10546 0.21258 0.06297 0.12315 0.29808 0.39571 0.43005
rh.mlf (Middle longi. fasci.) 0.02206* 0.29808 0.32950 0.01339* 0.26801 0.01339* 0.06297 0.00569** 0.10546 0.46490 0.00770** 0.00569** 0.46490 0.46490 0.12315 0.36212 0.06297

lh.or (Optic radiation) 0.36212 0.04267* 0.05210 0.32950 0.50000 0.43005 0.50000 0.29808 0.26801 0.29808 0.01021* 0.18747 0.46490 0.36212 0.23947 0.43005 0.46490
rh.or (Optic radiation) 0.10546 0.50000 0.50000 0.16415 0.23947 0.12315 0.32950 0.06297 0.29808 0.50000 0.05210 0.26801 0.06297 0.39571 0.43005 0.23947 0.01021*

lh.slf1 (Sup. longi. fasci. I) 0.18747 0.21258 0.18747 0.46490 0.32950 0.29808 0.39571 0.04267* 0.12315 0.32950 0.32950 0.26801 0.29808 0.50000 0.32950 0.50000 0.26801
rh.slf1 (Sup. longi. fasci. I) 0.05210 0.39571 0.29808 0.00207** 0.21258 0.50000 0.39571 0.01339* 0.26801 0.36212 0.50000 0.00770** 0.21258 0.36212 0.00207** 0.07545 0.32950

lh.slf2 (Sup. longi. fasci. II) 0.29808 0.26801 0.29808 0.32950 0.39571 0.18747 0.46490 0.50000 0.26801 0.43005 0.14272 0.14272 0.29808 0.39571 0.08956 0.26801 0.18747
rh.slf2 (Sup. longi. fasci. II) 0.06297 0.06297 0.05210 0.05210 0.36212 0.43005 0.26801 0.10546 0.39571 0.36212 0.12315 0.04267* 0.46490 0.43005 0.36212 0.50000 0.14272

lh.slf3 (Sup. longi. fasci. III) 0.50000 0.50000 0.50000 0.14272 0.32950 0.43005 0.50000 0.14272 0.29808 0.46490 0.14272 0.01728* 0.16415 0.23947 0.21258 0.50000 0.39571
rh.slf3 (Sup. longi. fasci. III) 0.36212 0.07545 0.07545 0.26801 0.50000 0.46490 0.39571 0.08956 0.50000 0.21258 0.36212 0.03463* 0.29808 0.50000 0.43005 0.50000 0.14272

lh.uf (Uncinate fasciculus) 0.01339* 0.50000 0.46490 0.46490 0.43005 0.43005 0.46490 0.10546 0.02778* 0.32950 0.00569** 0.18747 0.04267* 0.39571 0.18747 0.18747 0.46490
rh.uf (Uncinate fasciculus) 0.16415 0.39571 0.32950 0.50000 0.43005 0.26801 0.26801 0.39571 0.43005 0.18747 0.16415 0.26801 0.16415 0.32950 0.23947 0.18747 0.16415

Table C.3: Table of Mann-Whitney U rank test p-values of SKEWNESS of the distribution
of metrics. As rows all the extracted ROI, as columns the models metrics. Highlighted in
yellow are the TRACULA regions where the p-values are computed without considering the
patient VNSLC_16. In red the values computed with alternative = "less" (the distribution of
non-responder subjects is stochastic less than the distribution of responder subjects), in green the
values computed with alternative = "greater" (the distribution of non-responder subjects
is stochastic greater than the distribution of responder subjects), the rest is computed with
alternative = "two-sided" and non-statistical significant.
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD

tc
kg

en
()

by
M

R
tr

ix
3

left-thalamus 0.35542 0.41847 0.29590 0.35542 0.09778 0.05992 0.29590 0.13071 0.01417* 0.21598 0.17012 0.38662 0.00649** 0.38662 0.04156* 0.07111 0.17012
right-thalamus 0.51643 0.24121 0.38662 0.45090 0.02247* 0.01792* 0.01792* 0.04156* 0.01417* 0.45090 0.13071 0.24121 0.38662 0.26792 0.19223 0.14956 0.21598

left-hippocampus 0.38662 0.41847 0.17012 0.38662 0.35542 0.14956 0.35542 0.19223 0.24121 0.03417* 0.35542 0.35542 0.35542 0.32518 0.51643 0.48357 0.24121
right-hippocampus 0.41847 0.14956 0.35542 0.14956 0.29590 0.29590 0.29590 0.38662 0.26792 0.01417* 0.48357 0.38662 0.07111 0.14956 0.13071 0.51643 0.38662

left-amygdala 0.48357 0.05992 0.02782* 0.24121 0.26792 0.05992 0.02247* 0.29590 0.51643 0.14956 0.21598 0.32518 0.48357 0.45090 0.35542 0.51643 0.41847
right-amygdala 0.48357 0.48357 0.48357 0.38662 0.24121 0.21598 0.41847 0.41847 0.48357 0.24121 0.35542 0.21598 0.01105* 0.38662 0.48357 0.07111 0.01417*
left-accumbens 0.35542 0.38662 0.41847 0.29590 0.26792 0.26792 0.51643 0.09778 0.19223 0.14956 0.17012 0.24121 0.09778 0.41847 0.17012 0.04156* 0.41847

right-accumbens 0.05013 0.07111 0.14956 0.19223 0.35542 0.48357 0.51643 0.19223 0.11342 0.07111 0.21598 0.38662 0.03417* 0.26792 0.45090 0.38662 0.26792
left-putamen 0.21598 0.26792 0.29590 0.14956 0.19223 0.38662 0.29590 0.48357 0.07111 0.48357 0.17012 0.09778 0.19223 0.24121 0.21598 0.02782* 0.05013

right-putamen 0.11342 0.45090 0.26792 0.41847 0.02782* 0.17012 0.07111 0.09778 0.21598 0.05992 0.32518 0.38662 0.00262** 0.05013 0.45090 0.05992 0.48357
left-pallidum 0.35542 0.24121 0.14956 0.41847 0.38662 0.13071 0.38662 0.21598 0.26792 0.29590 0.24121 0.35542 0.21598 0.26792 0.14956 0.13071 0.45090

right-pallidum 0.45090 0.01792* 0.05992 0.38662 0.26792 0.08367 0.48357 0.07111 0.32518 0.38662 0.13071 0.41847 0.21598 0.14956 0.05013 0.24121 0.09778
left-antThalRadiation 0.17012 0.26792 0.26792 0.21598 0.13071 0.29590 0.26792 0.24121 0.26792 0.38662 0.17012 0.24121 0.45090 0.09778 0.45090 0.45090 0.32518

right-antThalRadiation 0.45090 0.32518 0.51643 0.21598 0.00262** 0.26792 0.24121 0.48357 0.45090 0.41847 0.29590 0.45090 0.21598 0.38662 0.21598 0.05013 0.48357
left-postThalRadiation-parital 0.35542 0.09778 0.07111 0.41847 0.45090 0.26792 0.38662 0.45090 0.19223 0.08367 0.48357 0.29590 0.05992 0.48357 0.24121 0.24121 0.32518

right-postThalRadiation-parital 0.17012 0.00359** 0.00187** 0.17012 0.24121 0.14956 0.09778 0.51643 0.45090 0.38662 0.51643 0.51643 0.45090 0.13071 0.03417* 0.29590 0.38662
left-postThalRadiation-occipital 0.45090 0.26792 0.11342 0.48357 0.45090 0.21598 0.32518 0.48357 0.51643 0.21598 0.29590 0.26792 0.05013 0.45090 0.07111 0.32518 0.24121

right-postThalRadiation-occipital 0.24121 0.02247* 0.03417* 0.21598 0.41847 0.09778 0.41847 0.51643 0.41847 0.32518 0.17012 0.45090 0.01417* 0.26792 0.08367 0.48357 0.29590
left-supThalRadiation 0.19223 0.45090 0.32518 0.24121 0.26792 0.09778 0.41847 0.09778 0.29590 0.09778 0.38662 0.32518 0.08367 0.08367 0.41847 0.24121 0.21598

right-supThalRadiation 0.19223 0.00649** 0.00853** 0.41847 0.11342 0.32518 0.24121 0.11342 0.17012 0.35542 0.29590 0.41847 0.24121 0.32518 0.11342 0.45090 0.38662
left-infThalRadiation-insula 0.19223 0.51643 0.32518 0.19223 0.07111 0.35542 0.04156* 0.38662 0.26792 0.51643 0.41847 0.29590 0.05013 0.07111 0.35542 0.19223 0.14956

right-infThalRadiation-insula 0.11342 0.45090 0.35542 0.45090 0.29590 0.11342 0.35542 0.21598 0.13071 0.48357 0.26792 0.32518 0.13071 0.32518 0.35542 0.51643 0.26792
left-sup-longi-fasci 0.11342 0.04156* 0.03417* 0.14956 0.41847 0.01417* 0.41847 0.38662 0.26792 0.26792 0.24121 0.07111 0.26792 0.45090 0.13071 0.17012 0.19223

right-sup-longi-fasci 0.08367 0.00187** 0.00187** 0.14956 0.48357 0.02782* 0.14956 0.35542 0.00853** 0.04156* 0.01417* 0.04156* 0.19223 0.45090 0.02782* 0.24121 0.48357
left-inf-longi-fasci 0.08367 0.14956 0.32518 0.38662 0.24121 0.21598 0.38662 0.24121 0.45090 0.24121 0.09778 0.26792 0.05013 0.13071 0.17012 0.38662 0.48357

right-inf-longi-fasci 0.08367 0.14956 0.19223 0.51643 0.08367 0.13071 0.08367 0.14956 0.35542 0.07111 0.45090 0.14956 0.01105* 0.03417* 0.48357 0.35542 0.48357
left-fornix 0.05013 0.51643 0.38662 0.05992 0.05992 0.01417* 0.21598 0.00853** 0.05992 0.09778 0.05992 0.02247* 0.03417* 0.51643 0.02247* 0.19223 0.26792

right-fornix 0.24121 0.24121 0.26792 0.24121 0.48357 0.14956 0.13071 0.21598 0.14956 0.41847 0.17012 0.45090 0.14956 0.35542 0.26792 0.45090 0.41847
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acomm (Anterior commissure) 0.38662 0.13071 0.45090 0.45090 0.35542 0.01792* 0.45090 0.17012 0.00131** 0.11342 0.00488** 0.35542 0.19223 0.26792 0.01105* 0.09778 0.14956
cc.bodyc (Corpus call. body central) 0.09778 0.05992 0.17012 0.41847 0.35542 0.26792 0.11342 0.17012 0.35542 0.02782* 0.26792 0.41847 0.45090 0.51643 0.35542 0.13071 0.45090

cc.bodyp (Corpus call. body parietal) 0.05013 0.02782* 0.32518 0.51643 0.26792 0.00649** 0.04156* 0.02782* 0.02782* 0.19223 0.07111 0.38662 0.05992 0.41847 0.41847 0.11342 0.21598
cc.bodypf (Corpus call. body prefrontal) 0.35542 0.17012 0.41847 0.45090 0.19223 0.35542 0.21598 0.45090 0.32518 0.32518 0.41847 0.17012 0.01417* 0.29590 0.29590 0.08367 0.38662
cc.bodypm (Corpus call. body premotor) 0.05013 0.02782* 0.32518 0.51643 0.26792 0.00649** 0.04156* 0.02782* 0.02782* 0.19223 0.07111 0.38662 0.05992 0.41847 0.41847 0.11342 0.21598

cc.bodyt (Corpus call. body temporal) 0.04156* 0.01792* 0.14956 0.51643 0.21598 0.01417* 0.13071 0.24121 0.00131** 0.48357 0.19223 0.48357 0.17012 0.19223 0.19223 0.41847 0.32518
cc.genu (Corpus call. genu) 0.48357 0.29590 0.32518 0.19223 0.14956 0.14956 0.38662 0.21598 0.03417* 0.17012 0.45090 0.48357 0.04156* 0.17012 0.29590 0.45090 0.24121

cc.rostrum (Corpus call. rostrum) 0.45090 0.41847 0.41847 0.05013 0.32518 0.45090 0.32518 0.24121 0.03417* 0.41847 0.14956 0.11342 0.41847 0.32518 0.32518 0.24121 0.35542
cc.splenium (Corpus call. splenium) 0.05992 0.32518 0.45090 0.38662 0.35542 0.24121 0.29590 0.32518 0.00359** 0.35542 0.04156* 0.45090 0.21598 0.32518 0.17012 0.19223 0.21598

mcp (Middle cerebellar peduncle) 0.45090 0.19223 0.21598 0.07111 0.14956 0.08367 0.26792 0.24121 0.35542 0.29590 0.21598 0.29590 0.21598 0.09778 0.21598 0.05992 0.14956
lh.af (Arcuate fasciculus) 0.38662 0.35542 0.26792 0.48357 0.38662 0.08367 0.38662 0.41847 0.07111 0.19223 0.17012 0.11342 0.32518 0.21598 0.29590 0.24121 0.11342
rh.af (Arcuate fasciculus) 0.26792 0.01417* 0.00187** 0.24121 0.32518 0.02782* 0.14956 0.19223 0.51643 0.48357 0.48357 0.32518 0.14956 0.29590 0.41847 0.19223 0.48357
lh.ar (Acoustic radiation) 0.24121 0.13071 0.21598 0.00488** 0.38662 0.00262** 0.51643 0.00359** 0.05013 0.26792 0.35542 0.09778 0.03417* 0.35542 0.26792 0.45090 0.29590
rh.ar (Acoustic radiation) 0.19223 0.38662 0.48357 0.08367 0.48357 0.04156* 0.41847 0.41847 0.45090 0.45090 0.24121 0.41847 0.48357 0.41847 0.14956 0.32518 0.13071

lh.atr (Ant. thalamic radiations) 0.41847 0.45090 0.21598 0.05013 0.17012 0.17012 0.14956 0.35542 0.21598 0.38662 0.17012 0.14956 0.04156* 0.45090 0.26792 0.48357 0.38662
rh.atr (Ant. thalamic radiations) 0.05013 0.19223 0.32518 0.11342 0.13071 0.24121 0.29590 0.05992 0.45090 0.35542 0.48357 0.45090 0.14956 0.45090 0.41847 0.41847 0.21598
lh.cbd (Cingulum bundle dorsal) 0.38662 0.32518 0.38662 0.35542 0.45090 0.21598 0.35542 0.13071 0.32518 0.24121 0.26792 0.35542 0.11342 0.24121 0.51643 0.41847 0.51643
rh.cbd (Cingulum bundle dorsal) 0.17012 0.01417* 0.00853** 0.48357 0.29590 0.26792 0.41847 0.41847 0.32518 0.21598 0.45090 0.41847 0.24121 0.32518 0.29590 0.32518 0.11342

lh.cbv (Cingulum bundle ventral) 0.08367 0.35542 0.26792 0.08367 0.29590 0.02782* 0.45090 0.08367 0.24121 0.48357 0.41847 0.17012 0.35542 0.26792 0.26792 0.45090 0.41847
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.16415 0.05210 0.03463* 0.18747 0.29808 0.16415 0.18747 0.29808 0.14272 0.46490 0.43005 0.08956 0.02778* 0.46490 0.18747 0.08956 0.50000
rh.cst (Corticospinal tract) 0.10546 0.14272 0.23947 0.16415 0.39571 0.46490 0.10546 0.02778* 0.29808 0.23947 0.29808 0.07545 0.07545 0.32950 0.43005 0.29808 0.02778*

lh.emc (Extreme capsule) 0.26801 0.26801 0.21258 0.29808 0.43005 0.14272 0.36212 0.26801 0.10546 0.32950 0.21258 0.36212 0.14272 0.43005 0.14272 0.18747 0.26801
rh.emc (Extreme capsule) 0.18747 0.14272 0.32950 0.18747 0.14272 0.23947 0.10546 0.39571 0.26801 0.39571 0.21258 0.36212 0.14272 0.26801 0.50000 0.46490 0.23947

lh.fat (Frontal aslant tract) 0.02778* 0.50000 0.43005 0.36212 0.21258 0.02206* 0.14272 0.21258 0.06297 0.39571 0.21258 0.29808 0.36212 0.29808 0.21258 0.50000 0.46490
rh.fat (Frontal aslant tract) 0.36212 0.05210 0.07545 0.26801 0.46490 0.07545 0.36212 0.36212 0.04267* 0.29808 0.16415 0.36212 0.07545 0.07545 0.03463* 0.46490 0.10546

lh.fx (Fornix) 0.39571 0.36212 0.08956 0.18747 0.36212 0.16415 0.26801 0.32950 0.01021* 0.43005 0.23947 0.12315 0.05210 0.32950 0.18747 0.36212 0.10546
rh.fx (Fornix) 0.12315 0.50000 0.29808 0.18747 0.12315 0.23947 0.12315 0.10546 0.02778* 0.14272 0.21258 0.18747 0.16415 0.23947 0.18747 0.36212 0.10546

lh.ilf (Inf. longi. fasci.) 0.18747 0.18747 0.32950 0.43005 0.32950 0.46490 0.26801 0.10546 0.29808 0.18747 0.43005 0.50000 0.07545 0.16415 0.43005 0.29808 0.18747
rh.ilf (Inf. longi. fasci.) 0.46490 0.21258 0.43005 0.46490 0.16415 0.12315 0.32950 0.16415 0.32950 0.12315 0.43005 0.39571 0.46490 0.29808 0.26801 0.16415 0.06297

lh.mlf (Middle longi. fasci.) 0.43005 0.05210 0.06297 0.21258 0.39571 0.43005 0.39571 0.46490 0.36212 0.16415 0.26801 0.50000 0.21258 0.16415 0.10546 0.46490 0.50000
rh.mlf (Middle longi. fasci.) 0.06297 0.21258 0.23947 0.01728* 0.32950 0.00569** 0.06297 0.50000 0.10546 0.50000 0.18747 0.01728* 0.39571 0.46490 0.08956 0.39571 0.01021*

lh.or (Optic radiation) 0.43005 0.06297 0.08956 0.43005 0.50000 0.50000 0.32950 0.21258 0.05210 0.23947 0.08956 0.29808 0.16415 0.32950 0.43005 0.23947 0.26801
rh.or (Optic radiation) 0.06297 0.10546 0.05210 0.43005 0.14272 0.03463* 0.36212 0.06297 0.14272 0.36212 0.36212 0.50000 0.02206* 0.10546 0.26801 0.21258 0.01728*

lh.slf1 (Sup. longi. fasci. I) 0.23947 0.39571 0.50000 0.29808 0.39571 0.01021* 0.46490 0.12315 0.01728* 0.29808 0.00770** 0.36212 0.32950 0.46490 0.39571 0.46490 0.46490
rh.slf1 (Sup. longi. fasci. I) 0.07545 0.14272 0.18747 0.00207** 0.23947 0.01021* 0.46490 0.32950 0.02778* 0.05210 0.02778* 0.01021* 0.36212 0.46490 0.00060*** 0.04267* 0.46490

lh.slf2 (Sup. longi. fasci. II) 0.23947 0.23947 0.21258 0.29808 0.46490 0.26801 0.50000 0.50000 0.36212 0.10546 0.46490 0.16415 0.16415 0.32950 0.16415 0.29808 0.21258
rh.slf2 (Sup. longi. fasci. II) 0.05210 0.00415** 0.00207** 0.07545 0.23947 0.00569** 0.14272 0.26801 0.39571 0.50000 0.46490 0.18747 0.39571 0.10546 0.50000 0.26801 0.12315

lh.slf3 (Sup. longi. fasci. III) 0.50000 0.36212 0.32950 0.46490 0.43005 0.32950 0.39571 0.02778* 0.18747 0.07545 0.32950 0.23947 0.08956 0.14272 0.21258 0.39571 0.18747
rh.slf3 (Sup. longi. fasci. III) 0.23947 0.00415** 0.00415** 0.39571 0.46490 0.21258 0.29808 0.32950 0.43005 0.39571 0.50000 0.46490 0.43005 0.43005 0.12315 0.50000 0.08956

lh.uf (Uncinate fasciculus) 0.05210 0.05210 0.03463* 0.46490 0.46490 0.04267* 0.43005 0.32950 0.03463* 0.36212 0.05210 0.32950 0.06297 0.46490 0.21258 0.18747 0.29808
rh.uf (Uncinate fasciculus) 0.43005 0.43005 0.32950 0.50000 0.32950 0.32950 0.29808 0.50000 0.26801 0.23947 0.23947 0.46490 0.07545 0.12315 0.29808 0.23947 0.39571

Table C.4: Table of Mann-Whitney U rank test p-values of KURTOSIS of the distribution
of metrics. As rows all the extracted ROI, as columns the models metrics. Highlighted in
yellow are the TRACULA regions where the p-values are computed without considering the
patient VNSLC_16. In red the values computed with alternative = "less" (the distribution of
non-responder subjects is stochastic less than the distribution of responder subjects), in green the
values computed with alternative = "greater" (the distribution of non-responder subjects
is stochastic greater than the distribution of responder subjects), the rest is computed with
alternative = "two-sided" and non-statistical significant.

116



P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD
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left-thalamus 0.52951 0.94517 0.88084 0.65512 0.76286 0.89966 0.98018 0.69235 0.03503* 0.33868 0.09067 0.96837 0.10328 0.69235 0.02853* 0.03180* 0.01929*
right-thalamus 0.51002 0.83513 0.90961 0.46353 0.37528 0.70994 0.93457 0.14871 0.02721* 0.12876 0.07112 0.79987 0.02529* 0.31253 0.01802* 0.03155* 0.01160*

left-hippocampus 0.42629 0.96265 0.90552 0.83725 0.67748 0.80394 0.84508 0.65790 0.10021 0.08849 0.15841 0.82390 0.71194 0.64741 0.02672* 0.00889** 0.08247
right-hippocampus 0.12912 0.91812 0.87935 0.25691 0.36578 0.38536 0.32973 0.37160 0.35043 0.06878 0.69783 0.62852 0.81512 0.40726 0.11922 0.19627 0.18830

left-amygdala 0.79807 0.51261 0.68690 0.34407 0.07017 0.27529 0.12525 0.35671 0.13989 0.05463 0.19205 0.63190 0.72470 0.08920 0.05441 0.05694 0.05980
right-amygdala 0.66293 0.93299 0.96973 0.69411 0.59122 0.23205 0.27552 0.32465 0.22835 0.18260 0.35863 0.91450 0.74817 0.58393 0.26673 0.28597 0.27258
left-accumbens 0.69235 0.69607 0.83513 0.96265 0.51002 0.10705 0.54434 0.04413* 0.01811* 0.15357 0.03179* 0.58393 0.46353 0.45217 0.05732 0.03503* 0.02959*

right-accumbens 0.75112 0.59945 0.59945 0.85877 0.82576 0.40852 0.59945 0.20730 0.06766 0.21982 0.11192 0.94384 0.27770 0.64232 0.06878 0.08296 0.03708*
left-putamen 0.15108 0.72470 0.74817 0.14171 0.86241 0.54650 0.70994 0.83890 0.12218 0.25403 0.18162 0.44849 0.35531 0.94570 0.03631* 0.07112 0.00724**

right-putamen 0.17707 0.15778 0.22263 0.22439 0.99382 0.24648 0.40726 0.29150 0.02853* 0.05441 0.04031* 0.87935 0.23277 0.29456 0.01717* 0.01822* 0.02471*
left-pallidum 0.25909 0.58856 0.53809 0.26426 0.70994 0.73127 0.75622 0.87589 0.18830 0.14960 0.20035 0.69411 0.67234 0.68112 0.10617 0.10047 0.22439

right-pallidum 0.07053 0.78579 0.83020 0.64741 0.21066 0.75836 0.42449 0.79807 0.11627 0.15078 0.12483 0.83372 0.92305 0.21066 0.09067 0.04361* 0.52951
left-antThalRadiation 0.14960 0.42629 0.29522 0.36116 0.52386 0.55176 0.68690 0.46497 0.05463 0.12912 0.08259 0.59945 0.02539* 0.72124 0.04230* 0.13989 0.03180*

right-antThalRadiation 0.02268* 0.36764 0.31253 0.23949 0.60625 0.29456 0.50260 0.05888 0.05260 0.02731* 0.09232 0.51566 0.02474* 0.54434 0.02471* 0.03045* 0.01984*
left-postThalRadiation-parital 0.23614 0.66293 0.56387 0.21269 0.18162 0.69783 0.51566 0.70356 0.05980 0.25439 0.04581* 0.48642 0.82576 0.54650 0.07228 0.40726 0.12706

right-postThalRadiation-parital 0.21443 0.21269 0.24767 0.64613 0.51002 0.35601 0.46353 0.20216 0.05537 0.23902 0.10328 0.83725 0.08797 0.92019 0.04880* 0.22835 0.02474*
left-postThalRadiation-occipital 0.13646 0.87589 0.92305 0.33140 0.78269 0.44773 0.35043 0.87219 0.03006* 0.11023 0.02484* 0.21871 0.78601 0.68112 0.05537 0.17742 0.27113

right-postThalRadiation-occipital 0.05537 0.89158 0.90961 0.35601 0.87416 0.11922 0.62746 0.37013 0.02841* 0.03466* 0.03247* 0.88557 0.41961 0.89966 0.03655* 0.04880* 0.05616
left-supThalRadiation 0.30702 0.72450 0.72124 0.24214 0.82576 0.81512 0.77741 0.83513 0.15361 0.44508 0.09850 0.99578 0.25317 0.50260 0.29456 0.62605 0.23929

right-supThalRadiation 0.10702 0.53566 0.54312 0.52431 0.80803 0.59122 0.76588 0.46379 0.11620 0.16623 0.13781 0.92019 0.38612 0.83372 0.05067 0.21522 0.10675
left-infThalRadiation-insula 0.76286 0.38126 0.34107 0.94811 0.45755 0.44433 0.27716 0.59945 0.03006* 0.25154 0.01940* 0.83301 0.25691 0.50260 0.06315 0.02959* 0.12706

right-infThalRadiation-insula 0.36249 0.83513 0.77741 0.34407 0.96483 0.30702 0.91450 0.20579 0.01998* 0.08298 0.02579* 0.20176 0.28093 0.66050 0.02549* 0.07610 0.02499*
left-sup-longi-fasci 0.21269 0.78247 0.71698 0.05198 0.48070 0.50260 0.64741 0.74817 0.11451 0.63853 0.06486 0.02841* 0.80803 0.71194 0.26568 0.46379 0.45833

right-sup-longi-fasci 0.18931 0.74817 0.74817 0.14028 0.44508 0.74438 0.74880 0.99578 0.18830 0.73127 0.12814 0.03373* 0.64577 0.51189 0.18830 0.28597 0.35063
left-inf-longi-fasci 0.17853 0.78247 0.78247 0.87687 0.70994 0.31876 0.69783 0.35053 0.17430 0.17853 0.13646 0.21871 0.42629 0.98517 0.11922 0.39975 0.07070

right-inf-longi-fasci 0.10287 0.86241 0.92305 0.78601 0.17464 0.39161 0.29807 0.25561 0.06504 0.10287 0.04180* 0.19461 0.14171 0.20216 0.05928 0.08374 0.23211
left-fornix 0.54388 0.65790 0.75836 0.96483 0.79515 0.85877 0.90552 0.91218 0.05138 0.31314 0.14495 0.90552 0.35863 0.74438 0.00636** 0.00705** 0.04423*

right-fornix 0.71194 0.73479 0.41608 0.85635 0.42187 0.86241 0.96265 0.77741 0.03503* 0.10723 0.33868 0.93299 0.19086 0.47303 0.00547** 0.00415** 0.02529*
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acomm (Anterior commissure) 0.83372 0.80803 0.78579 0.93457 0.83725 0.45833 0.66199 0.41060 0.01207* 0.14171 0.01998* 0.41961 0.12706 0.91812 0.00971** 0.09067 0.01361*
cc.bodyc (Corpus call. body central) 0.17022 0.77741 0.77282 0.44735 0.38612 0.92905 0.77522 0.71054 0.08574 0.43125 0.18830 0.31253 0.24420 0.65346 0.09601 0.40054 0.12218

cc.bodyp (Corpus call. body parietal) 0.05830 0.82390 0.90552 0.75836 0.33497 0.50501 0.54850 0.89158 0.09601 0.08259 0.11620 0.75112 0.21269 0.65790 0.04581* 0.17568 0.08298
cc.bodypf (Corpus call. body prefrontal) 0.26411 0.53778 0.49402 0.24767 0.99578 0.93299 0.64577 0.39426 0.07930 0.17742 0.17298 0.37191 0.43651 0.84199 0.02807* 0.57059 0.02842*
cc.bodypm (Corpus call. body premotor) 0.05830 0.82390 0.90552 0.75836 0.33497 0.50501 0.54850 0.89158 0.09601 0.08259 0.11620 0.75112 0.21269 0.65790 0.04581* 0.17568 0.08298

cc.bodyt (Corpus call. body temporal) 0.07557 0.81512 0.78579 0.49139 0.44773 0.19627 0.42449 0.44433 0.01487* 0.05028 0.01861* 0.71194 0.59440 0.79987 0.03230* 0.07017 0.08259
cc.genu (Corpus call. genu) 0.70994 0.27059 0.23461 0.73127 0.52742 0.68458 0.71698 0.68112 0.06905 0.43125 0.11268 0.66686 0.35863 0.52742 0.03012* 0.17298 0.05003

cc.rostrum (Corpus call. rostrum) 0.87935 0.42282 0.32328 0.66686 0.86241 0.92905 0.88208 0.93299 0.11451 0.48848 0.11788 0.19314 0.66199 0.78247 0.05676 0.31921 0.09968
cc.splenium (Corpus call. splenium) 0.05957 0.97659 0.96483 0.72470 0.48642 0.28300 0.47504 0.60505 0.06878 0.17657 0.05339 0.68112 0.50118 0.52386 0.14638 0.23211 0.05138

mcp (Middle cerebellar peduncle) 0.08659 0.27716 0.30651 0.20216 0.91398 0.94811 0.58081 0.75112 0.68112 0.21443 0.57852 0.50118 0.54542 0.71194 0.49528 0.79358 0.40726
lh.af (Arcuate fasciculus) 0.24767 0.75772 0.62605 0.27770 0.74438 0.67748 0.58393 0.88557 0.13961 0.23205 0.08462 0.33094 0.62235 0.71194 0.19627 0.62235 0.27529
rh.af (Arcuate fasciculus) 0.05980 0.61903 0.61903 0.34494 0.90552 0.90552 0.92905 0.88084 0.15108 0.07017 0.19627 0.45833 0.87416 0.69921 0.14871 0.17568 0.49528
lh.ar (Acoustic radiation) 0.59793 0.65790 0.72124 0.69235 0.80803 0.33497 0.60505 0.22439 0.04581* 0.59440 0.08797 0.55316 0.34155 0.98018 0.11627 0.40726 0.08920
rh.ar (Acoustic radiation) 0.51566 0.42955 0.60539 0.75836 0.79807 0.11451 0.41421 0.25793 0.01727* 0.23929 0.09563 0.70356 0.88432 0.79987 0.05015 0.11192 0.15361

lh.atr (Ant. thalamic radiations) 0.20579 0.41281 0.31921 0.21871 0.62746 0.64577 0.71698 0.21173 0.05260 0.21066 0.04650* 0.38126 0.12119 0.81835 0.06753 0.11815 0.01929*
rh.atr (Ant. thalamic radiations) 0.11023 0.27552 0.19627 0.27474 0.37160 0.58624 0.48151 0.27529 0.04627* 0.10112 0.06878 0.51261 0.17707 0.77282 0.01087* 0.04392* 0.00999**
lh.cbd (Cingulum bundle dorsal) 0.30807 0.72124 0.69411 0.95454 0.53809 0.46079 0.57852 0.53809 0.04102* 0.48848 0.08259 0.44508 0.52594 0.72470 0.07070 0.34494 0.21871
rh.cbd (Cingulum bundle dorsal) 0.19086 0.83372 0.80485 0.65790 0.51189 0.72593 0.87219 0.68826 0.14155 0.28093 0.23949 0.19461 0.86241 0.83513 0.12500 0.53793 0.21522

lh.cbv (Cingulum bundle ventral) 0.09371 0.86655 0.74480 0.10995 0.56022 0.97549 0.69411 0.44849 0.08374 0.32917 0.06065 0.75772 0.72470 0.66517 0.07557 0.15488 0.40933
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.42199 0.63016 0.55143 0.58123 0.88554 0.93165 0.88554 0.94576 0.66255 0.74352 0.66255 0.55040 0.62977 0.85127 0.34081 0.48314 0.52579
rh.cst (Corticospinal tract) 0.40110 0.66923 0.59898 0.72149 0.42067 0.99875 0.79358 0.48314 0.63333 0.73933 0.63016 0.72511 0.24298 0.30772 0.48314 0.73748 0.24977

lh.emc (Extreme capsule) 0.28117 0.86417 0.86851 0.28117 0.91258 0.47355 0.74352 0.27404 0.06126 0.39216 0.03572* 0.33488 0.44675 0.97464 0.07224 0.22327 0.08789
rh.emc (Extreme capsule) 0.24558 0.56260 0.56260 0.36650 0.80157 0.46183 0.72511 0.09637 0.18734 0.29322 0.17586 0.94754 0.27404 0.67555 0.02704* 0.37229 0.04028*

lh.fat (Frontal aslant tract) 0.16528 0.63333 0.68966 0.09006 0.62076 0.50544 0.97647 0.50544 0.27559 0.63333 0.14682 0.14951 0.36857 0.45952 0.45694 0.63611 0.27559
rh.fat (Frontal aslant tract) 0.04151* 0.80712 0.67555 0.18923 0.43026 0.79110 0.79110 0.68966 0.42199 0.23357 0.36650 0.03440* 0.31851 0.38149 0.20853 0.32741 0.20853

lh.fx (Fornix) 0.88554 0.60539 0.68923 0.90859 0.76622 0.41752 0.23357 0.36857 0.13390 0.68065 0.03440* 0.66048 0.14876 0.75478 0.04335* 0.02248* 0.04144*
rh.fx (Fornix) 0.50386 0.78517 0.80712 0.68065 0.83020 0.94576 0.63333 0.98879 0.05736 0.24977 0.42067 0.90348 0.85127 0.57579 0.01275* 0.02258* 0.05736

lh.ilf (Inf. longi. fasci.) 0.22879 0.67555 0.65553 0.70143 0.88333 0.14876 0.68966 0.09103 0.10234 0.12483 0.08528 0.74352 0.06031 0.95051 0.08459 0.36650 0.03786*
rh.ilf (Inf. longi. fasci.) 0.07985 0.86417 0.86417 0.39216 0.54218 0.63333 0.63333 0.16363 0.13661 0.15475 0.23357 0.76766 0.34017 0.45952 0.09469 0.57543 0.15130

lh.mlf (Middle longi. fasci.) 0.42199 0.63333 0.59898 0.56827 0.88333 0.48314 0.58123 0.36193 0.04228* 0.23343 0.03786* 0.48893 0.32741 0.85931 0.07224 0.27404 0.10370
rh.mlf (Middle longi. fasci.) 0.09637 0.81525 0.80712 0.35922 0.83020 0.09856 0.52612 0.30772 0.03510* 0.04825* 0.04376* 0.13825 0.50544 0.97647 0.03755* 0.17818 0.06138

lh.or (Optic radiation) 0.15331 0.86851 0.72511 0.83020 0.86851 0.32741 0.68966 0.33677 0.04467* 0.20286 0.04467* 0.22822 0.29322 0.90859 0.05542 0.37229 0.10527
rh.or (Optic radiation) 0.21024 0.87726 0.76622 0.29322 0.78517 0.75857 0.96916 0.33071 0.03530* 0.17064 0.24298 0.66923 0.30161 0.72511 0.03408* 0.17586 0.04604*

lh.slf1 (Sup. longi. fasci. I) 0.20286 0.57869 0.67937 0.50544 0.81525 0.85931 0.80157 0.98940 0.40744 0.76622 0.30772 0.35586 0.20286 0.67555 0.31851 0.85127 0.24977
rh.slf1 (Sup. longi. fasci. I) 0.07906 0.67937 0.67937 0.02561* 0.70011 0.77783 0.75857 0.93165 0.76766 0.52876 0.74352 0.02208* 0.67555 0.91258 0.83020 0.90348 0.74352

lh.slf2 (Sup. longi. fasci. II) 0.13661 0.95051 0.95051 0.27976 0.62076 0.63016 0.67937 0.72511 0.16435 0.36857 0.12166 0.17064 0.57869 0.62076 0.29322 0.73748 0.27559
rh.slf2 (Sup. longi. fasci. II) 0.12166 0.81525 0.75478 0.68923 0.90859 0.85127 0.95051 0.76766 0.11872 0.25547 0.11695 0.15563 0.90348 0.76766 0.24481 0.46971 0.60236

lh.slf3 (Sup. longi. fasci. III) 0.21994 0.80712 0.80712 0.32741 0.94576 0.83020 0.79110 0.97647 0.29322 0.63611 0.19599 0.36857 0.76622 0.67555 0.72149 0.48314 0.73933
rh.slf3 (Sup. longi. fasci. III) 0.08229 0.81525 0.62076 0.36857 0.94044 0.90348 0.96916 0.68065 0.17818 0.07134 0.16435 0.24977 0.94576 0.88554 0.12538 0.32741 0.41752

lh.uf (Uncinate fasciculus) 0.63333 0.86417 0.86417 0.41752 0.87726 0.24298 0.52579 0.57869 0.03786* 0.30772 0.01189* 0.25999 0.48314 0.99875 0.02932* 0.13585 0.17987
rh.uf (Uncinate fasciculus) 0.87726 0.63333 0.56827 0.87726 0.98879 0.83856 0.97464 0.42067 0.09931 0.48314 0.07676 0.46183 0.27559 0.98940 0.03135* 0.40744 0.04335*

Table C.5: Table of Kruskal-Wallis H-test p-values of MEANS of the distribution of metrics. As
rows, all the extracted ROI, as columns, the models’ metrics. The TRACULA regions highlighted
in yellow where the p-values are calculated without considering the patient VNSLC_16. In blue
the statistically significant values.
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD
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left-thalamus 0.64741 0.42955 0.23205 0.97659 0.65790 0.81835 0.58393 0.56690 0.48848 0.91398 0.54388 0.91038 0.21299 0.74480 0.01128* 0.01713* 0.16921
right-thalamus 0.99382 0.42187 0.63871 0.91218 0.69411 0.96973 0.25909 0.43725 0.67748 0.69783 0.44735 0.78734 0.17568 0.84508 0.09563 0.05015 0.08750

left-hippocampus 0.40852 0.46575 0.72593 0.87416 0.75772 0.75836 0.95535 0.58393 0.78093 0.59272 0.83301 0.86655 0.33497 0.86655 0.37013 0.40726 0.54542
right-hippocampus 0.10328 0.57300 0.47303 0.40933 0.46628 0.30651 0.35053 0.26389 0.53566 0.10555 0.33075 0.56022 0.77282 0.98517 0.08296 0.20176 0.15488

left-amygdala 0.82390 0.38126 0.18734 0.42282 0.58624 0.48070 0.83301 0.35231 0.52386 0.27059 0.48848 0.68458 0.26389 0.59945 0.24427 0.71698 0.43725
right-amygdala 0.63871 0.26426 0.48848 0.58081 0.88084 0.81512 0.77282 0.63190 0.87589 0.77522 0.98600 0.95535 0.74880 0.45833 0.35601 0.62852 0.07395
left-accumbens 0.49139 0.07912 0.10600 0.56022 0.01877* 0.85635 0.07576 0.36764 0.11558 0.25489 0.24648 0.33075 0.14308 0.15488 0.38809 0.31253 0.44508

right-accumbens 0.75622 0.65346 0.83513 0.90961 0.84199 0.77522 0.84199 0.27113 0.46628 0.48848 0.71054 0.84508 0.88432 0.68826 0.98018 0.89158 0.44609
left-putamen 0.00558** 0.70356 0.31253 0.03912* 0.96483 0.42955 0.19314 0.97549 0.34407 0.53778 0.24503 0.23048 0.31438 0.87935 0.38536 0.40726 0.23205

right-putamen 0.10328 0.03155* 0.29456 0.20216 0.00594** 0.59440 0.78734 0.83301 0.65790 0.63871 0.86655 0.40726 0.01559* 0.02751* 0.44849 0.48151 0.63190
left-pallidum 0.03155* 0.03740* 0.08296 0.10995 0.79807 0.23574 0.46353 0.64577 0.02319* 0.65790 0.01253* 0.05982 0.79515 0.77043 0.58624 0.07861 0.91218

right-pallidum 0.11380 0.40933 0.55645 0.18420 0.80394 0.71698 0.91398 0.74880 0.37181 0.94811 0.16446 0.00673** 0.41060 0.84199 0.83067 0.03129* 0.89966
left-antThalRadiation 0.15361 0.83725 0.56690 0.54388 0.53566 0.96265 0.95454 0.48070 0.36116 0.57059 0.14680 0.39661 0.49528 0.44508 0.18260 0.00295** 0.55176

right-antThalRadiation 0.03373* 0.52386 0.62746 0.38169 0.18830 0.76286 0.60779 0.81835 0.10021 0.24648 0.03995* 0.16921 0.01531* 0.80803 0.01087* 0.00999** 0.19627
left-postThalRadiation-parital 0.03466* 0.53809 0.67082 0.77043 0.19086 0.74438 0.72450 0.87416 0.74817 0.30651 0.73127 0.74501 0.18260 0.11192 0.29807 0.07395 0.54113

right-postThalRadiation-parital 0.01207* 0.49139 0.48070 0.48848 0.44609 0.90501 0.55316 0.74438 0.73790 0.44433 0.19627 0.52951 0.93457 0.21723 0.26411 0.01041* 0.29807
left-postThalRadiation-occipital 0.31438 0.45859 0.27113 0.35541 0.38612 0.89158 0.87416 0.88208 0.88432 0.43725 0.96973 0.55645 0.79987 0.13527 0.71054 0.08659 0.68458

right-postThalRadiation-occipital 0.10702 0.66050 0.63190 0.49528 0.56690 0.93457 0.74501 0.66293 0.94570 0.69783 0.69941 0.65790 0.51002 0.59272 0.92905 0.08937 0.27552
left-supThalRadiation 0.48848 0.88557 0.74438 0.97549 0.46353 0.35231 0.61503 0.60505 0.91450 0.44508 0.97549 0.85877 0.58081 0.61903 0.56022 0.13894 0.43725

right-supThalRadiation 0.07708 0.51261 0.60505 0.18734 0.78247 0.80803 0.57869 0.25317 0.87416 0.16921 0.51204 0.18734 0.73790 0.36578 0.22835 0.04699* 0.22835
left-infThalRadiation-insula 0.37328 0.25554 0.34407 0.69607 0.77282 0.40485 0.59945 0.96837 0.83513 0.98517 0.78734 0.66293 0.72450 0.37013 0.19627 0.05830 0.30807

right-infThalRadiation-insula 0.62852 0.62746 0.58393 0.85877 0.99382 0.31438 0.67748 0.62605 0.74501 0.17390 0.60199 0.92905 0.81283 0.45217 0.44773 0.08659 0.32465
left-sup-longi-fasci 0.34155 0.80485 0.73127 0.88557 0.80394 0.64577 0.83513 0.17657 0.96265 0.11023 0.97659 0.75112 0.79515 0.68690 0.52951 0.18162 0.87219

right-sup-longi-fasci 0.02554* 0.15886 0.18899 0.69411 0.31831 0.81512 0.72124 0.21269 0.88432 0.35231 0.94384 0.78247 0.55176 0.28556 0.49528 0.14638 0.97549
left-inf-longi-fasci 0.25909 0.70994 0.60779 0.22263 0.07017 0.80803 0.91812 0.17390 0.29648 0.87935 0.44849 0.20532 0.00290** 0.02035* 0.39161 0.08849 0.10209

right-inf-longi-fasci 0.32917 0.68458 0.48848 0.41772 0.12775 0.91450 0.58393 0.50887 0.34407 0.30772 0.53566 0.57869 0.00201** 0.10209 0.60779 0.11023 0.30341
left-fornix 0.20216 0.79987 0.33497 0.56690 0.75622 0.21443 0.66517 0.39661 0.02350* 0.91450 0.07228 0.13961 0.60199 0.85877 0.08849 0.23574 0.12814

right-fornix 0.74880 0.78734 0.33497 0.62605 0.92019 0.52431 0.70356 0.48314 0.18420 0.34155 0.47611 0.94811 0.84199 0.40726 0.03810* 0.15886 0.07395
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acomm (Anterior commissure) 0.81512 0.37181 0.46209 0.83020 0.40485 0.90961 0.64577 0.88557 0.30651 0.35231 0.41421 0.83513 0.33075 0.96483 0.55176 0.23277 0.67748
cc.bodyc (Corpus call. body central) 0.04674* 0.87589 0.88084 0.46353 0.47504 0.94517 0.60199 0.78247 0.60199 0.07228 0.77282 0.51261 0.41421 0.96973 0.01107* 0.05537 0.18420

cc.bodyp (Corpus call. body parietal) 0.09432 0.66293 0.56022 0.39773 0.21443 0.94198 0.54603 0.39161 0.58624 0.39661 0.88084 0.36178 0.08364 0.19314 0.01207* 0.04094* 0.17853
cc.bodypf (Corpus call. body prefrontal) 0.87687 0.65346 0.40933 0.88084 0.94198 0.60539 0.87416 0.65790 0.44508 0.48642 0.71698 0.77522 0.38612 0.20532 0.10705 0.51002 0.09962
cc.bodypm (Corpus call. body premotor) 0.09432 0.66293 0.56022 0.39773 0.21443 0.94198 0.54603 0.39161 0.58624 0.39661 0.88084 0.36178 0.08364 0.19314 0.01207* 0.04094* 0.17853

cc.bodyt (Corpus call. body temporal) 0.26673 0.92019 0.87687 0.25561 0.43125 0.48848 0.96265 0.24214 0.87589 0.20730 0.70994 0.29060 0.37013 0.50118 0.10047 0.10600 0.10702
cc.genu (Corpus call. genu) 0.31332 0.92305 0.84199 0.62852 0.16358 0.83890 0.48314 0.68112 0.58624 0.55176 0.84508 0.97549 0.47303 0.38612 0.20865 0.14219 0.08780

cc.rostrum (Corpus call. rostrum) 0.19760 0.83372 0.82576 0.99382 0.36578 0.91812 0.48848 0.44508 0.33075 0.31607 0.32704 0.86241 0.23205 0.06244 0.46079 0.21269 0.15778
cc.splenium (Corpus call. splenium) 0.09563 0.90961 0.77522 0.09962 0.10995 0.61053 0.66050 0.07395 0.87219 0.23461 0.62746 0.08825 0.03898* 0.91812 0.51261 0.27113 0.05694

mcp (Middle cerebellar peduncle) 0.68112 0.87416 0.71054 0.91450 0.57852 0.46497 0.83725 0.69607 0.94198 0.98018 0.92905 0.64232 0.74480 0.29208 0.56690 0.77522 0.83513
lh.af (Arcuate fasciculus) 0.54542 0.14155 0.20216 0.33497 0.24214 0.96973 0.52951 0.66293 0.70994 0.96265 0.87935 0.69411 0.95535 0.68458 0.38612 0.46575 0.30651
rh.af (Arcuate fasciculus) 0.64577 0.02554* 0.03223* 0.87589 0.13527 0.87416 0.60505 0.41772 0.52951 0.78601 0.69921 0.88557 0.37328 0.54542 0.72593 0.59945 0.52386
lh.ar (Acoustic radiation) 0.66686 0.21173 0.15841 0.21963 0.86655 0.59272 0.80394 0.81512 0.48848 0.83372 0.62235 0.69607 0.31921 0.98018 0.90552 0.54113 0.64522
rh.ar (Acoustic radiation) 0.73479 0.22732 0.37486 0.61053 0.51189 0.66686 0.78579 0.53566 0.94570 0.81283 0.64577 0.68690 0.10555 0.68690 0.30651 0.11620 0.25403

lh.atr (Ant. thalamic radiations) 0.00258** 0.99382 0.94198 0.99410 0.37013 0.83067 0.99410 0.70994 0.57869 0.49892 0.37013 0.78093 0.24767 0.51204 0.18734 0.01727* 0.73479
rh.atr (Ant. thalamic radiations) 0.11473 0.58393 0.26411 0.45833 0.66686 0.89158 0.71194 0.90961 0.47504 0.69783 0.36178 0.36178 0.78269 0.58393 0.05281 0.00421** 0.35251
lh.cbd (Cingulum bundle dorsal) 0.39975 0.69941 0.73479 0.60199 0.98517 0.62852 0.83301 0.66517 0.92905 0.26568 0.96483 0.69411 0.96265 0.77522 0.54388 0.32898 0.35371
rh.cbd (Cingulum bundle dorsal) 0.26411 0.99382 0.98323 0.89158 0.74880 0.58081 0.70356 0.83890 0.92905 0.48314 0.83372 0.83301 0.59440 0.83725 0.58081 0.30102 0.54388

lh.cbv (Cingulum bundle ventral) 0.23153 0.60199 0.53566 0.49626 0.32328 0.87416 0.65346 0.98323 0.82576 0.27552 0.88208 0.54388 0.75836 0.83020 0.25691 0.53793 0.59945
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.84014 0.29991 0.32192 0.68065 0.69617 0.63333 0.30772 0.57543 0.96673 0.91258 0.86851 0.40744 0.07950 0.66048 0.76622 0.97647 0.67937
rh.cst (Corticospinal tract) 0.55040 0.40744 0.32741 0.69617 0.20401 0.59337 0.22822 0.94576 0.91258 0.97647 0.85127 0.72511 0.36673 0.97464 0.91258 0.95051 0.68923

lh.emc (Extreme capsule) 0.34081 0.78517 0.70011 0.91258 0.99875 0.68065 0.88554 0.48314 0.15130 0.50291 0.38365 0.38365 0.85931 0.79110 0.06345 0.02460* 0.22879
rh.emc (Extreme capsule) 0.38149 0.11521 0.13018 0.48314 0.95051 0.56260 0.63611 0.81525 0.56401 0.17291 0.75857 0.63333 0.83020 0.79358 0.24481 0.13390 0.40110

lh.fat (Frontal aslant tract) 0.02063* 0.56260 0.56827 0.06870 0.24070 0.31851 0.41752 0.74352 0.34081 0.83020 0.25547 0.14220 0.51924 0.91774 0.73748 0.80712 0.42624
rh.fat (Frontal aslant tract) 0.94754 0.88554 0.79110 0.46648 0.48527 0.46971 0.73748 0.24298 0.56260 0.60539 0.69617 0.48527 0.36650 0.57869 0.98940 0.51924 0.91258

lh.fx (Fornix) 0.96916 0.63333 0.19685 0.51924 0.97464 0.86851 0.80712 0.97647 0.15331 0.68065 0.06126 0.76622 0.77783 0.63016 0.11895 0.24977 0.07600
rh.fx (Fornix) 0.79358 0.95051 0.80712 0.88333 0.88554 0.31851 0.84014 0.24298 0.91258 0.28400 0.14220 0.68065 0.84014 0.80157 0.09006 0.32516 0.04028*

lh.ilf (Inf. longi. fasci.) 0.97647 0.37229 0.40110 0.85931 0.63016 0.33677 0.40110 0.05038 0.36857 0.72511 0.68966 0.88333 0.73748 0.85931 0.12993 0.17807 0.07338
rh.ilf (Inf. longi. fasci.) 0.99875 0.49540 0.32091 0.14008 0.63333 0.83020 0.79110 0.39537 0.26877 0.13018 0.27976 0.27559 0.41361 0.23475 0.55143 0.45952 0.08152

lh.mlf (Middle longi. fasci.) 0.76766 0.49540 0.42199 0.19501 0.52579 0.36857 0.32192 0.98940 0.20286 0.36673 0.26877 0.32741 0.87726 0.85931 0.17807 0.10686 0.59337
rh.mlf (Middle longi. fasci.) 0.46971 0.85931 0.70143 0.19685 0.34017 0.91947 0.76766 0.73933 0.41752 0.19834 0.16068 0.17064 0.08701 0.77783 0.08459 0.11895 0.40110

lh.or (Optic radiation) 0.91258 0.23357 0.12166 0.79110 0.80914 0.37793 0.68923 0.33071 0.75431 0.68923 0.83856 0.95051 0.78517 0.75431 0.23578 0.63016 0.41752
rh.or (Optic radiation) 0.47089 0.72511 0.52612 0.28454 0.87726 0.68923 0.56260 0.31140 0.98879 0.56827 0.62192 0.37229 0.54218 0.73933 0.36857 0.68065 0.08701

lh.slf1 (Sup. longi. fasci. I) 0.04673* 0.21329 0.37793 0.87726 0.06453 0.73748 0.58452 0.40110 0.06138 0.09258 0.19102 0.68065 0.09475 0.28454 0.10468 0.20401 0.21544
rh.slf1 (Sup. longi. fasci. I) 0.10686 0.58452 0.75478 0.50544 0.30772 0.77783 0.76622 0.78517 0.27559 0.05542 0.27404 0.72511 0.11695 0.45694 0.19054 0.12483 0.87726

lh.slf2 (Sup. longi. fasci. II) 0.93165 0.22822 0.20503 0.77783 0.30772 0.97464 0.77783 0.97464 0.99438 0.51827 0.99875 0.61572 0.88554 0.36857 0.72511 0.73933 0.60236
rh.slf2 (Sup. longi. fasci. II) 0.09006 0.04028* 0.05124 0.69617 0.63333 0.83020 0.91947 0.32516 0.59898 0.06035 0.80157 0.56827 0.73933 0.52612 0.25950 0.73933 0.88554

lh.slf3 (Sup. longi. fasci. III) 0.38365 0.69617 0.73748 0.78517 0.91947 0.55873 0.75431 0.86851 0.68966 0.96673 0.95051 0.98940 0.44340 0.59898 0.95051 0.91774 0.52579
rh.slf3 (Sup. longi. fasci. III) 0.27559 0.06870 0.13585 0.94754 0.99438 0.69617 0.95051 0.91947 0.88333 0.90859 0.98940 0.97647 0.72511 0.79110 0.80157 0.42199 0.88554

lh.uf (Uncinate fasciculus) 0.36673 0.68065 0.77783 0.85931 0.94044 0.83020 0.78517 0.83856 0.15331 0.74352 0.18734 0.73748 0.67555 0.68923 0.60539 0.14682 0.17064
rh.uf (Uncinate fasciculus) 0.62076 0.40110 0.44591 0.94576 0.72149 0.97647 0.91947 0.59898 0.45952 0.63016 0.59898 0.72511 0.52579 0.95051 0.25950 0.46971 0.20905

Table C.6: Table of Kruskal-Wallis H-test p-values of STANDARD DEVIATIONS of the
distribution of metrics. As rows, all the extracted ROI, as columns, the models’ metrics. The
TRACULA regions highlighted in yellow where the p-values are calculated without considering
the patient VNSLC_16. In blue the statistically significant values.
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD

tc
kg

en
()

by
M

R
tr

ix
3

left-thalamus 0.83301 0.17494 0.48848 0.62605 0.55176 0.25793 0.70994 0.91398 0.02721* 0.08002 0.15913 0.96265 0.08849 0.78247 0.23929 0.56690 0.72450
right-thalamus 0.66293 0.14219 0.55316 0.27983 0.07401 0.04581* 0.64522 0.21871 0.04031* 0.22181 0.45833 0.65790 0.44609 0.17390 0.17390 0.48848 0.77741

left-hippocampus 0.50801 0.75772 0.41608 0.94570 0.46379 0.49626 0.70994 0.62605 0.78601 0.08832 0.92305 0.59272 0.55645 0.78601 0.01953* 0.31447 0.15501
right-hippocampus 0.27778 0.43125 0.68112 0.33497 0.60539 0.26673 0.28995 0.14960 0.23048 0.31253 0.83301 0.99382 0.68112 0.39426 0.04804* 0.12119 0.30102

left-amygdala 0.38536 0.25154 0.05980 0.59122 0.48642 0.18830 0.27097 0.33140 0.50260 0.88208 0.26329 0.75836 0.54542 0.96483 0.73479 0.27770 0.30341
right-amygdala 0.59945 0.91450 0.94570 0.94198 0.50501 0.31253 0.17568 0.50501 0.21963 0.93299 0.35601 0.69235 0.77741 0.81835 0.15078 0.08374 0.66050
left-accumbens 0.75772 0.79515 0.68112 0.69783 0.85635 0.14495 0.17568 0.22777 0.49892 0.72450 0.56690 0.74438 0.70994 0.80803 0.71054 0.58856 0.99410

right-accumbens 0.19627 0.31607 0.40933 0.69235 0.84199 0.83513 0.88084 0.41281 0.21480 0.74817 0.50260 0.87219 0.49892 0.71054 0.32649 0.70994 0.32704
left-putamen 0.74438 0.32963 0.38374 0.54850 0.65790 0.10558 0.64613 0.83372 0.43725 0.94384 0.12500 0.21871 0.48601 0.43125 0.29456 0.37486 0.19086

right-putamen 0.40054 0.32898 0.87935 0.98600 0.99410 0.73790 0.17707 0.41608 0.41421 0.75836 0.10109 0.98323 0.38126 0.33356 0.09601 0.73790 0.92019
left-pallidum 0.84460 0.64577 0.58081 0.38374 0.63853 0.23277 0.46209 0.81512 0.22131 0.43125 0.31314 0.98517 0.99410 0.49528 0.75622 0.83890 0.98517

right-pallidum 0.98517 0.19086 0.21871 0.90501 0.62235 0.76588 0.21522 0.72450 0.59440 0.43028 0.36178 0.82576 0.69235 0.14495 0.45859 0.31921 0.56022
left-antThalRadiation 0.77282 0.19450 0.44433 0.13781 0.40235 0.29208 0.07112 0.77043 0.60539 0.66293 0.09834 0.28428 1.00000 0.74817 0.03342* 0.04526* 0.34494

right-antThalRadiation 0.32963 0.30702 0.31438 0.35541 0.05980 0.01690* 0.77282 0.17464 0.09563 0.03355* 0.90961 0.20313 0.83725 0.73479 0.08233 0.03012* 0.81835
left-postThalRadiation-parital 0.77741 0.79987 0.54113 0.98517 0.29208 0.70994 0.60199 0.25489 0.44508 0.79987 0.44773 0.54650 0.12304 0.77043 0.19086 0.35601 0.61903

right-postThalRadiation-parital 0.92305 0.70994 0.68826 0.49528 0.27529 0.30341 0.20176 0.53809 0.11192 0.56387 0.62746 0.74438 0.83020 0.83020 0.07357 0.18830 0.59793
left-postThalRadiation-occipital 0.61903 0.26389 0.36116 0.18162 0.96265 0.44034 0.75772 0.45833 0.78269 0.22263 0.30807 0.23461 0.49139 0.94570 0.51566 0.91812 0.21982

right-postThalRadiation-occipital 0.50887 0.77741 0.60539 0.39238 0.96265 0.58624 0.87935 0.25439 0.83513 0.56181 0.77043 0.45755 0.26673 0.85877 0.35531 0.72450 0.96483
left-supThalRadiation 0.96265 0.12343 0.19577 0.14417 0.74438 0.58393 0.42282 0.39661 0.59945 0.40485 0.91398 0.16202 0.37181 0.64577 0.32465 0.40726 0.05092

right-supThalRadiation 0.73127 0.53809 0.36116 0.03695* 0.68826 0.22131 0.31921 0.14495 0.52594 0.10995 0.59440 0.01313* 0.74480 0.70994 0.37013 0.83372 0.37486
left-infThalRadiation-insula 0.37328 0.37191 0.47210 0.79807 0.16460 0.53809 0.31253 0.94384 0.25317 0.33356 0.17853 0.90961 0.13894 0.33075 0.80485 0.90552 0.10555

right-infThalRadiation-insula 0.13402 0.27552 0.33497 0.40565 0.96265 0.71054 0.96973 0.77043 0.15361 0.25317 0.05015 0.42798 0.49528 0.08247 0.54650 0.96265 0.73479
left-sup-longi-fasci 0.78734 0.50501 0.34494 0.18162 0.81835 0.18734 0.68690 0.35601 0.75772 0.52951 0.14417 0.09968 0.61157 0.78093 0.06787 0.49626 0.48314

right-sup-longi-fasci 0.47504 0.35231 0.30102 0.17707 0.98018 0.82390 0.32328 0.44773 0.96973 0.78579 0.21723 0.04756* 0.28995 0.77741 0.15002 0.53793 0.68458
left-inf-longi-fasci 0.46209 0.24767 0.40933 0.80394 0.85635 0.87589 0.79807 0.44034 0.31253 0.98323 0.65790 0.46209 0.43028 0.90501 0.48273 0.86241 0.62605

right-inf-longi-fasci 0.22181 0.41961 0.42032 0.71054 0.38428 0.88557 0.29807 0.90961 0.68690 0.40933 0.84199 0.40726 0.39426 0.39773 0.30341 0.65790 0.93457
left-fornix 0.73127 0.94570 0.75112 0.75836 0.91398 0.92019 0.48314 0.94198 0.03466* 0.40726 0.34155 0.58081 0.20216 0.88208 0.90552 0.34494 0.44773

right-fornix 0.66293 0.54388 0.50189 0.97659 0.55316 0.80394 0.35251 0.86241 0.03631* 0.88432 0.45859 0.83372 0.63853 0.37486 0.48083 0.83890 0.13781

T
R

A
C

U
L

A
by

F
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r

acomm (Anterior commissure) 0.77043 0.83513 0.97659 0.80803 0.82576 0.17430 0.78734 0.68112 0.01998* 0.42750 0.01219* 0.54542 0.92905 0.66293 0.28597 0.68826 0.10287
cc.bodyc (Corpus call. body central) 0.13989 0.27716 0.37013 0.90961 0.60539 0.48642 0.36178 0.46575 0.24427 0.12735 0.19760 0.79358 0.26426 0.86655 0.94811 0.20216 0.85877

cc.bodyp (Corpus call. body parietal) 0.18420 0.44508 0.42449 0.09962 0.47303 0.18162 0.22977 0.44146 0.64577 0.18065 0.16446 0.69921 0.22777 0.57300 0.73127 0.22131 0.23902
cc.bodypf (Corpus call. body prefrontal) 0.78734 0.31253 0.49626 0.35601 0.69783 0.63871 0.34494 0.83513 0.94198 0.40485 0.75772 0.42798 0.29807 0.86655 0.81283 0.30651 0.21963
cc.bodypm (Corpus call. body premotor) 0.18420 0.44508 0.42449 0.09962 0.47303 0.18162 0.22977 0.44146 0.64577 0.18065 0.16446 0.69921 0.22777 0.57300 0.73127 0.22131 0.23902

cc.bodyt (Corpus call. body temporal) 0.14171 0.61903 0.60199 0.69235 0.63853 0.11768 0.27258 0.41060 0.07017 0.78579 0.01584* 0.33140 0.33497 0.70994 0.83372 0.91038 0.88084
cc.genu (Corpus call. genu) 0.78269 0.42032 0.24767 0.50260 0.67082 0.37328 0.37497 0.80394 0.75112 0.98323 0.15944 0.86241 0.30651 0.59793 0.58856 0.61903 0.25909

cc.rostrum (Corpus call. rostrum) 0.72450 0.53793 0.44433 0.29208 0.91218 0.65790 0.74480 0.98600 0.45859 0.86655 0.13777 0.19205 0.72450 0.91038 0.03798* 0.21480 0.01610*
cc.splenium (Corpus call. splenium) 0.13777 0.78093 0.84199 0.09834 0.66293 0.03503* 0.35053 0.01087* 0.02672* 0.79987 0.00579** 0.21982 0.52742 0.78247 0.62235 0.38809 0.02904*

mcp (Middle cerebellar peduncle) 0.46079 0.42282 0.29208 0.54388 0.56690 0.71194 0.68112 0.88557 0.36178 0.47504 0.41608 0.46079 0.18899 0.10995 0.51566 0.09051 0.79987
lh.af (Arcuate fasciculus) 0.38612 0.19776 0.36526 0.22732 0.86241 0.00847** 0.16821 0.54434 0.98600 0.37486 0.41772 0.10227 0.52386 0.79807 0.62746 0.78601 0.17430
rh.af (Arcuate fasciculus) 0.26389 0.60779 0.67082 0.45833 0.98600 0.19314 0.59272 0.37328 0.83067 0.65346 0.21723 0.20486 0.51204 0.92305 0.63190 0.40726 0.66517
lh.ar (Acoustic radiation) 0.59945 0.23048 0.33075 0.10389 0.67234 0.80485 0.54603 0.51261 0.70356 0.63853 0.47210 0.59945 0.11023 0.51189 0.50501 0.56690 0.61903
rh.ar (Acoustic radiation) 0.64869 0.37497 0.42282 0.95454 0.80803 0.91812 0.70356 0.87219 0.40485 0.60199 0.30772 0.65346 0.88084 0.75112 0.54850 0.66686 0.02554*

lh.atr (Ant. thalamic radiations) 0.14219 0.30702 0.26673 0.07651 0.75112 0.37497 0.19577 0.74880 0.04224* 0.93299 0.02687* 0.04379* 0.08162 0.68690 0.09834 0.09563 0.79987
rh.atr (Ant. thalamic radiations) 0.23521 0.30702 0.47611 0.41608 0.33497 0.54603 0.91812 0.46497 0.98600 0.04224* 0.12536 0.07011 0.22219 0.92019 0.05500 0.02382* 0.66517
lh.cbd (Cingulum bundle dorsal) 0.64577 0.42282 0.54603 0.10001 0.54603 0.06179 0.69783 0.17903 0.05281 0.22439 0.02211* 0.05500 0.10328 0.40852 0.95535 0.94517 0.98018
rh.cbd (Cingulum bundle dorsal) 0.87935 0.38612 0.49402 0.02687* 0.87935 0.13432 0.97549 0.26389 0.40485 0.82576 0.11268 0.04264* 0.58081 0.95454 0.80485 0.56022 0.21522

lh.cbv (Cingulum bundle ventral) 0.20250 0.83020 0.83513 0.38169 0.60539 0.72124 0.66517 0.72450 0.79807 0.41281 0.56022 0.29150 0.78247 0.50189 0.10665 0.59945 0.62746
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.24070 0.44591 0.44591 0.42624 0.68923 0.96673 0.50291 0.63611 0.36650 0.45694 0.24558 0.32192 0.07120 0.83020 0.57869 0.94576 0.26343
rh.cst (Corticospinal tract) 0.09856 0.24481 0.25999 0.36857 0.63333 0.45952 0.23052 0.97647 0.24481 0.31851 0.12258 0.14536 0.39537 0.63333 0.99875 0.95051 0.56260

lh.emc (Extreme capsule) 0.02932* 0.36857 0.36857 0.98879 0.90348 0.79110 0.81525 0.29322 0.80914 0.58452 0.08459 0.57869 0.17118 0.97464 0.13661 0.84014 0.68966
rh.emc (Extreme capsule) 0.55040 0.57869 0.51924 0.55873 0.70143 0.27404 0.72511 0.32516 0.80712 0.34017 0.42199 0.95051 0.70143 0.79110 0.42199 0.69617 0.20853

lh.fat (Frontal aslant tract) 0.00970** 0.58452 0.60539 0.62977 0.91774 0.09856 0.63333 0.83020 0.09564 0.27976 0.07600 0.30907 0.80157 0.97464 0.07338 0.30772 0.29322
rh.fat (Frontal aslant tract) 0.42919 0.52579 0.32741 0.46183 0.33488 0.75478 0.95051 0.63333 0.66255 0.74352 0.80712 0.37229 0.32741 0.27976 0.04228* 0.58452 0.40110

lh.fx (Fornix) 0.94754 0.42199 0.68923 0.66048 0.73748 0.12538 0.17586 0.31851 0.00770** 0.03363* 0.05192 0.67937 0.35922 0.50291 0.20905 0.29916 0.14876
rh.fx (Fornix) 0.68966 0.60539 0.63611 0.75431 0.91774 0.90348 0.11116 0.97464 0.32192 0.21063 0.85931 0.85931 0.22822 0.59898 0.67555 0.19501 0.78517

lh.ilf (Inf. longi. fasci.) 0.30907 0.38558 0.29916 0.46648 0.56827 0.78517 0.82553 0.55143 0.97464 0.80914 0.57869 0.97647 0.67937 0.69617 0.98879 0.21063 0.44340
rh.ilf (Inf. longi. fasci.) 0.39611 0.62076 0.37793 0.53509 0.63333 0.48314 0.90859 0.25999 0.56827 0.52612 0.68065 0.79110 0.99875 0.44675 0.24298 0.14876 0.32741

lh.mlf (Middle longi. fasci.) 0.63016 0.48893 0.63333 0.17291 0.90348 0.07296 0.52612 0.53509 0.96916 0.43026 0.39216 0.32516 0.27148 0.23475 0.83020 0.13825 0.91258
rh.mlf (Middle longi. fasci.) 0.12136 0.50291 0.63016 0.08046 0.79358 0.06138 0.28400 0.04376* 0.42199 0.86417 0.03863* 0.04467* 0.98879 0.86417 0.46971 0.42199 0.23357

lh.or (Optic radiation) 0.88554 0.09258 0.10234 0.68923 0.44591 0.94576 0.90348 0.38558 0.79110 0.67555 0.06126 0.57543 0.04151* 0.37793 0.73748 0.10215 0.53509
rh.or (Optic radiation) 0.40744 0.51406 0.55873 0.58123 0.37793 0.47355 0.50544 0.13059 0.62076 0.58452 0.21666 0.65553 0.22879 0.56260 0.87726 0.12483 0.06806

lh.slf1 (Sup. longi. fasci. I) 0.15908 0.63333 0.56401 0.90859 0.68923 0.27976 0.59337 0.16528 0.14536 0.12052 0.22879 0.68065 0.44340 0.90348 0.07338 0.07911 0.79110
rh.slf1 (Sup. longi. fasci. I) 0.07296 0.81525 0.76766 0.01706* 0.55873 0.96673 0.95051 0.08317 0.65553 0.43898 0.79110 0.04144* 0.66255 0.85127 0.02079* 0.14220 0.85931

lh.slf2 (Sup. longi. fasci. II) 0.72511 0.28117 0.38558 0.18734 0.94754 0.48893 0.73748 0.99438 0.68065 0.94576 0.24481 0.02872* 0.80914 0.94754 0.37299 0.41361 0.63611
rh.slf2 (Sup. longi. fasci. II) 0.21024 0.22879 0.20286 0.21063 0.91947 0.62076 0.76622 0.41752 0.28241 0.79358 0.17818 0.19685 0.98879 0.96673 0.80712 0.30161 0.24805

lh.slf3 (Sup. longi. fasci. III) 0.62977 0.58452 0.58452 0.28117 0.88333 0.13585 0.44591 0.51924 0.29322 0.95051 0.07985 0.04144* 0.57869 0.69617 0.66255 0.21994 0.88333
rh.slf3 (Sup. longi. fasci. III) 0.56827 0.27559 0.27559 0.30772 0.85127 0.23052 0.25950 0.37299 0.93165 0.32091 0.21024 0.10903 0.80157 0.97647 0.94576 0.99438 0.50386

lh.uf (Uncinate fasciculus) 0.08459 0.70011 0.85931 0.85931 0.91258 0.95051 0.85931 0.29322 0.14951 0.85931 0.01954* 0.20503 0.10422 0.90348 0.14008 0.63611 0.73748
rh.uf (Uncinate fasciculus) 0.42199 0.63016 0.56827 0.79110 0.94576 0.76622 0.65553 0.94754 0.96673 0.19210 0.36650 0.35922 0.56260 0.87726 0.66255 0.56401 0.29916

Table C.7: Table of Kruskal-Wallis H-test p-values of SKEWNESS of the distribution of
metrics. As rows, all the extracted ROI, as columns, the models’ metrics. The TRACULA regions
highlighted in yellow where the p-values are calculated without considering the patient VNSLC_16.
In blue the statistically significant values.
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P-values tables

MF DIAMOND NODDI DTI

Region frac_ftot fvf_tot wfvf frac_ctot wFA wMD wRD wAD icvf fintra fextra fiso odi FA MD RD AD

tc
kg

en
()

by
M

R
tr

ix
3

left-thalamus 0.81835 0.59945 0.81283 0.80394 0.18734 0.27529 0.75112 0.49626 0.05732 0.68826 0.44735 0.94384 0.01731* 0.92905 0.16727 0.31438 0.33075
right-thalamus 0.86241 0.73127 0.92905 0.75772 0.11627 0.08247 0.10702 0.20579 0.08259 0.71698 0.29648 0.64577 0.66686 0.18603 0.19232 0.08616 0.59122

left-hippocampus 0.38374 0.72450 0.29208 0.94198 0.54603 0.53793 0.46628 0.59945 0.68112 0.06866 0.90501 0.72124 0.88557 0.79987 0.21963 0.66050 0.36578
right-hippocampus 0.14219 0.43125 0.75622 0.38612 0.44609 0.77522 0.39238 0.91450 0.30772 0.07395 0.76588 0.87219 0.21522 0.54650 0.10232 0.97659 0.87219

left-amygdala 0.52951 0.26673 0.09691 0.68112 0.65790 0.24214 0.12706 0.53809 0.42629 0.54650 0.11812 0.71054 0.92019 0.98323 0.35371 0.21963 0.41281
right-amygdala 0.63871 0.96483 0.93299 0.83020 0.60505 0.53778 0.96265 0.94570 0.19238 0.04264* 0.70297 0.69921 0.04581* 0.90552 0.63871 0.23521 0.08849
left-accumbens 0.64577 0.72593 0.72450 0.82576 0.40565 0.27770 0.80803 0.38809 0.41608 0.52951 0.13133 0.74438 0.39426 0.59945 0.59440 0.20216 0.91812

right-accumbens 0.22131 0.31438 0.52431 0.64741 0.72124 0.89158 0.94811 0.30341 0.40726 0.29807 0.69921 0.78093 0.17742 0.71194 0.98323 0.72593 0.69941
left-putamen 0.69783 0.15361 0.24872 0.48070 0.62852 0.88432 0.61053 0.50801 0.11558 0.46575 0.13133 0.20434 0.57059 0.73127 0.55176 0.08694 0.12218

right-putamen 0.42449 0.27583 0.32328 0.96265 0.11620 0.54388 0.17390 0.07738 0.32704 0.27258 0.54434 0.91450 0.02554* 0.23949 0.65346 0.27258 0.46575
left-pallidum 0.64577 0.02473* 0.02610* 0.83513 0.93457 0.38169 0.93457 0.27059 0.02168* 0.16207 0.01850* 0.75622 0.61503 0.71194 0.45217 0.41060 0.97549

right-pallidum 0.96973 0.10555 0.27529 0.48151 0.78734 0.35531 0.50801 0.25403 0.83372 0.88432 0.32917 0.94570 0.20730 0.39773 0.16921 0.27529 0.31607
left-antThalRadiation 0.59793 0.19776 0.10109 0.50887 0.49139 0.82576 0.16395 0.02473* 0.42282 0.56387 0.37013 0.60505 0.96973 0.35231 0.06118 0.20313 0.32328

right-antThalRadiation 0.94517 0.79987 0.90961 0.28428 0.02499* 0.18603 0.36578 0.82390 0.44034 0.41281 0.78601 0.58856 0.65512 0.68690 0.20730 0.15361 0.70356
left-postThalRadiation-parital 0.72124 0.39426 0.28597 0.96837 0.16642 0.78734 0.68690 0.69607 0.34494 0.35601 0.57300 0.83890 0.09115 0.32973 0.46353 0.68112 0.71054

right-postThalRadiation-parital 0.59793 0.02841* 0.01653* 0.56690 0.16446 0.48070 0.13263 0.99410 0.58856 0.42187 0.74817 0.94811 0.63190 0.45859 0.17707 0.80485 0.91450
left-postThalRadiation-occipital 0.63190 0.62746 0.27716 0.46575 0.97549 0.49402 0.60199 0.78579 0.97659 0.49402 0.37497 0.30772 0.23902 0.92305 0.30702 0.87416 0.16446

right-postThalRadiation-occipital 0.70994 0.02807* 0.07930 0.65512 0.94570 0.39975 0.94570 0.80803 0.14219 0.65790 0.21982 0.32621 0.08937 0.79358 0.31876 0.89158 0.83890
left-supThalRadiation 0.64741 0.65346 0.48642 0.41421 0.77043 0.15501 0.47303 0.20434 0.83725 0.33140 0.87219 0.27552 0.29456 0.34494 0.35601 0.46353 0.23153

right-supThalRadiation 0.49892 0.03912* 0.03100* 0.25554 0.36178 0.60199 0.36578 0.33497 0.59793 0.81835 0.80485 0.21269 0.51261 0.32328 0.43725 0.46079 0.38374
left-infThalRadiation-insula 0.33094 0.07345 0.19314 0.41608 0.19461 0.42750 0.20701 0.79807 0.51002 0.86241 0.91812 0.50118 0.09268 0.21522 0.88557 0.60779 0.38612

right-infThalRadiation-insula 0.33497 0.75772 0.72124 0.81512 0.78601 0.42449 0.85635 0.65512 0.19205 0.93299 0.57869 0.42955 0.38169 0.75836 0.91398 0.90961 0.27770
left-sup-longi-fasci 0.44773 0.20579 0.17022 0.12785 0.94570 0.06504 0.53566 0.94198 0.52742 0.76286 0.04264* 0.27113 0.61157 0.91038 0.12343 0.40933 0.64869

right-sup-longi-fasci 0.14474 0.01267* 0.01267* 0.48070 0.98018 0.11922 0.24427 0.48601 0.02012* 0.08825 0.00978** 0.15488 0.53672 0.81512 0.15078 0.16446 0.59490
left-inf-longi-fasci 0.35043 0.50501 0.75836 0.90552 0.73127 0.69783 0.88432 0.74438 0.52386 0.56022 0.17903 0.73479 0.23205 0.36116 0.33075 0.68690 0.27880

right-inf-longi-fasci 0.29456 0.48931 0.25104 0.42629 0.34494 0.49139 0.30102 0.32649 0.35371 0.09850 0.50260 0.38612 0.05980 0.14680 0.32973 0.64577 0.95535
left-fornix 0.23205 0.55316 0.78093 0.14044 0.18260 0.08659 0.41772 0.06017 0.20035 0.09962 0.25793 0.12706 0.17707 0.90961 0.10328 0.25104 0.76286

right-fornix 0.41421 0.70994 0.77043 0.46353 0.76588 0.45217 0.29648 0.64613 0.36249 0.47303 0.58393 0.96973 0.50501 0.27097 0.78734 0.94517 0.72450

T
R

A
C

U
L

A
by

Fr
ee

su
rf

er

acomm (Anterior commissure) 0.92905 0.36116 0.46079 0.98323 0.80394 0.10617 0.91038 0.56690 0.01584* 0.24767 0.03006* 0.91398 0.53672 0.78734 0.07228 0.39975 0.52431
cc.bodyc (Corpus call. body central) 0.13989 0.24214 0.58393 0.88084 0.42750 0.51002 0.44508 0.58393 0.40852 0.14155 0.79515 0.83513 0.27583 1.00000 0.75622 0.41961 0.96973

cc.bodyp (Corpus call. body parietal) 0.18420 0.12775 0.65790 0.90961 0.32328 0.00782** 0.20701 0.05847 0.05003 0.60779 0.28597 0.93457 0.27529 0.41281 0.91812 0.38612 0.67082
cc.bodypf (Corpus call. body prefrontal) 0.91398 0.59440 0.83513 0.63190 0.60779 0.46628 0.31253 0.98323 0.12912 0.71054 0.11422 0.44735 0.08259 0.39238 0.83890 0.29456 0.79807
cc.bodypm (Corpus call. body premotor) 0.18420 0.12775 0.65790 0.90961 0.32328 0.00782** 0.20701 0.05847 0.05003 0.60779 0.28597 0.93457 0.27529 0.41281 0.91812 0.38612 0.67082

cc.bodyt (Corpus call. body temporal) 0.20216 0.08872 0.31447 0.31332 0.67748 0.03459* 0.49139 0.19760 0.01606* 0.63871 0.64869 0.32973 0.48314 0.64232 0.47210 0.72450 0.75836
cc.genu (Corpus call. genu) 0.63871 0.13225 0.12912 0.49892 0.52431 0.19086 0.78093 0.68826 0.14001 0.48314 0.91038 0.96483 0.15488 0.56690 0.55645 0.56690 0.73127

cc.rostrum (Corpus call. rostrum) 0.46079 0.41281 0.59945 0.09268 0.87416 0.63190 0.75836 0.41421 0.12912 0.72450 0.29060 0.19086 0.66293 0.71054 0.15886 0.36578 0.81835
cc.splenium (Corpus call. splenium) 0.09614 0.60199 0.91038 0.56387 0.54603 0.51261 0.16207 0.83372 0.03198* 0.81835 0.17853 0.75772 0.49402 0.79987 0.44735 0.64869 0.09563

mcp (Middle cerebellar peduncle) 0.58856 0.38754 0.67082 0.13402 0.54542 0.12434 0.71194 0.68112 0.81835 0.13225 0.69783 0.13225 0.49402 0.04383* 0.35671 0.15841 0.42032
lh.af (Arcuate fasciculus) 0.92905 0.22732 0.23574 0.98600 0.87219 0.33356 0.31253 0.91812 0.29807 0.51189 0.59440 0.21871 0.65790 0.67748 0.64522 0.68112 0.38612
rh.af (Arcuate fasciculus) 0.47504 0.07557 0.01861* 0.74880 0.83372 0.14960 0.45217 0.62852 1.00000 0.99382 0.99578 0.48642 0.54650 0.75112 0.53566 0.62852 0.93299
lh.ar (Acoustic radiation) 0.70994 0.14713 0.05579 0.02488* 0.83020 0.01984* 0.48848 0.03129* 0.15886 0.78734 0.37160 0.29150 0.15606 0.89966 0.32328 0.34407 0.78601
rh.ar (Acoustic radiation) 0.63853 0.74480 0.63871 0.30102 0.98600 0.20579 0.83513 0.66293 0.88208 0.88208 0.64577 0.47303 0.50801 0.83513 0.35053 0.54434 0.49626

lh.atr (Ant. thalamic radiations) 0.88084 0.97549 0.69235 0.03045* 0.40933 0.51566 0.21149 0.10001 0.02539* 0.12909 0.04392* 0.04728* 0.07610 0.27583 0.15361 0.03967* 0.19461
rh.atr (Ant. thalamic radiations) 0.12218 0.64869 0.87416 0.08088 0.32917 0.08832 0.44609 0.22777 0.00760** 0.15440 0.10089 0.06660 0.25561 0.58856 0.11422 0.01293* 0.11023
lh.cbd (Cingulum bundle dorsal) 0.84508 0.83372 0.88432 0.37160 0.58856 0.46379 0.90501 0.44433 0.10372 0.19760 0.35541 0.21383 0.43725 0.46353 1.00000 0.96265 0.90961
rh.cbd (Cingulum bundle dorsal) 0.56690 0.08374 0.05830 0.24767 0.80485 0.51002 0.94570 0.91812 0.23205 0.13508 0.75772 0.09067 0.68112 0.87935 0.73790 0.71054 0.27716

lh.cbv (Cingulum bundle ventral) 0.18931 0.42750 0.42282 0.35043 0.59272 0.11922 0.75772 0.10555 0.68112 0.59490 0.59945 0.58393 0.81835 0.08701 0.42282 0.56690 0.66293
rh.cbv (Cingulum bundle ventral) nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan

lh.cst (Corticospinal tract) 0.54218 0.23711 0.15475 0.32741 0.44340 0.57869 0.35586 0.72511 0.51924 0.95051 0.81525 0.24977 0.06345 0.23052 0.52876 0.01189* 0.94576
rh.cst (Corticospinal tract) 0.26343 0.48527 0.66923 0.54218 0.90348 0.67555 0.21994 0.14951 0.83856 0.74352 0.80914 0.18734 0.18734 0.74352 0.96916 0.40110 0.04028*

lh.emc (Extreme capsule) 0.10157 0.78517 0.67937 0.83020 0.91258 0.45952 0.75478 0.68065 0.26343 0.87726 0.08459 0.61572 0.35586 0.91947 0.03786* 0.52876 0.70011
rh.emc (Extreme capsule) 0.40110 0.45694 0.83020 0.52876 0.50544 0.62192 0.42067 0.10903 0.77783 0.90348 0.42199 0.79358 0.45952 0.79358 0.90348 0.74352 0.09931

lh.fat (Frontal aslant tract) 0.01308* 0.14220 0.08291 0.69617 0.63611 0.12483 0.32192 0.66048 0.05281 0.90348 0.13059 0.51924 0.48527 0.45952 0.03765* 0.26793 0.46648
rh.fat (Frontal aslant tract) 0.80712 0.24298 0.31851 0.63333 0.33488 0.10215 0.90859 0.73933 0.18923 0.67555 0.55040 0.63333 0.21063 0.25547 0.17552 0.98940 0.21994

lh.fx (Fornix) 0.94044 0.48527 0.23052 0.63611 0.91947 0.56827 0.25999 0.87726 0.05086 0.10686 0.57579 0.47089 0.18734 0.87726 0.24298 0.87726 0.36193
rh.fx (Fornix) 0.42624 0.51406 0.83020 0.57543 0.44675 0.69617 0.44675 0.40110 0.10527 0.06453 0.60236 0.57543 0.34017 0.22822 0.46183 0.55040 0.42067

lh.ilf (Inf. longi. fasci.) 0.44591 0.59337 0.56827 0.68923 0.63016 0.39537 0.70011 0.34858 0.80157 0.60236 0.68923 0.98940 0.27559 0.56260 0.95051 0.20286 0.22879
rh.ilf (Inf. longi. fasci.) 0.85931 0.60236 0.42919 0.02982* 0.56260 0.44675 0.85931 0.40744 0.32741 0.06600 0.29916 0.15331 0.90859 0.68966 0.21666 0.05956 0.21024

lh.mlf (Middle longi. fasci.) 0.56401 0.24298 0.28400 0.27559 0.93165 0.96673 0.83856 0.80712 0.63333 0.36650 0.65553 0.42199 0.67937 0.42199 0.27976 0.15331 0.11200
rh.mlf (Middle longi. fasci.) 0.27404 0.59898 0.66923 0.09057 0.87726 0.03510* 0.27404 0.65553 0.09469 0.62977 0.35586 0.08459 0.69617 0.97464 0.20401 0.15331 0.06806

lh.or (Optic radiation) 0.96916 0.27404 0.36857 0.95051 0.58452 0.72511 0.74352 0.42199 0.21666 0.58452 0.25691 0.73748 0.01165* 0.56827 0.91258 0.27148 0.43898
rh.or (Optic radiation) 0.26343 0.36193 0.20286 0.86851 0.24805 0.17552 0.14536 0.28400 0.39537 0.91774 0.32091 0.72511 0.09103 0.33677 0.46971 0.06605 0.09931

lh.slf1 (Sup. longi. fasci. I) 0.06325 0.52579 0.48893 0.63611 0.63016 0.03619* 0.52876 0.20286 0.02002* 0.27976 0.01354* 0.91774 0.87726 0.91258 0.17291 0.19102 0.98940
rh.slf1 (Sup. longi. fasci. I) 0.10215 0.32192 0.31140 0.01983* 0.66923 0.06600 0.97464 0.87726 0.10527 0.18734 0.11542 0.06126 0.87726 0.98879 0.00854** 0.10686 0.97464

lh.slf2 (Sup. longi. fasci. II) 0.62977 0.23578 0.16068 0.62076 0.98879 0.79110 0.70011 0.58452 0.79358 0.38365 0.85931 0.28454 0.51535 0.87726 0.57869 0.40110 0.66255
rh.slf2 (Sup. longi. fasci. II) 0.07296 0.01885* 0.01432* 0.27559 0.72149 0.03786* 0.45952 0.68065 0.56260 0.85127 0.60539 0.60236 0.91774 0.41361 0.99438 0.33071 0.46183

lh.slf3 (Sup. longi. fasci. III) 0.38149 0.43898 0.44340 0.90859 0.81525 0.68923 0.56260 0.14876 0.62192 0.29322 0.68923 0.62977 0.36857 0.50544 0.60236 0.45952 0.63333
rh.slf3 (Sup. longi. fasci. III) 0.32741 0.02392* 0.02392* 0.93165 0.95051 0.59898 0.27976 0.44340 0.41752 0.52579 0.26793 0.97647 0.97464 0.87726 0.47355 0.98940 0.29991

lh.uf (Uncinate fasciculus) 0.16281 0.24481 0.17586 0.97464 0.94754 0.20905 0.96673 0.09469 0.10903 0.67937 0.05511 0.50544 0.11695 0.90859 0.13315 0.63611 0.62076
rh.uf (Uncinate fasciculus) 0.48314 0.76622 0.68923 0.83020 0.87726 0.83020 0.80157 0.48893 0.75431 0.53509 0.27148 0.66923 0.29322 0.47355 0.84014 0.73933 0.01639*

Table C.8: Table of Kruskal-Wallis H-test p-values of KURTOSIS of the distribution of
metrics. As rows, all the extracted ROI, as columns, the models’ metrics. The TRACULA regions
highlighted in yellow where the p-values are calculated without considering the patient VNSLC_16.
In blue the statistically significant values.
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Appendix D

Radiomics Results

The following are the heatmaps of the scores obtained with all the combinations of
univariate and multivariate filtering. The models are followed by an SFS which
reduces the number of features into a set that contains the optimizing features
with a length variable between one and fifteen.

(a) (b)

(c)

Figure D.1: AUC scores computed from the combination of all univariate and multivariate
filters. (a) Scores computed using rbf SVM algorithm; (b) Scores computed using k-Nearest
Neighbors algorithm; (c) Scores computed using MLP algorithm.
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