
Politecnico di Torino
Master’s Degree in Computer Engineering

Delivering Software Services In An
Open Multi-Cloud Environment

Supervisors Candidate
Prof. Fulvio Risso Francesco Pio Barletta
Alessandro Cannarella
Lorenzo Moro

Academic Year 2022/2023

“Newton’s third law – the only way humans
have ever figured out of getting somewhere

is to leave something behind.”
- Cristopher Nolan, Interstellar

I

Abstract

Edge computing is a rapidly evolving field that leverages the vast and fragmented
processing capacity at the network’s edge to create a seamless and scalable com-
puting continuum. The FLUIDOS project, a European initiative, aims to change
how computer resources are used by developing an adaptable, expandable, secure,
and decentralized operating system.
This thesis focuses on essential components within the FLUIDOS Node ecosystem,
emphasizing their role in efficient communication and resource management. These
components, including the Local Resource Manager, Discovery Manager, Available
Resources, REAR Manager, Contract Manager, and Peering Candidates, form the
core of FLUIDOS Nodes, operating collectively on Kubernetes clusters.
Additionally, the thesis delves into the development of the REAR Protocol, de-
signed for secure data exchange of resources and capabilities among different cloud
providers. It serves as a means to advertise resources, such as virtual machines
with CPU and RAM specifications, capabilities like Kubernetes clusters, and, in
the future, services such as database-as-a-service, to third parties.
This thesis contributes to the FLUIDOS project while providing valuable expe-
rience in edge computing. The insights and advancements obtained during this
thesis aim to explore the potential of decentralized systems in the field of edge
computing and innovative technology.

II

Contents

Listings 7

List of Figures 8

1 Introduction 9
1.1 Background and Motivation . 9
1.2 Research Objectives . 9
1.3 Scope and Methodology . 9

2 Technologies 11
2.1 Kubernetes . 11

2.1.1 Architecture . 12
2.1.2 Control Plane components 12

API Server . 12
etcd . 13
Scheduler . 13
kube-controller-manager . 13
cloud-controller-manager . 14

2.1.3 Node components . 14
kubelet . 14
kube-proxy . 14
Container runtime . 15

2.1.4 Kubernetes Objects . 15
Pods . 15
Services . 16
Deployments . 17
StatefulSets . 18
DaemonSets . 18

2.2 kubebuilder . 18
2.2.1 controller-runtime . 19
2.2.2 controller-tools . 19

III

2.3 Docker . 19
2.3.1 Dockerfile . 20
2.3.2 Docker Compose . 20

2.4 Liqo . 20
2.5 NATS . 20

2.5.1 NATS Client Applications 21
2.5.2 NATS Service Infrastructure 21
2.5.3 Connecting NATS Client applications to the NATS servers . 21
2.5.4 Simple messaging design . 22

3 State Of the Art for Resources and Services Exchange Protocols 23
3.1 Introduction . 23
3.2 Communication Protocols . 23

3.2.1 Hypertext Transfer Protocol (HTTP) 23
3.2.2 gRPC . 24
3.2.3 MQTT . 24
3.2.4 REST . 24

3.3 Real Use Cases: Resource Acquisition Workflows 25
3.3.1 Booking.com Connectivity APIs 25

Reservations APIs . 26
3.3.2 Ticketmaster . 28

Partner APIs . 28
3.3.3 Research Solution . 30

4 FLUIDOS: Architecture and Components 33
4.1 Technology Substrate . 33
4.2 Main characteristics . 34
4.3 Architecture . 35

4.3.1 Node . 35
4.3.2 Supernode . 36
4.3.3 Catalog . 36

4.4 Interactions . 37
4.5 Workflows . 38

4.5.1 Two nodes in the same domain 39
4.5.2 Two nodes in different domains (w/o Catalog) 43

5 The REAR Protocol 48
5.1 REAR messages . 48

5.1.1 Get the list of available flavours 49
Policy . 51

5.1.2 Reserve flavour . 51

IV

5.1.3 Subscribe to Changes . 53
5.2 REAR APIs . 54

5.2.1 Required messages . 55
LIST_FLAVOURS . 55
RESERVE_FLAVOUR . 56
PURCHASE_FLAVOUR 57

5.2.2 Optional messages . 57
REFRESH_FLAVOUR . 57
WITHDRAW_FLAVOR . 58

5.3 Selector . 58

6 Development of FLUIDOS Components 60
6.1 First Release . 61

6.1.1 The Producer . 61
6.1.2 The Consumer . 62
6.1.3 Components . 63

Local Resource Manager . 63
Discovery Manager . 64
Flavour Generator . 64

6.2 Second Release . 66
6.2.1 Components . 66

Local Resource Manager . 67
Available Resources . 67
Discovery Manager . 67
Peering Candidates . 69
REAR Manager . 69
Contract Manager . 70

6.2.2 Controllers . 73
Solver Controller . 73
Discovery Controller . 74
Reservation Controller . 74
Allocation Controller . 75

6.2.3 Custom Resources . 75
Discovery . 75
Reservation . 76
Flavour . 76
Contract . 77
PeeringCandidate . 79
Solver . 80
Transaction . 80

V

7 Validation 81
7.1 Methodology . 81
7.2 Usage Scenario . 81
7.3 Functional Testing . 82
7.4 Results . 84

7.4.1 Solver Creation . 84
7.4.2 Discovery Phase . 84
7.4.3 Reserve and Buy Phases . 86
7.4.4 Contract Storage . 87

7.5 Performance Testing . 89
7.6 Final Considerations . 90

7.6.1 Pros and Cons of the system 90
7.6.2 Possible Improvements . 91

8 Conclusions 92

Bibliography 94

VI

Listings

2.1 Pod creation yaml file . 15
2.2 Service creation yaml file . 16
2.3 Deployment creation yaml file . 17
2.4 Dockerfile example . 20
5.1 Example of list flavours response body 55
5.2 Example of reserve flavour response body 56
5.3 Example of purchase flavour response body 57
5.4 Structure XML of the refresh message 57
5.5 Structure XML of the withdraw message 58
6.1 Functions used to publish and consume messages Flavours on NATS 61
6.2 Function to get the resources of a node 63
6.3 Function to generate a flavour . 65
6.4 Function to search for flavours given a Flavor Selector 68
6.5 Function to reserve a flavour . 70
6.6 Function to purchase a flavour . 71
6.7 Discovery Custom Resource example 75
6.8 Solver Custom Resource example 76
6.9 Flavour Custom Resource example 76
6.10 Contract Custom Resource example 77
6.11 PeeringCandidate Custom Resource example 79
6.12 Solver Custom Resource example 80
6.13 Transaction Custom Resource example 80
7.1 Flavour object generated by the Local Resource Manager. 83
7.2 Intent to acquire a flavor with a set of characteristics. 83
7.3 Solver created by the REAR Manager. 84
7.4 Discovery created by the REAR Manager. 84
7.5 Peering Candidate created if a suitable flavour is found. 85
7.6 Reservation created by the REAR Manager. 86
7.7 Transaction message sent by the Provider Node. 87
7.8 Contract created by the Contract Manager. 87

7

List of Figures

2.1 Kubernetes Architecture . 12
2.2 NATS Messaging Design . 22

3.1 Retrieveing new, modified or cancelled reservations 27
3.2 Encountering timeout while retrieving reservations 27
3.3 Search for an event and buy a ticket 30

4.1 FLUIDOS Node architecture . 36
4.2 FLUIDOS Catalog interactions . 37
4.3 Worflow of two nodes in the same domain 39
4.4 Worflow of two nodes in different domains (w/o Catalog) 43

5.1 Interaction between client and provider using the required messages 49
5.2 Concurrent flavour access from two different client 52
5.3 REAR interaction using optional messages 54

6.1 Overview of system components developed using NATS 62
6.2 Overview of system components developed in the last release 67

7.1 Usage scenario of the FLUIDOS Node system. 82
7.2 Performance testing for listing, reserving, and purchasing a flavor. 89

8

Chapter 1

Introduction

1.1 Background and Motivation
Edge computing is a rapidly evolving field that capitalizes on the distributed pro-
cessing capacity at the edge of the network, creating a seamless and scalable
computing continuum. The FLUIDOS project, a European initiative, aims to
revolutionize computing resource utilization by establishing homogeneous fabrics
from edge processing capacity. This endeavor is rooted in the firm belief that a
fluid cloud should be the community’s response to counterbalancing the influence
of hyperscalers, addressing concerns such as neutrality, lock-in, and flexibility. As
part of this journey, TOP-IX, as an Internet Exchange Point (IX), represents the
networking component that empowers this fluid cloud.

1.2 Research Objectives
This research centers on the development of pivotal components within the FLU-
IDOS Node ecosystem. The emphasis is on their pivotal role in facilitating ef-
fective communication and resource management. These components include the
Local Resource Manager, Discovery Manager, Available Resources, REAR Man-
ager, Contract Manager, and Peering Candidates. These components collectively
constitute the foundation of FLUIDOS Nodes, operating seamlessly within Ku-
bernetes clusters.

1.3 Scope and Methodology
The scope of this research encompasses the comprehensive exploration and imple-
mentation of the REAR Protocol. This protocol’s primary goal is to establish

9

CHAPTER 1. INTRODUCTION

secure data exchange between disparate cloud providers. It enables the advertise-
ment of resources such as virtual machines, with specifications such as CPU and
RAM, as well as capabilities like Kubernetes clusters. Furthermore, the protocol
lays the groundwork for potential future inclusion of services, such as databases.

The methodology employed in this research entails leveraging cutting-edge
technologies, prominently Kubernetes, to contribute to the advancement of the
FLUIDOS project. This includes the development of key components, protocols,
and systems. The research outcomes will play a pivotal role in shaping the trajec-
tory of decentralized systems and offer an intriguing opportunity for individuals
keen on exploring the realm of edge computing and innovative technology.

10

Chapter 2

Technologies

This chapter provides an overview of the pivotal technologies employed through-
out the course of this research. The selection of appropriate technologies played a
fundamental role in achieving the objectives and crafting effective solutions. The
chapter delves into the utilization of Kubernetes, kubebuilder, and NATS, high-
lighting their significance in different phases of the project.

The realm of edge computing demands an arsenal of powerful tools that can
orchestrate, communicate, and deliver seamless experiences. The subsequent sec-
tions provide insights into how each of these technologies was harnessed to tackle
unique challenges and drive innovation in the FLUIDOS project.

2.1 Kubernetes
Kubernetes stands as a versatile, extensible, and open-source platform designed to
manage containerized workloads and services, providing seamless support for both
declarative configuration and automated processes. Its ecosystem is expansive and
rapidly evolving, offering a wide array of Kubernetes services, tools, and support
options.
Originating from Google’s 2014 open-sourcing of the project, Kubernetes brings
together more than 15 years of Google’s expertise in handling large-scale produc-
tion workloads with insights and best practices contributed by the community.
The subsequent section offers a succinct introduction to Kubernetes, drawing in-
spiration from its official documentation. [1]

Although the FLUIDOS project assumes Kubernetes at its technological foun-
dation, the overall architecture and most of the choices and PoC components
developed in this project aim at having a more general breadth, hence potentially
enabling their reuse with other technological substrates.

11

CHAPTER 2. TECHNOLOGIES

2.1.1 Architecture
At the core of Kubernetes lies the concept of a cluster, which serves as a user’s ini-
tial encounter upon deploying the platform. A Kubernetes cluster encompasses a
collection of worker machines known as nodes, responsible for executing container-
ized applications. Within every cluster, there exists at least one node designated
as the master, fulfilling the role of hosting the control plane. This control plane
effectively manages the worker nodes and the pods within the cluster. In pro-
duction environments, the control plane often operates across multiple machines,
while a cluster generally consists of multiple nodes, ensuring resilience and unin-
terrupted availability. On the other hand, worker nodes play host to the pods that
collectively compose the application’s workload.

Figure 2.1: Kubernetes Architecture

2.1.2 Control Plane components
The control plane’s components make global decisions about the cluster (for exam-
ple, scheduling), as well as detecting and responding to cluster events (for exam-
ple,starting up a new pod). They can be run on any machine in the cluster. How-
ever, for simplicity, they are typically executed all together on the same machine,
which do not run user containers.

API Server

The API server is a pivotal component within the Kubernetes control plane, serv-
ing as the gateway to the Kubernetes REST API. It functions as the interface
that intercepts REST requests, validating and processing them. The primary

12

CHAPTER 2. TECHNOLOGIES

implementation of the Kubernetes API server is known as kube-apiserver. Engi-
neered for horizontal scalability, it grows by deploying additional instances, allow-
ing straightforward redundancy by distributing traffic across multiple instances.

etcd

etcd emerges as a distributed, consistent, and highly available key-value store,
acting as the foundational storage system for all cluster data in Kubernetes. Built
on the Raft consensus algorithm [17], etcd empowers multiple machines to function
cohesively as a unified group, even in the face of individual member failures. etcd
can be embedded within the master node or positioned externally on dedicated
hosts. It’s crucial to note that solely the API server maintains communication
with etcd.

Scheduler

A core control plane component, the scheduler orchestrates the instantiation of
pods. Kubernetes includes a default scheduler, kube-scheduler, but customization
is possible by adding new schedulers and specifying their use within pods. kube-
scheduler monitors newly created pods without node assignments and assigns them
to nodes. In decision-making, it factors in both individual and collective resource
requisites, hardware/software/policy constraints, affinity and anti-affinity stipula-
tions, data locality, inter-workload interference, and deadlines.

kube-controller-manager

The kube-controller-manager manages controller processes, continuously compar-
ing the cluster’s desired state (as specified by objects) with the current state
(fetched from etcd). Conceptually, each controller operates as a distinct pro-
cess. However, for simplicity, all controllers are amalgamated into a single binary,
executing within a singular process. Included controllers consist of:

• Node Controller: Observes and reacts to node failures.

• Replication Controller: Ensures correct pod counts for replica objects.

• Endpoints Controller: Populates Endpoint objects linking Services and
Pods.

• Service Account and Token Controllers: Generates default accounts
and API access tokens for new namespaces.

13

CHAPTER 2. TECHNOLOGIES

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager. cloud-controller-manager allows
the cloud vendor’s code and the Kubernetes code to evolve independently of each
other. In prior releases, the core Kubernetes code was dependent upon cloud-
provider-specific code for functionality. In future releases, code specific to cloud
vendors should be maintained by the cloud vendor themselves, and linked to cloud-
controller-manager while running Kubernetes. Some examples of controllers with
cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud in-
frastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.1.3 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

kubelet

The kubelet is the primary node agent, responsible for instantiating pods and
ensuring they maintain the desired state. It communicates with the API server to
receive pod specifications and report the status of running pods. The kubelet also
communicates with the container runtime to execute pod containers and handle
pod lifecycle events. The kubelet runs on every node in the cluster.

kube-proxy

The kube-proxy is a network proxy that runs on each node in the cluster, im-
plementing part of the Kubernetes Service concept. It maintains network rules
on nodes. These network rules allow network communication to the pods from

14

CHAPTER 2. TECHNOLOGIES

network sessions inside or outside of the cluster. The kube-proxy uses the oper-
ating system packet filtering layer if there is one and it’s available. Otherwise,
kube-proxy forwards the traffic itself.

Container runtime

The container runtime is the software responsible for running containers. Kuber-
netes supports several container runtimes: Docker, containerd, CRI-O, and any
implementation of the Kubernetes CRI (Container Runtime Interface).

2.1.4 Kubernetes Objects
Kubernetes objects are persistent entities representing the state of the cluster.
They can be created, updated, and destroyed using the Kubernetes API. Kuber-
netes provides a number of object types that can be created by users or automati-
cally created when handling certain tasks. The subsequent sections provide a brief
overview of the most important Kubernetes objects.

Pods

A pod is the smallest and simplest Kubernetes object. A pod represents a running
process on the cluster. A pod encapsulates an application’s container (or, in some
cases, multiple containers), storage resources, a unique network IP, and options
that govern how the container(s) should run. A pod represents a unit of deploy-
ment: a single instance of an application in Kubernetes, which might consist of
either a single container or a small number of containers that are tightly coupled
and that share resources. Pods are ephemeral, with a life expectancy equivalent
to that of the application instance they represent. If a pod ceases to function, Ku-
bernetes can create a replacement pod to maintain the desired state of the system.
Here there is an example of the .yaml file used to create a pod:

Listing 2.1: Pod creation yaml file
1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: nginx
5 labels:
6 app: nginx
7 spec:
8 containers:
9 - name: nginx

15

CHAPTER 2. TECHNOLOGIES

10 image: nginx:1.14.2
11 ports:
12 - containerPort: 80

Services

A service is an abstraction that defines a logical set of pods and a policy by which
to access them. Services enable a loose coupling between dependent pods. A
service acts as a stable address for a set of pods, allowing them to be decoupled
from the ephemeral nature of pods. Services are the abstraction that enables pods
to die and replicate in Kubernetes without impacting your application. A service
is a named load balancer that proxies traffic to one or more pods. Services enable
a loose coupling between dependent pods. A service acts as a stable address for
a set of pods, allowing them to be decoupled from the ephemeral nature of pods.
Services are the abstraction that enables pods to die and replicate in Kubernetes
without impacting your application. We can have different types of services:

• ClusterIP: Exposes the service on a cluster-internal IP. Choosing this value
makes the service only reachable from within the cluster. This is the default
ServiceType.

• NodePort: Exposes the service on each Node’s IP at a static port (the
NodePort). A ClusterIP service, to which the NodePort service will route, is
automatically created. You’ll be able to contact the NodePort service, from
outside the cluster, by requesting <NodeIP>:<NodePort>.

• LoadBalancer: Exposes the service externally using a cloud provider’s load
balancer. NodePort and ClusterIP services, to which the external load bal-
ancer will route, are automatically created.

• ExternalName: Maps the service to the contents of the externalName field
(e.g. foo.bar.example.com), by returning a CNAME record with its value.
No proxying of any kind is set up.

Here there is an example of the .yaml file used to create a service:

Listing 2.2: Service creation yaml file
1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: nginx

16

CHAPTER 2. TECHNOLOGIES

5 spec:
6 type: NodePort
7 ports:
8 - port: 80
9 targetPort: 80

10 nodePort: 30080
11 selector:
12 app: nginx

Deployments

A deployment is a Kubernetes object that manages a replicated application. A
deployment ensures that a specified number of pod replicas are running at any
given time. If a pod fails or is deleted, the deployment replaces it with a new pod.
Deployments are the recommended way to manage the creation and scaling of
pods. Deployments are the recommended way to manage the creation and scaling
of pods. Deployments can be scaled up and down, and they can be updated with
zero downtime. A deployment is a logical grouping of pods that are managed by
Kubernetes. A deployment is similar to a pod, but it is more powerful and flexible.
A deployment is a logical grouping of pods that are managed by Kubernetes. A
deployment is similar to a pod, but it is more powerful and flexible. Here there is
an example of the .yaml file used to create a deployment:

Listing 2.3: Deployment creation yaml file
1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx
5 spec:
6 replicas: 3
7 selector:
8 matchLabels:
9 app: nginx

10 template:
11 metadata:
12 labels:
13 app: nginx
14 spec:
15 containers:
16 - name: nginx

17

CHAPTER 2. TECHNOLOGIES

17 image: nginx:1.14.2
18 ports:
19 - containerPort: 80

StatefulSets

A StatefulSet is a Kubernetes object that manages stateful applications. A State-
fulSet maintains a sticky identity for each of its pods. These identities are useful
for applications that require one or more of the following:

• Stable, unique network identifiers.

• Stable, persistent storage.

• Ordered, graceful deployment and scaling.

• Ordered, automated rolling updates.

• Ordered, automated rollbacks.

DaemonSets

A DaemonSet is a Kubernetes object that ensures that all (or some) nodes run a
copy of a pod. As nodes are added to the cluster, pods are added to them. As
nodes are removed from the cluster, those pods are garbage collected. Deleting
a DaemonSet will clean up the pods it created. Deleting a DaemonSet will not
delete previously created pods.

2.2 kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using custom resource
definitions (CRDs). It provides tooling to simplify CRUD operations, webhook
handling, and other tasks. [2]
Similar to web development frameworks such as Ruby on Rails and SpringBoot,
Kubebuilder increases velocity and reduces the complexity managed by develop-
ers for rapidly building and publishing Kubernetes APIs in Go. It builds on top
of the canonical techniques used to build the core Kubernetes APIs to provide
simple abstractions that reduce boilerplate and toil. Kubebuilder does not exist
as an example to copy-paste, but instead provides powerful libraries and tools to
simplify building and publishing Kubernetes APIs from scratch. It provides a plu-
gin architecture allowing users to take advantage of optional helpers and features.

18

CHAPTER 2. TECHNOLOGIES

Kubebuilder is developed on top of the controller-runtime and controller-tools
libraries. Kubebuilder helps a developer in defining his Custom Resource, taking
auto- matically basic decisions and writing a lot of boilerplate code. These are the
main actions operated by Kubebuilder:

• Create a new project: Kubebuilder provides a command to create a new
project, with a basic structure and a Makefile to build it.

• Create a new API: Kubebuilder provides a command to create a new API,
with a basic structure and a Makefile to build it.

• Create a new controller: Kubebuilder provides a command to create a
new controller, with a basic structure and a Makefile to build it.

• Create a new webhook: Kubebuilder provides a command to create a
new webhook, with a basic structure and a Makefile to build it.

2.2.1 controller-runtime
The controller-runtime library provides a set of tools to simplify building Kuber-
netes controllers. It provides a set of commonly needed implementations of the
controller-runtime/pkg/reconcile.Reconciler interface, as well as utilities to
make building your own Reconcilers simpler. It also provides a set of utilities for
testing your controllers in a Kubernetes cluster-independent way. [3]

2.2.2 controller-tools
The controller-tools library provides a set of utilities for working with Kubernetes-
style API objects. It provides a set of utilities for generating code to work with
Kubernetes-style API objects, as well as a set of utilities for converting between
different API versions of the same object.

2.3 Docker
Docker is a set of platform as a service (PaaS) products that use OS-level virtu-
alization to deliver software in packages called containers. Containers are isolated
from one another and bundle their own software, libraries and configuration files;
they can communicate with each other through well-defined channels. All contain-
ers are run by a single operating system kernel and are thus more lightweight than
virtual machines. Containers are created from images that specify their precise
contents. Images are often created by combining and modifying standard images
downloaded from public repositories. [4]

19

CHAPTER 2. TECHNOLOGIES

2.3.1 Dockerfile
A Dockerfile is a text document that contains all the commands a user could call
on the command line to assemble an image. Using docker build users can create
an automated build that executes several command-line instructions in succession.
This page describes the commands you can use in a Dockerfile. [5]

Here there is an example of a Dockerfile:

Listing 2.4: Dockerfile example
1 FROM python:3.8−slim
2 WORKDIR /app
3 COPY . /app
4 RUN pip install −−no−cache−dir −r req.txt
5 EXPOSE 80
6 ENV NAME World
7 CMD ["python", "app.py"]

2.3.2 Docker Compose
Compose is a tool for defining and running multi-container Docker applications.
With Compose, you use a YAML file to configure your application’s services.
Then, with a single command, you create and start all the services from your
configuration. [6]

2.4 Liqo
Liqo is an open-source project that supports the vision of liquid computing de-
scribed above. It extends Kubernetes to enable the creation of dynamic and
seam-less multi-cluster topologies, regardless of underlying infrastructure limita-
tions.Liqo achieves this without introducing modifications to standard Kubernetes
APIsfor application deployment, making it compatible with a wide range of com-
mon in-frastructures and cluster types, with no restrictions on networking config-
urations. [7]

2.5 NATS
This technology was used just in the first release of the project, to implement the
communication between the different components of the FLUIDOS Node. NATS is
a lightweight, high-performance cloud native messaging system that implements a

20

CHAPTER 2. TECHNOLOGIES

publish-subscribe model. It is written in the Go programming language and is built
on top of the NATS platform. NATS is a Cloud Native Computing Foundation
(CNCF) incubating project. [8]

2.5.1 NATS Client Applications
Developers use one of the NATS client libraries in their application code to allow
them to publish, subscribe, request and reply between instances of the application
or between completely separate applications. Those applications are generally
referred to as ’client applications’ or sometimes just as ’clients’ throughout this
manual (since from the point of view of the NATS server, they are clients).

2.5.2 NATS Service Infrastructure
The NATS services are provided by one or more NATS server processes that are
configured to interconnect with each other and provide a NATS service infrastruc-
ture. The NATS service infrastructure can scale from a single NATS server process
running on an end device (the nats-server process is less than 20 MB in size!) all
the way to a public global super-cluster of many clusters spanning all major cloud
providers and all regions of the world such as Synadia’s NGS.

2.5.3 Connecting NATS Client applications to the NATS
servers

To connect a NATS client application with a NATS service, and then subscribe or
publish messages to subjects, it only needs to be configured with:

• URL(s): A ’NATS URL’. This is a string (in a URL format) that specifies
the IP address and port where the NATS server(s) can be reached, and what
kind of connection to establish (plain TCP, TLS, or Websocket).

• Authentication (if needed): Authentication details for the application to
identify itself with the NATS server(s). NATS supports multiple authenti-
cation schemes (username/password, decentralized JWT, token, TLS certifi-
cates and Nkey with challenge).

• Subject(s): A ’NATS subject’. This is a string that identifies the subject that
the application wants to publish messages to or subscribe messages from.

21

CHAPTER 2. TECHNOLOGIES

2.5.4 Simple messaging design
NATS makes it easy for applications to communicate by sending and receiving
messages. These messages are addressed and identified by subject strings, and do
not depend on network location. Data is encoded and framed as a message and
sent by a publisher. The message is received, decoded, and processed by one or
more subscribers.

Figure 2.2: NATS Messaging Design

With this simple design, NATS lets programs share common message-handling
code, isolate resources and interdependencies, and scale by easily handling an
increase in message volume, whether those are service requests or stream data.

22

Chapter 3

State Of the Art for Resources
and Services Exchange Protocols

3.1 Introduction
The exchange of resources and services between clients and providers plays an im-
portart role in various domains, ranging from cloud computing to edge computing
and beyond. To ensure efficient resource utilization, it is important to establish
robust protocols that facilitate the interaction between clients seeking specific re-
sources and providers offering them. This chapter presents a comprehensive review
of the state of the art in resource exchange protocols, focusing on the context of
customer-provider interactions.

3.2 Communication Protocols
In this section, we will explore the commonly used communication protocols for
exchanging information between clients and providers. Effective communication is
essential in various domains, ranging from web applications to distributed systems.
Understanding the strengths, limitations, and use cases of different communication
protocols is crucial for designing efficient and reliable systems.

We will examine several widely adopted protocols, including HTTP, REST,
gRPC, and MQTT, and analyze their key features, architectural styles, message
formats, and integration possibilities.

3.2.1 Hypertext Transfer Protocol (HTTP)
HTTP is a widely used protocol for communication over the web. It operates on
a client-server model, where clients send requests to servers and receive responses.

23

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

HTTP is designed to enable the exchange of various resources, including HTML
pages, images, documents, and data. Its stateless nature, request-response struc-
ture, and support for methods like GET, POST, PUT, and DELETE make it
suitable for resource retrieval, submission, modification, and deletion.

In a resource exchange workflow using HTTP, clients can send requests to
servers to retrieve or upload resources. For example, a client can use an HTTP
GET request to retrieve data from a server, while an HTTP POST request can
be used to upload new resources. This workflow is commonly employed in web
applications, file transfers, and RESTful APIs.

3.2.2 gRPC
gRPC is a high-performance, open-source framework developed by Google. It
enables efficient communication and data exchange between distributed systems.
gRPC is based on the Remote Procedure Call (RPC) paradigm, where clients can
invoke methods on remote servers as if they were local. It uses the Protocol Buffers
(protobuf) language for defining services and message formats.

In a resource exchange workflow using gRPC, clients can define service meth-
ods that specify the desired resource interactions, such as retrieving or updating
data. These methods are exposed by servers, allowing clients to make remote pro-
cedure calls. gRPC’s efficient binary serialization and support for streaming make
it suitable for scenarios requiring high-performance communication, such as mi-
croservices architectures and inter-service communication in cloud environments.

3.2.3 MQTT
MQTT is a lightweight publish-subscribe messaging protocol designed for con-
strained devices and low-bandwidth networks. It provides a simple, efficient, and
reliable communication mechanism. MQTT follows a publish-subscribe pattern,
where clients can publish messages to topics, and other clients can subscribe to
those topics to receive the messages.

In a resource exchange workflow using MQTT, clients can publish resource
updates or notifications to specific topics. Other interested clients can subscribe
to these topics to receive the published messages. This pattern is useful in scenarios
where resource status updates or event-driven communication is required, such as
IoT (Internet of Things) applications, real-time data streams, and sensor networks.

3.2.4 REST
REST is an architectural style that provides a set of constraints for designing
networked applications. It emphasizes a resource-centric approach and leverages

24

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

existing web standards, including HTTP, to enable communication between clients
and servers. RESTful APIs use standard HTTP methods and adhere to principles
like statelessness, uniform resource identification, and self-descriptive messages.

In a resource exchange workflow using REST, clients interact with resources
exposed by servers through HTTP methods. For example, clients can use an
HTTP GET request to retrieve resource representations, an HTTP POST request
to create new resources, and HTTP PUT or DELETE requests to update or delete
existing resources. RESTful APIs are widely used in web services, mobile appli-
cations, and distributed systems for resource exchange and integration.

3.3 Real Use Cases: Resource Acquisition Work-
flows

In this chapter, we will explore real use cases that demonstrate the resource acqui-
sition workflows in action. By examining examples from various industries, such
as Booking.com, we can gain insights into how these organizations manage the
process of acquiring resources effectively and efficiently. Through these real-world
scenarios, we will uncover the underlying workflows and understand how different
platforms and frameworks facilitate the resource acquisition process.

3.3.1 Booking.com Connectivity APIs
The Booking.com Connectivity APIs enable to send and retrieve data for proper-
ties listed on Booking.com. It is possibile to manage room availability, reservations,
prices, and many other things [9].

The Booking.com Connectivity APIs offer a number of specialised functions,
divided into these categories:

• Content: Create properties, rooms, rates, and policies, and link this infor-
mation together for the Booking.com website.

• Rates and Availability: Load inventory counts, rates, and price availabil-
ity restrictions (for specific room-rate combinations), per date and/or date
range combination.

• Reservations: Retrieve reservations, modifications, and cancellations made
on Booking.com.

• Promotions: Create special promotions for certain date ranges and booker
types.

25

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

• Reporting: Report credit card problems, changes to reservations after
check-in, and no-shows.

In addition to the specialised APIs, we also have a set of supporting APIs
for retrieving general Booking.com system information, such as accepted currency
codes and room names.

Reservations APIs

A reservation represents the booking of one or more room nights at a property.
Each reservation is a unique booking created by a guest using the Booking.com
channels. Reservations API keeps you updated on your bookings by sending a
sequence of messages, also known as reservation messages.

The messages are classified as new booking confirmation, modification to an
existing booking, or cancellation. Regardless of the category, the reservations API
provides the data in a common format. A reservation may include several units
of rooms, apartments or villas. Each reservation or booking is specific to exactly
one property.

To process reservations, Booking.com provides two sets of endpoints using the
following two specifications:

• OTA XML specifications (OTA_HotelResNotif e OTA_HotelResModifyNotif):
A complete and fault-tolerant reservations processing solution following the
specification from the OpenTravel Alliance (OTA). Use this solution to re-
trieve and acknowledge processing the reservations.

• B.XML specifications (/reservations): A simple and light-weight solution
to retrieve reservations following Booking.com’s XML specifications. Use
this solution to retrieve the property reservations. Acknowledging that you
successfully processed the reservation is currently not supported with this
solution.

Here, two different examples using B.XML specifications:

26

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

Figure 3.1: Retrieveing new, modified or cancelled reservations

Figure 3.2: Encountering timeout while retrieving reservations

27

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

3.3.2 Ticketmaster
Ticketmaster is a globally recognized ticketing platform that revolutionized the
way people purchase tickets for various events, including concerts, sports games,
and theatrical performances. With its user-friendly interface and extensive event
catalog, Ticketmaster has become a go-to destination for millions of customers
worldwide.

The ticket acquisition workflow on Ticketmaster follows several key steps to
ensure a seamless and efficient ticket purchasing process for customers:

• Event Discovery: Customers begin by browsing Ticketmaster’s website or
mobile app to explore upcoming events in their area. They can search by
event type, artist, venue, or date to find the desired event.

• Ticket Selection: Once customers find the event they are interested in,
they can select the specific tickets they want to purchase. Ticketmaster offers
various ticket options, including different seating sections, price ranges, and
quantities.

• Seat Allocation: After selecting tickets, the system allocates seats based
on the customer’s preferences and availability. Ticketmaster’s seat selec-
tion algorithm ensures that seats are assigned in the most optimal way to
accommodate the customer’s group and provide an enjoyable experience.

• Checkout Process: Customers proceed to the checkout page, where they
review their ticket selection, enter their payment and billing information, and
complete the transaction. Ticketmaster supports multiple payment methods,
including credit cards, digital wallets, and other secure payment options.

• Order Confirmation: Once the purchase is completed, customers receive
an order confirmation that includes details such as the event name, date,
time, seating information, and a unique order ID. This confirmation serves
as proof of purchase and is often sent via email or can be accessed through
the customer’s Ticketmaster account.

Partner APIs

The Ticketmaster Partner API lets clients reserve, purchase, and retreive ticket
and event information [10].

If a user abandons a page/tab after a ticket reserve has been made, client
applications should do their best to detect this and issue a DELETE /cart request
to free up allocated resources on the ticketing server. This should also be done
if client apps no longer want to wait through a long, continuing polling process.

28

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

This is necessary since ticket reserve requests that result in polling will eventually
complete asynchronously and take up resources even if clients do not consume the
next polling url.

It is possible to use the different APIs to define the workflow for searching and
purchasing a ticket:

• GET /discovery/v2/events: find events and filter your search by location,
date, availability, and much more.

• POST /partners/v1/events/{event_id}/cart?apikey={apikey}: reserves
the specified tickets. For integrations requiring captcha, send the captcha
solution token in the json body. A hold time will be returned in the cart
response that will indicate, in seconds, how long the cart is available for.
This value may increase if the user moves through the cart process.

• GET /partners/v1/events/{event_id}/...: get shipping options avail-
able for this event. Note: some API users will be pre-configured for certain
shipping options and may not need to perform this. Specifying the “region”
query parameter will return options available for users in the selected coun-
try. Using the value ‘ALL’ will return all options.

• PUT /partners/v1/events/{event_id}/...: add a shipping option to the
event. Note: some API users will be pre-configured for certain shipping
options and may not need to perform this.

• PUT /partners/v1/events/{event_id}/cart/payment: add customer and
billing information to the order.

• PUT /partners/v1/events/{event_id}/cart?apikey={apikey}: finalize
the purchase and commit the transaction.

Here, an example of workflow to purchase a ticket for a certain event:

29

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

Figure 3.3: Search for an event and buy a ticket

3.3.3 Research Solution
Reservation protocols are an essential communication mechanism in many areas,
which ensure fair and efficient resource allocation in shared environments. These
protocols are commonly used in distributed systems, networking, and multi-user
applications to prevent conflicts and coordinate access to critical resources.

One of the most adopted reservation protocol in computer networks is RSVP
(Resource Reservation Protocol [11]). Its primary goal is to establish and manage
resource reservations for data transmission, and it is mainly used in Quality of
Service (QoS) enabled networks to ensure the efficient and reliable delivery of data
traffic. However, one of the main limitations of RSVP is its limited scalability,
because, as the number of participants and the complexity of the network increase,
managing and maintaining reservations can become challenging. This is because
RSVP operates in a soft-state manner, which requires the continuous refreshing
of reservations, preventing its adoption when a huge amount of (tiny) reservations
are required and in case of mobile hosts, in which the reservation (which requires

30

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

the detailed knowledge of the location of the host) is being made by mobile hosts.
To overcome such limitation MRSVP [12] has been proposed, allowing mobile
devices to perform reservations not only for the current location, but also for future
locations. In addition, [16] extends the problem formulation, including the price of
networking resources, so that the network service provider can communicate the
availability of services and delivers price quotations and charging information to
the user, and the user requests or re-negotiates services with desired specifications
for one or more flows.

As an extension of RSVP, RSVP-TE (Resource Reservation Protocol - Traffic
Engineering) is designed to support traffic engineering capabilities in computer
networks. It enables the establishment of explicit paths for data traffic, allowing
network administrators to control the flow of traffic and optimize network re-
sources. RSVP-TE has thus been proposed in combination with MPLS to perform
path signaling in a wide area network [13, 14].

In our perspective, RSVP and similar solutions target only network parameters,
failing to include the multi-dimensionality of the computing resources (e.g., reserve
CPU, RAM, etc.).

Authors in [15] present the Service Negotiation and Acquisition Protocol (SNAP)
as a means to enable communication and negotiation between different entities in
a distributed system, such as clients and servers. The protocol aims to establish
agreements on the expected quality of service (QoS) that clients require and that
servers can provide. In the attempt to extend the flexibility of the SLA negotiation
mechanism, [17] proposes a bilateral protocol for SLA negotiation using the alter-
nate offers mechanism wherein a party is able to respond to an offer by modifying
some of its terms to generate a counteroffer. Finally, authors in [20] also describe
a brokering architecture that is able to make advance resource reservations and
create SLAs using the WS-Agreement standard [18], based on the Contract Net
protocol for negotiating SLAs [19].

Recently, also telco Operators in the 5G era have a significant opportunity
to monetize the capabilities of their networks. This paradigm change led to ad-
ditional requirements for the Edge infrastructure [21], and to the definition of a
suitable protocol to allow seamless application deployment across different Telco
providers [22]. Specifically, this interface enables also the federation between Op-
erator Platforms, sharing of edge nodes, and access to Platform capabilities while
customers are roaming. The above technical capabilities are leveraged to provide
the same software services associated with the customer also when it is connected
to a foreign operator, thanks to the capability to deploy containerized application
in the visited Operator Platform. Although promising, the current proposal (i)
does not include a discovery mechanism to allow the members of the federation to
share the price of computing resources or services, (ii) it does not support highly

31

CHAPTER 3. STATE OF THE ART FOR RESOURCES AND SERVICES
EXCHANGE PROTOCOLS

dynamic environments in which the roaming occurs with unforeseen operators (a
previously established agreement must be already in place before the roaming),
and (iii) is not able to guarantee the property of generality when describing the
offered resources/services, but focuses only on containerized applications.

32

Chapter 4

FLUIDOS: Architecture and
Components

FLUIDOS (Flexible, scaLable, secUre, and decentralIseD Operating System)
aims to leverage the enormous, unused processing capacity at the edge, scattered
across heterogeneous edge devices that struggle to integrate with each other and
to coherently form a seamless computing continuum. [23]

FLUIDOS overcomes the above limitation by enabling the creation of a virtual
computing space spanning across multiple physical domains, hence enabling a
service (which has been started in the virtual space) to leverage all the resources
belonging to the same virtual domain, independently from their physical location.
Hence, in FLUIDOS a service can seamlessly scale based upon the availability
of resources within the entire virtual infrastructure, e.g., ending up having one
instance running in the telco edge, and another in the cloud datacenter, hence
blurring the current rigid cluster boundaries.

4.1 Technology Substrate
FLUIDOS starts with a strong (and potentially controversial) assumption: the
chosen reference technology is Kubernetes. This stems from several considerations:

• Cloud-native: Kubernetes is considered the most promising platform to
provide cloud- native services, which provide unprecedented agility and effi-
ciency compared to the previous world of VMs.

• Scalability: Kubernetes is designed to scale applications across many servers
in a cluster, allowing them to handle large traffic loads without downtime.

33

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

• Portability: Kubernetes is platform-agnostic, meaning it can be used on-
premises or in the cloud, and supports multiple cloud providers, such as
AWS, Google Cloud Platform, and Azure.

• Large-to-Small scale support: multiple flavors of Kubernetes exist, with
support for both large deployments (e.g., cloud datacenter), and small-scale
deployments (e.g., even resource-constrained individual devices), hence be-
coming the natural candidate to build the META-OS concept upon.

• Flexibility: Kubernetes provides a range of features to manage container-
ized applications, such as scaling, deployment, updates, and monitoring. It
also supports various container runtimes, including Docker and CRI-O.

• Resource Optimization: Kubernetes can optimize resource utilization by
automatically allocating containers based on available resources and work-
load demands.

• Community Support: Kubernetes has a large and active open-source com-
munity that contributes to its development and maintains a vast ecosystem
of add-ons and tools.

Nevertheless, although the FLUIDOS project assumes Kubernetes at its tech-
nological foundation, the overall architecture and most of the choices and proof-
of-concept components developed in this project aim at having a more general
breadth, hence potentially enabling their reuse with other technological substrates.

4.2 Main characteristics
Main characteristics of FLUIDOS are:

• Intent-driven: a consumer can assign to each workload the desired exe-
cution constraints through high-level policies, without knowing about the
infrastructural details. Overall, liquid computing brings the cattle service
model to a greater scale.

• Decentralized architecture: the resource continuum stems from a peer-
to-peer approach, with no central point of control and management entities,
as well as no intrinsically privileged members. Following a decentralized and
peer-based model like the Internet, the liquid computing approach fosters
the coexistence of multiple actors, including larger cloud providers, smaller,
territory-linked enterprises, and even small office/homeowners

34

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

• Multi-ownership: each actor maintains full control of his own infrastruc-
ture while deciding at any time how many resources and services to share and
with whom. Although single clusters are expected to be under the control
of a single entity, the entire resource ocean would likely span across different
administrative domains

• Fluid topology: members can join and leave the virtual continuum at any
time, independently from their infrastructure size, from enterprise-grade data
centers to IoT and personal devices.

4.3 Architecture
FLUIDOS architecture is made up of two main objects, very different from ea-
chother still greatly coupled in several workflows: the Node and the Catalog.
While the first is mantatory, as it’s the base element of the ecosystem, the latter
is optional, and jumps in whenever there’s the need to go cross-domain or let the
general public access the ecosystem through a user interface. [24]

4.3.1 Node
A FLUIDOS Node is a unique computing environment, under the control of a
single administrative entity (although different Nodes can be under the control of
different administrative entities), composed of one or more machines and modeled
with a common, extensible set of primitives that hide the underlying details (e.g.,
the physical topology), while maintaining the possibility to export the most sig-
nificant distinctive features (e.g., the availability of specific services; peculiar HW
capabilities).

Overall, A FLUIDOS node is orchestrated by a single Kubernetes control plane,
and it can be composed of either a single device or a set of devices (e.g., a datacen-
ter). Device homogeneity is desired in order to simplify the management (physical
servers can be considered all equals, since they feature a similar amount of hard-
ware resources), but it is not requested within a FLUIDOS node. In other words,
a FLUIDOS node corresponds to a Kubernetes cluster.

A FLUIDOS node includes a set of resources (e.g., computing, storage, net-
working, accelerators), software services (e.g., ready-to-go applications) that can
be either leveraged locally or shared with other nodes. Furthermore, a FLUIDOS
node features autonomous orchestration capabilities, i.e., (1) it accepts workload
requests, (2) it runs the requested jobs on the administered resources (e.g., the
participating servers), if application requirements and system security policies are
satisfied, and (3) it features a homogeneous set of policies when interacting with
other nodes.

35

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

Figure 4.1: FLUIDOS Node architecture

4.3.2 Supernode
A FLUIDOS Supernode acts as a gateway for domain’s nodes that do not
have access to the Internet or they don’t know other domains. Its behavior is
mostly similar to the node’s one, with the main difference being the knowledge of
other domains or catalogs with wich it can interact. The interactions exploit the
same protocols and are managed by the same components, but the sources and
destinations of the informations differ.

Besides acting as a gateway, a Supernode is another aggregation point in the
distribution chain of informations. The specific tasks are deepened in the de-
scriptive document of each component, while the interactions are shown in the
workflows involving multiple domains.

4.3.3 Catalog
A FLUIDOS Catalog is a set of services that can be used to interact with the
FLUIDOS ecosystem. It is composed of a set of components that can be used to
interact with the ecosystem, and it’s the only way to interact with the ecosystem

36

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

from the outside. The components are:

• Connector-UI

• Connector

• Broker

Figure 4.2: FLUIDOS Catalog interactions

4.4 Interactions
The interactions among Nodes, Nodes and Supernodes, Supernodes and Catalogs,
and all software components belonging to these objects, can be grouped in five
phases:

37

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

1. Intent management: this phase is carried out by the Service Handler. It
consists in the translation and the reduction to lowest terms of a received
intent so that the Node Orchestrator can trigger the primitive functions of
the Node to fulfill that intent.

2. Discovery: this phase consists in the discovery, both solicited or advertised,
of flavours provided by other Nodes. It is mainly carried out by the Discovery
Manager with the scope of filling the Peering Candidates table and provide
suitable flavours to the REAR Manager. It relies on first couple of messages
of the REAR protocol.

3. Reservation: this phase involves many components, since it consists in the
contract signing step, managed by the Contract Managers of both Nodes,
and the actual resources reservation step, that consists in updating of the
Available Resources tables. The phase is syncronously coordinated by the
REAR Managers of both Nodes.

4. Peering: the Peering phase is carried out by the Virtual Fabric Managers
of both Nodes: it basically relies on the primitives provided by LIQO to
establish the peering between the two nodes and extend the continuum,
exploiting virtual routers created by the Network Managers to ensure node-
to-node reachability.

5. Usage: this phase is managed by the Node Orchestrator of the Consumer
Node and consists in the actual deployment of the workload on the Kuber-
netes Virtual Nodes created as output of the Peering phase, so that the real
workload is automatically moved to the Provider Node for execution. This
is the phase where the two Telemetry Services are working actively to mon-
itor both the Local and Remote performances to populate the Ratings and
Metrics table.

6. Tear down: This is the phase where the process is sunsetted, the peering
is teared down, and the resources are freed and made available again for
future processes. Its triggered by the Node Orchestrator and involves all the
components that previously have cooperated to take the whole process up.

The phases described make use of a set of inter-process communication methods
and protocols, such as the REAR Protocol.

4.5 Workflows
In this section are described the workflows of the main interactions among the
components of the FLUIDOS ecosystem.

38

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

4.5.1 Two nodes in the same domain

Figure 4.3: Worflow of two nodes in the same domain

1. A new service request is sent to the Service Handler in the form of an
intent.

2. The intent is passed to the Node Orchestrator, which translates and
decomposes it into simple resources or services requests.

3. The Node Orchestrator looks up for flavours matching the request in
the Available Resources and the Ratings and Metrics tables.

4. In case there are no suitable available resources, the request is passed to the
REAR Manager to start the Discovery, Reservation, and Peering phases.

5. The REAR Manager looks up in the Peering Candidates table for po-
tential peering candidates (suitable flavours) matching the request.

6. In case there are no suitable peering candidates, the REAR Manager builds
a flavour selector and passes it to the Discovery Manager, asking for a
suitable peering candidate.

7. The Discovery Manager of the Consumer Node sends a LIST_FLAVORS
message to all the endpoints it already knows, whether they are local Nodes,
a Supernode, or a Catalog.

39

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

8. The Discovery Manager of the Provider Node looks-up for suitable lo-
cal flavours matching the received flavour selector in its Available Re-
sources table.

9. In case one or more suitable flavours are found, the Discovery Manager of
the Provider Node sends back an OK message to the Discovery Manager
of the Consumer Node, attaching the flavours list.

10. The Discovery Manager of the Consumer Node populates the Peering
Candidates table with the newly discovered flavours.

11. It then informs the REAR Manager that the Discovery phase has com-
pleted successfully.

12. See Step 5.

13. Now that a suitable peering candidate is found, the REAR Manager asks
the Contract Manager to start the Reservation phase, pointing to the
Provider Node.

14. The Contract Manager of the Consumer Node sends a RESERVE_FLAVOUR
message to the Contract Manager of the Provider Node.

15. The Contract Manager of the Provider Node creates a new contract and
asks its REAR Manager to reserve resources for the incoming request.

16. The REAR Manager updates the Available Resources table by deleting
the old advertised flavour and creating a new reduced flavour (suitable for
other future requests) and by creating a new allocation of type "Node" in
"inactive" status.

17. The REAR Manager informs the Contract Manager that the resources
have been reserved.

18. The Contract Manager of the Provider Node answers back to the Con-
tract Manager of the Consumer Node with an OK message. At the same
time, an informer makes the Network Manager aware, so that it can deploy
a virtual router to enable peering reachability.
Following the steps defined in the REAR Protocol, the two Contract Man-
agers may exchange a couple of other messages to confirm the reservation
on both sides, but may also directly agree following the procedure described
from Step 14 to Step 18.

40

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

19. The Contract Manager of the Consumer Node creates a new contract
and informs its REAR Manager that the resources have been reserved. At
the same time, an informer makes the Network Manager aware, so that it
can deploy a virtual router to enable peering reachability.

20. The REAR Manager updates the Available Resources table by creating
a new allocation of type "VirtualNode" in "inactive" status.
Now the flow changes a little bit according to the release of Liqo. The cur-
rent available release provides an "External Resource Monitor" to intercept
incoming peering requests so to allocate resources based on the CustomerID
available in the request. This mechanism has a clear limitation: only a single
peering can be established per each couple of Nodes, since the discrimina-
tor is the CustomerID of the cluster. Instead, with the next release of Liqo,
which will provide a declarative way of defining Virtual Nodes, this limitation
will be overcome.

21. The REAR Manager solicits its Virtual Fabric Manager (LIQO) to set
up the peering.

22. The Virtual Fabric Manager of the Consumer Node generates a Re-
sourceRequest on the Virtual Fabric Manager of the Provider Node. Net-
work reachability is provided by the Network Managers.

23. The Virtual Fabric Manager of the Provider Node looks up in its Con-
tract Manager for an already signed contract embedding a flavour match-
ing the CustomerID of the Consumer Node: once found, it completes the
peering.

24. Once done, an informer makes the REAR Manager aware.

25. The REAR Manager updates the Available Resources table by putting
the previously created allocation to "active" status.

26. The Virtual Fabric Manager of the Provider Node sends a ResourceOf-
fer to the Virtual Fabric Manager of the Consumer Node.

27. See Step 24.

28. See Step 25.

29. The REAR Manager finally informs the Node Orchestrator that all the
Discovery, Reservation, and Peering phases are over.

41

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

30. The Node Orchestrator is auto-solicited to continue with the Intent Man-
agement phase.

31. See Step 3.

Now that there are available resources that fulfill the request, the Node Or-
chestrator can finally deploy the workload described in the intent exploiting
standard Kubernetes primitives and pointing to the VirtualNode retrieved in
the Available Resources table.

42

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

4.5.2 Two nodes in different domains (w/o Catalog)

Figure 4.4: Worflow of two nodes in different domains (w/o Catalog)

1. A new service request is sent to the Service Handler in the form of an
intent.

2. The intent is passed to the Node Orchestrator, which translates and
decomposes it into simple resources or services requests.

3. The Node Orchestrator looks up for flavours matching the request in
the Available Resources and the Ratings and Metrics tables.

43

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

4. In case there are no suitable available resources, the request is passed to
the REAR Manager to start-up the Discovery, Reservation, and Peering
phases.

5. The REAR Manager looks up in the Peering Candidates table for po-
tential peering candidates (suitable flavours) matching the request.

6. In case there are no suitable peering candidates, the REAR Manager builds
a flavour selector and passes it to the Discovery Manager, asking for a
suitable peering candidate.

7. The Discovery Manager of the Node sends a LIST_FLAVOURS mes-
sage to its Supernode, already known and directly reachable.

8. The Discovery Manager of the Supernode looks-up for suitable local flavours
matching the received flavour selector in its Available Resources table.

9. In case no suitable flavours are found, the Discovery Manager looks up
in the Peering Candidates table for potential peering candidates (suitable
flavours) matching the request.

10. In case no suitable peering candidates are found, the Discovery Manager
of the Consumer Supernode sends a LIST_FLAVOURS message to all the
endpoints it already knows, whether they are other Supernodes or a Catalog,
attaching the flavour selector.

11. The Discovery Manager of the Provider Supernode looks-up for suitable
local flavours matching the received flavour selector in its Available Re-
sources table.

12. See Step 9.

13. In case one or more suitable flavours are found, the Discovery Manager
of the Provider Supernode sends back an OK message to the Discovery
Manager of the Consumer Supernode, attaching the flavours list.

14. The Discovery Manager of the Consumer Supernode populates the Peer-
ing Candidates table with the newly discovered flavours.

15. The Discovery Manager of the Consumer Supernode sends back an OK
message to the Discovery Manager of the Consumer Node attaching the
flavours list.

16. The Discovery Manager of the Consumer Node populates the Peering
Candidates table with the newly discovered flavours.

44

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

17. It then informs the REAR Manager that the Discovery phase has com-
pleted successfully.

18. See Step 5.

19. Now that a suitable peering candidate is found, the REAR Manager asks
the Contract Manager to start the Reservation phase pointing to the
Provider Node.

20. The Contract Manager of the Consumer Node sends a message RE-
SERVE_FLAVOUR to the Contract Manager of the Consumer Su-
pernode.

21. The Contract Manager of the Consumer Supernode sends a message RE-
SERVE_FLAVOUR to the Contract Manager of the Provider Supern-
ode.

22. The Contract Manager of the Provider Supernode sends a message RE-
SERVE_FLAVOUR to the Contract Manager of the Provider Node.

23. The Contract Manager of the Provider Node creates a new contract and
asks its REAR Manager to reserve resources for the incoming request.

24. The REAR Manager updates the Available Resources table by deleting
the old advertised flavour and creating a new reduced flavour (suitable for
other future requests) and by creating a new allocation of type "Node" in
"inactive" status.

25. The REAR Manager informs the Contract Manager that the resources
have been reserved.

26. The Contract Manager of the Provider Node answers back to the Con-
tract Manager of the Provider Supernode with an OK message. At the
same time, an informer makes the Network Manager aware, so that it can
deploy a virtual router to enable peering reachability.
Following the steps defined in the REAR Protocol, the couples of Contract
Managers may exchange a couple of other messages to confirm the reser-
vation on both sides, but may also directly agree following the procedure
described from StepX to StepY.

27. The Contract Manager of the Provider Supernode creates a new contract
and answers back to the Contract Manager of the Consumer Supernode
with an OK message. At the same time, an informer makes the Network

45

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

Manager aware, so that it can deploy a virtual router to enable peering
reachability.

28. The Contract Manager of the Consumer Supernode creates a new con-
tract and answers back to the Contract Manager of the Consumer Node
with an OK message. At the same time, an informer makes the Network
Manager aware, so that it can deploy a virtual router to enable peering
reachability.

29. The Contract Manager of the Consumer Node creates a new contract
and informs its REAR Manager that the resources have been reserved. At
the same time, an informer makes the Network Manager aware, so that it
can deploy a virtual router to enable peering reachability.

30. The REAR Manager updates the Available Resources table by creating
a new allocation of type "VirtualNode" in "inactive" status.

31. The REAR Manager solicits its Virtual Fabric Manager (LIQO) to set
up the peering.

32. The Virtual Fabric Manager of the Consumer Node generates a Re-
sourceRequest on the Virtual Fabric Manager of the Provider Node. Net-
work reachability is provided by the Network Managers.

33. The Virtual Fabric Manager of the Provider Node looks up in its Con-
tract Manager for an already signed contract embedding a flavour match-
ing the CustomerID of the Consumer Node: once found, it completes the
peering.

34. Once done, an informer makes the REAR Manager aware.

35. The REAR Manager updates the Available Resources table by putting
the previously created allocation to "active" status.

36. The Virtual Fabric Manager of the Provider Node sends a ResourceOf-
fer to the Virtual Fabric Manager of the Consumer Node.

37. See Step 34.

38. See Step 35.

39. The REAR Manager finally informs the Node Orchestrator that all the
Discovery, Reservation, and Peering phases are over.

46

CHAPTER 4. FLUIDOS: ARCHITECTURE AND COMPONENTS

40. The Node Orchestrator is auto-solicited to continue with the Intent Man-
agement phase.

41. See Step 3.

42. Now that there are available resources that fulfill the request, the Node
Orchestrator can finally deploy the workload described in the intent ex-
ploiting standard Kubernetes primitives and pointing to the VirtualNode
retrieved in the Available Resources table.

47

Chapter 5

The REAR Protocol

The REsource Advertisement and Reservation (REAR) protocol aims at
providing secure data exchange of resources and capabilities between different
cloud providers. It can be used to advertise resources (e.g., virtual machines
and their characteristics in terms of CPU, RAM), capabilities (e.g., Kubernetes
clusters) and (in future) services (e.g., a database as a server) to any third party,
enabling potential customers to know what is available in other clusters, and pos-
sibly (automatically) establish the technical steps that enables the customer to
connect and consume the resources/services agreed in the negotiation phase. [25]

There are two main types of entity involved, which are providers and customers:

• Providers advertise their resources and services in a standardized format.

• Customers explore and find resources according to their specific criteria.

Overall, REAR seamlessly integrates with established resource management
systems and platforms. This protocol accommodates diverse resource types and
allows for future expansions.

REAR has been designed with a focus on generality. This is because it al-
lows to perform resource exchange for (possibly) any type of resources and services,
ranging from traditional VMs, Kubernetes clusters, services (e.g., DBs), and sen-
sors and actuators (e.g., humidity and temperature sensors).

5.1 REAR messages
REAR defines a set of messages that facilitate the client/provider interaction for
the purchase of available computing resources or services. At its core, REAR has
been designed with a focus on generality (i.e., able to be general enough to describe

48

CHAPTER 5. THE REAR PROTOCOL

a huge variety of computing and/or service instances). The figure below depicts a
possible interaction between a customer and a provider using the REAR protocol.

Figure 5.1: Interaction between client and provider using the required messages

This section describes the main interaction enabled by the REAR protocol,
whereas the details of the different APIs will be provided in the following chapter.

5.1.1 Get the list of available flavours
The list flavour message provides the client with the list of available flavours of-
fered by a given producer. Using a standardized selector, a client can request the
list of available flavours matching specific needs, like a given amount of comput-
ing resources (e.g., CPU, RAM, storage), the flavour type (e.g., VM, Kubernetes
cluster, DB service), and additional policies (e.g., maximum price).

If properly formatted, the list flavour message returns the list of available
flavours offered by a given producer (if any). Specifically, each item in the list will
have the following key information:

• flavour ID: Each offer should be identified by a unique flavour ID instead
of just the name.

49

CHAPTER 5. THE REAR PROTOCOL

• Provider ID: Associate the flavour with the corresponding Provider ID.

• Type: Specify the type of the flavour (e.g., VM/K8s Cluster/etc.).

• Characteristics: Specify the capacities and resources provided by the flavour
(CPU, RAM, etc.).

• Policy: Specify if the flavour is aggregatable/partitionable

• Owner: represents the entity that owns the flavour (FQDN/unknown). It
can correspond to the Provider ID of the flavour.

• Price or Fee: If applicable, specify the price or fee associated with the
flavour.

• Expiration Time: It represents the duration after which the flavour needs
to be refreshed. If the flavour is not refreshed within the Expiration Time,
it becomes invalid or expires. The Expiration Time can be calculated by
adding a specific timestamp to the current time, indicating the number of
hours or days until expiration.

• Optional Fields: Other details such as limitations, promotions, availability
etc., can be included as optional information.

Note that if the producer does not have available flavours, or does not have
flavours matching the provided selector, it may return an empty list. The interac-
tion is always initiated by the client and can be summarized as follows:

• The client wants to retrieve the list of available favors offered by a provider.

• The client creates the selector using one of the standardized ones based on
the requirements.

• After the message is ready, an HTTP GET is sent to the provider to get the
list of filtered flavours.

• The provider returns the list of matching flavours.

• If the provider does not have available flavours, or does not have flavours
matching the specified selector, an empty list will be returned.

50

CHAPTER 5. THE REAR PROTOCOL

Policy

If the partitionable field is available, it indicates that the Flavour can be divided
or partitioned into smaller units. However, it is also specified the minimum amount
of CPU and RAM that must be present for the Flavour (e.g., if CPU must be
at least one, the CPU cannot be "partitioned" below that unit). If the field is
false, client has no possibilities to divide the Flavour. Additionally, a step value
is defined, which determines the increment between valid quantities for CPU and
RAM. For example, if the step value for CPU is 1, users can request CPU quantities
such as 2, 3, or 4, but not decimal values like 1.4 or 2.6. The step value ensures
that CPU and RAM quantities align with the defined increments and maintain
consistency within the Flavour’s specifications.

When the aggregatable field is available, it means that multiple instances
of the same Flavour can be combined or aggregated together. This enables the
pooling of resources to meet higher demands or optimize resource utilization. The
mincount field specifies the minimum number of Flavours that must be aggregated
if "aggregatable" is true. If the field is false, client can choose that single instance
(e.g., a single VM instead of a set of VM).

5.1.2 Reserve flavour
The reserve flavour message is sent by the client to the provider to notify the
intention of reserving an offered flavour. It is the first step that requires handling
concurrency in client requests, as different clients may be interested in the same
flavour. Note that this message only notifies the provider of the intention to
purchase a flavour. The request must then be finalized using the confirm purchase
message (see the following subsection).

Specifically, the interaction between the client and the provider can be sum-
marized as follows:

• After the client has collected the list of available flavours offered by the
provider, it notifies the intention of reserving a specific flavour by sending
an HTTP POST and including the ID of the flavour to be reserved.

• Once received by the provider, two separate actions are performed:

– The provider checks if the flavour is still available (there might be
some delay between the list flavour message and the subsequent re-
serve flavour request, thus the flavour may no longer be available). In
case the flavour is still available, the provider replies with a summary
of the reservation process; otherwise, a 404 error message is sent to the
client.

51

CHAPTER 5. THE REAR PROTOCOL

– The provider instantiates a timer to limit the reservation time for that
specific flavour. This allows reserved flavours to be released in case
either the client becomes completely unresponsive, or the subsequent
purchase process exceeds a predefined threshold.

Figure 5.2 below extends the non-concurrent interaction, including concurrent
access to shared resources (i.e., flavours), from multiple clients. Specifically, the
interaction can be summarized with the following steps:

• Customer 1 and 2 both request the list of available flavours based on prede-
fined selectors, and they both notify the intention to reserve a specific flavour
(i.e., flavour 1234 in this case).

• The first customer to send the reserve flavour message triggers, on the
provider side, the acquisition of the lock associated with the shared flavour.

• The first customer can thus continue with the purchase of the selected
flavour, whereas the second will not receive any further messages until the
first customer releases the shared lock, either finalizing the purchase, or
exceeding the predefined timeout.

• In case the first customer finalized the purchase, the second customer
will acquire the shared lock and receive a 404-error message, notifying that
the flavour is no longer available. In case the first customer didn’t finalize
the purchase, the second customer can proceed with the normal interaction
described in the previous use case.

Figure 5.2: Concurrent flavour access from two different client

52

CHAPTER 5. THE REAR PROTOCOL

5.1.3 Subscribe to Changes
REAR defines a set of optional messages that extend the expressiveness of the
protocol, summarized as subscribe to changes. Specifically, we include two optional
interactions:

• Refresh, sent by the provider to refresh a particular flavour. By sending a
refresh message, the provider helps maintain the availability of flavours and
allows the consumer to effectively manage and allocate resources based on
the updated expiration time.

• Withdraw, sent by the provider to the consumer to notify that a specific
flavour is no longer available. This message serves as a notification mecha-
nism to inform the consumer that the requested flavour is no longer available.

Figure 5.3 details the REAR interaction using the combination of both op-
tional and required messages. Specifically, the interaction can be summarized as
follows:

• The client sends a request to get the list of available flavours matching a
predefined selector.

• The client notifies the provider of the intention to receive continuous up-
dates on a specific flavour, using the subscribe flavour message, which is
mapped onto an appropriate request message. The request message may
vary depending on the implementation technology used (e.g. Websockets,
publish/subscribe technologies).

• In case the client is interested in multiple flavours, this results in multiple
subscribe flavour messages, one for each flavour.

• This internally triggers the creation of a stateful communication channel
between the client and the provider.

• At this point, the provider sends asynchronous updates over the created
channel to the client for the specified flavour. Two different types of updates
are defined:

– The refresh expiration time message notifies the client that a previous
offer for a specific flavour is still valid.

– The withdraw message notifies the client that a previous flavour offer is
no longer available for purchase.

53

CHAPTER 5. THE REAR PROTOCOL

Figure 5.3: REAR interaction using optional messages

5.2 REAR APIs
This chapter details all the REAR messages, their purpose, and the message body.
Specifically, we can distinguish the messages as required and optional:

• Required (Figure 5.1 details an example of possible interaction between
client and provider using the required messages):

– List flavours, sent by the client to probe the available flavours offered
by a given provider.

– Reserve flavour, sent by the client to perform a reservation on a
specific flavour.

54

CHAPTER 5. THE REAR PROTOCOL

– Purchase flavour, sent by the client to complete the purchase of an
offered flavour.

• Optional:

– Refresh, sent by the provider to refresh a particular flavour. By send-
ing a refresh message, the provider helps maintain the availability of
flavours and allows the consumer to effectively manage and allocate
resources based on the updated expiration time.

– Withdrawal, sent by the provider to the consumer to notify that a
specific flavour is no longer available. This message serves as a notifi-
cation mechanism to inform the consumer that the requested flavour is
no longer available.

Note that the sequence of messages between the client and the provider is
fixed, as well as the order. This is because each step requires a set of information
returned from the previous step(s).

Moreover, there is a huge difference in the communication pattern be-
tween required and optional messages. Indeed, required messages follow a
client/server approach, i.e., with the client always initiating the communication,
whereas the optional messages are sent asynchronously by the server towards the
clients. Such a design choice greatly improves the expressiveness of the proto-
col, but it calls for a different architectural style for communication (e.g., REST,
Websocket, . . .), as the different types of messages have different requirements.

5.2.1 Required messages
This section details the required messages in the REAR protocol for resource
advertisement, reservation and purchase.

LIST_FLAVOURS

No request body is required for this message. The response body is a list of
flavours, as described in the following example:

Listing 5.1: Example of list flavours response body
1 [
2 {
3 "flavourID": "k8s-002",
4 "providerID": "provider-001",
5 "type": "k8s-fluidos",
6 "characteristics": {

55

CHAPTER 5. THE REAR PROTOCOL

7 "cpu": 8,
8 "ram": 32
9 },

10 "policy": {
11 "partitionable": {
12 "cpuMinimum": 4,
13 "ramMinimum": 16,
14 "cpuStep": 2,
15 "ramStep": 8
16 }
17 },
18 "owner": {
19 "ID": "owner-002",
20 "IP": "192.168.0.2",
21 "domainName": "example.com"
22 },
23 "price": {
24 "amount": 29.99,
25 "currency": "USD",
26 "period": "month"
27 },
28 "expirationTime": "2023-07-31T12:00:00Z",
29 "optionalFields": {}
30 }
31]

RESERVE_FLAVOUR

In the request body of this message, the client must specify the flavourID of
the flavour to be reserved and its identity. The response body is a summary
of the reservation process called Transaction, as described in the following example:

Listing 5.2: Example of reserve flavour response body
1 {
2 "transactionID": "1693306570195586000",
3 "flavourID": "k8s-001",
4 "startTime": "2023-08-29T12:56:10.19559+02:00"
5 }

56

CHAPTER 5. THE REAR PROTOCOL

PURCHASE_FLAVOUR

In the request body of this message, the client must specify the transactionID
of the transaction to be completed, the identity of the client and the flavourID.
The response body is a confirmation message, like:

Listing 5.3: Example of purchase flavour response body
1 {
2 "statusCode": 200
3 }

The implementation of what to return as a response is left to the user (by
default, it returns 200 OK). However, one possible solution could be to return a
“Contract” that confirms the successful acquisition of the flavour between the two
parties.

5.2.2 Optional messages
The file format depends on the type of implementation. For now, the proposed
implementation is with WebSocket, so messages are defined in XML (with the pos-
sibility of defining them in other formats such as JSON, etc.). As new technologies
could be used in the future, other message formats may be introduced.

REFRESH_FLAVOUR

Talking about the REFRESH_FLAVOUR message, its XML structure is defined
as follows:

• <RefreshMessage> is the root element of the "refresh" message.

• <Flavour> contains the details of the "Flavour" object that has been re-
freshed, with fields like FlavourID, ProviderID, FlavourType, and others.

• <ModificationDetails> contains the details of the changes made to the Flavour,
including the modified fields, the old values, and the new values. It is possible
to add additional fields to this section if necessary.

Listing 5.4: Structure XML of the refresh message
1 <RefreshMessage>
2 <Flavour>
3 <!−− Details of Flavour object that has been refreshed −−>
4 <FlavourID>string</FlavourID>
5 <ProviderID>string</ProviderID>

57

CHAPTER 5. THE REAR PROTOCOL

6 <FlavourType>string</FlavourType>
7 <!−− Other Flavour fields ... −−>
8 </Flavour>
9 <ModificationDetails>

10 <!−− Details of the changes made to the Flavour −−>
11 <FieldModified>string</FieldModified>
12 <OldValue>string</OldValue>
13 <NewValue>string</NewValue>
14 <!−− It is possibile to add other fields if needed −−>
15 </ModificationDetails>
16 </RefreshMessage>

WITHDRAW_FLAVOR

Talking about the WITHDRAW_FLAVOR message, its XML structure is defined
as follows:

• <WithdrawMessage> is the root element of the "withdraw" message.

• <Flavour> contains the details of the "Flavour" object that is no longer
available, with fields like FlavourID, ProviderID, FlavourType, and others.

• <Reason> contains the details of the reason for the withdrawal of the Flavour,
including the message and other fields for more detailed reasons if needed.

Listing 5.5: Structure XML of the withdraw message
1 <WithdrawMessage>
2 <Flavour>
3 <!−− Details of the Flavour that is no longer available −−>
4 <FlavourID>string</FlavourID>
5 <ProviderID>string</ProviderID>
6 <FlavourType>string</FlavourType>
7 <!−− Other Flavour fields ... −−>
8 </Flavour>
9 <Reason>

10 <!−− Reason for the withdrawal of the Flavour offer −−>
11 <Message>string</Message>
12 <!−− Other fields for more detailed reasons if needed −−>
13 </Reason>
14 </WithdrawMessage>

5.3 Selector
A selector is a criterion or rule used to choose or select specific entities from a
larger set based on certain characteristics or properties.

58

CHAPTER 5. THE REAR PROTOCOL

In the context of choosing a Virtual Machine (VM), a selector can be defined
as a set of criteria that specify the desired characteristics of the VM, such as CPU,
RAM, storage capacity, operating system, or any other relevant attributes.

The goal is to establish a standardized selector that allows users to define their
selection criteria based on their specific needs. For example, if a user requires
a VM, they would select the VM type in the selector, which would then reveal
the corresponding fields specific to VMs. Similarly, if a user needs a service, they
would choose the service type, and additional fields specific to that service type
would be displayed.

One of the challenges in utilizing selectors effectively is understanding the
syntax required to construct them accurately. Clients need to be familiar
with the specific syntax and structure of the selector to request resources correctly.
To address this issue, clients are allowed to use standardized selectors, allowing
users to choose from a variety of available flavours based on their specific needs.
However, a crucial question arises: How will the client know which types of flavours
are offered by the provider? One possible solution is to implement a pre-request
mechanism (init), where the client sends a GET request to the provider to retrieve
a comprehensive list of available flavours before engaging any resources. This
approach ensures that the client is aware of the available options and can make
informed decisions when selecting the appropriate flavour. Furthermore, it allows
adding new providers as plugins (e.g., adding AWS VM type).

59

Chapter 6

Development of FLUIDOS
Components

This chapter explores the development of critical system components, which were
implemented using Golang and driven by controller logic. It delves into the
architectural considerations, design principles, and implementation details that
underpin these components.

Readers will gain insights into the choices made during development, the rea-
soning behind them, and how they contributed to the overall system’s functionality.
Challenges encountered in the development process and their resolutions will also
be discussed.

The chapter offers a comprehensive view of the development efforts, shedding
light on the core components that form the backbone of our system.

The development of FLUIDOS components was divided into two releases:

• the first release leverages the power of NATS messaging, offering a seam-
less and efficient communication layer within our system. It showcases the
integration of NATS as a fundamental component, emphasizing its role in
enhancing communication between system modules.

• In the second release, a different approach is adopted, primarily relying on
Kubernetes resources, including Custom Resources and the Kubernetes API
itself. This release demonstrates a commitment to leveraging Kubernetes’
native capabilities to drive the system’s functionalities.

60

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

6.1 First Release
In the initial release of our system, two fundamental concepts played pivotal roles:
the Producer and the Consumer. These concepts serve as the core components
facilitating communication and data flow within our Kubernetes ecosystem.

Listing 6.1: Functions used to publish and consume messages Flavours on NATS
1 // publishMessage publishes a message to a subject
2 func publishMsg(nc ∗nats.Conn, subject string, message []byte) error {
3 // Publish message
4 err := nc.Publish(subject, message)
5 if err != nil {
6 return err
7 }
8 // Flush connection to ensure that message is sent
9 err = nc.Flush()

10 if err != nil {
11 return err
12 }
13
14 return nil
15 }
16
17 // handleMsg handles the message received
18 func handleMsg(body []byte) {
19 var flavour Flavour
20 err := json.Unmarshal(body, &flavour)
21
22 if err != nil {
23 log.Printf("failed to unmarshal JSON: %v", err)
24 return
25 }
26
27 updateFlavourMap(flavourMap, flavour)
28
29 }

6.1.1 The Producer
At the heart of our system lies the Producer, a critical component functioning
as a Kubernetes controller. This component is meticulously crafted using the
controller-runtime library and operates as a vigilant overseer of the Kubernetes
cluster. Its primary responsibilities include monitoring resource changes within the
cluster and retrieving essential node metrics when resources are added, modified,
or removed.

61

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

Once gathered, these metrics undergo careful processing before being transmit-
ted to a NATS server. The Producer is implemented using the Golang program-
ming language, and NATS serves as the efficient communication channel. Together,
they ensure that our system remains well-informed, responsive, and prepared for
subsequent actions.

6.1.2 The Consumer
Conversely, the Consumer plays a crucial role in our system. This component
functions as an application built on the NATS client library, specializing in re-
ceiving messages from a designated NATS topic. It acts as a vigilant sentinel,
continuously monitoring the specified NATS topic for incoming messages.

Upon receiving messages, the Consumer employs predefined functionality to
process or log the data according to specific requirements. Its actions are tailored
to the desired functionality, encompassing tasks ranging from data processing to
meticulous logging.

In summary, the Consumer ensures that our system remains receptive to in-
coming data, efficiently handling messages dispatched via NATS channels.

Figure 6.1: Overview of system components developed using NATS

62

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

6.1.3 Components
Both the Producer and the Consumer have the same components, which are de-
scribed below:

Local Resource Manager

Local Resource Manager in Fluidos is a vital component responsible for managing
the local resources available within each Fluidos node.

The Local Resource Manager operates within an individual node and is respon-
sible for monitoring and controlling the resources present on that node.

Listing 6.2: Function to get the resources of a node
1 // GetNodesResources retrieves the metrics from all the worker nodes in the cluster
2 func GetNodesResources(ctx context.Context, cl client.Client) (∗[]NodeInfo, error) {
3 // Set a label selector to filter worker nodes
4 labelSelector := labels.Set{workerLabelKey: ""}.AsSelector()
5
6 // Get a list of nodes
7 nodes := &corev1.NodeList{}
8 err := cl.List(ctx, nodes, &client.ListOptions{
9 LabelSelector: labelSelector,

10 })
11 if err != nil {
12 return nil, err
13 }
14
15 // Get a list of nodes metrics
16 nodesMetrics := &metricsv1beta1.NodeMetricsList{}
17 err = cl.List(ctx, nodesMetrics, &client.ListOptions{
18 LabelSelector: labelSelector,
19 })
20 if err != nil {
21 return nil, err
22 }
23
24 var nodesInfo []NodeInfo
25 // Print the name of each node
26 for _, node := range nodes.Items {
27 for _, metrics := range nodesMetrics.Items {
28 if node.Name != metrics.Name {
29 // So that we can select just the nodes that we want
30 continue
31 }
32
33 metricsStruct := getNodeResourceMetrics(&metrics, &node)
34 nodeInfo := getNodeInfo(&node, metricsStruct)
35 nodesInfo = append(nodesInfo, ∗nodeInfo)

63

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

36 uids = append(uids, string(node.UID))
37 }
38 }
39 return &nodesInfo, nil
40 }

Through the Local Resource Manager, each node can effectively manage its pro-
cessing power, storage capacity, memory, network bandwidth, and other resources.
It provides a centralized interface for interacting with the node’s resources.

The Local Resource Manager is implemented as a Kubernetes controller, which
is a component that continuously monitors the state of the Kubernetes cluster and
makes changes to the cluster’s resources when necessary.

Discovery Manager

Discovery Manager in Fluidos is a crucial component responsible for facilitating
the dynamic discovery of nodes within the Fluidos network.

By leveraging the Discovery Manager, nodes can efficiently communicate and
exchange information about their capabilities, resources, and availability. This
enables the Fluidos ecosystem to adapt and optimize resource allocation based on
the dynamic changes in the network.

The Discovery Manager is implemented as a Kubernetes controller, which is
a component that continuously monitors the state of the Kubernetes cluster and
makes changes to the cluster’s resources when necessary.

Flavour Generator

The Flavour Generator provides:

• A Southbound API to collect capabilities from the Local Resource Manager
and from the Discovery Manager; these capabilities are "static," so we are
not referring to dynamic metrics.

• An aggregator based on a custom algorithm to sum numeric resource prop-
erties, perform computations, and build a set of flavors representing the
maximum homogeneous set of resources to be announced and exploited for
a remote workflow.

• A Northbound API to export the results of aggregation to the Discovery
Manager, allowing it to disseminate this information to the Discovery Man-
agers of other nodes or to a Catalog.

64

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

Listing 6.3: Function to generate a flavour
1 // splitResources produces different Flavours with intelligent resource allocation
2 func splitResources(node NodeInfo) []Flavour {
3 AvailCPU := node.ResourceMetrics.CPUAvailable
4 AvailMemory := node.ResourceMetrics.MemoryAvailable
5
6 // Define initial values for resource allocation
7 var cpuAllocation float32 = 1.0
8 var memoryAllocation float32 = 1.0
9

10 flavours := []Flavour{}
11 for AvailCPU > cpuAllocation && AvailMemory > memoryAllocation {
12
13 // Create the flavour
14 flavour := Flavour{
15 FlavourID: generateUniqueString(node.UID + "−flavour−" + strconv.Itoa(len(

flavours)+1)),
16 NodeUID: node.UID,
17 Name: node.Name + "−flavour−" + strconv.Itoa(len(flavours)+1),
18 Architecture: node.Architecture,
19 OperatingSystem: node.OperatingSystem,
20 CPUOffer: fmt.Sprintf("%.2f", cpuAllocation),
21 MemoryOffer: fmt.Sprintf("%.2fGi", memoryAllocation),
22 Available: true,
23 PodsOffer: []PodsPlan{
24 {Name: "Small", Available: true, Pods: 11},
25 {Name: "Medium", Available: true, Pods: 33},
26 {Name: "Large", Available: true, Pods: 66},
27 },
28 }
29 flavours = append(flavours, flavour)
30
31 // Increase the resource allocation for the next flavour
32 cpuAllocation += float32(len(flavours) + 1)
33 memoryAllocation += float32(len(flavours) + 1)
34
35 // Check if the allocation exceeds the available resources
36 if cpuAllocation > AvailCPU {
37 cpuAllocation = AvailCPU
38 }
39 if memoryAllocation > AvailMemory {
40 memoryAllocation = AvailMemory
41 }
42 }
43
44 return flavours
45 }

Once these flavors are created, they will be pushed to a remote database. For

65

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

this release, MongoDB was chosen as the database. The procedure for pushing
these flavors to the remote DB also simulated the behavior of the Catalog. As we
will see later, the remote DB will be abandoned in the second release.

6.2 Second Release
In the second release, we have no longer used NATS as a communication channel.
Instead, we have used the Kubernetes API to communicate with the Kubernetes
cluster. This release is more focused on the use of Kubernetes resources, such as
Custom Resources, to implement the functionalities of the system.

Moreover, to communicate outside the cluster, we use REAR protocol, based on
REST APIs + WebSocket in order to have a bidirectional communication between
the nodes (or the Catalog) and the remote clients for the discovery, reserve and
acquisition of resources.

6.2.1 Components
In this release, we have the following components:

• Local Resource Manager: it is the same component as in the first release,
but it has been adapted to use the Kubernetes Custom Resources instead of
NATS.

• Available Resources: component that is in charge of collecting the re-
sources available flavours.

• Discovery Manager: it is the same component as in the first release, but it
has been adapted to use the Kubernetes Custom Resources instead of NATS
(and also some logic has been added to manage the new functionalities).

• Peering Candidates: component that is in charge of collecting the poten-
tial peering candidates from the outside of the cluster.

• REAR Manager: central component that is in charge of managing the
request for resource advertisement, discovery, reservation and acquisition.

• Contract Manager: component that is in charge of managing the reserve
and acquisition of resources.

66

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

Figure 6.2: Overview of system components developed in the last release

Local Resource Manager

The Local Resource Manager is the same component as in the first release, but it
has been adapted to use the Kubernetes Custom Resources instead of NATS.

For each worker node in the FLUIDOS Node, the Local Resource Manager
starting from the node’s resources, creates a Flavour Custom Resource and pushes
it to the Kubernetes API.

Available Resources

The Available Resources component is in charge of collecting the resources available
flavours. It is implemented as a simple database (etcd) that stores the Flavour
Custom Resources created by the Local Resource Manager.

Discovery Manager

The Discovery Manager is the same component as in the first release, but it has
been adapted to use the Kubernetes Custom Resources instead of NATS (and also

67

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

some logic has been added to manage the new functionalities).
Its main objective is to populate the Peering Candidates table and offer appro-

priate flavors to the REAR Manager. This process hinges on the initial messages
exchanged as part of the REAR protocol.

The Discovery Manager plays a pivotal role in this process. If there are no
appropriate peering candidates available, the REAR Manager constructs a flavor
selector and forwards it to the Discovery Manager, seeking a suitable peering
candidate. Subsequently, the Discovery Manager on the Consumer Node initiates
a LIST_FLAVOURS message, disseminating it to all known endpoints, whether
they are local Nodes, a Supernode, or a Catalog.

Listing 6.4: Function to search for flavours given a Flavor Selector
1 // SearchFlavour is a function that returns an array of Flavour that fit the Selector by

performing a get request to an http server
2 func SearchFlavour(selector nodecorev1alpha1.FlavourSelector) ([]∗nodecorev1alpha1.Flavour,

error) {
3 // Marshal the selector into JSON bytes
4 body := parseutil.ParseSelectorValues(selector)
5
6 klog.Info("Selector is ", body)
7 selectorBytes, err := json.Marshal(body)
8 if err != nil {
9 return nil, err

10 }
11
12 // Create the Flavour CR from the first flavour in the array of Flavour
13 var flavoursCR []∗nodecorev1alpha1.Flavour
14
15 // Send the POST request to all the servers in the list
16 for _, ADDRESS := range flags.SERVER_ADDRESSES {
17 resp, err := http.Post(ADDRESS+"/listflavours/selector", "application/json", bytes.

NewBuffer(selectorBytes))
18 if err != nil {
19 return nil, err
20 }
21 defer resp.Body.Close()
22
23 // Check if the response status code is 200 (OK)
24 if resp.StatusCode != http.StatusOK {
25 return nil, fmt.Errorf("received non−OK response status code: %d", resp.

StatusCode)
26 }
27
28 // Read the response body
29 respBody, err := ioutil.ReadAll(resp.Body)
30 if err != nil {
31 return nil, err

68

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

32 }
33
34 // Unmarshal the response JSON into an array of Flavour Object
35 var flavours []∗models.Flavour
36 if err := json.Unmarshal(respBody, &flavours); err != nil {
37 return nil, err
38 }
39
40 for _, flavour := range flavours {
41 klog.Infof("Flavour found: %s", flavour.FlavourID)
42 cr := resourceforge.ForgeFlavourCustomResource(∗flavour)
43 flavoursCR = append(flavoursCR, cr)
44 }
45
46 }
47 klog.Info("Flavours created", flavoursCR)
48 return flavoursCR, nil
49
50 }

On the Provider Node’s side, its Discovery Manager searches for suitable local
flavors that match the received flavor selector within its Available Resources table.
Should one or more fitting flavors be identified, the Provider Node’s Discovery
Manager responds with an OK message, including the list of discovered flavors, to
the Consumer Node’s Discovery Manager.

The Discovery Manager on the Consumer Node, in turn, populates the Peering
Candidates table with the newly acquired flavors, facilitating the subsequent
steps in the process.

Peering Candidates

The Peering Candidates component manages a dynamic list of nodes that are
potentially suitable for establishing peering connections. This list is continuously
updated based on the available resources in the nodes and the requests for flavours
from the Discovery Manager.

REAR Manager

The REAR Manager plays a pivotal role in orchestrating the service provision-
ing process. It receives service requests, translates them into resource or service
requests, and looks up suitable resources.

If none are found, it initiates the Discovery, Reservation, and Peering phases. It
selects potential peering candidates and can request discovery. The suitable local
flavors are identified and shared. If a suitable candidate is found, it triggers the
Reservation phase. Resources are allocated, contracts are created, and peering is

69

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

established. For Liqo releases with declarative Virtual Node definitions, the process
is modified. Finally, the Node Orchestrator deploys workloads using Kubernetes
primitives and the retrieved resources.

Contract Manager

The Contract Manager is in charge of managing the reserve and acquisition of re-
sources. It handles the negotiation and management of resource contracts between
nodes.

When a suitable peering candidate is identified, the Contract Manager initiates
the Reservation phase by sending a RESERVE_FLAVOUR message.

Listing 6.5: Function to reserve a flavour
1 // reserveFlavourHandler reserves a Flavour by its flavourID
2 func reserveFlavourHandler(cl client.Client) http.HandlerFunc {
3 return func(w http.ResponseWriter, r ∗http.Request) {
4 params := mux.Vars(r)
5 flavourID := params["flavourID"]
6 var transaction models.Transaction
7
8 var request struct {
9 FlavourID string ‘json:"flavourID"‘

10 Buyer models.Owner ‘json:"buyer"‘
11 }
12
13 if err := json.NewDecoder(r.Body).Decode(&request); err != nil {
14 http.Error(w, err.Error(), http.StatusBadRequest)
15 return
16 }
17
18 if flavourID != request.FlavourID {
19 http.Error(w, "Mismatch body & param", http.StatusConflict)
20 return
21 }
22
23 if models.Transactions == nil {
24 models.Transactions = make(map[string]models.Transaction)
25 }
26
27 found := false
28 for _, t := range models.Transactions {
29 if t.FlavourID == flavourID && t.Buyer.ID == request.Buyer.ID {
30 found = true
31 t.StartTime = common.GetTimeNow()
32 transaction = t
33 addNewTransacion(t)
34 break

70

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

35 }
36 }
37
38 if !found {
39 klog.Infof("Reserving flavour %s started", flavourID)
40
41 flavour, _ := services.GetFlavourByID(flavourID, cl)
42 if flavour == nil {
43 http.Error(w, "Flavour not found", http.StatusNotFound)
44 return
45 }
46
47 transactionID, err := namings.ForgeTransactionID()
48 if err != nil {
49 http.Error(w, "Error generating transaction ID", http.

StatusInternalServerError)
50 return
51 }
52
53 transaction := resourceforge.ForgeTransactionObject(flavourID, transactionID,

request.Buyer)
54 addNewTransacion(transaction)
55 }
56 encodeResponse(w, transaction)
57 }
58 }

Upon successful reservation of resources, it proceeds to create a new contract.
Following this, a PURCHASE_FLAVOUR message is sent to the Provider
Node’s Contract Manager.

Listing 6.6: Function to purchase a flavour
1 // purchaseFlavourHandler is an handler for purchasing a Flavour
2 func purchaseFlavourHandler(cl client.Client) http.HandlerFunc {
3 return func(w http.ResponseWriter, r ∗http.Request) {
4 params := mux.Vars(r)
5 flavourID := params["flavourID"]
6 var purchase models.Purchase
7
8 if err := json.NewDecoder(r.Body).Decode(&purchase); err != nil {
9 http.Error(w, err.Error(), http.StatusBadRequest)

10 return
11 }
12
13 klog.Infof("Purchasing flavour %s started", flavourID)
14
15 if models.Transactions == nil {
16 klog.Infof("No active transactions found")
17 http.Error(w, "Error: no active transactions found.", http.StatusNotFound)

71

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

18 return
19 }
20
21 transaction, exists := models.Transactions[purchase.TransactionID]
22 if !exists {
23 klog.Infof("Transaction not found")
24 http.Error(w, "Error: transaction not found", http.StatusNotFound)
25 return
26 }
27
28 if common.CheckExpiration(transaction.StartTime, flags.

EXPIRATION_TRANSACTION) {
29 http.Error(w, "Error: transaction Timeout", http.StatusRequestTimeout)
30 delete(models.Transactions, purchase.TransactionID)
31 return
32 }
33
34 var contractList ∗reservationv1alpha1.ContractList
35 var contract ∗reservationv1alpha1.Contract
36
37 if err := cl.List(context.Background(), contractList, client.MatchingFields{"spec.

TransactionID": purchase.TransactionID}); err != nil {
38 if client.IgnoreNotFound(err) != nil {
39 klog.Errorf("Error when listing Contracts: %s", err)
40 http.Error(w, "Error when listing Contracts", http.StatusInternalServerError)
41 return
42 }
43 }
44
45 if len(contractList.Items) > 0 {
46 contract = &contractList.Items[0]
47 contractObject := resourceforge.ForgeContractObject(contract, purchase.BuyerID,

transaction.TransactionID, purchase.Partition)
48 responsePurchase := resourceforge.ForgeResponsePurchaseObject(contractObject)
49 encodeResponse(w, responsePurchase)
50 return
51 }
52
53 klog.Infof("Performing purchase of flavour %s...", flavourID)
54 delete(models.Transactions, purchase.TransactionID)
55 klog.Infof("Flavour %s purchased!", flavourID)
56
57 flavourSold, err := services.GetFlavourByID(flavourID, cl)
58 if err != nil {
59 klog.Errorf("Error getting the Flavour by ID: %s", err)
60 http.Error(w, "Error getting the Flavour by ID", http.StatusInternalServerError)
61 return
62 }
63

72

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

64 klog.Infof("Creating a new contract...")
65 contract = resourceforge.ForgeContractCustomResource(∗flavourSold, purchase.

BuyerID)
66 err = cl.Create(context.Background(), contract)
67 if err != nil {
68 klog.Errorf("Error creating the Contract: %s", err)
69 http.Error(w, "Error creating the Contract: "+err.Error(), http.

StatusInternalServerError)
70 return
71 }
72 klog.Infof("Contract created!")
73
74 contractObject := resourceforge.ForgeContractObject(contract, purchase.BuyerID,

transaction.TransactionID, purchase.Partition)
75 responsePurchase := resourceforge.ForgeResponsePurchaseObject(contractObject)
76
77 encodeResponse(w, responsePurchase)
78 }
79 }

Once both sides have agreed to the terms, the Contract Manager on each node
creates a new contract. Subsequently, the REAR Manager is informed of the re-
served resources, leading to updates in the Available Resources table. Finally,
the Contract Manager triggers the establishment of peering reachability through
network managers, and the Node Orchestrator can proceed with workload deploy-
ment.

6.2.2 Controllers
In the following, the controllers developed for the FLUIDOS Node are described.

Solver Controller

The Solver controller, tasked with reconciliation on the Solver object, continu-
ously monitors and manages its state to ensure alignment with the desired config-
uration. It follows the following steps:

1. When there is a new Solver object, it firstly checks if the Solver has expired
or failed (if so, it marks the Solver as Timed Out).

2. It checks if the Solver has to find a candidate.

3. If so, it starts to search a matching Peering Candidate if available.

4. If some Peering Candidates are available, it selects one and books it.

73

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

5. If no Peering Candidates are available, it starts the discovery process by
creating a Discovery.

6. If the findCandidate status is solved, it means that a Peering Candidate
has been found. Otherwise, it means that the Solver has failed.

7. If in the Solver there is also a ReserveAndBuy phase, it starts the reservation
process. Otherwise, it ends the process, the solver is already solved.

8. Firstly, it starts to get the PeeringCandidate from the Solver object. Then,
it forges the Partition starting from the Solver selector. At this point, it
creates a Reservation object.

9. If the Reservation is successfully fulfilled, it means that the Solver has
reserved and purchased the resources. Otherwise, it means that the Solver
has failed.

10. If in the Solver there is also an EnstablishPeering phase, it starts the
peering process (to be implemented). Otherwise, it ends the process.

Discovery Controller

The Discovery controller, tasked with reconciliation on the Discovery object, con-
tinuously monitors and manages its state to ensure alignment with the desired
configuration. It follows the following steps:

1. When there is a new Discovery object, it firstly starts the discovery process
by contacting the Gateway to discover flavors that fit the Discovery selector.

2. If no flavors are found, it means that the Discovery has failed. Otherwise, it
refers to the first PeeringCandidate as the one that will be reserved (more
complex logic should be implemented), while the others will be stored as not
reserved.

3. It updates the Discovery object with the PeeringCandidates found.

4. The Discovery is solved, so it ends the process.

Reservation Controller

The Reservation controller, tasked with reconciliation on the Reservation object,
continuously monitors and manages its state to ensure alignment with the desired
configuration. It follows the following steps:

74

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

1. When there is a new Reservation object, it checks if the Reserve flag is
set. If so, it starts the Reserve process.

2. It retrieves the FlavourID from the PeeringCandidate of the Reservation
object. With this information, it starts the reservation process through the
Gateway.

3. If the reserve phase of the reservation is successful, it will create a Transaction
object from the response received. Otherwise, the Reservation has failed.

4. If the Reservation has the Purchase flag set, it starts the Purchase pro-
cess. Otherwise, it ends the process because the Reservation has already
succeeded.

5. Using the Transaction object from the Reservation, it starts the purchase
process.

6. If the purchase phase is successfully fulfilled, it will update the status of the
Reservation object and it will store the received Contract. Otherwise, the
Reservation has failed.

Allocation Controller

The Allocation controller, tasked with reconciliation on the Allocation object,
continuously monitors and manages its state to ensure alignment with the desired
configuration.

6.2.3 Custom Resources
In the following, the Custom Resources developed for the FLUIDOS Node are
described.

Discovery

Here is a Discovery Custom Resource example:

Listing 6.7: Discovery Custom Resource example
1 apiVersion: advertisement.fluidos.eu/v1alpha1
2 kind: Discovery
3 metadata:
4 name: discovery−solver1
5 spec:
6 selector:

75

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

7 type: k8s−fluidos
8 architecture: arm64
9 rangeSelector:

10 minCpu: 1
11 minMemory: 1
12 solverID: solver1
13 subscribe: true

Reservation

Here is a Reservation Custom Resource example:

Listing 6.8: Solver Custom Resource example
1 apiVersion: reservation.fluidos.eu/v1alpha1
2 kind: Reservation
3 metadata:
4 name: reservation−solver1
5 spec:
6 buyer:
7 domain: topix.fluidos.eu
8 ip: 17.3.4.11
9 nodeID: 95c0614o1d0

10 flavourID: k8s−002
11 peeringCandidate:
12 name: peeringcandidate−k8s−002
13 namespace: default
14 purchase: true
15 reserve: true
16 seller:
17 domain: polito.fluidos.eu
18 ip: 13.3.5.1
19 nodeID: 91cbd32s0q1

Flavour

Here is a Flavour Custom Resource example:

Listing 6.9: Flavour Custom Resource example
1 apiVersion: nodecore.fluidos.eu/v1alpha1
2 kind: Flavour

76

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

3 metadata:
4 name: k8s−fluidos−002
5 namespace: default
6 spec:
7 characteristics:
8 architecture: amd64
9 cpu: 4

10 memory: 16
11 optionalFields:
12 availability: true
13 owner:
14 domain: polito.fluidos.eu
15 ip: 13.3.5.1
16 nodeID: 91cbd32s0q1
17 policy:
18 aggregatable:
19 maxCount: 5
20 minCount: 1
21 price:
22 amount: "10"
23 currency: USD
24 period: hourly
25 providerID: 05a2a55a−9939−4e94−9587−barlo14
26 type: k8s−fluidos

Contract

Here is a Contract Custom Resource example:

Listing 6.10: Contract Custom Resource example
1 Name: contract−k8s−fluidos−002−4o5g
2 API Version: reservation.fluidos.eu/v1alpha1
3 Kind: Contract
4 Spec:
5 Buyer:
6 domain: topix.fluidos.eu
7 ip: 17.3.4.11
8 nodeID: 95c0614o1d0
9 Credentials:

10 Cluster ID:
11 Cluster Name:

77

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

12 Endpoint:
13 Token:
14 Flavour:
15 Spec:
16 Characteristics:
17 Architecture:
18 Cpu: 4
19 Ephemeral - Storage: 0
20 Gpu: 0
21 Memory: 16
22 Persistent - Storage: 0
23 Optional Fields:
24 Availability: true
25 Owner:
26 domain: polito.fluidos.eu
27 ip: 13.3.5.1
28 nodeID: 91cbd32s0q1
29 Policy:
30 Aggregatable:
31 Max Count: 5
32 Min Count: 1
33 Price:
34 Amount: 10
35 Currency: USD
36 Period: hourly
37 Provider ID: 05a2a55a−9939−4e94−9587−barlo14
38 Type: k8s−fluidos
39 Status:
40 Creation Time: 2023−09−29T10:22:13+02:00
41 Expiration Time: 2023−11−29T10:22:13+02:00
42 Last Update Time: 2023−09−29T11:26:37+02:00
43 Partition:
44 Cpu: 0
45 Ephemeral Storage: 0
46 Gpu: 0
47 Memory: 0
48 Storage: 0
49 Seller:
50 domain: polito.fluidos.eu
51 ip: 13.3.5.1

78

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

52 nodeID: 91cbd32s0q1

PeeringCandidate

Here is a PeeringCandidate Custom Resource example:

Listing 6.11: PeeringCandidate Custom Resource example
1 Name: peeringcandidate−k8s−fluidos−002
2 API Version: advertisement.fluidos.eu/v1alpha1
3 Kind: PeeringCandidate
4 Spec:
5 Flavour:
6 Spec:
7 Characteristics:
8 Architecture:
9 Cpu: 4

10 Ephemeral - Storage: 0
11 Gpu: 0
12 Memory: 16
13 Persistent - Storage: 0
14 Optional Fields:
15 Availability: true
16 Owner:
17 domain: polito.fluidos.eu
18 ip: 13.3.5.1
19 nodeID: 91cbd32s0q1
20 Policy:
21 Aggregatable:
22 Max Count: 5
23 Min Count: 1
24 Price:
25 Amount: 10
26 Currency: USD
27 Period: hourly
28 Provider ID: 05a2a55a−9939−4e94−9587−barlo14
29 Type: k8s−fluidos−fluidos
30 Status:
31 Creation Time: 2023−09−29T10:22:13+02:00
32 Expiration Time: 2023−11−29T10:22:13+02:00
33 Last Update Time: 2023−09−29T11:26:37+02:00
34 Reserved: true

79

CHAPTER 6. DEVELOPMENT OF FLUIDOS COMPONENTS

35 Solver ID: solver1

Solver

Here is a Solver Custom Resource example:

Listing 6.12: Solver Custom Resource example
1 apiVersion: nodecore.fluidos.eu/v1alpha1
2 kind: Solver
3 metadata:
4 name: solver1
5 spec:
6 selector:
7 type: k8s−fluidos−fluidos
8 architecture: arm64
9 rangeSelector:

10 minCpu: 1
11 minMemory: 1
12 solverID: solver1
13 findCandidate: true
14 enstablishPeering: false

Transaction

Here is a Transaction Custom Resource example:

Listing 6.13: Transaction Custom Resource example
1 Name: 2738d980b9c4c45a172c7a4e18273492−1693646797264948000
2 API Version: reservation.fluidos.eu/v1alpha1
3 Kind: Transaction
4 Spec:
5 Flavour ID: k8s−fluidos−002
6 Start Time: 2023−09−29T11:26:37+02:00

80

Chapter 7

Validation

This chapter aims to validate the effectiveness, reliability, and usability of the core
components of the FLUIDOS Node system, shedding light on their role in efficient
communication and resource management. Moreover, it seeks to evaluate the
practicality and security of the REAR Protocol in enabling secure data exchange
of resources and capabilities among diverse cloud providers.

7.1 Methodology
We conducted different tests in different settings to evaluate their real-world per-
formance.

Our validation process began with controlled tests using local Kind clusters,
each running FLUIDOS. These tests helped us assess FLUIDOS’ core functional-
ities under controlled conditions.

Subsequently, we extended our validation to real-world Kubernetes clusters.
This shift allowed us to evaluate FLUIDOS’ adaptability and scalability in au-
thentic edge computing environments, considering factors like network latency,
resource availability, and security.

7.2 Usage Scenario
To validate the system, we considered a usage scenario involving two FLUIDOS
nodes within the same domain. Specifically, we examined a scenario where an
intent (a request for a specific flavor) cannot be fulfilled by one node. In response,
a discovery process is initiated towards the other node to determine if it has the
required flavor available. If so, the process proceeds to reserve and acquire that
flavor, culminating in the creation of a contract between the two parties.

81

CHAPTER 7. VALIDATION

Figure 7.1: Usage scenario of the FLUIDOS Node system.

7.3 Functional Testing
We conducted functional testing to ensure that the system’s core functionalities
work as expected. We tested the following components:

• Local Resource Manager

• Discovery Manager

• REAR Manager

• Contract Manager

Upon booting, the Local Resource Manager is tasked with generating a
Flavour object based on the resources of each worker node. Subsequently, the
Flavour object is utilized to establish a Kubernetes Custom Resource Definition
(CRD), enabling the creation of a Kubernetes Custom Resource (CR) for each
Flavour. These CRs are then employed by the Discovery Manager to disseminate
information about available resources to other FLUIDOS nodes.

For instance, in a cluster with multiple worker nodes, the expected outcome
is to have one Flavour object and one CRD generated for each node. To illus-
trate, let’s consider an example starting from one of the machines where the Local
Resource Manager is running:

82

CHAPTER 7. VALIDATION

Listing 7.1: Flavour object generated by the Local Resource Manager.
1 apiVersion: nodecore.fluidos.eu/v1alpha1
2 kind: Flavour
3 metadata:
4 name: k8s−fluidos−002
5 namespace: default
6 spec:
7 characteristics:
8 architecture: amd64
9 cpu: 4

10 memory: 16
11 optionalFields:
12 availability: true
13 owner:
14 domain: polito.fluidos.eu
15 ip: 13.3.5.1
16 nodeID: 91cbd32s0q1
17 policy:
18 aggregatable:
19 maxCount: 5
20 minCount: 1
21 price:
22 amount: "10"
23 currency: USD
24 period: hourly
25 providerID: 05a2a55a−9939−4e94−9587−barlo14
26 type: k8s−fluidos

For this functional test, let’s consider an intent from a user to acquire a flavor
with the following characteristics:

Listing 7.2: Intent to acquire a flavor with a set of characteristics.
1 selector:
2 type: k8s−fluidos−fluidos
3 architecture: arm64
4 rangeSelector:
5 minCpu: 1
6 minMemory: 1

83

CHAPTER 7. VALIDATION

7.4 Results
Starting from the intent, the REAR Manager looks up in the Peering Candidates
table for potential peering candidates (suitable flavours) matching the request.

7.4.1 Solver Creation
In case there are no suitable peering candidates, firstly it will be created a Solver
with the following characteristics:

Listing 7.3: Solver created by the REAR Manager.
1 apiVersion: nodecore.fluidos.eu/v1alpha1
2 kind: Solver
3 metadata:
4 name: solver1
5 spec:
6 selector:
7 type: k8s−fluidos−fluidos
8 architecture: arm64
9 rangeSelector:

10 minCpu: 1
11 minMemory: 1
12 solverID: solver1
13 findCandidate: true
14 reserveAndBuy: true
15 enstablishPeering: false

7.4.2 Discovery Phase
With this solver, it will be created a new Discovery CR to find potential Peering
Candidates, which in this functional test is the following:

Listing 7.4: Discovery created by the REAR Manager.
1 apiVersion: advertisement.fluidos.eu/v1alpha1
2 kind: Discovery
3 metadata:
4 name: discovery−solver1
5 spec:
6 selector:
7 type: k8s−fluidos
8 architecture: arm64

84

CHAPTER 7. VALIDATION

9 rangeSelector:
10 minCpu: 1
11 minMemory: 1
12 solverID: solver1
13 subscribe: true

The Discovery Manager of the Consumer Node sends a LIST_FLAVOURS
message to all the endpoints it already knows (in this case, the other FLUIDOS
Nodes).

The Discovery Manager of the Provider Node looks-up for suitable local
flavours matching the received flavour selector in its Available Resources table. In
case one or more suitable flavours are found, the Discovery Manger of the Provider
Node sends back an OK message to the Discovery Manager of the Consumer Node
attaching the flavours list.

The Discovery Manager of the Consumer Node populates the Peering Candidates
table with the newly discovered flavours. In this case, there was just one flavour
matching the request, so the Peering Candidates table will be populated with
the following entry:

Listing 7.5: Peering Candidate created if a suitable flavour is found.
1 Name: peeringcandidate−k8s−fluidos−002
2 API Version: advertisement.fluidos.eu/v1alpha1
3 Kind: PeeringCandidate
4 Spec:
5 Flavour:
6 Spec:
7 Characteristics:
8 Architecture:
9 Cpu: 4

10 Ephemeral - Storage: 0
11 Gpu: 0
12 Memory: 16
13 Persistent - Storage: 0
14 Optional Fields:
15 Availability: true
16 Owner:
17 domain: polito.fluidos.eu
18 ip: 13.3.5.1
19 nodeID: 91cbd32s0q1
20 Policy:
21 Aggregatable:

85

CHAPTER 7. VALIDATION

22 Max Count: 5
23 Min Count: 1
24 Price:
25 Amount: 10
26 Currency: USD
27 Period: hourly
28 Provider ID: 05a2a55a−9939−4e94−9587−barlo14
29 Type: k8s−fluidos−fluidos
30 Status:
31 Creation Time: 2023−09−29T10:22:13+02:00
32 Expiration Time: 2023−11−29T10:22:13+02:00
33 Last Update Time: 2023−09−29T11:26:37+02:00
34 Reserved: true
35 Solver ID: solver1

After that, the Discovery will be solved and updated with the new Peering
Candidate.

7.4.3 Reserve and Buy Phases
In the solver, there is also the intent to Reserve and Buy the flavour. For this
reason, the REAR Manager will create a new Reservation CR, which in this
functional test is the following:

Listing 7.6: Reservation created by the REAR Manager.
1 apiVersion: reservation.fluidos.eu/v1alpha1
2 kind: Reservation
3 metadata:
4 name: reservation−solver1
5 spec:
6 buyer:
7 domain: topix.fluidos.eu
8 ip: 17.3.4.11
9 nodeID: 95c0614o1d0

10 flavourID: k8s−002
11 peeringCandidate:
12 name: peeringcandidate−k8s−002
13 namespace: default
14 purchase: true
15 reserve: true
16 seller:

86

CHAPTER 7. VALIDATION

17 domain: polito.fluidos.eu
18 ip: 13.3.5.1
19 nodeID: 91cbd32s0q1

This Reservation CR will be used by the Contract Manager to send a RE-
SERVE_FLAVOUR message to the Provider Node. The Provider Node will then
reserve the flavour and send back an Transaction message to the Consumer Node
with the following characteristics:

Listing 7.7: Transaction message sent by the Provider Node.
1 Name: 2738d980b9c4c45a172c7a4e18273492−1693646797264948000
2 API Version: reservation.fluidos.eu/v1alpha1
3 Kind: Transaction
4 Spec:
5 Flavour ID: k8s−fluidos−002
6 Start Time: 2023−09−29T11:26:37+02:00

After that, the Contract Manager will send a PURCHASE_FLAVOUR mes-
sage to the Provider Node using the TransactionID previously received. The
Provider Node will then create a Contract to notify the Consumer Node that
the flavour has been purchased.

7.4.4 Contract Storage
Finally, the Contract Manager of the Consumer will create a new Contract based
on the Contract received from the Provider Node:

Listing 7.8: Contract created by the Contract Manager.
1 Name: contract−k8s−fluidos−002−4o5g
2 API Version: reservation.fluidos.eu/v1alpha1
3 Kind: Contract
4 Spec:
5 Buyer:
6 domain: topix.fluidos.eu
7 ip: 17.3.4.11
8 nodeID: 95c0614o1d0
9 Credentials:

10 Cluster ID:
11 Cluster Name:
12 Endpoint:
13 Token:
14 Flavour:

87

CHAPTER 7. VALIDATION

15 Spec:
16 Characteristics:
17 Architecture:
18 Cpu: 4
19 Ephemeral - Storage: 0
20 Gpu: 0
21 Memory: 16
22 Persistent - Storage: 0
23 Optional Fields:
24 Availability: true
25 Owner:
26 domain: polito.fluidos.eu
27 ip: 13.3.5.1
28 nodeID: 91cbd32s0q1
29 Policy:
30 Aggregatable:
31 Max Count: 5
32 Min Count: 1
33 Price:
34 Amount: 10
35 Currency: USD
36 Period: hourly
37 Provider ID: 05a2a55a−9939−4e94−9587−barlo14
38 Type: k8s−fluidos
39 Status:
40 Creation Time: 2023−09−29T10:22:13+02:00
41 Expiration Time: 2023−11−29T10:22:13+02:00
42 Last Update Time: 2023−09−29T11:26:37+02:00
43 Partition:
44 Cpu: 0
45 Ephemeral Storage: 0
46 Gpu: 0
47 Memory: 0
48 Storage: 0
49 Seller:
50 domain: polito.fluidos.eu
51 ip: 13.3.5.1
52 nodeID: 91cbd32s0q1

88

CHAPTER 7. VALIDATION

7.5 Performance Testing
Tests presented in this section aim at a preliminary assessment of the performance
and scalability of the solution. These tests were executed on a Linux virtual
machine with 8 GB of RAM and 4 CPU cores. Clusters installed were kind.

In order to evaluate the performance of the solution, some time intervals have
been analysed, in particular the ones between the following time instants:

• LIST_FLAVOURS

• RESERVE_FLAVOUR

• PURCHASE_FLAVOUR

Figure 7.2: Performance testing for listing, reserving, and purchasing a flavor.

As we can see, the duration of a call, especially in the case of the RESERVE_FLAVOUR
and PURCHASE_FLAVOUR operations, is influenced by various factors. These factors
include the checks that are performed for each call.

In the case of the RESERVE_FLAVOUR operation, the call takes the specified time
because, as observed, a check is conducted to determine whether it is possible to
reserve the flavor. This involves the creation of a Reservation Custom Resource
(CR) to ensure that the flavor can be allocated.

89

CHAPTER 7. VALIDATION

The PURCHASE_FLAVOUR operation, on the other hand, typically has a longer
duration compared to standard HTTP calls. This is because, after the flavor is
purchased, a contract is generated, which is then returned as a response to the
call. This contract serves as proof of the flavor’s purchase and will also be created
on the consumer side.

These additional processes, such as the checks for reservation and the creation
of contracts, contribute to the extended duration of these specific API calls in the
FLUIDOS system.

7.6 Final Considerations
As we can see from the results, the system works as expected. The functional
tests have been successful, and the system has been able to find a suitable flavour,
reserve it, and buy it.

However, we can define some pros and cons of the system using this type of
architecture (CRDs and CRs):

7.6.1 Pros and Cons of the system
Pros:

• Native Kubernetes Integration: CRDs are tightly integrated into Ku-
bernetes, simplifying deployment and management.

• Scalability: CRDs are suitable for scaling resources within Kubernetes,
leveraging auto-scaling capabilities.

• Real-time Control: CRDs allow real-time configuration changes and re-
source management without relying on external components, reducing re-
sponse times and latency.

Cons:

• Complexity: Setting up and managing CRDs can be complex, especially
for those unfamiliar with Kubernetes, leading to a steep learning curve.

• Kubernetes Dependency: Using CRDs ties the solution to Kubernetes,
limiting portability to non-Kubernetes environments.

90

CHAPTER 7. VALIDATION

7.6.2 Possible Improvements
Efforts to enhance the use of CRDs could include:

• Simplified Configuration: Develop tools or frameworks to simplify the
setup and management of CRDs for broader accessibility.

• Cross-Platform Compatibility: Explore options for making CRDs more
compatible with non-Kubernetes environments to enhance portability.

• Real-time Features: Enhance real-time capabilities within CRDs to reduce
the gap compared to messaging systems.

91

Chapter 8

Conclusions

In conclusion, this thesis has delved into the FLUIDOS project, which aims to
revolutionize resource management in edge computing. We have examined key
FLUIDOS Node components and their development, focusing on their role in
communication and resource handling. Additionally, we introduced the REAR
Protocol, designed to facilitate secure data exchange between cloud providers.

Throughout this research, we harnessed various technologies such as Kuber-
netes, kubebuilder, NATS, and Docker. These technologies were instrumental
in addressing the challenges posed by the FLUIDOS project and driving innovation
in the field of edge computing.

The FLUIDOS architecture, designed to be flexible, scalable, secure, and decen-
tralized, breaks down traditional boundaries between edge and cloud computing.
It supports multi-ownership and fluid topology, making it suitable for a wide range
of use cases and domains.

The REAR Protocol, with its support for various resource types and stan-
dardized criteria selection, enables secure resource and capability exchange among
cloud providers and customers.

The development of FLUIDOS components spanned two releases, with the first
emphasizing NATS messaging and the second introducing Kubernetes resources
and the REAR protocol for external communication. These components, includ-
ing the Local Resource Manager, Discovery Manager, and Contract Manager, were
adapted for Custom Resources.

Extensive testing, both in controlled environments and real-world Kubernetes
clusters, validated FLUIDOS’ core functionalities, adaptability, and scalability in
edge computing scenarios. These tests demonstrated resource exchange, reserva-
tion, and contract creation within the FLUIDOS ecosystem.

In closing, this research contributes significantly to the evolution of FLUIDOS,
advancing the concept of decentralized computing in edge environments. As we
look ahead, FLUIDOS continues to grow and make a substantial impact on the

92

CHAPTER 8. CONCLUSIONS

landscape of edge computing. Future research and development efforts can con-
tinue to refine and expand FLUIDOS, making it a robust and indispensable tool
for edge computing scenarios across various domains.

93

Bibliography

[1] Kubernetes official documentation, https://kubernetes.io/docs/home/

[2] Kubebuilder official documentation, https://book.kubebuilder.io/

[3] Controller-runtime official documentation, https://pkg.go.dev/sigs.k8s.
io/controller-runtime

[4] Docker official documentation, https://docs.docker.com/

[5] Dockerfile official documentation, https://docs.docker.com/engine/
reference/builder/

[6] Docker Compose official documentation, https://docs.docker.com/
compose/

[7] Liqo official documentation, https://docs.liqo.io/en/v0.5.0/

[8] NATS official documentation, https://docs.nats.io/

[9] Booking Connectivity APIs, https://connect.booking.com/user_guide/
site/en-US/user_guide.html

[10] Ticketmaster developer docs, https://developer.ticketmaster.com/

[11] Zhang, Lixia, et al. "RSVP: A new resource reservation protocol." IEEE net-
work 7.5 (1993): 8-18

[12] "MRSVP: A resource reservation protocol for an integrated services network
with mobile hosts." Wireless Networks 7 (2001): 5-19

[13] Awduche, Daniel, et al. RSVP-TE: extensions to RSVP for LSP tunnels. No.
rfc3209. 2001

[14] Berger, Lou. Generalized multi-protocol label switching (GMPLS) signaling
resource reservation protocol-traffic engineering (RSVP-TE) extensions. No.
rfc3473. 2003

94

https://kubernetes.io/docs/home/
https://book.kubebuilder.io/
https://pkg.go.dev/sigs.k8s.io/controller-runtime
https://pkg.go.dev/sigs.k8s.io/controller-runtime
https://docs.docker.com/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.liqo.io/en/v0.5.0/
https://docs.nats.io/
https://connect.booking.com/user_guide/site/en-US/user_guide.html
https://connect.booking.com/user_guide/site/en-US/user_guide.html
https://developer.ticketmaster.com/

BIBLIOGRAPHY

[15] Czajkowski, Karl, et al. "SNAP: A protocol for negotiating service level
agreements and coordinating resource management in distributed systems."
Job Scheduling Strategies for Parallel Processing: 8th International Work-
shop, JSSPP 2002 Edinburgh, Scotland, UK, July 24, 2002 Revised Papers
8. Springer Berlin Heidelberg, 2002

[16] Wang, Xin, and Henning Schulzrinne. "RNAP: A resource negotiation and
pricing protocol." Transit 6.B7 (1999): B8

[17] Venugopal, Srikumar, Xingchen Chu, and Rajkumar Buyya. "A negotiation
mechanism for advance resource reservations using the alternate offers proto-
col." 2008 16th Interntional Workshop on Quality of Service. IEEE, 2008

[18] Andrieux, Alain, et al. "Web services agreement specification (WS-
Agreement)." Open grid forum. Vol. 128. No. 1. 2007

[19] Smith, Reid G. "The contract net protocol: High-level communication and
control in a distributed problem solver." IEEE Transactions on computers 29.12
(1980): 1104-1113

[20] Elmroth, Erik, and Johan Tordsson. "A grid resource broker supporting
advance reservations and benchmark-based resource selection." International
Workshop on Applied Parallel Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004

[21] GSMA Operator Platform Telco Edge Requirements
2022 https://www.gsma.com/futurenetworks/resources/
gsma-operator-platform-telco-edge-requirements-2022/

[22] GSMA Operator Platform Group – East-Westbound Inter-
face APIs https://www.gsma.com/futurenetworks/resources/
east-westbound-interface-apis/

[23] FLUIDOS official website, https://www.fluidos.eu/
public-deliverables/

[24] FLUIDOS Architecture and Components docs, https://github.com/
fluidos-project/Docs

[25] REAR Protocol docs, https://github.com/topix-hackademy/Rear

95

https://www.gsma.com/futurenetworks/resources/gsma-operator-platform-telco-edge-requirements-2022/
https://www.gsma.com/futurenetworks/resources/gsma-operator-platform-telco-edge-requirements-2022/
https://www.gsma.com/futurenetworks/resources/east-westbound-interface-apis/
https://www.gsma.com/futurenetworks/resources/east-westbound-interface-apis/
https://www.fluidos.eu/public-deliverables/
https://www.fluidos.eu/public-deliverables/
https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/Docs
https://github.com/topix-hackademy/Rear

	Listings
	List of Figures
	Introduction
	Background and Motivation
	Research Objectives
	Scope and Methodology

	Technologies
	Kubernetes
	Architecture
	Control Plane components
	API Server
	etcd
	Scheduler
	kube-controller-manager
	cloud-controller-manager

	Node components
	kubelet
	kube-proxy
	Container runtime

	Kubernetes Objects
	Pods
	Services
	Deployments
	StatefulSets
	DaemonSets

	kubebuilder
	controller-runtime
	controller-tools

	Docker
	Dockerfile
	Docker Compose

	Liqo
	NATS
	NATS Client Applications
	NATS Service Infrastructure
	Connecting NATS Client applications to the NATS servers
	Simple messaging design

	State Of the Art for Resources and Services Exchange Protocols
	Introduction
	Communication Protocols
	Hypertext Transfer Protocol (HTTP)
	gRPC
	MQTT
	REST

	Real Use Cases: Resource Acquisition Workflows
	Booking.com Connectivity APIs
	Reservations APIs

	Ticketmaster
	Partner APIs

	Research Solution

	FLUIDOS: Architecture and Components
	Technology Substrate
	Main characteristics
	Architecture
	Node
	Supernode
	Catalog

	Interactions
	Workflows
	Two nodes in the same domain
	Two nodes in different domains (w/o Catalog)

	The REAR Protocol
	REAR messages
	Get the list of available flavours
	Policy

	Reserve flavour
	Subscribe to Changes

	REAR APIs
	Required messages
	LIST_FLAVOURS
	RESERVE_FLAVOUR
	PURCHASE_FLAVOUR

	Optional messages
	REFRESH_FLAVOUR
	WITHDRAW_FLAVOR

	Selector

	Development of FLUIDOS Components
	First Release
	The Producer
	The Consumer
	Components
	Local Resource Manager
	Discovery Manager
	Flavour Generator

	Second Release
	Components
	Local Resource Manager
	Available Resources
	Discovery Manager
	Peering Candidates
	REAR Manager
	Contract Manager

	Controllers
	Solver Controller
	Discovery Controller
	Reservation Controller
	Allocation Controller

	Custom Resources
	Discovery
	Reservation
	Flavour
	Contract
	PeeringCandidate
	Solver
	Transaction

	Validation
	Methodology
	Usage Scenario
	Functional Testing
	Results
	Solver Creation
	Discovery Phase
	Reserve and Buy Phases
	Contract Storage

	Performance Testing
	Final Considerations
	Pros and Cons of the system
	Possible Improvements

	Conclusions
	Bibliography

