
POLITECNICO DI TORINO
Master of Science in Computer Engineering

Master Degree Thesis

Handling QoS with eBPF: rate limiting
and packet scheduling approaches in XDP

Supervisors

Prof. Fulvio RISSO

Ing. Federico PAROLA

Candidate

Andrea AURELI

ACADEMIC-YEAR 2022/2023

Summary

Optimizing and speeding up packet forwarding over networks and performing critical
network functions is certainly a challenge in modern networking. Although the
Linux kernel networking stack provides a rich and consolidated set of capabilities,
its use in high traffic applications is not ideal, since its support of a wide set of
use cases comes at the cost of performance. The eBPF technology present in the
Linux kernel allows attaching verified programs to specific hooks in the kernel,
thereby extending the kernel itself. Running these programs enables bypassing
certain steps in the Linux networking stack that may be unnecessary in specific
situations. The primary emphasis of this work is on using the eBPF hook known
as Linux eXpress Data Path (XDP), which introduces a faster data path for packet
processing into the Linux kernel. Although XDP has an optimal behavior in packet
forwarding, it does not currently offer a mechanism to manage packet queuing and
to implement packet scheduling logic, which is fundamental to enforce Quality of
Service (QoS). This work examines the existing features of XDP for managing QoS,
evaluating the performance of various possible strategies. The thesis also explores
the features offered by a recent patch which represents an ongoing attempt to design
a programmable packet scheduling extension for XDP. The patch incorporates
recently developed schemes for programmable queues, enabling the creation of
packet schedulers in eBPF while still benefiting from the speed of XDP. The thesis
work investigates advantages and disadvantages between the features provided by
the patch and the queueing discipline used by the Linux traffic control system. The
patch guarantees a reduced resource overhead for performing the same scheduling
algorithms. In addition, we developed a prototype based on eBPF, capable of
autonomously managing routing and rate limiting functions. The prototype achieves
better performance compared to the vanilla Linux kernel in terms of throughput
and resource utilization, while also ensuring excellent scalability.

ii

Acknowledgements

To my family.
To the sublime talent of Arjen Robben.

iii

Table of Contents

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Goal of the thesis . 1
1.2 Tiesse S.p.a. 2

2 Background 3
2.1 eBPF(Extended Berkeley Packet Filter) 3

2.1.1 vCPU . 3
2.1.2 Safety . 4
2.1.3 Maps . 5
2.1.4 Helpers . 7
2.1.5 Tail & Function Calls . 8
2.1.6 Hook-points . 8
2.1.7 eXpress Data Path (XDP) 9
2.1.8 Traffic Control (TC) . 10
2.1.9 Toolchain . 11

2.2 Traffic Control in the Linux Kernel 13
2.3 Packet Queuing and scheduling in XDP 14

2.3.1 PIFO and Eiffel extension 15
2.3.2 First attempt: Adding a dequeue hook 16
2.3.3 Second attempt: Using BPF Timer 18

3 Prototype Architecture 21
3.1 General Architecture . 21

3.1.1 Routing Acceleration . 21
3.1.2 Rate Limiter . 23
3.1.3 Traffic policing and traffic shaping in the prototype 26

v

4 Prototype Implementation 28
4.1 BPF skeleton . 28
4.2 TC-egress program . 31
4.3 XDP program . 35
4.4 Rate Limiter different implementations 36

4.4.1 Refilling tokens using BPF Timer 40
4.4.2 Refilling tokens using Perf Event 43
4.4.3 Refilling tokens from Userspace 44

5 Prototype Evaluation 46
5.1 Testbed Setup . 46
5.2 Benchmarking tools . 47

5.2.1 Iperf3 . 47
5.2.2 Cisco TRex . 47

5.3 Routing tests . 48
5.4 Accuracy tests . 49

5.4.1 Comparison among the various approaches presented 51
5.5 Scalability test . 54
5.6 LS1046A Freeway Board . 54

6 Benchmarking XDP scheduling with PIFO map 58
6.1 Baseline impact of the PIFO map 58
6.2 Strict priority . 60
6.3 Weighted Fair Queueing . 63
6.4 PIFO’s expressiveness . 69

7 Conclusions and future work 73
7.1 Future developments . 74

Bibliography 76

vi

List of Figures

2.1 Scheme of the verification steps . 5
2.2 Interaction with eBPF maps . 6
2.3 Tail calls between eBPF programs 8
2.4 Comparison between XDP Generic and Native from [5] 10
2.5 Linux Network Stack . 11
2.6 eBPF Toolchain . 12
2.7 PIFO data structure: packets can be enqueued at a specific priority,

but dequeue only occurs from the head. 16

3.1 Flowchart for the routing process 23
3.2 Token Bucket algorithm in traffic policing 25
3.3 Flowchart for implementing traffic shaping 27

4.1 Flowchart of the eBPF skeleton generation 32
4.2 Flowchart of the entire prototype 37
4.3 With token refilling performed by a userspace thread for more precise

behavior, global variables were used instead of maps. 45

5.1 Testbed setup . 47
5.2 Throughput results varying packet size of one UDP flow 50
5.3 Accuracy test with TCP while varying the rate to be adhered to for

the flow . 52
5.4 Accuracy test with UDP while varying the rate to be adhered to for

the flow . 52
5.5 Occupancy of the core to which traffic is redirected varying packet

size - UDP flow . 53
5.6 Scalability test - measuring packet rate increasing number of UDP

flows . 55
5.7 Testbed setup used to test LS1046A Freeway Board 56
5.8 Throughput result varying packet size of one UDP flow - LS1046A

Freeway Board . 57

vii

5.9 Percentage of CPU idle varying packet size of one UDP flow -
LS1046A Freeway Board . 57

6.1 Comparison between bridge, vanilla XDP Redirect and XDP Schedul-
ing(packet passes through PIFO map) - One UDP flow varying packet
size . 59

6.2 Comparison in throughput and core utilization between bridge,
vanilla XDP Redirect and XDP Scheduling(packet passes through
PIFO map) - One TCP flow . 60

6.3 Testbed setup used in the test for strict priority: DUT acts as a
bottleneck . 63

6.4 Comparison in throughput and core utilization between PRIO Qdisc
and XDP program - 2 TCP Flows redirected to one core 64

6.5 Comparison in throughput and core utilization between HTB Qdisc
and XDP program - 2 TCP Flows redirected to one core 69

6.6 Example of building a hierarchy with PIFO maps. In the parent
map, tags are inserted to indicate from which map to perform the
next dequeue . 71

viii

Acronyms

DUT
Device Under Test

DPDK
Data Plane Development Kit

eBPF
extended Berkeley Packet Filter

HTB
Hierarchical Token Bucket

IP
Internet Protocol

JIT
Just-In-Time

NIC
Network Interface Card

QoS
Quality of Service

RSS
Receive Side Scaling

SKB
Socket Buffer

x

TOS
Type of Service

TCP
Transmission Control Protocol

TC
Transmission Control

UDP
User Datagram Protocol

WFQ
Weighted Fair Queueing

XDP
eXpress Data Path

xi

Chapter 1

Introduction

1.1 Goal of the thesis

In recent years, eBPF/XDP technology has demonstrated higher performance

compared to the performance of the vanilla Linux kernel, bringing substantial en-

hancements to the system. The Linux network stack can be a potential bottleneck

due to the speed and dynamism required by modern networks. This has led to the

rewriting of numerous network functions for specific issues using eBPF to overcome

this limitation. Executing such functions at the early stages of the network stack

ensures lower overhead, allowing an overall system optimization.

One fundamental challenge in networking is Quality of Service (QoS) management.

The Linux kernel provides a traffic control system called queuing discipline (Qdisc),

but using this system does not enable bypassing the Linux network stack. This

thesis delves into the possibility of replacing the traffic control system with func-

tions injected in the kernel through eBPF. It explores the capabilities that eBPF

technology offers today and its impact on the system.

1

Introduction

1.2 Tiesse S.p.a.

Tiesse is an italian privately-owned company focused on innovative network de-

vices, advanced network equipment, corporate business routers and IoT enabling

appliances. Tiesse is headquartered in Ivrea close to Turin, and has additional

offices in Rome, Turin and Avezzano (near L’Aquila).

Over the years, Tiesse has established itself as one of the leading and most depend-

able brands in the global market for innovative networking products.

Tiesse products are at the cutting-edge technology thanks to continuous R&D

investment and close collaboration with both telco and university research labo-

ratories. In fact, the company has been in constant collaboration for years now

with the Turin Polytechnic. Their customers are large companies in sectors such as

energy, finance, industry and the public and defence domains.

Tiesse is ISO 9001, UNI EN ISO 14001:2015 and UNI EN ISO 14064-1:2019 certified.

2

Chapter 2

Background

2.1 eBPF(Extended Berkeley Packet Filter)

eBPF is a technology developed within the Linux kernel that enables to execute

sandboxed programs within a privileged context such as the operating system

kernel [1]. Officially incorporated in the Linux kernel since version 3.18, eBPF can

fully leverage its advanced capabilities with a kernel version of 4.x or higher.

The operating system kernel is the ideal environment for implementing functions

related to security, observability and networking, which grants it control over the

entire system. However, adding a new functionality or modifying an existing one

in the kernel is a time-consuming process, as it typically involves recompiling the

entire kernel and rebooting the system each time a new Linux kernel module (LKM)

is needed. eBPF eliminates this necessity by allowing developers to write code

that runs within the Linux kernel space. The advantages and key features of this

technology will be detailed in the following sections.

2.1.1 vCPU

eBPF evolved from its predecessor, BPF (also known as cBPF), which was a general-

purpose, event-driven virtual CPU integrated into the Linux kernel starting with

3

Background

version 2.1.75 in 1997. In its early stages, BPF was primarily utilized as a packet

filter within the packet capture tool tcpdump. The eBPF virtual CPU, on the other

hand, is composed of eleven 64-bit registers, each of which has 32 bit subregisters.

Additionally, it includes a program counter and a 512 byte large eBPF stack space.

These registers are denoted as r0 through r10, with r10 being designated as read-

only, containing the frame pointer address necessary for accessing the eBPF stack

space. The remaining registers, r0 through r9, are considered general-purpose and

can be both read from and written to.

2.1.2 Safety

eBPF programs can be dynamically created and injected in the kernel at run-time.

Since the program runs in kernel space and not in userspace, dynamic injection of

malicious code could lead to compromise of the machine, which is not acceptable.

Before injecting the code, the operating system must have no security risk.

Before an eBPF program is attached to the requested hook within the Linux kernel,

it passes through the verification step. This step ensures the safety of the eBPF

program. It checks various conditions, such as the program does not cause system

crashes or any other harm. It must check that the program size is bounded. Then

for each possible execution path it verifies that there is a maximum number of

instructions (initially set to 4096 and has been raised to above 1 million in kernel

5.1). The program must not include unbounded loops: initially also small loops

were rejected then the verifier has been improved. The loops are unrolled to be

executed.

The verification step leads to the conclusion that we cannot write any kind of

program, so eBPF does not implement a Turing complete machine. The steps

undertaken by an eBPF program are shown in the figure 2.1.

4

Background

Figure 2.1: Scheme of the verification steps

2.1.3 Maps

One of the most important limitations of the cBPF is the lack of available memory.

eBPF maps exceed this limit giving the developer a method to:

• Export data from kernel to userspace

• Data pushed by userspace to kernel

• Data shared between different eBPF programs

• Save eBPF program status (for stateful processing)

• keep state between kernel and user-space applications

5

Background

Figure 2.2: Interaction with eBPF maps

The different types of maps are defined in the enum bpf_map_type in in-

clude/uapi/linux/bpf.h. Some of them are described below:

• BPF_MAP_TYPE_ARRAY: this can be seen as an array. Key is an index

and can only be 4 bytes. It is optimized for fastest possible lookup.

• BPF_MAP_TYPE_HASH: both user-space and eBPF programs can perform

lookup, update and delete operations.

• BPF_MAP_TYPE_PERF_EVENT_ARRAY: this enables the transfer of

unprocessed data to a performance ring, after which this data can be retrieved

by a user-space program through buffer polling.

For the first two, there are also LRU and PERCPU versions. The LRU type

6

Background

for handling the deletion of data from the table. The PERCPU mode allows you

to link the map to a single running core to not bump into synchronization costs

between the different cores by creating distinct memory areas.

eBPF maps can only be accessed through file descriptors. This was practical as

the map file descriptor was readily available; however it is often limiting that a

map can only be accessed from the same program that loads it. The mechanism

for sharing BPF maps is called pinning [2]. The mechanism consists of creating a

file for each map under a special file system mounted at /sys/fs/bpf/.

1 s t r u c t {

2 __uint (type , BPF_MAP_TYPE_ARRAY) ;

3 __uint (max_entries , 1) ;

4 __type(key , i n t) ;

5 __type(value , s t r u c t elem) ;

6 __uint (pinning , LIBBPF_PIN_BY_NAME) ;

7 } array SEC(" . maps ") ;

Listing 2.1: Definition of a pinned array map

2.1.4 Helpers

Another extension of the cBPF is the possibility to call a fixed set of in-kernel

helper functions. These functions allow the program to interact with the system

and with the context they are working with. Each program type (2.1.6) has its own

subset of helpers. Some of the helpers are used to interact with maps (e.g. void

*bpf_map_lookup_elem(struct bpf_map *map, const void *key)), while oth-

ers can be used to manipulate network packets or for debugging [3].

7

Background

2.1.5 Tail & Function Calls

eBPF programs can be chained together to create complex services. Communication

happens through “tail calls”. From one eBPF program there is a jump into another

eBPF program replacing the execution context without returning to the old one.

This type of call is also implemented in eBPF to overcome the limited number

of instructions per program. In order to execute tail calls, the bpf_tail_call

helper must be invoked. The function takes as argument a BPF map that can hold

references to BPF programs (BPF_MAP_TYPE_PROG_ARRAY). There is an

upper limit to the number of successive tail calls for security reasons.

eBPF Program eBPF Program eBPF Program

Tail call Tail call

Figure 2.3: Tail calls between eBPF programs

2.1.6 Hook-points

eBPF programs are event-driven and are executed when the kernel or an application

goes through a specific hook point. There are different types of eBPF hooks,

including:

1. uprobes: userspace probes for tracing user space application functions

2. kprobes: dynamic kernel probes for tracing kernel functions

3. tracepoints: static probes for tracing specific kernel events

4. cgroup-bpf: hooks for applying eBPF programs to cgroups

8

Background

For the part of packet processing there are two important program types: XDP

(eXpress Data Path) 2.1.7 and TC (Traffic Control) 2.1.8.

2.1.7 eXpress Data Path (XDP)

eXpress Data Path (or XDP) provides a high-performance and programmable

network data path in the Linux kernel [4]. XDP allows the developer to do a bare

metal packet processing at the lowest point in the software stack. The possible

use cases for this hook point are early packet discard (e.g. DDoS mitigation),

forwarding, load balancing, and firewalling.

When the XDP hook point is triggered, the kernel has not performed resource-

intensive operations yet, like allocating the socket buffer (SKB). The program takes

as argument a struct xdp_md which has pointers to the beginning and to the end

of the packet buffer, a pointer to a memory region to store additional metadata

and indexes of the receive interface and receive queue.

The possible XDP actions are:

• XDP_PASS: the XDP program passes the packet to the normal network stack

for processing. Even if the packet is sent to the normal stack, it may have

been modified by the XDP program.

• XDP_DROP: it instructs the driver to drop the packet. It is the fastest way

to drop a packet.

• XDP_TX: the packet is sent to the same interface it arrived on.

• XDP_REDIRECT: can be redirected to another interface or towards a map

with the bpf_redirect or with bpf_redirect_map helpers.

• XDP_ABORTED: a program should never use this as a return code, it happens

when an eBPF program has an error.

9

Background

There are three ways to connect an XDP program to an interface:

1. Generic XDP: XDP programs are loaded as part of the normal network path.

This is a way to test the program for drivers that do not provide support for

XDP. Users can request this mode by setting the XDP_FLAGS_SKB_MODE.

2. Native XDP: it involves loading the program through the network card driver

as part of its initial reception process. This mode necessitates specific driver

support. Devices operating in Native XDP can only redirect packets to other

devices also running in Native XDP mode. This approach offers greater

efficiency compared to the previous mode.

3. Offloaded XDP: it entails loading the XDP program directly into the Network

Interface Card (NIC), allowing it to execute without utilizing the CPU. This

mode requires support from the network interface device and delivers even

higher performance than Native XDP.

Figure 2.4: Comparison between XDP Generic and Native from [5]

2.1.8 Traffic Control (TC)

This program type is located in an upper point in the network stack (compared to

the XDP). But this means having more pieces of information about the network

10

Background

packet.

The input context is not anymore an xdp_md but it is a struct __sk_buff. After

the XDP block, the packet passes through a layer that parses it and fills the buffer

with metadata about the packet. From the TC ingress layer, the BPF program can

use the metadata extracted from the packet. All members of the struct are defined

in the linux/bpf.h system header. Some of the information is priority, protocol,

vlan metadata, tc_classid.

As we can see in figure 2.5, TC program type can be in ingress and egress path

while XDP is located in ingress only.

Figure 2.5: Linux Network Stack

2.1.9 Toolchain

eBPF programs are written in a restricted C code because as we said before (2.1.2),

it is not possible to inject every kind of program in the kernel but it has to meet

11

Background

some conditions checked by the action of the Verifier.

The CLANG frontend compiler and the LLVM backend are extended to accept the

restricted C code. Furthermore, the LLVM core is used for general optimizations.

So the compiler suite LLVM is used to compile pseudo-C code into eBPF bytecode.

In previous kernel versions, the virtual CPU was implemented using an interpreter.

However, in more recent versions, the bytecode can be compiled Just-In-Time (JIT)

into native x64 code and pushed in the kernel.

Figure 2.6: eBPF Toolchain

12

Background

2.2 Traffic Control in the Linux Kernel

Tc is the tool to manipulate Quality of Service settings in the Linux Kernel [6]. It

consists in:

• SHAPING: when traffic is subjected to shaping, its transmission rate is

regulated. Shaping could involve more than just decreasing the available

bandwidth. It is also used to handle bursts in traffic for better network

behaviour. Shaping takes place on egress.

• SCHEDULING: with this method, it is possible to schedule the transmission

of packets while still guaranteeing bandwidth to bulk transfers. The reordering

of the packets is also called prioritizing and takes place only on egress.

• POLICING: this method occurs on ingress because it deals with the incoming

traffic and not with the transmission of the packets.

• DROPPING: traffic that exceeds a set bandwidth can be dropped immediately,

both on ingress and egress.

Qdisc

Qdisc, or queuing discipline, are one of the objects used in the traffic control. Every

packet arriving on an interface is queued on the qdisc that has been set up for that

interface. Afterwards, he kernel tries to get packets from the qdisc, for giving them

to the network adaptor driver. There are two types of qdisc:

• Classless: The discipline of this type can’t contain other qdiscs within their

structure. They are solely responsible for tasks such as packet classification,

delay, or dropping. Examples of classless qdiscs include FIFO (First In First

Out), TBF (Token Bucket Filter), and SFQ (Stochastic Fairness Queueing).

13

Background

• Classful: The discipline of this type have the ability to contain another

qdiscs, which can be either classless or classful. This leads to the creation

of a hierarchical tree structure of classes. Within this tree, internal nodes

(including the root node) can hold other classful qdiscs, while the leaves

contain classless qdiscs. Each classful qdisc discipline can also incorporate

filters that determine the qdisc to which packets will be directed. As a result,

packets traverse through this tree structure until they reach the leaves. An

example of classful qdisc is the HTB (Hierarchical token bucket) qdisc, as well

as PRIO. Some qdiscs, like HTB, allow for the dynamic addition of classes

during runtime, while others, such as PRIO, are created with a fixed number

of children. When a packet enters a classful qdisc, it can be categorized into

one of the available classes based on various criteria, including tc filters, the

Type of Service field, or the skb → priority set by userspace.

2.3 Packet Queuing and scheduling in XDP

Part of the thesis work focused on studying a recent patch [7] that has not yet

been merged into the main Linux kernel. This patch aims to provide XDP with a

mechanism for packet queuing. Indeed, XDP excels at forwarding packets quickly

but it lacks the ability to reorder packets. This weakness makes impossible to use

the XDP hook point for managing traffic while also applying traffic scheduling and

traffic shaping policies. Since packet scheduling is an essential feature in modern

networks, it is necessary to have these capabilities while continuing to leverage the

speed of the XDP framework. This patch attempts to bridge this gap, providing an

alternative to using the Queueing Discipline (Qdisc) that is part of Linux’s traffic

control system.

A crucial step in creating a customizable packet scheduling mechanism is having

a flexible data structure that is compatible with the speeds of modern networks.

14

Background

In recent years, the field of packet scheduling has seen significant development, as

some generic data structures traditionally used for this purpose, such as binary

heaps or red-black trees, no longer align with the requirements of modern networks.

2.3.1 PIFO and Eiffel extension

This patch has evolved around the Push-In-First-Out (PIFO) priority queue [8]

and the Eiffel [9] extension to PIFO.

The PIFO structure originated in the hardware world, as it was designed to be

integrated into switches for implementing scheduling algorithms. Subsequently, a

software extension of this data structure, called Eiffel, was introduced. The PIFO

data structure is a system composed of priority queues. Data can be queued at

a specific priority level but can only be retrieved from the head of the structure.

Although the structure may appear simple, it enables the implementation of a

wide range of scheduling algorithms. The PIFO is a straightforward data structure

characterized by the following attributes: it employs a ranking function based on

integers to enqueue packets based on their priority, using a predefined range of

ranks established during initialization; and it dequeues packets in accordance with

the predetermined rank order.

The Eiffel extension is purely software-based and thus introduced several software-

based optimizations. One optimization involves utilizing a bit-field to monitor

queues with packets and leveraging the CPU’s Find-First-Set instruction to expe-

dite the search in the bit lookup table. Additionally, when the Eiffel system has

numerous ranks, it can further divide the lookup table into a tree-based structure.

Furthermore, it has introduced significant modifications to the original PIFO struc-

ture. Now, it can schedule not only individual packets but also entire flows, where

each flow consists of a First-In-First-Out (FIFO) queue. Within the PIFO map, it

can contain references to these FIFOs instead of just references to individual packets.

15

Background

Moreover, in the original PIFO, the programmer could only perform scheduling

on input, not on dequeue. This extension allows for the rearrangement of packets

within the same flow by re-queuing them, thereby enabling the implementation of

a broader range of scheduling algorithms.

The patch to the XDP hook introduces, in addition to the data structure, a mech-

anism for queuing and dequeuing packets. Two methods for implementing these

parts are described in the following two sections.

Figure 2.7: PIFO data structure: packets can be enqueued at a specific priority,
but dequeue only occurs from the head.

2.3.2 First attempt: Adding a dequeue hook

The first attempt involves adding a new program type and a new hook point.

The packet is redirected to the map using the existing helper function static

16

Background

long (*bpf_redirect_map)(void *map, __u32 key, __u64 flags), which is

already available as an eBPF helper. Once the packet has been redirected,

the transmission interface from which the packet should exit is activated using

the helper function static long (*bpf_schedule_iface_dequeue)(void *ctx,

int ifindex, int flags). This is a new helper function. This function triggers

a softirq during transmission, activating the program of type xdp_dequeue. This

program retrieves the packet from the head of the PIFO and sends it to the out-

bound interface. In terms of code, an example of how it works is shown in listing 2.2.

1

2 s t r u c t {

3 __uint (type , BPF_MAP_TYPE_PIFO_XDP) ;

4 __uint (key_size , s i z e o f (__u32)) ;

5 __uint (va lue_size , s i z e o f (__u32)) ;

6 __uint (max_entries , 1024) ;

7 __uint (map_extra , 8192) ; /∗ range ∗/

8 } pifo_map SEC(" . maps ") ;

9

10

11 SEC(" xdp ")

12 i n t xdp_pifo (s t r u c t xdp_md ∗xdp)

13 {

14 r e t = bpf_redirect_map(&pifo_map , pr io , 0) ;

15 i f (t g t_ i f i ndex && r e t == XDP_REDIRECT) {

16 bpf_schedule_iface_dequeue (xdp , tgt_i f index , 0) ;

17 }

18 re turn r e t ;

19 }

20

21 SEC(" xdp_dequeue ")

22 void ∗ dequeue_pifo (s t r u c t dequeue_ctx ∗ ctx)

17

Background

23 {

24 pkt = (void ∗) bpf_packet_dequeue (ctx , &pifo_map , 0 , &pr i o) ;

25 i f (! pkt) {

26 re turn NULL;

27 }

28 re turn pkt ;

29 }

Listing 2.2: Using the new dequeue hook and the new helper to schedule the

transmission

This approach is the one used by Linux kernel maintainers so far to implement

new features. However, this approach can be quite cumbersome, as introducing

new program types and hook points requires writing a significant amount of code

and makes code maintenance more challenging. For this reason, it was decided to

attempt the approach presented in the following section, which is likely to be used

for implementing future functionalities.

2.3.3 Second attempt: Using BPF Timer

This approach leverages BPF timers, introduced in Linux kernel version 5.15. In this

approach, after redirection to the PIFO map, which always occurs within the XDP

program, a timer is activated. Attached to this timer is a callback function that re-

moves a batch of packets from the map. These packets are first sent to the outbound

interface using the helper function static long (*bpf_packet_send)(void *pkt

, int ifindex, __u64 flags) and then definitively ejected using the helper func-

tion static long (*bpf_packet_flush)(void). In terms of code, an example

of how it works is shown in listing 2.3.

1

2 s t r u c t {

3 __uint (type , BPF_MAP_TYPE_PIFO_XDP) ;

18

Background

4 __uint (key_size , s i z e o f (__u32)) ;

5 __uint (va lue_size , s i z e o f (__u32)) ;

6 __uint (max_entries , 1024) ;

7 __uint (map_extra , 8192) ; /∗ range ∗/

8 } pifo_map SEC(" . maps ") ;

9

10 s t a t i c i n t xdp_timer_cb (void ∗map, i n t ∗key , s t r u c t bpf_timer ∗ t imer)

11 {

12 f o r (i = 0 ; i < BATCH_SIZE; i++) {

13 pkt = (void ∗) bpf_packet_dequeue_xdp(&pifo_map , 0 , &pr i o) ;

14 i f (! pkt)

15 re turn 0 ;

16

17 bpf_packet_send (pkt , tg t_i f index , 0) ;

18 }

19

20 bpf_packet_flush () ;

21 re turn 0 ;

22 }

23

24

25 i n t xdp_pifo_timer (s t r u c t xdp_md ∗xdp)

26 {

27 s t r u c t bpf_timer ∗ t imer ;

28 i n t array_key = 0 ;

29

30 t imer = bpf_map_lookup_elem(&array , &array_key) ;

31 i f (! t imer)

32 re turn XDP_ABORTED;

33

34 i f (! t imer_in i t) {

35 bpf_timer_init (timer , &array , CLOCK_MONOTONIC) ;

36 bpf_timer_set_cal lback (timer , xdp_timer_cb) ;

19

Background

37 t imer_in i t = 1 ;

38 }

39

40 r e t = bpf_redirect_map(&pifo_map , pr io , 0) ;

41 i f (t g t_ i f i ndex && r e t == XDP_REDIRECT)

42 bpf_timer_start (timer , 0 , 0) ;

43 re turn r e t ;

44 }

Listing 2.3: Using BPF timer to dequeue packets from PIFO map

20

Chapter 3

Prototype Architecture

3.1 General Architecture

The aim of the thesis is to implement network functions through the use of eBPF

and the XDP block in such a way as to bypass the Linux kernel. The Linux kernel

code is as generic as possible to handle every possible situation. On the other hand,

eBPF is used for specific issues and conditions that need to be addressed. In this

part of the work, attention is placed on the speeding up of the routing process and on

the updating of its policies and on the implementation of a rate limiting mechanism.

3.1.1 Routing Acceleration

For the eBPF part of the routing process, a prototype developed in a previous

thesis, also in collaboration with the Tiesse company, was used. A reactive approach

rules this process. The first session packet, recognizable by the 5-tuple that identifies

a specific TCP/IP connection (source IP address, destination IP address, source

port, destination port and protocol), is not accelerated by the prototype but follows

the normal network stack. In this way it is possible to save key parameters in

specific memory areas, the maps. In this way, we will have as a result that only

21

Prototype Architecture

the first packets of sessions follow a slower path, while the others, thanks to the

information saved in the maps, are accelerated via software by the eBPF program.

Given that pieces of information related to a specific session may change over time,

it is essential to rely only on information saved in recent times. For this reason, an

age field is also used to detect entries in the map that are too old and eliminate

them. The userspace takes care of running a program that periodically cycles

through all the entries and identifies those to discard. This solution has minimal

impact on performance.

These features require placing the programs in two different hook points: one

incoming on the XDP hookpoint, the other outgoing on the TC-egress block plus

the program that runs in userspace. The XDP block is chosen because, as seen in

section 2.1.7, it is the block that allows for the best performance by acting quickly

on raw data that has not been processed yet. The other eBPF program has been

placed in the TC-egress block, seen in section 2.1.8, since having reached that block

we have all the necessary information available that can be used later for faster

forwarding. The data is saved inside a hash map, pinned inside the bpffs virtual

file system, to have a quick and simple use of its entries. Once the data is saved in

the map, the packet can continue its journey through the network stack.

The XDP program uses the bpf_map_lookup_elem(map_fd, void *key) helper

to figure out if data has already been saved for that session. If successful, it modifies

the key parameters and redirects the packet to the correct output interface via the

XDP_REDIRECT action; otherwise it allows the packet to go through the kernel via

the XDP_PASS action.

Therefore the system uses a backlearning process to decide the output interfaces

on which to redirect the packets. From figure 3.1 it is possible to see the execution

flow of the part dedicated to speed up the forwarding process.

22

Prototype Architecture

Figure 3.1: Flowchart for the routing process

3.1.2 Rate Limiter

Rate limiting is a technique used to control network traffic and prevent certain

users or activities from consuming excessive system resources, making it useful for

mitigating DoS attacks, among other purposes. There are two primary approaches

to consider when implementing rate limiting [10]:

• TRAFFIC POLICING: it allows bursts of data to pass through. When

the traffic rate reaches the configured maximum rate, any excess traffic is

discarded. This results in an output rate that fluctuates over time. Traffic

policing requires two key parameters: the average rate and the maximum

burst size. The advantage is that it controls the output rate by dropping

packets, avoiding delays caused by queuing. However, it can impact TCP

window sizes and reduce the overall output rate of affected traffic streams.

• TRAFFIC SHAPING: In contrast to policing, traffic shaping retains excess

23

Prototype Architecture

packets in a queue and schedules them for later transmission over specified time

intervals. The outcome of traffic shaping is a smoother and more controlled

packet output rate. It requires two parameters: the average rate and the burst

size. Shaping relies on the presence of a queue and a buffer to temporarily

delay packets. Additionally, it requires a scheduling mechanism for later

transmission.

It is important to note that queues are primarily relevant for outbound traffic,

where packets leaving an interface are queued and can be shaped. Inbound traffic

on an interface, on the other hand, can only undergo policing.

Token Bucket Algorithm

Token bucket is an algorithm to configure a rate limiter. The tokens represent

a unit of bytes or a single packet of a specific size. These tokens are added to a

bucket at a fixed rate. So the algorithm requires two input parameters for each flow

affected by rate limiting: the average bit rate and the maximum burst size. When

a packet has to be sent, the bucket is checked if it contains sufficient tokens. If so,

the right amount of tokens is removed from the bucket (the amount is equivalent

to the length of the packet in bytes) and the packet is sent out. There are different

actions that can be done with non-conformant packets:

• they may be dropped.

• they may be enqueued for subsequent transmission when the bucket will have

enough tokens.

• they may be transmitted but marked as non-conformant.

The size of the bucket represents the maximum amount of bytes that tokens can

be available at any given moment. The token bucket can be used in either traffic

24

Prototype Architecture

shaping or traffic policing. In traffic shaping the packets are delayed, in traffic

policing they are discarded or marked as non-conformant.

Figure 3.2: Token Bucket algorithm in traffic policing

The token bucket algorithm was used to insert the rate limiting part into the

prototype. The realization was carried out with different techniques and methods

made available by eBPF. In fact, the credit refill process can be found either in

the XDP program or in a userspace program depending on the method followed.

The realization and characteristics of each implementation will be illustrated later.

Also for this rate limiting block, the XDP block is exploited because it is the one

that guarantees the best throughput and the lowest CPU occupation in the face of

a large workload.

25

Prototype Architecture

3.1.3 Traffic policing and traffic shaping in the prototype

In section 2.2, the difference between traffic policing and traffic shaping is explained.

The XDP framework currently does not include any packet queuing mechanism.

The decision to forward or drop a network packet must be made immediately. For

rate limiting functionality, this implies that only the traffic policing mechanism can

be implemented in XDP. The prototype implementation presented in the subsequent

chapter 4 follows the traffic policing strategy for implementing the token bucket

algorithm.

The patch introduced in section 2.3 has the potential to address this gap. This

means that it would be possible to incorporate a traffic shaping mechanism into

the prototype for rate limiting management. However, the prototype’s architecture

at that point would require changes. Traffic subject to a traffic shaping rule must

pass through the PIFO map before transmission. When dequeuing packets, the

available tokens are checked to determine whether to forward the packet or not.

Implementing this architecture may benefit from the use of circular buffers to store

the sizes of queued packets in the buffer. This buffer would be consulted before

dequeuing a packet from the map. If tokens are unavailable, it would be necessary

to wait for the next callback invocation to dequeue the packets. The diagram for

implementing traffic shaping is shown in figure 3.3.

Managing traffic shaping is significantly more complex than traffic policing. It

involves handling a multitude of data structures that need to be instantiated for

each rate limiting rule. One critical factor to test for such a scheme is the scalability

that the system can achieve. It is also important to keep track of the presence of

a high number of timers within the prototype. This could lead to excessive CPU

overhead and a resulting degradation in performance. A critical point could be the

management of the callback responsible for dequeuing packets. This program may

need to go through long cycles for each PIFO map present within the prototype.

26

Prototype Architecture

This slowdown could result in irregular flow throughputs.

Figure 3.3: Flowchart for implementing traffic shaping

27

Chapter 4

Prototype Implementation

4.1 BPF skeleton

The life cycle of programs associated with the XDP hook and TC-egress hook is

managed through the BPF skeleton. The BPF skeleton serves as an alternative

interface to the existing libbpf APIs, specifically designed for working with BPF

objects [11]. Its primary aim is to simplify the interaction with eBPF objects

from the user space. The BPF skeleton achieves this by automatically generating

customized code based on the input BPF object file, eliminating the need for

manual component lookup. The resulting code accurately reflects the structure of

the input BPF object, providing a comprehensive list of available maps, programs,

and variables.

The interface facilitates access to global variables of various kinds (mutable,

read-only, extern) and allows setting initial values before loading the BPF object.

Generated code includes the embedded contents of the source BPF object file,

ensuring synchronization between the skeleton and BPF object file.

Custom functions are generated with prefixes derived from the BPF object file

name. These functions include opening and loading the BPF object, attaching

and detaching BPF programs, and destroying the object to release resources. The

28

Prototype Implementation

generated code and skeleton interface are designed to be interoperable with generic

libbpf API.

Structs corresponding to global data sections, such as .data, .bss, .rodata and

.kconfig are created for BPF objects with global variables. These structs facilitate

setting initial values and updating data from userspace.

There is a set of functions in the skeleton in order to manage the lifecycle of the

application [12]:

• <eBPFprog-name>__create_skeleton: to create the skeleton object starting

from the object file coming from the compilation phase.

• <eBPFprog-name>__destroy: To dismantle the skeleton object, BPF maps

are deactivated, and all resources utilized by the BPF application are released.

• <eBPFprog-name>__open: to open a file associated to the eBPF program.

BPF object file is parsed: maps, programs and global variables are discovered,

but not yet created.

• <eBPFprog-name>__load: to load a file linked to the eBPF program, BPF

maps are established, and BPF programs are introduced into the kernel while

undergoing verification. At this stage, all components of a BPF application

are verified and exist within the kernel, yet no program is executed as of now.

Following the loading phase, it becomes feasible to configure the initial state of

BPF maps without encountering conflicts with the execution of BPF program

code.

• <eBPFprog-name>__attach: to affix the loaded eBPF program, this phase

involves attaching BPF programs to various hook points, such as kprobes or

the network packet processing pipeline. During this phase, BPF programs

become active and begin executing operations involving BPF maps and global

variables.

29

Prototype Implementation

• <eBPFprog-name>__detach: to detach an eBPF program and unload it

from the kernel.

1 /∗ SPDX−License−I d e n t i f i e r : (LGPL−2.1 OR BSD−2−Clause) ∗/

2

3 /∗ THIS FILE IS AUTOGENERATED BY BPFTOOL! ∗/

4 #i f n d e f __PROTOTYPE_SKEL_H__

5 #d e f i n e __PROTOTYPE_SKEL_H__

6

7 #inc lude <errno . h>

8 #inc lude <s t d l i b . h>

9 #inc lude <bpf / l i b b p f . h>

10

11 s t r u c t r ed i r e c t_semp l i c e {

12 s t r u c t bpf_object_ske leton ∗ s k e l e t on ;

13 s t r u c t bpf_object ∗ obj ;

14 s t r u c t {

15 s t r u c t bpf_map ∗xdp_map ;

16 s t r u c t bpf_map ∗ index_map ;

17 s t r u c t bpf_map ∗counter_map ;

18 s t r u c t bpf_map ∗ bss ;

19 s t r u c t bpf_map ∗ data ;

20 s t r u c t bpf_map ∗ rodata ;

21 } maps ;

22 s t r u c t {

23 s t r u c t bpf_program ∗ r a t e _ l i m i t e r ;

24 s t r u c t bpf_program ∗ xdp_redirect ;

25 } progs ;

26 s t r u c t {

27 s t r u c t bpf_l ink ∗ r a t e _ l i m i t e r ;

28 s t r u c t bpf_l ink ∗ xdp_redirect ;

29 } l i n k s ;

30 s t r u c t prototype__bss {

30

Prototype Implementation

31 r a t e_ l im i t e r_ru l e e n t r i e s [5 0 0] ;

32 } ∗ bss ;

33 s t r u c t prototype__data {

34 char __pad0 [4] ;

35 } ∗ data ;

36 s t r u c t prototype__rodata {

37 } ∗ rodata ;

38

39 #i f d e f __cplusplus

40 s t a t i c i n l i n e s t r u c t prototype ∗open (const s t r u c t

bpf_object_open_opts ∗ opts = n u l l p t r) ;

41 s t a t i c i n l i n e s t r u c t prototype ∗open_and_load () ;

42 s t a t i c i n l i n e i n t load (s t r u c t prototype ∗ s k e l) ;

43 s t a t i c i n l i n e i n t attach (s t r u c t prototype ∗ s k e l) ;

44 s t a t i c i n l i n e void detach (s t r u c t prototype ∗ s k e l) ;

45 s t a t i c i n l i n e void des t roy (s t r u c t prototype ∗ s k e l) ;

46 s t a t i c i n l i n e const void ∗ e l f_byte s (s i z e_t ∗ sz) ;

47 #e n d i f /∗ __cplusplus ∗/

Listing 4.1: Example of eBPF skeleton header file

The generation of the skeleton goes through several phases. The eBPF source

code is compiled using CLANG+LLVM. This generates the object file (.o). Then

bpftool comes into play and through the command

bpftool gen skeleton file.obj generates the skeleton file (.h). The phases

to generate the skeleton are shown in figure 4.1.

4.2 TC-egress program

As mentioned in 3.1.1, the program located in TC-egress is triggered by the first

packets of each session, when that session_id is not present in the map yet. The

data comes in the form of the struct __sk_buff. The packet is examined at every

31

Prototype Implementation

Figure 4.1: Flowchart of the eBPF skeleton generation

level of the TCP/IP stack, this is because the packet could be damaged and badly

formatted due to physical layer transmission errors and therefore requires to be

discarded. In order to do so, the buffer is first cast in the struct ethhdr*, then to

the struct iphdr* and then, depending on the protocol, to the struct tcphdr* or

udphdr*. Only the TCP and UDP protocols are handled by this accelerator, the

others are passed through the kernel normally.

The map used for data exchange between TC-egress and XDP is a map of the

BPF_MAP_TYPE_HASH type, called xdp_map (listing 4.2).

32

Prototype Implementation

1 s t r u c t {

2 __uint (type , BPF_MAP_TYPE_HASH) ;

3 __type(key , s e s s i on_id) ;

4 __type(value , _value) ;

5 __uint (max_entries , MAP_SIZE) ;

6 __uint (pinning , LIBBPF_PIN_BY_NAME) ;

7 } xdp_map SEC(" . maps ") ;

Listing 4.2: Definition of the xdp_map

Each entry of this memory area is formed by a key/value pair. In this project,

the key used was a structure renamed session_id defined as follows:

1 typede f s t r u c t _key{

2 __be32 saddr ;

3 __be32 daddr ;

4 __be16 spor t ;

5 __be16 dport ;

6 __u8 proto ;

7 } se s s i on_id ;

Listing 4.3: Struct session_id

The value struct on the contrary is more complex and consists of:

• The first section consists of the package fields to be parsed to apply changes if

required.

• The second part contains the fields necessary to forward the packet. It is

possible to see the output interface and MAC addresses to be inserted before

forwarding.

• The third section has the field age which represents the time passed from the

creation of the entry in the map. It is necessary for cleaning old entries.

33

Prototype Implementation

1 typede f s t r u c t f i e l d s {

2 __u8 tos ;

3 __be16 h_vlan_TCI ;

4

5 __u32 i f i n d e x ;

6 unsigned char h_dest [ETH_ALEN] ;

7 unsigned char h_source [ETH_ALEN] ;

8

9 __u64 age ;

10 } _value ;

Listing 4.4: Struct _value: contains all the fields necessary for accelerated network

packet forwarding

After having "created" the key, it is therefore necessary to fill the fields of

the _value structure. In order to copy MAC addresses, it is possible to use

the __builtin_memcpy function. However, an assignment is sufficient for saving

the output interface. To save the entry creation time eBPF provides the helper

BPF_KTIME_GET_NS() which returns the number of nanoseconds passed since the

system was started. The helper bpf_map_update_elem(struct bpf_map *map,

const void *key, const void *value, u64 flags) is used to insert the entry

in the map. The flags field can take on three values [3]:

• BPF_EXIST: The key’s entry must be present in the map beforehand.

• BPF_NOEXIST: The key’s entry must not be present in the map.

• BPF_ANY: There are no specific conditions regarding the existence of the

key’s entry.

34

Prototype Implementation

4.3 XDP program

The XDP program is more complex as it includes both the part for optimized

forwarding and the part for implementing rate limiting. The input structure to

the XDP program is the struct XDP_MD* which contains very little information

compared to the socket buffer.

1 /∗ user a c c e s s i b l e metadata f o r XDP packet hook

2 ∗ new f i e l d s must be added to the end o f t h i s s t r u c t u r e

3 ∗/

4 s t r u c t xdp_md {

5 __u32 data ;

6 __u32 data_end ;

7 __u32 data_meta ;

8 /∗ Below acc e s s go through s t r u c t xdp_rxq_info ∗/

9 __u32 i n g r e s s _ i f i n d e x ; /∗ rxq−>dev−>i f i n d e x ∗/

10 __u32 rx_queue_index ; /∗ rxq−>queue_index ∗/

11 __u32 e g r e s s _ i f i n d e x ; /∗ txq−>dev−>i f i n d e x ∗/

12 } ;

Listing 4.5: xdp_md struct

Also in this case, as before, it is necessary to do all the checks to verify that

the packet is formatted well and has not been fragmented incorrectly. In case

there is some error the package is dropped via XDP_DROP action. After all the

checks have been carried out, the key (the session id) to look at the map has also

been obtained. In this way, it is possible to identify the flow in question. Using

the bpf_map_lookup_elem(struct bpf_map *map, const void *key) helper, it

checks if there is data for that session to proceed with a fast forwarding. The

lookup in the map returns all the information needed to proceed. The time to live

field (TTL) is decreased, the fields related to the type of service (TOS) and the

belonging VLAN are modified and the source MAC address and the destination

35

Prototype Implementation

MAC address are set.

1 _decr_ttl (ether_proto , l3hdr) ;

2 i f (ret −>tos != _val . to s)

3 i f (ip != NULL)

4 ip−>tos = ret −>tos ;

5 i f (ret −>h_vlan_TCI != _val . h_vlan_TCI)

6 i f (vhdr != NULL)

7 vhdr−>vlan_id = ret −>h_vlan_TCI ;

8

9 __builtin_memcpy (eth−>h_source , ret −>h_source , ETH_ALEN) ;

10 __builtin_memcpy (eth−>h_dest , ret −>h_dest , ETH_ALEN) ;

Listing 4.6: Packet mangling in XDP program

If the return value from the lookup function is NULL, it is necessary to proceed

with the XDP_PASS action via the kernel. This decision is also made for a protocol

other than UDP and TCP.

Now rate limiting comes into play. If the necessary information has been collected

for that session, before proceeding with forwarding the packet, it is necessary to

check whether there is a rate limiting rule associated with that flow. If not, you

can forward the packet to the correct outbound interface with the BPF_REDIRECT

helper. Instead, if so, it is necessary to consult a dedicated map to understand

whether or not you have the tokens necessary for forwarding a packet of that size

for that particular flow. Figure 4.2 shows the final scheme of the prototype which

includes both the forwarding and rate limiting parts.

4.4 Rate Limiter different implementations

The implementation of the rate limiter has been tested with different strategies

thanks to the tools that eBPF makes available to the developer. The rate limiter

includes a part that is executed whenever a network packet arrives at a network

36

Prototype Implementation

Figure 4.2: Flowchart of the entire prototype

interface. This part of the code, after having identified the flow, checks if for that

flow the bucket has enough tokens to send the packet, considering the length of

the packet itself.

The packet is dropped if the tokens are not enough in the bucket; otherwise, the

packet is sent to the right output network interface and the available tokens of the

bucket for that flow are decremented by the right amount.

This part is common between the various implementations of the rate limiter and

can be seen in listing 4.7.

1 s t a t i c i n l i n e i n t rate_l imiter_apply (s t r u c t xdp_md ∗xdp , i n t ∗ index) {

2 void ∗ data = (void ∗) (long)xdp−>data ;

3 void ∗data_end = (void ∗) (long)xdp−>data_end ;

4 i n t packet_length = data_end−data ;

5

6 //Without t h i s l i n e , the v e r i f i e r complains about

7 // "math between map_value po in t e r and r e g i s t e r with unbounded min

value i s not a l lowed "

37

Prototype Implementation

8 //0x1F3 (499) i s ∗ index maximum value ;

9 ∗ index = ∗ index & 0x1F3 ;

10

11 i f ((e n t r i e s [∗ index] . va lues_f lows . tokens) >= packet_length) {

12 __sync_fetch_and_add(& e n t r i e s [∗ index] . va lues_f lows . tokens ,

13 −packet_length) ;

14 re turn bp f_red i r e c t (tgt_i f index , 0) ;

15 } e l s e {

16 re turn XDP_DROP;

17 }

18 }

Listing 4.7: Rate limiter: token check and decision about the network packet

Line 10 in 4.7 is necessary as a workaround to not make the Verifier complain.

In this case the Verifier wants to be sure that the index accessed in the array is

between 0 and the length of the array.

This piece of code is included in the program inserted in the XDP block. After

seeing the presence or absence of information for optimized forwarding as seen in

section 4.3, a further lookup is performed in a different map which only collects

the flows affected by rate limiting rules. If the lookup is not successful, the packet

is redirected, while if it is successful, the function 4.7 is invoked for that packet.

1 i n t ∗ r e t2 ;

2 r e t2 = bpf_map_lookup_elem(&index_map , &_key) ;

3

4 i f (r e t 2 != NULL) {

5 rc2 = S_SUCCESS;

6 } e l s e {

7 rc2 = S_FAILED;

8

9 }

10

38

Prototype Implementation

11 switch (rc2) {

12 case S_SUCCESS:

13 return_value = rate_l imiter_apply (xdp , r e t2) ;

14 i f (return_value == XDP_DROP) {

15 re turn XDP_DROP;

16 }

17 case S_FAILED:

18 re turn bp f_red i r e c t (tgt_i f index , 0) ;

19 d e f a u l t :

20 break ;

21 }

Listing 4.8: Check if the flow is affected by a rate limiting rule

The loading of the rules happens through the reading of a file by a function in

userspace. The parameters that must be passed to the program are the quintuple

that identifies the session and the two fundamental data for rate limiting: the

average rate and the capacity of the bucket.

For each rule, an entry is inserted in an array of rate_limiter_rule structs.

This structure has all the data to enforce the rate limiting rules: the rate, the

capacity, the tokens available for that flow, and the timestamp of the last refill

made.

1 s t r u c t va lues_f lows {

2 unsigned i n t r e f i l l _ r a t e ;

3 uint64_t capac i ty ;

4 uint64_t tokens ;

5 unsigned long l a s t _ r e f i l l ;

6 } ;

7

8

9 s t r u c t ra t e_ l im i t e r_ru l e {

10 s e s s i on_id s e s s i o n ;

39

Prototype Implementation

11 va lue s_ru l e s va lues_f lows ;

12 } ;

Listing 4.9: rate_limiter_rule and values_flows structs: used to determine the

token state for each flow

The other fundamental part of implementing the rate limiting function is the

token refill thread. To implement this function, different strategies can be adopted

which are illustrated in the following sections. These solutions differ in the location

of the function: in userspace or in kernel space. The diversity also consists in the

way the function is periodically activated.

4.4.1 Refilling tokens using BPF Timer

The bpf timers have been introduced in the linux kernel since version 5.15. The

BPF timer struct 4.10 can be embedded in hash, array and lru maps as regular

field [13].

1 s t r u c t bpf_timer {

2 __u64 : 6 4 ;

3 __u64 : 6 4 ;

4 } __attribute__ ((a l i gned (8))) ;

5

6

7 s t r u c t {

8 __uint (type , BPF_MAP_TYPE_ARRAY) ;

9 __uint (max_entries , 1) ;

10 __type(key , i n t) ;

11 __type(value , s t r u c t bpf_timer) ;

12 __uint (pinning , LIBBPF_PIN_BY_NAME) ;

13 } array SEC(" . maps ") ;

Listing 4.10: BPF timer

40

Prototype Implementation

In this prototype, an array map has been used to use the timer. BPF timer

structure is based on the high-resolution timer API (hrtimer) already present in

Linux Kernel. It is basically a wrapper of the hrtimer.

The setting of the timer goes through few stages and using some dedicated helpers:

• bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map,

int flags): this function initializes the timer. The first 4 bits of the

‘flags’ parameter specify the clockid, allowing only CLOCK_MONOTONIC,

CLOCK_REALTIME, and CLOCK_BOOTTIME. All other bits in ‘flags’

are reserved. If the ‘timer’ is not associated with the same ‘map’, the verifier

will reject the program. In user space, you should either have a file descriptor

pointing to a map with timers or pin such a map in bpffs. When the map is

unpinned or the file descriptor is closed, all timers in the map will be canceled

and released.

• bpf_timer_set_callback(struct bpf_timer *timer, void *call-

back_fn): this function configures the timer to call the *callback_fn function.

• bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags):

this function sets the timer’s expiration time. The callback will be invoked

in the soft irq context on some CPU, and if the timer is restarted, the

next invocation may occur on a different CPU. This function increments the

reference counter (‘refcnt’) of the BPF program to ensure that the callback

code remains valid. When the user space reference to a map reaches zero, all

timers in the map are canceled, and the corresponding program’s ‘refcnts’ are

decremented. This approach ensures that the termination of the user space

process does not leave any timers running.

• bpf_timer_cancel(struct bpf_timer *timer): this function cancels

the timer and waits for the ‘callback_fn’ to finish if it was running.

41

Prototype Implementation

In this version of the prototype, the token refill is performed in a callback linked to

a timer which is initialized at the beginning of the XDP program. Some inaccuracies

due to the actual duration of the timer have been corrected by calculating the

elapsed time and calculating the correct proportion of tokens to add to the bucket.
1 s t a t i c i n t xdp_timer_cb (void ∗map, i n t ∗key , s t r u c t bpf_timer ∗ t imer)
2 {
3 unsigned long r e f i l l _ r a t e , capac i ty , token_ava i lab le ;
4 __u64 t ime_d i f f e r ence ;
5 i n t t ime_interva l = 1000000;
6 uint64_t r e f i l l _ t o k e n ;
7 i n t nr_loops = nru l e ; // Number o f l oops to execute
8 #pragma c lang loop u n r o l l (f u l l)
9 f o r (i n t i = 0 ; i < nr_loops ; i++) {

10 r e f i l l _ r a t e = e n t r i e s [i] . va lues_f lows . r e f i l l _ r a t e ;
11

12 i f (r e f i l l _ r a t e == 0) {
13 break ;
14 }
15 unsigned long nsec = bpf_ktime_get_ns () ;
16

17 t ime_d i f f e r ence = nsec − e n t r i e s [i] . va lues_f lows .
l a s t _ r e f i l l ;

18

19 i f (t ime_d i f f e r ence >= t ime_interva l) {
20 r e f i l l _ t o k e n = r e f i l l _ r a t e + ((r e f i l l _ r a t e /100) ∗ (((

t ime_di f f e rence −t ime_interva l) ∗100) / t ime_interva l)) ;
21 } e l s e {
22 r e f i l l _ t o k e n = (r e f i l l _ r a t e /100) ∗ ((t ime_d i f f e r ence

∗100) / t ime_interva l) ;
23 }
24

25 capac i ty = e n t r i e s [i] . va lues_f lows . capac i ty ;
26 token_ava i lab le = e n t r i e s [i] . va lues_f lows . tokens ;
27

28 i f (token_ava i lab le + r e f i l l _ t o k e n >= capac i ty) {
29 r e f i l l _ t o k e n = capac i ty − token_ava i lab le ;
30 }
31

32 __sync_fetch_and_add(& e n t r i e s [i] . va lues_f lows . tokens ,
r e f i l l _ t o k e n) ;

33 e n t r i e s [i] . va lues_f lows . l a s t _ r e f i l l = nsec ;
34 }
35 re turn 0 ;
36 }

Listing 4.11: Refilling token callback

42

Prototype Implementation

4.4.2 Refilling tokens using Perf Event

Another strategy that it is possible to follow to trigger an action periodically is to

use perf events. The function 4.12 sets up a trigger based on the CPU clock by

setting up an event based on PERF_TYPE_SOFTWARE/PERF_COUNT_SW_CPU_CLOCK

[14].

Every time this value reaches a multiple of freq, the BPF probe will trigger and

call the specified prog, which happens to be the refilling function, which is written

in BPF code and is practically the same already shown in listing 4.11.

1 #inc lude <bpf / bpf . h>

2 #inc lude <bpf / l i b b p f . h>

3 #inc lude <l inux / perf_event . h>

4

5 s t a t i c i n t open_and_attach_perf_event (i n t f req , s t r u c t bpf_program ∗

prog , s t r u c t bpf_l ink ∗ l i n k s [])

6 {

7 s t r u c t perf_event_attr a t t r = {

8 . type = PERF_TYPE_SOFTWARE,

9 . f r e q = 1 ,

10 . sample_period = freq ,

11 . c o n f i g = PERF_COUNT_SW_CPU_CLOCK,

12 } ;

13 i n t i , fd ;

14 i = 0 ;

15

16 fd = s y s c a l l (__NR_perf_event_open , &attr , −1, i , −1, 0) ;

17 i f (fd < 0) {

18 i f (e r rno == ENODEV)

19 cont inue ;

20 f p r i n t f (s tde r r , " f a i l e d to i n i t p e r f sampling : %s \n" ,

21 s t r e r r o r (er rno)) ;

22 re turn −1;

43

Prototype Implementation

23 }

24

25 l i nk s_pe r f [i] = bpf_program__attach_perf_event (prog , fd) ;

26 i f (! l i nk s_pe r f [i]) {

27 f p r i n t f (s tde r r , " f a i l e d to attach p e r f event on cpu : %d\n" , i

) ;

28 c l o s e (fd) ;

29 re turn −1;

30 }

31 re turn 0 ;

32 }

Listing 4.12: Attach perf event from userspace

4.4.3 Refilling tokens from Userspace

In this strategy, the thread that deals with token refilling is in userspace. It is

essential in this case to have a data access mechanism between userspace and kernel

space. The helpers made available by eBPF do not guarantee this atomicity and

risk making the refilling process inaccurate due to the continuous changes to the

data coming from the XDP program.

A facility provided by BPF skeleton is an interface to mutable and read-only

global variables. They are available starting from Linux 5.5 version. These can

be used to pass data between userspace and kernel space and it is possible to use

functions such as __sync_fetch_and_add() (which guarantees the atomicity of

operations) also in userland. In cases where we frequently pass data back-and-forth

between in-kernel BPF code and user-space, the usage of global variables can

increase significantly performance: userspace can modify these variables directly

without passing through bpf syscall [15]. Therefore the token refill thread is started

44

Prototype Implementation

Figure 4.3: With token refilling performed by a userspace thread for more precise
behavior, global variables were used instead of maps.

in userspace and periodically cycles on all the rules set, correctly updating the

value of the tokens available for that flow. The logic of the refill strategy is very

similar to the code seen previously in listing 4.11, so it is not reported for the sake

of brevity.

45

Chapter 5

Prototype Evaluation

5.1 Testbed Setup

In this chapter, the results obtained from the acceleration prototype are presented.

The tests it underwent include measurements of the maximum achievable system

throughput and accuracy for the rate limiting component. The tests compare the

results obtained from Linux kernel traffic control with XDP programs. Another

crucial factor tested is the system’s scalability as the number of flows increases.

The test environment consists of two physical machines connected by two direct

links, utilizing dual-port Intel XL710 40Gbps Network Interface Cards (NICs). The

tester is used to generate network traffic that flows within the Device Under Test

(DUT). The test prototype to be evaluated is loaded into the DUT.

• DUT: Intel Xeon Gold 5120 @ 2.20GHz processor with 28 cores and Ubuntu

20.04.6 LTS. The kernel version is 5.19.0.

• Traffic generator: Intel(R) Xeon(R) CPU E3-1245 v5 @ 3.50GHz processor

with 8 cores and Ubuntu 18.04.6 LTS. The kernel version is 5.4.0.

46

Prototype Evaluation

Figure 5.1: Testbed setup

5.2 Benchmarking tools

5.2.1 Iperf3

Iperf3 is an open-source network performance testing tool that is used to measure

the maximum TCP and UDP bandwidth performance of a network. It allows

users to assess the speed and efficiency of network connections by generating and

measuring data transfer rates between two endpoints. For this thesis work, it was

used to generate TCP traffic.

5.2.2 Cisco TRex

TRex [16] is an open-source, cost-effective traffic generator powered by DPDK,

offering both stateful and stateless traffic generation capabilities. It can simulate

L3-7 traffic and consolidate functionalities typically found in commercial tools.

TRex’s stateless features encompass support for multiple streams, the ability

to modify any packet field, and the provision of statistics, latency, and jitter

on a per-stream or per-group basis. On the other hand, its advanced stateful

capabilities enable the emulation of L7 traffic with comprehensive, scalable support

for TCP/UDP.

47

Prototype Evaluation

To use TRex, the first step is to bind the relevant interfaces to DPDK. The

configuration for this binding is passed through a YAML file where the IP address

and default gateway for each interface are specified. Traffic management is then

carried out through a Python file in which you can define the number of flows,

packet size, and the percentage of bandwidth used. Additionally, it is possible to

configure each field of the packet.

1 ### Config f i l e generated by dpdk_setup_ports . py ###

2

3 − ve r s i on : 2

4 port_l imit : 2

5 i n t e r f a c e s : [’ 0 0 0 0 : 0 1 : 0 0 . 0 ’ , ’ 0 0 0 0 : 0 1 : 0 0 . 1 ’]

6 port_info :

7 − ip : 1 . 1 . 1 . 1

8 default_gw : 1 . 1 . 1 . 2

9 − ip : 2 . 2 . 2 . 1

10 default_gw : 2 . 2 . 2 . 2

Listing 5.1: Configuration of interfaces through a YAML file for TRex

For running TRex in server mode, you need to use the following command:

1 . / t − rex −64 − i −c 6

Listing 5.2: TRex execution command in server mode

The -i option allows running the server in interactive mode, enabling connectivity

via a console. The -c [N] option, on the other hand, allows you to specify the

number of cores to be utilized for generating the desired traffic.

5.3 Routing tests

This test evaluates the routing part of the prototype. It is important to report

these performance tests on the routing component because not all traffic is subject

48

Prototype Evaluation

to rate limiting rules. In addition, the numbers measured here represent an upper

bound to the performance obtained when also QoS rules are set. Furthermore,

even in case of QoS rules, some flows are free to utilize all the available bandwidth,

so the maximum achieved throughput is also useful for this reason. In In this

test, Linux forwarding is compared with the performance of XDP native and XDP

Generic. In XDP Generic, XDP programs are loaded as part of the normal network

path. This is a way to test the program for drivers that do not provide support for

XDP. User can request this mode by setting the XDP_FLAGS_SKB_MODE.

The test involves a single UDP stream with a packet size ranging from 64B to

1300 bytes. Results are shown in figure 5.2. The bandwidth percentage was adjusted

for each test to obtain only 1% packet loss. For all packet sizes, it is possible to see

that XDP Native has the best performance, followed by XDP Generic and lastly

Traffic Control. The XDP Native prototype achieves 5x better than Traffic Control

performance and at least 3x better than XDP Generic. This happens because XDP

generic simulates the behavior of native XDP, but in reality, the program execution

occurs after the skb allocation, which is a very costly operation for the system.

This test uses a single CPU core, that processes all the traffic and it is always 100%

used.

5.4 Accuracy tests

The upcoming tests were conducted to evaluate the performance and accuracy

of the prototype’s rate limiting management component. Various approaches as

described earlier (section 4.4) were compared. The behavior of XDP programs is

juxtaposed with that of qdisc HTB, widely used within the Linux kernel. Within

the tests, the traffic rate limit value will be varied to assess performance under

lower or higher traffic conditions.

49

Prototype Evaluation

Figure 5.2: Throughput results varying packet size of one UDP flow

The HTB rule is set using the following script:

1 #! / bin /bash

2

3 UP_TOTAL_RATE=" 1000 "

4 INTERFACE=" ens2 f1 "

5

6 echo " Se t t i ng QoS parameters on i n t e r f a c e $INTERFACE: "

7

8 sudo tc qd i s c add dev $INTERFACE root handle 1 : htb

9

10 echo −n " Se t t i ng Queueing on i n t e r f a c e $INTERFACE f o r an upstream

t r a f f i c up to $UP_TOTAL_RATE kbps . . . "

11

12 sudo tc c l a s s add dev $INTERFACE parent 1 :0 c l a s s i d 1 :12 htb ra t e ${

UP_TOTAL_RATE}Mbit c e i l ${UP_TOTAL_RATE}Mbit

13

50

Prototype Evaluation

14 echo " done . "

15

16 echo −n " Se t t i ng f i l t e r s . . . "

17

18 sudo tc f i l t e r add dev $INTERFACE parent 1 :0 p ro to co l a l l p r i o 0 u32

match ip s r c 1 . 1 . 1 . 1 match ip dst 2 . 2 . 2 . 1 match ip spor t 1000 0

x f f f f match ip dport 2000 0 x f f f f match ip p ro to co l 17 0 x f f f l ow id

1 :12

Listing 5.3: Configuration of HTB rule for an interface

For XDP programs, on the other hand, rules are set by specifying the session

that should be affected by the rule and the traffic rate that must be adhered to.

When the programs are loaded, this file is read, and the rules are validated and

loaded into their respective maps, also initializing the available token values.

The tests were conducted for both TCP and UDP. The values at which the flows

are ‘cut off’ range from 200 Mbit/s to 1 Gbit/s. The results are presented in 5.3

and 5.4. The results exhibit very similar behavior in terms of accuracy, indicating

that all precautions taken for synchronizing token changes are effective. There is a

noticeable difference in core utilization where traffic is received. Figure 5.5 shows

the core utilization percentage for UDP traffic at 600 Mbit/s while varying packet

sizes. It can be observed that HTB fully occupies the core in all cases, whereas for

XDP programs, the perf event strategy consumes fewer resources.

5.4.1 Comparison among the various approaches presented

To implement the refilling function, different strategies have been adopted as

illustrated in the previous sections. As we said, these solutions differ in the location

of the function: in userspace or in kernel space.

The level at which programs are executed varies the way we can write them:

51

Prototype Evaluation

Figure 5.3: Accuracy test with TCP while varying the rate to be adhered to for
the flow

Figure 5.4: Accuracy test with UDP while varying the rate to be adhered to for
the flow

52

Prototype Evaluation

Figure 5.5: Occupancy of the core to which traffic is redirected varying packet
size - UDP flow

programs written in eBPF and run in kernel space must comply with the rules

imposed by the verifier. Whereas those running in userspace have more freedom

and pose fewer issues during compilation. Especially if you are constrained by an

older version of the Linux kernel, the checks imposed by the verifier can lead to

many problems, such as the acceptance of loops within the code.

Furthermore, another factor to consider is the resource utilization due to the

various strategies. As can be seen from Figure 5.5, different implementations

exhibit differences in the core occupancy receiving the traffic. The perf event

strategy seems to be the best in terms of resource utilization for triggering an

event at a specific frequency. BPF timer could be an acceptable solution, but it

is important to consider that having a multitude of timers in kernel space can

lead to system slowdowns. The userspace thread appears to have higher resource

utilization in this case because both kernel space and userspace are trying to access

the same data. The need to synchronize the two accesses and the frequent context

53

Prototype Evaluation

switches contribute to this increased overhead.

5.5 Scalability test

Scalability is a critical factor to test in the prototype. In this case, we chose to test

it by increasing the number of UDP flows sent to the system, with each flow being

subject to a rate-limiting rule. This rule, in reality, does not actually cut off the

passing traffic; it is set at the maximum link speed (in this case, 40 Gbit/s). This

way, the measured packet rate is at its maximum, and the system still needs to

manage credit refilling for all the flows entering the DUT.

The results are presented in Figure 5.6. It can be observed that with this number

of flows, the system does not appear to have weaknesses or be adversely affected.

In this test, all available cores are utilized thanks to Receive Side Scaling (RSS),

which distributes the flows across different cores.

5.6 LS1046A Freeway Board

The LS1046A Freeway board [17], also known as LS1046A-FRWY and produced

by NXP, a company based in the Netherlands, is a high-performance computing,

evaluation, and development platform. It is powered by the LS1046A architec-

ture processor, capable of delivering over 32,000 CoreMark performance. The

board features onboard DDR4 memory, multiple Gigabit Ethernet ports, USB3.0

support, and M.2 Type E interfaces for Wi-Fi connectivity. Additionally, the

FRWY-LS1046A-AC variant includes a Wi-Fi card. This platform is equipped with

an accelerator for Machine Learning and Artificial Intelligence applications.

The prototype was also loaded and tested on this board, which was provided by

Tiesse. The construction of the file system and all the components for its operation

54

Prototype Evaluation

Figure 5.6: Scalability test - measuring packet rate increasing number of UDP
flows

were managed using the flex-builder program.

At the beginning, the patched version of the Linux kernel provided by NXP that

was installed on the device was version 5.4.3 aarch64. However, this kernel version

made it impossible to load this type of prototype. BPF timers became usable

starting from Linux kernel version 5.15, and it was not possible to load perf event

programs on this board. Therefore, the option of userspace thread for token refill

remained, but there were also issues encountered here: the use of global variables

through the skeleton was only possible with a version higher than 5.10.0 of the

kernel. Thus, the entire device configuration process was repeated by installing

Linux kernel version 5.10.35 aarch64. At that point, it became possible to load the

prototype using the userspace thread refill strategy. Furthermore, the network card

drivers on the board do not support XDP Native, so the programs are loaded as

XDP Generic.

55

Prototype Evaluation

To test the prototype on the board, the testbed setup shown in figure 5.7 was used.

Figure 5.7: Testbed setup used to test LS1046A Freeway Board

In this case as well, the Linux kernel’s traffic control system was compared to

the XDP prototype. Figure 5.8 depicts the routing test with a UDP flow generated

by Trex, varying the packet size. The graph shows the throughput obtained in

both cases. With large packets, the difference is minimal. However, this difference

starts to increase as the packet size decreases, reaching almost three times higher

throughput with 64B packets. During the test, the condition of the board’s cores

was also monitored. The results are shown in Figure 5.9. The advantage is evident

with all packet sizes. With 64B packets, resources are fully utilized, while the XDP

prototype leaves 26% of the resources idle.

56

Prototype Evaluation

Figure 5.8: Throughput result varying packet size of one UDP flow - LS1046A
Freeway Board

Figure 5.9: Percentage of CPU idle varying packet size of one UDP flow - LS1046A
Freeway Board

57

Chapter 6

Benchmarking XDP
scheduling with PIFO map

In this chapter, we will evaluate the performance and capabilities of the patch

presented in Section 2.3. The patch compares the behavior of XDP with these

new features to vanilla XDP. Additionally, various queuing methods are introduced

and compared with the Qdiscs in the traffic control system that perform similar

functions. We will consider the total throughput of flows and the core utilization

on which the traffic is received.

6.1 Baseline impact of the PIFO map

The testbed setup is the same as presented in Section 5.1 and is not reiterated

here for brevity. The objective of this test is to understand how passing through

the PIFO map impacts the total throughput. In this case, we compare the Linux

traffic control system’s bridge, XDP redirection without passing through the map

(vanilla XDP), and XDP redirection with passing through the map. The method

for scheduling transmission involves using the callback attached to the bpf_timer.

The priority at which packets are queued here is set to 0 for all, so the map is used

as a simple FIFO.

58

Benchmarking XDP scheduling with PIFO map

The test is conducted using a UDP flow while varying the packet size. As evident

from the results in figure 6.1, vanilla XDP redirection maintains a throughput

1.5 times higher than XDP scheduling. Nevertheless, XDP scheduling exhibits a

throughput up to 8 times greater than the traffic control bridge. The utilization of

the core receiving the traffic is at 100% in all cases.

Figure 6.1: Comparison between bridge, vanilla XDP Redirect and XDP Schedul-
ing(packet passes through PIFO map) - One UDP flow varying packet size

The test was also conducted with a single TCP flow. Figure 6.2 presents a dual-

axis graph depicting both the total throughput and the core utilization percentage.

In this test using iperf3, with vanilla XDP redirection, it is observed that the

traffic reaches 27 Gbit/s, and the core is not fully utilized. This suggests that the

throughput is limited by iperf3 and not by the capabilities of XDP redirection,

which could achieve better results. Once again, XDP scheduling exhibits a slowdown

compared to vanilla redirection but maintains a significant advantage over the

59

Benchmarking XDP scheduling with PIFO map

traffic control bridge.

Figure 6.2: Comparison in throughput and core utilization between bridge, vanilla
XDP Redirect and XDP Scheduling(packet passes through PIFO map) - One TCP
flow

6.2 Strict priority

The strict priority scheme dictates that traffic with higher priority is sent before

all others. Lower-priority queues are only scheduled after the high-priority queues

have been serviced. This comparison is performed between the XDP program and

the PRIO Qdisc.

The PRIO qdisc [18] is a straightforward queuing system organized into various

priority classes. These classes are dequeued in descending numerical order based

on their priority. PRIO operates as a scheduler and does not introduce delays to

packets; it is a work-conserving qdisc, even though the qdiscs within the classes it

contains may not follow the same principle.

When you create it using ‘tc qdisc add,’ you specify a fixed number of bands

(classes) to be created. While you cannot add classes using ‘tc qdisc add’, you must

60

Benchmarking XDP scheduling with PIFO map

indicate the number of bands you want to create when attaching PRIO to its root.

During dequeuing, PRIO first attempts to dequeue from band 0. Only if band

0 does not have any packets will PRIO proceed to band 1 and so on. Typically,

high-reliability packets should be directed to band 0, those requiring minimal delay

to band 1, and the remaining to band 2.

PRIO offers three different approaches to decide which band a packet will be placed

into:

• Using a tc filter: You can attach a tc filter to the root qdisc, which allows you

to directly route traffic to a specific class.

• From userspace: If a process has the necessary privileges, it can directly specify

the destination class

• Using the priomap: This method relies on the packet’s priority, which is

derived from the Type of Service assigned to the packet. The priomap is based

on this packet priority to determine its class placement.

1 #! / bin /bash

2

3 INTERFACE=" ens2 f1 "

4

5 sudo tc qd i s c add dev $INTERFACE root handle 1 : p r i o bands 2 priomap

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6

7 sudo tc qd i s c add dev $INTERFACE parent 1 :1 handle 10 : p f i f o

8 sudo tc qd i s c add dev $INTERFACE parent 1 :2 handle 20 : p f i f o

9

10 sudo tc f i l t e r add dev $INTERFACE parent 1 :0 p ro to co l a l l p r i o 0 u32

match ip dport 5001 0 x f f f f f l ow id 1 :1

11

61

Benchmarking XDP scheduling with PIFO map

12 sudo tc f i l t e r add dev $INTERFACE parent 1 :0 p ro to co l a l l p r i o 1 u32

match ip dport 5002 0 x f f f f f l ow id 1 :2

Listing 6.1: Configuration of PRIO Qdisc: traffic to port 5001 has higher priority

compared to traffic to port 5002

In the XDP program, rules are inserted into a text file by specifying the session

identifier and the priority value assigned to the flow (a smaller number corresponds

to a higher priority). This value is then stored in a HASH map, with the session

identifier as the key and the priority at which to enqueue the packet as the value.

The code snippet below 6.2 demonstrates the lookup within the map, from which

we obtain an integer indicating the priority at which to enqueue the packet in the

PIFO map.

1 i n t ∗ r e t2 ;

2 r e t2 = bpf_map_lookup_elem(&index_map , &_key) ;

3

4 i f (r e t 2 != NULL) {

5 pr i o = ∗ r e t2 ;

6 break ;

7 } e l s e {

8 pr i o = 0 ;

9 }

10

11 r e t = bpf_redirect_map(&pifo_map , pr io , 0) ;

Listing 6.2: Determination of the priority at which to enqueue the packet within

the PIFO map

The test to compare scheduling in XDP and the PRIO qdisc was carried out by

generating two TCP flows and, as seen above, assigning maximum priority to one

of them. Traffic from both flows is handled by a single core.

The setup used here 6.3 is slightly different; a bottleneck was introduced because,

62

Benchmarking XDP scheduling with PIFO map

with interfaces at the same speed, the rules of the qdisc would have no effect. Rules

come into play when there is a lack of resources. Traffic starts from a 40Gbit/s

interface and terminates at a 10Gbit/s interface.

From Figure 6.4, it can be seen that the resulting throughputs of the two flows

are very similar: the higher-priority flow occupies almost all available bandwidth,

leaving a small percentage of bandwidth for the lower-priority flow. However, it is

essential to consider the core utilization that manages the two flows: in the case of

the PRIO qdisc, it is fully occupied, while in the other case, it is 45% occupied.

This demonstrates how a strict priority mechanism operated by the XDP block

can achieve the same results as the existing qdisc and leave system resources much

more available.

Figure 6.3: Testbed setup used in the test for strict priority: DUT acts as a
bottleneck

6.3 Weighted Fair Queueing

Weighted Fair Queueing (WFQ) is a scheduling algorithm used in computer networks

to manage the flow of data packets. This algorithm assigns a weight to each packet

queue and then distributes outgoing packets based on these weights. This way,

queues with higher weights receive a larger share of network resources compared to

others. It is used in networks with differentiated services, to ensure that services

63

Benchmarking XDP scheduling with PIFO map

Figure 6.4: Comparison in throughput and core utilization between PRIO Qdisc
and XDP program - 2 TCP Flows redirected to one core

with different latency or bandwidth requirements are managed fairly or weighted

appropriately.

The comparison is now made with the HTB qdisc, which allows for this type of

scheduling algorithm. HTB [19] is designed to help you manage the outbound

bandwidth on a specific network link. It allows you to emulate multiple slower

links using a single physical link and route different types of traffic through these

emulated links. In both cases, you need to specify how to divide the physical link

into simulated links and determine which simulated link to use for a given packet.

Within a single HTB instance, there can be multiple classes. Each of these classes

contains another qdisc, typically tc-pfifo. When a packet is being enqueued, HTB

begins at the root and employs various methods to determine which class should

receive the data. Unless there are uncommon configuration settings, the process

is relatively straightforward. At each node, it looks for an instruction and then

proceeds to the class indicated by that instruction. If the found class is a leaf node

(which means it has no children), the packet is enqueued there. If it is not yet a

leaf node, the process is repeated, starting from that node.

64

Benchmarking XDP scheduling with PIFO map

The test being performed involves limiting the total throughput to 1000Mbit/s

and then dividing the available bandwidth between two flows, allocating 80% of

the bandwidth to one child and 20% to the other. In listing 6.3, you can see the

configuration of the HTB qdisc used for this test.

1 #! / bin /bash

2

3 UP_TOTAL_RATE=" 1000 "

4 MSC1_SP1_RATE=" 200 "

5 MSC1_SP2_RATE=" 50 "

6

7 INTERFACE=" ens2 f1 "

8

9 sudo tc qd i s c add dev $INTERFACE root handle 1 : htb

10

11 sudo tc c l a s s add dev $INTERFACE parent 1 :0 c l a s s i d 1 :12 htb ra t e ${

UP_TOTAL_RATE}Mbit c e i l ${UP_TOTAL_RATE}Mbit

12

13 sudo tc c l a s s add dev $INTERFACE parent 1 :12 c l a s s i d 1 :10 htb ra t e ${

MSC1_SP1_RATE}Mbit c e i l ${UP_TOTAL_RATE}Mbit

14

15 sudo tc qd i s c add dev $INTERFACE parent 1 :10 b f i f o l i m i t 10000

16

17 sudo tc c l a s s add dev $INTERFACE parent 1 :12 c l a s s i d 1 :11 htb ra t e ${

MSC1_SP2_RATE}Mbit c e i l ${UP_TOTAL_RATE}Mbit

18

19 sudo tc qd i s c add dev $INTERFACE parent 1 :11 b f i f o l i m i t 10000

20

21 echo −n " Se t t i ng f i l t e r s . . . "

22

65

Benchmarking XDP scheduling with PIFO map

23 sudo tc f i l t e r add dev $INTERFACE parent 1 :0 p ro to co l a l l p r i o 0 u32

match ip s r c 1 . 1 . 1 . 1 match ip dst 2 . 2 . 2 . 1 match ip spor t 1000 0

x f f f f match ip dport 2000 0 x f f f f match ip p ro to co l 17 0 x f f f l ow id

1 :10

24 sudo tc f i l t e r add dev $INTERFACE parent 1 :0 p ro to co l a l l p r i o 0 u32

match ip s r c 1 . 1 . 1 . 1 match ip dst 2 . 2 . 2 . 1 match ip spor t 1001 0

x f f f f match ip dport 2001 0 x f f f f match ip p ro to co l 17 0 x f f f l ow id

1 :11

25

26 echo " done . "

Listing 6.3: Configuration of HTB Qdisc: a maximum total rate is set, and then

the bandwidth is divided between the two flows, allocating 80% to one flow and

20% to the other

Regarding the XDP program for implementing the Weighted Fair Queueing

algorithm, a HASH map has been introduced. This map uses the session identifier

as the key and a struct as the value, containing all the values needed to determine

the state of that specific flow.

1 typede f s t r u c t _key{

2 __be32 saddr ;

3 __be32 daddr ;

4 __be16 spor t ;

5 __be16 dport ;

6 __u8 proto ;

7 } se s s i on_id ;

8

9 s t r u c t f low_values {

10 __u32 pkts ;

11 __u64 l a s t_pr i o ;

12 __u16 weight ;

66

Benchmarking XDP scheduling with PIFO map

13 } ;

14

15

16 s t r u c t {

17 __uint (type , BPF_MAP_TYPE_HASH) ;

18 __type(key , s t r u c t s e s s i on_id) ;

19 __type(value , s t r u c t f low_values) ;

20 __uint (max_entries , 16384) ;

21 } flow_weight SEC(" . maps ") ;

Listing 6.4: Data structures used in the XDP program to handle Weighted Fair

Queueing

When a packet arrives at the input interface, the first step is to determine the

flow to which it belongs. Afterward, we retrieve the necessary values from the map.

Inside this structure, we find the weight assigned to the flow and the priority at

which the last packet belonging to that flow was enqueued. At that point, the

priority is calculated by adding a value calculated based on the packet’s length

and the flow’s weight. Starting from the last priority to which a packet from that

flow was queued, an amount equal to (packet_length * flow_weight) is added.

This calculation allows queuing packets belonging to lower-priority flows in higher

priority queues in PIFO (thus, they will be served later). The implementation of

this algorithm was inspired by that found in this repository [20]. The code for this

is shown in listing 6.5.

1 SEC(" xdp ")

2 i n t xdp_redirect (s t r u c t xdp_md ∗xdp)

3 {

4 i n t r e t ;

5 s t r u c t f low_values ∗ s e s s i o n ;

6 __u64 s ta r t , p r i o ;

7 s t r u c t s e s s i on_id {0} ;

67

Benchmarking XDP scheduling with PIFO map

8

9 new_flow . weight = default_weight ;

10

11 __u32 pkt_len = (xdp−>data_end − xdp−>data) & 0 x f f f f ;

12

13 /∗ Checks to see i f the packet i s we l l formatted ∗/

14 /∗ During the checks , the s e s s i o n ID i s ex t rac t ed ∗/

15

16 s e s s i o n = bpf_map_lookup_elem(&flow_weight , &se s s i on_id) ;

17 i f (! s e s s i o n)

18 re turn XDP_DROP;

19

20 s e s s i on −>pkts++;

21

22 /∗ Ca lcu la t ing p r i o r i t y ∗/

23 s t a r t = bpf_max(time_bytes , f low−>las t_pr i o) ;

24

25 f low−>las t_pr i o = s t a r t + (pkt_len ∗ f low−>weight) ;

26

27 pr i o = s t a r t ;

28

29 i f (bpf_map_update_elem(&flow_weight , &sess ion_id , f low , BPF_ANY)

)

30 re turn XDP_DROP;

31

32 r e t = bpf_redirect_map(&pifo_map , pr io , 0) ;

33

34 re turn r e t ;

35

36 }

Listing 6.5: Procedure to follow to decide priority for a packet in weighted fair

queueing XDP program

68

Benchmarking XDP scheduling with PIFO map

The test results are shown in Figure 6.5. It can be observed that the through-

puts in both cases tend to adhere to user-imposed rules, effectively dividing the

bandwidth between the two flows.

Although the throughputs are equal, it is crucial to note the difference in resource

utilization between the two cases. In both cases, traffic from the two flows is

handled by a single core. In the case of the HTB qdisc, this core is occupied at

70%, while in the other case, it is occupied at 7%. This once again underscores the

advantage of using the XDP framework, which allows for more available resources.

Figure 6.5: Comparison in throughput and core utilization between HTB Qdisc
and XDP program - 2 TCP Flows redirected to one core

6.4 PIFO’s expressiveness

A mechanism for customizable scheduling must include a data structure that is

flexible and highly expressive to cover a wide range of algorithms that can be

implemented through it. The PIFO structure and its software optimization, Eiffel,

offer rich expressiveness.

Scheduling algorithms commonly used in modern networks involve the presence of

69

Benchmarking XDP scheduling with PIFO map

hierarchies among classes. An example is the HTB qdisc, where it is possible to

define the root of the qdisc and child classes that are linked to the parent. Each

class, in turn, can contain other classes. HTB falls into the category of classful

qdiscs.

The patch analyzed in this thesis work involves the construction of class hi-

erarchies (in our case, a hierarchy of PIFO maps). The patch introduces a

map type called BPF_MAP_TYPE_PIFO_XDP, which can be used to redirect pack-

ets and has been used until now. In addition to this, another map type called

BPF_MAP_TYPE_PIFO_GENERIC is introduced, where any data structure can be en-

queued. This map can be used, for example, as the parent of the hierarchy to which

two BPF_MAP_TYPE_PIFO_XDP maps can be attached as children. The parent map

can be used to insert tags (simple integers may suffice) that indicate from which

child map to remove the next packet.

The helpers that you can use to redirect data towards generic PIFO are different

from the ones that we saw before. The helper long bpf_map_push_elem(struct

bpf_map *map, const void *value, u64 flags) can be used to send any type

of data in the BPF_MAP_TYPE_PIFO_GENERIC map, while the

long bpf_map_pop_elem(struct bpf_map *map, void *value) is used to re-

trieve data from it. The logic used by the XDP program is shown in Listing

6.6, where the maps used and how packet dequeue is managed from the parent to

the leaf map are demonstrated. If the constructed hierarchy has multiple levels,

the operation must be repeated recursively until reaching the leaf map from which

packet dequeue is to be performed.

70

Benchmarking XDP scheduling with PIFO map

Figure 6.6: Example of building a hierarchy with PIFO maps. In the parent map,
tags are inserted to indicate from which map to perform the next dequeue

1 s t r u c t {
2 __uint (type , BPF_MAP_TYPE_PIFO_GENERIC) ;
3 __uint (key_size , s i z e o f (__u32)) ;
4 __uint (va lue_size , s i z e o f (__u32)) ;
5 __uint (max_entries , 4096) ;
6 __uint (map_extra , 268435456) ;
7 } root_pi fo SEC(" . maps ") ;
8

9 s t r u c t {
10 __uint (type , BPF_MAP_TYPE_PIFO_XDP) ;
11 __uint (key_size , s i z e o f (__u32)) ;
12 __uint (va lue_size , s i z e o f (__u32)) ;
13 __uint (max_entries , 4096) ;
14 __uint (map_extra , 268435456) ;
15 } l e f t _ p i f o SEC(" . maps ") ;
16

17 s t r u c t {
18 __uint (type , BPF_MAP_TYPE_PIFO_XDP) ;
19 __uint (key_size , s i z e o f (__u32)) ;

71

Benchmarking XDP scheduling with PIFO map

20 __uint (va lue_size , s i z e o f (__u32)) ;
21 __uint (max_entries , 4096) ;
22 __uint (map_extra , 268435456) ;
23 } r i gh t_p i f o SEC(" . maps ") ;
24

25 s t a t i c __always_inline i n t schedule_packet () {
26 __u32 l ea f_ id ;
27 __u64 root_prio = 0 ;
28 __u64 l e a f_pr i o = 0 ;
29

30 i f (bpf_map_pop_elem(&root_pi fo , &l ea f_ id))
31 re turn NULL;
32

33 i f (l e a f_ id == LEFT_PIFO) {
34 pkt = (void ∗) bpf_packet_dequeue_xdp(& l e f t _ p i f o , 0 , &

l ea f_pr i o) ;
35 } e l s e {
36 pkt = (void ∗) bpf_packet_dequeue_xdp(&r ight_pi fo , 0 , &

l ea f_pr i o) ;
37 }
38

39 i f (! pkt)
40 re turn NULL;
41

42 bpf_packet_send (pkt , 9 , 0) ;
43 re turn 0 ;
44

45 }

Listing 6.6: Maps used for building a simple hierarchy and a function used for
packet dequeue. First, it is determined from which child map the packet should be
retrieved, and then the action is performed

72

Chapter 7

Conclusions and future work

The goal that Tiesse aims to achieve is to obtain a traffic acceleration system

through software that can perform functions in the same way that Linux traffic

control already does, but with a reduced load on system resources. There are

multiple alternative solutions that can be attempted, and one of them is certainly

eBPF technology, particularly at the XDP hook point. The use of this technology

is becoming increasingly popular and widely shared within the Linux community,

and the number of studies and projects based on eBPF is growing year by year.

This demonstrates that eBPF is recognized as a promising technology that will

likely play a fundamental role in future network traffic developments.

The prototype presented shows excellent performance in terms of throughput and

system resource utilization. The prototype presented shows excellent performance

in terms of throughput and system resource utilization. Scalability also does not

seem to have any issues.

Regarding the analyzed patch, it can be said that the features introduced by the

patch could bring significant benefits to the usability and flexibility of the XDP

block. Until now, it was not possible to have a structure in XDP to store the

packet. The decision about the packet had to be made immediately and could not

be deferred to a later time. The slowdown introduced by queuing in vanilla XDP

73

Conclusions and future work

was demonstrated, along with some potential capabilities that can be exploited.

The goal of the patch is to make the XDP block a possible replacement for the

Qdisc layer in traffic control. Of course, the features demonstrated in this thesis

work cover only a small percentage of the features that a layer managing QoS

(Quality of Service) in a network device should have, but it seems to be heading in

the right direction.

7.1 Future developments

Of course, the prototype is not yet complete. The services that a network device

must perform are numerous and extend beyond those implemented in this the-

sis work. Managing traffic through the XDP block involves a complete rewrite

of network functions performed by the Linux network stack. This includes also

firewalling services. In Linux, this service is managed by iptables, which, through

various input, output, and forward chains, attempts to block access to specific

flows to the system. An iptables system based on eBPF can be more scalable and

performant than iptables managed by vanilla Linux [21]. However, the challenge is

to create a prototype that queues all of these functions and still manages to be

scalable and advantageous compared to vanilla Linux.

Another service that could be managed by the XDP block is load balancing and

DDoS attack mitigation. These services could be implemented as an extension of

this prototype in possible future thesis work at Tiesse.

Other than that, it is important to see if the patch is merged into the main Linux

kernel. At that point it will really be possible to study the definitive API in depth

(which may be slightly different from the one analyzed). When it will be present in

the main kernel, the goal is to choose some qdiscs of greatest interest and most

used within network devices and reproduce their behavior using PIFO maps. It

will be necessary to scale the operation of these eBPF-based qdiscs to truly be a

74

Conclusions and future work

viable alternative to the Qdisc layer.

Another work to keep an eye on is a patch [22] which aims to make qdiscs pro-

grammable via eBPF. The two jobs are unlikely to converge since one works in

XDP and one in the TC but both use a map to store network packets.

75

Bibliography

[1] eBPF authors. what-is-ebpf. https://ebpf.io/. Accessed: 2023-08-25 (cit. on
p. 3).

[2] Pinning maps. https://ants- gitlab.inf.um.es/jorgegm/xdp- tut
orial/- /tree/344191124593c32497505606075524ed8e5b24df/basic04-
pinning-maps. Accessed: 2023-08-25 (cit. on p. 7).

[3] Linux manual page. https://man7.org/linux/man- pages/man7/bpf-
helpers.7.html. Accessed: 2023-08-25 (cit. on pp. 7, 34).

[4] Toke Høiland-Jørgensen et al. «The eXpress Data Path: Fast Programmable
Packet Processing in the Operating System Kernel». In: Proceedings of the 14th
international conference on emerging networking experiments and technologies.
(2018), pp. 54–66 (cit. on p. 9).

[5] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal. «Creating
complex network services with ebpf: Experience and lessons learned». In: 2018
(cit. on p. 10).

[6] Traffic Control. https://man7.org/linux/man-pages/man8/tc.8.html.
Accessed: 2023-08-25 (cit. on p. 13).

[7] xdp: Add packet queueing and scheduling capabilities. https://lwn.net/
Articles/901046/. Accessed: 2023-09-24 (cit. on p. 14).

[8] Anirudh Sivaraman et al. «Programmable packet scheduling at line rate».
In: Proceedings of the 2016 ACM Conference on Special. (2016), pp. 44–57
(cit. on p. 15).

[9] Ahmed Saeed et al. «Eiffel: Efficient and flexible software packet scheduling».
In: Proceedings of the 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019 (2019), pp. 17–31 (cit. on p. 15).

[10] Traffic Shaping and Traffic Policing. https://www.cisco.com/c/en/
us / support / docs / quality - of - service - qos / qos - policing / 19645 -
policevsshape.html. Accessed: 2023-08-25 (cit. on p. 23).

[11] bpftool-gen. https : / / manpages . ubuntu . com / manpages / focal / man8 /
bpftool-gen.8.html. Accessed: 2023-08-25 (cit. on p. 28).

76

https://ebpf.io/
https://ants-gitlab.inf.um.es/jorgegm/xdp-tutorial/-/tree/344191124593c32497505606075524ed8e5b24df/basic04-pinning-maps
https://ants-gitlab.inf.um.es/jorgegm/xdp-tutorial/-/tree/344191124593c32497505606075524ed8e5b24df/basic04-pinning-maps
https://ants-gitlab.inf.um.es/jorgegm/xdp-tutorial/-/tree/344191124593c32497505606075524ed8e5b24df/basic04-pinning-maps
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://lwn.net/Articles/901046/
https://lwn.net/Articles/901046/
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html
https://manpages.ubuntu.com/manpages/focal/man8/bpftool-gen.8.html
https://manpages.ubuntu.com/manpages/focal/man8/bpftool-gen.8.html

BIBLIOGRAPHY

[12] BCC to libbpf conversion guide. https://nakryiko.com/posts/bcc-to-
libbpf-howto-guide/#bpf-skeleton-and-bpf-app-lifecycle. Accessed:
2023-08-25 (cit. on p. 29).

[13] Introduce to BPF timer. https://lore.kernel.org/bpf/20210715005417.
78572-4-alexei.starovoitov@gmail.com/. Accessed: 2023-08-25 (cit. on
p. 40).

[14] Tips and Tricks for Writing Linux BPF Applications with libbpf. https:
//pingcap.medium.com/tips- and- tricks- for- writing- linux- bpf-
applications-with-libbpf-404ca94daaee. Accessed: 2023-08-25 (cit. on
p. 43).

[15] BPF support for global data. https://lore.kernel.org/bpf/20190409
212018.32423-1-daniel@iogearbox.net/. Accessed: 2023-09-23 (cit. on
p. 44).

[16] Trex: realistic packet generator. https://trex-tgn.cisco.com/. Accessed:
2023-09-23 (cit. on p. 47).

[17] LS1046A Freeway Board. https://www.nxp.com/design/software/qoriq-
developer-resources/ls1046a-freeway-board:FRWY-LS1046A. Accessed:
2023-09-23 (cit. on p. 54).

[18] PRIO Qdisc. https://man7.org/linux/man-pages/man8/tc-prio.8.html.
Accessed: 2023-09-24 (cit. on p. 60).

[19] HTB Qdisc. https://man7.org/linux/man-pages/man8/tc-htb.8.html.
Accessed: 2023-09-26 (cit. on p. 64).

[20] bpf-examples. https://github.com/freysteinn/bpf-examples/commits/
xdp_scheduler_tester. Accessed: 2023-09-29 (cit. on p. 67).

[21] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo.
«Accelerating Linux Security with eBPF iptables». In: Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos (2018), pp. 108–
110 (cit. on p. 74).

[22] Programmable Qdisc with eBPF. https://lore.kernel.org/all/20220
602041028.95124-1-xiyou.wangcong@gmail.com/. Accessed: 2023-09-26
(cit. on p. 75).

77

https://nakryiko.com/posts/bcc-to-libbpf-howto-guide/##bpf-skeleton-and-bpf-app-lifecycle
https://nakryiko.com/posts/bcc-to-libbpf-howto-guide/##bpf-skeleton-and-bpf-app-lifecycle
https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com/
https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com/
https://pingcap.medium.com/tips-and-tricks-for-writing-linux-bpf-applications-with-libbpf-404ca94daaee
https://pingcap.medium.com/tips-and-tricks-for-writing-linux-bpf-applications-with-libbpf-404ca94daaee
https://pingcap.medium.com/tips-and-tricks-for-writing-linux-bpf-applications-with-libbpf-404ca94daaee
https://lore.kernel.org/bpf/20190409212018.32423-1-daniel@iogearbox.net/
https://lore.kernel.org/bpf/20190409212018.32423-1-daniel@iogearbox.net/
https://trex-tgn.cisco.com/
https://www.nxp.com/design/software/qoriq-developer-resources/ls1046a-freeway-board:FRWY-LS1046A
https://www.nxp.com/design/software/qoriq-developer-resources/ls1046a-freeway-board:FRWY-LS1046A
https://man7.org/linux/man-pages/man8/tc-prio.8.html
https://man7.org/linux/man-pages/man8/tc-htb.8.html
 https://github.com/freysteinn/bpf-examples/commits/xdp_scheduler_tester
 https://github.com/freysteinn/bpf-examples/commits/xdp_scheduler_tester
https://lore.kernel.org/all/20220602041028.95124-1-xiyou.wangcong@gmail.com/
https://lore.kernel.org/all/20220602041028.95124-1-xiyou.wangcong@gmail.com/

	List of Figures
	Acronyms
	Introduction
	Goal of the thesis
	Tiesse S.p.a.

	Background
	eBPF(Extended Berkeley Packet Filter)
	vCPU
	Safety
	Maps
	Helpers
	Tail & Function Calls
	Hook-points
	eXpress Data Path (XDP)
	Traffic Control (TC)
	Toolchain

	Traffic Control in the Linux Kernel
	Packet Queuing and scheduling in XDP
	PIFO and Eiffel extension
	First attempt: Adding a dequeue hook
	Second attempt: Using BPF Timer

	Prototype Architecture
	General Architecture
	Routing Acceleration
	Rate Limiter
	Traffic policing and traffic shaping in the prototype

	Prototype Implementation
	BPF skeleton
	TC-egress program
	XDP program
	Rate Limiter different implementations
	Refilling tokens using BPF Timer
	Refilling tokens using Perf Event
	Refilling tokens from Userspace

	Prototype Evaluation
	Testbed Setup
	Benchmarking tools
	Iperf3
	Cisco TRex

	Routing tests
	Accuracy tests
	Comparison among the various approaches presented

	Scalability test
	LS1046A Freeway Board

	Benchmarking XDP scheduling with PIFO map
	Baseline impact of the PIFO map
	Strict priority
	Weighted Fair Queueing
	PIFO's expressiveness

	Conclusions and future work
	Future developments

	Bibliography

