
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Dynamic sharing of resources between
different Kubernetes clusters

Supervisors

Prof. Fulvio RISSO

Candidate

Giulio MUSCARELLO

Academic year 2022-2023

Summary

Cloud computing has driven the digital transformation of the past two decades. In
the framework of cloud computing the "cloud native" paradigm and the Kubernetes
engine have become a prominent solution. The cloud native paradigm consists of a
modular approach in which applications are divided into loosely coupled components
("microservices"), each running in a Linux container. Thus, the infrastructure -
managed by a cloud provider and capable of scaling up and down - is decoupled
from the application itself. This business model is typically described as IaaS
(Infrastructure as a Service) or PaaS (Platform as a Service) depending on the level
of control of the infrastructure owner over its resources.

Liquid computing deals specifically with the difficulties of a computing infras-
tructure that backs cloud-native workloads. Such an infrastructure is effectively
"liquid" in that it can shift resources and applications from host to host, without the
binding that was typical of earlier cloud scenarios. Liqo is an open source project
launched at Politecnico di Torino that builds a liquid computing infrastructure on
top of Kubernetes with a specific focus on resource sharing and multi-tenancy: with
Liqo, Kubernetes clusters can federate in a peer-to-peer fashion to seamlessly create
a larger network, with each cluster still retaining full control over its resources.

This thesis work aims to research, define and implement brokering models for
the Liqo ecosystem. Service and resource brokers are an important player in a peer-
to-peer topology, establishing trust and facilitating connections between providers
and consumers by aggregating offers and allowing for complex topologies going
beyond the current point-to-point model. Service brokers also create a standard
interface that SaaS providers can subscribe to, which is an important element for
application portability and preventing vendor lock-in.

ii

Table of Contents

Acronyms vii

1 Introduction 1
1.1 Classification . 1
1.2 Goal of the thesis . 2

2 Kubernetes 4
2.1 Kubernetes: a bit of history . 4
2.2 Applications deployment evolution 5
2.3 Container orchestrators . 6
2.4 Kubernetes architecture . 7

2.4.1 Control plane components 8
2.4.2 Node components . 10

2.5 Kubernetes objects . 11
2.5.1 Namespace . 12
2.5.2 Pod . 12
2.5.3 ReplicaSet . 14
2.5.4 Deployment . 14
2.5.5 Service . 15

2.6 Virtual Kubelet . 16
2.7 Kubebuilder . 17

3 Liqo 19
3.1 Introduction . 19
3.2 Liqo concepts . 20

3.2.1 Discovery . 20
3.2.2 Peering . 20
3.2.3 Virtual nodes . 24

iv

4 Resource brokering 25
4.1 User stories . 25
4.2 Requirements . 27
4.3 Design and architecture . 28

4.3.1 Catalog . 28
4.3.2 Orchestrator . 29
4.3.3 Aggregator . 32

4.4 Implementation . 33
4.4.1 Catalog . 34
4.4.2 Orchestrator . 40
4.4.3 Aggregator . 44

4.5 Future work . 45
4.5.1 Catalog . 46
4.5.2 Orchestrator . 46
4.5.3 Aggregator . 47

5 Service brokering 48
5.1 Use cases . 48
5.2 GAIA-X Federation Services (GXFS) 49
5.3 International Data Spaces (IDS) . 53
5.4 Open Service Broker . 56

6 Evaluation 61
6.1 Orchestrator benchmarking . 61
6.2 Aggregator benchmarking . 63
6.3 Conclusions . 64

6.3.1 Future developments . 64

Bibliography 66

v

Acronyms

K8s
Kubernetes

CNCF
Cloud Native Computing Foundation

CRD
Custom Resource Definition

CR
Custom Resource

CIDR
Classless Inter-Domain Routing

API
Application Programming Interface

REST
Representational State Transfer

RPC
Remote Procedure Call

KIND
Kubernetes IN Docker

vii

Chapter 1

Introduction

Containers are now a defining feature of the cloud computing landscape. Cloud-
native workloads feature tens or hundreds of containers across tens of hosts, and
as workloads become more and more complex several solutions have emerged
to automate their management. Today, Kubernetes is the framework of choice
for container orchestration in medium and large companies, with infrastructure
ranging from traditional data centres to smaller edge facilities. These setups involve
a multitude of compute nodes managed by a single logical entity, and are thus
classified as "single-tenant" clusters.

Liquid computing frameworks like Liqo take this a step further and envision a
peering model where different clusters may share resources and services with each
other. This creates dynamic data centres that can scale endlessly beyond what a
single provider may offer: an entity may peer with a number of providers to extend
their Kubernetes cluster as needed.

Envisioning a computing environment where some clusters are "providers" and
others are "consumers", a broker is a component that facilitates peering with
providers by offering a standardised, aggregated view of their resources; it may
optionally establish trust in the ecosystem by endorsing specific entities, enabling
secure and reliable resource sharing architectures.

1.1 Classification
The initial phase of our thesis work consisted of identifying the needs of stakeholders
and categorizing them into three functional models. We note that the result of this
work can also be found in [1], which starts from a common basis of broker models.

We note that the object of brokering may be (hardware) resources or services:
the former effectively presents a PaaS offering, while the latter is a SaaS offering.

The role of a broker also varies in relation to its position on the control plane

1

Introduction

and data plane. We identify the following three types:

1. Catalog: a component that merely collects metadata about providers, but is
not otherwise a party to the peering process. Clients consume metadata from
the catalog, then peer directly with a provider of their choice.

2. Transparent broker: a component that orchestrates the client’s workloads
on the providers, while on the data plane the client retains a direct connection
to the provider clusters (i.e. the broker is transparent).

3. Opaque broker: a component that orchestrates the client’s workloads on
the providers, acting as a proxy on the data plane. The client is not aware of
the existence of specific providers, being presented with an aggregated view of
their resources, so the broker is said to be opaque.

1.2 Goal of the thesis
Brokers are an important addition to resource sharing infrastructures, establishing
trust and discoverability in the ecosystem. These are important in the cloud
environment, which is typically static and well-known, but the latter is especially
important in edge environments with rapidly changing topologies and workloads.
Furthermore, brokers can lower the "barrier to entry" of smaller cloud providers
by aggregating their resources into a larger offering comparable with mainstream
providers.

We observe that the Kubernetes open source ecosystem contains a standard for
service brokering, the Open Service Broker API, as well as an implementation of the
API. However, this implementation responds to the necessities of a single-tenant
Kubernetes cluster, requiring an extension to work in the scenarios described
here. On the other hand, no resource broker exists, again reflecting the reality of
single-tenant environment with little interconnection to other providers.

This thesis aims to define technical models of resource and service brokers,
exploring the capabilities of each model and the challenges that arise. We also
review existing brokering solutions based on Kubernetes and demonstrate an
implementation of an opaque resource broker on top of Liqo. Our work integrates
feedback from TOP-IX, a commercial entity that seeks to offer brokering and
networking services in the liquid computing landscape.
The analysis proceeds following this structure:

• Chapter 2 provides an extensive presentation of Kubernetes concepts neces-
sary to understand the implemented solutions.

• Chapter 3 presents the Liqo architecture and some of its core concepts,
especially with regards to reflection mechanism in one-to-one peerings.

2

Introduction

• Chapter 4 presents the general problem of resource brokering, identifies three
functional models and analyses their design and implementation with the Liqo
architecture.

• Chapter 5 extends the analysis to the sector of SaaS brokering, giving an
overview of existing solutions in well-established ecosystems.

• Chapter 6 characterises the implementations in terms of latency and scala-
bility.

3

Chapter 2

Kubernetes

This chapter provides an overview of the Kubernetes architecture showing its
history and evolution through time. This summary lays the foundations for all the
concepts which will be exposed later on. Kubernetes (often shortened as K8s) is
a huge framework, and a deep examination of it would require much more time
and discussion, hence we only provide here a description of its core concepts and
components. Further details can be found in the official documentation [2].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, more precisely, the Virtual Kubelet [3] project, which
allows creating virtual nodes with a particular behavior, and the Kubebuilder [4]
tool, used to build custom resources.

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [5] system, a small project with fewer
than 5 people initially working on it. The project was developed in collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [5].

In 2013 Google announced Omega [6], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability” [6].

In the middle of 2014, Google presented Kubernetes as an open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg, and many of its initial contributors used to work on it. The original Borg

4

Kubernetes

project was written in C++, whereas for Kubernetes, the Go language was chosen.
In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a

partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [7]. Since then, Kubernetes has significantly grown, achieving
the CNCF graduated status and being adopted by nearly every big company and
cloud provider: AWS [8], Azure [9] and Google Cloud [10] offer managed Kubernetes
clusters. Nowadays, it has become the de facto standard for container orchestration
[11, 12].

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and co-
ordinating containerized applications across a cluster of machines. It manages
the life cycle of applications and services using methods that provide consistency,
scalability, and high availability.

What does the term “containerized applications” mean? In the last decades,
the process of deploying applications has undergone significant changes, which are
illustrated in figure 2.1.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly, it is not feasible. This solution could not
scale, would lead to resources under-utilization, and would be very expensive for
organizations to maintain many physical servers.

5

Kubernetes

The first real solution has been virtualization. Virtualization allows multi-
ple Virtual Machines to run on a single physical server. This technique grants
isolation of the applications between VMs, providing a high level of security, as
the information of one application cannot be freely accessed by other applications.
Virtualization enables better utilization of resources in a physical server, improves
scalability because an application can be added or updated very easily, reduces
hardware costs, and much more. With virtualization, it is possible to group a
set of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its operating
system, on top of the virtualized hardware.

A second solution has been proposed recently: containerization. Containers
are similar to VMs, but they share the operating system with the host machine,
relaxing isolation properties. Therefore, containers are considered a lightweight
form of virtualization. Similarly to a VM, a container has its filesystem, CPU,
memory, process space, etc... One of the key features of containers is that they are
portable. They are decoupled from the underlying infrastructure and are totally
portable across clouds and OS distributions. This property is particularly relevant
nowadays with cloud computing: a container can be easily moved across different
machines. Moreover, being “lightweight”, containers are much faster than virtual
machines: they can be booted, started, run, and stopped with little effort and in a
short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need for a way to
manage them becomes essential; container orchestrators serve this purpose. A con-
tainer orchestrator is a system designed to easily manage complex containerization
deployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. A description
of this system is provided in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using
the DNS name or using its IP address. If traffic to a container is high, a load
balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storage, or dynamic storage supplied by public cloud providers,
and more.

6

Kubernetes

Figure 2.2: Container orchestrators use. [13]

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the desired
state at a controlled rate. For example, it is possible to automate the creation
of new containers, remove existing ones and adopt all their resources to the
new containers.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and manage
sensitive information in Kubernetes, such as passwords, OAuth tokens, and
SSH keys. It is possible to deploy and update secrets and application configu-
ration without rebuilding the container images and exposing secrets in the
stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists
of a set of machines, called nodes, that run containerized applications. At least
one of the nodes hosts the control plane and is called master. Its role is to manage
the cluster and expose an interface to the user. The worker node(s) host the pods
that are the application components. The master manages the worker nodes and
the pods in the cluster. In production environments, the control plane usually

7

Kubernetes

runs across multiple machines, and a cluster runs on multiple nodes providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

Figure 2.3: Kubernetes architecture.

2.4.1 Control plane components
The control plane’s components take global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
they are typically executed on the same machine, which does not run user containers.

API server

The API server is a control plane component that exposes the Kubernetes REST
API and constitutes the front-end for the Kubernetes control plane. Its function is
to intercept REST requests, validate and process them. The main implementation
of a Kubernetes API server is kube-apiserver. It is designed to scale horizontally,
which means it scales by deploying more instances. Moreover, it can operate with
high redundancy by running several instances and balancing traffic among them.

etcd

etcd is a distributed, consistent, and highly available key-value store used as
Kubernetes backing store for all cluster data. It is based on the Raft consensus
algorithm [14], which allows different machines to work as a coherent group and

8

Kubernetes

survive the breakdown of one of its members. etcd can be stacked in the master
node or be external, installed on a dedicated host. Only the API server can
communicate with it.

Scheduler

The scheduler is the control plane component responsible for assigning the pods
to the nodes. The one provided by Kubernetes is called kube-scheduler, but it
can be customized by adding new schedulers and indicating in the pods to use
them. kube-scheduler watches for newly created pods not yet assigned to a node
and selects one for them to run on. To take its decisions, it considers single and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference, and deadlines.

Kube-controller-manager

The kube-controller-manager is a component that runs controller processes. It
continuously compares the desired state of the cluster (given by the objects’ speci-
fications) with the current one (read from etcd). From a logical point of view, each
controller is a separate process, but to reduce complexity, they are all compiled
into a single binary and run in a single process. These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of
pods for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which link Services
and Pods).

• Service Account & Token Controllers: create default accounts and API
access tokens for new namespaces.

Cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

The cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor

9

Kubernetes

themselves and linked to the cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: responsible for creating, updating and deleting cloud
provider load balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

Kubelet

The kubelet is an agent that runs on each node of the cluster, making sure that
containers are running in the node’s pods. This agent receives from the API server
the specifications of the Pods and interacts with the container runtime to run them,
monitoring their state and assuring that the containers are running and healthy.
The connection with the container runtime is established through the Container
Runtime Interface and is based on gRPC.

Kube-proxy

The kube-proxy is a network agent that runs on each node in your cluster, imple-
menting part of the Kubernetes Service concept. It maintains network rules on
nodes, which allow network communication to your Pods from inside or outside of
the cluster. If the operating system is providing a packet filtering layer, kube-proxy
uses it otherwise it forwards the traffic itself.

10

Kubernetes

Addons

The Addons are features and functionalities not yet available natively in Kubernetes
but implemented by third parties pods. Some examples are DNS, the dashboard
(a web UI), monitoring, and logging.

Figure 2.4: Kubernetes master and worker nodes. [2].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitute its building blocks. A
K8s resource object typically contains the following fields [15]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the standard CRUD actions:

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

11

Kubernetes

• Read: comes with 3 variants:

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,

and the results can be restricted to resources matching a selector query;
– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms:

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource. Depending on the specific resource, child objects
may or may not be garbage collected by the server.

The following list illustrates the main objects needed in the next chapters.

2.5.1 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by the K8s system, mainly control-
plane agents;

• default: it contains objects and resources created by users, and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing public cluster information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the workload into many Namespaces to better virtualize
the cluster.

2.5.2 Pod
Pods are the basic processing units in Kubernetes. A pod is a collection of one
or more containers that share the same network and storage and are scheduled
together. Pods are ephemeral and have no auto-repair capability. For these reasons,
they are usually managed by a controller which handles replication, fault-tolerance,
self-healing, etc.

12

Kubernetes

Figure 2.5: Kubernetes pods. [2]

The Kubernetes scheduler assigns pods to nodes automatically depending on a
number of factors including resource requirements/availability, node characteristics
and topology spread. An important feature widely used in Liqo as well as in this
thesis is the possibility to add constraints, called "affinities", on where a pod can
run. Kubernetes features two types of affinities:

• Node affinities, to select nodes by their labels;

• Pod affinities, to constrain pods against labels on other pods.

Additionally, an affinity may be "required" (meaning that if it can’t be satisfied,
the pod will not be scheduled) or "preferred" (meaning that unsatisfied affinities
will not prevent scheduling).

In this thesis we present two use cases for affinities:

• Required node affinities are used in Liqo to offload pods on specific virtual
nodes, effectively leveraging Kubernetes to control how pods are distributed
on different clusters;

• Preferred pod affinities are used to favour scheduling pods on the same virtual
node, preventing situations where a workload is deployed across geographically
distant clusters causing high service latencies.

Here’s an example of a pod that uses node affinity:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: pod-with-node-affinity
5 spec:
6 affinity:

13

Kubernetes

7 nodeAffinity:
8 requiredDuringSchedulingIgnoredDuringExecution:
9 nodeSelectorTerms:

10 - matchExpressions:
11 - key: kubernetes.io/disk-type
12 operator: In
13 values:
14 - ssd

The requiredDuringSchedulingIgnoredDuringExecution field means that
these constraints must be enforced during the pod scheduling, and they are manda-
tory ("required"). In this case, the pod could only be scheduled on nodes with
a SSD. Only the nodes that expose exactly the kubernetes.io/disk-type label
can be chosen by the scheduler.

2.5.3 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. ReplicaSets are usually not used directly: a
higher-level concept, called Deployment, is provided by Kubernetes.

2.5.4 Deployment
Deployments manage the creation, update, and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason, an application is typically executed within a Deployment and
not in a single pod. The difference between ReplicaSets and Deployments is that
Deployments allow for declarative updates to pods: when a Deployment is edited,
a new ReplicaSet is created and the old one is destroyed. This listing is an example
of a Deployment.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:

14

Kubernetes

10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.7.9
20 ports:
21 - containerPort: 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labeled as app:nginx. The template field
shows information about the created pods: they are labeled as app:nginx, and
they run in one container the nginx DockerHub image on port 80.

2.5.5 Service
A Service is an abstract way to expose an application running on a set of Pods as
a network service. The network service can have different access scopes depending
on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the label app=MyApp.

1 apiVersion: v1
2 kind: Service
3 metadata:

15

Kubernetes

Pod

Node

Figure 2.6: Kubernetes Services. [2]

4 name: my-service
5 spec:
6 selector:
7 app: myApp
8 ports:
9 - protocol: TCP

10 port: 80
11 targetPort: 9376

2.6 Virtual Kubelet
Two Kubernetes-based tools which have been used during the development of
this project are Virtual Kubelet and Kubebuilder. Virtual Kubelet is an open
source Kubernetes kubelet implementation that masquerades a cluster as a kubelet
for connecting Kubernetes to other APIs [3]. Virtual Kubelet is a Cloud Native
Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement to use
it. The official documentation [3] says that “providers must provide the following
functionality to be considered a supported integration with Virtual Kubelet:

1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers, and supporting resources in the context of Kubernetes.

16

Kubernetes

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

Figure 2.7: Virtual-Kubelet concept. [3]

2.7 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [4].

CustomResourceDefinition is an API resource offered by Kubernetes, which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is generated, the Kubernetes
API server instantiates a new RESTful resource path. The CRD can be either
namespaced or cluster-scoped, and its name must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [2]. To have more powerful management, you also
need to provide a custom controller which executes a control loop over the custom
resource: this behavior is called Operator pattern [16].

Kubebuilder helps a developer in defining his Custom Resources taking basic
decisions, and writing a lot of scaffolded code. These are the main actions operated

17

Kubernetes

by Kubebuilder [4]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to the resources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests checking new fields and business logic.

6. Build and publish a container from the provided Dockerfile.

18

Chapter 3

Liqo

In this chapter we present Liqo, an open source project started at Politecnico
di Torino that allows Kubernetes to seamlessly and securely share resources and
services. We give an overview of its architecture with particular regard to some
key features that enabled the development of this thesis.

3.1 Introduction

Computing load on Kubernetes clusters is typically not constant, with peaks and
lows depending on the time of day, business necessities and other factors. For this
reason they are provisioned with an excess of compute resources, so that they may
see full utilization at peak demand. However, this also implies that they often have
spare resources that they are unable to use and that could be shared with other
organizations that are in demand.

Liqo interconnects clusters in a liquid computing fashion (hence the name),
sharing compute resources and services among each other. It creates so-called
"opportunistic data centers" where clusters can offer their resources at any time,
lowering the cost of infrastructure for its peers and creating new opportunities in
the field of edge computing. To do so it leverages the well-known paradigm of
peering that allows for a variety of topologies, both centralized and decentralized.
This also means that at a basic level individual clusters retain full control over
what resources they share and with whom.

It is important to note that Liqo extends the standard Kubernetes APIs in
a way that is transparent to applications and, to some extent, to Kubernetes
administrators. In fact, we will see that the resources described in Chapter 2 are
still valid in the new environment and are often augmented for the purposes of
Liqo. As a result, user applications do not require changes to work with Liqo.

19

Liqo

3.2 Liqo concepts
3.2.1 Discovery
Liqo communicates with clusters over IP. Clusters may be discovered in a number
of ways: the user can add clusters manually by their IP address, but Liqo can
also advertise its presence via mDNS on a local network, or use DNS records
that specify the cluster IPs for a given domain. Manual configuration is the most
flexible method, not requiring any configuration on the other cluster’s part; mDNS
discovery is particularly appropriate for automating the setup of a Liqo federation
on a LAN; and DNS discovery is meant for use cases where an organization has
multiple clusters that may be provisioned dynamically.

No matter how clusters are discovered, the end result is the creation of a custom
resource called ForeignCluster in the local cluster. It represents the remote cluster
and holds information about it.

Cluster 1


L2 broadcast

domain
Cluster 2

Advertisement

Peering request

Peering response

Figure 3.1: Discovery over LAN.

3.2.2 Peering
As mentioned in the introduction, Liqo makes use of the peering model to represent
and regulate the relationship between different, administratively separate clusters.
Peering is a process by which a connection is created between two clusters, one that

20

Liqo

requests resources and one that offers them. It comes after the discovery process,
because it uses the IP endpoint found previously. It consists of three steps:

• Authentication, by which the clusters validate each other’s identity;

• Networking, by which the clusters discover each other’s IP ranges and configure
NAT rules;

• Resource sharing, by which the clusters communicate the amount and type of
resources to exchange.

Let us review the last two steps, which will be key to understanding the
implementation of brokers.

Figure 3.2: A complex peering topology over a LAN. Black: the L2 medium,
green: peerings.

Networking

In the Kubernetes networking model, the cluster administrator defines a "pod CIDR"
and a "service CIDR". These are private subnets (for instance, the default values
on K3s are respectively 10.42.0.0/16 and 10.43.0.0/16) from which IP addresses
are assigned to each pod or service. These IPs are guaranteed to be unique inside
the cluster, and reachable from every node that belongs to the cluster. The
implementation is left to the network plugin, for which there are tens of alternatives
based on many different technologies - the most common ones are Flannel, based
on a VXLAN overlay, Calico, based on BGP, and Cilium, also based on VXLAN.

This model was built to work on a single cluster, and does not translate directly
to a setup with several clusters as there is no guarantee that one’s pod CIDR

21

Liqo

does not overlap with its peers’. Liqo tackles this problem using Network Address
Translation: as part of the peering process, the IPAM (IP Address Management)
module reserves a new subnet that maps to the peer’s pod CIDR by means of
an iptables rule. Packets addressed to remote clusters are then tunneled via a
Wireguard VPN.

We see here an example of a NAT configuration that allocates the subnet
10.45.0.0/16 for the remote cluster’s pod CIDR 10.42.0.0/16:

1 apiVersion: net.liqo.io/v1alpha1
2 kind: NetworkConfig
3 metadata:
4 labels:
5 liqo.io/remoteID: d14e610e-4c1b-402c-a5f1-5ef6f39c0490
6 liqo.io/replication: "true"
7 name: polito-labs-9b173a
8 namespace: liqo-tenant-polito-labs-9b173a
9 spec:

10 backend_config:
11 port: "30020"
12 publicKey: +CiHH3SJp2CQIj/Hu8jlyDWJOn7P40MQZfHfadODu0g=
13 backendType: wireguard
14 cluster:
15 clusterID: d14e610e-4c1b-402c-a5f1-5ef6f39c0490
16 clusterName: polito-labs
17 endpointIP: 194.116.77.110
18 podCIDR: 10.42.0.0/16
19 status:
20 podCIDRNAT: 10.45.0.0/16
21 processed: true

Resource sharing

An important part of peering is determining what resources to share. Liqo imple-
ments a simple request-response model, in that the consumer requests a list of
resources (a ResourceRequest) and the provider responds with an offer for a certain
amount (a ResourceOffer). Note that at the time of writing it is not supported to
ask for specific resources, just empty generic ResourceRequests may be sent.

Let us present an example of a resource request/offer pair:

1 apiVersion: discovery.liqo.io/v1alpha1
2 kind: ResourceRequest

22

Liqo

3 metadata:
4 labels:
5 liqo.io/remoteID: 4b22f032-9bd7-4afb-a168-91a845e2be50
6 liqo.io/replication: "true"
7 name: liqo-consumer
8 namespace: liqo-tenant-topix-broker-8ef341
9 spec:

10 authUrl: https://194.116.77.110:31466
11 status:
12 offerState: Created
13---
14 apiVersion: sharing.liqo.io/v1alpha1
15 kind: ResourceOffer
16 metadata:
17 labels:
18 liqo.io/originID: 4b22f032-9bd7-4afb-a168-91a845e2be50
19 liqo.io/remoteID: 6376f896-8ad0-45b8-b98e-a78e0d6d7ff5
20 liqo.io/replicated: "true"
21 name: topix-broker
22 namespace: liqo-tenant-topix-broker-8ef341
23 spec:
24 clusterId: 4b22f032-9bd7-4afb-a168-91a845e2be50
25 resourceQuota:
26 hard:
27 cpu: 1908m
28 ephemeral-storage: "35913494528"
29 hugepages-1Gi: "0"
30 hugepages-2Mi: "0"
31 memory: "2664000000"
32 pods: "99"
33 storageClasses:
34 - default: true
35 storageClassName: local-path
36 - storageClassName: liqo
37 status:
38 phase: Accepted
39 virtualKubeletStatus: Created

In this example, a cluster named liqo-consumer requests resources from a
cluster named topix-broker, which offers approx. 2 CPUs, 36 GB of disk storage
and 2.7 GB of RAM. It also offers some storage classes that Persistent Volumes
(PVs) can use.

23

Liqo

3.2.3 Virtual nodes
The final step is to allow Kubernetes to offload pods to the remote cluster. This is
achieved by creating a "virtual node", i.e. a Node resource that does not correspond
to a physical node on the cluster. Kubernetes will be able to schedule pods on it
as if it were a normal node, but Liqo will intercept pods scheduled on it and reflect
them on the remote cluster. The specific component responsible for reflecting the
pods is the virtual kubelet, and it synchronizes the local "shadow pod" with the
remote pod. It also reflects EndpointSlices to allow the local cluster to reach pods
and services that point to the remote cluster.

However, we do not want Kubernetes to treat a virtual node exactly the same
as a physical node - offloading a pod incurs additional latency and possibly costs,
so we want Kubernetes to prevent scheduling on these nodes by default. This is
implemented by adding a taint to the virtual nodes, i.e. a condition that pods
must explicitly "tolerate" to be eligible for being scheduled on the tainted node.
When the user wants to offload a pod, Liqo automatically adds a taint toleration
using a webhook.

Figure 3.3: Reflection of pods and EndpointSlices.

24

Chapter 4

Resource brokering

This chapter focuses on explaining the core ideas behind resource brokering on
Kubernetes. It provides a clear, high-level explanation of the different roles
and functions that play a part in the brokering process. To do this, we start
by illustrating user stories and practical scenarios for resource brokering within
federated cloud services. From there, we explore potential additional services that
can be offered, and subsequently, we develop Liqo-based solutions to provide these
services effectively. This way, we aim to offer a comprehensive view of the resource
brokering landscape.

4.1 User stories
Resource brokers become essential when establishing extensive Kubernetes clus-
ters designed for resource sharing. These brokers address certain limitations of
the peer-to-peer, horizontal model, especially when it comes to scaling up to ac-
commodate a large user base. As the number of providers grows, maintaining
comprehensive visibility over the resources and organizations within the network
becomes progressively challenging. Conversely, providers might find it harder to
place the same level of trust in consumers as they would in a smaller, more familiar
network. Additionally, even if all parties possess complete visibility of the global
resources, an "overseeing organization" could further enhance workload distribution
by utilizing specialized metrics and a deep understanding of each customer’s specific
requirements. This underscores the significance of resource brokers in optimizing
resource allocation within expansive Kubernetes environments.

Taking this into account, we can view the broker as a business entity specializing
in facilitating multi-cloud environments. It offers added-value services to well-
established, extensive federations. In the context of the GAIA-X framework, the
broker serves as an active participant in providing Federation Services. Our thesis

25

Resource brokering

work not only tackles existing GAIA-X Federation Services like Access Management
but also broadens the scope by incorporating IaaS offerings into the concept of
Federated Catalogues.

As part of our thesis work we held meetings with TOP-IX (Torino Piemonte
Internet eXchange), the Internet Exchange Point for north-western Italy. TOP-
IX is seeking to expand its business in the direction of being a neutral, trusted
intermediary to data exchange and cloud computing, extending its role consistently
with the historical nature of IXPs. Our research shows that there are a number of
different scenarios that address different needs:

1. Scenario 1: there are several cloud operators, each with distinct features and
their own clusters. The "cloud market" is sparsely connected, and it is hard to
discover participants.
Customer story: I want to discover the full list of providers and their offerings
to choose the best one for my needs.
Provider story: I want to advertise my resources to potential customers in the
federated network.

2. Scenario 2: there are many more cloud operators, and it becomes difficult for
an individual customer to pick out the "best" one according to some metric.
Also, some metrics like latency may not be available to the user, or may
be self-certified - either way, they are not readily accessible for scheduling
decisions.
Customer story: I want to choose the optimal cluster, but I don’t have the
time/data to do it myself.
Broker story: I want to act as a certifying authority for metrics like latency
and uptime, and provide a value-added service.
Provider story: I want to advertise my resources, and compete with other
providers with certified, reliable metrics.

3. Scenario 3: there are a number of organizations provide access to data or
compute facilities, and want to retain control over who is given access (eg. via
specific policies).
Customer story: I want to run computations over sensitive data (eg. healthcare
databases).
Provider story: I want to make my data available, but I also want to make
sure it is in safe hands and in compliance with regulations.
Broker story: I want to certify customers and workloads, so that I provide a
value-added service.

4. Scenario 4: there are a number of cloud providers, each individually with a
small commercial offer that is not competitive with larger players.

26

Resource brokering

User story: I want to access a large amount of computing resources.
Provider story: I want to pool with other providers to enable a larger, aggre-
gated commercial offering.

4.2 Requirements
We identify three needs that emerge from our user stories. These correspond to
three different roles that are mostly independent with one another, which we will
develop into three software components.

1. the need to discover providers: users rely on brokers to be informed of what
clusters are on the network, what are their features and resources, and possibly
other informations (eg. a trusted estimate of their uptime or latency).
The broker takes the role of catalog, an endpoint that customers may browse
and query.

2. the need to orchestrate workloads: users rely on brokers to orchestrate
their workloads, either because they do not want to deal with the complexity
of orchestration (for an extreme example, a customer may not even use
Kubernetes, instead deploying Helm charts from the broker) or because the
broker has access to proprietary information that can provide for an optimal
orchestration. This process can also go the other way: providers can require
customers to go through a trusted orchestrator, that acts as a security gateway
to inspect the users’ identities or their workloads.
The broker takes the role of orchestrator, an active component that schedules
computing resources according to defined policies.

3. the need to aggregate resources: providers rely on brokers to present their
resources and those of their partners in aggregated form, creating a commercial
offering that can compete with larger and more established providers. Unlike
the previous two, this broker is completely opaque, acting as a single virtual
cluster.
The broker takes the role of aggregator, a middleman that presents a unified
view of resources.

Of course, depending on the scenario the broker may enable more than one
brokering service. For instance, an exchange point like TOP-IX may act both as a
catalog for larger clusters (leaving peering directly to the customer and the provider)
and as an orchestrator for smaller ones (centralizing concerns like networking or
billing).

27

Resource brokering

Figure 4.1: A diagram that illustrates how brokering services relate to the needs
of providers and consumers.

4.3 Design and architecture
Now that we have a clearer picture of our design goals, let us understand how the
standard Kubernetes resources and the Liqo paradigm can be used and extended
to accomplish these tasks. The goal of this section is to provide a theoretical
architecture that addresses the previously identified use cases and that will guide
the actual implementation of the proof-of-concept.

We already mentioned that the requirements naturally map to a set of three
roles: catalog, orchestrator and aggregator. We define each of these as a stand-alone
software component.

4.3.1 Catalog
We conceptualize the catalog as a database of clusters. The top-level unit of this
database is a "cluster document" that uniquely identifies and completely describes
the cluster. It is a collection of fields with different functions:

28

Resource brokering

• Administrative information: name, description

• Peering credentials

• Resources

• Metrics (optionally)

Through an administrative procedure, providers are allowed to authenticate
themselves against the catalog (eg. with a username/password pair) and advertise
on it. On the technical side this translates to creating a minimal "cluster docu-
ment" containing the administrative information and the peering credentials. The
"resources" field can then be pulled directly from the provider’s Liqo instance and
automatically updated through an appropriate protocol; alternatively, providers
can manually enter their commercial offering for a lower "barrier to entry". Finally,
the catalog will deploy monitoring pods on the provider’s cluster to populate the
"metrics" fields.

From the consumer’s point of view, the catalog is simply a read-only database.
We envisage an appropriate API model such as REST or GraphQL through which
the user can query this database (with varying levels of complexity, from "list all
clusters" to "list clusters with a complex filter condition"), get a list of providers that
satisfy their needs, and then privately peer with them using the peering credentials
contained in the database.

We note that because this model is essentially a document database with a
well-defined schema and protocols, it can rely to a large extent on state-of-the-art
solutions for matters of reliability, scalability, monitoring and others. For example,
the underlying DBMS may support replication out of the box, allowing the broker
to scale to large amounts of consumers and providers with little additional technical
effort.

Ancillary services can also be envisaged besides the already mentioned au-
thentication service. To name a few, consumers will most likely benefit from a
Web-based UI where they can interactively browse the commercial offerings, and
broker administrators may be interested in collecting statistics from the DBMS
into a business intelligence solution to understand how stakeholders interact with
the broker. Overall, designing the "catalog" broker around a document database
makes it very easy to develop a commercial and production-ready solution.

4.3.2 Orchestrator
Recall the user story described at the beginning of this chapter. To the consumer,
orchestration is a value-added service by which optimal providers are chosen
according to some (possibly private) metrics; to the provider, it is a tool for

29

Resource brokering

Database

Broker
documents

Consumer Provider

Frontend

Catalog

3. Peering

2. Querying
(read-only)

1. Advertising
(read-write)

Figure 4.2: A conceptual model of the catalog.

Cluster
metrics

Consumer

Frontend

Orchestrator

3. Peering

1. Monitoring

Selector

Monitoring
pod

Provider

2. Filtering 2. Filtering

Figure 4.3: A conceptual model of the orchestrator.

competing with certified metrics, as well as - potentially - a security filter in front
of consumers.

We can define an orchestrator as an intermediary that operates on the control

30

Resource brokering

plane, with the primary function of enforcing some policy in the peering process
and in the distribution of workloads. This policy may take a number of forms,
ranging from optimizing metrics to authentication and authorization constraints,
but a common feature is that the orchestrator takes the additional responsibility
in actuating a policy; compare this with the catalog, which is merely a passive
component that provides non-binding suggestions.

Thus, the key component of the orchestrator is the selector, a man-in-the-middle
to Liqo peerings that "reflects" the consumer’s peering onto a number of providers.
It is the material point of enforcement, as policies are applied here to determine
what providers will receive the peering.

Policies may be defined on the provider’s side, on the consumer’s side, or both.
A provider will typically define authorization policies, that restrict consumers based
on identity information (for example, a provider may only be open to peers from
an approved organizational entity, or it may require compliance with a specific
standard). For this reason, consumers should be able to provide these metadata by
means of an authentication stage. As with the orchestrator, part of this process
will be rooted in administrative practices, while the technical solution is rather
simple - a document-based database with standardized keys may suffice, although
more complex solutions like OAuth authentication may also be viable.

Based on discussions with possible stakeholders for Liqo brokering we posit that
policies on the consumer’s side will be either compliance policies or performance
policies. For an example of the former, an organization may require servers to be
based in the European Union to comply with privacy regulations; these policies also
pertain to cluster metadata, and can be addressed as already discussed. Performance
policies like filtering for a minimum SLA on the other hand need active monitoring.
This value-added service can be provided by having the broker offload a monitoring
solution onto each provider. This solution can range from simple, custom-built
monitors to more complex and state-of-the-art solutions like Prometheus depending
on the commercial needs of the broker. No matter the solution, the broker will
need to store and continuously update these metrics in an internal database, that
the selector will need access to in order to enforce the policies.

Recall that the orchestrator model is not entirely "opaque". While the selection
and policy enforcement processes are handled by the broker, we want customers to
retain visibility into what providers their pods are being offloaded to, and vice versa,
we want a provider to know what customers it is serving. In fact, performance-wise
it is ideal for the data plane to be direct between the customer and the provider,
without going through the additional hop and potential bottleneck at the broker.
If we want to develop a scalable brokering solution it is a prerequisite that we
decouple the control plane from the data plane, so that only the control plane may
be proxied. For this reason, in the orchestrator design we envisage that customers
are peered – at least at the networking level – with the providers that serve them,

31

Resource brokering

which in turn are determined by an API that the orchestrator exposes.
From the point of view of reliability and, partly, performance, the orchestrator

is the critical point in this design, concentrating all control plane traffic. The
implementation needs to take into account strong reliability and performance needs,
and the impact of this additional hop in Kubernetes orchestration (for example,
when scaling up or down workloads) needs to be benchmarked in terms of latency.
A reliable, production-ready brokering solution should thus evaluate the use of
highly-available software components in the entire Liqo stack.

Finally, a frontend should allow cluster operators to define the peering policies
they wish to apply. We envisage this frontend as a simple Web application and REST
interface to the internal database, again with authentication and authorization
features that restrict access to one’s own peerings.

4.3.3 Aggregator

Cluster
metrics

Consumer

Aggregator

2.1. Peering
control plane

1. Monitoring

Selector

Monitoring
pod

Provider

Router

2.1. Peering
data plane

Figure 4.4: A conceptual model of the aggregator. Note the resemblance with
the orchestrator architecture, with the difference that the data plane is also routed
by the broker.

The aggregator functionality responds to the stakeholders’ need for a way to
present a unified commercial offering that is the sum - an aggregate - of contributions
of individual entities affiliated with the aggregator. Unlike the catalog and the
orchestrator, which in a sense look like transparent "marketplaces" where one can
browse individual providers, the aggregator is an opaque broker, presenting one
virtual Liqo cluster.

32

Resource brokering

If we dig deeper into the functional level, this means that the aggregator must
be opaque both on the control plane and on the data plane. In this sense, it
borrows from the control plane logic of the orchestrator (in both cases, we want
a deployment to be reflected from the broker to providers), while the data plane
logic must be such that traffic is proxied by the broker cluster and routed to the
correct provider (while in an orchestrator setup we want traffic to bypass the broker
entirely).

In addition to reflecting pods on providers, we must also aggregate the resource
description. Recall that Liqo has a ResourceRequest/ResourceOffer mechanism for
representing the amount of resources available in a cluster or engaged in a peering:
we want the aggregator to advertise not its own resources, but the sum of the
providers’ resources. For this reason, an inner "aggregator" component must exist
that polls the providers’ resources and exposes the aggregate.

Generally speaking, the aggregator must be a Liqo cluster itself, as it will need to
carry out the typical functions of a Liqo cluster - authentication, peering, replication
and so on. In addition, the aggregator needs to maintain a list of the providers that
it aggregates; ideally, this would be as simple as maintaining an outgoing peering
towards them. Finally, a production-ready design would need to have monitoring
capabilities to understand what clients are peered in and what workloads are being
accepted: generally speaking it should be possible to retrieve this data inspecting
Liqo objects from a Web frontend, with no modifications to Liqo components.

We note that although the default scheduling algorithm will work correctly, an
aggregator has more information available to better inform scheduling decisions,
notably the location of provider clusters and inter-cluster latencies. For this reason,
the implementation may want to enhance the scheduling algorithm. Collecting eg.
network latency metrics may also help to schedule pods in an efficient manner.

4.4 Implementation
We sought to develop an initial, proof-of-concept implementation of the designs in
section 4.3. The goal is to have a functional prototype that can be assessed together
with stakeholders to determine the suitability for specific edge cases, identify design
flaws early and conduct preliminary tests to spot performance bottlenecks.

We envisage brokering not as a core Liqo feature - after all, many people
and institutions nowadays use the decentralized peer-to-peer model. Rather, it
should be an optional component running on top. For this reason, we set some
implementation goals to minimize the dependency on specific Liqo versions and
features:

• Rely primarily on Liqo CRDs, rather than Liqo APIs, to interact with Liqo;

• Minimize changes to Liqo core code;

33

Resource brokering

• Where changes to Liqo are needed, design them to be of general interest,
beyond the broker user story;

• Develop tests to identify breaking changes in new Liqo releases.

We developed and tested our implementation with Liqo v0.5.0, the latest version
available at the time.

4.4.1 Catalog
At the functional level, a catalog needs to receive peering credentials and the
commercial offer of each provider cluster, store it, and send the aggregate list to
consumers when they issue a query.

The aspect of peering credentials is arguably the simpler of the two. As mentioned
in section 3, peering takes place over IP with an optional authentication step based
on a token. As such, it is sufficient for a cluster to know the provider’s IP address,
its cluster ID, and its authentication token. With this information the customer
can run liqoctl add to establish a peering, and Liqo will proceed to do the rest.

We note that while recent versions of Liqo offer both in-band and out-of-
band peering, the former requires some degree of mutual access between the
peered clusters (typically, sharing kubeconfigs), while the latter may be more
appropriate for such a public-facing scenario. For this reason we adopt the out-of-
band credentials (cluster ID, authentication URL, authentication token).

The representation of cluster resources is more complex depending on the specific
business requirements: Liqo supports sharing hardware resources with a format that
encapsulates Kubernetes’ ResourceQuotas, but a customer may also be interested in
SaaS offerings (discussed in Chapter 5) or in certified metrics for uptime/latency/etc.
Thankfully, the ResourceQuota representation is flexible enough that in principle
it can also represent immaterial resources. Indeed, ResourceQuotas are a key-value
structure with a well-defined representation for numerical values, and it is sufficient
to define a key scheme ("labels") for custom resources: for instance, a provider
may offer "brokering.liqo.io/redis": true, as long as customers recognize
"brokering.liqo.io/redis" as a meaningful resource.

We might be tempted to reuse parts of the Liqo peering logic in our catalog.
In a one-to-one peering, sharing the list of hardware resources is a substantial
part of creating the peering: after authentication is carried out and networking is
set up, the consumer creates a ResourceRequest in the provider cluster, which in
turn creates a ResourceOffer in the customer cluster to signal acceptance. (This
architecture is intended to support a resource negotiation process, as hinted by the
CR naming, but at the time of writing it is not possible to encode queries in the
ResourceRequest or to limit the resources offered.) A catalog would then need to
collect ResourceOffers from all providers, but in doing so it will need to open one

34

Resource brokering

peering for each provider. This makes for a rather unwieldy solution in terms of
resource usage, not to mention that the broker needs to run a Liqo instance (and
possibly a Kubernetes stack) exclusively for collecting ResourceOffers.

We propose an alternative, light-weight solution where we decouple the resource
advertisement from the peering process. Indeed, if we define a stand-alone protocol
for advertisements and queries, the catalog only needs to support our protocol.
Additionally, decoupling these two processes enables a range of complex resource
negotiation logics, ranging from unconditional acceptance (which might be desired
in simple, one-to-one peerings where negotiations happen on paper) to extensible
and dynamic marketplaces (which we envisage in a wide computing federation).

Our protocol conceptualizes resource offers as a multitude of "packages", each
with a set of hardware resources as well as, potentially, SaaS and other immaterial
resources. We call each "package" a plan, and a collection of plans is an offer.
This reflects the offer structure of commercial computing providers like Amazon
AWS, Azure or DigitalOcean: there are a number of offers optimized for different
workloads, and each offer has a number of plans that determine the size.

Figure 4.5: Part of the DigitalOcean catalog: note the list of offers on the left
and the list of plans on the right.

Our catalog implements, on the provider side, a REST API for CRUD1 operations
on plans. The API requires authentication via JWT2 as a security layer which

1Create, Read, Update, Delete
2JSON Web Tokens

35

Resource brokering

prevents unauthorized users from modifying offers. Through this API the provider
can publish its commercial offering and update it as required. We implement the
following methods:

• POST /authenticate: receives peering credentials and provides a JWT

• GET /offers: gets a list of offers offered by the provider

• GET /offer/<id>: gets the offer identified by an ID

• POST /offer/<id>: creates a new offer, or updates it if it exists

• DELETE /offer/<id>: deletes the offer identified by an ID

Offers are encoded with a simple JSON object. We report an example offer with
three plans:

1 {
2 "name": "Storage-optimized offer",
3 "type": "storage",
4 "description": "We designed this offer for all your storage needs.",
5 "plans": {
6 "basic": {
7 "name": "plan-basic",
8 "cost": "1.0",
9 "resources": {

10 "cpu": "1000m",
11 "memory": "2G",
12 "storage": "100G"
13 }
14 },
15 "medium": {
16 "planName": "plan-medium",
17 "planID": "medium",
18 "cost": "2.0",
19 "resources": {
20 "cpu": "2000m",
21 "memory": "4G",
22 "storage": "300G"
23 }
24 },
25 "performance": {
26 "planName": "plan-performance",
27 "planID": "performance",
28 "cost": "5.0",

36

Resource brokering

29 "resources": {
30 "cpu": "8000m",
31 "memory": "32G",
32 "storage": "1T"
33 }
34 }
35 }
36 }

We apply a similar reasoning for the customer-side interface. A traditional
approach would emulate the ResourceRequest/ResourceOffer negotiation as part of
a peering, again requiring a Liqo instance on the broker; if we decouple the peering
process we only need a mechanism for clients to query the resources available
and be informed of any changes of them. In other words, we’re looking at a
producer-subscriber scheme. We propose a simple mechanism to exchange JSON
representations of offers over a WebSocket transport with the following specification:

• When a customer first connects to the broker over WebSocket, the broker
sends a full list of providers and offers;

• When a provider creates, updates or deletes its offers, the updated list of offers
is broadcast to all subscribed customers;

• No state is associated with subscribers, so if they disconnect and reconnect (eg.
because they restart the application, or due to a temporary network failure)
the full list of offers is sent again.

As mentioned in the design stage, the catalog needs a document-based database
for persistence. The choice of persistence engine fell on NoSQL technologies, and
specifically on MongoDB. The main reason for choosing NoSQL databases is that
the schema is potentially flexible: a provider may offer resources with arbitrary
labels that may not be known to the broker, one may want to extend the project to
support more structured offers (eg. including pricing information or constraints),
and even the schema for peering credentials may conceivably change in the future.
This is complemented by the fact that we need very simple CRUD operations
on offers that do not need the complex features of SQL. Finally, we envision the
possibility for the broker to run simple queries (but still beyond the scope of
CRUD), for example to select all plans below some price threshold: MongoDB
already implements support for queries, which we wouldn’t have if for example we
used simple files for persistence.

We bridged the JSON representation of resources with the native Liqo mecha-
nisms by defining a software component that allows for resources to be read from
an arbitrary source, be it a software component or a gRPC source. Especially the

37

Resource brokering

gRPC mechanism allows for very flexible and interoperable setups, not limited to
the catalog scenario: one can envisage integration with existing resource monitoring
solutions, or applying complex policies of filtering/transformation/etc., so long
as one exposes it with a simple gRPC server. On the Go side we decoupled the
resource monitoring algorithms and defined a Go interface called ResourceReader
between it and the Liqo controller manager:

1 // ResourceUpdateNotifier represents an interface for OfferUpdater to
receive resource updates.

2 type ResourceUpdateNotifier interface {
3 // NotifyChange signals that a change in resources may have occurred.
4 NotifyChange()
5 }
6 // ResourceReader represents an interface to read the available

resources in this cluster.
7 type ResourceReader interface {
8 // ReadResources returns the resources available for usage by the

given cluster.
9 ReadResources(clusterID string) corev1.ResourceList

10 // Register sets the component that will be notified of changes.
11 Register(ResourceUpdateNotifier)
12 // RemoveClusterID removes the given clusterID from all internal

structures.
13 RemoveClusterID(clusterID string)
14 }

This interface is two-way, allowing the list of resources to be "pulled" regularly
via ReadResources but also allowing the implementation to "push" updates via
ResourceUpdateNotifier.NotifyChange() when it detects a change in resources.
It is also structured in such a way that it can be chained, so that for example one
can have a resource monitor followed by a "quota" stage (like "reserve 20% of the
total resources") and a "filtering" stage (for example, a whitelist of clusters that can
request GPUs). In general, by chaining ResourceReaders we can have arbitrarily
complex mechanisms for reading resources in software.

Another key component for interoperability, as already mentioned, is gRPC sup-
port. We call LocalResourceMonitor the ResourceReader implementation that
reads the hardware resources present in the cluster, and ExternalResourceMonitor
the ResourceReader implementation that bridges Liqo with a gRPC server. The
Protobuf schema definition looks very similar to the Go interface, where the
ResourceUpdateNotifier has been replaced with a gRPC stream:

38

Resource brokering

1 syntax="proto3";
2 option go_package = "./resourcemonitors";
3
4 // This interface is a gRPC translation of the ResourceReader Go

interface.
5 service resource_reader {
6 rpc ReadResources (ReadRequest) returns (ReadResponse);
7 rpc RemoveCluster (RemoveRequest) returns (RemoveResponse);
8 rpc Subscribe (SubscribeRequest) returns (stream UpdateNotification);
9 }

10
11 // A request to read resources to be offered to a cluster. The cluster

ID is passed so that we don’t offer a cluster’s
12 // resources to itself.
13 message ReadRequest {
14 string originator = 1;
15 }
16
17 // A response representing a Kubernetes ResourceList. Quantities are

represented as string values (eg. "ram": "1Gi").
18 message ReadResponse {
19 map<string, string> resources = 1;
20 }
21
22 // A request to remove a cluster from a reader’s data structures.
23 message RemoveRequest {
24 string cluster = 1;
25 }
26
27 message RemoveResponse {
28 }
29
30 // A request to subscribe to a stream of notifications representing

possible changes in resources.
31 message SubscribeRequest {
32 }
33
34 message UpdateNotification {
35 }

Our work on a headless catalog implementation was complemented by the
development of a Web-based frontend by my colleague Alessandro Cannarella in
[1]. The use of technologies like JSON and WebSocket that are primarily oriented
to the Web enabled the extension, which is written in TypeScript with the React
framework, to access the APIs with very little code.

39

Resource brokering

Figure 4.6: The Web frontend for the catalog, courtesy of Alessandro Cannarella.

4.4.2 Orchestrator

The core feature of the orchestrator is to accept workloads and offload them in turn
to select providers. If we seek to achieve this result with minimal complexity, we
can take advantage of the fact that offloading is itself a core Liqo feature: ideally, we
should be able to merely configure Liqo using existing CRDs, without introducing
additional custom logic in the control plane except for the choice of providers.

At the same time, it is a defining feature of the orchestrator that the customer’s
peering is decoupled, with the control plane being mediated by the orchestrator
and subject to orchestration policies, and the data plane being a direct connection
to the provider. If we look at the Liqo architecture we see that this decoupling is
partly in place in the form of having a software component dedicated to Network
Address Translation, the network manager. But let us proceed in order.

It is simple enough to accept workloads from consumers and re-offload them
to select providers. The logical solution, a “daisy chain” of NamespaceOffloading
objects (one on the consumer cluster offloading to the orchestrator, and one on the
orchestrator reflecting to providers), works out of the box in Liqo: we just need a
software component to detect when new namespaces are offloaded to the broker
cluster, and create a matching NamespaceOffloading with an appropriate selector.
Specifically, this component will use the orchestrator brokering algorithm (in our
case, a simple whitelist) to get a list of cluster IDs that are suitable for re-offloading
a namespace, and encode that into the selector for the NamespaceOffloading.

Now that offloading is in place we need to set up routing between the consumer

40

Resource brokering

Consumer

Namespace

NamespaceOffloading

Broker

Namespace

NamespaceOffloading

Provider

Namespace

Figure 4.7: A daisy chain of NamespaceOffloadings.

and the provider’s pods. Let us review how routing works in Liqo.
A Liqo cluster where pods are running will assign them IPs from a subnet called

the "pod CIDR". This is effectively a local subnet (indeed, it is 10.0.0.0/24 by
default): it has no meaning outside of the cluster, and isn’t publically routable.
At the same time, we want a cluster to be able to route packets to a pod that
it has offloaded. This is resolved by performing Network Address Translation in
the IPAM plugin: a cluster’s network manager will allocate a new private subnet
and map it to each peered cluster’s pod CIDR. This mapping is stored in the
appropriately named NatMapping CRD. This ensures that the cluster can refer
unambiguously to any pod, local or offloaded.

When a pod is offloaded, the virtual kubelet creates a representation of this pod
in the local cluster in the form of a ShadowPod. The IP address assigned to the
ShadowPod is given by querying the network manager with the remote cluster ID
and the remote IP, and the translation is a simple matter of replacing the network
prefix with the local pod CIDR. Vice versa, when packets are routed the network
manager will perform the inverse translation, rewriting the local CIDR with the
remote one.

For example, say we are peered with a cluster clusterID=f2c3... whose
remote pod CIDR is 10.0.0.0/24. The network manager may assign the local pod
CIDR 10.0.1.0/24, and associate the mapping “source = 10.0.1.0/24, destination =
10.0.0.0/24, cluster ID = f2c3...” CIDR with the cluster ID. When we offload a
pod, the remote cluster will assign it (for example) the IP 10.0.0.18, the virtual
kubelet will ask the network manager to translate IP=10.0.0.18 in the context of
clusterID=f2c3..., and the network manager will reply with 10.0.1.18, as it will
replace the 24 subnet bits with 10.0.1.

More precisely, the IPAM plugin exposes a gRPC API on the local network
manager. Let us look at the API methods:

41

Resource brokering

Pod
10.0.0.18

ShadowPod
10.0.1.18

Customer
Pod CIDR: 10.0.100.0/24

Provider
Pod CIDR: 10.0.0.0/24

Pod
10.0.100.3

Figure 4.8: Address translation between two clusters.

1 syntax="proto3";
2 option go_package = "./ipam";
3
4 service ipam {
5 rpc MapEndpointIP (MapRequest) returns (MapResponse);
6 rpc UnmapEndpointIP (UnmapRequest) returns (UnmapResponse);
7 // ...
8 }
9

10 message MapRequest {
11 string clusterID = 1;
12 string ip = 2;
13 }
14
15 message MapResponse {
16 string ip = 1;
17 }
18
19 message UnmapRequest {
20 string clusterID = 1;
21 string ip = 2;
22 }
23
24 message UnmapResponse {}

So far we described how address translation works in a traditional, peer-to-peer
setup. In such cases, the local network manager has full visibility over the peering
topology, so it can handle address translation correctly. But what happens when
we introduce a control-plane intermediary?

If we try to use the local network manager as-is we will quickly find that address
translation fails. For clarity, let us describe an example scenario and trace the
network request step by step. We have a customer cluster A, an orchestrator cluster

42

Resource brokering

B, and a provider cluster C, where the customer offloads a pod on B and the
orchestrator unconditionally offloads it to C. Each of these clusters has a pod CIDR
of 10.0.0.0/24; the network manager of A remaps B’s pod CIDR to 10.0.1.0/24,
and likewise the network manager of B remaps C’s pod CIDR to 10.0.1.0/24.

1. The "real" pod, the actual binary, runs on C. Its assigned pod IP is 10.0.0.1.

2. The virtual kubelet running on C, in the namespace liqo-tenant-B, queries
C’s network manager, which translates 10.0.0.1 to 10.0.1.1.

3. The same virtual kubelet assigns the IP 10.0.1.1 to the local shadow pod. The
virtual kubelet running on B then queries B’s network manager for 10.0.1.1,
which throws an error because the IP does not belong to the pod CIDR of B.
The problem is that when we remap an IP we are again using a local CIDR
which is not valid in other clusters.

We will present a solution to this problem later in this thesis, but for now let
us take a step back. There is a fundamental problem: we introduced two layers
of address translation with the orchestrator as a data plane intermediary, which
is exactly the scenario we seek to avoid. We must therefore translate the address
only once.

We need to have direct Liqo networking between the customer and the provider,
which comes with creating a peering between the two: the customer’s network
manager will then know about the provider’s pod CIDR and be able to translate
from and to it. However, we are not interested in the full feature set of peerings, just
the networking - we won’t directly offload pods to this cluster, as the orchestrator
will take care of that for us.

We are almost done - we have now achieved separation of the control plane
(through the peering to the broker) and the data plane (through the direct peering),
and it was simply a matter of reusing existing Liqo resources. We need two more
pieces to this puzzle: first, a way to automatically create the direct peering to
providers, and second, a way to tell Liqo to use the correct data plane.

As for peering with providers we can imagine a number of solutions. Out of the
box Liqo provides some control over the creation of peerings, largely preferring a
manual approach: it implements a discovery API through which new clusters can
be detected either on a local network (via mDNS) or over the Internet (via DNS),
and can automatically peer with these clusters via a configuration flag. In our
testbed scenario with a small number of clusters we used mDNS-based discovery
with automatic joining, but we note that this approach does not scale well as it
effectively results in a full mesh topology that does not scale well as more clusters
are added. A possible direction for extending on our work would be to leverage the
DNS discovery API so that clients are dynamically peered to only those providers

43

Resource brokering

that they actually need; this approach also comes with its problems, as the interface
does not include a method to stop peerings, and for this reason the development of
a new light-weight protocol is suggested.

We also note that at the time of writing authentication is stubbed at the peering
level. While this aspect can be overlooked while investigating the resource brokering
concept, a production environment needs to have solid authentication in place,
which can be another possible direction for extending Liqo to multi-tenant use
cases.

As for the the choice of data plane, this ultimately comes down to making
IPAM aware of which cluster the pod is actually running on. Where a standard
Liqo assumes that the "next hop" (i.e. the other side of a peering) is the one
where the pod runs, we add a mechanism to detect the provider’s coordinates and
use those for address translation. More precisely, for each offloaded pod we set
a label broker.liqo.io/root-cid that defines the "final" cluster ID, and a label
broker.liqo.io/root-ip, that defines the pod IP. This label is only set by the
virtual kubelet if the pod is "real", i.e. not a shadow pod. From there on, the
existing Liqo code propagates this label upstream and makes it reach the user’s
cluster. The user runs a modified version of the virtual kubelet with a mechanism
that detects this label, and when it is present it is explicitly passed to the IPAM.
Thus we achieved support for brokering - in fact, "brokering chains" of arbitrary
depth, where the label can bubble upstream as many times as needed - while
keeping "backwards compatibility" with 1-to-1 peerings.

Algorithm 1 Label propagation in the Orchestrator VK
const rootIPLabel ← "brokering.liqo.io/root-ip"
const rootCIDLabel ← "brokering.liqo.io/root-cid"
if remotePod is of type ShadowPod then

localPod.Labels[rootIPLabel] ←remotePod.Labels[rootIPLabel]
localPod.Labels[rootCIDLabel] ←remotePod.Labels[rootCIDLabel]

else
localPod.Labels[rootIPLabel] ←remotePod.PodIP
localPod.Labels[rootCIDLabel] ←remoteCluster.ID

end if

4.4.3 Aggregator
We note that the aggregator’s main external function, the aggregation of resources,
is in fact also a problem that we already solved: we can leverage the ResourceReader
API (and specifically, the gRPC API) to create a custom component that computes
the sum of the providers’ resources, optionally with additional policies (eg. quotas,

44

Resource brokering

oversubscription). The component need only broadcast the read requests to all
providers, and vice versa join each provider’s push channels into one. In principle,
this operation can be carried out by a separate component without the need for
Liqo, exactly because we decoupled the resource interfaces from Liqo operation.

On the other hand, reusing the orchestrator’s architecture means that we
must run Liqo on the broker cluster: recall that at its core an orchestrator
works by accepting pods and rescheduling them on other clusters by means of
NamespaceOffloadings. We can keep this architecture in place, and only deal
with the change in the address translation mechanism. This requires some thought,
as we now need two layers of address translation where we previously only had one.

We introduced this problem in 4.3.2. At its core, the problem occurs in the
address translation stage that is carried out in the virtual kubelet. The virtual
kubelet must be able to distinguish between pods that are "local", i.e. running
directly on the peered cluster, and those that aren’t, because they are further
offloaded. Fortunately, this distinction can be carried out at the networking stage,
without querying the Kubernetes API: recall that Kubernetes distributions define
a "pod CIDR" from which pods are assigned IPs, and the Liqo IPAM is aware of
its own cluster’s CIDR. This means that at a high level we can modify the address
translation logic to perform the following check: "if the pod is not part of the
(peer’s) pod CIDR, then resolve it in the peer’s IPAM, otherwise, resolve it in the
local IPAM as usual."

Algorithm 2 Address translation in the Aggregator VK
if originalIP ∈ peerIPAM.podCIDR then

translatedIP← peerIPAM.Translate(originalIP, localCluster.ID)
else

translatedIP← localIPAM.Translate(originalIP, peerCluster.ID)
end if

Note that Algorithm 2 requires us to have a connection to the peer IPAM service,
which the peer must expose to its clients’ virtual kubelets. The peer IPAM must
also implement a function BelongsToPodCIDR, as the pod CIDR by itself is only
known in the local cluster and isn’t shared. Other than that, this implementation
reuses the existing address translation functions, as well as the gRPC interface to
invoke them.

4.5 Future work
In this chapter we laid the conceptual groundwork for Liqo-based Kubernetes
brokering, as well as implementations for each of the three kinds of brokers.

45

Resource brokering

These implementations are at a proof-of-concept level, demonstrating the key
ideas behind brokering: one possible direction for future work is refining them for
production usage, but they also open the door to many interesting improvements
and advancements.

4.5.1 Catalog
The catalog being the simplest solution of the three, it is also the closest to a
production-ready implementation. We note that in a federation users will have to
agree on a common format to represent their computing resources: the schema
we suggest can represent common resources like CPU percentage and RAM usage
with the Kubernetes standard, but more exotic resources like GPUs or FPGA
accelerators do not have a standard representation.

We also note that the Web dashboard that we developed does not currently
feature authentication or authorization. On the provider side, because Liqo partially
provides a public key infrastructure (PKI) it is possible in principle for a cluster
to authenticate itself against the catalog and demonstrate its identity; on the
consumer side such a feature may be trivially implemented in the Web interface
for purposes like billing and providing paid access to premium features.

The catalog also relies on self-reported information, which is often enough for
a marketplace but not always: as mentioned in the introduction users may also
be interested in certified measurements and KPI. With the current architecture it
is quite simple to add such a feature, as the catalog may offload pods acting as
"metrics agents" on the remote clusters. Such pods would read available resources
but also for example bandwidth, latency and uptime, and report them to the
central catalog.

4.5.2 Orchestrator
As already mentioned in the respective chapter, the orchestrator is structured in
such a way that a full mesh of point-to-point VPNs is created. This greatly hinders
scalability to more than a few tens of hosts, causing a lot of "background noise"
on the underlying network. An immediate improvement would be thus to design
a protocol (eg. a simple exchange of cluster credentials over Protobuf) for the
orchestrator to communicate which providers are hosting the customer’s pods and
thus should be peered with the customer, avoiding unused connections. It would
also be interesting to investigate how to move from a point-to-point paradigm to a
VPN "concentrator" where the client uses one VPN for multiple providers, reducing
the communication and encryption overhead in using multiple clusters. However,
such a work would need to be done at the Liqo level, as it is more fundamental
than the specific use case of brokering.

46

Resource brokering

We also note that the propagation of labels upstream from the provider to the
customer relies on an undocumented behavior of the virtual kubelet which also
causes a lot of back-and-forth changes in the Kubernetes API server. Again, this
behaviour is acceptable in a proof-of-concept deployment with a limited number of
hosts and pods, but it is an inefficient patch that hinders scalability past a certain
number of offloaded resources. In a real deployment the virtual kubelet should be
optimized for this mode of operation that was not previously exploited.

Finally, we note that our proof of concept demonstrates a simple usage of the
orchestrator. An interesting showcase of the strengths of the orchestrator model
would be to demonstrate its usage in enforcing security policies, for example by
authenticating and authorizing consumers or by whitelisting permissible workloads.

4.5.3 Aggregator
The aggregator is implemented using existing Liqo primitives. While this makes
it relatively easy to overlay on top of an existing Liqo installation, it also limits
the visibility that the aggregator has into the resources that it provides, reducing
each provider cluster to the big-node abstraction. A design more specialized for
aggregator use cases would be able to take into account the internal topology of
these clusters in optimizing the allocation of pods and resources, for example by
reducing the latency between tightly coupled pods or by ensuring that critical pods
are replicated across different availability zones.

In this regard, we note that the Kubernetes scheduler kube-scheduler could
also be extended with plugins to make it "Liqo-aware", i.e. take into consideration
performance metrics from Liqo when determining the best node for a pod.

In conclusion, our proof of concept demonstrates the fundamental mechanism
of multi-cluster orchestration and proves that it can be done in the framework of
Liqo. Although more optimal implementations can be conceived, they come with a
trade-off in terms of impact to the Liqo codebase. As the Liqo project has taken
the direction of decoupling its components to allow for exotic and custom use cases,
we foresee that a reimplementation of the broker in light of this new architecture
may be both cleaner and more performant.

47

Chapter 5

Service brokering

In this chapter we aim to approach the general topic of brokering from a different
perspective. In Chapter 4 we looked at how one can use Kubernetes to broker
resources, more specifically computing resources - either raw (some amount of CPU
time, RAM, etc.) or packaged (as is the case with the broker dashboard). There
exists a trend in the Kubernetes, and in the wider cloud computing ecosystem, to
solve a similar problem at a higher level, notably service brokering.

The "30.000 foot view" of this process is that it provides an easy way to bridge
SaaS-like commercial offerings with the customers’ workloads in a unified, provider-
agnostic way. Thus, it represents a way to interconnect the global ecosystem of
services which is currently fragmented by a multitude of technologies and provider-
specific APIs by virtue of a simple, generic interface.

Within the general topic of service brokering we can find a number of solutions
with various degrees of maturity:

• GAIA-X Federation Services (GXFS);

• International Data Spaces (IDS);

• Open Service Broker API (OSBAPI).

In this chapter we will present and evaluate each of these solutions, highlighting
their strengths and weaknesses, then give an overview of how these concepts can
be integrated in the Liqo software to offer a full range of brokering capabilities.

5.1 Use cases
The cloud computing ecosystem features a vast number of SaaS providers. For
example, if we look at a common RDBMS like MySQL/MariaDB, we can choose
between:

48

Service brokering

• Amazon RDS (Relational Database Service) for MySQL ??;

• Azure Database for MySQL ??;

• Google Cloud SQL for MySQL ??;

• Various offerings from smaller cloud providers like Alicloud, OVH and others.

Each of these services has a different way to create a new instance: all of them
support this via an HTML interface, AWS does this programmatically via its
CloudFormation product, Azure has the Azure Resource Manager, GCP has an
API and CLI of its own, and so on. Even so-called "infrastructure as code" solutions
often don’t have a unified model of hosted resources, and are instead designed
around the principle of managing one’s own databases: for instance, the popular
IoC solution Terraform by Hashicorp has a specific resource type for Amazon RDS
and one for Azure Database.

The absence of a common API is an important factor in the phenomenon of
"vendor lock-in", where a consumer that wants to acquire compute resources is
pushed towards using a single vendor for the entire stack due to the fact that
each component is tightly coupled to its vendor’s implementation and has poor
interoperability. This can make it difficult to switch vendors or migrate to a
different platform, as the customer must either recreate their entire stack from
scratch or risk data loss and other disruptions. Vendor lock-in is a major issue for
those looking to invest in SaaS solutions, and can significantly limit the flexibility
of their operations.

Interoperability in computing resources has thus become a key point in the cloud
computing strategy of the European Union commonly known as GAIA-X. This
initiative is driven by the need for the EU to have sovereignty over its data and
digital infrastructure, and it aims to create an open and trusted digital ecosystem
for data and services. To this end, GAIA-X supports the development of open
APIs for cloud services, which will allow for vendors to build plug-and-play cloud
services that can be used across vendors, thus enabling users to switch providers
with minimal disruption.

5.2 GAIA-X Federation Services (GXFS)
The GAIA-X paradigm is based on digital ecosystems called "GAIA-X Federations".
In these federated systems, multiple actors are interconnected and can exchange
data and services in a safe and trustworthy manner. There are multiple facets to
this interconnection and multiple facilitators: key features of GAIA-X Federations
range from compliance to identity management to data sovereignty. Such features
as a whole are called GAIA-X Federation Services, or GXFS for short: they are

49

Service brokering

functionalities provided by the federation to facilitate the exchange of data between
participants.

The GAIA-X Federation Services whitepaper ?? identifies a first set of funda-
mental services, notably:

• Identity and Trust Services, enabling the concepts of authentication and
authorization in a decentralized environment;

• Federated Catalogue, enabling the discovery and selection of data providers
within the local federation;

• Data Sovereignty Services, encoding data exchanges as transactions that can
be logged and negotiated in the form of data contracts;

• Compliance, ensuring that participants adhere to a common framework defined
by the federator.

The Federated Catalogue is one of the more active areas of research in this
field. Driven by the need to interconnect and discover services in a federation,
the GAIA-X project has produced a solid specification for federated catalogues.
Notably, the Federated Catalogue is based on the concept of "self-descriptions",
which are a standardized way for participants to describe their identity and features.

At the functional level, self-descriptions are specific "claims" about one’s service
that are validated and optionally monitored by a trusted party (respectively creating
a Verifiable Credential and a Verifiable Presentation). At the implementation
level, Verifiable Credentials are subject-predicate-object triples about RDF entities,
cryptographically signed as a proof graph and wrapped in a JSON-LD object. This
object, in turn, is part of a knowledge graph that resides on the catalogue and may
be consumed by participants using a REST API.

Here is an example of a fully fleshed out JSON self-description, courtesy of
GAIA-X:

1 {
2 "@context": ["https://www.w3.org/2018/credentials/v1", "https://

registry.gaia-x.eu/v2206/api/shape"],
3 "type": ["VerifiableCredential", "LegalPerson"],
4 "id": "https://compliance.gaia-x.eu/.well-known/participant.json",
5 "issuer": "did:web:compliance.gaia-x.eu",
6 "issuanceDate": "2022-09-23T23:23:23.235Z",
7 "credentialSubject": {
8 "id": "did:web:compliance.gaia-x.eu",
9 "gx-participant:name": "Gaia-X AISBL",

10 "gx-participant:legalName": "Gaia-X European Association for Data
and Cloud AISBL",

50

Service brokering

Figure 5.1: A graphical frontend for a GAIA-X Federated Catalogue developed by
French Gaia-X Federated Services (GXFS-FR) initiative. The catalogue features
more than 170 services across 69 locations and 16 countries.

11 "gx-participant:registrationNumber": {
12 "gx-participant:registrationNumberType": "local",
13 "gx-participant:registrationNumberNumber": "0762747721"
14 },
15 "gx-participant:headquarterAddress": {
16 "gx-participant:addressCountryCode": "BE",

51

Service brokering

17 "gx-participant:addressCode": "BE-BRU",
18 "gx-participant:streetAddress": "Avenue des Arts 6-9",
19 "gx-participant:postalCode": "1210"
20 },
21 "gx-participant:legalAddress": {
22 "gx-participant:addressCountryCode": "BE",
23 "gx-participant:addressCode": "BE-BRU",
24 "gx-participant:streetAddress": "Avenue des Arts 6-9",
25 "gx-participant:postalCode": "1210"
26 },
27 "gx-participant:termsAndConditions": "70

c1d713215f95191a11d38fe2341faed27d19e083917bc8732ca4fea4976700"
28 },
29 "proof": {
30 "type": "JsonWebSignature2020",
31 "created": "2022-10-01T13:02:09.771Z",
32 "proofPurpose": "assertionMethod",
33 "verificationMethod": "did:web:compliance.gaia-x.eu",
34 "jws": "eyJhb..."
35 }
36 }

We see that this self-description asserts some machine-readable facts about
a credentialSubject (notably, its legal identity) and provides a cryptographic
signature in the form of a JWS (JSON Web Signature; in this case, it wraps a
SHA256 hash and an RSA signature).

We observe that the concept of the GAIA-X Federated Catalogue is extremely
extensible, and can provide a variety of brokering functionalities to a GAIA-X
ecosystem. Participants use a well-defined, standard API to assert arbitrary facts
about themselves, and the catalogue federates them to enable discoverability. In
this sense, the Federated Catalogue is much more powerful than a service broker,
being able to represent arbitrary relations between entities in its ontology and to
verify them with trusted parties using cryptographic signing. However, at the time
of writing there are regrettably no open source implementations of this federation
service that we could deploy to demonstrate these concepts in practice.

In conclusion we look to GAIA-X Federation Services as a promising and
flexible platform that offers both an important use case for brokering as well as a
strong theoretical groundwork regarding the role of federators and their interfaces.
Integrating brokering features with the notion of Self-Descriptions and of Federated
Catalogue are a key challenge for federators that want to compete in the GAIA-X
landscape, which today features many major players of the cloud economy in the
European Union.

52

Service brokering

5.3 International Data Spaces (IDS)
The International Data Spaces Association (IDSA) is a non-profit organization
that includes more than 130 companies based in 22 countries across the European
Union and the world. It is the primary developer of the International Data Spaces
model for secure and trusted data sharing, providing reference architectures and
implementations, a governance model and continuous feedback based on use cases
from the industry.

The founding value of the IDS model is data sovereignty, that is, an infrastructure
in which data exchange is trusted and bound by usage restrictions with a view to
enabling a data economy. Each datum is accompanied by metadata that describes
its nature and the usage policies that apply to it. At all levels of the data value
chain, a technical infrastructure facilitates contractual agreement on the exchange of
data and enforces the policies specified in contracts. These may regulate operations
like the processing, linkage or analysis of the data referred therein, as well as its
visibility.

At a technical level, we regard inter-cluster brokering as a building block that
can enable data sovereignty solutions. Notably, we envision a broker that acts not
only as an active exchange of computing-related metrics and as a marketplace,
but also as a "firewall" of sorts that can apply intelligent policies to select which
consumers are paired with which providers. The broker becomes a key part to the
data space ecosystem that can apply security policies, enhancing the data space
with a stronger security posture and increased trust in the system. For a concrete
example, imagine a data space where a hospital seeks to share sensitive health
data with select academic users for the purposes of carrying out a scientific study.
The broker can enforce a whitelist of institutions that are in compliance with the
appropriate legislative and technical requirements, thus making it simpler to fulfull
compliance obligations in the distribution of sensitive data. Likewise, the broker
can act as a smart filter for parameters like data privacy, licensing permissions and
so on.

The author carried out a review of the IDS ecosystem in April 2019 as part
of an internship at TOP-IX (Torino Piemonte Internet Exchange, the IXP for
Northwest Italy) focused on practical use cases of data spaces. A minimal, internal
deployment (so-called "Minimum Viable Data Space") was successfully carried out,
with a file resource being exchanged between two entities mediated by a broker and
a certification authority, using reference software implementations developed by
IDSA; we note that other implementations exist, eg. the file exchange gateway has a
mainstream implementation called Eclipse Dataspace Connector ("Connector" is the
official name for the file exchange gateway software that is run by all participants),
but these implementations were not tested as the scope of the demonstration was
rather to assess the theoretical capabilities of the IDS architecture. Following the

53

Service brokering

Figure 5.2: A representation of the International Data Services architecture. Data
spaces enable multiple companies and cloud to exchange data with one another,
creating complex topologies of data exchanges that give rise to data value chains.
This high-level overview does not include intermediaries such as authentication
providers and brokers. Source: International Data Spaces Reference Architecture
Model. Licensed under CC-BY 4.0.

demonstration, the author had the opportunity to meet with representatives of
IDSA to exchange feedback related to the pilot deployment as well as the current
and future state of the IDS architecture. TOP-IX also took part to these meetings
as an IDSA consortium member and stakeholder.

The IDS ecosystem features a "broker" entity that acts as a registry of assets
available in the local data space. Constituted of a MongoDB database with an
HTTP frontend, the broker allows machines and (optionally) humans to alterna-
tively register a list of resources available on some Connector in the network, or
browse the list of resources and fetch connection details to request the resource from
the Connector where it is stored. We note that there were some technical difficulties
in deploying the reference implementation of the broker, but the demonstration was
eventually successful in exercising both the request and the response methods in
the Minimum Viable Data Space. No other implementations of the broker appear
to be publicly available.

One major shortcoming of the IDS architecture was identified in the lack of
substantial support for representing dynamic data such as the result of queries:
while this scenario is outlined in the IDS whitepaper, it is poorly defined and
not supported in any publicly available implementation of the Connector. This
reflects the general design of data spaces as a technical infrastructure that augments
traditional file sharing services with machine-readable metadata like descriptions,
licenses and usage policies - a design that in its current form poorly suits the modern
need for dynamic data like refreshable documents or the results of queries. Indeed,
such dynamic data endpoints are shoehorned into the existing structure as being

54

Service brokering

Figure 5.3: A closer look into how two entities, a "data owner" and a "data user",
exchange data over International Data Spaces. Each entity uses a Connector to
communicate with IDS participants and intermediaries, of which there are several
types. This chapter looks at the "broker service provider", which data owners can
publish metadata to and data users can search metadata on. Source: International
Data Spaces Reference Architecture Model. Licensed under CC-BY 4.0.

static assets that contain configuration and credentials to access an external API
endpoint (not proxied via the Connector). There are some obvious disadvantages
to this, notably that the Connector is effectively unable to exercise continuous
control over the consumption of data, which is one of the key proposition of data
spaces. We note however that the IDS architecture may be organically extended
by adding a new type of datum that properly represents dynamic data and that is
effectively controlled by the Connector..

The possibility of regulating the data exchange at the network layer in IDS
data spaces was also investigated by TOP-IX. The goal is to provide network-level
guarantees, such as ensuring that the traffic does not leave the European Union or
that it is routed through well-known hosts and Internet exchange points. The IDS
architecture does not allow for such a role in its current iteration, as it encodes
data usage policies at ISO/OSI layer 7 ("Application") and enforces them at layer
4 ("Transport") with no control over IP routing. In practice this means that data
exchanges take place over HTTPS with best-effort routing, Connectors aren’t able

55

Service brokering

to communicate routing policies, and there is no intermediary with the specific
goal of enabling routing policies. Recalling that data spaces exchange either files
or URLs with metadata, we note that such a mechanism could be introduced by
hosting assets on IPs that are only routable over a trusted VLAN/VPN or similar
solution, but this is a non-standard mechanism that requires specific client-side
support and is not generally supported by the IDS ecosystem. Rather, such a
solution would have to be discussed with IDS stakeholders for possible inclusion in
a future iteration of the IDS whitepaper.

5.4 Open Service Broker
The Open Service Broker API is somewhat heterogeneous to the other two solutions
proposed here. Unlike GAIA-X and International Data Spaces, which are wide-
ranging projects that envision an ecosystem of some kind (a computing ecosystem
for GAIA-X and a data ecosystem for IDS), the Open Service Broker API is more
modest, defining an HTTPS interface with which SaaS solutions can be purchased
and used interoperably.

The Open Service Broker API exists to address the ever-increasing variance in
APIs for cloud-native solutions. By this, we mean that although many PaaS and
SaaS platforms may provide the same core service, each has its own interface to
access service metadata, provision and tear down the resources they offer, often
with each interface being incompatible with another provider’s. This contributes to
vendor lock-in, which can increase operational costs by hindering interoperability
with cheaper providers, as well as increase the inherent complexity of the cloud-
native software ecosystem. For example, suppose that we want to provision a small
MySQL database on four major cloud providers from a Python API. Our scripts
may look like this:

1 # Amazon RDS
2
3 import boto3
4
5 rds = boto3.client(’rds’)
6
7 rds.create_db_instance(
8 DBInstanceIdentifier=’my-mysql-db’,
9 Engine=’mysql’,

10 DBInstanceClass=’db.t2.micro’,
11 MasterUsername=’admin’,
12 MasterUserPassword=’mypassword’,
13 AllocatedStorage=20

56

Service brokering

14)

1 # Google Cloud Platform
2
3 from google.cloud import sql_v1beta4
4 from google.oauth2 import service_account
5
6 creds = service_account.Credentials.from_service_account_file(’path/to/

creds.json’)
7 client = sql_v1beta4.CloudSqlInstancesServiceClient(credentials=creds)
8
9 instance_body = {

10 "region": "us-central1",
11 "database_version": "MYSQL_5_7",
12 "settings": {
13 "tier": "db-f1-micro",
14 "backupConfiguration": {
15 "enabled": True,
16 "binaryLogEnabled": False
17 }
18 }
19 }
20 instance = client.instances().insert(project=’my-project’, body=

instance_body).execute()

1 # Microsoft Azure
2
3 import os
4 from azure.identity import DefaultAzureCredential
5 from azure.mgmt.rdbms.mysql import MySQLManagementClient
6 from azure.mgmt.rdbms.mysql.models import ServerForCreate
7
8 credential = DefaultAzureCredential()
9 client = MySQLManagementClient(credential, subscription_id=’my-

subscription-id’)
10
11 server = ServerForCreate(
12 name=’my-mysql-server’,
13 administrator_login=’admin’,
14 administrator_login_password=’mypassword’,
15 location=’eastus’,
16 sku={

57

Service brokering

17 ’name’: ’GP_Gen5_2’,
18 ’tier’: ’GeneralPurpose’,
19 ’family’: ’Gen5’,
20 ’capacity’: 2
21 },
22 storage_profile={
23 ’storage_mb’: 5120
24 }
25)
26
27 client.servers.create(’my-resource-group’, ’my-mysql-server’, server)

1 # AliCloud
2
3 import openapi_client
4 from openapi_client.api_client import ApiClient
5 from openapi_client.configuration import Configuration
6 from openapi_client.api import rds_api
7
8 config = Configuration()
9 config.access_key = ’my-access-key’

10 config.access_secret = ’my-access-secret’
11 config.endpoint = ’https://rds.aliyuncs.com/’
12
13 api_client = ApiClient(configuration=config)
14 api_instance = rds_api.RdsApi(api_client)
15
16 instance_body = {
17 ’DBInstanceDescription’: ’My MySQL database’,
18 ’Engine’: ’MySQL’,
19 ’EngineVersion’: ’5.7’,
20 ’DBInstanceClass’: ’rds.mysql.t1.small’,
21 ’DBInstanceStorage’: 20,
22 ’PayType’: ’Postpaid’
23 }
24 api_instance.create_db_instance(body=instance_body)

We clearly see that even a simple, common operation like provisioning a database
instance takes very different forms - not due to conceptual differences, but merely
due to different boilerplate. A business with an Azure stack may not easily extend
its scripts to provision AWS resources, and vice versa.

The goal of the Open Service Broker API is to overcome these formal differences
by defining a common API for service providers. Through this API, consumers can

58

Service brokering

browse the commercial offer of several SaaS providers at the same time, provision
and deprovision instances, and connect these with their stack. The provider-side
endpoint is called the Service Broker. This creates a naming inconsistency with
the broker role described so far, i.e. an aggregator of metadata about computing
providers: throughout this chapter we will refer to the former as a Service Broker,
and the latter as an aggregator broker. Because Service Broker descriptions are
interoperable, an aggregator broker is a viable and desirable role, fulfilling the need
for a marketplace of SaaS offers.

Customer

OSB API
translation layer

Figure 5.4: A representation of the Open Service Broker architecture, represented
here with Kubernetes resources. Through the Open Service Broker API, customers
can provision resources (pods) that are exposed in the form of services with
credentials (secrets).

Let us briefly go through the main methods of the Open Service Broker API.
The lifecycle looks like this, where each method is a REST call with a well-defined
JSON schema:

1. Fetching the catalog from the service broker;

2. Provisioning new instances;

3. Connecting and disconnecting instances from applications;

4. Deprovisioning instances.

At a high level, catalogs are collections of services (an application with some
functionality, e.g. a MySQL database) which themselves are in a one-to-many
relationship with plans (a size for the application, eg. "small: 1 GB"). Both
human-readable and machine-readable metadata is associated with each service
and plan, which can be either descriptions or pricing information.

59

Service brokering

New instances of a service can be purchased and provisioned or deprovisioned
with a PUT and DELETE call respectively. This instructs the provider to instantiate
the actual resource that provides a service, eg. a virtual machine or a pod.

Finally, consumers are able to connect to service instances by a process called
"binding". Consumers can instantiate a binding for a resource and receive what is
typically an endpoint together with a set of credentials for the underlying protocol
spoken by the application (eg. the MySQL client/server protocol in our case).

With this generic mechanism, consumers and providers are effectively able to
discover and purchase SaaS resources in a provider-agnostic way, with seamless
integration with potentially hundreds of providers and a rather simple API.

There are a number of products implementing the Open Service Broker API. Of
particular interest to us is the Kubernetes Special Interest Group for the Service
Catalog. The Service Catalog implements the Open Service Broker API translating
API calls into deployments (to provision instances), services and secrets (to connect
external application to the provisioned instances). We note that although the
project saw some momentum and adoption by large customers like SAP and Orange
France, it was discontinued by the Kubernetes project in May 2022.

60

Chapter 6

Evaluation

Having described the functional aspects of the proposed architectures and imple-
mentations of resource brokers, we now wish to characterize their performance
profile. Specifically, during the design phase we noticed that some broker architec-
tures introduce an additional hop on the control and the data plane; we wish to
characterize the performance penalty thus introduced, both in terms of apparent
scalability and of quantitative changes in latency on specific operations.

Because we are mainly interested in network latency measurements, we use the
simplest broker topology - one provider, one broker, one consumer, on three different
virtual machines. We note that tests with a larger number of providers, brokers or
consumers may be more of interest when benchmarking brokering algorithms (for
example, for the orchestrator to select suitable clusters given some cost function
and conditions), but as this thesis merely concerns itself with the general software
architecture, we leave this task for future developments in the direction of broker
scheduling algorithms.

The virtual machines had two Intel Skylake cores, 2 GB of RAM, and ran
Ubuntu 20.04 LTS. We would like to thank the Crownlabs team for the technical
support.

6.1 Orchestrator benchmarking
We wish to quantify the impact of the orchestrator intermediary in typical Ku-
bernetes operations. For this reason, we devise a benchmark that consists of
creating a deployment with a large number of simple pods and measure the time
between the first pod transitioning to "Initialized" and the last pod transitioning to
"Ready". Thanks to the JSON output of kubectl, these measurements can be easily
automated, and we report here the bash commands in the interest of replicability:

61

Evaluation

1 # Time of first transition to Initialized
2 k get pod -n hello-world -o json | jq ’.items | .[].status.conditions |

.[] | select(.type == "Initialized") | .lastTransitionTime’ | sort |
head -n 1

3
4 # Time of last transition to Ready
5 k get pod -n hello-world -o json | jq ’.items | .[].status.conditions |

.[] | select(.type == "Ready") | .lastTransitionTime’ | sort | tail -
n 1

Regretfully, Kubernetes stores timestamps with only seconds precision, so some
quantization noise is present in our measurements.

We time this procedure for an increasingly large number N of pods, always
starting from rest. Then, we compare the measurements between creating this
deployment on the same cluster, on a 1-to-1 peering and going via the orchestrator.

Figure 6.1: Scheduling latency for the orchestrator.

We observe that all three measurements - direct, to an immediate peer and
to the orchestrator broker - fit rather well a quadratic curve. We note, however,
that because times are measured with a second-level resolution, some "quantization
error" must be taken into account.

Our initial hypothesis, that the scheduling latency measurably increases when
the orchestrator is in use, proves correct. However, while we expected a latency

62

Evaluation

overhead increasing linearly with the number of "scheduling hops", we observe that
the relative difference in scheduling latency varies a lot. We posit that this effect is
partly due to the coarse resolution in the dataset, as a visual analysis of Figure 6.1
shows some small discontinuities. We indicate a better statistical analysis of this
data as a possible line of development for further work.

6.2 Aggregator benchmarking
Recall that a defining feature of the aggregator is that it introduces an additional
hop on the data place. It makes sense to measure the impact of this additional hop
on the network latency of offloaded applications. Naturally, the aggregator also
introduces a bandwidth bottleneck at the broker, but this characteristic is harder
to quantify.

Let us deploy a simple HTTP server that performs minimal work, to reduce the
impact of CPU load on the measurements. For this benchmark, we used the Docker
image registry.k8s.io/e2e-test-images/agnhost:2.39, which responds with
today’s date. We used ab, the Apache HTTP server benchmarking tool [17], to
take measurements.

We created and offloaded a deployment with one such pod, exposed the pod
with a service, and used the following ab command:

1 ab -n 1000 http://<cluster-ip>:8080/

As a baseline of raw network performance on the Crownlabs platform, we observe
an inter-cluster ICMP latency (i.e. a ping that takes place outside of the VPN
link) of 0.436 ms, σ = 0.111 ms, with a maximum latency of 0.930 ms.

Source Average latency p99 (99th percentile)
Provider 0.315 ms 1. ms

Aggregator 1.083 ms 3. ms
Consumer 2.021 ms 6. ms

Thanks to a much finer resolution and a larger number of measurements, we
observe much more consistent and linear results. The difference in network latency
observed on the consumer-aggregator link is almost exactly the same as the difference
seen on the aggregator-provider link, confirming our initial hypothesis that this
latency is additive with each additional hop. Furthermore, we observe that on a
fast link such as the one between Crownlabs clusters the increase in network latency
is minimal, with an average latency of 2 ms. This evidences that the aggregator
topology strongly depends on the network characteristics, and broker operators

63

Evaluation

that want to optimize their response times need to work on the raw network speed
between their cluster and the providers’.

Source Average latency p99 (99th percentile)
Provider 0.315 ms 1. ms

Orchestrator 1.071 ms 3. ms
Consumer 1.030 ms 3. ms

With a simple test we can also confirm our value proposition that the orchestrator
guarantees the same data-plane performance as a direct peering. Except for small
variations that we attribute to random statistical variations and minor fluctuations
in CPU usage, the network performance seen by an orchestrator’s consumer is the
same as other direct peerings.

6.3 Conclusions
This work proposes multiple solutions to centralize the sharing of information in
a topology of Liqo clusters. With minimal changes to the Liqo core, this work
builds on top of solid Liqo primitives, allowing for greater robustness and simpler
maintenance of the codebase. The corresponding architectures necessarily introduce
overheads on the control and the data plane, which we characterize here. Our
quantitative analysis shows that this overhead appears to scale linearly with the
number of steps. While the increase in network latency is well manageable in the
presence of fast network links, we note that the increase in scheduling latency
imposes a limit on the maximum number of resources deployed before set timeouts
are reached.

6.3.1 Future developments
The brokering mechanisms presented in this thesis are meant to be proofs of concept
with substantial reuse of the Liqo core code but minimal changes to it, in order to
keep core features as generic as possible. As a result, these implementations are
functional but not fully mature, and many implementation aspects can be improved
on to achieve better performance through lower overhead.

The larger overhead of the two at this moment is the orchestration overhead,
which must be profiled and can certainly be improved through a more clever
replication logic, perhaps exploiting an already existing peering to the final cluster.
The aggregator, while exhibiting a good latency response, does not scale well to the
extent that it requires a dense (but not necessarily full) mesh of peerings between
consumers and providers on a federation. A more clever solution could make use,
for example, of a VPN aggregator to maximize connection reuse and minimize

64

Evaluation

network chatter. Generally speaking, the effects of scaling to multiple clusters,
especially in the presence of complex brokering policies.

Finally, as discussed in chapter 4, this thesis work does not cover complex
brokering policies. This could be an interesting future development with both a
strong theoretical side and a practical one, with a lot of overlap on topics like
scheduling theory. On the practical side, the topic of monitoring and certifying
metrics used for scheduling is also important to make these brokering solutions
production-ready.

In conclusion, this thesis as laying the functional groundwork for resource
brokering solutions on Liqo. We envisage future work on this topic as looking closer
at the interaction with Liqo to reduce the performance overheads and maximize
scalability, as well as expanding the implementations’ features in cooperation with
academic and commercial Liqo stakeholders.

65

Bibliography

[1] Alessandro Cannarella. «Multi-Tenant federated approach to resources bro-
kering between Kubernetes clusters». In: (cit. on pp. 1, 39).

[2] Kubernetes official documentation. url: https://kubernetes.io/docs/
home/ (cit. on pp. 4, 11, 13, 16, 17).

[3] Virtual-kubelet git repository. url: https://github.com/virtual-kubelet/
virtual-kubelet (cit. on pp. 4, 16, 17).

[4] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder (cit. on pp. 4, 17, 18).

[5] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 4).

[6] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351–364. url: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf (cit. on p. 4).

[7] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 5).

[8] Jeff Barr. Amazon EKS – Now Generally Available. June 2018. url: https:
//aws.amazon.com/blogs/aws/amazon-eks-now-generally-available/
(cit. on p. 5).

[9] Brendan Burns. Azure Kubernetes Service (AKS) GA – New regions, more
features, increased productivity. June 2018. url: https://azure.microsoft.
com/en-us/blog/azure-kubernetes-service-aks-ga-new-regions-
new-features-new-productivity/ (cit. on p. 5).

[10] GKE release notes. url: https://cloud.google.com/kubernetes-engine/
docs/release-notes (cit. on p. 5).

66

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://aws.amazon.com/blogs/aws/amazon-eks-now-generally-available/
https://aws.amazon.com/blogs/aws/amazon-eks-now-generally-available/
https://azure.microsoft.com/en-us/blog/azure-kubernetes-service-aks-ga-new-regions-new-features-new-productivity/
https://azure.microsoft.com/en-us/blog/azure-kubernetes-service-aks-ga-new-regions-new-features-new-productivity/
https://azure.microsoft.com/en-us/blog/azure-kubernetes-service-aks-ga-new-regions-new-features-new-productivity/
https://cloud.google.com/kubernetes-engine/docs/release-notes
https://cloud.google.com/kubernetes-engine/docs/release-notes

BIBLIOGRAPHY

[11] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https : / / blogs . dxc . technology /
2019 / 01 / 28 / the - five - reasons - kubernetes - won - the - container -
orchestration-wars/ (cit. on p. 5).

[12] Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes/ (cit. on p. 5).

[13] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 7).

[14] Diego Ongaro and John Ousterhout. «In search of an understandable con-
sensus algorithm». In: 2014 {USENIX} Annual Technical Conference. 2014,
pp. 305–319 (cit. on p. 8).

[15] Kubernetes API official documentation. url: https://kubernetes.io/
docs/reference/generated/kubernetes-api/v1.17/ (cit. on p. 11).

[16] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator/ (cit. on p. 17).

[17] The Apache software foundation. Apache HTTP server benchmarking tool.
url: https://httpd.apache.org/docs/2.4/programs/ab.html (cit. on
p. 63).

67

https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://httpd.apache.org/docs/2.4/programs/ab.html

	Acronyms
	Introduction
	Classification
	Goal of the thesis

	Kubernetes
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Namespace
	Pod
	ReplicaSet
	Deployment
	Service

	Virtual Kubelet
	Kubebuilder

	Liqo
	Introduction
	Liqo concepts
	Discovery
	Peering
	Virtual nodes

	Resource brokering
	User stories
	Requirements
	Design and architecture
	Catalog
	Orchestrator
	Aggregator

	Implementation
	Catalog
	Orchestrator
	Aggregator

	Future work
	Catalog
	Orchestrator
	Aggregator

	Service brokering
	Use cases
	GAIA-X Federation Services (GXFS)
	International Data Spaces (IDS)
	Open Service Broker

	Evaluation
	Orchestrator benchmarking
	Aggregator benchmarking
	Conclusions
	Future developments

	Bibliography

