
POLITECNICO DI TORINO
Master Degree course in Computer Engineering

Master Degree Thesis

A study of congestion control schemes on
QUIC

Supervisors
Prof. Guido Marchetto
Prof. Alessio Sacco

Candidate
Alireza Ashtari

Academic Year 2022-2023

Acknowledgements

I would like to express my deepest gratitude to all those who have supported me through-
out my academic journey, making this thesis possible.

First and foremost, I am profoundly thankful to my family, whose unwavering love,
encouragement, and belief in my abilities have been my constant source of strength. To my
parents, Gholamreza and Fatemeh, your sacrifices and guidance have been instrumental
in shaping my academic pursuits. To my dear brother Amirhossein and sister Sana, your
support and understanding have meant the world to me.

I extend my heartfelt appreciation to my professors, Prof. Guido Marchetto and Prof.
Alessio Sacco, for their invaluable mentorship, expert guidance, and continuous support
throughout this research. Your insights and dedication to the field have inspired me and
enriched my academic experience.

I would like to thank all the teachers, colleagues, and friends who have shared their
knowledge and insights with me along the way. Your contributions have been instrumental
in shaping my understanding of the subject matter.

Last but not least, I want to express my appreciation to all the participants who
contributed to this study. Your willingness to share your time and insights has been
pivotal to the success of this research.

This journey has been challenging, yet incredibly rewarding, and I am deeply thankful
to everyone who has played a part in it.

2

Abstract

This thesis aims to advance our understanding of congestion control in QUIC and demon-
strate how reinforcement learning can be leveraged to enhance its performance, ultimately
contributing to the improvement of network communication in various scenarios.
QUIC (Quick UDP Internet Connections) is a transport layer protocol developed by
Google, designed to improve web browsing experience by reducing latency and enhancing
reliability. Congestion control plays a crucial role in QUIC by dynamically adjusting the
sending rate of data based on network conditions, ensuring optimal utilization of available
bandwidth while avoiding network congestion.
In our investigation of the performance of the QUIC (Quick UDP Internet Connections)
protocol in network environments, i focused particularly on its congestion control mech-
anisms. i compared QUIC to HTTP, seeking insights into whether QUIC consistently
outperforms its predecessor. Surprisingly, our findings revealed that QUIC did not consis-
tently provide superior performance. In fact, it sometimes exhibited poorer performance
than HTTP.
Traditionally, congestion control algorithms have been handcrafted using predefined heuris-
tics, which may not always adapt well to changing network dynamics or provide optimal
performance across different scenarios.Recognizing the need for improvement, i embarked
on a journey to fine-tune QUIC, with a particular emphasis on its congestion control
parameters.
Our goal was to optimize both throughput and Round-Trip Time (RTT) to unlock the full
potential of QUIC. To achieve this, i turned to Reinforcement Learning (RL), a cutting-
edge technique known for its adaptability and ability to optimize complex systems. By
utilizing RL, i aimed to create a model capable of dynamically adjusting congestion con-
trol parameters within QUIC.
By leveraging RL techniques, it is possible to train an intelligent agent to learn congestion
control policies directly from raw feedback obtained during interactions with the network
environment. The agent interacts with the QUIC stack and observes network metrics
such as round-trip time, packet loss rate, and available bandwidth. It then takes actions
by adjusting the sending rate of packets or changing parameters of congestion control
algorithm accordingly.
During the training process, the RL agent explores different actions and learns which ones
lead to better overall performance. By utilizing methods like deep Q-learning or policy
gradient algorithms, it gradually improves its decision-making abilities over time. The
agent’s objective is usually defined as maximizing throughput while minimizing delay and
packet loss.

The advantage of using RL for QUIC congestion control lies in its ability to adap-
tively respond to dynamic network conditions without relying on predefined rules or
assumptions about network behavior. This allows for more efficient utilization of avail-
able bandwidth and improved user experience.
Furthermore, RL-based approaches can also handle complex scenarios that were difficult
to account for using traditional congestion control algorithms.

Under varying network conditions, our experiments yielded promising results. Not only
did QUIC’s performance significantly improve in terms of throughput and Round Trip
Time (RTT), but the network also remained stable. This stability is a crucial indicator
of success, as it ensures a seamless user experience across diverse scenarios.
In conclusion, our research illuminates the dynamic nature of network performance and
the challenges associated with optimizing modern transport protocols like QUIC. By har-
nessing the capabilities of RL, i have not only enhanced QUIC’s throughput and RTT
but also ensured the stability of the network. This work represents a substantial step
towards realizing the full potential of QUIC in the ever-evolving landscape of internet
communication.

2

Contents

1 Introduction 5
1.1 Organization of the Thesis . 7

2 Background on Fundamental Technologies and Tools 9
2.1 Background . 9
2.2 QUIC Motivation . 10
2.3 QUIC Mechanisms . 13

2.3.1 Connection establishment . 13
2.3.2 Multiplexing . 15
2.3.3 Packet number Encryption . 16
2.3.4 Connection migration . 17
2.3.5 Forward Error Correction (FEC) 18
2.3.6 Flow Control . 19

2.4 HTTP/3 . 20
2.5 Related work . 20

2.5.1 QUIC Protocol VS TCP . 20
2.6 Congestion control . 21

2.6.1 Packet Number rising monotonically 22
2.6.2 Calculate RTT time with accuracy 22
2.6.3 QUIC Congestion Control Algorithms 22
2.6.4 Window growth function for the CUBIC 23

2.7 Overview of Reinforcement Learning . 24
2.7.1 Model-based vs Model-free . 26
2.7.2 Algorithms Of RL . 27
2.7.3 Flow Of RL Process In Depth . 29

3 Literature Review and Contribution 33
3.1 Environment Of RL in Depth . 33
3.2 Developing Environment Of RL . 34

3.2.1 gym library . 37
3.2.2 Stable-baselines3 library . 37
3.2.3 Developed RL’s Environment . 37

3

4 Experimental/numerical evaluation 41
4.1 Methodology . 41
4.2 Simulation Environment . 41

4.2.1 Selection of Network Simulation Software 41
4.2.2 Simulation Configuration . 41
4.2.3 Lab Setup and Hardware Infrastructure 42
4.2.4 Software Configuration . 42

4.3 Experimental Design . 42
4.3.1 Selection of Test Cases. 42
4.3.2 Data Collection . 43

4.4 Performance Evaluation . 43
4.4.1 Data Analysis . 43
4.4.2 Interpretation of Results . 43
4.4.3 Comparative Metrics . 43
4.4.4 Visualization . 43

4.5 Reinforcement Learning-based Optimization 44
4.5.1 Creation of Reinforcement Learning Environment 44
4.5.2 Data Collection . 44
4.5.3 Preprocessing . 44
4.5.4 Environment Validation . 44

4.6 Reinforcement Learning-based Optimization 44
4.6.1 Model Selection . 44
4.6.2 Model Architecture . 45
4.6.3 Training . 45
4.6.4 Model Evaluation . 45
4.6.5 Conclusion . 45

5 Numerical results 49
5.1 Performance Comparison of QUIC and TCP 49

5.1.1 Throughput comparison in different bandwidth 50
5.1.2 Throughput comparison in different Loss 50
5.1.3 Throughput comparison in different Delay 52

5.2 RL optimization on QUIC Congestion Control 53
5.2.1 Tuning performance based on Reduction Factor 54

6 Conclusion 57

Bibliography 59

4

Chapter 1

Introduction

The transmission control protocol (TCP) has served as the foundation of the internet
ever since the first network nodes communicated in 1969. For over four decades, TCP’s
reliability, congestion control, and streamlined connections have enabled virtually all ap-
plications and services I use today, from web browsing and video streaming to cloud com-
puting and online shopping. However, the internet landscape has evolved tremendously
since TCP’s inception, with new trends in mobility, bidirectionality, and interactivity
exposing performance limitations in TCP’s decades-old design.Applications ranging from
online gaming and video conferencing to augmented/virtual reality and real-time collab-
oration demand levels of responsiveness and throughput that legacy TCP struggles to
deliver.

QUIC (Quick UDP Internet Connections) represents a new generation of transport
protocols designed specifically for today’s internet landscape [8]. Originally developed at
Google in 2012, QUIC aims to significantly improve connection establishment, congestion
control, and overall performance for latency-sensitive traffic relative to TCP. QUIC runs
atop UDP rather than TCP to reduce handshake latency, provides stream multiplexing
over a single connection to avoid head-of-line blocking, and implements state-of-the-art
congestion control algorithms tailored for high bandwidth and low delay. With rapid
adoption at Google’s servers and broad standardization efforts by the IETF, QUIC is
well positioned to eventually supersede TCP as the default transport protocol powering
the modern internet. However, realizing QUIC’s full potential requires ongoing research
and optimization, particularly around security, mobility, and congestion control.

This thesis specifically focuses on evaluating and improving QUIC congestion control
relative to longstanding TCP algorithms.Congestion control constitutes the algorithms
that dynamically throttle transmission rates to match available network capacity, avoid-
ing queue buildup, packet loss, and instability. TCP congestion control evolved through
the 1980s and 90s from early schemes like Tahoe, Reno, and NewReno to more modern
innovations such as CUBIC, Compound, Vegas, and BBR. TCP CUBIC, first introduced
in Linux kernel 2.6.19 in 2006, uses a cubic function to increase the congestion window

5

Introduction

more aggressively compared to prior TCP variants, enabling higher throughput yet re-
taining Reno’s stability and loss resilience. The default congestion control algorithms
implemented in QUIC draw upon similar principles as CUBIC, probing available band-
width during times of low congestion while backing off more rapidly during congestion
events.

This thesis conducts a comprehensive evaluation comparing QUIC and TCP conges-
tion control over both emulated network environments and live internet paths exhibiting
diverse bottlenecks and variability. The analysis spans critical performance metrics in-
cluding throughput, round-trip time, and packet loss resiliency. Under static network
conditions, our results confirm QUIC’s advantages for short flow completion time. How-
ever, TCP variants like CUBIC and BBR demonstrate higher throughput over long-lived
flows and stronger stability in the face of sudden congestion spikes or fluctuating capac-
ity. These findings highlight opportunities to further optimize QUIC congestion control,
especially in volatile network environments.

To address these challenges, I develop a novel reinforcement learning (RL) agent to
dynamically adapt QUIC congestion parameters based on real-time network state ob-
servations. Reinforcement learning is well-suited to sequential decision making under
varying conditions. I model congestion control as a Markov decision process, where the
agent continuously observes the environment state (e.g. recent throughput, RTT sam-
ples, and loss events) and selects actions to adjust CUBIC parameters accordingly. By
extensively training this RL agent through simulated network environments exhibiting
noise, delays, and capacity changes, it learns a policy mapping states to optimal actions
that maximizes long-term reward. I define the reward function based on a combination
of throughput, RTT, and connection stability. I validate this RL-optimized congestion
control scheme against default QUIC, TCP CUBIC, and BBR over public internet paths
prone to congestion and volatility.The results demonstrate the agent’s ability to dynami-
cally adapt its congestion window and pacing rate based on real-time network conditions
to significantly improve throughput and latency compared to static schemes.

I further analyze the agent’s learned policy to extract key insights into the correla-
tions between observed states and corresponding actions. Our work represents the first
demonstration of a reinforcement learning-based congestion control scheme practically
deployed and evaluated over live network paths. The techniques developed in this thesis
could generalize beyond QUIC to improve TCP performance and robustness as well.

In summary, this thesis provides a comprehensive benchmarking of QUIC congestion
control mechanisms compared to widely used TCP variants over diverse network environ-
ments. Our evaluations reveal specific scenarios where further QUIC optimizations can
unlock substantial performance gains. Leveraging cutting-edge reinforcement learning
algorithms, I design a novel congestion control agent that can automatically adapt its
sending rate based on real-time network state to improve throughput, latency, and re-
silience. Looking forward, reinforcement learning represents a promising approach to not
only optimize QUIC but also address longstanding performance limitations in TCP itself.

6

1.1 – Organization of the Thesis

This work helps pave the way towards a new generation of cognitive, self-tuning trans-
port protocols ready to power the emerging landscape of interactive and delay-sensitive
internet applications.

1.1 Organization of the Thesis

This thesis report is organized into Six main chapters starting from the Introductory chap-
ter, followed by related works, underlying concepts and theoretical background, method-
ology, experiment, results and analysis, and finally, the conclusion and future works.

Chapter 1

The first chapter introduces the general background of this thesis and the motivation
behind this research. Then, I will describe the Aim and Objectives of the research and
explain the research questions and methods. Finally, limiting the scope of this research.

Chapter 2

The second chapter serves as the Background on Fundamental Technologies and Tools
introduces the underlying concepts and theoretical background of QUIC protocol and its
implementation. it explains about related works that have been done, background about
QUIC and main motivation and it’s mechanisms and specifically about congestion control
and Reinforcement learning .

Chapter 3

The third chapter introduces the underlying concepts and Literature review of Re-
inforcement Learning and its implementation. It explains different part of RL and my
contribution on developing RL’s environment.

Chapter 4

The fourth chapter describes the Experimental and numerical Evaluation and the
proposed test framework, providing an understanding of differential testing, the design
structure of the framework, the experiment in detail, starting from the testing design,
performance metrics, implementation, analysis.

Chapter 5

The fifth chapter presents the performance evaluation results, describing the results
obtained and the data analysis regarding some aspects of performance.

7

Introduction

Chapter 6

The sixth chapter concludes the result of this research and the recommendations for
future research.

8

Chapter 2

Background on Fundamental
Technologies and Tools

2.1 Background

The advent of the digital era has transformed technologies from optional tools into fun-
damental necessities across all aspects of life, including economies, societies, and personal
lifestyles. Although existing technologies have matured, research and development con-
tinues to pursue further enhancements and opportunities.

Current emerging technologies predominantly involve rapid, massive data processing,
including Artificial Intelligence, Edge Computing, the Internet of Things, and Virtual
and Augmented Reality.

Reflecting technological proliferation, data generation and information flow on the
internet have surged, especially during coronavirus pandemic in 2021. With global lock
downs, digital technology became crucial for work, school, and socializing. During past
years, internet growth and This massive data flow raises website performance concerns.
Research indicates a 1 second to 3 second slowdown in page load times can decrease traffic
by 32%, while a 10 second delay can plummet traffic by 123%.

This internet expansion risks network congestion and performance declines. It could
also enable more cyberattacks on sensitive data transfers. However, HTTPS usage has
steadily risen 300% as security awareness spreads. Although HTTP/2 over TCP and TLS
enables congestion control and security, issues remain like TCP head-of-line blocking.
TLS is not mandatory either. When enabled, TLS handshake increases round-trip times.

Seeking enhancements, protocols like SCTP, SPDY, and TCP Fast Open emerged.
But SCTP saw minimal public adoption, SPDY was deprecated for HTTP/2, and TCP
Fast Open suffered from ossification, with unchanged middleboxes dropping unfamiliar
packets.

In 2012, Google engineer Jim Roskin developed QUIC to enable Quick UDP Internet

9

Background on Fundamental Technologies and Tools

Connections. After public release in 2013 and broad experimentation, IETF standard-
ization began in 2015. The QUIC working group collaborated with the HTTP group
on HTTP over QUIC as HTTP/3. In 2021, QUIC was finalized as IETF RFC 9000,
supported by RFC 8999, 9001, and 9002.

As an emerging technology, QUIC presents abundant research and experimentation
opportunities, with the potential to solve persistent problems and replace TCP. Despite
a long development process, QUIC already serves almost 8% of websites. It is also imple-
mented in Google Chrome and Google services. While adoption is gradual, QUIC could
prove one of history’s most influential transport protocol breakthroughs.

2.2 QUIC Motivation

The evolving landscape of network interactions, spurred by the rapid expansion of the
mobile Internet and the advent of the Internet of Things (IoT), has triggered heightened
demands for enhanced network efficiency and greater responsiveness in web services.

Explosive Growth of Mobile Internet and IoT: The mobile Internet is experi-
encing rapid growth, and the proliferation of IoT devices is further amplifying this trend.
This proliferation has ushered in a diverse array of approaches through which both de-
vices and users engage with networks, culminating in a substantial surge in the volume
of data traversing these networks.

Elevated User Expectations: Consequently, users now harbor heightened expec-
tations for more efficient network transmission and swifter web service performance. Irre-
spective of the prevailing network conditions, users anticipate web pages and applications
to provide prompt and dependable responses.

Navigating Challenges in Unpredictable Networks: Developers have been con-
fronted with formidable challenges related to network stability, particularly in scenarios
characterized by highly erratic network conditions. These conditions encompass recurrent
transitions between distinct Wi-Fi networks, sporadic utilization of cellular data, and in-
termittent disruptions in cellular signal reception. Such fluctuations engender instability
and unreliability in mobile Internet connectivity, leading to exasperatingly protracted
loading times for web content.

Limitations of TCP: The extensively employed TCP protocol has encountered dif-
ficulties in enhancing performance within these capricious network environments. TCP’s
connection-oriented nature, coupled with its approach to congestion control, often results
in delays and suboptimal performance, rendering it less suitable for networks with high
variability.

UDP as an Alternative: In contrast, the User Datagram Protocol (UDP) offers

10

2.2 – QUIC Motivation

an alternative. It operates without the need for establishing connections and provides
efficiency, rapid data transfer, and lower resource utilization. However, it lacks some of
the reliability mechanisms inherent in TCP.

Google’s Innovative Response - QUIC: Recognizing these challenges, Google has
proactively tackled them by devising a groundbreaking protocol known as QUIC [8]. Be-
yond the capabilities of UDP, QUIC introduces bidirectional bandwidth control, thereby
enabling proficient management of network congestion. This pioneering development
seeks to address the intricacies posed by unpredictable network conditions, ultimately el-
evating the overall user experience by bolstering the speed and reliability of web services
and applications.

QUIC emerged from Google as an innovation aimed at enhancing the functionality of
TCP (Transmission Control Protocol) and TLS (Transport Layer Security) in the context
of internet applications and web navigation. Noteworthy among the primary drivers and
enhancements associated with QUIC in comparison to the amalgamation of TCP and
TLS are as follows:

Reduced latency in connection establishment - QUIC streamlines the cryptographic
and transport handshake process, condensing it into a single round trip, as opposed to
the 1-3 round trips required by TCP+TLS. This enhancement contributes to improved
webpage loading times.Figure 2.1, 2.2

Figure 2.1. TCP vs QUIC connection setup

Enhanced congestion control - QUIC incorporates its own congestion control algo-
rithms, surpassing the performance of TCP’s slow start mechanism and avoiding issues
related to head-of-line blocking, which are prevalent in TCP.

Non-blocking multiplexing - QUIC streams enable the simultaneous handling of re-
quests and responses over a single connection without encountering blocking, a feature

11

Background on Fundamental Technologies and Tools

Figure 2.2. multiple segment are delayed due to (b) TCP lost packet break the chain con-
packet loss resulting HoL Blocking

that sets it apart from TCP.Figure 2.3 , 2.4

Network address-agnostic connections - QUIC connections are capable of adapting to
changes in network addresses, ensuring uninterrupted communication even in the face of
network address alterations.

Forward error correction - QUIC offers forward error correction for all transmitted
data, enabling the receiver to rectify data losses.

Unlike protocols implemented in the kernel space, QUIC operates at the application
layer in userspace. This allows rapid iteration for QUIC development and modifications
without requiring operating system kernel updates on clients and servers.

The userspace QUIC stack enables more agile evolution compared to TCP protocols.
As illustrated in the figure, the QUIC stack resides above the kernel, separate from lower-
level networking layers.Figure 2.5

12

2.3 – QUIC Mechanisms

Figure 2.3. TCP Head of Line Blocking

Figure 2.4. QUIC lost packet only affect specific stream

2.3 QUIC Mechanisms

2.3.1 Connection establishment

QUIC’s connection establishment process is designed to be faster and more efficient.
QUIC swiftly initiates connections through a cryptographic handshake, enabling mutual
identity verification and the agreement on encryption keys for data security. This hand-
shake is accomplished with just 1 or 2 round trip times (RTTs), in contrast to the 3-way
handshake mandated by TCP. I can describe the QUIC connection establishment process
step by step [8].

13

Background on Fundamental Technologies and Tools

Figure 2.5. QUIC stack compared to TCP

Step 1: Initial Packet Exchange

The QUIC client sends a QUIC Initial packet (often referred to as a "CHLO" or Client
Hello) to the server. The CHLO packet includes information like supported QUIC ver-
sions, cryptographic parameters, and other necessary details.

Step 2: Server Response

The QUIC server receives the CHLO packet and processes it. The server responds
with a QUIC Initial packet (often referred to as a "SHLO" or Server Hello). The SHLO
packet includes the server’s chosen parameters, such as cryptographic keys, supported
QUIC version, and other relevant information.

Step 3: Cryptographic Handshake

Both the client and server perform a cryptographic handshake to establish secure
communication. They exchange cryptographic parameters and keys to set up encryption
for the connection. Once this handshake is complete, the client and server can securely
exchange data.

Step 4: Data Exchange

With the cryptographic handshake complete, the QUIC connection is established.
The client and server can now exchange data packets over the QUIC connection. Data
packets can include HTTP requests, responses, or any other application-level data.

14

2.3 – QUIC Mechanisms

Figure 2.6. Zero RTT Connection Establishment [1]

2.3.2 Multiplexing

QUIC facilitates the concurrent transmission of diverse data streams over a solitary con-
nection. Each individual stream operates independently, ensuring that if one encounters
issues such as packet loss or delays, it does not impede the progress of other streams. This
characteristic effectively mitigates the head-of-line blocking challenge typically associated
with TCP. [8] [10].
In the context of QUIC, multiplexing refers to the ability to transmit multiple data
streams simultaneously within a single QUIC connection.
Each data stream is assigned a unique identifier, known as a "Stream ID," which allows
both the sender and receiver to distinguish between different streams. Multiplexing en-
ables various types of data, such as HTTP requests, responses, and other application-level
data, to be sent concurrently over the same connection.
Since each stream operates independently, issues affecting one stream, such as packet
loss or latency, do not impact the progress of other streams. This is in contrast to TCP,
where head-of-line blocking can occur, causing delays in the delivery of data from multi-
ple streams when one encounters issues.
The non-blocking nature of QUIC multiplexing contributes to improved overall perfor-
mance and responsiveness, particularly in scenarios where multiple resources need to be
loaded simultaneously, such as modern web pages with numerous assets.

15

Background on Fundamental Technologies and Tools

2.3.3 Packet number Encryption

QUIC employs encryption to protect a significant portion of its transport layer header,
including packet numbers. This safeguard shields against the monitoring of traffic pat-
terns and sequence numbers by network devices, significantly bolstering both privacy and
security in comparison to the unencrypted TCP header. [8] [10]

Figure 2.7. QUIC packets are fully authenticated

The packet number plays a crucial role in each QUIC packet’s header, serving to iden-
tify packet loss and maintain sequencing integrity. In TCP, packet sequence numbers are
transmitted without encryption, rendering them susceptible to passive observation. How-
ever, in QUIC, packet numbers are automatically encrypted before transmission using an
AEAD cipher (Authenticated Encryption with Associated Data). These encryption keys
are established during the initial cryptographic handshake between the client and server.

Only entities possessing the correct decryption keys, namely the client and server, can
decipher the packet numbers and employ them for loss detection and sequence mainte-
nance. This encryption process significantly obstructs network devices, such as routers or
firewalls, from deducing information regarding traffic patterns or sequences by inspecting
unencrypted headers.

By encrypting packet numbers, QUIC effectively thwarts overt passive monitoring
of packet flows across the network path, reinforcing privacy and impeding surveillance
efforts. Furthermore, the encryption strategy employed for packet numbers is designed

16

2.3 – QUIC Mechanisms

Figure 2.8. QUIC packets Encryption vs TCP [2]

to withstand replay attacks. Each key is employed for a brief duration before being dis-
carded, making it possible to detect and reject replayed packets that rely on outdated
keys.

It’s worth noting that there are limited situations in which the packet number may be
transmitted without encryption, such as during stateless retries in the connection setup
process.

2.3.4 Connection migration

QUIC connections employ a Connection ID rather than the conventional 4-tuple consist-
ing of source/destination IP addresses and ports. This design choice grants the ability
to shift the connection to an alternative network path or endpoint address. Importantly,
the Connection ID is intentionally dissociated from network-layer identifiers such as IP
addresses Figure 2.9. [8] [10]

To facilitate connection migration, the new network path is probed for connectivity.
Once deemed functional, the Connection ID comes into play, allowing the QUIC session
to seamlessly continue on the fresh path. For instance, a smartphone can transition from
a WiFi network to LTE, and the QUIC connection smoothly transitions to the new in-
terface. This endpoint migration ensures uninterrupted service even if the server’s IP
address changes, preserving higher-level connections.

QUIC adeptly manages packet loss during migration through acknowledgment and
retransmission mechanisms, while session state is reestablished on the new path. Migra-
tion can be instigated by either clients or servers and may utilize techniques like DHCP
for network change detection. Notably, this process occurs without necessitating any
application layer awareness or specific triggers, affording mobility and deployment adapt-
ability that TCP, tethered to a fixed 4-tuple address, lacks.

During migration, both the original and new network paths briefly coexist. QUIC

17

Background on Fundamental Technologies and Tools

Figure 2.9. QUIC Connection Migration

sends probe packets over the new path to assess connectivity. Once validated, the con-
nection fully transitions to the new path, leaving the old path behind. For minor migra-
tion delays (less than 200ms), QUIC can buffer application data during the handover to
prevent disruptions in data delivery. However, longer delays may entail a brief pause in
data transfer during the handover.

Furthermore, migration can occur repeatedly, allowing connections to traverse differ-
ent paths as clients move. Servers employ the Connection ID to retrieve connection state
and seamlessly continue on the new path. Clients can initiate migration, while servers can
also enforce it in certain scenarios. NAT rebinding support aids in handling IP address
changes during migration.

Notably, connection migration remains fully encrypted end-to-end between the com-
municating endpoints. The new path may offer distinct properties, such as reduced
latency or enhanced bandwidth, immediately enhancing the connection’s performance
post-migration.

Overall, connection migration fortifies QUIC against network alterations and mobility,
enhancing the user experience during transitions across diverse networks and endpoints.

2.3.5 Forward Error Correction (FEC)

QUIC employs Forward Error Correction (FEC) techniques, including parity check codes
like Reed-Solomon codes. FEC data enables the recovery of lost packets without the

18

2.3 – QUIC Mechanisms

need to wait for retransmissions. To achieve this, QUIC proactively transmits FEC data
alongside regular stream data in separate redundant packets. [8] [7]

The FEC data serves as a means to reconstruct the original payload in case a lim-
ited number of packets within a block are lost. Consequently, the receiver can promptly
recover lost packets and reassemble out-of-sequence packets, all without initiating re-
transmission requests. This mechanism significantly reduces the delay in recovering from
packet loss when compared to the retransmission process in TCP.

The effectiveness of QUIC FEC is most pronounced in environments where packet
loss rates are moderate, typically ranging from 1% to 5%. In scenarios characterized by
either very low or exceptionally high loss rates, the benefits of FEC become less significant.

One notable advantage of QUIC is its ability to adapt the strength of FEC dynam-
ically based on observed network conditions and loss rates. However, it’s important to
note that sending redundant FEC data does introduce overhead. Therefore, there exists
a tradeoff between loss resilience and the incurred overhead.

It’s essential to highlight that QUIC FEC exclusively addresses data loss issues; it
does not serve as a means to validate data integrity. Authentication remains a necessary
component to detect any tampering attempts.

In summary, FEC empowers QUIC to shield the application layer from the effects of
packet loss, enhancing the perceived data delivery performance, especially in loss-prone
network environments.

2.3.6 Flow Control

QUIC incorporates flow control mechanisms at both the connection and stream levels to
manage data transmission effectively. [8]

Connection-level flow control is designed to restrict the total data volume transmit-
ted over the QUIC connection, thus averting the risk of resource depletion. Each QUIC
endpoint communicates a maximum connection flow control limit to its peer, typically a
few megabytes. As data is transmitted, it depletes this connection limit. Additional data
can only be sent when the peer grants an increase in this limit.

Stream-level flow control, on the other hand, applies to each individual stream and
aims to prevent any single stream from monopolizing connection resources. Each stream
is assigned its own maximum stream data limit, typically set at 64 kilobytes per stream.
Data transmitted on a stream reduces the available capacity according to that specific
stream’s limit. Crucially, if a stream becomes blocked, it does not impede the progress
of other streams.

19

Background on Fundamental Technologies and Tools

The communication of flow control limits is achieved through MAX_DATA and
MAX_STREAM_DATA frames within QUIC packets. In the event that received data
surpasses a flow control limit, the endpoint discards the excess data and may even ter-
minate the connection.

QUIC’s flow control framework serves two vital functions. Firstly, it exerts back pres-
sure on senders, ensuring that they do not overwhelm the receiver or the network with
excessive data. Secondly, it fortifies the protocol against resource exhaustion attacks,
enhancing security in the process.

2.4 HTTP/3

HTTP/3 is a new iteration of the Hypertext Transport Protocol designed to fully leverage
the capabilities of the QUIC protocol. It delivers new solutions for HTTP over QUIC,
providing beneficial HTTP features like stream multiplexing, per-stream flow control,
and low latency connections (Krasic et al., 2022). Modifications were necessitated by
QUIC’s differing nature from TCP, while some HTTP/2 features are subsumed, allowing
HTTP/3 to delegate particular tasks to QUIC for resolving TCP head-of-line blocking
issues. HTTP/3 utilizes similar semantics and internal framing as HTTP/2.

Communication within each stream uses frames, including a dedicated control stream
conveying frames applying to the whole connection. HTTP/3 also adopts HTTP/2’s
server push mode and header compression, replacing HPACK with QPACK. Major di-
vergences from HTTP/2 include faster handshakes enabling enhanced early data support,
mandatory security, increased stream allowances, removed priority signaling, flow control
for all frames and payload, distinct settings parameters, and error codes.Figure 2.10 [5]

2.5 Related work

2.5.1 QUIC Protocol VS TCP

Analyzing the performance of QUIC has posed a significant challenge for researchers over
the years due to its lack of standardization and its continuous development and modifi-
cations. Additionally, the diverse design approaches, development processes, and dispari-
ties in features among implementations necessitate careful consideration when configuring
and adjusting settings to conduct equitable performance assessments across various QUIC
implementations. Nevertheless, even though QUIC has not reached full maturity, it has
demonstrated the potential to outperform TCP connection times in specific scenarios.

QUIC does offer advantages over TCP in terms of reduced latency, adaptability, and
simplicity at the application layer. However, its performance is significantly influenced by

20

2.6 – Congestion control

Figure 2.10. Comparison between HTTP/2 and HTTP/3

variations in developer design choices and operator configurations, resulting in inconsis-
tencies in performance outcomes across different implementations and testing scenarios.
Notably, empirical performance tests conducted on production endpoints reveal that the
mere deployment and use of QUIC do not automatically guarantee enhanced network
and application performance in many practical use cases. [20]

In another investigation, it was discovered that QUIC demonstrates strong perfor-
mance when dealing with brief interactions, like downloading small files or browsing
websites. However, its throughput diminishes during lengthy sessions, such as large file
downloads and video streaming. Nonetheless, QUIC’s advantage lies in its ability to
deliver lower latency, thereby enhancing video quality during video transmission and re-
ducing the time required for initiating web workloads in comparison to TLS 1.3 over
TCP. [14]

2.6 Congestion control

One of the most crucial components for enabling both fair and high utilization of Internet
networks shared by numerous flows is transport-layer congestion control. The network’s
performance will start to suffer at some point if the demand for a resource exceeds the
amount of that resource that is actually available. Congestion is the term for this cir-
cumstance. [6]
Congestion control’s goal is to carry out the necessary processing in the event of system
overload, ensuring that the system operates steadily and returns to its normal load level.
Controlling traffic is an international effort. However, congestion does not affect UDP
itself. Once in unrestricted usage, it will eat up the bandwidth of other network protocols
that are "rule-worth" something.

21

Background on Fundamental Technologies and Tools

In-Built Congestion Control: QUIC incorporates its congestion control mecha-
nisms directly into the protocol, rather than relying on the operating system’s TCP stack.
This enables QUIC to be more responsive and adaptable to network conditions.

End-to-End Congestion Control: Like TCP, QUIC uses end-to-end congestion
control, meaning that it relies on feedback from the receiver (acknowledgments) to gauge
network conditions and adjust its sending rate accordingly.

2.6.1 Packet Number rising monotonically

To verify that the message arrived in good order, QUIC does not employ the byte order
number and ACK features of TCP. Packet Number is employed by QUIC. If Packet N is
lost, the Packet Number that retransmits Packet N is not N, but a number higher than
N since each Packet Number is rigidly incremented. This makes resolving the ambiguity
issue in TCP retransmission simple.

2.6.2 Calculate RTT time with accuracy

The QUIC ACK packet additionally includes the time between when the packet was
received and when the reply ACK was sent. The incremental packet number may be
utilized to determine the RTT with accuracy in this fashion.

2.6.3 QUIC Congestion Control Algorithms

CUBIC: QUIC’s default congestion control algorithm is CUBIC, which is an evolution
of the TCP CUBIC algorithm. CUBIC is designed to provide efficient congestion con-
trol with improved throughput and fairness characteristics. It uses a cubic function to
calculate the congestion window size and is particularly effective in high-speed, high-
bandwidth networks.

Pacing: QUIC includes built-in packet pacing, which helps smooth the transmission
rate and reduce burstiness in the network. Pacing can help avoid congestion caused by
sudden bursts of traffic.

RTT-Based: QUIC’s congestion control algorithms often rely on round-trip time
(RTT) measurements to estimate network congestion. Shorter RTTs indicate less con-
gestion, allowing QUIC to increase its sending rate, while longer RTTs may indicate
congestion, leading to a reduction in the sending rate.

Packet Loss Detection: QUIC uses packet loss as a signal of network congestion,
similar to TCP. When packet loss is detected, QUIC reduces its congestion window size
to prevent further congestion.

22

2.6 – Congestion control

Bandwidth Estimation: QUIC estimates available network bandwidth by monitor-
ing the rate at which acknowledgments are received and the round-trip time. This helps
it adapt to changing network conditions.

Stream-Level Congestion Control: QUIC supports multiple streams within a sin-
gle connection, and its congestion control operates independently for each stream. This
allows for better fairness and adaptability, especially in scenarios where different appli-
cations have varying bandwidth requirements.

2.6.4 Window growth function for the CUBIC

The window growth function for the CUBIC congestion control algorithm is:

Wcubic = C(t − K)3 + Wmax (2.1)

Wcubic = CUBIC congestion window size
C = Scaling factor
t = Time since last window reduction
K = Time period for Wcubic to increase to Wmax after a window reduction
Wmax = Window size just before last reduction.

And K is calculated as:
K = 3

√︂
(Wmax ∗ β/C) (2.2)

β = window reduction factor.

The cubic function causes the window to grow very fast initially after a reduction,
then slower as it approaches Wmax. This aims to improve scalability while maintaining
stability.. The C scaling factor controls the slope of the cubic curve. Higher C causes
more aggressive growth. The β is reduction factor controls how much the window is
decreased on loss. Higher β causes slower convergence. inproceedings

Figure 2.11. The Window Growth Function of CUBIC [18]

23

Background on Fundamental Technologies and Tools

The growth function of CUBIC is seen in Fig. 2.11 with its origin at Wmax.After a
window reduction, the window expands quickly, but as it approaches Wmax, it grows more
slowly. The window increment virtually disappears at Wmax.Above that, CUBIC begins
searching for additional bandwidth, and as it gets farther from Wmax, the window’s
development picks up speed. While the rapid expansion away from Wmax assures the
protocol’s scalability, the gradual growth around Wmax improves the stability of the
protocol and raises network usage.

2.7 Overview of Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm wherein an agent acquires
the ability to sequence decisions by interacting with an environment. The primary objec-
tive of the agent is to maximize its cumulative reward over time by making choices that
result in favorable outcomes. RL represents a subfield within the realm of artificial intel-
ligence (AI) and has garnered substantial attention for its practical applications across
diverse domains such as robotics, gaming, autonomous systems, and more. [16] [19] [4] [9]

Figure 2.12. Reinforcement Learning Cycle [13]

Here, I present a concise overview of the foundational concepts integral to reinforce-
ment learning:

Agent: This refers to the entity responsible for learning and decision-making through
interactions with the environment.

Environment: The external context in which the agent operates, where actions are
executed, and from which feedback is received in the form of rewards.

State: A representation of the current configuration or condition of the environment,
serving as the basis for the agent’s decision-making process.

24

2.7 – Overview of Reinforcement Learning

Action: The set of available choices or decisions that the agent can make at each
given state, enabling it to interact with the environment.

Policy: The strategy or mapping that defines how the agent should behave, specify-
ing the association between states and actions. The ultimate goal is to learn an optimal
policy that maximizes long-term rewards.

Reward: A numeric signal, provided by the environment following each action taken,
denoting immediate benefits or costs. The agent’s overarching objective is to maximize
the cumulative reward accumulated over time.

Value Function: A functional representation that estimates the anticipated cumu-
lative reward, or value, of adhering to a specific policy in a particular state.

Q-Learning: A widely recognized RL algorithm, Q-Learning estimates the antici-
pated cumulative reward for selecting a particular action in a given state (Q-value). These
estimations are subsequently used to refine the policy.

Exploration vs. Exploitation: A fundamental dilemma in RL that involves strik-
ing a balance between experimenting with new actions (exploration) and favoring actions
perceived as optimal (exploitation).

Markov Decision Process (MDP): A mathematical framework that formalizes
the core principles of RL, encompassing states, actions, rewards, and state transitions.

Learning Algorithms: RL employs learning algorithms to update the agent’s pol-
icy or value estimates based on its interactions with the environment. Common RL
algorithms include Q-learning, Deep Q-Networks (DQN), Policy Gradient methods, and
Actor-Critic architectures.

Policy Optimization: Policy optimization methods focus on directly improving the
agent’s policy to maximize expected rewards. These methods include Proximal Policy
Optimization (PPO), Trust Region Policy Optimization (TRPO), and more.

Temporal Difference (TD) Error: TD error is a measure of the discrepancy be-
tween the predicted and actual rewards obtained by the agent. It is used in various RL
algorithms to update value functions and policies.

Reinforcement learning has witnessed significant advancements, with the emergence
of algorithms such as Deep Q-Networks (DQN), Proximal Policy Optimization (PPO),
and various policy gradient techniques. These algorithms harness the capabilities of neu-
ral networks to effectively handle high-dimensional state spaces, rendering RL well-suited
for tackling intricate tasks such as playing video games, orchestrating robotic systems,
and optimizing resource allocation.

25

Background on Fundamental Technologies and Tools

2.7.1 Model-based vs Model-free

Figure 2.13. Model-based vs Model-free [3]

There are two main types of Reinforcement Learning algorithms: Figure 2.13

1. Model-based algorithms
2. Model-free algorithms

Model-based algorithms

Model-based algorithms utilize the transition and reward functions to estimate the
optimal policy.

• They are applicable when the environment is fully observable, allowing complete
knowledge of how it reacts to various actions.

• The agent can access the environment model, including actions to transition be-
tween states, associated probabilities, and resulting rewards.

• This enables planning by thinking ahead. For static environments, model-based
reinforcement learning is more appropriate.

Model-free algorithms

In contrast, model-free algorithms find the optimal policy with minimal knowledge
of environment dynamics. They lack transition and reward functions to judge the best

26

2.7 – Overview of Reinforcement Learning

policy.

• model-free algorithms find the optimal policy with minimal knowledge of environ-
ment dynamics. They lack transition and reward functions to judge the best policy.

• Model-free reinforcement learning is preferable when environmental information is
incomplete.

• Real-world environments are often dynamic rather than fixed. For instance, self-
driving cars operate in changing traffic conditions and diversions. In such scenarios
with incomplete environment models, model-free algorithms tend to outperform
other techniques.

2.7.2 Algorithms Of RL

RL includes multiple algorithms in order to train model which some of them are as follow:

Q-Learning [19]:

Q-Learning integrates policy and value functions to jointly assess actions based on
their utility for obtaining future rewards. Quality values Q(s,a) are assigned to state-
action pairs according to the expected future value given the current state and the agent’s
optimal attainable policy. After learning the Q-function, the agent identifies the highest
quality action at a particular state s.

Once the optimal Q-function Q* is determined, the optimal policy can be derived
by applying a reinforcement learning algorithm to find the action maximizing the value
for each state. In essence, Q-Learning combines policy and value estimation to judge
actions by their potential for maximizing cumulative future rewards based on the learned
Q-function mapping states and actions to expected quality.

Figure 2.14. Q-Learning Formula [3]

In other words, Q* gives the largest expected return achievable by any policy π for
each possible state-action pair.Figure 2.15

In the basic Q-Learning approach, we need to maintain a look-up table called q-map
for each state-action pair and the corresponding value associated with it.Figure 2.16

SARSA [12]:

27

Background on Fundamental Technologies and Tools

Figure 2.15. Q-Learning Cycle - Q-table [3]

Figure 2.16. Q-Learning Formula - Bellman Equation [3]

On-policy TD control algorithm, updates Q(s,a) for the current policy. Uses expe-
rienced transitions (s,a,r,s’,a’) to update Q values. Policy improvement applies once Q
values are accurate.

Deep Q-Networks [11]:
Uses deep neural nets to represent Q(s,a) with high dimensionality. Experience replay

buffer breaks correlations and stabilizes training. Achieved human-level performance on
Atari games.

Policy Gradients [17]:
Directly adjust policy parameters and Reduce variance using baselines and actor-critic

approaches. Enable policies with stochasticity, good for continuous actions.

Markov Decision Process (MDP) [15]
Markov decision processes (MDPs) provide a formalism for sequential decision mak-

ing, which underlies problems addressed by reinforcement learning. In an MDP, an agent
called the decision maker interacts with an environment. These interactions occur se-
quentially over time.

At each timestep, the agent receives a representation of the environment state. Based
on this state, the agent selects an action. The environment then transitions to a new

28

2.7 – Overview of Reinforcement Learning

state, and the agent receives a reward as a consequence of its preceding action.

This cycle of state observation, action selection, state transition, and reward reception
recurs sequentially, creating a trajectory capturing the sequence of states, actions, and
rewards.

The reinforcement learning agent’s objective is to maximize cumulative rewards re-
ceived over the whole trajectory by taking optimal actions in each state. Rather than
solely maximizing immediate rewards, the agent seeks to optimize long-term reward ac-
quisition.

This iterative interaction between agent and environment, aiming to maximize re-
wards by selecting actions based on environment states, epitomizes the reinforcement
learning approach known as Markov decision processes. The concept is clearly depicted
in the provided. Figure 2.17

Figure 2.17. Q-Learning Formula [3]

2.7.3 Flow Of RL Process In Depth

Certainly, let’s delve deeper into the flow of the Reinforcement Learning (RL) process
(Figure 2.5), focusing on its key components and mechanisms:

Initialization:

At the start, the agent initializes its policy, which defines how it chooses actions based
on states. This policy could be a neural network, a Q-table, or another function approx-
imation method. In Deep RL, neural networks are commonly used to approximate the

29

Background on Fundamental Technologies and Tools

policy (policy-based methods) or value functions (value-based methods).

Observation:

The agent perceives the current state of the environment. This state could be repre-
sented as raw sensor data, a set of features, or images, depending on the problem.

Action Selection:

The agent decides which action to take based on the observed state. This deci-
sion is guided by its current policy. Exploration vs. Exploitation: RL agents face the
exploration-exploitation trade-off. They must balance trying new actions (exploration)
to discover optimal strategies with choosing actions they believe are the best based on
their current knowledge (exploitation).

Action Execution:

The agent takes the selected action, which affects the environment. This action might
involve moving in a game, sending a control signal to a robot, or any other relevant action
in the context of the problem.

Transition and Reward:

As a consequence of taking the action, the environment transitions to a new state.
The agent receives a numerical reward signal from the environment, which quantifies the
immediate benefit or cost of the action. The transition includes the current state, action
taken, reward received, and the new state.

Experience Replay (for Deep RL):

To improve sample efficiency and stabilize learning, Deep RL agents often use expe-
rience replay. They store past experiences (state, action, reward, next state) in a replay
buffer. During training, the agent samples mini-batches from the replay buffer rather
than learning from sequential experiences.

Value Estimation (for Value-Based Methods):

In value-based RL, the agent estimates the value of states or state-action pairs. This
estimation is based on the cumulative expected future rewards. Value functions like the
Q-function (Q-learning) or the state-value function (V-learning) help the agent assess the
desirability of different states or actions.

Policy Improvement (for Policy-Based Methods):

30

2.7 – Overview of Reinforcement Learning

In policy-based RL, the agent directly updates its policy to maximize expected cu-
mulative rewards. It employs gradient ascent to improve the policy, making actions that
lead to higher rewards more likely.

Loss Calculation (for Deep RL):

In Deep RL, the agent calculates a loss function based on the predicted values (Q-
values or policy) and target values. Common loss functions include Mean Squared Error
(MSE) for Q-learning and policy gradient loss for policy-based methods.

Backpropagation and Optimization (for Deep RL):
The agent backpropagates the calculated loss through the neural network, adjusting

its weights to minimize the loss. Optimization algorithms like Stochastic Gradient De-
scent (SGD), Adam, or RMSprop are often used for this purpose.

Target Networks (for Deep RL):

In value-based Deep RL (e.g., DQN), two neural networks are used: the online network
and the target network. The target network provides stable target Q-values, reducing
the risk of value estimate oscillations during training.

Temporal Difference Learning:

RL agents employ Temporal Difference (TD) learning to estimate the difference be-
tween predicted and actual rewards. This difference guides policy and value updates.

Policy Evaluation and Improvement Iteration:

Steps 2 to 12 are performed iteratively over multiple episodes or time steps. The
agent continually learns from its experiences and refines its policy.

Convergence and Exploration:

The RL agent continues learning until it converges to an optimal policy, meaning it
has found a policy that maximizes expected cumulative rewards. Exploration strategies
like epsilon-greedy or others are gradually reduced over time as the agent becomes more
confident in its policy.

Termination:

The training process terminates when a stopping criterion is met, such as a predefined
number of episodes, a satisfactory policy, or a computational resource limit.

In essence, RL is a dynamic process in which an agent interacts with an environment,

31

Background on Fundamental Technologies and Tools

learns from experiences, updates its policy or value estimates, and gradually hones its
decision-making abilities. The specific algorithms and techniques may vary depending
on the RL approach (e.g., Q-learning, policy gradient methods, actor-critic), but the
fundamental flow remains consistent across RL paradigms.

32

Chapter 3

Literature Review and
Contribution

This sections is designed for reviewing the developing concept of RL to get involved into
QUIC environment.

3.1 Environment Of RL in Depth

Creating a reinforcement learning environment involves defining the state space, action
space, reward system, and the overall interaction between the agent and the environment.
Here’s an outline of how such an environment can be designed:

State Space:

The state space represents the information available to the reinforcement learning
agent. In the context of QUIC congestion control, the state space could include: Current
network conditions: Bandwidth, latency, packet loss rate, and congestion indicators.

QUIC connection parameters:

Congestion window size, round-trip time, and number of unacknowledged packets.

History of past actions and states:

Agent’s previous decisions and observations.

Action Space:

The action space defines the set of actions the agent can take. In the case of QUIC
congestion control, possible actions could include: Adjusting the congestion window size:
Increasing, decreasing, or maintaining the current window size. Adjusting the sending

33

Literature Review and Contribution

rate: Increasing or decreasing the rate at which packets are sent.

Reward System:

The reward system provides feedback to the agent based on its actions and the result-
ing network performance. The reward system should incentivize the agent to maximize
throughput, minimize packet loss, and maintain low latency. A possible reward system
for evaluating QUIC congestion control could include: Positive reward for high through-
put and low latency. Negative reward for high packet loss or excessive queuing delay.
Penalty for aggressive behavior leading to unfair bandwidth utilization.

Interaction and Training Loop:

The agent interacts with the environment in an iterative training loop, where it ob-
serves the current state, takes actions, receives rewards, and updates its policy to improve
its decision-making. The training loop can be structured as follows:
The agent observes the current state from the environment. Based on the observed state,
the agent selects an action from the action space. The environment applies the chosen
action to simulate the impact on the QUIC congestion control. The environment pro-
vides feedback in the form of rewards based on the resulting network performance. The
agent updates its policy using the observed state, chosen action, and received reward to
improve future decision-making. The process repeats for multiple iterations or episodes,
gradually improving the agent’s performance.

Training Data Collection:

To train the reinforcement learning agent effectively, a dataset needs to be collected.
This can involve running simulations or conducting experiments in various network con-
ditions, with different congestion scenarios and traffic patterns. The agent’s actions,
observed states, and the resulting rewards can be recorded during these training ses-
sions. By defining the reinforcement learning environment with an appropriate state
space, action space, reward system, and training loop, researchers can evaluate the QUIC
protocol’s congestion control using reinforcement learning algorithms. This environment
enables the agent to learn and adapt its decision-making based on network feedback,
ultimately improving the performance of the QUIC congestion control mechanism.

3.2 Developing Environment Of RL

Implementing a complete reinforcement learning system to evaluate the QUIC protocol’s
congestion control in Python requires integrating various components, including the rein-
forcement learning algorithm, the QUIC simulation environment, and the training loop.
Given the complexity and size of the implementation, I’m developed Environment based
on QUIC implementation based on python (aioquic). here is sample regarding different
parts and its functionalities.

34

3.2 – Developing Environment Of RL

import gym # For c r e a t i n g the re in forcement l e a rn ing environment
import numpy as np
from t en so r f l ow . keras . models import Sequent i a l
from t en so r f l ow . keras . l a y e r s import Dense
from t en so r f l ow . keras . op t im i z e r s import Adam

Define the QUIC s imu la t i on environment as a Gym environment
class QUICEnvironment (gym .Env) :

def __init__(s e l f) :
I n i t i a l i z e the environment
Define s t a t e and ac t i on spaces , and reward system

def r e s e t (s e l f) :
Reset the environment to the i n i t i a l s t a t e
Return the i n i t i a l s t a t e

def s tep (s e l f , a c t i on) :
Execute the ac t i on in the environment
Update the environment s t a t e based on the ac t i on
Ca l cu l a t e the reward based on the r e s u l t i n g
network performance
Return the new s ta t e , reward , done f l a g , and
a d d i t i o n a l in format ion

Define the re in forcement l e a rn i ng agent
class QAgent :

def __init__(s e l f , s t a t e_s i z e , a c t i on_s i z e) :
I n i t i a l i z e the agent
Define the neura l network model f o r Q−l ea rn in g
Define o ther parameters l i k e eps i l on −greedy
exp l o ra t i on , l e a rn ing rate , e t c .

def act (s e l f , s t a t e) :
Choose an ac t i on based on the curren t s t a t e
Use the eps i l on −greedy p o l i c y
fo r e x p l o r a t i o n and e x p l o i t a t i o n

def t r a i n (s e l f , s ta te , act ion , reward , next_state , done) :
Train the agent by updat ing the Q−va lue s
based on the observed t r a n s i t i o n

I n i t i a l i z e the QUIC environment and the agent
env = QUICEnvironment ()
agent = QAgent (env . state_space , env . act ion_space)

35

Literature Review and Contribution

Training loop
for ep i sode in range (num_episodes) :

s t a t e = env . r e s e t ()
total_reward = 0

for s tep in range (max_steps) :
Choose an ac t i on based on the curren t s t a t e
ac t i on = agent . act (s t a t e)

Execute the ac t i on in the environment
next_state , reward , done , i n f o = env . s tep (ac t i on)

Train the agent by updat ing the Q−va lue s
agent . t r a i n (s ta te , act ion , reward , next_state , done)

s t a t e = next_state
total_reward += reward

i f done :
break

Print ep i sode s t a t i s t i c s
print (f " Episode : ␣{ ep i sode+1},␣Total ␣Reward : ␣{ total_reward } ")

Evaluate the t ra ined agent
tota l_rewards = []
num_eval_episodes = 10

for _ in range (num_eval_episodes) :
s t a t e = env . r e s e t ()
total_reward = 0

for _ in range (max_steps) :
a c t i on = agent . act (s t a t e)
next_state , reward , done , _ = env . s tep (ac t i on)

s t a t e = next_state
total_reward += reward

i f done :
break

tota l_rewards . append (total_reward)

36

3.2 – Developing Environment Of RL

Print e v a l u a t i o n r e s u l t s
average_reward = np .mean(tota l_rewards)
print (f " Average␣ reward␣ over ␣{num_eval_episodes })

3.2.1 gym library

The "gym" library mentioned is OpenAI Gym, a highly adopted Python library em-
ployed for the creation and assessment of reinforcement learning (RL) algorithms. This
library furnishes a uniform and user-friendly interface for the formulation and interaction
with RL environments, rendering it a favored selection within the RL community for re-
searchers and developers alike. OpenAI Gym streamlines the development and evaluation
of RL algorithms, establishing itself as an invaluable asset for individuals engaged in the
discipline of reinforcement learning, whether they are researchers or practitioners.

During Development, I was using mainly Q-learning agent and the gym and stable-
baselines3 libraries for defining the environment. Also I was leveraging socket program-
ming in order to capture on-the-fly data from real network environment and QUIC im-
plementation and train my model.

3.2.2 Stable-baselines3 library

Stable Baselines3 is a popular Python library used in reinforcement learning (RL) for
developing, training, and evaluating RL algorithms. It’s the successor to the earlier
Stable Baselines library and is part of the OpenAI project. Stable Baselines3 offers a
variety of RL algorithms, making it easier for researchers and practitioners to experiment
with and apply RL in various domains.Stable Baselines3 simplifies RL experimentation by
providing a high-quality, well-documented, and efficient framework. It’s a valuable tool
for researchers, engineers, and hobbyists interested in reinforcement learning, offering a
wide range of algorithms and functionalities to support various RL tasks.

3.2.3 Developed RL’s Environment

In this part, I would like to represent the implementation that I’ve developed in order
to get connected to Quic implementation and capture the data and get them involved
into RL process and train model based on data that are received and make action on real
environment.Figure 3.1,3.1

This is Environment that has been developed:

import gymnasium as gym
import numpy as np
from gymnasium import spaces
import get_data
from a i oqu i c . qu ic . r ecovery import QuicCongest ionControl

37

Literature Review and Contribution

quic_con = QuicCongest ionControl ()

class RL(gym .Env) :
" " " Custom Environment t h a t f o l l o w s gym i n t e r f a c e . " " "

metadata = { " render_modes " : ["human"] , " render_fps " : 30}

def __init__(s e l f) :
super () . __init__ ()
Define ac t i on and ob s e r va t i on space
They must be gym . spaces o b j e c t s
Example when us ing d i s c r e t e ac t i on s :
s e l f . act ion_space = spaces . D i s c r e t e (3)
s e l f . observat ion_space = spaces . Box(low=0, high=255 ,

shape =(5 ,2) , dtype=np . f l o a t 3 2)
s e l f . current_reward = 0 .0
s e l f . prev_reward = 0 .0
s e l f . reward = 0 .0
s e l f . l ength = 60
s e l f . d e l t a = 0 .1
s e l f . r educt ion = QuicCongest ionControl () . r educt i on
s e l f . obse rvat i on = None
s e l f . done = False

def act_apply (s e l f , a c t i on) :
s e l f . r educt ion= s e l f . r educt i on + (ac t i on ∗ s e l f . d e l t a)

def ca lcu late_reward (s e l f) :
average = np .mean(s e l f . observat ion , ax i s=0)
maximum = np .max(s e l f . ob se rvat i on , ax i s = 0)
reward = (average [0] /maximum [0]) − (average [1] /maximum [1])
return reward

def s tep (s e l f , a c t i on) :
s e l f . l ength −=1
s e l f . act_apply (ac t i on)
s e l f . current_reward = s e l f . ca lcu late_reward ()
i f s e l f . current_reward > s e l f . prev_reward :

s e l f . reward += s e l f . current_reward
s e l f . prev_reward = s e l f . current_reward

else :
s e l f . reward −= s e l f . current_reward
s e l f . prev_reward = s e l f . current_reward

38

3.2 – Developing Environment Of RL

i f s e l f . l ength <=0:
s e l f . done = True

else :
s e l f . done : Fa l se

i n f o = {}
return s e l f . observat ion , s e l f . current_reward , s e l f . done , i n f o

def r e s e t (s e l f , seed=None , opt ions=None) :
s e l f . done = False
s e l f . ob se rvat i on = np . array (get_data . rec ieve_data ())
return s e l f . obse rvat i on

Training model based on custom environment:

from env import RL
from s t ab l e_ba s e l i n e s 3 import PPO,A2C
from s t ab l e_ba s e l i n e s 3 . common . vec_env import dummy_vec_env
from s t ab l e_ba s e l i n e s 3 . common . eva lua t i on import eva luate_po l i cy
import time
import os

models_dir = f "model−PPO−{in t (time . time ()) } "
l o g d i r = f " logs−PPO−{in t (time . time ()) } "

i f not os . path . e x i s t s (models_dir) :
os . mkdir (models_dir)

i f not os . path . e x i s t s (l o g d i r) :
os . mkdir (l o g d i r)

env = RL()

ep i s ode s = 10
for ep i sode in range (1 , ep i s ode s+1) :

obs = env . r e s e t ()
done = False
s co r e = 0

while not done :
ac t i on = env . act ion_space . sample ()
obs , reward , done , i n f o = env . s tep (ac t i on)
s co r e += reward

print (f ’ Episode : ␣{ ep i sode } , ␣ Score : ␣{ s co r e } ’)
env . c l o s e ()

39

Literature Review and Contribution

def build_model (s t a t e s , a c t i on s) :
model = Sequent i a l ()
model . add (Dense (24 , a c t i v a t i o n=" r e l u " , input_shape=s t a t e s))
pass va lue to the deep l e a rn ing model
model . add (Dense (24 , a c t i v a t i o n=" r e l u "))
model . add (Dense (act ions , a c t i v a t i o n=’ l i n e a r ’))
return model

model = build_model (s t a t e s , a c t i on s)
print (model . summary ())
d e l model

def build_agent (model , a c t i on s) :
p o l i c y = BoltzmannQPolicy ()
memory = SequentialMemory (l im i t =50000 , window_length=1)
dqn = DQNAgent(model=model , memory=memory , po l i c y=po l i cy ,

nb_actions=act ions , nb_steps_warmup=10
target_model_update=1e−2)

return dqn

dqn = build_agent (model , a c t i on s)
dqn . compile (Adam(l r=1e−3) , met r i c s =[’mae ’])
dqn . f i t (env , nb_steps=50000 , v i s u a l i z e=False , verbose=1)

s c o r e s = dqn . t e s t (env , nb_episodes=100 , v i s u a l i z e=False)
print (np .mean(s c o r e s . h i s t o r y [’ episode_reward ’]))

40

Chapter 4

Experimental/numerical
evaluation

3

4.1 Methodology

This chapter outlines the methodology employed in conducting the research to compare
the performance of HTTP and QUIC in diverse network conditions as well as optimize the
performance of congestion control of the QUIC protocol in various network conditions
using reinforcement learning techniques. The research methodology encompasses the
simulation setup, lab infrastructure, and the procedures for evaluating the two protocols
under various network conditions and optimization based on Reinforcement learning. The
research approach consists of two primary phases: (1) Performance Evaluation and (2)
Reinforcement Learning-based Optimization.

4.2 Simulation Environment

4.2.1 Selection of Network Simulation Software

To establish a controlled and replicable environment for network testing. In this study,
i selected OMNET for its capability to accurately model various network conditions and
its flexibility in customizing network parameters.

4.2.2 Simulation Configuration

i configured the network simulation software to replicate real-world network scenarios,
including different network delays, latency levels, and packet loss rates. The chosen
parameters were based on common network conditions encountered in today’s internet,
ensuring the relevance of our study.

41

Experimental/numerical evaluation

Figure 4.1. Simulation Environment

4.2.3 Lab Setup and Hardware Infrastructure

In addition to simulation, i recognized the importance of conducting experiments in a
physical lab environment. To facilitate this, i set up a dedicated lab with the following
hardware components:

• HP DL860 prolight G4 server

• VMware ESXi virtualization

• linux OS

• Virtual Switch

4.2.4 Software Configuration

The lab’s software infrastructure was designed to mirror the simulation environment
as closely as possible. i installed and configured the necessary software components,
including web servers, clients, and network monitoring tools. Special attention was given
to ensuring that the lab setup was compatible with both HTTP and QUIC protocols.

4.3 Experimental Design

4.3.1 Selection of Test Cases.

i designed a series of test cases to evaluate the performance of HTTP and QUIC under
different network conditions. These test cases include varying levels of:

• Network delay

42

4.4 – Performance Evaluation

• Latency

• Packet loss

4.3.2 Data Collection

For each test case, i collected data on several performance metrics, such as:

• Page load time

• Data transfer rate

• Reliability of data transmission

Data was gathered from both the simulation environment and the physical lab setup.

4.4 Performance Evaluation

4.4.1 Data Analysis

The collected data was analyzed using statistical techniques and performance evalua-
tion metrics to compare the performance of HTTP and QUIC under different network
conditions. i employed tools such as tcpdump,etc for this purpose.

4.4.2 Interpretation of Results

The results of the analysis were interpreted to draw meaningful conclusions regarding
the performance of HTTP and QUIC in varying network conditions. i considered factors
such as efficiency, reliability, and adaptability of the two protocols.

4.4.3 Comparative Metrics

To conduct a comprehensive comparison, i utilized a set of predefined metrics, including:

• Throughput

• Round-trip time (RTT)

4.4.4 Visualization

To facilitate a clearer understanding of the results, i employed visualization tools and
techniques, such as graphs, charts, and diagrams, to represent the comparative perfor-
mance of HTTP and QUIC across different network conditions.

43

Experimental/numerical evaluation

4.5 Reinforcement Learning-based Optimization

4.5.1 Creation of Reinforcement Learning Environment

To optimize QUIC congestion control, i developed a specialized reinforcement learning
environment. This environment was designed to closely resemble a real network envi-
ronment and incorporated the actual QUIC protocol implementation. It allowed for the
dynamic adjustment of QUIC’s congestion control parameters in response to changing
network conditions.

4.5.2 Data Collection

In this phase, i collected network data and statistics relevant to the QUIC protocol. Data
sources included:

• Network topology and configuration information

• Real-time network performance metrics, such as RTT, throughput, and packet loss
rates

• QUIC-specific metrics and protocol-level information

Network topology and configuration information Real-time network performance met-
rics, such as RTT, throughput, and packet loss rates QUIC-specific metrics and protocol-
level information

4.5.3 Preprocessing

The collected data underwent preprocessing to make it suitable for use in the reinforce-
ment learning framework. This involved data cleaning, transformation, and feature engi-
neering to extract relevant information.

4.5.4 Environment Validation

To ensure that our reinforcement learning environment accurately represented real-world
network conditions and QUIC behavior, i conducted validation experiments. These ex-
periments included comparing the environment’s performance against that of an actual
QUIC implementation in a controlled lab environment.

4.6 Reinforcement Learning-based Optimization

4.6.1 Model Selection

I chose an appropriate reinforcement learning algorithm for the optimization task. Com-
mon algorithms used for congestion control optimization include Deep Q-Network (DQN),
Proximal Policy Optimization (PPO), and Trust Region Policy Optimization (TRPO).

44

4.6 – Reinforcement Learning-based Optimization

4.6.2 Model Architecture

I designed and implemented the reinforcement learning model architecture, including
neural network structures and hyperparameters. The model was configured to take net-
work conditions and QUIC parameters as input and provide optimal congestion control
parameter adjustments as output.

4.6.3 Training

The model was trained using historical network data within the reinforcement learning
environment. Training iterations were conducted, allowing the model to learn optimal
parameter adjustments to improve network performance, especially in the presence of
packet loss.Figure 4.2 , 4.3

4.6.4 Model Evaluation

The trained model’s performance was rigorously evaluated through various experiments
and scenarios, including different network conditions and packet loss scenarios. Perfor-
mance metrics such as RTT, throughput, and stability were used to assess the effectiveness
of the model in optimizing QUIC congestion control.

4.6.5 Conclusion

This chapter has outlined the methodology employed in the research to compare the
performance of HTTP and QUIC in diverse network conditions. The simulation envi-
ronment, lab setup, experimental design, data collection, and performance evaluation
procedures were explained in detail. The next chapter will present the results of the
study and discuss the findings in depth.

45

Experimental/numerical evaluation

Figure 4.2. RL Environment

46

4.6 – Reinforcement Learning-based Optimization

Figure 4.3. Checking Environment and train model

47

48

Chapter 5

Numerical results

This chapter encompasses a comprehensive presentation of the outcomes derived from our
diverse set of tests. It commences with a comparison between two technologies, QUIC
and HTTP, which offer varying levels of consistency, and scrutinizes their results across
various metrics. Following this, i elucidate the consequences of employing Reinforcement
Learning to fine-tune congestion control parameters and conduct an in-depth analysis
of the merits and demerits of each approach, emphasizing the performance trade-offs
involved. Additionally, within this section, you will find a series of experiments pertaining
to migration. To provide a clear structure, our presentation of results comprises two
distinct phases: the first phase entails the results of performance Comparison, while the
second phase centers around the impact of Reinforcement Learning on enhancing QUIC.

5.1 Performance Comparison of QUIC and TCP

In this experiment, i conducted tests to assess how various network link parameters in-
fluence the throughput of both TCP and QUIC protocols. The primary objective of this
experiment was to determine whether QUIC performs as well as or better than TCP by
examining how these protocols respond to different network conditions.

To initiate the experiment, i established a controlled testing environment using Phys-
ical Environment. i then generated a 5M file for data transfer purposes. Subsequently, i
employed a network configuration illustrated in Figure 4.1 as our reference setup. Within
this environment, i executed the QUIC implementation and collected data on its perfor-
mance.

An important procedural note is that i utilized iperf before initiating the client-side
test. This step was necessary to capture network traffic data, allowing us to gather es-
sential information for analysis. By conducting these tests and observations, i aimed to
gain insights into how TCP and QUIC protocols operate and adapt in various network
environments, ultimately determining if QUIC exhibits similar or superior performance
compared to TCP.

49

Numerical results

In our experiment, each test case is characterized by a predefined set of network pa-
rameters. These parameters include the specific interval at which i modify one particular
variable. Subsequently, i conduct a series of tests using both TCP and QUIC proto-
cols within this controlled parameter environment. During these tests, i gather a variety
of performance metrics, including measurements related to bandwidth and throughput.
This comprehensive data collection allows us to assess how the two protocols perform
under varying network conditions and analyze their respective capabilities in handling
different parameter settings.

To carry out analogous tests with TCP, i took measures to ensure that the volume of
data transmitted matched the file size utilized in the QUIC experiment. Furthermore, i
maintained consistent usage of traffic shaping techniques in alignment with the methods
previously employed during the QUIC testing phase. This systematic approach enabled
us to directly juxtapose the performance of TCP and QUIC within a level playing field,
facilitating a direct comparison of their behaviors and efficiencies across a spectrum of
network parameter configurations.

5.1.1 Throughput comparison in different bandwidth

bandwidth test was performed by varying the bandwidth on all links between clients
and server in my topology.Since there were multiple client hosts, I ran tests from each
client and averaged the throughput results across all clients to plot the final bandwidth
vs throughput graph.

In the bandwidth test (Figure 5.1), TCP throughput increased linearly as available
bandwidth increased from 2Mbps to 100Mbps. QUIC was able to match the throughput
of TCP up to an available bandwidth of 20Mbps. At higher bandwidths above 20Mbps,
QUIC throughput plateaued and no longer scaled linearly.

The maximum throughput achieved for QUIC was 52.16 Mbit/s, compared to 60.47
Mbit/s for TCP. The minimum throughput at 2Mbps bandwidth was 1.85 Mbit/s and
1.93 Mbit/s for QUIC and TCP respectively.

This indicates that QUIC is able to fully utilize the available bandwidth up to around
20Mbps, but does not increase its throughput as aggressively as TCP at higher band-
widths.

5.1.2 Throughput comparison in different Loss

The loss test revealed that QUIC is more resilient than TCP when it comes to packet loss.
As the packet loss rate increased from 0% to 20%, the throughput for both QUIC and
TCP dropped sharply. However, QUIC was able to achieve significantly higher through-
put than TCP at all loss rates above 5%.

50

5.1 – Performance Comparison of QUIC and TCP

Figure 5.1. QUIC vs TCP - Bandwidth Comparison

For example (Figure 5.2), at 20% packet loss, QUIC sustained a throughput of 7 Mbps
while TCP throughput dropped to just 2 Mbps. This indicates that QUIC is better able
to handle lossy networks and maintain usable performance despite heavy packet loss. The
reasons could include QUIC’s ability to recover packets purely at the application layer or
differences in how the congestion control algorithms react to loss events.

In general, I would highlight:

• QUIC consistently outperformed TCP at high loss

• Quantify the throughput difference at a very lossy point (e.g. 7 Mbps vs 2 Mbps
at 20% loss)

• Discuss possible reasons for QUIC’s better loss resilience

• Note the sharp decline in throughput for both as loss passes 5%

51

Numerical results

Figure 5.2. QUIC vs TCP - Different Loss

5.1.3 Throughput comparison in different Delay

The latency test revealed that both QUIC and TCP throughput degraded gradually as
the round-trip time (RTT) increased from 80ms to 800ms. However, QUIC was able to
achieve marginally higher throughput than TCP at some tested delay values.

For example based on figure 5.3, at 200ms Delay, QUIC sustained a throughput of
5.9 Mbps while TCP throughput was 5.3 Mbps. The throughput decline was less severe
compared to the packet loss tests, indicating that both protocols are more resilient to
delay rather than loss.

The reasons for QUIC’s slightly better delay performance could include its ability to
better utilize available bandwidth during the handshake phase due to 0-RTT connection
resumption. However, the throughput difference was minor, suggesting both protocols
are capable of handling increased network latency.

In summary:

• Emphasize the gradual decline in throughput vs sharp drop for loss tests

52

5.2 – RL optimization on QUIC Congestion Control

Figure 5.3. QUIC vs TCP - Different Delay

• QUIC had a slight edge over TCP at all delays

• Quantify small throughput difference at high delay (e.g. 5.9 Mbps vs 5.3 Mbps)

• Note that both protocols are fairly delay resistant

5.2 RL optimization on QUIC Congestion Control

This phase of the experiment aims to investigate how the performance of the protocol
is impacted by varying parameters within the congestion control algorithm. Since con-
gestion control predominantly influences congestion window behavior.Building upon our
prior exploration of the Cubic protocol in previous Chapter, it is important to focus on
the two key parameters, C and β, that govern the algorithm’s behavior. Let’s delve into
the influence of β and C on the curve, as they play significant roles in shaping the char-
acteristics of QUIC.

I will demonstrate the impact of QUIC’s reduction factor on congestion control per-
formance after losses occur. The goal is to analyze how the different beta values affect

53

Numerical results

overall behavior in response to congestion signals.

5.2.1 Tuning performance based on Reduction Factor

I conducted a performance test for QUIC under specific network conditions, where I
utilized a 100 Mbit/s bandwidth with a 5% packet loss rate. The evaluation primarily
focused on throughput, and I experimented with two static reduction factor (beta) val-
ues: 0.5 and 0.7. Additionally, I employed a Reinforcement Learning (RL) model that
dynamically adjusted the reduction factor to enhance performance.

Regarding the static values (Figure 5.4), I observed distinct behaviors for reduction
factors 0.5 and 0.7. Reduction factor 0.7 exhibited a gradual and smooth decrease in
throughput over time until it reached a stable condition. In contrast, reduction factor 0.5
displayed a more aggressive approach, with a sharp initial drop in throughput to achieve
stability in a shorter timeframe. However, it exhibited greater fluctuations over time
compared to 0.7. Both static values maintained their respective behaviors consistently
throughout the testing period..

Figure 5.4. Comparison Throughput based on static Reduction factors and RL tuning

54

5.2 – RL optimization on QUIC Congestion Control

On the RL side (Figure 5.4), the dynamic adjustment of the reduction factor based on
real-time network conditions led to gradual or significant throughput decreases, depend-
ing on the conditions at each moment. Although it took a longer time for the RL model
to reach a stable state, it consistently outperformed the static reduction factor values at
any given moment, delivering better overall performance throughout the test.

In addition to throughput, I also monitored Round-Trip Time (RTT) (Figure 5.5). I
observed that the RL model was effective at keeping RTT as low as possible compared to
the static reduction factor values, indicating that the RL approach had a positive impact
on reducing network latency.

In summary, the dynamic nature of the RL model allowed it to adapt to changing
network conditions, resulting in improved performance, albeit with a longer convergence
time compared to the static reduction factor values.

Figure 5.5. Comparison RTT based on Reduction factor and RL Tuning

55

56

Chapter 6

Conclusion

In summary, this thesis has made substantial contributions to the field of network protocol
evaluation, particularly in the context of QUIC and TCP implementations. The primary
focus of this research has been on network performance assessment and congestion han-
dling capabilities. Additionally, a novel approach involving the use of Reinforcement
Learning (RL) to improve QUIC congestion control was explored.

One of the key highlights of this work has been the comprehensive testing of QUIC
and TCP implementations using a diverse set of metrics, with a particular emphasis on
the evaluation of throughput stability. These evaluations have shed light on the strengths
and limitations of both protocols. QUIC has demonstrated its ability to overcome cer-
tain limitations associated with TCP, such as head-of-line blocking and reliance on the
operating system’s TCP version. While various new features of QUIC have been briefly
mentioned in this thesis, they offer promising avenues for further exploration.

The performance evaluations have revealed that QUIC behaves similarly to TCP
in low-delay, packet-loss-free environments. Differences primarily stem from the slower
Congestion Window (CWND) growth rate in QUIC. These tests have also confirmed that
QUIC excels in scenarios with a low probability of packet loss, aligning with its design
objectives.

The thesis further delves into the analysis of changing congestion control parameters,
both statically and dynamically, through RL. The development of an RL environment
closely aligned with the real-world lab environment allowed for training models that could
dynamically adjust metrics, evaluate Throughput, and monitor Round-Trip Time (RTT).
The results demonstrated that dynamic metric adjustments led to improved performance,
particularly in the presence of unstable network conditions.

It is important to acknowledge that results obtained in isolated and emulated envi-
ronments should be interpreted with caution, as real-world networks are influenced by
various external factors and concurrent traffic. Validation through comparisons with real

57

Conclusion

network tests is a crucial next step. Furthermore, a deeper analysis is required to under-
stand the specific circumstances under which protocol behavior and parameters should be
adjusted to align more closely with TCP. This research serves as a valuable step towards
refining the evaluation methodologies for congestion control protocols, with the hope of
enhancing our understanding of these critical networking components.

58

Bibliography

[1] https://jacobianengineering.com/blog/2016/11/1543/.
[2] https://vasexperts.com/blog/functionality/from-tcp-to-quic/.
[3] https://www.v7labs.com/blog/deep-reinforcement-learning-guide.
[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[5] Mike Bishop et al. Hypertext transfer protocol version 3 (http/3). Internet Engi-
neering Task Force, Internet-Draft draft-ietf-quic-http-34, 2021.

[6] C Cimpanu. Google creates new algorithm for handling tcp traffic congestion control,
2016.

[7] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate
limiting {YouTube} video streaming. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 191–196, 2012.

[8] Jana Iyengar and Martin Thomson. Rfc 9000 quic: A udp-based multiplexed and
secure transport. Omtermet Emgomeeromg Task Force, 2021.

[9] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[10] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and Alan
Mislove. Taking a long look at quic: an approach for rigorous evaluation of rapidly
evolving transport protocols. In Proceedings of the 2017 Internet Measurement Con-
ference, pages 290–303, 2017.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[12] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cam-
bridge, UK, 1994.

[13] Mohammad Shehab, Ahamad Tajudin Khader, and Mohammad Alia. Enhancing
cuckoo search algorithm by using reinforcement learning for constrained engineering
optimization problems. pages 812–816, 04 2019.

[14] Tanya Shreedhar, Rohit Panda, Sergey Podanev, and Vaibhav Bajpai. Evaluating
quic performance over web, cloud storage, and video workloads. IEEE Transactions
on Network and Service Management, 19(2):1366–1381, 2021.

59

Bibliography

[15] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017.

[16] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[17] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in neural information processing systems, 12, 1999.

[18] Vibhore Tyagi, Sachi Pandey, and Tarun Kumar. A survey of tcp congestion control
algorithm in wireless network: Bic and cubic. 01 2014.

[19] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.
[20] Alexander Yu and Theophilus A Benson. Dissecting performance of production quic.

In Proceedings of the Web Conference 2021, pages 1157–1168, 2021.

60

	Introduction
	Organization of the Thesis

	Background on Fundamental Technologies and Tools
	Background
	QUIC Motivation
	QUIC Mechanisms
	Connection establishment
	Multiplexing
	Packet number Encryption
	Connection migration
	Forward Error Correction (FEC)
	Flow Control

	HTTP/3
	Related work
	QUIC Protocol VS TCP

	Congestion control
	Packet Number rising monotonically
	Calculate RTT time with accuracy
	QUIC Congestion Control Algorithms
	 Window growth function for the CUBIC

	Overview of Reinforcement Learning
	Model-based vs Model-free
	Algorithms Of RL
	Flow Of RL Process In Depth

	Literature Review and Contribution
	Environment Of RL in Depth
	Developing Environment Of RL
	gym library
	Stable-baselines3 library
	Developed RL's Environment

	Experimental/numerical evaluation
	Methodology
	Simulation Environment
	Selection of Network Simulation Software
	Simulation Configuration
	Lab Setup and Hardware Infrastructure
	Software Configuration

	Experimental Design
	Selection of Test Cases.
	Data Collection

	Performance Evaluation
	Data Analysis
	Interpretation of Results
	Comparative Metrics
	Visualization

	Reinforcement Learning-based Optimization
	Creation of Reinforcement Learning Environment
	Data Collection
	Preprocessing
	Environment Validation

	Reinforcement Learning-based Optimization (1)
	Model Selection
	Model Architecture
	Training
	Model Evaluation
	Conclusion

	Numerical results
	Performance Comparison of QUIC and TCP
	Throughput comparison in different bandwidth
	Throughput comparison in different Loss
	Throughput comparison in different Delay

	RL optimization on QUIC Congestion Control
	Tuning performance based on Reduction Factor

	Conclusion
	Bibliography

