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Introduction






Introduction

The continuous scaling of the electronic technologies and the development of nonpla-
nar device architectures requires to pattern materials more precisely for the creation
of specific features. This is becoming extremely challenging, causing the develop-
ment of new nanoscale fabrication techniques. More and more precise control over
atomic scale processes is required.

Nowadays, lithography is still the most widely used process in device fabrication.
However, patterning, overlay errors and non conformal deposition on critical fea-
tures can heavily affect the device fabrication. Self-alignment processes are required
to solve this kind of issues, so the demand for the development of bottom-up ap-
proaches, to deposit selectively a film on top of another surface, is increasing.

One of the bottom-up approaches that attracts more the attention of the semi-
conductor community is Atomic Layer Deposition (ALD). It is a thin film deposition
technique that involves the sequential exposure of a substrate to two half reactions.
Once the first half-reactor is introduced in the ALD chamber, it reacts with the
substrate, resulting in the formation of a monolayer of the desired material.

The reaction is self-limiting, meaning it stops once the surface is fully covered with
the desired material. After the first half reaction, the reaction chamber is purged
with an inert gas, such as nitrogen or argon, ensuring a clean environment for the

subsequent reaction.

The substrate is then exposed to the second half reaction. This involves the in-
troduction of a second precursor gas in the chamber, labeled as a co-reactant. It
reacts with the previously deposited monolayer, resulting in the growth of an addi-
tional atomic layer. Again, the reaction is self-limiting. The chamber is purged once
again to remove any excess reactants, reaction by-products or residues.

The process then is repeated by alternating between the first and second half
reactions. Each cycle adds one atomic layer to the thin film.

By repeating these steps, layer by layer, the ALD process allows for precise control
of the film thickness, through the number of cycles, and of the film composition,
through an accurate choice of reactants and co-reactants, while ensuring excellent
conformality and uniformity.
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This layer-by-layer growth can be engineered to deposit a vapor phase material
just on a predetermined surface in a selective way. This is known as Area Selective
Atomic Layer Deposition (AS-ALD) or simply Area Selective Deposition (ASD).

To make the process selective a blocking agent is required.

The choice of the inhibitor depends on the specific materials and surface chemistry
involved [1]: it has to selectively bind or react with certain functional groups on
pre-selected surface sites, preventing subsequent reactions with the precursor gas,
while leaving the other regions untouched.

Moreover, it should form strong covalent bonds, to remain firmly bounded to the
substrate during subsequent ALD or solvent cleaning steps, and it should not decom-
pose or react with the precursor gases.

A variety of inhibitors can be used: self-assembled monolayers (SAMs), silane-
based compounds, with alkyl or halide functional groups, polymeric films, metal
oxide thin films or functionalized nanoparticles with appropriate organic ligands or
surface modifiers. Between them, organic inhibiting materials are the most attractive
and versatile deactivation chemistry, showing the highest level of selectivity.

In particular, organic self-assembled monolayers (SAMs) [9] [5], are the most
widely exploited. They are made by a single layer that forms through the assembly
of organic molecules on a solid surface in a regular and ordered manner. They
constitute the thinnest possible blocking layer.

Also polymers are widely studied [7] [4], offering a wide range of options in terms
of materials and characteristics. The polymeric structure can be tailored depending
on the specific ALD process and substrate requirements, to ensure good adhesion
and compatibility between the inhibiting layer and the substrate.

The main ASD limitation is related to adhesion issues. They can be caused by
poor compatibility between the substrate material and the inhibitor, so that they are
unable to form a strong and durable bond, or by residual stresses and impurities at
their interface. ASD can be also impacted by insufficient selectivity, that leads to
defects in the inhibitor layer, causing the ALD material growth on the deactivated

area.

Providing a complete understanding of inhibitor structure/properties relationships
is one of the main goal to make advancements in the ASD research, enabling a
wide-spread understanding of the selectivity mechanism. This can be achieved with
a purely experimental work or with the support of ’Accelerated discovery’ tools, that
help to speed up the way to obtain information about the deposition process.

Chapter 1 Introduction



Research lab and team
presentation

IBM Research in Almaden is IBM’s Silicon Valley innovation lab. Scientists ranging
from chemists to physicists, as well as mathematicians, engineers and designers
at Almaden are pioneering breakthroughs across disruptive technologies including
Al and machine learning, hybrid cloud, quantum computing, security and storage.
Their published works and contributions to the scientific community cross several
industries, including healthcare, semiconductors, sustainable energy, renewable ma-
terials, retail and data privacy. Accomplishments are recognized through thousands
of publications, citations, invited talks, industry and academic partnerships and
conference chair appointments.

My group deals with semiconductor fabrication and packaging.

The main focus is to develop new materials for the smallest length scale (<20 nm)
of semiconductor fabrication.

Bottom-up additive strategies, in particular Atomic Layer Deposition, are becoming
increasingly more important. The ALD inhibition in a controllable area selective
manner, which provides a critical means of depositing a film without subtractive pro-
cesses, is the main subject of interest. The research is centered on the identification
and synthesis of selective surface-binding inhibitors to enable area selective pro-
cesses and provide a more complete understanding of inhibitor structure/properties
relationships.

ASD has several applications in microelectronics and nanoelectronics, including
transistor and integrated circuit (IC) fabrication, storage systems and semiconductor
devices. It enables the creation of customized contact layers, electrodes or intercon-
nections, tailored to the specific needs of the device.

Specifically, the group is focused on the exploitation of ASD in BEOL (Back-End-of-
Line) steps, the final stages of the integrated circuit manufacturing process. They
involve the fabrication of interconnects and metal layers that connect the various
components of the IC. In BEOL, ASD can be used to perform selective deposition on
patterned surfaces, with both planar or high aspect ratio features. The goal is to bind
the inhibitor to the metallic area (Cu in our case), enabling successive depositions
just on the dielectric subsections (SiCOH in our case).






Internship subject overview

The experimental section of my project (described in part II) focuses on the specific
class of organic compounds of amines, characterized by a nitrogen atom bounded
to one or more alkyl or aromatic groups carbon atoms. The amines are classified
as primary, secondary or tertiary if the nitrogen atom is bounded to one alkyl (or
aromatic group) and two hydrogen atoms, or to two alkyl (or aromatic groups) and
one hydrogen atom or to three alkyl (or aromatic groups), respectively. In order
to maximize the bonding between the amine and the substrate, we are focusing
exclusively on primary amines.

The aim is to study their inhibiting properties and understand the possible ad-
vantages of using this specific class of organic compounds as inhibitors with respect
to others. The amines have been selected through a detailed search among a very
large number of compounds, different in terms of chemical composition as well as
chemical and physical properties, taking advantage of searching and filtering tools
that expedite the process. Facilitate the work is precisely what ’Accelerated discovery’
aims.

Possible means to increase the efficiency and effectiveness of the research pro-
cesses can be: increasing the research and development effort by investing more
resources, enhancing the collaboration among researches from different disciplines
or institutions and adopting innovative research methodologies to test and validate
hypothesis, such as high-performance computing, big data analytics and artificial
intelligence tools.

In particular, "Accelerated discovery for ASD" wants to define a process window
for achieving more spatial control in the ALD process on patterned surfaces. This
reduces the number of experimental trials, optimizing the workflow, and favours
advancements in the classes of materials that can be used.

Different classes of materials can already be exploited as inhibitors, resulting in a
broaden repertoire of ALD materials that can be selectively deposited. Nevertheless,
some issues can impact the effectiveness and the reproducibility of the process, such
as adhesion issues or insufficient selectivity. Moreover, the reaction geometry, the
precursor flow conditions and all the process parameters, such as fluctuations in
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temperature, pressure and deposition rate, need to be optimized to guarantee a
successful and reproducible experiment.

My personal work on Accelerated Discovery for ASD, described in part III, con-
sists in creating an artificial intelligence (A.I.) model that can predict new sets
of experimental conditions and new classes of inhibitors to enable selective area

deposition.

Machine learning algorithms can identify relationships between process param-
eters and properties of the deposited material, allowing for the prediction of the
behavior of precursor gases, their diffusion and their distribution on the substrate
surface [10]. This can compensate any experimental deviation, aiding in identifying
potential experimental solutions.

The A.I. model input data are gathered from Scanning Electron Microscopy (SEM)
images. They were taken after the deposition of both the inhibitor layer and the ALD
material. A combination of looking at them, and looking up their corresponding
experimental conditions written down in notebooks, allows to gather all the experi-
mental parameters that can influence the ASD process and to visualize the effective
growth rate of the ALD material.

From all the information collected from the SEM images, the frequency of success
for each set of unique experimental conditions can be calculated and used as input
data for the A.I. model.

The A.I. models chosen to process the data are based on classification and re-
gression algorithms. They can predict, for a new set of the experimental conditions,
its frequency of success and what is the range of values for a certain experimental
parameter that enables selective deposition, so a successful result.

Moreover, by linking the inhibitors already used to their chemical composition and
their chemical or/and physical properties, is possible also to predict new classes of
inhibitors that give rise to selective deposition.

Chapter 3 Internship subject overview
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Experimental section






Amines as functionalizing agents
of metallic surfaces

4.1 Amines searching process

The project focuses on studying the inhibiting properties of the specific organic
compounds class of primary amines. The choice is based on previous experimental
results obtained using Propargylamine as inhibitor [3].

Propargylamine was shown to be an effective inhibitor toward TaN, enabling TaN
deposition just on SiCOH (dielectric) and not on Cu (metal), up to almost 100 TaN
ALD cycles. The effective binding of Propargylamine on the metallic surface was
driven by the primary amine, used as ligand.

Previously, selective deposition of TaN was demonstrated by exploiting as inhibitor
other classes of organic compounds, such as phosphonic acids.
However, phosphonic acids were deposited on the substrate from liquid phase.

The aim is to develop an "all integrated process", where both the inhibitor and
the ALD material are deposited through ALD (i.e. vapor phase), without exposure of
the wafer to air after the inhibitor deposition.

This requires a very low vapor pressure compounds: the physical properties of
amines make them attractive candidates for this purpose.

Based on the previous requirements and results, a research for a possible new
inhibitors was conducted through four big classes of organic compounds: phospho-
nic acids, hydroxamic acids, primary amines and carboxylic acids functional groups.
Only the organic compounds with maximum 10 Carbon backbone were included,
excluding all the ones containing F and Cl, being not compatible with microelectronic
applications. Furthermore, a vapor pressure of at least of 1mTorr was required, to
ensure they could vaporize in the ALD tool.

A first accurate search through a huge variety of organic compounds, applying
the searching criteria listed above, was conducted through IBM CIRCA.

CIRCA is an IBM Research platform designed for a rapid and easy search of materials,
with straightforward browsing and filtering options to quickly identify them.

11
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Advanced keyword search, including proximity search, chemical similarity, substruc-
ture search, reaction search or target assay searches, can be exploited. Powerful
filtering options refine the search to give a targeted result set.

CIRCA covers a huge amount of data from patents, abstracts, text articles and public
databases. The tool is perfect for working with big data, and linking it with other
cognitive applications enables advanced Al capabilities.

It is worth noting that the search was not perfect and a second filtering job was
performed through DataWarrior, to further narrow down the list of compounds.
DataWarrior is a software tool designed for chemical data visualization and analysis.
It enables to import external large chemical databases and offers a wide range of
customizable visualization options, from 2D and 3D chemical structure representa-
tions to scatter plots, bar charts and heatmaps.

The second filtered search effectively reduced the number of organic compounds to
be successively tested as inhibitors for ASD. One of them, belonging to the class of
primary amines, was X.

It remains an inhibitor of interest for future IBM researches.

4.2 Metallic surfaces functionalzation

The first experiment was performed to test the possible functionalization of metallic
surfaces through X. Blanket Cu coupons were used as substrates. As a start, both
liquid and all-integrated vapor phase approaches were investigated.

* From liquid phase: The substrates were functionalized with X as-is or with a
solution at a concentration of 0.1 wt% in 4-methyl-2-pentanol (4M2P). The
substrates, without any surface preparation, were immersed in the liquid solu-
tion for a period of 30 minutes. After removing the samples from the solution,
they were rinsed with 4M2P and isopropanol and dried under nitrogen (N).

* From vapor phase: X was inserted into a stainless steel bubbler and after
plumbed into an ALD tool. First, a 10 min N remote plasma treatment was
executed on the samples, followed by evacuation. Then, X was pulsed for 3.5
s, pursued by a dwell time of 80 s and by 8 s of evacuation. The ALD chamber
was maintained at the constant temperature of 35°C. The same procedure was
repeated 80 times.

Chapter 4 Amines as functionalizing agents of metallic surfaces



4.3 X-rays photoelectron spectroscopy (XPS)

The functionalized surfaces were then characterized by X-rays photoelectron spec-
troscopy (XPS) to confirm that the inhibitor was effectively bonded to the metal
surface. XPS is a powerful technique that can provide valuable information aiding
in characterizing the quality, purity and uniformity of deposited material and in
optimizing the ALD deposition parameters.

It is possible to determine the elemental composition of the deposited film by
measuring the binding energies of the core electrons of the different elements
present. Looking at the binding energy shifts allows us to distinguish different
chemical species. By comparing the spectra before and after ALD, any changes in
the surface chemistry can be identified, indicating the also the presence of possible
contamination and impurities. XPS can also provide an estimate of the film thickness
by comparing the X-ray signal intensity from the film to that of the substrate.

The XPS analysis was performed by comparing four different metallic substrates.
The results are showed in the Table 4.1:

* Cu reference substrate not functionalized

* Cu substrate functionalized with X from liquid phase

* Cu substrate functionalized with a 0.1 wt% solution in 4M2P
* Cu substrate functionalized with X from vapor phase

Consistent data with the formation of an X monolayer are: a decrease in Cu at% and
an increase in C at% (up to 35%-45%) and in N at%, compared to the Cu reference
substrate. Looking at the chemical composition of the inhibitor X, a larger increase

in the C concentration with respect to the N one is expected.

Cls | N1s | Ols | Si2p | Cu3p
Cu ref 186 | 1.2 | 31.7| 0.2 | 48.4

(1) Cu + liquid X | 17.5| 0.2 | 37.3 | 42.6 | 2.3
(2) Cu + Xin 4M2P | 29 14 | 232 O 46.5

(3) Cu + vapor X 789 | 156 | 1.2 0.9 4.1
Tab. 4.1: Liquid phase vs Vapor phase inhibitor

Looking at the Table 4.1, the substrates (1) and (2), functionalized with X in liquid

phase, show an amount of C lower than expected: X is not attached to the substrate.

Moreover, for (1), the Cu concentration is extremely low, while the Si one, supposed
to be not detectable, is extremely high. This indicates a possible corrosion of the Cu

4.3 X-rays photoelectron spectroscopy (XPS)

13



substrate, showing the underlying Si layer.

The substrate (3), functionalized with X from vapor phase, exhibits less amount of
Cu compared to the reference and a C relative atomic concentration of 78%, about
twice that of what is observed for a monolayer. So, the deposited layer can be thicker
than expected. Sample (3) will be used in the following, referred to as Cu + X (1).

14 Chapter 4 Amines as functionalizing agents of metallic surfaces



X from vapor phase as inhibitor
for ZnO ALD

To assess the inhibiting properties of X, it was again pulsed into the ALD tool. We
used the same ALD experimental parameters of the first attempt, that will be used in
all the subsequent ALD runs.

We performed first the X substrates coating and after, without breaking the chamber
vacuum, a Zinc Oxide (ZnO) atomic layer deposition. The chamber temperature
was changed from 35° C to 150° C. A half cycle of dimethyl Zn, pulsed for 20 s was
followed by a water flow pulsed for 0.03 s, both with a dwell time of 20 s.

We are searching for an inhibitor that binds just to a metallic surface and not
to a dielectric one, to enable selective deposition of ZnO through ALD only on the
dielectric subsection of a patterned substrate.

As a consequence, in the ALD chamber were inserted a blanket Cu coupon (metallic
surface), a blanket carbon-rich silicon oxicarbide (SICOH) coupon (dielectric surface)
and a coplanar patterned Cu/SiCOH substrate, labeled as P. Different experiments
were performed, by keeping constant all the deposition parameters, except for the
number of ZnO ALD cycles, and by using each time new substrates (i.e. replaced,
not reused).

The experiments are listed below, chronologically ordered:

* 50 ZnO cycles

* 200 ZnO cycles
* 114 ZnO cycles
150 ZnO cycles

Blanket coupons were characterized through XPS.

Looking at the Cu substrates results in Table 5.1, the C relative atomic concentration
is always between 35% and 45%, consistent with the X monolayer formation.

The X layer thickness is confirmed by the 1:1 ratio between C and N percentages,
expected to be around 6:1. The XPS tip might have been reached the N layer,
underlying the X one, formed during the N plasma treatment done before the X
pumping.

15
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The Zn concentration remains 1% - 2% up to 150 ZnO ALD cycles, while it increases
to 40% for 200 ZnO ALD cycles. X can block the ZnO growth on Cu only for a limited
number of ZnO cycles.

Cls | N1s | Ols | Si2p | Cu3p | Zn3p
Cu ref 186 | 1.2 | 31.7 | 0.2 | 48.4 0
Cu + X (1) 789|156 | 1.2 | 09 | 4.1 0
Cu+X+50ZnO | 448|449 | 34 | 0.2 | 53 1.5
Cu+X+1147Zn0 | 359 (| 40.7 | 71 | 0.1 | 143 | 1.9
Cu+X+1507Zn0O | 37.8 | 37.1 | 9.3 0 144 | 1.3

Cu+X+2007Zn0O | 11.5| 0.5 | 47.3 0 0 40.6
Tab. 5.1: X and ZnO ALD on Cu substrates

Looking now at the XPS results on SiCOH substrates, the reference substrate and the
one subjected just to 80 X ALD cycles, show the same C concentration. The high N
concentration is caused by the N plasma treatment preformed before X pumping.
The SiCOH substrates subjected also to ZnO ALD, show a gradual increase in the Zn
relative atomic concentration, to which corresponds a gradual decrease in the C one.
These data describe exactly what we want: X does not attach on SiCOH, so that ZnO
growth can occur.

The conclusion is that X adheres to Cu substrates, deactivating them from ZnO
deposition, leading to a blanket deposition only after 150 ZnO ALD cycles. Instead, it
does not attach on SiCOH substrates, enabling ZnO depositon even for a low number
of ALD cycles performed.

Cls | N1s | Ols | Si2p | Cu3p | Zn3p
SiCOH ref 194 | 0.1 | 525 | 28 0 0
SiCOH + X 20 11 | 46.2 | 21.5 0 1.4
SiCOH + X + 50Zn0O | 44.7 | 39.8 | 8.7 | 4.9 0 2
SiCOH + X + 114 ZnO | 34.9 | 29.2 | 21 9.3 0 5.4
SiCOH + X + 150 ZnO | 13.7 | 3.9 | 45.6 | 0.3 0 36.6
SiCOH + X +200ZnO | 10 | 0.2 | 478 | O 0 42

Tab. 5.2: X and ZnO ALD on SiCOH substrates

A good selectivity window, plotted in Figure 5.1, can be defined. It can be confirmed
by looking at the SEM images on patterned coupons. SEM images reveal a good
agreement between the results obtained for blanket and patterned coupons, in
Figure 5.2 (a),(b) and (c). However, for 150 ZnO ALD cycles, ZnO selective growth
is esxpected while ZnO is deposited everywhere (Figure 5.2 (d)).

Chapter 5 X from vapor phase as inhibitor for ZnO ALD



This assess that the results obtained on blanket coupons could not be necessarily
transferred on patterned coupons.

Zn0 percentage depending on the number of ZnO ALD cycles
45
40
35

30

20 == SiCOH

— CU

50 114 150 200
Number of ZnO ALD cycles

Fig. 5.1: ZnO selectivity window

Fig. 5.2: (a) 50 ZnO ALD cycles, (b) 114 ZnO ALD cycles, (c) 200 ZnO ALD cycles, (d) 150
ZnO ALD cycles on P, (e) 150 ZnO ALD cycles on K

To ensure the reproducibility of the previous results obtained for X from vapor phase,
a further investigation about X as functionalizing agent on metallic surfaces was
performed.

Each Cu substrate, functionalized with X, was then characterized by XPS. Almost all
of them show relative atomic concentrations consistent with the formation of a X
monolayer. Follow-up investigations are focused on ensuring reproducilibity to this
process, involving also quantum mechanical ab initio simulations [8].

17






Part III

Accelerated Discovery for Area Selective
Deposition






Accelerated Discovery for Area
Selective Deposition

’Accelerated discovery’ involves finding ways to expedite the process of uncovering
new information to make scientific advancements. This can be achieved through
various means including cutting-edge technologies, such as quantum mechanical
simulations [6] and artificial intelligence [2], that can enhance the efficiency and
effectiveness of the research processes, allowing for faster analysis, data processing
and hypothesis testing.

Until now, in order to test the inhibiting properties of a certain material, that
can enable selective deposition of a vapor phase precursor on a predetermined
surface, purely experimental 'trial and error’ approaches have been exploited.

The aim of this project is to leverage an Al model that can recognize and suggest
a material, that has not been tested experimentally before, as successful inhibitor
or not. By specifying a set of experimental conditions, the model can predict if it
will give rise to selective deposition and it can predict range of values for a certain
experimental parameter that lead to a successful result.

All the information, to built the input data for the A.I. model, are obtained by
looking at SEM images, showing a substrate, which may or may not undergo a
pre-treatment, on which a particular inhibitor is deposited and a subsequently ALD
deposition is performed.

The input data are split in training and testing datasets, essential components
of the machine learning process. They are collection of data points, each of them
consisting of input features and a target output. In this case a single data point has
as input features a unique set of experimental conditions used in a previous ASD
experiment and the target output are the results obtained, labeled as successful or
not successful, and the frequency at which successful ones are achieved.

The AI model learns from the testing dataset, by iteratively presenting the data
to the model. Its performance is evaluated and its internal parameters are adjusted
through optimization algorithms, to minimize the difference between its predictions
and the true labels.

21



Once optimized, the model makes predictions on the testing dataset based on
the patterns and relationships it learned during its training. The model’s predictions
are then compared with the true testing set labels to assess its precision.

All the main steps, that characterize my work, are resumed in Figure 5.1:

DATA COLLECTION

DATA PROCESSING

A.l. MODEL CREATION

DATASET SPLITTING

A.l. MODEL TRAINING

A.l. MODEL EVALUATION

A.l. MODEL OPTIMIZATION

A.l. MODEL VALIDATION

OPTIMIZATION AND ITERATION

Fig. 6.1: Project overview

22 Chapter 6 Accelerated Discovery for Area Selective Deposition



Data collection and Data
processing

7.1 SEM images characterization

Scanning Electron Microscopy (SEM) analysis provides high-resolution images of the
surface of the deposited thin film, allowing for visual and quantitative evaluation of
its morphological and structural characteristics.

Top-down SEM images contain information about roughness, porosity and con-
formality of the depostied film.

The presence of layering and surface defects, such as grains, aggregates or holes,
give us information about the structure of the deposited film, enabling a measure of
their size, shape and distribution.

Additionally, SEM analysis allows the examination of the interface between the
substrate and the deposited thin film, identifying (if large enough) any contaminants
that may affect the material’s properties.

Gathering a large and diverse set of SEM images, that covers the majority of the ASD
experiments performed in this lab in the last few years, constitute the starting point
to build a consistent dataset to train and test the Al model[empty citation]. We
need to prepare the images by pre-processing them, ensuring that they are annotated
with the desired inputs and outputs labels.

Figure 6.1 is a good example of selective ZnO deposition. ZnO grows in a polycrys-
talline fashion, in the way that different grains orientations can be recognized where
the film is deposited.

Fig. 7.1: Example of SEM image

23
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7.2 Creation of the dataframe

The categorization is performed by considering all the experimental procedures and
the correspondent experimental parameters that can differentiate one image from
another.

Each image has a specific name, but is the timestamp that is used to distinguish
uniquely them. It consists in the day and the exact time (00:00:00) in which the
image was taken through the SEM tool.

First, we specify the type of substrate: three blanket coupons (SiCOH, Cu and
Co capped Cu coupons) and two patterned coupons (PORTER and KATLA). We
specify if the substrate is subjected to any substrate preparation or to a plasma
treatment, by characterizing its duration and the type of plasma.

The inhibitor molecule is one of the decisive parameters that determines the results
of the experiments. 14 different inhibitors were identified.

The inhibitor can be deposited on the substrate from liquid or vapor phase.

For liquid phase inhibitors we distinguish between inhibitors deposited as-is or in
solution, the type of solvent and the solution concentration (wt%). We take note also
of the the immersion time. For vapor phase inhibitors, the specified parameters are
the temperature of the ALD chamber, the number of ALD cycles, the pulse duration
and the dwell time.

When we are dealing with organic inhibitors that contains a polymerizable thermal
or photoreactive component, after their deposition some procedures can be exploited
to ’cross-link’ the functionalized surface, so that the ADL material nucleation is
further delayed or blocked. Even this procedures and their details are classified.

The material deposited through ALD and all the ALD procedure parameters are
labeled: chemical precursor and co-reactant, temperature of the ALD chamber,
pulse duration and the dwell time and the number of ALD cycles for both the "half-
reactions’.

The images are differentiated also by specifying the dimensions of the visible features.
After listing all the "Experimental conditions", the images are classified with re-
spect to the growth rate of the ALD material, that determines the success of the

experiment. Patterned coupons are labeled by specifying the ALD material growth
rate on both the dielectric and metallic areas.

Chapter 7 Data collection and Data processing



The information collected are grouped in a two-dimensional tabular data struc-
ture, called dataframe, in which the number of rows corresponds to the number
of SEM images analyzed, while each column is a specific feature that characterizes
them. The table contains 1343 rows and 36 columns and it constitutes the starting
point for the data processing.

7.3 Data processing with Python

Each column of the dataframe is converted as a "category" data type. The code
counts the unique labels (categories) present in each column and assigns a numerical
value (index) to each category, as shown in Figure 6.2.

SUBSTRATE | Substrate
SiCOH 0
Co capped Cucoupon 1
Cu 2
KATLA 3
PORTER 4

-1

Fig. 7.2: Example of data indexing

The columns of the dataframe are divided in two sections: ’Experimental Conditions’
and 'Results’. In particular, the second group describes the growth rate of the ALD
material on the dielectric and the metal that make up both the patterned and the
blanket coupons: 'Results on SiCOH’, 'Results on Cu’ and 'Results on Co on Cu’.

Dealing with blanket coupons means that just one out of the three result is present,
while for patterned coupons the result is specified for both the metallic (Cu) and
dielectric (SiCOH) substrate subsections. I ended up with 2 possible outcomes for
’Co capped Cu coupons’ and 14 possible outcomes for both ’SiCOH’ and "Cu’.

After indexing the data, GroupBy objects are created, representing the grouping of
data based on specific columns. The first columns specified are all the ones belonging
to the 'Experimental Conditions’ section, so that we can group the data with respect
them and have each row that represents a unique set of experimental conditions
used. In the same time we can count how many times each set of conditions is
repeated.

Another GroupBy object is created, by specifying the 'Results’ section columns. In
this way, for each set of experimental conditions, it is possible to list all the results
combinations and count how many times each combination occurs.

This can be understood better by looking at Figure 6.3.

7.3 Data processing with Python

25
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index Substrate Substrate_preparation Plasma_treatment ... water_ dweel area Res SiCOH
) - -1 -1 ... -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
e

1
1
1
1
1
2
1
2
1
2

2 )
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Fig. 7.3: Data grouping

7.4 Data visualization: Heatmaps

Heatmaps are graphical representations used to visualize and explore patterns and
relationships between the data. Individual values within a matrix are represented as
colors. The intensity of the color represents the value of the data points, typically
ranging from light colors for low values to dark colors for high values. However, the
color scale can be chosen also to highlight particular visual aspects, to emphasise
some data points.

One of the most decisive parameters that can affect the ALD material growth rate
on a specific substrate, even without modifying any other parameter, is the features
size. It is interesting to observe what is the relation between all the possible results
on SiCOH and Cu with respect to all the possible features dimensions.

In the Figure 6.4 the color scale is chosen to emphasize the unique outcomes, that
occur just one time, plotted in red.

Outcomes on SICOH depending on the dimensions
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Fig. 7.4: Results on SiCOH with respect to all the possible features dimensions

The Figure 6.4 shows a large number of unique outcomes. In other words, if we
consider a set of unique experimental conditions, based on the results/dimensions
relationship, we expect just one result that occur just one time.

This can make the modeling more cumbersome, passing in input data that are
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not well distributed. The problem domain is related to the frequency of success of a
certain set of experimental conditions, so unique outcomes are not so representative.
We want as many results as possible for each set of experimental conditions, divided
in good or bad results, in order to assess overall whether the experiment is successful
and with what frequency.

To better redistribute the data, I decided to regroup all the possible features sizes in
three broad categories, The lower and upper limits can be easily tailored, depending
on the initial data distribution and the specific aim.

* Onm - 100 nm
* 100 nm -1 pum
e >1pum

After grouping the dimensions, as visible in the Figure 6.5, the number of unique
outcomes has significantly decreased and, in relation to the intervals boundaries,
the data appear well balanced/distributed with a significant sample size for each
interval.

utcomes on SICOH after the definition of dimensions range

Fig. 7.5: Results on SiCOH after features dimensions class definition
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Results categorization

The success of an experiment, involving a blanket coupon as substrate, relies solely
on the growth or not of the ALD material on the substrate, depending on the specific
objective of the experiment; the growth rate does not count.

However, for patterned coupons, an experiment can be deemed successful only if
the ALD material selectively deposit on one of the two substrate subsections and, de-
pending on its growth rate, there are different degrees of selectivity that determines
different degrees of success. A cross-validation between the result on SiCOH and on
Cu is needed.

I labeled 14 possible results for both SiICOH and Cu, so 196 results pairs are possible.
All the results pairs that appear in our experiments are visualized in the Figure 7.1.
Even if not all the possible results pairs are present, and the data points are not
really balanced, because some pairs occur much more frequently than the majority of
others, overall there is a sufficient quantity of well distributed combinations available.

OUTCOMES ON SICOH vs OUTCOMES ON Cu

136

Fig. 8.1: Results on SiCOH vs Results on Cu
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The results pairs are divided first into seven classes:

* Complete selectivity;

* Almost complete selectivity;
* Good selectivity;

* Not good selectivity;

* Almost no selectivity;

* No Selectivity;

* Cannot Conclude.

This first categorization exhibits not only positive or negative results, but also neutral
results, that neither strongly indicate success nor failure. To remove this gray area,
the classes are split just in two macro sections: the first three classes are grouped
under successful results, while all the others are grouped under not successful results.

For blanket coupons the outcomes are labeled simply by considering if the ALD
material is deposited or not on the substrate, so just two classes are defined, and the
categorization in successful or not successful results is determined by the goal of the
specific experiment.

For all the unique sets of experimental conditions we know all the verified re-
sults, the occurrence of each result and if it is labeled as successful or not successful.
For instance, for each of them we can calculate the frequency of success, so the
number of successful results out of the total, showed in Figure 7.2.

The frequency of success represents the milestone for the artificial intelligence (A.I.)
model.

Frequency of success
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Counts
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Frequency of success

Fig. 8.2: Frequency of success
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8.1 Dataset splitting

The input data are divided in two distinct subsets: training dataset and testing
dataset.

The purpose of having separate training and testing datasets is to evaluate the
model’s performance on independent data, getting an unbiased assessment of the
model’s predictive abilities.

A reasonable splitting of the input data is crucial. Once the datasets sizes are deter-
mined, the data points are randomly assigned to either the training or testing set.
This random assignment helps ensure that both datasets have a similar distribution
of points and avoids any bias that may arise from a specific ordering of the data.

2/3 of the input data, from the frequency of success, are assigned to the train-
ing dataset and 1/3 to the testing dataset, randomly shuffled.

The training dataset is used to train the machine learning model, so to adjust
the model’s parameters and weights through various optimization algorithms. The
testing dataset serves as unbiased evaluation set to verify the performance of the
trained model. It helps determine how well the model generalizes to unseen data
and provides an estimate of its predictive accuracy, detecting possible overfitting or
underfitting.

Underfitting occurs when the model is too simple to capture the underlying patterns
in the training data. Signs of underfitting include high training and testing errors
and poor performance on both the training and testing datasets, resulting in over-
simplified or generalized predictions.

Overfitting happens when a machine learning model becomes too complex and
starts to memorize the training data instead of learning the underlying patterns.
The model becomes too specific to the training dataset, capturing noise or random
fluctuations in the data, making it less effective in generalizing to new data. Signs of
overfitting include a low training error but a high testing error, excellent performance
on the training dataset but poor performance on new, unseen data.

8.1 Dataset splitting
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A.l. Model creation

The most appropriate A.I. models for processing my input data are based on classifi-
cation and regression.

Classification models are used when the target variable is categorical or discrete.
The goal is to assign input data points to predefined classes or categories, in our case
successful results or not successful results. The model learns from labeled training
data, where each data point is associated with a specific class and during training,
it identifies patterns and relationships in the input features to make predictions on
unseen data.

Regression models are used when the target variable is continuous or numeri-
cal. The goal is to estimate or predict a numerical value based on input features.
The model learns from labeled training data, where each data point has both input
features and a corresponding numerical target value, and captures the relationship
between the input variables and the target one, to make predictions on new data.

Different algorithms and techniques can be employed to build these models. I
used XGBoost, a decision tree algorithm based on gradient boosting, to boost the
performances of weak predictive models.

9.1 Hyperparameters tuning

Hyperparameters are the configuration settings or parameters that control the over-
all behavior, architecture, and configuration of the A.I. model. They are external
parameters of the model, in the sense that they are not learned from the data, and
they are set before the training process. They can be directly set by the model
developer or determined by tuning process, to optimize the model performances.

In this case the hyperparameters are not set directly, but I defined ranges of values
within which they can be tuned, by exploiting an optimization algorithm based on

Bayesian Optimization.

The hyperparamters specified for the models are:
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* Learning rate: it controls the step size at which the gradient boosting algorithm
updates the model’s internal parameters during training.

* Max depth: it determines the maximum depth or number of layers in each tree
of the gradient boosting model. Increasing it allows the model to capture more
complex relationships in the data.

* Number of estimators: it specifies the number of individual decision trees or
estimators in the gradient boosting ensemble. Increasing it can improve the
model’s performance, but it also increases the computational cost.

* Subsample: it controls the fraction of the training data to be used for each
individual tree in the gradient boosting process.

* Colsamplebytree: it specifies the fraction of features (columns) to be randomly
sampled for each tree in the gradient boosting process. This introduces further
randomness and can prevent overfitting by forcing the model to focus on
different subsets of features.

9.2 Model training and testing

The model’s training is an iterative process. Each iteration involves a forward pass,
loss calculation, backward pass and internal parameter update.

In this case, several training loops occur, each time defining a different set of
hyperparameters, to try to optimize them, as explained in the previous paragraph.

At the start of the training loop, the model’s parameters are initialized with random
or predefined values. These parameters represent the learnable weights and biases
that the model will update during training, that influence the relationship between
the model’s inputs and outputs.

The training loop begins by passing the input data through the model’s layers
or computational units, which result in a predicted output. During the forward pass
the training dataset undergoes cross-validation. Cross-validation involves partition-
ing the available data into subsets to train and test the model multiple times.

The type of cross-validation used is the k-fold cross-validation:

The data is divided into k equal-sized subsets or "folds”. The model is then trained k
times, each time using k-1 folds for training and the remaining fold for testing. This
process is repeated for each fold, and the performance results are averaged to obtain
an overall evaluation of the model.

The next step is to calculate the loss, which quantifies the difference between
the predicted output and the true or expected ones. The choice of loss function de-
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pends on the specific task and the on nature of the data. In regression problems, the
loss function uesd is the mean squared error (MSE), while in classification problems
is the accuracy.

After computing the loss, the training loop proceeds with the backpropagation,
that involves calculating the gradients of the loss with respect to the model’s internal
parameters. This step measures the sensitivity of the loss to the changes of each
parameter and helps determine how much each parameter contributes to the error.
With the gradients computed, an optimization algorithm is employed to update the
model’s parameters, to optimize the loss.

The steps above are repeated for a predefined number of iterations. Once the
training loop is completed, the final model represents the learned knowledge, with
optimized loss, and it is ready for evaluation on unseen data.

The testing process begins by performing a forward pass of the testing dataset.
Each input sample is fed into the model, that produces a predicted output. Based on
the model’s output for each input sample, predictions are calculated.

The next step is to evaluate the performance of the model using appropriate metrics.
The choice of metrics depends on the specific task. The same training evaluation
metrics are exploited also for testing.

The best results obtained until now are:
* Accuracy on training data: 75%
* Accuracy on testing data: 63%
* MSE on training data: 1.63

* MSE on testing data: 0.065

If the model’s performance is not satisfactory, further strategies of model improve-
ment may be performed to enhance its execution.

9.2 Model training and testing
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Conclusions and future
perspective

Until now, the level of accuracy and the MSE values obtained for both the training
and testing datasets, assess an acceptable model’s performance. As first trial, this
can be considered a good result.

However, several possible strategies can be applied to enhance the performance of
both the Classification and Regression models. The aim is to obtain a higher level of
accuracy and a MSE as lower as possible.

One of the most effective and immediate approach is to increase the number of
training loops, to try to get more relationships between the given data and perform
better on the unseen ones.

Also, a further hyperparameter tuning can be performed. Earlier, a range within
which to search for hyperparameters values was defined. The boundaries of the
defined hyperparameters ranges are quite standard to be applied to any Classification
and Regression problem. The research space can be enlarged, to further optimize
the hyperpatameters values and so the models architecture.

Instead of tailoring the models parameters, data engineering can be different tactic.
As we can see from Figure 8.2, more than half of the experiments shows 100% of
successful results. If each percentage, from 0% to 100% of success, represents a
class, the 100% successful class is constituted by a very large amounts of cases than
all the others.

With the data randomly shuffled while split in training and testing datasets, it
can easily happen that the majority of the training data points belongs to the 100%
successful class.

This can be a problem because it can produce biased model predictions. Furthermore,
not including all the classes in the training dataset means that the data treated are
not representative for the problem.

A possible solution is to normalize the classes and to balance the data, so that
the same number of cases are taken from each class to form the training and testing
datasets.

39



40

In conclusion, great benefits can be gathered from the optimization of this A.I. model.

First, ADS requires many experimental steps before reaching a consistent results.
This time-consuming and expensive aspect can be overcome by predicting optimum
combinations of experimental conditions to achieve successful results.

Moreover, the chemical specificity requirement necessary for selectivity can be re-
laxed, suggesting new classes of inhibitors, characterized by precise chemical and
physical properties for each ASD requirement.

This may play an important role in significantly reducing the difficult materials

challenges in micro and neno electronic and the process complexity associated with
new 3D structured devices.

Chapter 10 Conclusions and future perspective
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