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C h a p t e r 1

INTRODUCTION

The main goal of the project is to give the proof of concept of the use of optomechanical oscillators
to induce appreciable amount of strain in semiconductors. The possibility to engineer the strain in
semiconductors has the purpose of changing their optical properties for future applications, such
as tuning lasers emissions via the modification of the bandstructure.
The key concept of this work relies on the connection between classical and quantum phenomena,
indeed the strain in the oscillator is controlled through the application of an external potential which
has the effect of making the sample oscillate according to the laws of classical mechanics. The
result is the ability to tune through an external input the optical properties of the semiconductor,
such as the transitions of the photons inside the material and the refractive index. The transduction
mechanism that drives the sample is based on the dielectric force experienced by a polarizable
material immersed in an inhomogeneous electric field, in fact the sample is fabricated to enable the
application of an external signal which makes the beam move toward the maximum of the field due
to the generated electric field gradient. In a perfectly symmetric sample the gradient would only
be in the out-of-plane direction, anyway since the electrodes are not symmetrically separated due
to imperfect fabrication, there is a partial influence of the drive on the in-plane mode.

The research project is entirely carried out at the Quantum physics and devices (QUAD) group
at the Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS). The team aims to de-
velop high-level research with technological and application content. The activities exploit the
concepts of quantum mechanics, in particular in the field of light-matter interaction, to realize
new opto-electronic devices. The main objective is the understanding and control of new quantum
phenomena in materials of reduced dimensionality and suitable for “top-down” clean room manu-
facturing (semiconductors, 2D materials, metals and other materials related to nanotechnological
processes). The devices realized are in the infrared (3-300 𝜇m) and microwave range, portions of
the electromagnetic spectrum with a high potential for applications and technology transfer. The
work is organized in 3 directions – N-body quantum physics – Plasmonics and metamaterials –
Photonics and infrared devices. The team is supported by an ENS-THALES Industrial Chair.
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1.1 Sample description
The oscillator used has the same fabrication parameters of the one used in a previous research
project of the group (Liu et al., 2022). The device is designed in a dog-bone shape which consists
in two anchoring pillars and a suspended doubly clumped beam of length 𝑙 = 17 𝜇𝑚 and width
𝑤 = 250 𝑛𝑚. The structure is a bilayer made of Au (thickness 𝜇𝐴𝑢 = 150 𝑛𝑚) on top of GaAs
(thickness 𝜇𝐺𝑎𝐴𝑠 = 200 𝑛𝑚) so the total thickness is 𝜇 = 350 𝑛𝑚, the presence of Au is due to
the previous research aim of the group in which Au worked as receiving antenna that resonantly
absorbed THz radiation. In figure 1.1 are reported a scheme and a Scanning Electron Microscope
(SEM) image of the sample. The electrodes on the sides of the oscillator can generate an electric
field represented in blue which is able to polarize the bridge and in the case of perfectly symmetric
structure push it only out-of-plane due to the gradient of the electric field in that direction. From the
geometrical parameters of the bridge is possible to calculate the two expected fundamental flexural
mode frequencies, since the width is lower than the thickness, the in-plane mode should have a
resonant frequency lower with respect to the out-of-plane mode, respectively around 2.4𝑀𝐻𝑧 and
3.37𝑀𝐻𝑧. It has been proved in the past that the fabrication can generate built-in stress in the
bridge causing a significant shift of the resonant frequencies, and in this work is explained why
it is believed that the order of the in-plane and out-of-plane modes is inverted. Indeed, based on
previous results (Liu et al., 2022) the beam is expected to have a mode around 3𝑀𝐻𝑧 and the
other mode around 3.5𝑀𝐻𝑧, and they are respectively considered as the out-of-plane mode and
the in-plane mode. The explanation regarding the individuation of the in-plane and out-of-plane
mode is presented later at the end of the second chapter for the sake of clarity.
Finally, since the sample is composed by Au and GaAs layers, is necessary to calculate an average
density 𝜌 =

𝜌𝐴𝑢·𝜇𝐴𝑢+𝜌𝐺𝑎𝐴𝑠 ·𝜇𝐺𝑎𝐴𝑠

𝜇𝐴𝑢+𝜇𝐺𝑎𝐴𝑠
∼ 11.3 · 103 𝑘𝑔/𝑚3 that enable us to threat the beam as a unique

element.
In table 1.1 are summarized all the key properties of the sample.

density 𝜌 11.3 · 103 𝑘𝑔/𝑚3

length 𝑙 17 𝜇𝑚

width 𝑤 250 𝑛𝑚

thickness 𝜇 350 𝑛𝑚

Table 1.1: Sample properties.
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Figure 1.1: Scheme and SEM image of Doubly clumped beam made of Au and GaAs.

1.2 The beam as an harmonic oscillator
In order to describe the physics of the experiment in a simple way, the beam is treated as a one
dimensional harmonic oscillator. Since the length of the beam is much larger than the width and
the thickness, the equation of motion of the beam can be described by the Euler-Bernoulli equation
(Senturia, 2001), which gives multiple angular frequency solutions called eigenmodes Ω𝑛.
Furthermore it is possible to use the spring model in which there is a one to one correspondence
between each angular eigenfrequency Ω𝑛 and an equivalent harmonic oscillator with the same
frequency. The equivalent harmonic oscillator, apart from having the same vibrational frequency,
has corresponding values of effective mass 𝑚𝑒 𝑓 𝑓 and effective stiffness 𝑘𝑒 𝑓 𝑓 different with respect
to the real mass of the beam 𝑚0 and real stiffness 𝑘0. As explained in the detail in the doctoral
thesis Calabrese, 2019, by equating the kinetic energy of one oscillation mode Ω𝑛 and the energy
of an harmonic oscillator with frequency Ω𝑛 it is possible to obtain a relation between 𝑚𝑒 𝑓 𝑓 and
the real mass of the beam 𝑚0. In the case of this study since we are dealing with the first order
mode of a doubly clumped beam, which reaches maximum displacement amplitude in the middle,
the relation between the effective mass and the real mass for the first order flexural mode will be
the following: 𝑚𝑒 𝑓 𝑓

𝑚0
∼ 0.4.

The procedure to get the effective stiffness 𝑘𝑒 𝑓 𝑓 follows the same principle mapping the elastic
potential energy associated to the eigenmode Ω𝑛 into the potential energy of a one-dimensional
harmonic oscillator of frequency Ω𝑛 (Calabrese, 2019). The effective stiffness will be 𝑘𝑒 𝑓 𝑓 =

𝑚𝑒 𝑓 𝑓 · Ω2
𝑛, but it is also taken into account that the experimentally measured modes Ω𝑛 will differ
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from their theoretical values, so 𝑘𝑒 𝑓 𝑓 will be evaluated after the experimental determination of the
modes Ω𝑛 to be more accurate. From now on the bridge will be considered exactly an harmonic
oscillator, so these two terms will be used equivalently. In figure 1.2 is represented the harmonic
oscillator scheme used to describe the bridge, image taken from Calabrese, 2019.
Having explained the model in use it is straigthforward to compute the effective mass of the beam
for the first order mode as 𝑚𝑒 𝑓 𝑓 = 0.4 · 𝑚0 = 0.4 · 𝜌 · 𝑙 · 𝑤 · 𝜇 = 6.7𝑝𝑔.

Figure 1.2: On the left the bridge of length l and mass 𝑚0 which oscillates with displacement U(x).
On the right the equivalent harmonic oscillator with effective mass 𝑚𝑒 𝑓 𝑓 and effective stiffness
𝑘𝑒 𝑓 𝑓 .

1.3 Thermal noise (Langevin force)
The harmonic oscillator model described in the previous section allows us to describe the bridge
through the dynamic equation of motion of an harmonic oscillator (Aspelmeyer, Kippenberg, and
Marquardt, 2014):

𝑚𝑒 𝑓 𝑓
𝑑2𝑧(𝑡)
𝑑𝑡2

+ 𝑚𝑒 𝑓 𝑓 Γ
𝑑𝑧(𝑡)
𝑑𝑡

+ 𝑚𝑒 𝑓 𝑓Ω2
𝑛𝑧(𝑡) = 𝐹𝑒𝑥𝑡 (𝑡) (1.1)

where𝑚𝑒 𝑓 𝑓 is the effective mass of the bridge, 𝑧(𝑡) is the amplitude of oscillation, Γ is the damping
rate due to presence of non ideal dissipation mechanisms such as the air friction and 𝐹𝑒𝑥𝑡 includes
any external forces applied on the oscillator. This equation contains all the possible contributions to
the dynamics of the harmonic oscillator, which are the elastic behaviour that is proportional to Ω2

𝑛,
the damping due to non ideal dissipation contained in the term proportional to Γ and the external
forces in 𝐹𝑒𝑥𝑡 .
Since experimentally the dynamics of the beam is analyzed in frequency, we need to create a
link between the theory and experiment writing the equation (1.1) in the domain of the angular
frequency 𝜔:
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𝑚𝑒 𝑓 𝑓 (Ω2
𝑛 − 𝜔2)𝑧(𝜔) + 𝑖𝑚𝑒 𝑓 𝑓 Γ𝜔𝑧(𝜔) = 𝐹𝑒𝑥𝑡 (𝜔)

𝜒𝑚 (𝜔) =
𝑧(𝜔)
𝐹𝑒𝑥𝑡 (𝜔)

=
1

𝑚𝑒 𝑓 𝑓 [(Ω2
𝑛 − 𝜔2) + 𝑖Γ𝜔]

(1.2)

where 𝑧(𝜔) and 𝐹𝑒𝑥𝑡 (𝜔) are respectively the Fourier transform of 𝑧(𝑡) and 𝐹𝑒𝑥𝑡 (𝑡) and 𝜒𝑚 (𝜔) is
the mechanical susceptibility. Even without applying any force on the oscillator, there is always
an external force 𝐹𝑒𝑥𝑡 contribution due to the so called thermomechanical noise force or Langevin
force that will make the oscillator vibrate. The Langevin force has zero statistical average and it is
completely uncorrelated in time, it is the effect of the finite temperature 𝑇 of the system at thermal
equilibrium which make the harmonic oscillator perform a motion characterized by random varying
amplitude and phase which is called Brownian motion (Aspelmeyer, Kippenberg, and Marquardt,
2014).
The last quantity we need to introduce is the Fourier transform of the auto-correlation of displace-
ment called power spectral density (Aspelmeyer, Kippenberg, and Marquardt, 2014):

𝑆𝑧𝑧 (𝜔) =
1

2𝜋

∫ ∞

−∞
⟨𝑧(𝑡)𝑧(0)⟩𝑒−(𝑖𝜔𝑡)𝑑𝑡 = 2

𝑘𝐵𝑇

𝜔
ℑ[𝜒𝑚 (𝜔)] (1.3)

The power spectral density 𝑆𝑧𝑧 (𝜔) is the function that describes how much power is given to the
oscillator at each value of frequency. In other words the temperature of the bridge makes it vibrate at
all angular frequencies 𝜔 from −∞ to +∞, but due to its geometrical dimensions the bridge will be
mainly allowed to oscillate around its eigenmodes Ω𝑛 found solving the Euler-Bernoulli equation.
As a consequence of this, 𝑆𝑧𝑧 (𝜔) will assume higher values around the angular frequencies Ω𝑛 and
the more the oscillation of the bridge is selective and restricted to Ω𝑛 with respect to the rest of
the spectrum, the more the quality of the specific mode Ω𝑛 will be higher. Further details on the
concept of quality of an oscillator and its estimation are contained in the next chapter about the
characterization of the device. Equation (1.3) evidences also the fluctuation-dissipation theorem
which puts in relation the power spectral density 𝑆𝑧𝑧 (𝜔) with the imaginary part of the mechanical
susceptibility 𝜒𝑚 (𝜔) and the thermal energy 𝑘𝐵𝑇 . This relation enables to underscore that the
power spectral density 𝑆𝑧𝑧 (𝜔) has a Lorentzian shape dependence on the angular frequency𝜔 since
its proportional to the imaginary part of the susceptibility ℑ[𝜒𝑚 (𝜔)], see equation 1.2.
Finally the power spectral density of the displacement 𝑆𝑧𝑧 (𝜔) can be related to the variance of the
displacement of the oscillator through the Wiener-Khinchin theorem (Aspelmeyer, Kippenberg,
and Marquardt, 2014). Since the oscillator goes up and down with respect to the equilibrium
position 𝑧0, the average value of the displacement 𝑧 will be zero, so the variance will coincide with
the average of the squared amplitude ⟨𝑧2⟩:
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−∞
𝑆𝑧𝑧 (𝜔)

𝑑𝜔

2𝜋
= ⟨𝑧2⟩ (1.4)

If experimentally we succeed to estimate the power spectral density 𝑆𝑧𝑧 (𝜔), then the equation
(1.4) allows us to calculate the correspondent variance of the mechanical displacement ⟨𝑧2⟩ and to
connect it to the thermal energy 𝑘𝐵𝑇 through the energy equipartition theorem (Butt and Jaschke,
1995), which states that at thermal equilibrium each degree of freedom of a system has the same
average energy. In the case of an harmonic oscillator its average kinetic energy in one dimension
is proportional to the temperature of the system:

1
2
𝑚𝑒 𝑓 𝑓Ω

2
𝑛⟨𝑧2⟩ =

1
2
𝑘𝐵𝑇 (1.5)

Equation (1.5) evidences that the higher modes show smaller amplitude of oscillation, that is the
reason why will deal just with the very first order mode Ω0 of the oscillator, at a certain value of
frequency the amplitude is so small that is below the level of the detection of the setup. In practice
the theoretical model described in this chapter is used separately for the characterization of the
out-of-plane first order mode and the in-plane first order mode of the bridge.

1.4 Experimental setup
In order to obtain an estimation of the power spectral density 𝑆𝑧𝑧 (𝜔) it is necessary to built a setup
which is able of doing a read out of the oscillation of the bridge as function of the frequency. The
setup used to characterize the sample is exactly the same used for previous research goals in the
past (Calabrese, 2019), the main idea is to detect the mechanical vibration through the intensity
fluctuation of a laser beam. In figure 1.3 is reported the experimental setup used for the character-
ization of the device, image reproduced from the PhD thesis Calabrese, 2019.
The sample is kept inside a vacuum chamber, this is to enable measurements at different values
of pressure, so to compare the device behaviour under different conditions. The presence of the
LED lamp is relevant to be able to have in the camera an image of the sample, this trick helps the
alignment since it is possible to see where the laser is hitting the sample. Indeed it is important to
try to detect the oscillation of the bridge in the middle, since the amplitude will be higher and also
the corresponding signal to noise ratio. The light coming from the LED lamp is directed onto the
sample by a dichroic mirror (DM) and the part of it that is reflected by the sample is than conveyed
toward the camera, the resulting image is visible on the computer.
For what concerns the detection, the idea is to use a near infrared (NIR) laser with 𝜆 = 910 𝑛𝑚 and
focus it on top of the bridge such that the laser is parallel to the out-of-plane direction, which is the
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Figure 1.3: Experimental setup for measurement of thermomechanical noise of the optomechanical
oscillators. Red lines indicate the optical path of the NIR laser beam, while thick nuanced blue
lines represent the path of the white light from the LED lamp. BS = Beam splitter, CL = converging
lens, DM = dichroic mirror, D-SM = D-shaped mirror, DUT = device under test, FM =flat mirror,
PBS = polarizing beam splitter, PD = photodiode, TIA =trans-impedence amplifier.

z-axis in figure 1.3. As it happens for the white light, part of the infrared radiation is reflected by
the oscillating sample, but when the laser light comes back it passes for the second time through a
𝜆/4 waveplate which maximizes the amount of light that is directed along the x-axis by a polarizing
beam splitter (PBS). As a result, the light containing the information about the oscillation of the
sample is now directed toward the x-axis where it encounters a D-shaped mirror (D-SM) that
enables the implementation of the knife-edge technique (Karabacak et al., 2006). The knife-edge
technique consists on aligning the D-SM in such a way that part of the light beam is untouched
and directly goes into one photodiode (PD) and the rest is instead reflected toward a flat mirror
(FM) which sends the light to another photodiode. Before each photodiode there is a correspondent
converning lens (CL) which is needed to focus the laser into the detector, both the PDs are integrated
into one balanced photodetection unit (Thorlabs 𝑃𝐷𝐵110𝐴) which gives as output the difference
between the diodes photocurrents. Actually what is finally sent to the spectrum analyser is the
photocurrents difference after being converted into voltage by a trans-impedence amplifier (TIA).
The result of this scheme is to have a balanced detection which enables to maximize the signal to
noise ratio because of the subtraction between the dark-current noises of the two PDs. Furthermore
the implementation of the knife-edge technique allows the detection of the in-plane oscillation
(x-y plane). In fact the spot of light on the D-shaped mirror oscillates at the in-plane frequency
and the light is continuosly distributed differently between the two photodiodes, which means that
the balanced photodiode receives also a signal at the frequency of the in-plane oscillation. The
out-of-plane oscillation frequency is instead always contained in the laser light after reflection,
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because the up and down movement of the bridge causes interference between the incident and
reflected laser light.
In the figure 1.4, reproduced from Calabrese, 2019, are schematized the different read-out mecha-
nisms of detection for the out-of plane and in-plane oscillation.

Figure 1.4: On the left the interfering between the impinging and reflected laser due to out-of-plane
oscillation. On the right the influence of in-plane oscillation changes the area probed by the laser
spot.

The effects described in figure 1.4 cause variations of the intensity of the laser which occur at the
frequency of each of the eigenmodes, so the spectrum analyzer is able to register this variation of
intensity and to display the voltage output of the balanced photodiode as function of the frequency.
In other words the spectrum analyzer is able to reconstruct the voltage power spectral density of
the system 𝑆𝑣𝑣 (𝜔), then the voltage signal must be related to the amplitude in order to obtain the
amplitude power spectral density 𝑆𝑧𝑧 (𝜔).

Technical insights on the setup
In this subsection there is a comment on technicalities about how to handle the setup as instructions
for future work in the research group, these insights come from the experience acquired during the
characterization of the device.
First of all in figure 1.4 is not present a diaphragm which is in front of the NIR laser, this diaphragm
is very important to be able to see the Brownian motion on the spectrum analyser. The reason for
which the presence of the diaphragm is of relevance is because it gives to the laser spot a better
shape. It is clearly visible in the camera that the diaphragm must be opened enough to have a good
amount of light impinging on the sample and so enough signal, but at the same time it must not be
opened too much otherwise the background noise covers the Brownian motion signal. This effect
is probably enhanced by the fact that the spot of the laser is bigger than the bridge size.
Furthermore, the converging lens in front of the device focuses differently the light coming from
the LED lamp and the light of laser, so while aligning the system a good compromise between
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seeing well the sample and trying to effectively focus the laser must be found. When the Brownian
motion starts to be visible above the noise in the spectrum analyser than it is good to change the
focus in order to maximize the result.
Finally the position of the D-shaped mirror is able to determine if we maximize the detection of the
out-of-plane or the in-plane mode, so it must be touched with caution to better see the two modes
as desired.
Last but not least, the amount of signal coming from both the photodiodes can be checked on the
oscilloscope, which displays the DC voltage coming from each diode. The goal is to try to have
equal signals on the oscilloscope such that the dark noise coming from the diodes can be canceled,
anyway the maximum signal to noise ratio in the spectrum analyser can be obtained even without
having exactly the same output from the two detectors.
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C h a p t e r 2

DEVICE CHARACTERIZATION

The characterization of the device starts with the determination of the quality factor of each of the
two first order eigenmodes. The quality factor is a measure of how much the oscillator is able to
selectively vibrate only at its eigenfrequency with respect to the rest of the frequency spectrum.
Two different methods to obtain an estimation of the quality factor are implemented and compared
in the following section 2.1 of this chapter. Then in section 2.2 are discussed the limits at which
the device can be driven using the external RF voltage, the non-linear oscillation effects are taken
into account to understand which is the maximum obtainable amplitude of oscillation.

2.1 Quality factor
As said in the previous chapter the power spectral density 𝑆𝑧𝑧 (𝜔) has a Lorentzian shape dependence
on the angular frequency𝜔, and so the quality factor𝑄 is straightforward defined as in the following
formula:

𝑄 =
Ω0

ΔΩ
(2.1)

In this formula Ω0 is again the angular eigenfrequency of the mode under consideration and ΔΩ is
simply the full width half maximum of the power spectral density which is a Lorentzian curve.

Spectrum analyser method
The first method of the determination of the quality factors 𝑄 of the two modes is implementing
the exact same scheme described in the figure 1.3. The output of the balanced photodetection unit
is represented by the spectrum analyser in power decibel 𝑑𝐵, then the acquisition is converted in
volt 𝑉 , squared and finally divided by the resolution bandwidth (RBW) of the instrument to get the
voltage power spectral density. The resolution bandwidth RBW is the inverse of the integration
time for each point plotted by the spectrum analyser, so it must be chosen to have a good integration
but such that the measurement is not too long. Calling 𝑦 the data acquired in 𝑑𝐵 the corresponding
value of voltage power spectral density in 𝑉2/𝐻𝑧 is obtained through the following formula:

𝑆𝑣𝑣 (𝜔) =
10(𝑦/10)

𝑅𝐵𝑊
(2.2)
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The very first measurements are performed with the sample held at ambient pressure (1 atm), after
converting the data to power spectral density the result is fitted by a curve which is a Lorentzian
plus a constant, this is because we have to consider that the spectrum analyser is actually detecting
the power spectral density due to the sample oscillation plus a superimposed constant level of noise
coming from the rest of the system. Indeed in any of the following fits of the spectrum analyser
method the fitting function is as in this equation:

𝑦(𝑥) = 𝑐 + 𝑎

(𝑥 − 𝑓0)2 + 𝑑2

4

(2.3)

Equation (2.3) is a Lorentzian function plus a constant c, where x is the variable corresponding to
the frequency axis and all the other letters are free parameters of the fit.

It is presented in figure 2.1 an acquisition taken with the spectrum analyser of both the out-of plane
and the in-plane mode at ambient pressure.
As we can see, it is already visible that the eigenfrequencies are close to the expected values of 3
MHz for the out-of-plane mode and 3.5 MHz for the in-plane mode. The spectrum is a superposition
of the Lorentzian curves due to the oscillation of the bridge at the modes frequencies with a noise
floor.
Moreover in this figure there is an important technical information which is that the in-plane mode
(around 3.6 MHz) is higher with respect to the out-of-plane mode, this is due to the obtained
alignment of the optical system, in particular to the position of the D-shape mirror.

Figure 2.1: Spectrum analyser acquisition of both the out-of-plane and the in-plane mode at ambient
pressure (1 atm). Measure taken with RBW = 13000 Hz. The empty blue dots are the voltage power
spectral density coming from the data converted with the equation (2.2), the plot is in logaritmic
scale on the y-axis.
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For what concerns the single mode characterization, to have a good fit it is very important to zoom
with the spectrum analyser into one peak per time, this means reducing the span of the frequency
around the analyzed peak of oscillation. Furthermore with a smaller span the resolution bandwidth
RBW can be reduced to favour a better estimation of the Lorentizan shape. In the figure 2.2 there
are the results of the characterization of each single mode at 1 atm and at 4.1 · 10−1𝑚𝑏𝑎𝑟 , for
convenience we will call vacuum this last value of pressure.
Here and in all the succeeding plots of this section, the x-axis is the frequency expressed in Hz,
indeed the correspondent found eigenfrequency is called 𝑓0, see that the angular eigenfrequency
Ω0 is Ω0 = 2𝜋 𝑓0.

Figure 2.2: Brownian motion at ambient pressure (1 atm) and in vacuum (4.1 · 10−1𝑚𝑏𝑎𝑟) of the
in-plane mode and out-of-plane mode. The resolution bandwidth of all the measures is RBW=100
Hz. The empty blue dots are the voltage power spectral density coming from the data converted
with the equation (2.2), while the red curve is the fit performed with the function (2.3), the plot is in
logaritmic scale on the y-axis. In the upper left of each plot are reported the values of the obtained
eigenfrequency 𝑓0 and the quality factor 𝑄.
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In the table 2.1 are summarized the results extracted by the Lorentzian fit of the thermal motion at
ambient pressure and in vacuum, coherently in both cases the quality factor is higher for the out-of
plane mode with respect to the in-plane mode.

Pressure Mode 𝑓0 Q
1 atm In-plane 3.6076 𝑀𝐻𝑧 119

Out-of-plane 3.0482 𝑀𝐻𝑧 148
vacuum In-plane 3.6178 𝑀𝐻𝑧 675

Out-of-plane 3.0628 𝑀𝐻𝑧 1504

Table 2.1: Quality factor Q and eigenmode 𝑓0 of the in-plane and out-of-plane mode at ambient
pressure (1 atm) and in vacuum (4.1 · 10−1𝑚𝑏𝑎𝑟).

In vacuum a lower amount of particles can damp the oscillation of the bridge, so a smaller damping
rate Γ is expected, which means a lower full width half maximum FWHM of the Lorentzian and
therefore higher quality factors. Moreover in vacuum, not only the quality factor increases but
there is a much better signal to noise ratio, so the Lorentzian peaks exit more from the noise floor
with respect to the ambient pressure case, see figure 2.2. The results are coherent and the quality
factor increases for both modes, but more for the out-of-plane where there is an increase of a factor
∼ 10 with respect to the ambient pressure. At low pressure the eigenfrequencies show a little shift
to higher values with respect to ambient pressure, this phenomenon can be explained by the fact
that due to resistance of the air particles to the motion of the beam, at ambient pressure there is an
higher effective mass 𝑚𝑒 𝑓 𝑓 which leads to a lower eigenfrequency, from the relation Ω0 =

√︃
𝑘𝑒 𝑓 𝑓
𝑚𝑒 𝑓 𝑓

.

Before going on with the second method is interesting to use the previous results to check the
validity of the harmonic oscillator model and the equipartition theorem at the equation (1.5). There
is a relation which connects the maximum of the voltage power spectral density with the maximum
of the amplitude power spectral density, it is here below reported from the article Belacel et al.,
2017.

𝑆𝑧𝑧 ( 𝑓0) =
2𝑘𝐵𝑇𝑄

(𝑚𝑒 𝑓 𝑓 (2𝜋 𝑓0)3)
(2.4)

Equation (2.4) gives the expression of the maximum value assumed by the amplitude power
spectral density, which is at 𝑓0. What we need to do, it is to relate the maximum of the voltage
power spectrum obtained experimentally with its correspondent maximum value of amplitude
power spectral density. For example, considering the case of the out-of-plane mode in vacuum, the
correspondent value is 𝑆𝑧𝑧 ( 𝑓0) = 0.2548 (𝑝𝑚)2/𝐻𝑧, this is obtained considering 𝑇 = 293𝐾 , the
quality factor Q and the eigenfrequency 𝑓0 extracted by the fit and the effective mass𝑚𝑒 𝑓 𝑓 = 6.7 𝑝𝑔.
Then considering the figure 2.2, the noise floor is subtracted to the fit and the Lorentzian curve
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extracted is normalized to be 0.2548 (𝑝𝑚)2/𝐻𝑧 at the frequency 𝑓 = 𝑓0, the result of the processing
is shown in figure 2.3.

Figure 2.3: Amplitude power spectral density of the out-of-plane mode in vacuum. Result obtained
from the correspondent plot of the voltage power spectral amplitude in figure 2.2. The y-axis is
visualized in logaritmic scale.

It is very interesting to underscore that this procedure enables the determination of which will be
the maximum amplitude of oscillation of the bridge independently from where the laser is hitting
the sample. Said in other words, it is good to try to detect the thermal noise hitting the sample in
the middle because the Lorentzian curve comes out better from the noise floor and this provides
better characterization. Anyway the equation (2.4) always gives theoretically the correspondent
maximum possible amplitude of the oscillator, indeed the effective mass 𝑚𝑒 𝑓 𝑓 is calibrated to
represent the bridge in the middle.

Coming to the equipartition theorem, it is easy now to check that the area under the curve in figure
2.3 is half of the variance of the amplitude of oscillation of the bridge, the same of the equation
(1.4). This is a crucial point, because the integral (1.4) is from −∞ to +∞, instead in figure 2.3 it is
only taken into account the positive part of the axis of the frequencies. In the negative semi-axis of
the frequencies there is an exact equal replica of the Lorentzian curve existing for positive values
of frequencies, so to get the variance of the amplitude, the area under the Lorentzian in figure 2.3
must be multiplied by a factor 2.
Moreover from the equipartition theorem relation (1.5), the variance of the amplitude turns out to
be ⟨𝑧2𝑒𝑞⟩ =

𝑘𝐵𝑇

𝑚𝑒 𝑓 𝑓Ω
2
0
, in which Ω0 is the experimental found eigenmode. Calling 𝐴 the area under

the curve in the positive semi-axis of the frequencies, the Wiener-Khinchin theorem variance is
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⟨𝑧2
𝑊𝐾

⟩ = 2𝐴. In the following table there is the comparison between ⟨𝑧2
𝑊𝐾

⟩ and ⟨𝑧2𝑒𝑞⟩ which should
match:

Theorem Variance
Wiener-Khinchin 1609.8 (𝑝𝑚)2

Equipartition 1630.3 (𝑝𝑚)2

Table 2.2: Comparison between the variance of the amplitude of oscillation of the bridge found
with the Wiener-Khinchin theorem (1.4) and the equipartition theorem (1.5).

In the end, it is useful to calculate now the relation between voltage output of the balanced
photodiode and picometers of displacement, it is just necessary to take the ratio between the peak
of the out-of-plane mode expressed in amplitude in figure 2.3 and the peak of the same mode in
figure 2.2 after subtracting to it the noise floor for coherence, notice that both figure refer to the
vacuum acquisition but the ratio must be independent of the pressure conditions. The described
calculation gives a number in (𝑝𝑚)2/𝑉2 from which taking the square root leads to a responsivity
𝑅 ∼ 5.31 · 104 𝑝𝑚/𝑉 , this formula says that any quantity measured in volt from the setup must be
multiplied by 5.31 · 104𝑝𝑚/𝑉 to get the corresponding amplitude of oscillation of the bridge in
picometers.

Ring-down method (Oscillation damping)
The second method used to characterize the sample is the ring-down method, which consists in
strongly excite the motion of the bridge and then measure the oscillation damping. An external me-
chanical force is applied by the electrodes and after the excitation the oscillator vibrates dissipating
all the received energy. Considering the setup in figure 1.3, now the oscilloscope doesn’t have in
input the two DC signals from the diodes, but instead it has the differential output of the balanced
diode which before was going into the spectrum analyser. In the meanwhile a signal generator in
used to apply a pulse signal to the sample, and it is synchronized with the oscilloscope in order to
visualize the effect of the oscillation of the sample.
As anticipated in the introduction, the electrodes generate an electric field which is represented by
the blue lines in figure 1.1 and this electric field creates a dipole in the bridge. In addition the
electric field all around the sample is not homogeneous and in a perfectly symmetric structure it
gives a non-zero force along the out-of-plane direction (z-axis), because a dipole immersed in an
electric field gradient is forced to move toward the gradient of the field.
This technical explication is necessary to understand why when a voltage signal is applied to the
electrodes the main stimulated eigenfrequency is expected to be the out-of-plane one, since the
force is almost fully pointing in z-axis.
As matter of fact the ring down method of this section serves as a further investigation of the
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Figure 2.4: In black the pulses delivered by the signal generator to the bridge and in blue the
oscillation damping that is visualized on the oscilloscope. Notice that the frequency of application
of the pulses must be low enough to let the stimulated oscillation be damped, in such a way that
it can be fitted. The x-axis is time and the y-axis is voltage, the amplitudes of the signals and the
time intervals are not in scale for the sake of clarity of the image, in the next part of the discussion
are given the real orders of magnitude.

highest quality factor of the oscillator, which is of main interest to induce controlled amount of
strain into the semiconductor. In figure 2.4 is given a temporal scheme which shows the external
stimulation and the consequent response of the bridge during the ring-down technique, the signal
generator is set to generate a pulse with very low frequency compared to the oscillation frequency
of the out-of-plane mode and with a very small duty cycle, this is to be able to visualize on the
oscilloscope the oscillation damping of the bridge after the excitation, before the new pulse will be
delivered to the sample.
The oscilloscope in this application of the setup, plots the Brownian motion of the bridge when no
external voltage is applied, then after the first pulse of the signal generator the bridge is strongly
pushed in the out-of-plane axis and dissipates the absorbed energy up to coming back to just being
perturbed by the thermal noise. The reason for which the quality factor can be estimated through
this procedure relies on the definition of quality factor, indeed the envelope of the oscillation of the
bridge decays exponentially with a time constant 𝜏 which is connected to the quality factor by the
following relation:

𝜏 =
2𝑄
𝜔𝑛

(2.5)

In this formula 𝜔𝑛 is the eigenmode of the oscillator, in the case under study it coincides with the
angular frequency of the first out-of-plane mode Ω0. At higher quality factor corresponds higher
time constant of the envelope of the oscillation, so it implies that oscillators with higher quality
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factor keep for a longer time the energy initially given to them.
The method is applied first at ambient pressure and then in vacuum, a pulse of amplitude 10 V,
frequency 1000 KHz and 0.083% of duty cycle is sent to the bridge, the acquisitions taken by the
oscilloscope are reported in figure 2.5.

Figure 2.5: Oscillation damping acquired with the oscilloscope at ambient pressure (1 atm) and in
vacuum (4.1 · 10−1𝑚𝑏𝑎𝑟). Notice that in vacuum the oscillation damping is much slower as the
quality factor increases, see equation 2.5.

Before going to the result it is interesting to show the first oscillations registered after the pulse at
time t = 0 s. With the purpose of reducing the noise of the acquisition, the raw data are smoothed
to have a better view of the oscillations and enable a more reliable extraction of the peaks later, the
same procedure is applied in both pressure conditions. In figure 2.6 are shown the first oscillations
after the pulse at t = 0 s at ambient pressure.

Figure 2.6: Oscillation damping at ambient pressure after the smoothing of the data.
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It is evident from figure 2.6 that there is also a non-zero contribution of the in-plane mode to the
oscillation, because the envelope is not homogeneously decreasing, so it means it contains a sum of
two sinusoidal functions, one with the in-plane mode frequency and the other with the out-of-plane
mode frequency. The predominance of the out-of-plane one will be checked after by the Fourier
transform of the signal.

Coming back to the quality factor estimation, the envelopes of the up part of the oscillations in
figure 2.5 are extracted and after the smoothing are fitted with an exponential, the fits are plotted in
figure 2.7.
It is highlighted that in the vacuum acquisition there are many more points and this increases the
necessity of a smoothing of the data to reduce the noise due to oversampling. Nevertheless this
condition due to not perfect experimental operation is not a big problem because the data analysis
still leads to a satisfying fit of the envelope.

Figure 2.7: Fit of the oscillation damping acquired with the oscilloscope at ambient pressure (1
atm) and in vacuum (4.1 · 10−1𝑚𝑏𝑎𝑟). The blue empty dots are peaks of the smoothed data, while
the red line is the exponential fit, in the upper right there is the value of 𝜏 obtained.

Once 𝜏 is derived the correspondent quality factor it is simply calculated by inverting the formula
(2.5). Anyway in order to be consistent and well compare the ring down method with the spectrum
analyser method, the eignemode Ω0 is now extracted by the Fourier spectrum of the oscillations
observed in the oscilloscope. The Fourier transform of the oscillations damping in figure 2.5 are
performed and showed in figure 2.8.
The Fourier analysis proves that the oscillator is mainly vibrating with the frequency of the out-
of-plane mode and again due to the larger amount of points the reconstruction is more noisy and
detailed in the vacuum case. Finally in the table 2.3 are summed up the two values of Ω0 extracted
by the Fourier transform and the correspondent quality factors.
The final outcome gives eigenfrequencies and quality factors which are in good agreement with the
ones found with the spectrum analyser method, see table 2.1.
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Figure 2.8: Fourier transform of the oscillation damping acquired with the oscilloscope at ambient
pressure (1 atm) and in vacuum (4.1 · 10−1𝑚𝑏𝑎𝑟). On the y-axis the energy spectral density of the
signal is showed in logaritmic scale.

Pressure Eigenfrequency Quality factor
1 atm 3.0358 MHz 153

4.1 · 10(−1)𝑚𝑏𝑎𝑟 3.0535 MHz 1587

Table 2.3: Eigenmodes and quality factors found with the Fourier transform analysis of the oscil-
lation damping both at ambient pressure and in vacuum.

Driving force
The reason for which it is believed that the mode at 3𝑀𝐻𝑧 is the out-of-plane mode is exactly the
result evidenced by the ring-down method of evaluation of the quality factor, because it is clear
that pushing the bridge with the driving voltage puts in motion mainly the 3𝑀𝐻𝑧 mode. Since the
driving is expected to be only in the z-axis for a perfect structure, it means that the assumption that
has been made at the beginning of this work is correct. Nevertheless in precedent research projects
still remained a doubt about this point, because due to not perfectly symmetric distances of the
electrodes from the bridge, there could be a non zero force in the x-axis which could actuate more
the in-plane mode that the out-of-plane mode. In order to eliminate this possibility of redistribution
of the forces, it is presented here an estimation of the components of the force on x-axis and z-axis,
which is based on theory and experimental observation. The sample under use has been analyzed
in the SEM to check its dimensions, in particular the relative distances between the electrodes and
the bridge. Moreover it is taken the chance to check the length and the width of the sample, which
are approximately as expected 𝑤 = 250 𝑛𝑚 and 𝑙 = 17 𝜇𝑚. In figure 2.9 is shown a top image of
the bridge in which its length is measured and an image of a zoom from the top which shows that
actually is true that is present a quite large asymmetry of the distances between the bridge and the
electrodes, these relative distances on the x-axis are around 670 𝑛𝑚 and 925 𝑛𝑚.
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Figure 2.9: SEM images of the bridge from the top, it is measured the length which is matching
the fabrication parameter 𝑙 = 17 𝜇𝑚 and the distances between the bridge and the electrodes which
are about 670 𝑛𝑚 and 925 𝑛𝑚.

The model which is implemented to measure the components of the force acting on the bridge
relies on the assumption that the electrodes can be treated as infinite charged wires when a voltage
drive is applied to them, this means that the corresponding electric field generated by each of the
electrodes in a point in the vacuum space is though as follows:

fi𝐸 =
𝜆

2𝜋𝜖0𝑟
· fi𝑢𝑟 (2.6)

In equation (2.6) 𝜆 is the charge per unit length, 𝜖0 is the vacuum dielectric constant, 𝑟 is the
distance between the electrode and the point under consideration and fi𝑢𝑟 is the versor of the vector
going from the wire toward the point in the space in which the field is evaluated.
By the way, it is true that the bridge has a finite size, therefore to treat it as a unique body under
the electric field, multiple geometrical considerations are implemented following the top scheme
in figure 2.10.
It is considered that the x-distance from the first electrode is around 670 + 125 𝑛𝑚 and from the
second electrode is 925+125 𝑛𝑚, in this way is taken a point at half of the width of the bridge which
is 𝑤 = 250 𝑛𝑚. Then the distance on the z-axis must be taken into account, the bridge is suspended
with a height of 500 𝑛𝑚 which is the thickness of the AlGaAs sacrifacial layer, see 1.1. At this
value must be subtracted roughly around 150 𝑛𝑚 of thickness of the electrode which is closer to the
bridge, but at the same time it is summed around 200 𝑛𝑚 to take a point which is between the GaAs
and Au layers, this choice is arbitrary but hopefully not too far from the center of mass of the bridge,
the result is a z-distance for both the electrodes of about 550 𝑛𝑚. This geometrical evaluation is
necessary to well set the calculation of the electric field acting on the bridge, especially taking a
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point roughly in the middle is a way to try to express as much as possible a more reliable result
of the resulting force. Basically the problem is simplified treating the bridge as made of a unique
material with the same polarizability at which the electric field coming from the two electrodes
is applied in the center of mass. Naturally, being the bridge made of two different materials, the
chosen height of the center of mass is only approximated, in fact the force and the electric field
components will be evaluated in a range of possible effective height values, in such a way to check
if there is any remarkable difference.

Figure 2.10: The top image is a scheme of the sample geometry in x-z cross section, the red dot
indicates the arbitrary point taken to calculate the force acting on the bridge. The thickness of both
the lateral electrodes 1 and 2 is estimated to be about 150 𝑛𝑚. The thickness of GaAs and Au is
respectively 200 𝑛𝑚 and 150 𝑛𝑚, while the width is 250 𝑛𝑚, d1 and d2 are the distances between the
extremes of the electrodes and the bridge, finally 500 𝑛𝑚 is the thickness of the removed AlGaAs
sacrificial layer.
The bottom image is the final simplified scheme used to implement the calculation, the empty
circles are the electrodes considered now dimensionless, the rectangle is the bridge, 𝑟1 and 𝑟2 are
the moduli of the vectors pointing from the electrodes to the chosen point of the bridge, 𝐸1 and 𝐸2
are the electric fields applied on the bridge considering the electrode 1 positively charged and the
electrode 2 negatively charged.
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In the bottom image in figure 2.10 is given the simplified scheme used to solve the problem, it
represents just one instant in which an RF voltage is applied to the electrodes, but any other instant
in which the charge of the electrodes is less or the sign is reversed is completely equivalent for
the determination of the ratio of the components of the force 𝐹𝑧

𝐹𝑥
. From the chosen scheme it is

possible to write the 𝐸𝑥 and 𝐸𝑧 components of the field acting on the bridge apart from fundamental
constants:

𝐸𝑥 ∝ 𝑐𝑜𝑠(𝛼)
𝑟1

+ 𝑐𝑜𝑠(𝛽)
𝑟2

𝐸𝑧 ∝ 𝑠𝑖𝑛(𝛼)
𝑟1

− 𝑠𝑖𝑛(𝛽)
𝑟2

(2.7)

Moreover the electric force acting on the bridge is given by the relation (Landau and Lifshitz, 1984):

fi𝐹 = ( fi𝑝 · 𝑔𝑟𝑎𝑑) fi𝐸 (2.8)

In this equation fi𝐸 is the total electric field acting on the bridge and fi𝑝 is the total electric dipole
induced by the field itself which is proportional to the field ( fi𝑝 ∝ fi𝐸). The proportionality constant
is the same for both 𝑝𝑥 and 𝑝𝑧 components because the bridge is considered as made of a unique
hybrid material, so the x and z components of the force can be extracted:

𝐹𝑥 ∝ (𝐸𝑥
𝑑

𝑑𝑥
+ 𝐸𝑧

𝑑

𝑑𝑧
)𝐸𝑥

𝐹𝑧 ∝ (𝐸𝑥
𝑑

𝑑𝑥
+ 𝐸𝑧

𝑑

𝑑𝑧
)𝐸𝑧

(2.9)

The components of the force are calculated together with the electric field components and are both
plotted as function of the height ℎ of the chosen point in the bridge, in such a way to see how the
height influences the ratio 𝐹𝑧

𝐹𝑥
, see figure 2.11.

The behaviour of the 𝐹𝑧 component is coincident with the one obtained in the reference article
(Unterreithmeier, Weig, and Kotthaus, 2009) and the electric field is prevalent on the x-axis since the
Ez component tend to be canceled by the two opposite contribution of the electrodes, in a perfectly
symmetric structure Ez would be zero for any value of the height. Given our asymmetry condition
on the x-axis, from the performed calculation it is evident that in absolute value Fz is always larger
than Fx apart from the case in which the height is very small (below 100 nm), for the value of
ℎ = 550 𝑛𝑚 the ratio is 𝐹𝑧

𝐹𝑥
∼ 9.5. To be precise, inside the range of height ℎ = [350, 700] 𝑛𝑚, the

ratio 𝐹𝑧
𝐹𝑥

has a minimum value of ∼ 3.8, since 350 𝑛𝑚 and 700 𝑛𝑚 are respectively the smallest and
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Figure 2.11: 𝐸𝑥 and 𝐸𝑧 are in arbitrary values as expressed in equation (2.7). 𝐹𝑥 and 𝐹𝑧 are in
arbitrary values, calculated as the absolute value of the expressions (2.9), Fx presents a corner point
before 1000 nm of height which manifests an inversion of the sign of the Fx force direction that could
be further investigated. In both images are shown the boundaries of the interval ℎ = [350, 700]𝑛𝑚,
where 350 𝑛𝑚 and 700 𝑛𝑚 are respectively the smallest and the largest z-distance of the bridge from
the electrodes.

the largest z-distance of the bridge from the electrodes, this states unequivocally that 𝐹𝑧 is much
larger than 𝐹𝑥 for all the possible z-coordinates of the chosen point in the bridge.
Finally can be concluded that 𝐹𝑧 is dominant with respect to 𝐹𝑥 , because not only 𝐹𝑧 is larger than
𝐹𝑥 but also as found with the Fourier transform of the ring-down oscillation, the main contribution
comes from only one of the two modes, the one at 3𝑀𝐻𝑧. The conclusion is that even though the
asymmetry of the sample the driving force is mainly on the z-axis and therefore the 3𝑀𝐻𝑧 mode
must be the out-of-plane mode as assumed at the beginning.
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2.2 Non-linear limit
The final part of the characterization consists on estimating which is the voltage amplitude of si-
nusoidal signal that can be applied to the electrodes such to drive the bridge to reach the saturation
of its amplitude of vibration. For higher amplitude of vibration, the induced strain in the semicon-
ductor will be also higher, so this measurement is necessary to set the boundaries of operation of a
future device exploiting this concept.
For a technical reason the data of this section are taken from a previous measurement carried out by
the postdoctoral student Jiawen Liu. The measure has been done on the exact same kind of sample
that has been characterized in the first part of this chapter up to now. Anyway slightly different
eigenfrequencies and quality factors can be due to the fabrication variability but do not affect the
proof of concept which is the goal of this work.
The name of this section refers to the fact after a certain threshold voltage applied to a mechanical
oscillator, the equation of motion of the corresponding harmonic oscillator changes because of the
influence of the non-linear cubic term of the amplitude which starts to play a role, the equation
which describes this condition is the Duffing equation (Nayfeh and Mook, 1995).
The non-linear regime is tested via the use of a lock-in instrument which sends to the sample an RF
signal 𝑉𝑅𝐹 = 𝑉𝑝 · sin (𝜔𝑡), the instrument sweeps the frequency of the signal in a range containing
the two modes of the bridge. At the same time the lock-in receives in input the differential output
of the balanced diode and displays it in volt as function of the frequency of the signal applied in
output. In figure 2.12 is plotted the answer of the bridge to a sinusoidal RF drive with four different
maximum amplitude values, at pressure between 0.1 and 1 mbar.
In this work are not discussed the characteristics of the Duffing non-linearities, what is of interest
for the project aim is to have an estimation of the saturation amplitude of the oscillator. In fact at
certain amplitudes of the RF signal applied, the response of the bridge is not drastically increasing
anymore, in the present case at voltage amplitude𝑉𝑝 = 4𝑉 there is already a pretty good saturation,
see figure 2.12. In order to be coherent, for each set of measurements we should retrieve a new
picometeres-voltage relation pertinent to the specific sample and setup alignment, but once the
detection system is close to the optimum the differences are small and not relevant for this proof of
concept.
Let’s take under consideration the maximum of amplitude obtained with 𝑉𝑝 = 4𝑉 and use the ratio
𝑅 ∼ 5.31 · 104 𝑝𝑚/𝑉 to convert the top value of the purple curve from volt to picometers, the result
is that for an RF signal at frequency 3.075𝑀𝐻𝑧 the out-of-plane mode oscillates with a maximum
displacement 𝑧𝑚𝑎𝑥 ∼ 48.2 𝑛𝑚. The Duffing regime is characterized by a huge drop in the amplitude
of oscillation which occurs after a threshold voltage, as a consequence for practical application the
frequency of the drive must be well set not to overcome this value, in the case under study the
frequency must be not higher than 3.075𝑀𝐻𝑧.
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Figure 2.12: Amplitude of oscillation of the bridge as function of the driving signal frequency
applied by the lock-in instrument in vacuum (between 0.1 and 1 mbar). Scans at increasing
amplitude 𝑉𝑝 are run to see the arise of the non-linear regime of the oscillator, the blue signal is
just the Brownian motion since the amplitude of the signal is zero. The red curve at𝑉𝑝 = 1𝑉 is still
a linear response of the oscillator, which becomes effected by non-linearities only for the others
curves at 𝑉𝑝 = 2𝑉 and 𝑉𝑝 = 4𝑉 .

Finally, it is showed that from the data in figure 2.12 it is possible to give an estimation of the ratio
of the driving components of force which are applied to the modes of the bridge. For pressure
between (0.1-1 mbar), the quality factors of the out-of-plane and in-plane mode have been found to
be about𝑄 = 1200 and𝑄 = 600 respectively and the corresponding eigenfrequecies are 2.95𝑀𝐻𝑧
and 3.53𝑀𝐻𝑧. Once the angular eigenfrequencies Ω0 are known, the effective stiffness can be
calculated as 𝑘𝑒 𝑓 𝑓 = 𝑚𝑒 𝑓 𝑓 ·Ω2

0 and given the maximum of amplitude 𝑧𝑚𝑎𝑥 in picometers at angular
frequency Ω0 is straightforward to get the force that the electrodes express through the formula:

𝐹 =
𝑧𝑚𝑎𝑥 · 𝑘𝑒 𝑓 𝑓

𝑄
(2.10)

Equation 2.10 is valide in the linear regime, so it is taken under consideration the red curve
(𝑉𝑝 = 1𝑉), extracting the maximum at 2.95𝑀𝐻𝑧 and at 3.53𝑀𝐻𝑧 it is found that the forces that
push the out-of-plane and in-plane mode are 𝐹𝑜𝑢𝑡 ∼ 0.6056 𝑝𝑁 and 𝐹𝑖𝑛 ∼ 0.1648 𝑝𝑁 while their
ratio is 𝐹𝑜𝑢𝑡

𝐹𝑖𝑛
∼ 3.68 which is a value of the same order of magnitude of the one found with the

driving force scheme in chapter 2.
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C h a p t e r 3

STRAIN ENGINEERING

In the last chapter is given a proof of concept calculation that estimates the amount of strain reachable
in the bridge, which implies a change in the bandstructure of GaAs and sets the connection between
classical and quantum phenomena for future quantum devices applications.

3.1 Driven strain
At the end of the second chapter it has been found that applying an RF sinusoidal signal with
𝑉𝑝 = 4𝑉 to the bridge, the out-of-plane mode reaches a maximum displacement of about 48.2 𝑛𝑚
at frequency 3.075𝑀𝐻𝑧. In order to calculate the stress induced inside the material it is used the
following relation from beam mechanics (Senturia, 2001):

𝜎(𝑑, 𝑥) = 𝐸 · 𝑑
𝜌(𝑥) (3.1)

In this equation sigma is the stress measured in pascal, E is the Young’s modulus of the bridge taken
as average between the GaAs and Au Young’s moduli as already done for the density, meanwhile
𝜌(𝑥) in this context refers to the radius of curvature of the bridge and 𝑑 is the distance from the zero
curvature plane (neutral plane) of the beam to the point in which the stress in evaluated along the
radius of curvature axis. In our case the average elastic modulus is considered to be 𝐸 ∼ 82.7𝐺𝑃𝑎
and the neutral axis is taken in the middle of the thickness of the bridge even if the GaAs and
Au have different density and different thickness the result is not changing significantly, so the
maximum value of d is the thickness of the bridge divided by two 𝜇/2 = 175 𝑛𝑚.
In addition must be said that in the formula (3.1) the sign is not evidenced for simplicity, in reality
it is conteined inside the definition of strain, which is 𝜖 = 𝑑

𝜌(𝑥) . The strain is positive or negative
depending on which of the sides of the beam divided by the neutral plane is considered, in the
side where there is compression 𝜖 is negative, meanwhile in the side where there is extension 𝜖 is
positive.
Furthermore for small displacements the radius of curvature is related to the amplitude of displace-
ment of the beam through the equation (Senturia, 2001):

1
𝜌(𝑥) =

𝑑2𝑌 (𝑥)
𝑑2𝑥

(3.2)
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𝑌 (𝑥) is the amplitude of the displacement and x is the position along the length of the beam,
the analytical expression of 𝑌 (𝑥) is normalized in such a way that 𝑌 (𝐿/2) = 𝑧𝑚𝑎𝑥 and that
𝑌 (0) = 𝑌 (𝐿) = 0 , where 𝐿 is the bridge length. In this way, the experimental results of the driven
oscillation can be combined with the theoretical expression of the amplitude 𝑌 (𝑥):

𝑌 (𝑥) = 𝑎 · [(cosh(𝛽𝑥) − cos(𝛽𝑥)) − sinh(𝛽𝐿) + sin(𝛽𝐿)
cosh(𝛽𝐿) − cos(𝛽𝐿) · (sinh(𝛽𝑥) − sin(𝛽𝑥))] (3.3)

In the equation (3.3) 𝑎 stands for the normalization constant which is chosen such that 𝑌 (𝐿/2) =
48.2 𝑛𝑚 and 𝛽 is the constant that for the fundamental mode respects the relation 𝛽 · 𝐿 = 4.73004.
Substituting equation (3.2) into equation (3.1) it is found:

𝜎(𝜇/2, 𝑥) = 𝐸 · 𝜇
2

𝑑2𝑌 (𝑥)
𝑑2𝑥

(3.4)

Finally in figure 3.1 are plotted both the amplitude 𝑌 (𝑥) and the stress 𝜎(𝜇/2, 𝑥) described by
equations (3.3) and (3.4). In particular the plot of the stress refers to the lower side of the bridge, in
fact the strain is negative at the center of the beam (compression) and than changes sign becoming
positive (extension) close to the anchoring points, on the other side of the bridge the strain and the
stress are simply opposite in sign.

Figure 3.1: On the left the maximum amplitude of oscillation reachable with the out-of-plane
mode when an RF sinusoidal signal of frequency 3.075𝑀𝐻𝑧 and 𝑉𝑝 = 4𝑉 is applied to the driving
electrodes, the peak at half of the length is normalized to be 48.2 𝑛𝑚. On the right the corresponding
stress distribution, the maximum value of about 68𝑀𝑃𝑎 is achieved at the extremes of the bridge.
The stress values must be considered in magnitude, its sign is just due to sign of the strain.

The maximum value of stress of about 68𝑀𝑃𝑎 is reached at the beginning of the anchoring pillars,
which compared to the Young’s modulus of the bridge 𝐸 ∼ 82.7𝐺𝑃𝑎 gives a maximum strain
𝜖 = 68 𝑀𝑃𝑎

82.7 𝐺𝑃𝑎 = 0.0822 %, this number is close to the 0.1% strain value that has been obtained in
another related work in progress research project of the QUAD group.
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In the end it is underscored that for 𝑌 (𝑥) and its corresponding second derivative 𝑑2𝑌 (𝑥)
𝑑2𝑥

are taken
under consideration the expressions which are valid for a linear oscillator, meanwhile the limit of
48.2 𝑛𝑚 it is reached when the bridge is driven up to the Duffing regime. Nevertheless, the non linear
correction of the radius of curvature is dependent on the first derivative of 𝑌 (𝑥) (Senturia, 2001),
as a consequence it is expected to be negligible at the extremes due to the fixed anchoring pillars
and the highest value of stress is reached exactly there. As a matter of fact, even if theoretically
not perfect, the precedent estimation of the maximum obtainable stress it is considered very likely,
even though for the purpose of knowing with more accuracy the stress distribution across the length
of the bridge, a complete model which includes non-linear effects must be implemented.

3.2 Conclusions
This research project stands as the proof that it is possible to achieve appreciable values of strain in
semiconductors driving mechanical oscillators up to their saturation amplitude. The transduction
mechanism which is implemented enables large freedom of integration and low power consump-
tion in a broad range of future optoelectronics applications, in particular the possibility to tune
semiconductor laser emission upon controllable modification of the bandstructure. The next step
will be try to engineer the reachable strain by optimizing the oscillator structure dependently on
the desired application. In particular, since possible application may involve quantum structures
along the entire oscillator, it would be interesting to analyze in detail with simulations the strain
distribution in all the chosen structure rather than just at the extremes. For the future optimization
of the achievable strain in driven optomechanical oscillators, it would be necessary to put together
further theoretical considerations with the awareness of the limits of available fabrication and the
limit voltage applicable before the breaking point of the device. From equation (3.4) it is easy to
see that for a thicker beam the strain will increase, but at the same time after a certain value of
thickness the stiffness will reach an unacceptable higher value and the oscillator will not oscillate
anymore at good enough values of amplitude. Therefore a trade of between the thickness of the
beam and the amplitude oscillation must be found.
In the end, from what has been investigated up to now, it seams that in next chapter of this research
the focus should be on the investigation of the Duffing regime. Indeed the non-linear limit is always
going to set the boundaries of this engineering problem, a profound study of its parameters could
lead to achieve some gain in the strain induced in the driven oscillators.
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