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Abstracts

English

Analog In-Memory Computing enables latency and energy consumption reduction
on Deep Neural Network inference and training. The Analog-AI group developed a chip,
ARES, capable of computing the Multiply-Accumulate (MAC) operation using Phase
Change Memory devices. To demonstrate the performance of the chip, the ALBERT
model, a more compact version of the widely known BERT transformer, is currently
under experimental study. In this report, a general in-depth analysis of the contributions
to the MAC is provided, revealing that some activation/weight pairs assume larger
importance, while others can be safely pruned with very limited impact on accuracy.
A new row-wise pruning strategy is proposed, followed by fine-tuning, which leads to
reduced model size with equivalent accuracy. The proposed algorithm is then applied
on the GLUE task using the ALBERT architecture, demonstrating simulated software-
equivalent performance even with consistent weight pruning, potentially enabling several
improvements such as reduction of required hardware tiles, superior power performance
and simpler model on-chip deployment.

French

L’ Analog In-Memory Computing permet de réduire la latence et la consommation
d’énergie lors de l’inférence et de l’entraînement des Réseaux de Neurones Profonds
(Deep Neural Networks). Le groupe Analog-AI a développé une puce, ARES, capable
d’effectuer l’opération Multiply-Accumulate (MAC) à l’aide de mémoire à changement
de phase (Phase Change Memory). Pour mettre en avant les performances de la puce,
le modèle ALBERT, une version plus compacte du célèbre transformateur BERT, fait
actuellement l’objet d’une étude expérimentale.

Dans ce rapport, une analyse approfondie des contributions au MAC est fournie,
révélant que certaines paires activation/poids ont une importance élevée, tandis que
d’autres peuvent être supprimées avec un impact très limité sur la précision. Une nouvelle
stratégie d’élagage par lignes (row-wise pruning) est proposée, suivie d’un fine-tuning, ce
qui permet de réduire la taille du modèle tout en maintenant une précision équivalente.
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L’algorithme proposé est ensuite appliqué au dataset GLUE en utilisant l’architecture
ALBERT, démontrant des performances simulées équivalentes à celles du logiciel, avec
un pruning permettant plusieurs améliorations telles que la réduction du nombre de
tiles nécessaires pour l’implementation, de meilleures performances énergétiques et un
déploiement plus simple du modèle sur la puce.

Italian
L’ Analog In-Memory Computing consente di ridurre la latenza e il consumo en-

ergetico nell’elaborazione e nell’addestramento di reti neurali profonde (Deep Neural
Netowrks). Il gruppo Analog-AI ha sviluppato un chip, ARES, in grado di eseguire
l’operazione Multiply-Accumulate (MAC) utilizzando dispositivi a memoria a cambia-
mento di fase. Per dimostrare le prestazioni del chip, il modello ALBERT, una versione
più compatta del ben noto trasformatore BERT, è attualmente oggetto di uno studio sper-
imentale.

In questo rapporto, viene fornita un’analisi generale e approfondita dei contributi al
MAC, rivelando che alcune coppie di attivazioni/pesi assumono una maggiore impor-
tanza, mentre altre possono essere sicuramente eliminate con un impatto molto limitato
sulla precisione. Viene proposta una nuova strategia di potatura basata sulle righe (row-
wise pruning), seguita dalla messa a punto, che porta a una riduzione delle dimensioni del
modello con una precisione equivalente.

L’algoritmo proposto viene quindi applicato al compito GLUE utilizzando
l’architettura ALBERT, dimostrando prestazioni simulate equivalenti al software anche
con una costante potatura dei pesi, consentendo potenzialmente diverse migliorie come
la riduzione delle piastrelle hardware richieste, migliori prestazioni energetiche e una più
semplice distribuzione del modello a livello di chip.



Introduction

Artificial intelligence models with billions of parameters can excel in accuracy across
various tasks. However, they exacerbate the energy inefficiency of standard processors,
like GPUs and CPUs. Analog in-memory computing (Analog-AI) offers a solution by
operating matrix-vector multiplications efficiently in parallel across memory tiles, thus
enhancing energy efficiency. Nevertheless, Analog-AI has yet to prove its software-
equivalent accuracy for models requiring multiple tiles and efficient communication of
neural network data between these tiles.

The Analog-AI team from IBM research in Almaden designed an Analog-AI chip,
composed of 35M Phase-Change Memory devices spread across 34 tiles. To demonstrate
its performance, a large model is implemented. The goal of this project is to reduce the
size of the implemented model retaining a software equivalent accuracy.

The following report will first give the general context of this internship. An overview
of Large Language Models (LLMs) will be given in order to explain the motivation of the
project. Analog In-Memory Computing being a promising hardware innovation to reduce
the latency and energy consumption of Deep Neural Network of LLMs will be presented.
Then, the Analog-AI chip developed by the group will be studied. The following chap-
ter will focus on transformer models, as the model implemented on chip, ALBERT is
based on this architecture. The GLUE benchmark used to fine-tune ALBERT will be de-
scribed. Finally, the challenging implementation on-chip of the ALBERT model will be
explained. The third chapter will focus on the pruning technique used during the project
to try to simplify the implemented model on-chip. Starting from an overview of pruning
in deep learning, a new method based on the MAC study will be developed and applied
to the ALBERT model specifically on one block of the transformer architecture. The last
chapter will present the accuracy results of the pruned ALBERT model and its possible
implementation on-chip.
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Chapter 1

General Context

This first chapter is intended to explain the context of this
internship. An overview of Large Language Models (LLMs)

will be given to explain the motivation of the project.
Analog In-Memory Computing is a promising approach to
reduce the latency and energy consumption of Deep Neural

Network like LLMs. The group developed a chip, that will be
studied, capable to compute the MAC operation using

non-volatile memories.
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1 Large Language Models

Large Languages Models (LLMs) are deep learning algorithms that can perform a
variety of Natural Language Processing (NLP) tasks. They are trained using massive
datasets, often involving tens or hundreds of billions of parameters. This enables them
to perform a wide range of natural language processing tasks, including text generation,
translation, summarization, and question answering.[Chang et al., 2023].

The recent gain of interest on LLMs is due to the breakthrough in Generative AI. In
fact, ChatGPT based on BERT [Devlin et al., 2018], powered by a set of language models
developed by OpenAI, gathered over 100 million users in two months after its release
in 2022. As a consequence, numerous competing models have emerged. The release of
Llama2 by Meta in 2023 as an open source model enhanced even more the potential of
LLMs [Touvron et al., 2023].

However, the management of the large amount of data required for LLMs and the
need to train them is an obstacle to the spread of these models. Large models can take a
long time to train, and hardware that can handle the training process can be hard to come
by and expensive to develop. To address this energy consumption issue, researchers are
actively exploring techniques to make AI models more energy-efficient. This includes
model reduction, quantization, and the development of smaller, specialized models for
specific tasks. Model reduction is the solution that has been explored during the project.
Even more than only modifying the models, energy consumption can also be widely re-
duced using Analog In-Memory Computing.

2 Analog In-Memory Computing

Analog In-Memory Computing (AIMC) is a promising approach to reduce the la-
tency and energy consumption of Deep Neural Network (DNN) inference and training.
In fact, large networks are trained and implemented using processors such as GPUs and
CPUs, which lead to excessive energy consumption when large amounts of data must
move between memory and processor (CPU) : this is the so-called Von-Neumann Bottle-
neck [Rasch et al., 2021]. Thus, accelerators based on AIMC using non-volatile mem-
ories (NVMs) are currently the focus of active research. They are designed based on
resistive memory device technologies such as Phase Change Memory (PCM), Resistive
Random Access Memory (ReRAM), and Magnetic Random Access Memory (MRAM).
They exhibit significant potential in enhancing the performance and reducing the energy
consumption of deep learning systems. These accelerators harness the physical proper-
ties of these memory devices to perform computations at the same place where data is
stored (Fig.1.1). AIMC could improve both run-time efficiency and power consumption
compared to conventional digital computing technologies.[Wouters et al., 2015]
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Figure 1.1: Digital accelerator (left) where the operation and memory are divided in two
different entities. Analog accelerator (right) allows to perform the operation directly in
the memory device.

3 MAC accelarator chip

The Analog-AI team of IBM Research Almaden developed an AIMC chip capable
of computing the Multiply-Accumulate (MAC) operation using non-volatile memories,
specially Phase Change Memory devices. This chip can offer better energy efficiency and
throughput than digital accelerators. This section will focus on the architecture of the chip
and its operation.

3.1 Architecture

The Analog-AI team developed a 14-nm all-analog inference chip (Fig.1.2(a)) with
34 analog tiles, two Processing Elements (PE) and six Input/Output Landing Pads (ILP-
s/OLPs) (Fig.1.2(b)). For data transmission, a 2D routing mesh is employed, allowing
data to flow from input to tile, tile to tile, and tile to output. The data is conveyed in
duration-format, where pulse widths signify excitation values (Fig.1.2(c)). Pulse-Width
Modulators (PMWs) and duration-to-byte converters located at the chip’s periphery facili-
tate the conversion between duration and digital bits at the ILPs and OLPs. Controllers on
each tile configure the transmission and reception directions of the local mesh, enabling
flexible routing topologies. Each tile stores 512 × 512 unique DNN weights, correspond-
ing to 512x2048 PCM, and each weight consists of four PCM conductances labeled as
(Fig.1.2(d)). There are 8.9M weights that can be programmed in one chip which corre-
sponds to 35M PCM devices per chip. [Narayanan et al., 2021]
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Figure 1.2: Chip architecture [Ambrogio et al., 2023]

3.2 Phase Change Memory devices
The chip relies on the operation of Phase Change Memory (PCM) devices. A PCM

cell is a two-terminal element, with a phase change material in between 2 electrodes.
The bottom electrode acts as a heater (Fig.1.3(a)). The resistive switching material is a
chalcogenide : the Ge2Sb2Te5 (GST) that is electronically conducting in the crystalline
phase and insulating in the amorphous phase. The memory information is stored in the
atomic configuration of the material : the ordered state in the crystalline phase and the
disordered state in the amorphous state. Current is used to switch between the two phases.
It induces a temperature rise in the material, by Joule heating and thermoelectric effects.
The cell can SET by crystallization of the amorphous phase to reach the conducting state
(R~kOhms) and RESET by the melting of the crystalline phase into amorphous reaching
the insulating state (R~MOhms) (Fig.1.3(b)). [Wouters et al., 2015]

Interest in PCM devices is motivated by several advantages. They are non-volatile
memories, allow read and write data at high speeds, have a low power consumption and
high density. PCM cells can store and process analog data, not only binary information.
They can retain a range of resistance values, corresponding to a continuum of analog
voltage levels. PCM devices can store multiple states in a single cell. This is achieved by
adjusting the amorphous-to-crystalline phase transition with different levels of current or
voltage. Each resistance level can represent a different analog value, allowing PCM to per-
form multi-level analog computations. PCM devices can also perform parallel processing.
Their ability to store multiple analog states in a single cell means they can simultaneously
process multiple analog inputs, which is advantageous for tasks like matrix-vector multi-
plication in neural networks. For instance, PCM devices are arguably considered the most
mature among resistive memory types. However, they suffer from temporal conductance



MAC accelarator chip 7

drift, and temperature sensitivity (T » 100°C) that could make them hard to use in data
centers.

3.3 Multiply–Accumulate operation

In the context of machine learning and neural networks, the term MAC refers to
Multiply-Accumulate operations. These operations involve multiplying two numbers and
then adding the result to an accumulator. The MAC operation is a fundamental building
block in many mathematical computations and plays a crucial role in neural network
training and inference. During inference, the MAC operation computes the weighted sum
of inputs, which is often followed by an activation function to produce an output. During
training, MAC operations are used to calculate gradients for weight updates through
back-propagation.

PCM devices are used to perform the Multiply–Accumulate (MAC) operation
on-chip. To perform the operation W * x = y (W is the weight matrix, x is the input
vector), the elements of the matrix W are mapped linearly to the conductance values
of the PCM devices on-chip organized in a crossbar configuration. The values of the
input vector x are mapped linearly to the durations of read voltages and are applied to
the crossbar along the rows. The charge measured along the columns of the array will
be proportional to the result of the computation, y. On-chip, multiplication is performed
using Ohm’s law, and accumulation using Kirchhoff’s law (Fig.1.3(c)).

Figure 1.3: (a) and (b) Phase Change Memory device ([Wouters et al., 2015]) used to
perform (c) Multiply–Accumulate on-chip

In this chapter, we described the motivations behind Analog In-Memory Computing.
To accelerate deep learning training and inference using less power energy, the Analog-
AI team developed a chip which operation is based on PCM devices. The weights used
for the MAC operation are implemented on-chip which allows efficient Matrix Vector
Multiplication. To demonstrate the performance of the chip developed by the group,
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the ALBERT model, a more compact version of the widely known BERT transformer, is
currently under experimental study. The next chapter will then focus on transformer-based
models, BERT and ALBERT, and on the weight implementation of ALBERT on-chip.



Chapter 2

Transformer-based models

This chapter will give an overview of transformer models, in
particular BERT and ALBERT models. The GLUE benchmark
will be described. The on-chip implementation of the ALBERT

model will be explained.
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1 Transformers
Transformers were introduced in 2017 in the "Attention is All You Need" paper by

[Vaswani et al., 2017]. In that paper, authors proposed a completely new way of ap-
proaching deep learning tasks such as machine translation, text generation, and sentiment
analysis. The three key elements that make transformers powerful are self-attention,
positional embeddings and multi-head attention. The self-attention mechanism enables
the model to detect the connection between different elements even if they are far from
each other and assess the importance of those connections, therefore, improving the
understanding of the context. Due to positional embeddings and multihead attention,
transformers allow simultaneous sequence processing, which means that model training
can be sped up through parallelization. This is a huge benefit of using transformers over
architectures like Recurrent Neural Network (RNN) and has enabled the creation of
Large Language Models.

Figure 2.1: Encoder-Decoder Transformer architecture [Vaswani et al., 2017]

The following section will describe the transformer architecture based on Fig.2.1.

The Encoder is on the left and the Decoder is on the right. Both the Encoder and
Decoder modules can be stacked multiple times. These modules primarily consist of
Multi-Head Attention and Feed Forward layers. To ease processing, the inputs and
outputs (target sentences) are initially embedded into an n-dimensional space because
direct string usage is not feasible. The positional encoding is used to give to every part in
our sentence a relative position. These positions are added to the word embeddings. By
incorporating positional embeddings into the input representation of an NLP model, the
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model is able to capture the order and position of words in a sequence.

In transformers, encoding and decoding are done by using attention. Attention helps
the model to understand the context of a word by considering words that go before and
after it. The context of other words in the sentence helps computer to understand different
meanings of the word and translate accordingly. With the example sentence : “I could
hear the dog bark”, somewhere next to the word bark in the vocabulary one would find
words “dog”, “loudly”, “car”. Attention mechanism helps the model to analyze different
parts of another sequence, which is the sequence that is being generated by the decoder.

Self-attention mechanism works with the sequence that is being encoded. Self-
attention mechanism allows the model to weigh the importance of different parts of the
input sequence against each other. By doing this, the model is able to effectively capture
long-range dependencies in the input sequence and learn to recognize patterns that span
multiple elements. The Scaled Dot-Product Attention is a specific mathematical formu-
lation used within the self-attention mechanism. The following equation describes the
Scaled Dot Product Attention,

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
· V (2.1)

Q is a matrix that contains the query (vector representation of one word in the se-
quence), K are all the keys (vector representations of all the words in the sequence) and V
are the values, which are again the vector representations of all the words in the sequence.
dk refers to the dimension of the key vectors. We can define,

a = softmax
(
QKT

√
dk

)
(2.2)

Attention(Q,K, V ) = a · V (2.3)

The weights a are defined by how each word of the sequence (represented by Q)
is influenced by all the other words in the sequence (represented by K). Additionally,
the SoftMax function is applied to the weights a to obtain a distribution between 0 and
1. Those weights are then applied to all the words in the sequence that are introduced in V.

The previous attention-mechanism can be parallelized into multiple mechanisms that
can be used side by side. It refers to the so-called Multi-Head Attention. The attention
mechanism is repeated multiple times with linear projections of Q, K and V. This allows
the system to learn from different representations of Q, K and V, which is beneficial to
the model. These linear representations are done by multiplying Q, K and V by weight
matrices W that are learned during the training. The vectors responsible for tokens
are broken up into multiple parts called heads which go through the same attention
computing process as before. The results of the process are concatenated together to



12 Transformer-based models

form an output of the same type.

The Feed-Forward layer is a position-wise transformation that consists of two linear
transformations with a ReLU activation in between.

After the introduction of the transformer architecture, which proved highly effective
in natural language processing, several models were developed based on it. BERT is one
of these transformer-based models.

2 BERT model
The BERT (Bidirectional Encoder Representations from Transformers) model has

been developed by researchers at Google AI Language in 2018, [Devlin et al., 2018]. It
demonstrated state-of-the-art results in a wide variety of NLP tasks, including Question
Answering (SQuAD v1.1) and Multi-Genre Natural Language Inference (MNLI).

BERT’s model architecture is a multi-layer bidirectional Transformer encoder based
on the original implementation described in the previous section. In this work, we denote
the number of layers (i.e., Transformer blocks) as L, the hidden size as H, and the number
of self-attention heads as A. BERT model exists in two sizes : BERTBASE with L=12,
H=768, A=12 and Total Parameters=110M and BERTBASE with L=24, H=1024, A=16
and Total Parameters=340M. A GELU activation is used rather than the standard RELU
from the Transformer paper.

Figure 2.2: Activation Functions ReLU and GELU

BERT’s key technical innovation is applying the bidirectional training of Transformer
to language modelling. In order to train BERT, a portion of the input tokens is randomly
masked and then those masked tokens are predicted. This procedure is called “masked
language model” (MLM). The second pre-training task is the Next Sentence Prediction
(NSP). It trains the model to understand sentences relationship. The model is then
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fine-tuned on different tasks and evaluated. Fine-tuning will be developed in the next
sections.

BERT has demonstrated remarkable capabilities in understanding contextual infor-
mation from text but comes with a high computational cost due to its large number of
parameters. ALBERT was developed to alleviate this issue.

3 ALBERT model

ALBERT (A Lite BERT) was developed as an improvement of the BERT model to
achieve greater parameter efficiency and computational scalability while maintaining or
enhancing NLP performance. ALBERT reduces the number of parameters compared to
BERT while maintaining or even improving performance. This reduction is achieved
thanks to two techniques : cross-layer parameter sharing and factorized embedding
parameterization [Lan et al., 2019].

Cross-layer parameter sharing prevents the parameter from growing with the depth
of the network. The parameters are shared between all the layers. Factorized embedding
parametrization makes it easier to grow the hidden size without significantly increasing
the parameter size of the vocabulary embeddings. In fact, the large vocabulary embedding
matrix is decomposed into two small matrices, then, the size of the hidden layers is
separated from the size of vocabulary embedding. At the end, ALBERT has 18x fewer
parameters than BERT-large and can be trained 1.7x faster.

Model Parameters Layers Hidden Embedding Parameter-sharing
BERT base 108M 12 768 False
BERT large 334M 24 1024 False

ALBERT base 12M 12 768 True
ALBERT large 18M 24 1024 True

ALBERT xlarge 60M 24 2048 True
ALBERT xxlarge 235M 12 4096 True

Table 2.1: Comparison of Model Parameters and Characteristics [Lan et al., 2019]

The ALBERT architecture is similar to BERT, using transformer encoder with GELU
activation in the Feed-Forward layer. ALBERT model is pre-trained on MLM, same
as BERT, but NSP is replaced by a sentence-order prediction (SOP) based primarily on
coherence.
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Figure 2.3: ALBERT architecture

Now that we have discussed the architectures of the BERT and ALBERT models, our
next section will focus on fine-tuning these models.

4 GLUE benchmark
After pre-training, the model is used as a starting point for a new task. This new task

is different from the original pre-training task. This step is called fine-tuning. Fine-tuning
datasets vary depending on the specific downstream task to solve. The GLUE dataset
(General Language Understanding Evaluation) includes a variety of NLP tasks, making
it a versatile choice for fine-tuning [Wang et al., 2018].

4.1 GLUE dataset description

The GLUE dataset is a benchmark dataset designed to evaluate the performance of
natural language understanding models (NLU) and systems across a range of language
tasks. GLUE consists of several diverse tasks that cover various aspects of language
understanding, including question answering, sentiment analysis, and textual entailment.
GLUE is composed by a suite of nine sentence or sentence-pair NLU tasks, built on
established annotated datasets and selected to cover a diverse range of text genres, dataset
sizes, and degrees of difficulty. Only seven have been be use in this project. There are
three different type of tasks : the single-sentence, the paraphrase and the inference.

The single-sentence tasks are the Corpus of Linguistic Acceptability (CoLA) and the
Stanford Sentiment Treebank (SST-2). CoLA consists of English acceptability judgments
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drawn from books and journal articles on linguistic theory. It focuses on determining if
a sentence is linguistically acceptable or not. SST-2 consists of sentences from movie
reviews and human annotations of their sentiment. The aim of the task is to predict the
sentiment of a given sentence.

The Microsoft Research Paraphrase Corpus (MRPC) and the Quora Question Pairs
(QQP) are paraphrase tasks. QQP dataset is a collection of question pairs from the
community question-answering website Quora. The task aims to determine whether
a pair of questions are semantically equivalent. MRPC is a corpus of sentence pairs
automatically extracted from online news sources. Similar to QQP, models are required
to determine if two sentences are paraphrases of each other.

Finally, the inference tasks are the Multi-Genre Natural Language Inference Corpus
(MNLI), the Stanford Question Answering Dataset (QNLI) and the Recognizing Textual
Entailment. MNLI is a crowd-sourced collection of sentence pairs with textual entailment
annotations. For this task, models are required to determine if a hypothesis is entailed by,
contradicts, or is neutral with respect to a given premise. QNLI is a question-answering
dataset consisting of question-paragraph pairs. Models are asked to determine if an
answer to a given question can be inferred from a passage of text. Finally, RTE comes
from a series of annual textual entailment challenges. This task assesses if a given
hypothesis can be inferred from a provided text.

Figure 2.4: GLUE tasks

4.2 BERT and ALBERT fine-tuning on GLUE tasks [Lan et al.,
2019]

[Wang et al., 2018] reported state-of-the-art accuracy results on the GLUE benchmark.
The ALBERT configuration is ALBERT-xxlarge using combined MLM and SOP losses,
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and no dropout. The BERT configuration is BERT-large using combined MLM and NPS
losses, and dropout.

Model MNLI QNLI QQP RTE MRPC CoLA
BERT-large 86.6 92.3 91.3 70.4 88.0 60.6

ALBERT-xxlarge 90.8 95.3 92.2 89.2 90.9 71.4

Table 2.2: State-of-the-art accuracy results on the GLUE benchmark

The previous sections described the BERT model and its lite version, ALBERT. The
accuracy results obtained for ALBERT are consistent. Then, to evaluate the performances
of the chip developed by the team, it is more interesting to implement ALBERT model
as it contains less parameters so the final implementation will require the use of smaller
number of chips.

5 ALBERT implementation on-chip
To demonstrate the performance of the chip, the ALBERT model is used. The

7.7M weights of ALBERTBASE are implemented on-chip, which can contain up to 8.9M
weights (35M PCM devices).

As it is transformer based, each layer among the 12 of the ALBERTBASE model is
composed of a Self Attention and a Feed-Forward layer. The Self Attention is divided
in three blocks : the In-projection, the Attention, and the Out-Projection. For the
Feed-Forward, we can find the Feed Forward Neural Network 1 (FC1), the GELU
activation and the Feed Forward Neural Network 2 (FC2). The different operations
performed in each block are displayed in Fig.2.5.

The In-Projection block performs linear operations multiplying the input with the
Query (Q), Key (K), and Value (V) weight matrices and adding a bias. This operation can
be done on-chip as the weight matrices are stationary. The inputs will be sent on-chip
through the Input Landings Pads.

The operations performed in QK, Softmax, and QKV blocks are not implemented
on-chip. They are the Attention operations. For demonstration purpose, they are done
in software off-chip. The QK and QKV blocks cannot be implemented on-chip as they
are performing operations between non stationary terms. Implementing Q, K, or V
on-chip will require to re-program the tiles for each new input. The Softmax block
computes a non-linear operation that is to complicated to be performed with PCM devices,

σ(x)i =
exi∑N
j=1 e

xj

(2.4)
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The Out-Projection block performs a linear operation multiplying the output of
QKV with the weight matrix of the Out-Projection block, and then adding a bias. This
operation can be done on-chip as the weight matrix is stationary.

The output of the Self-Attention is then normalized. The normalization operation is
linear. In this block, one can notice that the input is added to the Self-Attention layer
output adding even more complexity. Thus, this operation is done off-chip.

For the next blocks, FC1 and FC2, have the same structure as In-Projection and
Out-Projection. They are implemented on-chip. The GELU activation is non-linear, and
the second normalization layer is similar to the first one with a different input.

Figure 2.5: ALBERT transformer operation

To summarize, only basic and stationary operations can be performed on-chip. At
the end, QW, KW, VW, OPW, FC1W and FC2W are implemented on one chip. This
represents 7.7M weights programmed on the chip developed by the team, which can
contain up to 8.9M weights (35M PCM devices). Thus, the model mapping across tiles
is complex due to non-trivial input/output activation paths.
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Fig.2.6 represents the mapping of the ALBERT model on-chip. Focusing on the first
chip representation, the mapping appears compact, there are only two half tiles free. It
is due to the fact that almost the maximum capacity of the weight implementation is
reached out, but also due to the need to rout the input and output signal having only 6
input/output pads, so we have to wisely use the tiles to distribute the inputs. The three
chips remaining from Fig.2.6 represent the three separate routings corresponding to the
inputs. Three other routings are needed for the outputs. The different routings will be
operated sequentially. Additionally, as one tile can only be filled with 512x512 weights,
the layers are split in multiple tiles.

Figure 2.6: ALBERT model mapping on-chip

The In-Projection block is composed of QW, KW and VW. The three matrices
have a dimension of (768, 768). The row implementation on chip is as follows : each
matrix is divided by 2, so 384 rows are implemented in each tile. The 2304 (768*3)
columns are divided between 4 tiles with 512 columns and 1 tile with 256 columns. The
total implementation is distributed over 10 tiles, corresponding to 1 769 472 weights
implemented.The Out-Projection block is composed by OPW, with a size of (768, 768).
Six half tiles are used with 384 rows implemented per tile and 256 columns. FC1W is
implemented for the FC1 block. Its weight matrix is composed of (768, 3072) weights.
The implementation is distributed over 12 tiles, with 384 rows and 512 columns per tile.
Finally, the dimension of FC2W is different from the other weight matrix as it contains
3072 rows instead of 768. The distribution is as follows : the 6 tiles are filled with 512
rows and 512 columns (maximum capacity) and 6 with 512 rows and 256 columns.

This chapter described transformer-based models, with a focus on BERT and AL-
BERT. ALBERT model has been chosen to be implemented on-chip for its high capa-
bility with respect to its parameters. The weights of the model are implemented in one
chip. Routing the ALBERT model on-chip is a hard task which will become even harder
with larger models. For this reason, the project focused on reducing the model size us-
ing weight pruning. The pruning technique developed and its operation on the ALBERT
model will be discussed in the next chapter.
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Pruning

This third chapter will focus on the pruning technique used
during the project. Starting from an overview of pruning in
deep learning, we will develop a new method based on the
MAC study. This method is applied to the ALBERT model
specifically on one block of the transformer architecture
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1 Definition
Pruning in deep learning is used to reduce the size of a neural network by selectively

removing certain neurons, connections, or parameters while attempting to maintain
or even improve the model’s performance. Pruning is primarily applied to reduce the
computational and memory requirements of a model, making it more efficient or easier
to implement.[Han et al., 2015]

There are different types of pruning, each focusing on different part of the neural
network : weight pruning, neuron pruning and structured pruning. In weight pruning,
less important weights of the neural network are set to zero or removed. It can be done
based on different criteria, such as magnitude of the weights or their importance to the
model’s performance. Neuron pruning technique consists in removing nodes from a
neural network’s layer. In structured pruning entire blocks are removed from the neural
network. For example, an entire layer can be removed.

Successful pruning processes have been observed in the literature in recent years.
The paper "Progressive DNN Compression" (2019) [Ye et al., 2019] introduces an
approach to deep neural network (DNN) compression by progressively applying pruning
and quantization techniques. The authors propose a two-step compression process that
begins with layer-wise pruning, followed by filter-level pruning and weight quantization.
[Frankle et al., 2019] introduce the "lottery ticket hypothesis," showcasing the potential
of sparse, trainable sub-networks that can outperform their dense counterparts.

In the context of this project, pruning is applied on transformer-based models that
also generated significant attention in recent research. [Wang et al., 2019] propose a
structured pruning approach targeting attention heads within large language models,
showcasing its potential for memory reduction while maintaining task performance.
Additionally, [Michel et al., 2019] investigate the necessity of a large number of attention
heads in transformer models. The authors demonstrate that a smaller number of heads
can achieve comparable performance, leading to potential pruning opportunities and
increased efficiency.

Based on the literature search, the need of a specific pruning method to adapt to
Analog-AI was needed. In fact, the project requires structured weight pruning taking
into account the input activation. The next sections will present a developed technique
based on the contribution of each weight in the MAC.

2 Development of a weight pruning technique

2.1 MAC study
Let’s consider two matrices: W, which is the weight matrix (n,n), and X, which is the
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input matrix (n,m),

W =


w0,0 ... w0,n

. .

. .
wn,0 ... wn,n

 X =


x0,0 ... x0,m

. .

. .
xn,0 ... xn,n


The MAC operation is as follows,

W ·X =


y0,0 ... y0,m

. .

. .
yn,0 ... yn,n

 = Y

For better understanding we focus on the first MAC element for explanations. It is
possible to categorize the product elements, x*w, among positive product elements and
negative product elements,

y00 =
n∑

j=0

w0,j ·xj,0 = w0,0 ·x0,0+w0,1 ·x1,0+ . . .+w0,n ·xn,0, (w0,j ·xj,0) ∈ R (3.1)

y00 =
∑
l

w0,l · xl,0 +
∑
k

w0,k · xk,0, (w0,l · xl,0) ∈ R+, (w0,k · xk,0) ∈ R− (3.2)

At the end the MAC0,0 is divided in two parts as follows,

The product elements are then sorted in descending order for the positive side, and
ascending order for the negative one.

We obtain the following graph (left) that highlights the contribution of each element
from the most to the least important one to the MAC0,0.
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Figure 3.1: Contribution of the product elements to the first input frame MAC (left) and
to the all the input frame MACs (right)

Focusing on the first part of Fig.3.1, the first values show a sharp slope. This sharp
slope indicates that a limited amount of elements makes a significant contribution to the
overall MAC computation. In contrast, for the last values, the curves flatten. This phe-
nomenon signifies that a large number of elements exhibit low contribution to the MAC
operation. Consequently, a few (input * weight) pairs have a strong influence, highlight-
ing their crucial role in the computation. Other pairs may hold less impact and could
potentially be disregarded. The next step is to find a method to be able to track the index
of the low contribution elements.

2.2 Product elements contribution

The objective of this sub-section is to develop a metric that could help understand
how each product element, (w*x), fractionally contributes to the final MAC,

∆ =
w · x
MAC

, (3.3)

With this metric, we compute the product element divided by the MAC corresponding
to the input frame. For example, for w0,0,

∆0,0 = abs(
w0,0 · x0,0

MAC0
) + abs(

w0,0 · x1,0

MAC1
) + ...+ abs(

w0,0 · x0,m

MACm
), (3.4)

After the computation of the metric ∆ for all the corresponding weights, we obtain
a matrix of the same size of the weight matrix (n,n). Each element corresponds to its
contribution to the MAC taking into account the activation and partial MAC for each
input frame.
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Figure 3.2: Matrix of the weight contributions

Each point of the Fig.3.2 represents the contribution of the corresponding weight.
Dark blue corresponds to low MAC contribution. In our case, we focus on the entire
row contribution. In fact, for hardware application removing entire rows allows not to
program the corresponding tiles.

Figure 3.3: Conventional vs. row-wise pruning

Finally, the ∆ metric has been used to compute the matrix of the contribution of the
weights. This matrix is then used to detect the least important rows that will be removed
from the model. The pruning technique developed could be used on any model as it only
relies on the MAC study. In this project, we apply it on ALBERT model.
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3 Pruning on ALBERT model

3.1 FC2 pruning decision
After building the previous pruning method, we need to apply it to the ALBERT

model. A study has been conducted to choose with block of the ALBERT model should be
pruned. Indeed, pruning all the blocks and layers leads to an important drop in accuracy.
We decided to focus on pruning for all layers only for one block. As a reminder, Fig.3.4
shows the blocks of the ALBERT model. In-Projection, Out-Projection, FC1 and FC2
blocks had been studied as they are implemented on-chip.

Figure 3.4: ALBERT architecture

The pruning capability refers to the number of weight rows we can free from each
block and the ability to retain accuracy. The following Fig.3.5 is a reminder of the section
ALBERT implementation on-chip (5). The distribution of the weights across the tiles for
all the blocks is displayed, indicating the number of rows and columns implemented for
each tile.

Figure 3.5: Distribution of rows and columns on-chip

As our goal is to be able to free tiles, the minimum rows to pruned for In-Projection,
Out-Projection and FC1 is 256 over 768 (33%). In fact, removing 256 will free an entire
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row of tiles. The tiles will be implemented with 512 rows and 512 or 256 columns. For
FC2, we should remove 512 over 3072 (17%). The corresponding distribution of rows
and columns for each block is displayed Fig.3.6.

Figure 3.6: Potential distribution of rows and columns on-chip with pruning

Removing 256 rows from In-Projection, Out-Projection or FC1 will respectively free
5, 3 or 6 tiles. For FC2, the removal of 512 rows will free 2 tiles from FC2 block but
also 2 tiles from FC1. In fact, the input of FC2 is directly related to the output of FC1
(Fig.2.5). As a consequence, removing 512 rows from FC2 will also remove 512 columns
from FC1. At the end, 4 tiles could be removed. The following table summarizes the
pruning capability of each block.

Table 3.1: Pruning capability

Block # Rows # Weights Removed # Tiles % Weights removed

In Proj 256/768 589,824 5 8.3%
Out Proj 256/768 196,608 3 2%
FC1 256/768 786,432 6 11%
FC2 512/3072 786,432 4 11%

Finally, FC2 block shows a good resilience against pruning, the number of rows to
remove from this block is less important in percentage with respect to the total number of
rows of the matrix with respect to the other blocks (17% vs. 33%) so pruning would be
less aggressive on FC2 and allows to free 4 tiles and 11% of the total number of weights
of the model. FC2 has both good resilience and high pruning capability. Thus, to develop
the pruning technique and be able to have consistent results for the study, FC2 has been
chosen as block. 512 rows will be removed from this block, which correspond to 4 tiles
in the chip implementation.
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3.2 Row-wise weight pruning on FC2

As explained in the previous sub-section, 512 rows are removed from the FC2 block.
In practice, the weights of the ALBERT model are implemented on one single chip. In
fact, the weights are shared among the 12 layers. It is then possible to use only one chip
to implement the weights that remain the same for all the layers. The chip is re-used with
the output of one layer applied as the input for the next one. Consequently, to deploy the
pruning technique, it has to be applied to all the layers. We will finally remove 512 rows
from the FC2 block across the 12 layers.

Fig.3.7 describes the different steps to prune the FC2 block. All the computations are
done with Python. After the identification of the rows to prune, we apply a mask to the
FC2 weights to set at zero the 512 least important rows (Fig.3.8).

In this part, we studied the MAC operation to develop a pruning technique allowing to
remove entire rows from a deep learning model, the ALBERT model in our case. Reduc-
ing the model size simplifies the implementation of the weights on-chip and their debug.
In an Analog-AI application it also reduces propagation noise. The next chapter of this
report will focus on the results we obtained on GLUE tasks. Key parameter of this study
is the accuracy. In fact, pruning can degrade accuracy. In our case, we aim to keep the
baseline accuracy reducing the model size as described before.
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Figure 3.7: FC2 pruning steps

Figure 3.8: Mask application to FC2 weights
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Chapter 4

Results on GLUE tasks

After pruning 512 rows on FC2 layer, the accuracy of the
model has been evaluated on the GLUE dataset. The pruned
model has been then trained. The last subsection will show
the advantages of the improved routing of the chip using the

pruned model.
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1 Accuracy results
The ALBERTBASE model has been evaluated on the GLUE dataset. The model ’albert-

v1’ has been imported from HuggingFace. The Python code to perform fine-tuning and
pruning has been built using content from AIHWKIT ([Rasch et al., 2021]) and the
following Jupyter notebook from Datasets repository from Hugging Face (hugging face
notebook).

Before pruning the model, the accuracy on the different GLUE tasks have been
evaluated. The following table summarizes the fine-tuning parameters used and the
accuracy result for each task.

Table 4.1: Fine-Tuning Results

Task Learning Rate Epochs ALBERTBASE

CoLA 2e-5 20 0.54
MRPC 2e-5 20 0.8627
QQP 2e-5 5 0.9028
QNLI 1e-5 10 0.9059
MNLI 1e-5 5 0.8235
RTE 5e-6 20 0.7292
SST2 1e-5 10 0.8990
Average - - 0.808

Pruning has been performed on the fine-tuned model. 512 rows have been removed
from the FC2 block, so also 512 columns from FC1. The accuracy with pruning obtained
on validation dataset is compared with the one without pruning (SW). The result is
displayed in Fig.4.1.

The average accuracy obtained on the GLUE dataset is 0.75. The average accuracy
dropped down to 6%, from 0.81 to 0.75, compared to the baseline one. The results are
encouraging but could be improved fine-tuning the pruned model.

2 Training
In order to close the gap in accuracy between the imported ALBERT model and the

pruned one, training has been performed on the pruned model. The parameters, learning
rate and epochs are the same as Table 4.1.

Fig.4.2 shows that training allows expected improvements. The average GLUE
accuracy obtained with the pruned model is 0.803 whereas the average accuracy for the

https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
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non-pruned model is 0.808. The baseline accuracy has been recovered. The pruning
technique allows to reduce the model size by 11 percent and to potentially free 4 tiles
in the chip implementation retaining baseline accuracy. Next section will focus on a
possible improved routing using the pruned ALBERT model.

Figure 4.1: Glue Tasks accuracy results

Figure 4.2: Glue Tasks accuracy results after pruned model fine-tuning
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3 Improved routing
The previous sections show the complexity of ALBERT implementation on-chip.

Pruning 512 rows on FC2 would free 4 tiles of the chip. Fig.4.3 suggests an improved
routing.

Figure 4.3: Current vs. Improved routing with 4 tiles less

The routing with 4 tiles removed is less compact than the one of the current route on-
chip. It leads to a fewer number of connections, 107 instead of 124. This improvement
could help reducing the noise as it usually increases with the propagation length. Pruning
also allows to avoid merging. In fact, they are not shared tiles between different blocks
on the improved routing whereas there are 6 in the current routing. Finally, the routing
with 4 tiles less shows a power domain off that could help reducing power consumption.
The overall distribution is easier, so would allow simpler debug. This routing is only a
proposal and could be even more improved.



Conclusion

The exponential growth in the size of Large Language Models has forced researchers
to seek innovations in order to sustain AI progress. In this context, new types of chips
using In-Memory Computing have been developed such as the one from the Analog-AI
group of IBM Research, Almaden. The chip is capable of operating MAC operation faster
than conventional digital accelerators. The MAC operation on-chip is performed using the
conductances of PCM devices. In order to demonstrate the performances of the chip, the
ALBERT model is implemented on-chip. ALBERT is a transformer encoder-based model
using weight sharing across its 12 layers. It is composed of 12M parameters whose 7.7M
are implemented on-chip. The parameters programmed on-chip are the weights from
the In-Projection, Out-Projection, FC1 and FC2 blocks. As the chip can contain up to
8.9M weights, the implementation of 7.7M weights is challenging due to signal routing
constraints. As a consequence, a pruning technique to reduce the model size has been de-
veloped. This technique is based on the mean contribution of the weights into the MAC.
It is applied to the FC2 block of ALBERT to remove 512 rows, which corresponds to 4
tiles less in the on-chip implementation. To validate the pruned model, its accuracy on
the GLUE tasks has been computed. After the fine-tuning of the pruned model, baseline
accuracy is recovered. According to the simulations, the pruned model could be imple-
mented on-chip without reducing the performances of the chip. A proposal of an improved
routing with 4 tiles less shows possible improvements in noise propagation, energy effi-
ciency and allows simpler debug. This work could be further enhanced by fine-tuning the
pruned model using hardware-aware training, specifically tailored for Analog-AI. Addi-
tionally, implementing the pruned model on-chip for experimental performance testing is
a promising avenue for future research.
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