
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Machine Learning for malware
characterization and identification

Supervisor
prof. Antonio Lioy
prof. Andrea Atzeni

Candidate

Francesco Romano

October 2023

Ai miei genitori che mi

supportano e spingono

sempre ad impegnarmi e a

dare il meglio.

Summary

During the last few years, we have seen malware’s spread have an exponential growth, accord-
ing to AV Atlas Dashboard [1] in 2021 there was a growth in the total number of malwares of
116,946,859 ones and 4,710,843 PUA (Potential Unwanted Application) under Windows. This
year, instead the total number of new malwares and PUA is 97,050,954 with a daily growth of
269,157. Cybercriminals are always working on finding new ways to get around controls in an
attempt to make their attacks successful. The success of an attack entails direct and indirect
damage to enterprises. The major impacts of malware on enterprises are the interruption and
disabling of services, breakdowns of the entire enterprise network infrastructure, loss of control of
all applications in execution, disclosure of sensitive information, and reputational damage.

Malware detection through classic methods like signature ones, detection and prevention sys-
tem, or antivirus software is becoming ever-more difficult, this is due to the evolution of recent
malware based on multiple polymorphic layers that elude detection or automatic mechanisms
updating themself in short periods eluding the detection by any antivirus software. The struggle
between security analysts and malware developers is a never-ending battle with the complexity
of malware changing as quickly as innovation grows. Current state-of-the-art research focuses on
the development and application of machine learning techniques for malware detection due to
its ability to keep pace with malware evolution. Several methodologies to automatically detect
malwares through machine learning models have been proposed to cope with the malware during
the last decade like Random Forest, Support Vector Machine (SVM), Decision Tree, AdaBoost,
Gaussian Naive Bayes (GNB), and Gradient Boosting. The work of this thesis focuses on the
classification of malware families using only network traffic as information.

The first step was the search for a dataset that was suitable for the task and whose goodness
was sufficient for the purpose of best training the model. Subsequently, a profound study of the
art was conducted with respect to the topic to be addressed and unfortunately, even here not many
ideas were found but enough to be able to move on to the next phase of data pre-processing and
data mining. This was the longest first phase of the whole thesis process as it needed to compare
each single network packet with the others of the same and other files. After this phase, three
different machine learning models were created which are Random Forest, Gradient Boosting,
and K-nearest neighbors. During the experimentation phase on the models, various situations
of difficulty arose in being able to correctly manage all the families of malware and above all
their evolution over the years. With the use of evidence from the data mining phase, it was
demonstrated how important that phase is since the classification results underwent a significant
increase, which however was not enough, which is why re-elaborations of the dataset were applied
and the use of the Repeated Stratified K-Fold cross validator managing to obtain the best results
in the classification of malware families and the management of their evolution with the model
having the Random Forest algorithm. The results therefore proved to be fully sufficient for the
purpose of classifying malware in a large period, just under ten years, promptly managing their
evolutions, thus expanding research on the state of the art and constituting a valid solution for
problems in this era.

4

Ringraziamenti

Vorrei porrei i miei più sinceri ringraziamenti al Professore Lioy e al Professore Atzeni per avermi
dato l’opportunità di lavorare a questa tesi, per l’aiuto che mi hanno dato durante tutto il per-
corso e per la grande disponibilità.

Vorrei poter ringraziare i miei genitori, se sono riuscito a raggiungere quest’importante obiet-
tivo è grazie a tutti i sacrifici che hanno fatto per me. Vi ringrazio per aver creduto in me e per
avermi esortato a non arrendermi davanti alle difficoltà. Spero che un giorno riuscirò a ripagare
tutti i vostri sforzi rendendovi fieri di aver cresciuto un figlio come me.

Colgo l’occasione per ringraziare mia sorella, anche se siamo da sempre come il giorno e la notte,
ti ringrazio di essermi stato vicino ed aver sostenuto il mio percorso.

Vorrei ringraziare i miei parenti che nei momenti di difficoltà sono sempre stati un porto si-
curo. Vorrei ringraziarvi inoltre per la fiducia che avete sempre avuto in me che mi motiva nel
perseguire gli obiettivi che mi prefisso.

Ringrazio il mio amico Biagio, per te che è difficile esternare i sentimenti, ti ringrazio per aver-
mi supportato. Abbiamo scoperto che ciò che è rotto può essere riforgiato, cos̀ı come la nostra
amicizia che ha acquisito maggior valore condividendo dolori e frustrazioni ma anche momenti di
grande gioia e passioni.

Vorrei porre uno speciale ringraziamento alla mia amata Clarissa, con te ho scoperto cosa vo-
glia dire amare e cosa essere amati. Ti ringrazio per essermi stata sempre vicina, anche nei
momenti più grigi, e per aver migliorato i miei lati peggiori contribuendo nella formazione della
persona che sono ora. Spero di poter esserti d’aiuto quanto tu lo sia stata per me.

Ringrazio il mio amico Vincenzo che mi ha seguito come un fratello minore sin dall’adolescenza ed
esser stato la mia valvola di sfogo in palestra e non. Grazie a te ho appreso la via della cedevolezza
e che si arriva in alto superando sé stessi.

Infine, ringrazio tutti i miei amici e colleghi per l’apporto che hanno dato nell’alleggerire lo stress
del lavoro e degli studi nonché ad essere fonte d’ispirazione.

5

Contents

1 Introduction 9

2 Background 12

2.1 Types of malwares . 12

2.1.1 Virus . 12

2.1.2 Worms . 12

2.1.3 Trojans . 13

2.1.4 Spyware . 13

2.1.5 Adware . 13

2.1.6 Ransomware and crypto-malware . 14

2.1.7 Fileless malware . 14

2.1.8 Keyloggers . 14

2.1.9 Bots and botnets . 15

2.1.10 PUP malware . 15

2.1.11 Logic bombs . 15

2.1.12 RAM Scraper . 16

2.1.13 Crimeware . 16

2.1.14 Rootkits . 16

2.1.15 Backdoor . 16

2.2 Malware spread . 17

2.3 Malware attacks . 17

2.4 Detection evasion . 17

2.4.1 Encryption . 18

2.4.2 Packing . 18

2.4.3 Oligomophism . 18

2.4.4 Polymorphism . 18

2.4.5 Metamorphism . 18

2.4.6 Obfuscation . 19

2.4.7 Fragmentation and Session Splicing . 19

2.4.8 Code reuse attacks . 20

2.4.9 GPU-assisted malware . 21

2.4.10 File-less malware . 22

2.4.11 Virtual machine-based malware . 22

2.4.12 Silent SFX . 22

6

3 Malware detection and classification approaches 23

3.1 Malware Detection Techniques . 23

3.1.1 Signature-Based . 23

3.1.2 Behavioral-Based . 25

3.1.3 Heuristic-Based . 26

3.2 Malware Classification Approaches . 27

3.3 Consideration of Malware Detection and Classification 28

3.4 Machine Learning Classification Algorithms . 28

3.4.1 Decision Tree . 28

3.4.2 Random Forest . 30

3.4.3 Support Vector Machine(SVM) . 30

3.4.4 K-Nearest Neighbors (KNN) . 32

3.4.5 Artificial Neural Network . 32

4 Datasets 35

4.1 CTU-13 Datset . 35

4.2 Custom Dataset . 36

5 Proposed Model 39

5.1 Work environment and tools used . 39

5.1.1 Legion . 39

5.1.2 Google colaboratory . 40

5.1.3 Zeek . 41

5.1.4 Scikit-learn . 41

5.2 Pre-processing and Sub-Sequence Extraction . 41

5.3 Data mining . 43

5.4 Machine learning tools and algorithm for Malware Identification and Classification 46

5.4.1 Dataset splitting . 46

5.4.2 Machine learning Algorithms . 47

6 Results 49

6.1 Results with full dataset without manual splitting into train and test 50

6.1.1 Random Forest . 50

6.1.2 Gradient Boosting . 50

6.1.3 K-Nearest Neighbours . 51

6.1.4 Comments . 52

6.2 Results with dataset split with data mining evidence 55

6.2.1 Random Forest . 55

6.2.2 Gradient Boosting . 56

6.2.3 K-Nearest Neighbours . 57

7

6.2.4 Comments . 58

6.3 First results with expanded dataset manually split with only Trickbot and Dridex
malware families . 60

6.3.1 Random Forest . 62

6.3.2 Gradient Boosting . 63

6.3.3 K-Nearest Neighbours . 63

6.3.4 Comments . 64

6.4 Final results with expanded dataset (Trickbot and Dridex) 67

6.4.1 Random Forest . 68

6.4.2 Gradient Boosting . 70

6.4.3 K-Nearest Neighbours . 71

6.4.4 Comments . 72

6.5 Results with expanded dataset (Trickbot and Ramnit) 72

6.5.1 Random Forest . 73

6.5.2 Gradient Boosting . 73

6.5.3 K-Nearest Neighbours . 76

6.5.4 Comments . 77

6.6 Results with expanded dataset (Dridex and Ramnit) 78

6.6.1 Random Forest . 78

6.6.2 Gradient Boosting . 81

6.6.3 K-Nearest Neighbours . 82

6.7 Results with Repeated Stratified K-Fold Cross Validation 83

6.7.1 Introduction . 83

6.7.2 Random Forest . 84

6.7.3 K-Nearest Neighbours . 84

6.7.4 Comments . 84

6.8 Final Results . 86

6.8.1 Introduction . 86

6.8.2 Trickbot and Dridex without Stratosphere IPS pcaps 87

6.8.3 Trickbot, Dridex, and Ramnit without Stratosphere IPS pcaps 88

6.8.4 Comments . 91

7 Conclusions 93

7.1 Future Works . 94

A User Manual 95

B Programmer Manual 97

B.1 \Matrix for Datamining.py . 97

B.2 \Datamining results calculation based on nflow.ipynb 98

B.3 \Machine learning no cross validation.ipynb . 98

B.4 \Machine learning cross validation.ipynb . 99

Bibliography 101

8

Chapter 1

Introduction

In the ever-evolving digital landscape, cybersecurity plays a pivotal role in safeguarding our in-
formation, digital assets, and computer systems. Although there are many proactive actions, the
possibility that a cyber-attack can occur is never zero. For these reasons, cybersecurity is in an
endless battle with the attackers, it is based on the study of new attacks, which have bypassed
the current defenses, reinforcing them in order to avoid similar attacks again.
Nowadays malwares represents one of the most insidious cyber threats of the digital society. There
are many kinds of malware, each of them designed with its own purpose; compromise, damage,
or illicitly access other people’s computer systems, sensitive data, and digital resources. Malware
developers, thanks to the evolution of technology and global interconnectivity, in recent years
have obtained a wide range of opportunities to propagate their attacks. Malware can be spread
through email attachments, compromised websites, infected USB devices, and even through com-
puter networks. Their ability to change quickly and hide between the normal operations of the
system makes them even more insidious and difficult to detect.
In the last decade the growth of malware has been remarkable, an increase of 1044% with an
average growth of about 60,000,000 malware per year (Figure 1.1). If the annual data can be

Figure 1.1. Total amount of malware and PUA under Windows.

difficult to imagine in reality just think that every second they spread about 3.1 malware, 11,078
per hour and 265,893 per day (Figure 1.2). Data cited are shared by the web portal of the
AV-TEST Institute, which provides numerous cybersecurity data [1]. Another important thing
to focus on is their economic impact, according to IBM researches [2], the global average cost of a
data breach in 2022 was the highest ever since the dawn of conducting these reports. The cost of
a data breach in 2022 was $4.35M - a 12.7% increase compared to 2020 when the cost was $3.86M
(Figure 1.3). Should be specified that already in 2023, thanks to the awareness, the profits related
to ransomware have fallen compared to the previous year according to Malwarebytes [3] (Figure
1.4). In addition to the increase in malware, we must also consider their evolution relative to com-
plexity. Malware developers have also developed evasion and obfuscation techniques in response

9

Introduction

Figure 1.2. New malware and PUA per second.

Figure 1.3. Average cost of a data breach in recent years.

to detection techniques, the most famous are polymorphism, metamorphism, and obfuscation. In
the final part of Chapter 2, all the evasion techniques already known are deeply explained.
Malware detection is a primary countermeasure and there are several techniques used to iden-
tify a malware in a system or in the network, among which: signature-based detection, heuristic
analysis, and behavioral analysis. In addition to detecting malware, it is increasingly appropriate
to also carry out a classification of it. The classification is necessary to warn the analyst of the
possible presence of that family of malware for which mitigation and prevention actions can be
implemented instead of others. The malware detection and classification techniques are widely
discussed in Chapter 3, highlighting the positive and negative sides of each of them with the
analysis of related articles.
In recent years, machine learning has become increasingly important in a wide variety of sectors.
Significant improvements in the ability to collect, process, and analyze large amounts of data,
as well as improvements in computer computing power, have been the driving forces behind this
development.
The goal of using machine learning in cybersecurity is to have a greater proactive force in order to
reduce the workload of security analysts, thus making the battle between them and the malware
developers more feasible. Due to the large amount of malware data that can be collected and
processed, the use of machine learning has recently gained popularity in cybersecurity.
In the last years, many papers have been published with the aim to detect and classify malwares
proposing new and performing algorithms. The aim of this thesis is to obtain a good tool that can
manage the evolution of the malware families over the years in order to have a proactive defense
implemented on end systems or network probes.
The development process of the thesis is based on the following stages: research of the dataset,

10

Introduction

Figure 1.4. Total Value received by ransomware attackers, 2017 - 2022.

data pre-processing and data mining, implementation of machine learning algorithms, iterative
cycle of model refinement based on previous results, rework of the dataset, and analysis two at
once of the families, another one iterative cycle of model refinement for each pair, comparison
with cross-validation, evaluation of machine learning models.

The first phase was dedicated to the search for datasets that were composed solely of network
packets and whose contents were sufficient for training a machine learning model. From the out-
set, there were difficulties in finding public datasets that contained only this type of information
and that, above all, were reliable and of acceptable size. A first round of research produced the
CTU-13 dataset, a dataset based on 13 samples of malware (which malware families are: Neris,
Rbot, Virut, Menti, Sogou, Murlo, NSIS.ay) made by Stratosphere IPS, as results, but which was
later discarded and a custom dataset took over, created by merging individual network traffic
captures from systems infected by Trickbot, Ramnit, and Dridex always having Stratosphere IPS
as sources but also the malware-traffic-analysis blog.

Subsequently, the pre-processing and data mining phases were carried out which, respectively,
first processed the packets by extrapolating the most important features and reassembled the
flows, and then calculated the correlation of the packets of each capture in order to highlight
which were the data that is most important for training machine learning models.

Finally, an experimental iterative cycle was carried out in which phases of division and/or re-
modulation of the dataset, configuration, and tuning of the machine learning models, training
and classification, analysis of the results, and optimization for the next iteration followed. The
objective of this iterative cycle was to obtain the best results of the metrics produced by the
implemented models, learning from the successes and errors received at each stage. The machine
learning algorithms that have been used in this phase are Random Forest, Gradient Boosting,
and K-Nearest Neighbors, all the models have obtained good metric results during the course of
the experimentation but in particular, the Random Forest algorithm was the best of the three for
this type of task to classify a malicious flow through network packets due to a particular family
of malware, which could have developed significant evolutions over time. The last two chapters
deal with, respectively in order, the results of the most significant iterations recorded during the
experimentation phase and finally the conclusions I reached once the study was finished.

11

Chapter 2

Background

Is not that easy to describe malware, this is due to the fact that malware types continue to evolve,
and that makes them vary, a simple definition could be: Malware, or “malicious software”, is
an umbrella term that describes any malicious program or code that is harmful to systems.
Hostile, intrusive, and intentionally nasty, malware seeks to invade, damage, or disable computers,
computer systems, networks, tablets, and mobile devices, often by taking partial control over a
device’s operations [4].
Also, the NIST (National Institute of Standards and Technologies) needs to revise the malware
definition keeping traces of all new types. One of the most recent revisions is this: Software
or firmware intended to perform an unauthorized process that will have adverse impacts on the
confidentiality, integrity, or availability of a system. A virus, worm, Trojan horse, or other code-
based entity that infects a host. Spyware and some forms of adware are also examples of malicious
code [5].

2.1 Types of malwares

Today, malwares are not more based on a single type, in most of the cases they are a combination
of different types of malicious software. In this paragraph are exposed the main type of malware
with some real examples.

2.1.1 Virus

A virus is a piece of code that inserts itself into an application and executes when the app is run.
Once inside a network, a virus may be used to steal sensitive data, launch DDoS attacks, or con-
duct ransomware attacks. Usually spread via infected websites, file sharing, or email attachment
downloads, a virus will lie dormant until the infected host file or program is activated. Once that
happens, the virus can replicate itself and spread through your systems.
Virus example:

• Stuxnet appeared in 2010 and was widely believed to have been developed by the US and
Israeli governments to disrupt Iran’s nuclear program. Spread via a USB thumb drive, it
targeted Siemens industrial control systems, causing centrifuges to fail and self-destroy at a
record rate. It is believed that Stuxnet infected over 20,000 computers and ruined one-fifth
of Iran’s nuclear centrifuges - setting its program back years.

2.1.2 Worms

One of the most common types of malwares, worms, spread over computer networks by exploiting
operating system vulnerabilities. A worm is a standalone program that replicates itself to infect

12

Background

other computers without requiring action from anyone. Since they can spread fast, worms are
often used to execute a payload piece of code created to damage a system. Payloads can delete
files on a host system, encrypt data for a ransomware attack, steal information, delete files, and
create botnets.
Worm example:

• SQL Slammer was a well-known computer worm that did not use traditional distribution
methods. Instead, it generated random IP addresses and sent itself out to them, looking
for those not protected by antivirus software. Soon after it hit in 2003, the result was more
than 75,000 infected computers unknowingly involved in DDoS attacks on several major
websites. Though the relevant security patch has been available for many years now, SQL
Slammer nevertheless experienced a resurgence in 2016 and 2017.

2.1.3 Trojans

A Trojan (or Trojan Horse) disguises itself as legitimate software to trick you into executing ma-
licious software on your computer. Because it looks trustworthy, users download it, inadvertently
allowing malware onto their devices. Trojans themselves are a doorway. Unlike a worm, they
need a host to work. Once a Trojan is installed on a device, hackers can use it to delete, modify,
or capture data, harvest your device as part of a botnet, spy on your device, or gain access to
your network.
Trojan examples:

• Qbot malware, also known as “Qakbot” or “Pinkslipbot”, is a banking Trojan active since
2007 and focused on stealing user data and banking credentials. The malware has evolved
to include new delivery mechanisms, command and control techniques, and anti-analysis
features.

• TrickBot malware -first identified in 2016- is a Trojan developed and operated by sophis-
ticated cybercrime actors. Originally designed as a banking Trojan to steal financial data,
TrickBot has evolved into modular, multi-stage malware that provides its operators with a
full suite of tools to carry out numerous illegal cyber activities.

2.1.4 Spyware

Spyware is a form of malware that hides on your device, monitors activity, and steals sensitive
information like financial data, account information, logins, and more. Spyware can spread by
exploiting software vulnerabilities or else be bundled with legitimate software or in Trojans.
Spyware examples:

• CoolWebSearch - This program took advantage of the security vulnerabilities in Internet
Explorer to hijack the browser, change the settings, and send browsing data to its author.

• Gator - Usually bundled with file-sharing software like Kazaa, this program monitors the
victim’s web surfing habits and uses the information to serve them with specific ads.

2.1.5 Adware

Adware, a contraction of “advertising-supported software”, displays unwanted and sometimes
malicious advertising on a computer screen or mobile device, redirects search results to advertising
websites, and captures user data that can be sold to advertisers without the user’s consent. Not
all adware is malware, some are legitimate and safe to use.
Users can often affect the frequency of adware or what kinds of downloads they allow by managing
the pop-up controls and preferences within their internet browsers or using an ad blocker.
Adware examples:

13

Background

• Fireball - Fireball hit the headlines in 2017 when an Israeli software company discovered
that 250 million computers and one-fifth of the corporate networks worldwide were infected
with it. When Fireball affects your computer, it takes over your browser. It changes your
homepage to a fake search engine - Trotus - and inserts obtrusive ads into any webpage you
visit. It also prevents you from modifying your browser settings.

• Appearch - Appearch is another common adware program that acts as a browser hijacker.
Usually bundled with other free software, it inserts so many ads into the browser that web
browsing becomes very difficult. When you attempt to visit a website, you are taken to
Appearch.info instead. If you manage to open a web page, Appearch converts random
blocks of text into links, so when you select the text, a pop-up invites you to download
software updates.

2.1.6 Ransomware and crypto-malware

Ransomware is malware designed to lock users out of their system or deny access to data until
a ransom is paid. Crypto-malware is a type of ransomware that encrypts user files and requires
payment by a specific deadline and often through a digital currency such as Bitcoin. Ransomware
has been a persistent threat to organizations across industries for many years now. As more
businesses embrace digital transformation, the likelihood of being targeted in a ransomware attack
has grown considerably.
Ransomware examples:

• CryptoLocker is a form of malware prevalent in 2013 and 2014 that cybercriminals used
to gain access to and encrypt files on a system. Cybercriminals used social engineering
tactics to trick employees into downloading the ransomware onto their computers, infecting
the network. Once downloaded, CryptoLocker would display a ransom message offering to
decrypt the data if a cash or Bitcoin payment was made by the stated deadline. While
the CryptoLocker ransomware has since been taken down, it is believed that its operators
extorted around three million dollars from unsuspecting organizations.

• Phobos malware - a form of ransomware that appeared in 2019. This strain of ransomware
is based on the previously known Dharma (aka CrySis) family of ransomware.

2.1.7 Fileless malware

Fileless malware is a type of malicious software that uses legitimate programs to infect a computer.
It does not rely on files and leaves no footprint, making it challenging to detect and remove. Fileless
malware emerged in 2017 as a mainstream type of attack, but many of these attack methods have
been around for a while.
Without being stored in a file or installed directly on a machine, fileless infections go straight into
memory, and the malicious content never touches the hard drive. Cybercriminals have increasingly
turned to fileless malware as an effective alternative form of attack, making it more difficult for
traditional antivirus to detect because of the low footprint and the absence of files to scan.
Fileless malware examples:

• Frodo, Number of the Beast, and The Dark Avenger were all early examples of this type of
malware.

2.1.8 Keyloggers

A keylogger is a type of spyware that monitors user activity. Keyloggers can be used for legitimate
purposes - for example, families who use them to keep track of their children’s online activity or
organizations that use them to monitor employee activity. However, when installed for malicious
purposes, keyloggers can be used to steal password data, banking information, and other sensitive
information. Keyloggers can be inserted into a system through phishing, social engineering, or

14

Background

malicious downloads.
Keylogger example:

• In 2017, a University of Iowa student was arrested after installing keyloggers on staff com-
puters to steal login credentials to modify and change grades. The student was found guilty
and sentenced to four months in prison.

2.1.9 Bots and botnets

A bot is a computer that has been infected with malware so it can be controlled remotely by a
hacker. The bot - sometimes called a zombie computer - can then be used to launch more attacks
or become part of a collection of bots called a botnet. Botnets can include millions of devices
as they spread undetected. Botnets help hackers with numerous malicious activities, including
DDoS attacks, sending spam and phishing messages, and spreading other types of malwares.
Botnet examples:

• Andromeda malware - The Andromeda botnet was associated with 80 different malware
families. It grew so large that it was at one point infecting a million new machines a month,
distributing itself via social media, instant messaging, spam emails, exploit kits, and more.
The operation was taken down by the FBI, Europol’s European Cybercrime centre, and
others in 2017 - but many PCs continued to be infected.

• Mirai - In 2016, a massive DDoS attack left much of the US East Coast without internet
access. The attack, which authorities initially feared was the work of a hostile nation-state,
was caused by the Mirai botnet. Mirai is a type of malware that automatically finds Internet
of Things (IoT) devices to infect and conscripts them into a botnet. From there, this IoT
army can be used to mount DDoS attacks in which a firehose of junk traffic floods a target’s
servers with malicious traffic. Mirai continues to cause trouble today.

2.1.10 PUP malware

PUPs - which stands for “potentially unwanted programs” - are programs that may include
advertising, toolbars, and pop-ups that are unrelated to the software you downloaded. Strictly
speaking, PUPs are not always malware - PUP developers point out that their programs are
downloaded with their users’ consent, unlike malware. However, it is widely recognized that
people mainly download PUPs because they have failed to realize that they have agreed to do so.
PUPs are often bundled with other more legitimate pieces of software. Most people end up with
a PUP because they have downloaded a new program and did not read the small print when
installing it - and therefore did not realize they were opting in for additional programs that serve
no real purpose.
PUP malware example:

• Mindspark malware - this was an easily installable PUP that ended up on users’ machines
without them noticing the download. Mindspark can change settings and trigger behavior
on the device without the users’ knowledge. It is notoriously difficult to eliminate.

2.1.11 Logic bombs

Logic bombs are a type of malware that will only activate when triggered, such as on a specific
date and time or on the 20th log-on to an account. Viruses and worms often contain logic bombs
to deliver their payload (i.e., malicious code) at a pre-defined time or when another condition
is met. The damage caused by logic bombs varies from changing bytes of data to making hard
drives unreadable.
Logic bomb example:

15

Background

• In 2016, a programmer caused spreadsheets to malfunction at a branch of the Siemens
corporation every few years, so they had to keep hiring him back to fix the problem. In this
case, nobody suspected anything until a coincidence forced the malicious code out into the
open.

2.1.12 RAM Scraper

A RAM scraper is a type of malware that harvests the data temporarily stored in memory or
RAM. This type of malware often targets point-of-sale (POS) systems like cash registers because
they can store unencrypted credit card numbers for a brief period of time before encrypting them
and then passing them to the back-end.
RAM Scraper example:

• PoSeidon Malware - it spread in 2015 and targeted point-of-sale through phishing campaigns
exploiting the vulnerabilities of that time to gain access to the system. Once installed, the
aim of the malware is to steal credit card information and other payment-related data so it
scans the memory of the system and captures the sensitive data.

• FastPOS - is a RAM Scraper that spread in 2016, its targets were POS systems of hospitality
businesses and retailers.

2.1.13 Crimeware

Crimeware is a class of malware designed to automate cybercrime. It is designed to perpetrate
identity theft through social engineering or stealth to access the victim’s financial and retail
accounts to steal funds or make unauthorized transactions. Alternatively, it may steal confidential
or sensitive information as part of corporate espionage.

2.1.14 Rootkits

A rootkit is a collection of malware designed to give unauthorized access to a computer or area of
its software and often masks its existence or the existence of other software. Rootkit installation
can be automated, or the attacker can install it with administrator access.
Access can be obtained as a result of a direct attack on the system, such as exploiting vulnera-
bilities, cracking passwords, or phishing.
Rootkit detection is difficult because it can subvert the antivirus program intended to find it.
Detection methods include using trusted operating systems, behavioral methods, signature scan-
ning, difference scanning, and memory dump analysis.
Rootkit removal can be complicated or practically impossible, especially when rootkits reside in
the kernel. Firmware rootkits may require hardware replacement or specialized equipment.
Rootkits example:

• TDL Rootkit - The TDL rootkit, or Alureon, is a family of rootkits that started to spread in
2008 and its activeness is still present. Developed by an anonymous group of cybercriminals,
the nature of the compromised data by this malware was broad and was used for different
purposes such as click fraud and distribution of other types of malware.

2.1.15 Backdoor

A backdoor is a covert method of bypassing normal authentication or encryption in a computer,
product, embedded device (e.g., router), or other part of a computer.
Backdoors are commonly used to secure remote access to a computer or gain access to encrypted
files. From there, it can be used to gain access to, corrupt, delete, or transfer sensitive data.
Backdoors can take the form of a hidden part of a program (a trojan horse), a separate program,
or code in firmware and operating systems. Further, backdoors can be created or widely known.
Many backdoors have legitimate use cases such as the manufacturer needing a way to reset user
passwords.

16

Background

2.2 Malware spread

The exponential growth of malware attacks is also caused by social engineering techniques used
by cybercriminals with events of phishing or pretexting or baiting, a campaign to raise awareness
of social engineering could be a little countermeasure to the big spread of malwares. The most
common ways in which malware threats can spread include:

• Email: If your email has been hacked, malware can force your computer to send emails with
infected attachments or links to malicious websites. When a recipient opens the attachment
or clicks the link, the malware is installed on their computer, and the cycle repeats.

• Physical media: Hackers can load malware onto USB flash drives and wait for unsuspect-
ing victims to plug them into their computers. This technique is often used in corporate
espionage.

• Pop-up alerts: This includes fake security alerts that trick you into downloading bogus
security software, which in some cases can be additional malware.

• Vulnerabilities: A security defect in software can allow malware to gain unauthorized access
to the computer, hardware, or network.

• Backdoors: An intended or unintended opening in software, hardware, networks, or system
security.

• Drive-by downloads: Unintended download of software with or without knowledge of the
end-user.

• Privilege escalation: A situation where an attacker obtains escalated access to a computer
or network and then uses it to launch an attack.

• Homogeneity: If all systems are running the same operating system and connected to the
same network, the risk of a successful worm spreading to other computers is increased.

• Blended threats: Malware packages that combine characteristics from multiple types of
malwares, making them harder to detect and stop because they can exploit different vul-
nerabilities.

2.3 Malware attacks

The number of malware attacks during the last years is quickly rising, in fact in 2021 there was an
increase of about 10%. In parallel, during the same year, there were estimated damages amounted
to around 6 thousand billion dollars, which corresponds to 4 times the Italian GDP.
The main victims affected by these kinds of attacks are the government and the military sector, the
healthcare, the computer science sector, and the instruction sector, all of them are fundamental
and represent the foundations of each country. The leaderboard for the most affected continents
by the malware attacks is led by America, but the attackers are slowly losing interest in it, followed
by Europe, with an increment of 5% in the last years, and in the third place there is Asia.
Taking a closer look at our country, in 2021 in Italy registered at least 42 million security events,
which increased by 16% compared to the previous year. The main kind of attacks are the ones
deploying malwares and creating botnets, causing a huge rise of 58% for the number of servers
and devices compromised. It is clear this fact: the malware threat is real and concrete, creating
the need for solutions that mitigate their risks and damages.

2.4 Detection evasion

As there are ways to detect malware, there are also ways to be undetected, just like in a game
of thieves and cops. There are several techniques used by attackers that are leaving behind
anti-malware vendors [6].

17

Background

2.4.1 Encryption

Encrypted malware consists of an encryption algorithm, encryption keys, encrypted malicious
code, and a decryption algorithm. The key and decryption algorithm are used to decrypt the
malicious component in the malware [7]. It is composed of two main sections: a decryption loop
and a main body. The decryption loop is capable of encrypting and decrypting the main body.
The main body contains the code of the malware itself which is encrypted with simple algorithms
like XOR or using complex and robust ones such as AES. Anti-malware solutions must decrypt
the main body to get a valid signature and detect the malicious piece of software.

2.4.2 Packing

Packing is a technique that is used to encrypt or compress the executable file. Usually, a phase
of unpacking is necessary to reveal the overall semantics of the packed malicious program.

2.4.3 Oligomophism

The purpose of this technique is to produce a different decryptor for every new infection. An
additional improvement is that there are several decryptors that are randomly chosen making a
new type of code on every instance. This technique can be detected but requires more time.

2.4.4 Polymorphism

A polymorphic malware is programmed to look different each time it is replicated while keeping
the original code intact. Different from simple encryption, polymorphic malware can use an
unlimited number of encryption algorithms, and in each execution, a part of the decryption code
will change. Depending on the malware type, different malicious actions performed by the malware
can be placed under the encryption operations. Usually, a transformation engine is embedded
in the encrypted malware. Note that at any change the engine generates a random encryption
algorithm. Then, the engine and malware are encrypted using the produced algorithm, and a new
decryption key is connected to them [7].
Polymorphic malware is harder to detect as there is an unlimited number of new decryptors. The
main feature of this technique is that the code constantly changes with every new variant. Code
obfuscation is used to mutate the decryptor to produce a new version for another victim.

2.4.5 Metamorphism

It does not contain an encrypted part. However, it uses mutation engines to change the body
on every compilation, rather than using cryptography for protecting the code. A metamorphic
engine should consist of the following components:

• Disassembler

• Code analyzer

• Code transformer

• Assembler

To detect this type of technique a complex and robust engine including heuristics and behavior
analysis has to be in place. However, as stated there is no solid approach in place that helps
detect this type of malware.

18

Background

2.4.6 Obfuscation

Hiding information to avoid being caught is a common practice among attackers, in order to defeat
certain security devices like IDS or any other based on signature detection. Using encoding and
manipulating strings is a practice that can easily bypass Snort signatures. For example, either
replacing a / with a \or using Hex, Unicode, or UTF-8 can avoid detections. Moreover, using
encryption to encode a whole session is a classic way to avoid being detected. The problem lies
in the lack of the appropriate key to decrypt information.
Polymorphic code aims to mutate its code while maintaining its original algorithm. It is usually
combined with a cipher/decipher module that is embedded in the code. Encrypting malware is
the first stage to bypass signature-based solutions as they do not have readable information to
compare. Likewise, metamorphic malware presents a novel approach as it improves obfuscation, it
has to recognize, parse, and mutate its own body every time it wants to propagate. Obfuscation
has helped polymorphic and metamorphic malware to bypass anti-malware solutions. Indeed,
they have used several coding techniques, to achieve their goals, some of which are.

• Dead-Code insertion: It simply adds not effective instructions to a program to change its
appearance, but its behavior remains intact.

• Register Reassignment: It consists of switching registers from one version to another.

• Subroutine Reordering: A subroutine is obfuscated and reordered in a random way giving
n chances of variants.

• Instruction Substitution: Its objective is to replace the original code with others that are
equivalent to the original.

• Code Transposition: It reorders the sequence of a set of instructions from the original code,
either by using unconditional branches or based on independent instructions.

• Code Integration: A malware joins its code with a valid program by decompiling the original
one and rebuilding it with infected instructions.

2.4.7 Fragmentation and Session Splicing

These are network attack evasion techniques that take advantage of a feature of IP protocol called
packet fragmentation, which allows to handle packets of different sizes. This evasion technique
affects security devices as they have to wait for the whole package to arrive and then analyze it.
In reality, evasion attacks are not as easy to exploit as theory leads to believe, in fact, it re-
quires knowledge of the network in which to attack. Not only it is necessary to generate packets
considered invalid by the IDS, but there could also be the need for evading pattern recognition
mechanisms.
In this paragraph, we are going to discuss in particular two evasion techniques: session splicing
and fragmentation attacks.
The first technique splits the attack payload into multiple small packets so that the IDS must
reassemble the packet stream to detect the attack. A simple way of splitting packets is by frag-
menting them, but an adversary can also simply craft packets with small payloads [8]. The
“whisker” evasion tool calls crafting packets with small payloads “session splicing”. By delivering
data a few bytes at a time, string matching can be evaded: it is effective because it can be spread
out over a long period of time, but it is also restricted to TCP protocol. In order to detect this
type of attack, the IDS needs to monitor connections and context, reassembling packet streams
to identify it, but for the IDS it is difficult to keep track of them.
The second technique is based on reassembly issued that exists within the IP layer, recognized
in the RFC791. A field in the IP header allows systems to break individual packets into smaller
ones, while the offset field acts as a marker, indicating where a fragment belongs in the context of
the original packet. IDS systems do not reconstruct packets until all fragments have arrived, so
they are susceptible to resource exhaustion. There are 3 types of IP fragmentation: Overlapping,

19

Background

Timeout, and TTL.
In the first case, the attacker sends fragments of varying sizes out of order and in overlapping
positions, causing a fragment conflict in the IDS, and the reassembled packets at the end-system
can be different than what IDS sees (Figure 2.1).
In the second case, the victim has a timeout greater than the IDS, so it will wait until the new
fragment arrives. The IDS will drop the right fragment and let pass the infected one covered
inside a “good” fragment (Figure 2.2).
In the last one, the attacker sets the TTL to 1 only for some fragments, so he can send an infected
fragment with this TTL with a normal one in order to make it stay in the IDS, then he will send
another one and the infected one will be compressed between these two. The victim will only see
the good fragments, ignoring that inside there is a false fragment (Figure 2.3).
For example, for a certain original flow representation ori = [150, 300, 350, 280, 500, 350, 150, 250,
500, 400], the noise vector is [10, -20, 5, 10, -30, 30, 20, -30, -5, 50], and the target representation
is [160, 280, 355, 270, 470, 380, 170, 220, 495, 450]. To add noise to the original traffic, firstly
insert a packet with a length of 280 between the 1st and 2nd packets. Then insert a packet with
a length of 270 between the 2nd and 3rd packets. Lastly insert four data packets with lengths of
170, 220, 495, and 450 after the 4th packet. Now the flow representation becomes [150, 280, 300,
270, 350, 280, 170, 220, 495, 450]. Then append extra bytes with the lengths of 10, 55, 120, and
100 to the 1st, 3rd, 5th, and 6th packets to get the noise representation. There is a total amount
of data with a size of 2170 added into the original flow.

Figure 2.1. IP Fragmentation Overlap attack: first of all, the attacker sends some
“noise” fragments to avoid matching form IDS, then he will send duplicated fragments
that IDS could not discard.

2.4.8 Code reuse attacks

Data Execution Prevention is a mitigation used to prevent the execution of code from the non-
executable segments, however, the attackers may not need to inject a shellcode, instead they can
borrow pieces from the target program. Definitely, this attack is much more complex to perform
than using shellcode.
There are two ways to perform code reuse attacks, one crafting the gadgets and one using lib-c.
The attacker can craft its own sequences of meaningful instruction followed by a return. The
gadget can be crafted using part of the program or using ad hoc tools like ropgadget and gdb
extensions. It is possible to chaining the gadgets to write the shellcode.
in case the libc is available in the program, an alternative to build a chain of gadgets is to use
return-to-lib-c. This leads to the research of the addresses of the functions that the attacker wants
to call. Overall, this attack is a lot easier than building a ROP chain.
These attacks are orchestrated through sets of instructions and do not necessitate code injection
or function calls, thereby evading existing anti-malware solutions.

20

Background

Figure 2.2. IP Fragmentation Timeout attack: the victim has a Timeout greater than the IDS.
While the victim is waiting for the fragment, the IDS drops a fragment and the next one will pass
with the infected fragment attached.

Figure 2.3. IP Fragmentation TTL attack: the attacker sets TTL to 1 for some frag-
ments. In this way, the fragment stays in the IDS and when the next one arrives, it will
be delivered to the victim.

2.4.9 GPU-assisted malware

Graphics processing units (GPUs) were initially responsible for rendering 2D and 3D graphics.
However, recent malware has exploited these resources. A prototype utilizing this concept was
created, employing techniques like self-unpacking, brute-force unpacking, and runtime polymor-
phism to distribute the malware. Notably, this malware does not function on virtual machines
due to its use of specific non-virtualized GPU libraries.
Additionally, GPUs possess the ability to directly access host memory, enabling resource sharing
between the CPU and GPU. The author leverages the GPU to perform tasks that would typically
raise a flag on the CPU, with the aim of remaining undetected. Although this emerging malware
employs familiar packing methods, it capitalizes on the computational prowess of GPUs to evade
current anti-malware measures. This technique may not be universally applicable, but it intro-
duces the potential for utilizing alternative computing devices beyond the conventional CPU and
RAM setup.

21

Background

2.4.10 File-less malware

Kaspersky Labs uncovered a novel evasion method in February 2017 involving malware leaving
digital traces within compromised server RAM. This technique, combined with tools like Metas-
ploit, offers a fresh way to elude anti-malware systems. Airbus Security’s 2016 report further
supported this by showing code stored in registry keys with non-ASCII characters, challenging
retrieval. These keys also employed obfuscation for complexity.
This tactic of avoiding digital traces in permanent storage effectively evades anti-malware solutions
and could be incorporated into targeted attack strategies.

2.4.11 Virtual machine-based malware

Virtual machines (VMs) are used for cloud environments, malware analysis, and penetration
testing. They rely on a Virtual Machine Monitor (VMM) to manage resources and abstract
hardware for guest machines using emulation.
Virtual Machine Introspection (VMI) techniques enable external services to interact with guest
VMs, allowing processes to be injected discreetly.
A framework was devised to satisfy security requirements for this purpose, ensuring that implanted
processes remain concealed, resilient, and non-disruptive. This technique holds the potential
for malware to fulfill these criteria, allowing malicious processes to be injected without being
detected by anti-malware software. Additionally, it could be exploited to compromise virtualized
infrastructures, granting malicious users control over multiple VMs.
For VM security, anti-malware solutions must be installed within VMs, as host-level solutions lack
access to guest VM memory and files. Harnessing VMI opens avenues for malware development
and introduces a novel evasion technique targeting guest VMs, potentially impacting individual
VMs or entire infrastructures.

2.4.12 Silent SFX

A Self-Extracting Archive is a form of executable file containing multiple compressed files. This
type of file incorporates security measures like password protection to evade antivirus detection.
This approach protects malware by managing the process directly, eliminating user input. Mal-
ware is deployed using a script and decryptor, it is estimated that the success rate in identifying
this type of malware is around 5%. This innovative technique offers a means of camouflaging
malware using compressed files.

22

Chapter 3

Malware detection and
classification approaches

The malware detection process is the mechanization that must be implemented to discover and
identify the malicious activities of the files under investigation. As a result, several approaches to
detecting malware have been improved year after year, with no single approach providing 100%
success with all malware types and families in every situation [9]. Therefore, there are three major
approaches for malware detection: signature-based, behavioral-based, and heuristic-based. Each
one of them has its own advantages and disadvantages, in the following sections there are in-depth
analyses of the aforementioned malware detection approaches.
Ömer Aslan Aslan et Refik Samet analyzed a huge amount of the most important papers related
to malware detection through machine learning and I will use their consideration for the related
works of each detection type [10], in Table 2 are summarized all analyzed works.
Malware classification, on the other hand, involves categorizing and organizing malware into dif-
ferent classes or types based on specific characteristics and behaviors. Instead of determining
if a single piece of software is malicious, malware classification aims to understand the broader
categories of malware. For example, malware can be classified into categories such as viruses,
worms, Trojans, ransomware, adware, and more. The classification helps in studying the different
types of malwares and developing targeted strategies for their prevention and removal.
In summary, “malware detection” is the process of identifying individual instances of malicious
software, while “malware classification” involves organizing and categorizing malware into differ-
ent types or classes based on their attributes and behaviors.

3.1 Malware Detection Techniques

3.1.1 Signature-Based

This method relies on a process of signature generation, to uniquely identify each malware a
signature is created encapsulating the program structure. The signature generated is a short
sequence of bytes uniquely linked to the malware.
The process of generating a signature can be automated but it is preferred to be done manually
by malware analysts and reverse engineers especially when is detected a new family of malware. A
signature is generated by extracting the content of executables of malwares and when a program
must be marked as positive or negative, a signature of the program is extracted and directly
compared to all possible malwares signatures, this is often done through a database of malware
signatures. There are different methods of signature creation and some of them are: integrity
checking, string scanning, top and tail scanning, and entry point scanning.

• Integrity checking: generates a cryptographic checksum with different algorithms like SHA
and MD5 for each file in the system in order to identify possible changes that could be
caused by malware.

23

Malware detection and classification approaches

• String scanning: compares the byte sequence in the program file to analyze with the byte
of sequences of files in the database.

• Top and tail scanning: it performs a comparison like string scanning but instead of the
whole file it analyzes only the top and end points.

• Entry point scanning: the entry point indicates where the first run starts when the file
starts to run. This scanning is done because malwares usually changes the entry point of a
program in order to execute, before the actual code, malicious code.

Related works for signature-based detection

Ömer Aslan Aslan et Refik Samet analyzed a huge amount of related works for this type of ap-
proach, and I would like to put the most emphasis on two of them.
Tang et al. proposed the first system in the category of sequence alignment introducing the
contiguous matching encouraging a Needleman-Wunsch (CMENW) algorithm for pair-wise align-
ment and hierarchical multi-sequence alignment (HMSA) for multiple sequence alignment (MSA),
a bioinformatics technique to generate accurate exploit-based signatures for polymorphic worms
[11]. Tang et al. availed themselves of the T-coffee approach in order to obtain more accurate
Simplified Regular Expression (SRE) signatures. The T-coffee is a consistency-based progressive
alignment that allows a combination of MSA methods. The technique involves three steps: mul-
tiple sequence alignment to reward consecutive substring extractions, noise elimination to remove
noise effects, and signature transformation to make the simplified regular expression signature
compatible with current IDSs.
In summary, the sequence alignment approach is costly for long sequences and can be fooled by
deliberate noise injection.
The authors claim that the suggested schema is noise-tolerant, and more accurate and precise
than those generated by some other exploit-based signature generation schemas. This is because
it extracts more polymorphic worm characters like one-byte invariants and distance restrictions
between invariant bytes. However, the proposed schema is limited to polymorphic worms and
cannot be generalized to other malware types.
Borojerdi and Abadi proposed a MalHunter detection system which is a new method based on
sequence clustering and alignment [12]. It generates signatures automatically based on malware
behaviors for polymorphic malware. The novel method works as follows: First, from different mal-
ware samples, behavior sequences are generated. Then, based on similar behavioral sequences,
different groups are generated and stored in the database. To detect malware samples, behavior
sequences are gathered and compared with sequences that have been generated earlier and stored
in the database. Based on the comparison, the sample is marked as malware or benign. The test
results showed that by choosing the cluster radius 0.4 and similarity threshold 0.05, they achieved
a detection rate of 90.83% with an FPR of 0.80%.
The authors claim that the proposed schema is resistant to obfuscation techniques, and it can be
used for the generic detection of all types of polymorphic malware rather than being limited to a
specific malware type. The authors also claim that the suggested system outperformed state-of-
the-art signature generation methods including Tang et al. [11], Newsome et al. [13], and Perdisci
et al. [14] previously reported in the literature. The proposed method is limited to polymorphic
malware and it has been tested on only hundreds of malware which is not enough to determine
the performance of the proposed method.

Evaluation of signature-based detection

Signature-based detection is largely used by commercial antivirus thanks to the fast and efficient
process, however, it fails to detect new generation malware which uses evasion techniques like
polymorphism and obfuscation. There are many techniques and features to extract more powerful
and general signatures but each one is limited to the specific cause of use, there is not a generic
solution for all detection evasion techniques. Furthermore, static and behavioral signature-based
malware detection models suffer from low detection rates when classifying unknown signatures
that may be linked to unknown malware or different variants of known malware [9].

24

Malware detection and classification approaches

3.1.2 Behavioral-Based

Instead of analyzing the executables of malware the behavioral-based approach observes the pro-
gram behaviors and determines if the program is malware or not. If the program codes could be
changed, the behavior of the program would be the same or at least similar. In this way, almost
all new malwares can be detected, but, then again, some malwares does not run under a protected
or virtualized environment.
There are different ways to extract behaviors and the main procedures are the following:

• Automatic analysis by using sandbox;

• Process monitoring;

• Monitoring of system calls;

• Comparison of registry snapshots;

• Monitoring of file changes;

• Monitoring network activities.

Once obtained the behaviors, with one of the previously cited procedures, there will be a selection
of them using data mining. To mark a program as malicious or benign it will be a classification,
based on the previously selected feature, through Machine Learning algorithms.

Related works for behavioral-based detection

The behavior-based detection approach is proposed by Fukushima et al. in [15]. The proposed
method can detect both unknown and encrypted malware on Windows OS. The proposed frame-
work checks not only specific behaviors that malware performs but also normal behaviors that
malware usually does not perform. According to the authors, DR was approximately 60% to 67%
without any FP. The DR is very low, to increase the DR, more malicious behaviors could be
identified, and to prove the effectiveness of the new method, the test set will be extended.
Semantics-aware malware detection is proposed in [16]. The authors determined that certain
malicious behaviors such as a decryption loop in a polymorphic virus appear in all variants of
a certain malware. According to the authors, experimental evaluation demonstrated that the
algorithm can detect all variants of certain malware with no FPs, and is resilient to obfuscation
transformations. However, the algorithm has some limitations for obfuscation transformations.
For instance, it cannot handle instruction replacement very well and fails to detect malware that
uses this technique. Handling instruction replacement problems and different ordering of memory
updates can improve performance.
The authors of [17] were interested in the Windows platform and used the Cuckoo sandbox to
extract machine activity data (CPU, memory, received, and sent packets). After that, the observa-
tions were transformed into vectors, which were used to train and assess classification algorithms.
Common behaviors graph-based malware detection and classification models have been proposed
by [18] in their work through observing the most frequent behavior graphs in each malware family.
Additionally, [18] presented binary and multi-classification models using (LSTM) long-short term
models based on the common API call sequences offered by each malware family.

Evaluation of behavioral-based detection

This approach stems from the need to overcome the limitations of signature-based detection sys-
tems, gathering information on how the malware interacts with the system.
The most difficulties of this kind of detection rely on the identification of the common traits
among extracted features and handling a huge amount of them after the data mining phase.
Furthermore, some new-generation malwares tries to identify if it is located in a virtual envi-
ronment or sandbox blocking all its malicious activities. Thankfully, more updated solutions of

25

Malware detection and classification approaches

antivirus and malware analysis tools provide some mitigations from the above malware counter-
measures.
Behavioral-based detection has a huge request of professional studies to improve on the current
deficiencies of methods, despite the difficulties in selecting the right features in the large number
of features extracted, and the difficulties in identifying the similarities and differences within the
features extracted.

3.1.3 Heuristic-Based

The heuristic-based approach depopulated in recent years, relies on generating rules that inves-
tigate the extracted data, which are obtained through static or dynamic analysis to guide the
inspection of the extracted data to support the proposed malware detection model. Such rules
can either be manually generated on the knowledge of expert malware analysts or can be devel-
oped automatically using machine learning, tools such as YARA, and other tools.
This malware detection approach has a high accuracy rate in detecting zero-day malware, except
the complicated ones.
The heuristic-based detection can use both a signature and some behaviors to generate rules and
on top of that generate the signature.

Related works for heuristic-based detection

Authors of [19] introduced a heuristic virus detection based on an automatic generation of multiple
neural network classifiers for the detection of unknown Win32 viruses. In order to reduce the false
positive (FP) they combine the individual classifier outputs using a voting procedure.
On the basis of the previous paper, [20] presented some improvements.
The number of rules automatically generated was reduced by using rule pruning, ranking, and
selection. The reduction of rules impacted higher accuracy and faster detection time. According
to the paper, the proposed paper system outperformed popular antivirus software tools, data
mining-based detection systems such as support vector machine (SVM), decision tree techniques,
and naive Bayes.
Static [21] and dynamic [22] approach are widely used for heuristic-based detection.
Bilar et al. used a statistical analysis of opcode frequency distributions to detect and differentiate
new generation malware like polymorphic ones. The paper highlights a statistically remarkable
difference in opcode distribution between malware and benign. Unfortunately, there is a need to
extend the number of samples to get more reliable results.
On the other hand, Naval et al.[22] suggested a dynamic malware detection system, which collects
system calls and constructs a graph that finds the semantically relevant paths among them.
By measuring the most relevant paths the authors obtained a reduction of time complexity.
Furthermore, the proposed approach, according to what is stated in the paper, should outperform
the competitors due to the high resilience to system call injections. Sadly, the proposed approach
has some problems like the inefficient selection of relevant paths, vulnerability to call injection,
and low performance during path computation. An improvement in the performance could be
expected from previous problem resolution.

Evaluation of heuristic-based detection

Heuristic-based malware detection combines the use of strings and behaviors in order to generate
the rules, which are in turn used to generate the signature.
Despite the signature-based once, this approach can detect various forms of unknown malwares
but this is not extended to all new-generation malware which is still suffering. Furthermore, this
method is prone to a high false positive rate.

26

Malware detection and classification approaches

3.2 Malware Classification Approaches

AlAhmadi and Martinovic introduce MalClassifier [23], a privacy-preserving system for automatic
malware analysis and classification based on network flow sequence mining. It identifies malware
families without needing access to the infected host, reducing response time. The system abstracts
malware behavior into n-flows, generating profiles used to build supervised machine learning clas-
sifiers (K-Nearest Neighbour and Random Forest). It achieves 96% F-measure for family classifi-
cation using ransomware and botnet datasets. MalClassifier remains resilient to malware evasion
through flow manipulation and proves effective in identifying reoccurring malware flow patterns.
The increasing number of malware variants poses a challenge for anti-malware vendors, requiring
accurate family classification. Existing tools often depend on sandbox environments, but Mal-
Classifier performs on-the-wire classification without direct host access. The research compares
related work and improves the system’s privacy awareness by using non-payload features and
addressing malware behavior changes. MalClassifier applies fuzzy and order sequence similarity
measures for flow matching, enabling IP-agnostic analysis and making it resistant to encryption.
It mines distinctive n-flows for each family, achieving over 95% F-measure for classification.

Piskozub, Spolaor, and Martinovic addressed the challenge of detecting malware in network traffic
using flow-level data. They propose MalAlert [24], a machine learning-based system that distin-
guishes between different types of malware (adware, ransomware, viruses, etc.) using flowsets
and statistical fingerprints. The system aggregates flows based on communicating IP addresses,
extracts 441 statistical features, and selects representative features using relative mutual informa-
tion. The fingerprinting approach is IP address- and port-agnostic, preserving user privacy and
resisting port spoofing. It can aggregate thousands of flows into a single flow set while maintain-
ing information about their maliciousness. MalAlert is tested on datasets containing over 65,000
malware samples and 23 billion flows from the University of Oxford, identifying 0.11% suspicious
flowsets classified as malicious. The system’s effectiveness lies in its ability to extract informative
fingerprints while maintaining privacy and robustness against malware evasion techniques.

Piskozub, De Gaspari, Barr-Smith, Mancini, and Martinovic introduce MalPhase [25], a system
designed to address the limitations of aggregated flow-based network traffic analysis for malware
detection. MalPhase utilizes a multi-tier architecture and an extended set of network flow fea-
tures to improve deep learning models’ performance in detecting malicious flows (<98% F1]) and
classifying them into respective malware types(<93% F1) and families (<91% F1). The increase
in new, unique malware samples and their widespread success are discussed, along with various
techniques proposed to counter daily threats, including network-based approaches. The paper
distinguishes packet-level and flow-level network analysis methods, highlighting the advantages
and challenges of each. MalPhase’s core contributions include its ability to detect and classify
various malware families, its multi-tier design for offline and online analysis, and its evaluation of
a large malware dataset. The system demonstrates robustness to real-life conditions with noise
and detects unseen malware samples with comparable performance to known samples. Overall,
MalPhase provides an effective and scalable solution for detecting and classifying malware based
on aggregated flow data.

Joonseo Ha and Heejun Roh discussed the challenge of detecting malware in TLS-encrypted traffic
and proposed a systematic framework [26] to evaluate malware family classification methods in
a controlled environment. Researchers have focused on statistical, machine learning, and neural
network-based methods for TLS-encrypted malware detection but evaluating sequential informa-
tion usage in malware family classification is lacking. The proposed framework extracts common
flow-level features from TLS-encrypted traffic and evaluates state-of-the-art methods. Experi-
mental results show that graph-based representations achieve better performance. The article
addresses flaws in existing labeled datasets and provides insights into future work. The growth
of TLS adoption has facilitated encrypted malware traffic, necessitating better detection meth-
ods. The study presents a comprehensive background on encrypted traffic classification and the
challenges of malware family classification for TLS-encrypted traffic. The proposed framework
contributes to advancing TLS-encrypted malware detection and classification research. In the

27

Malware detection and classification approaches

evaluation, the TIG-based classifier achieves the best accuracy of 97.83%, but noise in the train-
ing set can lead to mispredictions. The study suggests potential research directions to improve
classifiers, such as enhancing the graph neural network architecture with noisy labels.

3.3 Consideration of Malware Detection and Classification

In general, research and papers on malware classification based on network traffic are less de-
veloped due to the scarce presence of datasets but furthermore, the classification is even less
developed. There are generally fewer papers on malware classification compared to malware
detection in the context of network traffic analysis for several reasons:

• Complexity: Malware classification is a more challenging task than malware detection.
Malware detection aims to identify whether network traffic contains malicious activity, while
malware classification seeks to categorize the specific malware family or type. Classification
requires a more detailed analysis of the network traffic and demands more sophisticated
algorithms and features.

• Availability of Labeled Data: Building a reliable labeled dataset for malware classification
is more difficult than for malware detection. Collecting and labeling network traffic samples
with specific malware families or types is time-consuming and resource-intensive. As a result,
researchers may face limited access to large and diverse labeled datasets for classification
tasks.

• Focus on Detection: The primary concern in cybersecurity research often revolves around
early detection and prevention of malware attacks. Researchers tend to prioritize developing
efficient detection methods that can identify malicious traffic quickly. Consequently, there
might be more emphasis on detection papers due to their immediate applicability in real-
world scenarios.

• Complexity of Feature Engineering: Effective malware classification often requires more
sophisticated feature engineering techniques, such as considering the sequential information
in the network traffic, as seen in the paper mentioned. This adds complexity to the research
process, and some researchers might opt for simpler detection approaches instead.

• Computational Resources: Malware classification tasks, especially those using deep learning
methods, may require more computational resources than detection tasks. This could be
a limiting factor for some researchers, leading them to focus on detection, which can be
computationally more efficient.

• Specialized Skillset: Developing robust and accurate malware classification models may
require a more specialized skillset in machine learning, deep learning, and data analysis.
Researchers might be more inclined to pursue detection tasks that may not require the
same level of expertise.

Overall, while both malware detection and classification are essential in cybersecurity, the focus
on detection may be more prominent due to its immediate practicality and relatively easier imple-
mentation. However, as the field of network security advances and more labeled datasets become
available, we can expect to see a growing interest in malware classification research. Despite
the previous considerations in this work, I will analyze the strengths and weaknesses of malware
classification by network traffic.

3.4 Machine Learning Classification Algorithms

3.4.1 Decision Tree

Decision Tree is a Supervised learning technique that can be used for both classification and
Regression problems, but mostly it is preferred for solving Classification problems. It is a tree-
structured classifier, where internal nodes represent the features of a dataset, branches represent

28

Malware detection and classification approaches

the decision rules, and each leaf node represents the outcome [27].
Its name comes from the graphic representation that resembles a tree, starting from a root node
that grows on additional branches and creates a structure resembling a tree.
In the figure (Figure 3.1) there is an example of how a tree branches.

• Advantages:

– Interpretability: Since the process is similar to human decision it is easy to understand,
it is possible to say that is a white box model because of its transparency;

– Features Interpretability: This algorithm helps in understanding the importance of
different features;

– Categorical Data: Decision trees do not need encoded data because they can handle
both categorical and numerical features.

• Disadvantages:

– Instability: A solution can be completely different even if there are only a few changes
in data;

– Dominant Class: This algorithm, in case of imbalanced data, is prone to biased pre-
dictions towards the dominant class.

– Computational complexity: In case of a dataset with a large amount of data and
features, the trees can grow deep, becoming difficult to interpret and large.

– Overfitting: Decision trees may have overfitting issues that can be resolved by using
the Random Forest algorithm.

Figure 3.1. Random forest algorithm with samples taken from the fruit basket.

29

Malware detection and classification approaches

3.4.2 Random Forest

Random Forest is an ensemble learning method that builds multiple decision trees and combines
their predictions to make a final decision. Each tree is trained on a random subset of the training
data and features. For example the figure (Figure 3.2) explains how random forest works [28].

Figure 3.2. Random forest algorithm with samples taken from the fruit basket.

• Advantages:

– Robustness: Random Forest is less prone to overfitting due to the averaging of multiple
trees;

– High accuracy: It typically yields accurate results, making it suitable for various tasks;

– Feature importance: Random Forest can provide insights into feature importance,
aiding in feature selection;

– Parallelization: The trees in the forest can be trained in parallel, making it computa-
tionally efficient.

• Disadvantages:

– Complexity: Random Forest models can become complex and challenging to interpret,
especially with a large number of trees;

– Memory consumption: The storage requirements can be high for large forests with
many trees;

– Training time: Training multiple trees can be time-consuming, especially on large
datasets.

3.4.3 Support Vector Machine(SVM)

Support Vector Machine is a supervisored learning and its objective of the support vector machine
algorithm is to find a hyperplane in N-dimensional space(N - the number of features) that distinctly

30

Malware detection and classification approaches

classifies the data points [29].
As an example, figure (Figure 3.3) illustrates how a hyperplane is selected in 2D and 3D, while
in figure (Figure 3.4) how it is selected among the candidates in 2D.

Figure 3.3. Hyperplanes in 2d and 3D feature space

Figure 3.4. Possible hyperplanes

• Advantages:

– Features dependencies: The SVM performs well in case the classes have a clear margin
of separation and in case the number of features is greater than the number of samples;

– Effective in High-Dimensional Spaces: In case of a high number of features the SVM
works well;

– Robust to Overfitting: Because of its algorithm, the plane search that best separates
the two classes, makes it less subject to overfitting;

• Disadvantages:

– Computationally Intensive: In case of large dataset or complex kernel functions, the
training of an SVM can be computationally expensive;

– Sensitive to noise: In case of datasets with noise like target classes that overlap, the
SVM will underperform;

– Interpretability: As illustrated in figure (Figure 3.3) the interpretability of the bound-
aries and representation of the points becomes more complex as the number of features
grows.

31

Malware detection and classification approaches

3.4.4 K-Nearest Neighbors (KNN)

KNN is a simple and intuitive algorithm that classifies data points based on the majority class of
their K nearest neighbors in the feature space. For example the figure (Figure 3.5) describes the
KNN algorithm [30].

Figure 3.5. K-Nearest Neighbours algorithm example

• Advantages:

– Simple implementation: KNN is easy to understand and implement, making it a good
starting point for classification tasks;

– No training phase: KNN does not require a training phase, as it memorizes the training
data;

– Non-parametric: It does not assume any underlying data distribution, making it ver-
satile.

• Disadvantages:

– Computational cost: The classification time grows with the size of the training data,
as it needs to calculate distances to all data points;

– Sensitivity to feature scaling: KNN is sensitive to the scale of features and may require
normalization;

– Optimal K value: Selecting the appropriate K value is crucial for KNN’s performance
and can be challenging.

3.4.5 Artificial Neural Network

Artificial Neural Networks are one of the greatest and most appreciated algorithms of machine
learning, in particular, they are part of deep learning ones.
Artificial neural networks (ANNs) are comprised of node layers, containing an input layer, one
or more hidden layers, and an output layer. Each node, or artificial neuron, connects to another
and has an associated weight and threshold. If the output of any individual node is above the
specified threshold value, that node is activated, sending data to the next layer of the network.
Otherwise, no data is passed along to the next layer of the network [31].
In figure (Figure 3.6) you can see a graphic representation of a neural network of one layer.
Starting from the previously cited image, if the number of hidden layers is more than three we
can identify it in deep learning, and this kind of neural network with one input layer, one output
layer, and a series of hidden layers is also known as feed-forward neural network.

32

Malware detection and classification approaches

Figure 3.6. Neural network of 1 layer.

Instead, the most famous artificial neural networks are Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks(RNNs).

• CNN: similar to feed-forward network but the layers used are normally from linear algebra,
matrix manipulations, and identification of patterns in images. For this reason, this kind of
network is widely used in image recognition, pattern recognition, and/or computer vision.

• RNN: the peculiarity of these networks relies on their feedback loops implementing the
concept of memory, this feature is well suited to the recurring data and time-series data
to make predictions of future outcomes, like market prediction but also for speech-to-text,
automatic translations, and audio tasks. (Figure 3.7)

Figure 3.7. Recurrent Neural Network One-to-Many

• Advantages:

– Versatility: the vastness of the artificial neural network allows you to range over any
field of application;

– Transfer Learning: previously trained neural network models can be fine-tuned for
other tasks, thus reducing costs in terms of time and resources;

– Feature Learning: the artificial neural network can automatically learn relevant features
from raw data, saving time for data mining;

33

Malware detection and classification approaches

• Disadvantages:

– Complexity: Artificial Neural Network architectures can be complex, making them
challenging to design and tune, especially for a beginner;

– Computationally intensive: The training phase of an Artificial Neural Network is a
computationally expensive process that needs specific resources, especially in case of
deep learning and large datasets;

– Data Dependency: In order to achieve good performance and avoid overfitting from an
ANN a large amount of training data is required;

– Hyperparameter sensitivity: This model is very sensitive to the hyperparameter choice,
small changes in the learning rate, number of neurons per layer, and number of layers
can lead to a totally different performance;

– Complexity: Is very difficult to understand the model predictions, this is caused by
their black-box nature.

34

Chapter 4

Datasets

This chapter describes the evolution of the dataset used during the different stages of the thesis.
Before moving on to the description of the chapter you need a premise; unfortunately, specific
datasets that deal with malware via network traffic are not easily accessible publicly and most
papers and theses use custom datasets combining some well-known with self-produced datasets of
malicious and non-malicious traffic. In recent research efforts to classify malware families in TLS-
encrypted traffic, only a handful of research groups have been actively involved. Among these,
the work by Anderson and McGrew at Cisco Systems [32] is widely regarded as providing some
of the most comprehensive and reliable results in the field. Cisco’s successful commercialization
of their research as ”encrypted traffic analytics” (ETA) [33]but the datasets they used are not
publicly available. Due to the lack of malware family datasets with network traffic, there have
been collaborative efforts within the research community to collect and distribute datasets of both
encrypted and unencrypted malware traffic. These datasets, as discussed by Thakkar and Lohiya
[34], offer pre-processed features tailored for intrusion detection. However, they typically lack
crucial sequential information regarding TLS flow, making it challenging to assess recent research
endeavors in this area. As a starting point, I have selected the paper [23] referenced by most of the
recent papers and one of the most efficient algorithms for malware family classification which is
cited by almost all the newest papers. I have selected this particular paper also because of its well-
described workflow and procedures, the public availability of the dataset, and the possibility of
applying improvements. Following the previous example of the StratosphereIPS dataset, a recent
malware traffic classification challenge, NetML 2020, incorporated a feature dataset selectively
derived from this raw dataset and was conducted as part of the NETAML workshop, coinciding
with IJCAI-PRICAI 2020. The NetML feature dataset contains most of the enhanced features
used by Anderson and McGrew. Nonetheless, it is crucial to exercise caution when utilizing both
types of datasets. But the NetML 2020 [35] dataset has some problems related to the correctness
of the connection established by the malwares, for example, the TrickBot samples with a simple
Markov chain fingerprint due to a restricted communication pattern: ClientHello from Trickbot
and HandshakeFailure from the server due to an unsupported SSL/TLS version. For this reason,
also this dataset has been discarded, and I decided to build my own dataset using the public
repository of the blog malware-traffic-analysis [36], with malware family pcap collected by a
security expert from a sandbox.

4.1 CTU-13 Datset

Following the example of [23] I have tried to use CTU-13 Dataset [37], The CTU-13 is a dataset of
botnet traffic that was captured in the CTU University, Czech Republic, in 2011. The goal of the
dataset was to have a large capture of real botnet traffic mixed with normal traffic and background
traffic. The CTU-13 dataset consists of thirteen captures (called scenarios) of different botnet
samples. In each scenario, we executed a specific malware, which used several protocols and
performed different actions. The relationship between the duration of the scenario, the number
of packets, the number of NetFlows, and the size of the pcap file is shown in table 4.1. This

35

Datasets

Table also shows the malware used to create the capture, and the number of infected computers
on each scenario.

ID Duration(hrs) # Packets #Netflows Size Bot #Bots
1 6,15 71.971.482 2.824.637 52 GB Neris 1
2 4,21 71.851.300 1.808.123 60 GB Neris 1
3 66,85 167.730.395 4.710.639 121 GB Rbot 1
4 4,21 62.089.135 1.121.077 53 GB Rbot 1
5 11,63 4.481.167 129.833 37,6 GB Virut 1
6 2,18 38.764.357 558.920 30 GB Menti 1
7 0,38 7.467.139 114.078 5,8 GB Sogou 1
8 19,5 155.207.799 2.954.231 123 GB Murlo 1
9 5,18 115.415.321 2.753.885 94 GB Neris 1
10 4,75 90.389.782 1.309.792 73 GB Rbot 10
11 0,26 6.337.202 107.252 5,2 GB Rbot 10
12 1,21 13.212.268 325.472 8,3 GB NSIS.ay 3
13 16,36 50.888.256 1.925.150 34 GB Virut 1

Table 4.1. Item specifications of CTU-13 Datset

4.2 Custom Dataset

After the data mining stage, I had to go back and select a new one because of the high time
consumption; I have also tried to use a hash-map for already calculated distances but the results
still did not make the task feasible. To overcome this problem I decided to create a new dataset
based on different sources for the same family of malware. In particular, I merged the datasets
of stratosphereips.org and the malware-traffic-analysis blog. Stratosphere IPS [37] provides, in
addition to CTU-13, a set of single captures of different malware families and normal traffic. On
the other hand, Malware-traffic-analysis [36] is a blog that focuses on network traffic related to
malware infections. Is a source for packet capture (pcap) files and malware samples. Since the
summer of 2013, this site has published over 2,200 blog entries about malicious network traffic.
From the merge of the two previously discussed datasets, there were obtained three malware
families: trickbot, ramnit, and dridex. In the following table 4.2 is described the dataset created.

36

Datasets

Trickbot
2017-06-12-Trickbot-malspam-traffic
2017-06-14-Trickbot-malspam-traffic
2017-07-24-Trickbot-malspam-traffic
2017-08-11-Trickbot-infection-from-carriereiter.com
2017-08-12-Trickbot-infection-from-carriereiserphotography.com
2017-08-12-Trickbot-infection-from-carriereiter.com.exe
2017-08-12-Trickbot-infection-from-usdata.estoreseller.com
2017-08-21-Trickbot-malspam-traffic
2018-04-30-Trickbot-goes-from-client-to-domain-controller
2018-05-25-Trickbot-malspam-infection-traffic
2018-06-29-Trickbot-infects-client-then-moves-to-DC
2018-07-05-Trickbot-infection-traffic
2018-07-21-Trickbot-malspam-infection-traffic
2018-08-17-Emotet-plus-Trickbot-infection-traffic
2018-09-03-Trickbot-malspam-infection-traffic
2018-10-15-Trickbot-gtag-jim332-infection-traffic
2018-11-12-Trickbot-infection-traffic-gtag-sat100
2018-12-07-Trickbot-infection-traffic-ser1207
2019-01-11-Trickbot-malspam-infection-traffic
2019-04-27-Trickbot-infection-traffic
2019-07-02-Trickbot-infection-with-CookiesDll-module
2019-09-25-Trickbot-gtag-ono19-infection-traffic
2020-02-19-Trickbot-gtag-wecan23-infection
2020-02-25-Trickbot-gtag-red4-infection-traffic
2020-02-26-Trickbot-spreads-from-infected-client-to-DC
2020-03-04-Trickbot-spreads-from-client-to-DC
2020-04-13-Trickbot-gtag-man6-infection-traffic
2020-04-13-Trickbot-gtag-yas27-infection-traffic
2020-04-20-Trickbot-gtag-ono38-infection-traffic
2020-06-16-Trickbot-gtag-ono47-infection-traffic
2020-06-25-Trickbot-gtag-gi6-infection-traffic
2020-07-10-Trickbot-gtag-chil65-infection-traffic
2020-09-08-Trickbot-gtag-ono72-infection-traffic
2020-11-09-Trickbot-gtag-rob2-infection-traffic
2020-11-09-Trickbot-gtag-tar2-infection-traffic
2021-02-17-Trickbot-gtag-rob13-infection-in-AD-environment
2021-05-26-Trickbot-infection-with-Cobalt-Strike
2021-07-12-Trickbot-gtag-rob106-infection-traffic
Traffic-for-2017-08-15-ISC-diary-on-Trickbot-malspam
Trickbot-strato-2017-03-07
Trickbot-strato-2017-06-13

Dridex
dridex-starto
dridex-blog-2019-11
dridex-blog-2019-07
dridex-blog-2020-05
dridex-blog-2020-07
dridex-blog-2020-12
dridex-blog-2021

Ramnit
ramnit-blog-2016-05-16-first
ramnit-blog-2016-05-16-second
ramnit-blog-2017-06-02-first
ramnit-blog-2017-06-02-second
ramnit-blog-2017-08-25
ramnit-blog-2017-12-28
ramnit-blog-2018-02-12-first
ramnit-blog-2018-02-12-second
ramnit-strato-2018-04-03

Table 4.2: Items of the dataset crafted

37

Datasets

Starting from a difficulty in processing the large amount of data from the first dataset, the
opportunity arose to be able to verify how the classifiers produced by the previous papers react
to the evolution of malware over the years. The objective of this thesis is the analysis of the
MalClassifier algorithm with the evolution of malware families and the proposal of a model that
improves performance.

38

Chapter 5

Proposed Model

The intent of this thesis is to identify and classify malware families despite their evolution over
time using machine learning algorithms. In order to do so, it is necessary to compare different
solutions using different algorithms and assigning different weights to the available features. It
is important to specify that there is not an optimal algorithm that always performs better than
others, machine learning algorithms depend on the inputs this is the cause why we have used
different paths to achieve the same goal.

Given the complexity of the task, it was necessary to follow up a specific workflow. In this
chapter, although it may fit into this section, I will not focus on the research of the dataset and
malware families evolution because they were widely discussed in the previous chapter. The first
step was one of the longest steps and it aimed to pre-process the data with the Zeek framework
in order to assemble the various packets in flows, followed by the data mining which aims to
extrapolate the most important packets for family classification through the correlation of each
packet with the whole family dataset.

After achieving the results of the data mining I divided the dataset in train and test follow-
ing the results of the previous step and tested it with the selected machine learning algorithms.
The results produced with the test were followed by a deep analysis and based on the analysis
the process was iterated re-splitting the dataset in train and test.
In order to clarify the results of the previous step and inspect better the behavior of the classifi-
cation a series of tests were conducted with a dataset based on one pair of the malware families
at a time.
In the last steps I have performed some tests with the Repeated Stratified K Fold cross-validator,
these tests aim to compare the efficiency of cross-validators as a replacement for the data mining
phase.
In the end was done a detailed analysis of all the results understanding the problems during the
work and the evidence. The figure (Figure 5.1) summarizes the workflow.

5.1 Work environment and tools used

The following section lists the working environments, frameworks, and libraries used during the
thesis process. Only the data mining has been done from scratch, following the directions listed
by MalClassifier. On the contrary, machine learning algorithms have been reused from versions
that have already been developed, and tested and for which their goodness has been recognized.

5.1.1 Legion

Politecnico di Torino HPC project is an Academic Computing center that provides computational
resources and technical support for research activities for academic and didactical purposes. The

39

Proposed Model

Figure 5.1. Overviw of the workflow.

HPC project is officially managed by LABINF (Laboratorio Didattico di Informatica Avanzata)
under the supervision of DAUIN (Department of Control and Computer Engineering) which
granted by Board of Directors [38]. The HPC provides three different clusters, I have used them
for this purpose the Legion and its specifications are detailed in the table 5.1.

Architecture Cluster Linux Infiniband-EDR MIMD Distributed Shared-Memory
Node Inteconnect Infiniband EDR 100 Gb/s
Service Network Gigabit Ethernet 1 Gb/s
CPU Model 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores
GPU Node 24x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores
Performance 90 TFLOPS (July 2020)
Computing Cores 1824
Number of Nodes 57
Total RAM Memory 22 TB DDR4 REGISTERED ECC
OS CentOS 7.6 - OpenHPC 1.3.8.1
Scheduler SLURM 18.08

Table 5.1. Legion specifiications

5.1.2 Google colaboratory

Colaboratory, or “Colab” for short, is a product from Google Research. Colab [39] allows anybody
to write and execute arbitrary Python code through the browser, and is especially well suited to

40

Proposed Model

machine learning, data analysis, and education. More technically, Colab is a hosted Jupyter
notebook service that requires no setup to use, while providing access free of charge to computing
resources including GPUs.

5.1.3 Zeek

Zeek is a passive, open-source network traffic analyzer. Many operators use Zeek as a network
security monitor (NSM) to support investigations of suspicious or malicious activity. Zeek also
supports a wide range of traffic analysis tasks beyond the security domain, including performance
measurement and troubleshooting [40]. This tool was used during the pre-processing phase and
it reduced a lot the working time estimated to statically and behaviourally analyze the network
interactions, application-level protocols, and exchanged content for each network stream.
This solution is widely used by enterprises also because of the difficulties in preserving com-
plete network traces (PCAPs) for extended durations, Zeek provides several logs for each PCAP
analyzed and it helps in cost-effective storage management.

5.1.4 Scikit-learn

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine-learning algo-
rithms for medium-scale supervised and unsupervised problems. This package focuses on bringing
machine learning to non-specialists using a general-purpose high-level language [41].
Thanks to previous experience, obtained during other courses at the Politecnico di Torino, I was
able to familiarize myself with the previously mentioned library, which immediately proved to be
simpler than its counterparts for a person less accustomed to machine learning.
The goal of this thesis has never been the creation of a machine learning algorithm as much as the
use of already existing and consolidated libraries for solving the task, and this has been reflected
in the use of the scikit-learn library.

The library was crafted to seamlessly integrate with the collection of numeric and scientific pack-
ages that revolve around the NumPy and SciPy libraries. NumPy enhances Python by introducing
a continuous numeric array data type and efficient array computing functions. In addition, SciPy
expands Python’s capabilities by offering common numerical operations. These can either be
implemented within Python/NumPy or incorporated through existing C/C++/Fortran imple-
mentations. [41]

5.2 Pre-processing and Sub-Sequence Extraction

The first layer of the model is the Pre-processing and Sub-Sequence Extraction, starting from the
captures of network traffic packets we reassemble the flow discarding useless packets or corrupted
ones by the Zeek framework. In input we give Pcaps files and the output obtained from them
are numerous logs, in particular, we use a conn.log file in which there are all the connection flows
reassembled with mapped parameters as shown in the following list.

• Ts - timestamp;

• Uid - unique identifier of the connection;

• Id - connection’s 4-tuple of endpoint addresses/ports;

• Proto - transport layer protocol;

• Service - an identification of an application protocol;

• Duration;

• Orig bytes - number of payload bytes sent by origination;

41

Proposed Model

• Resp bytes - number of payload bytes sent by responder;

• Conn state - (Description in table 5.2);

• Local orig - If the connection is originated locally, this value will be T;

• Local resp - If the connection is responded to locally, this value will be T;

• Missed bytes - Indicates the number of bytes missed in content gaps, which is representative
of packet loss;

• Orig pkts - Number of packets that the originator sent;

• Orig ip bytes - Number of IP level bytes that the originator sent;

• Resp pkts - Number of packets that the responder sent;

• Resp ip bytes - Number of IP level bytes that the responder sent;

• Tunnel parent - If this connection was over a tunnel, indicate the uid values for any encap-
sulating parent connections used over the lifetime of this inner connection;

• History - (Description in table 5.3);

Connection state parameters
S0 Connection attempt seen, no reply
S1 Connection established, not terminated
SF Normal establishment and termination
REJ Connection attempt rejected
S2 Connection established and close attempt

by originator seen (but no reply from responder)
S3 Connection established and close attempt

by responder seen (but no reply from originator)
RSTO Connection established, originator aborted

(sent a RST)
RSTR Responder sent a RST
RSTOS0 Originator sent a SYN followed by a RST,

we never saw a SYN-ACK from the responder
RSTRH Responder sent a SYN-ACK followed by a RST,

we never saw a SYN from the (purported) originator
SH Originator sent a SYN followed by a FIN, we never

saw a SYN-ACK from the responder (hence the connection was “half” open)
SHR Responder sent a SYN-ACK followed by a FIN,

we never saw a SYN from the originator
OTH No SYN seen, just midstream traffic

(one example of this is a “partial connection” that was not later closed)

Table 5.2. Zeek connection state description

From the previous list, only the following parameters were analyzed:

• Ts

• Uid

• Id

• Proto

• Service

42

Proposed Model

History parameters
s a SYN w/o the ACK bit set
h a SYN+ACK (“handshake”)
a a pure ACK
d packet with payload (“data”)
f packet with FIN bit set
r packet with RST bit set
c packet with a bad checksum (applies to UDP too)
g a content gap
t packet with retransmitted payload
w packet with a zero window advertisement
i inconsistent packet (e.g. FIN+RST bits set)
q multi-flag packet (SYN+FIN or SYN+RST bits set)
ˆ connection direction was flipped by Zeek’s heuristic

Table 5.3. Zeek history parameter description

• Duration

• Orig bytes

• Resp bytes

• Conn state

• Orig pkts

• Orig ip bytes

• Resp pkts

• Resp ip bytes

• History

As the output of the Zeek application, we obtain .txt files with the previous information that
must be converted into .csv format for the next steps. After having obtained the csv files we have
all the inputs needed for the data mining section.

5.3 Data mining

As previously introduced, the initial dataset based on CTU-13 was discarded at the first round
of data mining, because the time needed to analyze and populate the matrices was estimated to
be more than 6 months. To be more specific with 21 hours of work only 253 rows of 31734 were
produced for an example of a matrix of dimension 31734 x 137839.

During this stage is done the correlation between the different files, filling the correlation
matrices with a similarity distance based on the following formula: Flow similarity = 3 Binary
similarity+2 Levenshtein Distance+6 Cosine Similarity+1 Inter-flow Distance.

The resulting similarity distance is in the range 0 to 12 and is the result of a weighted average
of four similarity distances that are described in the following lines.

• Binary similarity (resp port, protocol, service): The similarity is 1 if the attribute values
are the same, otherwise 0.

43

Proposed Model

• Levenshtein Distance (history, conn state): Levenshtein Distance is a fuzzy string sim-
ilarity measure that measures the minimum number of modifications required (insertions,
deletions, and substitutions) to change one string into the other, divided by the maximum
length of the same two strings. It also takes into consideration the order of the characters
in the string

• Cosine Similarity: The numeric attributes of the two flows are represented as two vectors.
Cosine Similarity measures the similarity of two non-zero vectors by calculating the cosine
of the angle between them. Given the vectors x and y of length n = 6 (number of numeric
attributes), the cosine similarity is represented as:

cos(x,y) =
xy

∥x∥∥y∥
=

Pn
i=1 xiyiqPn

i=1 (xi)
2
qPn

i=1 (yi)
2

• Inter-flow Distance (resp port): distance calculates the distance between the resp port
in every two consecutive flows of a sub-sequence. This helps identify malware network
behavioral attributes such as performing a port scan (e.g. when the difference of resp port
of two consecutive flows is 1). To calculate the inter-flow similarity, we first calculate the
distance of the resp port in each consecutive flow in a sub-sequence.

In [23], in IV. Malclassifier Design section B, Malware Family Profile Extraction, there are
some examples of the different distances that can be resumed as follows:

Thus, the Binary Similarity in our example of (f0A ∈ Seq1 : 80|tcp|http, f0B ∈ Seq2 : 80|tcp|http)
and (f1A ∈ Seq1 : 80|tcp|http, f1B ∈ Seq2 : 25|tcp|ssl) is (1,0.33) respectively, resulting in an av-
erage Binary Similarity of 0.665.

Assuming the cost of insertion, deletion, and modification is the same (= 1), then the Leven-
shtein Distance of making ShADdFa into ShADadR is 3.

the Levenshtein Distance of (f0A ∈ Seq1 : SF |ShADdFa, f0B ∈ Seq2 : SF | ShADadfF) and
(f1A ∈ Seq1 : SF | ShADdFa, f1B ∈ Seq2 : S0 | ShAdDafF) is (2,4) respectively, resulting in
an average Levenshtein Distance of 3, scaled to 0.03.

The Cosine Similarity of x = [367,3547,6,615, 7,3835] ∈ f0A, y = [1801,15606,14,2369,18,16334] ∈
f0B is 0.00025 . Similarly, the Cosine Similarity of x = [322,464,5,530,4,632] ∈ f1A , y = [5274,1370,18,
5975,28,456] ∈ f1B is 0.284 . Thus, the average Cosine Similarity for Seq1 and Seq2 is 0.142 .

For the Inter-Flow distance the resp port distance between f0A , f1A ∈ Seq1 is 0 , as the
resp port in both flows is the same. However, the resp port distance between f0B , f1B ∈ Seq1 is
55, which is the difference between port 80 and port 25. The inter-flow similarity of Seq1 and
Seq2 is the distance of (0,55), thus is 55 . Normalized, resulting in a dissimilarity of 0.5.

sim = 3(0.665)+2(1 - 0.03)+6(1 - 0.142)+1(1- 0.5) = 9.5

An analysis based solely on the similarity of individual packets is not very accurate for Cyber-
security Attacks, as example a single ICMP could be interpreted as harmless, but a set of ICMPs
can be a factor of DOS attack identification.
On the basis of the above during this stage I have analyzed the data as a group of packets, in
other words, said as an N-flow.
In particular, I have based my analysis on the remarks of the paper [23] and used it to group the
N-flow starting from 3 packets to 6 packets.
For the next step we need to select the most significant N-flow based on the data mined, starting
from the matrices produced I have calculated the average of all the N-flow of each family.
During this analysis, I have found some interesting statistics presented in the following table 5.4.

In particular, for the N-flow of dimension 5, we have a good number of packets, and also,
a more important thing, the presence of the highest similarity for 3 flows found in the PCAP
2020-02-26-Trickbot-spreads-from-infected-client-to-DC almost attributable to equality.

In order to take into account the presence of this equality I have re-arranged the scores of
N-flow similarity with a factor of occurrence, see the below formula:

44

Proposed Model

family + flow dimension dictionary dimension pcap occurrences
dridex-nflow3 44 132 0
dridex-nflow4 24 96 0
dridex-nflow5 16 80 0
dridex-nflow6 10 60 0
ramnit-nflow3 30 90 0
ramnit-nflow4 20 80 0
ramnit-nflow5 18 90 0
ramnit-nflow6 13 78 0
trickbot-nflow3 238 714 0
trickbot-nflow4 117 468 0
trickbot-nflow5 70 350 3
trickbot-nflow6 51 306 0

Table 5.4. Data-mining statistics

N-flow score = average similarity * occurrence

As a result, the following table shows, in order of relevance for each family, the most relevant
pcaps from which the best performance of classification is expected, Table 5.5.

Dridex dridex-blog-07-2019
Dridex dridex-blog-12-2020
Dridex dridex-blog-05-2020
Dridex strato-dridex
Dridex dridex-blog-2021
Ramnit ramnit-blog-2017-06-02-first
Ramnit ramnit-blog-2017-12-28
Ramnit ramnit-blog-2017-08-25
Ramnit ramnit-blog-2016-05-16-first
Ramnit ramnit-blog-2017-06-02
Ramnit ramnit-strato-2018-04-03
Trickbot 2017-03-07-trickbot-strato
Trickbot 2019-09-25-trickbot-blog
Trickbot 2018-07-21-trickbot-blog
Trickbot 2019-07-02-trickbot-blog
Trickbot 2020-09-08-trickbot-blog
Trickbot 2017-08-15-trickbot-blog
Trickbot 2020-02-26-trickbot-blog
Trickbot 2018-11-12-trickbot-blog
Trickbot 2018-09-03-trickbot-blog
Trickbot 2017-08-21-trickbot-blog
Trickbot 2020-06-16-trickbot-blog
Trickbot 2020-11-09-trickbot-blog-tar2
Trickbot 2018-12-07-trickbot-blog
Trickbot 2021-02-17-trickbot-blog
Trickbot 2019-01-11-trickbot-blog

Table 5.5. Most relevant pcaps for training.

45

Proposed Model

5.4 Machine learning tools and algorithm for Malware Iden-
tification and Classification

This paragraph will describe the tools and algorithms used to perform the identification and
classification of malware. As already discussed in section 5.1.4, I used the scikit-learn library to
accomplish the classification and identification tasks. It is important to note that each algorithm
has somewhat different implementations among the many libraries, in case of replication and dif-
ferent results, the reason could be the previous one.

The scikit-learn library provides several classifiers like support vector machine, random forest,
gradient boosting and k-nearest neighbors, etc.

5.4.1 Dataset splitting

As the first step, the dataset has to be split into at least train and test or if it is possible in
train, validation, and test. This can be done in different ways, the most common is by using the
train test split() function in which it is also possible to specify the percentage destined for the
train and the test.
Whenever we change the random state parameter present in train test split(), we get different
accuracy for different random state and hence we cannot exactly point out the accuracy for our
model [42]. In the cited article there are also some examples explaining the random sampling, the
stratified sampling, and the Stratified K-Fold Cross validation that can be summarized as follows.
Random sampling can result in skewed class distribution, impacting model performance. Strati-
fied sampling, a more accurate approach, ensures proportional class representation. In stratified
sampling, the population’s characteristics are preserved in both the training and test sets.
Moreover, standard K-Fold Cross-Validation helps with the random state issue, but it still relies
on random sampling. Stratified K-Fold Cross-Validation applies stratified sampling during each
fold, overcoming both the accuracy inconsistency and class distribution concerns.
As an example in figure (Figure 5.2), there is a flowchart of five-fold cross-validation.
Furthermore, there is also RepeatedStratifiedKFold that allows improving the estimated perfor-

Figure 5.2. Flowchart of five-fold cross-validation.

mance of a machine learning model, by simply repeating the cross-validation procedure multiple
times (according to the n repeats value) and reporting the mean result across all folds from all
runs. This mean result is expected to be a more accurate estimate of the model’s performance
[43].
Finally, there is also the possibility to build your own splits based on your own experiences or
data mining results which is the most time-consuming method but also the most effective one.
During the development of this thesis only the last two ways, in particular, I used to build by
myself the dataset splits based on the results of the data mining and, in order to have a method

46

Proposed Model

of comparison, I have chosen to use the RepeatedStratifiedKFold, which turned out to be the best
method given the class imbalance at the expense of a greater time required.

5.4.2 Machine learning Algorithms

In this section I will illustrate the machine learning algorithms that I have used, they have already
been discussed in chapter 3 paragraph 4 but in a generic way, below I will specify how they have
been configured and used.

Random Forest

This algorithm is one of the most used in the whole literature of machine learning, simplicity is its
strong point, thus offering very low times for train and test. These were the reasons for choosing
this algorithm and the overall results rewarded the choice.

As regards the configurable hyperparameters for the Random Forest algorithm, the only two
are the number of estimators and the weights attributed to the features. For the second, if not
specified, they are attributed during training, thus leaving the possibility for the algorithm to
attribute them once the data has been processed. Initially, I thought about changing the weight
attributed to the features only once I learned better what the behavior of the model was, but sub-
sequently, I re-evaluated this option because, from the research conducted, changing the weights
attributed to the features would force the model to have a certain behavior going against the basic
principle of machine learning and unless you are particularly expert, it is strongly discouraged
to carry out this type of tuning. Instead for the number of estimators it was carried out, at the
beginning they were used with values 100 and 1000 to then move on to a search at each run
varying from one hundred to one hundred specifying the range of interest (1000, 2500 and 3000).

Gradient Boosting

Thanks to the advice of Professor Atzeni and my colleague Sarracino Marco, I reevaluated the
use of the Gradient Boosting algorithm. Sarracino showed me how the algorithm performed well
during his thesis work, so I decided to give it a chance to this algorithm which is mainly used in
image and video classification activities.

Gradient Boosting is a machine learning algorithm that combines the predictions of multiple
base models to create a stronger overall predictor, typically based on decision trees.
The whole process can be summarized in the sequential construction of the model which is based
on the improvement of the weaknesses of the previous ones. This is granted by analyzing the
errors made in the predictions of the predecessor models, thus adapting the subsequent model.
The term “gradient” in Gradient Boosting refers to the process of improving the hyperparameters
that generate prediction errors in order to minimize them as much as possible.
What differs most from the random forest is the inability to parallelize the creation of the next
decision trees as these are based on the improvement of the previous ones thus leading to greater
accuracy at the expense of longer training times.
It is widely used in regression and classification tasks, what sets Gradient Boosting apart is its
proficiency in handling complex relationships within data and usually outperforms random forest.

As regards the configuration of the model, I searched for the best hyperparameters through
consecutive iterative cycles, varying one hyperparameter at a time and keeping the others fixed.
This approach turned out to be quite time-consuming but to obtain precisely which are the hy-
perparameters that best fit there are no alternatives.
The configurable hyperparameters are the number of estimators, the learning rate, and the max-
imum depth. The first iterative cycles were focussed on the research of the number of estimators
and the learning rate. Once obtained, the focus shifts to finding the best maximum depth.

47

Proposed Model

K-Nearest Neighbours

The K-Nearest Neighbours algorithm is another widely used algorithm, the predictions it makes
are based on the concept of proximity considering the “k” closest data points from the dataset.
This algorithm is as simple to configure as it is complex to interpret, unfortunately it is not
possible to consult or vary the weights to be attributed to the features, and in many cases, it is
difficult to understand why data is attributed to one class rather than another.

For the previously discussed reasons, only iterative cycles have been carried out in search of
the best value of “k”.

48

Chapter 6

Results

In this chapter, we will discuss the results obtained from the experimentation phase and how the
tests have gradually evolved on the basis of the intermediate results. It should be noted that,
sometimes, some subsequent tests have lower results than the previous ones, these should not be
understood as negative results as they also provide useful information for the progression of the
final results but also for a better understanding of the model and the data used.

Before jumping into the tests and results it is good to get an introduction to the metrics used
during this phase. The libraries used to build the diagrams and statistical data visualization are
matplotlib [44] and seaborn [45].

As the first metric analysed we have the accuracy. This metric is one of the four must-have
metrics for machine learning purposes, it indicates how many predictions are correct out of the
total number of predictions. The formula is the following:

Accuracy =
Numberofcorrectpredictions

Totalnumberofpredictions
=

TP + TN

TP + TN + FP + FN

The major issue for accuracy is due to the inability to track an unbalanced dataset. As well as
in the examples of [42], in order to best deal with unbalanced datasets, the necessary precautions
are needed, as regards the metrics, the use of precision, and recall are very important in the case
of class imbalance. Precision expresses the amount of true positives out of the total number of
positives, and is defined as follows:

Precision =
TP

TP + FP

Note that, TP stands for true positives and FP stands for false positives.
Recall instead, expresses the number of true positives compared to the number of true positives
and false negatives and therefore takes the form of:

Recall =
TP

TP + FN

By analyzing the precision and recall values in pairs, it is possible to understand how the model
behaves with a certain type of class. Through the analysis of the precision, we can understand if
the model can handle cases of overlapping of classes well but also of generic false positives, which
can be caused by classes with very different data from each other as in my case with the Dridex
class. Instead, with the recall analysis we can understand how the model manages to manage all
positive cases belonging to that class.
In the context of malware detection/classification these two metrics can also be analyzed to de-
termine what percentage of benign data is blocked (precision) and instead with what percentage
of malicious data is not blocked (recall).

49

Results

Precision and recall offer a trade-off, i.e., one metric comes at the cost of another. More pre-
cision involves a harsher critic (classifier) that doubts even the actual positive samples from the
dataset, thus reducing the recall score. On the other hand, more recall entails a lax critique
that allows any sample that resembles a positive class to pass, which makes border-case negative
samples classified as “positive,” thus reducing the precision. Ideally, we want to maximize both
precision and recall metrics to obtain the perfect classifier [46].
For these reasons, the F1 score metric was introduced which seeks to simultaneously maximize
both precision and recall, and its formula is the following:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

Furthermore, in the case of multi-classification, the metrics are divided into three sub-categories:
micro, macro, and weighted.

• Micro, calculate metrics globally by counting the total true positives, false negatives, and
false positives.

• Macro, calculate metrics for each label and find their unweighted mean. This does not take
label imbalance into account.

• Weighted, calculate metrics for each label and find their average weighted by support (the
number of true instances for each label). This alters “macro” to account for label imbalance;
it can result in an F-score that is not between precision and recall.

In our case, the micro category is not used because of the class imbalance.

6.1 Results with full dataset without manual splitting into
train and test

In this paragraph, I will analyze the first test that was carried out, without taking into account
the data mining results in order to confirm or refute them. Based on the previous statements, the
test was conducted on the three machine learning algorithms discussed in section 5.4.2, namely,
random forest, gradient boosting, and k-nearest neighbors. In addition to the metrics analysis,
an analysis is also conducted on the most relevant features for each type of model.

6.1.1 Random Forest

The test was conducted on the Random Forest algorithm with two values of n estimators as
suggested by the library, 10 and 100, but both led to the same result of accuracy as 0.6677.
But more interesting are the features that are considered interesting by the model, they are
expressed in numerical value in the table 6.1 and graphically in the image 6.1 And finally, the
table 6.2 lists all the metrics obtained from the model.

6.1.2 Gradient Boosting

The test was conducted on Gradient Boosting researching the best parameters for n estimators,
learning rate, and max depth hyperparameters. The research led to the following results:

• learning rate= 0.1

• n estimators = 400

• max depth = 9

With the previous values, the model reported an accuracy of 0.67 with the values of all the metrics
shown in the table 6.3. As far as the most important features of the model are concerned, we
can observe them precisely in the table 6.4 and in a graphical representation in the image 6.2.

50

Results

resp port 0.229786
orig ip bytes 0.127955
orig bytes 0.099031
service 0.096726
resp ip bytes 0.093841
protocol 0.071644
orig pkts 0.056362
resp pkts 0.052757
resp bytes 0.037571
history 5 0.035878
conn state 0.029607
history 6 0.020348
history 3 0.015575
history 4 0.014839
history 7 0.005377
history 8 0.005223
history 0 0.004857
history 2 0.001592
history 1 0.001031

Table 6.1. Random Forest: feature scores

Figure 6.1. Random forest: feature importance

6.1.3 K-Nearest Neighbours

Instead, the KNN algorithm, as already anticipated in the previous chapters, does not make many
hyperparameters available for modification, the only hyperparameter that can be varied is the
value of K. For these reasons, the test focused on making as many K values as possible in a
reasonable time to be able to compare the trend of the model to its growth.

The figure 6.3 shows the accuracies of the model as k increases for both the train and the test in
the interval of k from 1 to 8. In order to have a more detailed view in light of the previous results
obtained, I preferred to carry out a further test with the values of k from 6 to 20 which are shown

51

Results

precision recall f1-score support
dridex 0.74 0.28 0.40 40912
ramnit 0.99 0.14 0.24 5282
trickbot 0.65 0.95 0.77 66131
macro avg 0.79 0.46 0.47 112325
weighted avg 0.70 0.67 0.61 112325

accuracy 0.67 112325

Table 6.2. Random Forest: metrics scores

precision recall f1-score support
dridex 0.74 0.28 0.40 40912
ramnit 0.99 0.13 0.23 5282
trickbot 0.65 0.95 0.77 66131
macro avg 0.79 0.45 0.47 112325
weighted avg 0.70 0.67 0.61 112325

accuracy 0.67 112325

Table 6.3. Gradient Boosting: metrics scores

resp port 0.356633
orig bytes 0.114690
protocol 0.103021
resp ip bytes 0.098471
orig ip bytes 0.084555
resp bytes 0.081427
service 0.072104
orig pkts 0.041040
resp pkts 0.033041
conn state 0.015017

Table 6.4. Gradient Boosting: feature scores

in the picture 6.4 and 6.5.

6.1.4 Comments

In this first paragraph, we have seen the first results of a model without major optimizations and
with a division into train and test based on the simplest of methods.

Despite the low optimizations, the model has already reported some good metrics. It was noted
that the difference in the amount of data made the difference between the various classes, in fact,
the class relating to the trickbot malware was found to be the one with the highest metrics, see
precision/recall and F1 score, while for the other classes of malware, the metrics turn out to be
quite low.
Instead, the feature scores attributed to the random forest and gradient boosting models are
much more interesting, they appear to be profoundly different from each other and in the case of
gradient boosting they rely too much on the response port which turns out to be non-optimal in
terms of resistance during the years.

Finally, as far as the KNN algorithm is concerned, its results are slightly lower than the two
other contending algorithms but what is the main demerit is the times, as far as the random

52

Results

Figure 6.2. Gradient boosting: feature importance

Figure 6.3. KNN: Accuracy per k-value 1 to 8 (train and test)

forest is concerned, it turns out to be the fastest, with the architecture used and described above,
there are maximum times of thirty minutes while for gradient boosting they are just over an hour
and finally, for KNN they are about three hours.

In summary, the test objective was achieved in a good state, the random forest algorithm, based
on the feature scores, was the one that had a very similar trend to what was sought during data
mining and together with its extreme train speed would seem to be the optimal model for this task.

53

Results

Figure 6.4. KNN: Accuracy per k-value 6 to 20 (train and test)

Figure 6.5. KNN: Accuracy per k-value (test)

The gradient boosting model had similar statistics to the random forest except for the impor-
tance given to the features that seem to be a little resistant to the evolution of malware. Finally,
KNN’s model turned out to be the worst performer both in terms of time and in terms of statistics.

On the basis of the previous observations, the second test was carried out, carrying out a manual
division between train and test on the basis of the results of the data mining.

54

Results

6.2 Results with dataset split with data mining evidence

Following the observations of the previous paragraph, in this section, I will analyze the new test
results against the manual division of the dataset into train and test.

During the test, the same guidelines of the previous test were followed, therefore always us-
ing the same variation of the hyperparameters for random forest, gradient boosting, and KNN.

Also, from this test, I will start to take into consideration the distribution of the classes with
respect to the set of trains and tests.

6.2.1 Random Forest

The test conducted with the random forest algorithm produced the same accuracy results for
both the values of n estimators, 10 and 100, which are 0.9799.
Instead, the importance weights attributed to the features by the model are slightly more homo-
geneous than in the previous configuration. They are expressed in numerical value in the table
6.5 and graphically in the image 6.6 At the end, table 6.6 shows the values of the metrics

resp port 0.210744
orig bytes 0.146240
resp ip bytes 0.145165
orig ip bytes 0.107908
resp pkts 0.102206
conn state 0.064387
resp bytes 0.061919
service 0.039638
orig pkts 0.034938
history 7 0.030770
protocol 0.021575
history 5 0.010510
history 4 0.007994
history 6 0.006857
history 8 0.005720
history 2 0.001816
history 3 0.001519
history 1 0.000088
history 0 0.000007

Table 6.5. Random Forest: feature scores

obtained from the random forest model.

precision recall f1-score support
dridex 0.05 0.04 0.04 138
ramnit 0.00 0.02 0.00 164
trickbot 1.00 0.98 0.99 175439
macro avg 0.35 0.35 0.35 175741
weighted avg 1.00 0.98 0.99 175741

accuracy 0.98 175741

Table 6.6. Random Forest: metrics scores

55

Results

Figure 6.6. Random forest: feature importance

6.2.2 Gradient Boosting

After the tests with the random forest algorithm, the tests with the gradient boosting algorithm
followed. From the iterative sequential search, the following optimal values of the hyperparameters
were deduced.

• learning rate= 0.01

• n estimators = 300

• max depth = 10

With the previous values, I obtained accuracy values equal to 0.8945491872980393 for the train
and 0.15797679539777285 for the test. Instead, the final values of the metrics are reported in
table 6.7. As regards the importance values attributed to the features by the model, in the case

precision recall f1-score support
dridex 0.00 0.04 0.01 138
ramnit 0.00 0.08 0.00 164
trickbot 0.99 0.19 0.32 175439
macro avg 0.33 0.10 0.11 175741
weighted avg 0.99 0.19 0.32 175741

accuracy 0.19 175741

Table 6.7. Gradient Boosting: metrics scores

of gradient boosting the evolution of the weights is much more interesting than in the random
forest counterpart. They are listed in the table 6.8 and in a graphical representation in the
image 6.7.

56

Results

resp port 0.298973
orig bytes 0.214656
resp pkts 0.200905
resp ip bytes 0.141377
history 7 0.058701
orig ip bytes 0.025192
service 0.020103
resp bytes 0.012543
protocol 0.010159
orig pkts 0.006414
conn state 0.004293
history 4 0.002363
history 5 0.001933
history 8 0.001776
history 3 0.000258
history 2 0.000170
history 6 0.000161
history 0 0.000017
history 1 0.000007

Table 6.8. Gradient Boosting: feature scores

Figure 6.7. Gradient boosting: feature importance

6.2.3 K-Nearest Neighbours

Based on previous experience, the test conducted on the KNN algorithm was carried out with
the value of k ranging from 1 to 20. The figure 6.8 describes the trend of the accuracy with the
variation of k, both for train and for test.

The highest accuracy recorded by the KNN model is with the value of n Neighbours equal to
3 which turns out to be 0.13029401221115164 on test. Table 6.9 instead lists all the metrics
obtained with n Neighbours equal to 3.

57

Results

Figure 6.8. KNN: Accuracy per k-value 1 to 20 (train and test)

precision recall f1-score support
dridex 0.01 0.28 0.01 138
ramnit 0.00 0.07 0.00 164
trickbot 0.99 0.13 0.23 175439
macro avg 0.33 0.16 0.08 175741
weighted avg 0.99 0.13 0.23 175741

accuracy 0.13 175741

Table 6.9. K-Nearest Neighbours: metrics scores

6.2.4 Comments

During this paragraph, the various metrics for each model were analyzed with the respective
weights attributed to the features. Before going on with the considerations it is important to
observe the graphs of the distributions of the classes with respect to the train and test sets.
Figure 6.9 shows the ratio of the classes to the whole train split which is of:

• Trickbot = 123300 (74.892%),

• Dridex = 25321 (15.380%),

• Ramnit = 16015 (9.728%).

Instead figure 6.10 shows the ratio of the classes to the whole test split which is of:

• Trickbot = 175439 (99.828%),

• Dridex = 164 (0.093%),

• Ramnit = 138 (0.079%).

58

Results

Figure 6.9. Distribution of classes in the train split

Figure 6.10. Distribution of classes in the test split

After the quick preamble on the distribution of the classes, what is highlighted in the metric values
for random forest and gradient boosting is an excellent management of the trickbot class while
all three models reported very low statistics in the management of the other two malware families.

By inspecting the curves of the accuracy graph for the KNN model and the accuracy values
in test and train for the gradient boosting model, it is easy to see that the model has gone heav-
ily overfitted. This means that the model has learned to classify the train data too accurately,
resulting in it not being able to classify as well on the test portion.

59

Results

As far as the weights attributed to the features are concerned, there appears to be a slight balance
in the case of random forest while a considerable improvement was noted in the case of gradient
boosting. The features relating to the history are still of little importance, the percentages of
which are very low.

In summary, in this test phase, based solely on the results obtained during data mining, I obtained
a too precise model on the train data which scales badly on the predictions that do not fit into it
(overfitting).
Instead, the weights of the features have normalized concerning the initial test, resulting in more
compliance with what was obtained from the data mining phase.
The algorithm that has best managed the task is the random forest, as the metrics for the recog-
nition of the class of trickbot are the highest. The Dridex and Ramnit malware families are
under-recognized, and during this phase, it seems to be mainly due to class imbalance.

Therefore, the next tests will focus on class imbalance and the search for greater accuracy and
recall for the Dridex and Ramnit malware families.

6.3 First results with expanded dataset manually split with
only Trickbot and Dridex malware families

After several tests spent trying to optimize the metrics considering only the trickbot and dridex
malware families, I concluded that there was a problem in recognizing the dridex family, especially
in terms of recall. So what happens is that the system hardly makes a mistake when it classifies a
datum as belonging to the dridex class (precision) but on the other hand very often when it does
not consider it is actually belonging to it (recall), with the result of a very precise but insensitive
to the dridex class.

As an example, table 6.10 lists the metrics obtained from the random forest model with n estimators
value equal to 300 whose recorded accuracy is 0.9923557141037075. Only the most relevant
statistics among the tests carried out are shown below, table 6.10 lists the metrics obtained
from the random forest model with n estimators value equal to 300 whose recorded accuracy is
0.9923557141037075, while the most relevant features according to the model are those shown in
figure 6.11. Based on the previous considerations, further searches were carried out in order

precision recall f1-score support
dridex 0.90 0.14 0.24 138
trickbot 0.99 1.00 1.00 15560
macro avg 0.95 0.57 0.62 15698
weighted avg 0.99 0.99 0.99 15698

accuracy 0.99 15698

Table 6.10. Random Forest: metrics scores

to find other examples of pcap related to dridex traffic. They were processed in the same way
as the previous ones through the Zeek firmware, converted into .csv format, and finally encoded
before being integrated into the dataset. Table 6.11 lists the new files added to the dataset. The
motivation to search for new samples for the dridex family is to make the system more sensitive
to it, providing more examples the system will rebalance the weights between the classes trying
to be more balanced.

After expanding the dataset, the distribution of classes obtained for train and test is shown
in figures 6.9 and 6.10. Figure 6.9 illustrates how much as a percentage of the train is:

• Trickbot = 185200 (59.824%),

60

Results

Figure 6.11. Random forest: feature importance

Pcap name Number of flow
2016-02-01-Dridex-infection 95
2017-03-30-Dridex-booking-malspam 6
2017-03-30-Dridex-confirmation-letter 213
2017-06-05-Dridex 4
2017-12-04-Dridex 26
2019-06-17-passw-protected-word-dridex 25
2019-10-28-Ursnif-Dridex 491
2019-10-30-Ursnif-Dridex 558
2019-12-11-Ursnif-Dridex 427
2020-04-29-Dridex 99
2020-06-03-Dridex 14
2020-09-24-Dridex 113
2020-11-12-Dridex 37
2018-01-25-Dridex 9
2018-01-25-Dridex-2 61
2019-07-09-password-protec-Drid 27
2019-07-12-Dridex 268
2020-05-14-Dridex 279
2018-12-10-Dridex-tempry 236
2018-12-10-Dridex 73
2020-05-11-Dridex 32

Table 6.11. New pcaps added to the previous dataset

• Dridex = 124373 (40.176%).

Figure 6.10 illustrates how much as a percentage of the test is:

• Trickbot = 15560 (92.990%),

• Dridex = 1173 (7.010%).

61

Results

Figure 6.12. Distribution of classes in the train split

Figure 6.13. Distribution of classes in the test split

6.3.1 Random Forest

The test conducted on the random forest was based on the iteration of the n estimators hyperpa-
rameter with values from 100 to 1400 but these changes were not reflected in a real improvement
as can be seen from the graph in figure 6.14.
The greatest accuracy recorded is 0.9300185262654634 and table 6.12 lists the obtained values
of the metrics.
Instead, the weights that the model attributes to the features are graphically illustrated in the

image 6.15 and listed in the table 6.13.

62

Results

Figure 6.14. Random Forest: Accuracy per n estimators 1 to 1500 (train and test)

precision recall f1-score support
dridex 0.45 0.15 0.22 1173
trickbot 0.94 0.99 0.96 15560
macro avg 0.69 0.57 0.59 16733
weighted avg 0.90 0.93 0.91 16733

accuracy 0.93 16733

Table 6.12. Random Forest: metrics scores

6.3.2 Gradient Boosting

The test carried out with the gradient boosting model did not bring great results and a first red
flag could be the hyperparameters identified as the best they are:

• learning rate= 0.1

• n estimators = 300

• max depth = 7

With the previous values, we obtained accuracy values equal to 0.6723131707872279 for the train
and 0.8943405247116476 for the test. Instead, the final values of the metrics are reported in
table 6.7. The doubts resulting from the analysis of the hyperparameters are confirmed with
the analysis of the weights associated with the features from the model which are graphically
represented in the image 6.16 and listed promptly in the table 6.15.

6.3.3 K-Nearest Neighbours

Finally, the analysis with the KNN model is followed with the same considerations of the previous
tests and therefore with the values of k with a range from 1 to 20. The trend of the accuracy
concerning the number of Neighbours is shown in the graph in the image. Instead, the values of
the metrics obtained are shown in the table 6.16 with the value of k equal to 4.

63

Results

Figure 6.15. Random forest: feature importance

resp port 0.274631
orig ip bytes 0.108314
service 0.106330
orig bytes 0.098694
resp ip bytes 0.075495
conn state 0.064646
orig pkts 0.056937
resp pkts 0.047898
protocol 0.045559
history 7 0.042097
resp bytes 0.035414
protocol 0.021575
history 6 0.018067
history 8 0.010314
history 3 0.009934
history 4 0.002480
history 5 0.002322
history 2 0.000523
history 1 0.000322
history 0 0.000023

Table 6.13. Random Forest: feature scores

6.3.4 Comments

In this section, we have analyzed how the random forest, gradient boosting and KNN models have
evolved based on an expansion of the dataset.

What immediately catches the eye is how the gradient-boosting model reacted completely neg-
atively to this change. As previously anticipated, both the hyperparameters and the weights
associated with the features show a drastic worsening since both the maximum depth of the trees
and the learning speed combined with the prevalent use of the response port for classification

64

Results

precision recall f1-score support
dridex 0.12 0.09 0.10 1173
trickbot 0.93 0.95 0.94 15560
macro avg 0.53 0.52 0.52 16733
weighted avg 0.88 0.89 0.88 16733

accuracy 0.89 16733

Table 6.14. Gradient Boosting: metrics scores

resp port 0.525217
orig bytes 0.139065
conn state 0.103688
resp ip bytes 0.078511
service 0.063560
resp bytes 0.029272
orig ip bytes 0.021292
orig pkts 0.013211
resp pkts 0.012537
protocol 0.008316
history 3 0.002108
history 8 0.000870
history 6 0.000752
history 5 0.000623
history 4 0.000609
history 7 0.000186
history 1 0.000096
history 2 0.000083
history 0 0.000003

Table 6.15. Gradient Boosting: feature scores

precision recall f1-score support
dridex 0.26 0.63 0.37 1173
trickbot 0.97 0.87 0.92 15560
macro avg 0.62 0.75 0.64 16733
weighted avg 0.92 0.85 0.88 16733

accuracy 0.85 16733

Table 6.16. K-Nearest Neighbours: metrics scores

make the model highly unstable.

Instead, as far as the random forest model is concerned, the results remain almost unchanged.
For the dridex class there was a notable lowering of the precision and a slight improvement in the
recall which can be summarized in a change of 2% while for trickbot there was a lowering of the
precision dictated by the expansion of the dataset, but which did not change its performance is
very high (3%).

On the contrary, the model with KNN had a clear improvement, passing from an accuracy of
13% with the three classes to one of 85% with the two classes. The other metrics have also
increased significantly for the dridex class compared to before the dataset enlargement as demon-
strated by the summary table 6.17.

65

Results

Figure 6.16. Gradient Boosting: feature importance

Figure 6.17. KNN: Accuracy per k-value 1 to 20 (train and test)

On the basis of the previous considerations, it can be seen how important data mining is
since the simple insertion of other example cases of a class has improved slightly in some cases
(random forest) and worsened a lot in others (gradient boosting) contrary to all desired effect,
which is why in the subsequent tests a better distribution of data between train and test was
followed and subsequently the test with one of the best cross-validation methods trying to avoid
the data mining phase.

66

Results

precision recall f1-score
dridex 0.04 ->0.26 0.55 ->0.63 0.07 ->0.37
trickbot 1.00 ->0.97 0.88 ->0.87 0.94 ->0.92
macro avg 0.52 ->0.62 0.72 ->0.75 0.51 ->0.64
weighted avg 0.99 ->0.92 0.88 ->0.85 0.93 ->0.88

accuracy 0.88 ->0.85

Table 6.17. K-Nearest Neighbours evolution after dataset expansion

6.4 Final results with expanded dataset (Trickbot and Dridex)

Based on the previous analysis, numerous tests were performed in order to improve the perfor-
mance of the models and to search for the best model for this type of task.

There were in particular two very important tests, one of these obtained the maximum f1-score
for the dridex class while the other had the best overall performance among the two classes. The
two tests were obtained with splits of different datasets, in the event that the classification values
of the dridex class were higher, the train dataset was very unbalanced in favor of that class with a
percentage of 77.332%, while that more balanced was obtained with a more balanced and broader
train with percentages of 40.132% for the dridex class and 59.868% for the trickbot class (figures
6.18 and 6.19).

In this paragraph, I will analyze the second test in particular, which recorded the highest

Figure 6.18. Distribution of classes in the dridex imbalanced train split

overall performance and not the highest performance compared to the dridex family, because
from the first it was deduced that although more information can be given to the model than the
dridex class, manages to greatly improve its classification, this topic will be further explored in
the “conclusions” chapter on the basis of other research.

67

Results

Figure 6.19. Distribution of classes in the balanced train split

6.4.1 Random Forest

The test conducted on the random forest model produced an almost uniform result as the value
of n estimators varied, in particular, the oscillation on the test is about 1% while the train is
even less (figure 6.20). Based on the previous analysis, the following metrics were extrapolated

Figure 6.20. Random Forest: Accuracy per n estimators 1 to 1500 (train and test)

for the value of n estimators equal to 1400 and expressed in the table 6.18. The importance of
the features recognized by the model remained almost the same from the previous tests and are
reported in the figure 6.21 and numerically in the table 6.19.

68

Results

precision recall f1-score support
dridex 0.59 0.20 0.30 1617
trickbot 0.92 0.99 0.95 15560
macro avg 0.76 0.59 0.63 17177
weighted avg 0.89 0.91 0.89 17177

accuracy 0.91 17177

Table 6.18. Random Forest: metrics scores

Figure 6.21. Random forest: feature importance

resp port 0.236060
service 0.164920
orig ip bytes 0.108314
orig bytes 0.110667
protocol 0.079200
resp ip bytes 0.066845
orig pkts 0.058085
resp pkts 0.050894
resp bytes 0.045524
conn state 0.032782
history 5 0.016406
history 7 0.008043
history 6 0.007696
history 8 0.006154
history 1 0.001789
history 3 0.001147
history 4 0.000972
history 2 0.000867
history 0 0.000010

Table 6.19. Random Forest: feature scores

69

Results

6.4.2 Gradient Boosting

The model obtained from gradient boosting is almost always the same for all tests, the only ones
that differ more are the ones we will analyze below with the one obtained from the unbalanced
dataset for dridex. In particular, for the latter, the result is much lower, and also the weights of
the features seem to have had a regression.

Returning to the analysis example case, the best hyperparameters obtained are the following:

• learning rate= 0.1

• n estimators = 300

• max depth = 9

Through the previous hyperparameters, a train score of 0.672804333221098 and a test score of
0.9148279676311346 were obtained, with the consequent metrics shown in the table 6.20. As

precision recall f1-score support
dridex 0.39 0.30 0.34 1617
trickbot 0.93 0.95 0.94 15560
macro avg 0.66 0.63 0.64 17177
weighted avg 0.88 0.89 0.88 17177

accuracy 0.89 17177

Table 6.20. Gradient Boosting: metrics scores

previously mentioned, the values assumed by the feature weights seem to have regressed towards
the previous models and are represented in the graph in the figure 6.22 and in the table 6.21.

service 0.020103
orig bytes 0.204257
resp port 0.403415
protocol 0.010159
orig pkts 0.006414
resp ip bytes 0.141377
resp bytes 0.012543
resp pkts 0.200905
orig ip bytes 0.025192
conn state 0.004293
history 7 0.058701
history 6 0.002363
history 8 0.001933
history 3 0.001776
history 5 0.000258
history 1 0.000170
history 4 0.000161
history 2 0.000017
history 0 0.000007

Table 6.21. Gradient Boosting: feature scores

70

Results

Figure 6.22. Gradient boosting: feature importance

6.4.3 K-Nearest Neighbours

Finally, the best results were recorded for the model obtained from KNN, obtaining 68% of the
F1-score on the macro average. All the metrics are listed in the table 6.22, while figure 6.23
shows the trend graph of the train and test accuracy recorded throughout the experimentation.

Figure 6.23. KNN: Accuracy per k-value 1 to 20 (train and test)

71

Results

precision recall f1-score support
dridex 0.44 0.40 0.42 1617
trickbot 0.94 0.95 0.94 15560
macro avg 0.69 0.67 0.68 17177
weighted avg 0.89 0.90 0.89 17177

accuracy 0.90 17177

Table 6.22. K-Nearest Neighbours: metrics scores

6.4.4 Comments

The results of this experiment aimed at improving the performance of the models in the clas-
sification of the dridex class and in the search for the best algorithm to carry out this type of
test has produced good results as it has gone from a maximum F1-score of 24 % registered with
the random forest at 42% with KNN algorithm. It might seem like a slight improvement when
speaking unequivocally of the F1-score but if you inspect in detail you can see that, at the expense
of a 46% difference in accuracy, there was a 26% improvement in recall which overall brought an
improvement of 10% on the macro average recall and 6% on the macro average of the F1-score.
Normally one would have expected an improvement with a greater margin but the dridex mal-
ware family has had a great evolution over the years thus leading to an additional difficulty in its
classification.

Another point of observation is to be placed in the example with an unbalanced split train on the
dridex class which should have led to a greater sensitivity of the system to it but which reported
only a 12% more on the recall and a 10% more on the F1 -score.

All these results will be better analyzed in the conclusions chapter by comparing them with
the research of the evolutions of the dridex malware during the decade.

The next tests will focus on the Trickbot and Dridex malware families following the operational
practices used and refined during the analysis of the Trickbot and Dridex malware families.

6.5 Results with expanded dataset (Trickbot and Ramnit)

This test was conducted on the Trickbot and Ramnit malware families, following as a guideline the
path previously done for the Trickbt and Dridex malware families, in order to better understand
what the issues are in classifying the Ramnit malware family.

Since the amount of data concerning these two families is smaller than the previous ones, the
tests conducted took advantage of the shorter training time requirement to carry out longer tests
by increasing the ranges of the hyperparameters.

With regard to the dataset, the samples relating to the ramnit family have also been slightly
increased compared to the first two tests, the table 6.23 shows the pcaps that have been added
in this phase.
The distribution of classes in the train (figure 6.24) and test (Figure 6.25) splits is shown in

the following graphs, while the percentages are as follows for train and test.
Train:

• Trickbot = 25321 (60.720%),

• Ramnit = 16380 (39.280%).

Test:

72

Results

Pcap name Number of flow
2018-01-09-Ramnit 95
2018-01-28-Rig-EK-Ramnit 6
2018-01-29-Rig-EK-Ramnit 213
2018-01-30-Rig-EK-Ramnit 4

Table 6.23. New pcaps added to the previous dataset

Figure 6.24. Distribution of classes in the train split

• Trickbot = 15560 (96.923%),

• Ramnit = 494 (3.077%).

6.5.1 Random Forest

As anticipated previously, as the size of the data to be processed by the model decreased, a cor-
responding decrease in training times was noted, therefore it was possible to increase the range
of variation of the hyperparameters reaching a maximum number of n estimators equal to 2900.

The figure 6.26 shows the accuracy trends which elect 100 as the best value of n estimators fol-
lowed immediately by 2600/2800/2900 with equal merit, whose accuracy is 0.9755201195963623
(n estimators = 100) and 0.9750218014202068 (for the remaining ones).
. The variation is very low, and the metrics obtained reflect the result as for all four cases they
are equivalent, the table 6.24 lists their values. Instead, the feature scores also in this case are
not very homogeneous and are listed in the table 6.25 and represented in the figure 6.27.

6.5.2 Gradient Boosting

Tests conducted on the gradient boosting model turned out to be similar to those conducted with
the previous two families, producing poor results. The best hyperparameters obtained produced a
train score of 0.9204335747594007 and a test score of 0.9768904945807898 and were the following:

73

Results

Figure 6.25. Distribution of classes in the test split

Figure 6.26. Random Forest: Accuracy per n estimators 100 to 2900 (train and test)

• learning rate= 0.1

• n estimators = 400

• max depth = 12

Related to the previous hyperparameters, the model obtained poor metric values in the clas-
sification of the ramnit class and are shown in the table 6.26. Even the values of the weights
associated with the features from the model are very unbalanced between them and above all the

74

Results

precision recall f1-score support
ramnit 0.80 0.25 0.38 494
trickbot 0.98 1.00 0.99 15560
macro avg 0.89 0.62 0.68 16054
weighted avg 0.97 0.98 0.97 16054

accuracy 0.98 16054

Table 6.24. Random Forest: metrics scores

Figure 6.27. Random forest: feature importance

resp port 0.278866
orig ip bytes 0.216341
orig bytes 0.151444
resp bytes 0.072044
orig pkts 0.065697
resp ip bytes 0.064072
resp pkts 0.039068
service 0.027577
protocol 0.016183
history 2 0.015483
conn state 0.013189
history 4 0.010357
history 5 0.008928
history 6 0.005916
history 3 0.005644
history 8 0.004608
history 7 0.003579
history 1 0.000652
history 0 0.000353

Table 6.25. Random Forest: feature scores

75

Results

precision recall f1-score support
ramnit 0.34 0.27 0.30 494
trickbot 0.98 0.98 0.98 15560
macro avg 0.66 0.63 0.64 16054
weighted avg 0.96 0.96 0.96 16054

accuracy 0.96 16054

Table 6.26. Gradient Boosting: metrics scores

higher values are on features that can be easily deceived by malware during their evolution. They
are represented in the graph in the figure 6.28 and in the table 6.27.

resp port 0.410486
resp ip bytes 0.179586
orig bytes 0.103567
orig ip bytes 0.081407
conn state 0.050056
history 8 0.044416
resp bytes 0.038024
orig pkts 0.031445
protocol 0.022282
resp pkts 0.018940
history 4 0.006405
history 5 0.005261
service 0.003506
history 6 0.001304
history 0 0.001101
history 3 0.001099
history 2 0.001091
history 7 0.000025
history 1 0.000000

Table 6.27. Gradient Boosting: feature scores

6.5.3 K-Nearest Neighbours

The range of hyperparameters has also been extended for the KNN model, the maximum value of
k has gone from 20 to 40, recording a downward curve as k increases. The figure 6.29 shows the
accuracy values as k increases. For this purpose, two tests were performed on the metrics with
the k values equal to 2 (table 6.29) and 20 (table 6.28).

precision recall f1-score support
ramnit 0.51 0.31 0.39 494
trickbot 0.98 0.99 0.98 15560
macro avg 0.74 0.65 0.69 16054
weighted avg 0.96 0.97 0.97 16054

accuracy 0.97 16054

Table 6.28. K-Nearest Neighbours: metrics scores with k = 20

76

Results

Figure 6.28. Gradient boosting: feature importance

Figure 6.29. KNN: Accuracy per k-value 1 to 20 (train and test)

6.5.4 Comments

The test discussed in this paragraph underlined how much the difference between the amount of
data of the two malware families (Trickbot and Ramnit) had an impact on the model and the
metrics it produced.

Observing the values produced by all three models, it can be seen that the Trickbot malware
family always obtains excellent results, while very low values are obtained for the Ramnit mal-
ware family. Furthermore, from the curves of the random forest model, it can be seen that also

77

Results

precision recall f1-score support
ramnit 0.52 0.45 0.48 494
trickbot 0.98 0.99 0.98 15560
macro avg 0.75 0.72 0.73 16054
weighted avg 0.97 0.97 0.97 16054

accuracy 0.97 16054

Table 6.29. K-Nearest Neighbours: metrics scores with k = 2

in this case there are no oscillations on the train, suggesting a bias on the trickbot class.

In summary, the results produced by this test are totally inefficient for the classification of the
Ramnit malware family, which is why the next test will be conducted with the two malware
families with the least samples (Dridex and Ramnit) verifying how a better balance can impact
between classes on the classification results of the various models.

6.6 Results with expanded dataset (Dridex and Ramnit)

This test was conducted on the Dridex and Ramnit malware families in order to have a complete
view of the trends of the models developed with Random Forest, Gradient Boosting, and KNN.
This test is the last of the pairs and following the trend of the previous ones, results were expected
in line with the previous ones but thanks to it it was possible to identify the main problem of the
previous tests.

The results obtained from this test, despite the strong class imbalance, are clearly positive for
the classification of the Dridex malware family, completely unexpected behavior compared to the
previous ones, while for the Ramnit class, the results are on average low even if slightly better
than the previous ones.
As anticipated before, also in this case, since the samples of the Ramnit malware family are very
few, there is a considerable difference in size both in train and in test between the two classes,
below are the percentages for both and the their graphic representation (train 6.30 and test
6.31).
Train:

• Dridex = 124426 (88.367%),

• Ramnit = 16380 (11.633%).

Test:

• Dridex = 1730 (77.788%),

• Ramnit = 494 (22.212%).

6.6.1 Random Forest

As in the previous test, the training times are much lower in this one too, which is why in this
test the range covered by the hyperparameters is larger and follows the previous one, with the
n estimator values reaching a maximum of 2900.
As can be seen in figure 6.26, the trend of the accuracy on the test is oscillatory with its peak
recorded (0.8295863309352518) with the number of estimators equal to 1900, moreover it can be
seen that from the value 2000, the behavior of the accuracy begins to vary becoming a decreasing

78

Results

Figure 6.30. Distribution of classes in the train split

Figure 6.31. Distribution of classes in the test split

curve, suggesting a possible overfitting.

So, the last useful value for which to extrapolate the best metrics of the model turns out to
be 1900 and the values are reported in the following table 6.30.

The model is particularly balanced also in the weights attributed to the features, they do not
exceed 16% and overall, they are very uniform. This means that all are important in determining
the class. In table 6.31 they are shown in the corresponding numerical format while in figure
6.33 they are more easily viewable thanks to the histogram.

79

Results

Figure 6.32. Random Forest: Accuracy per n estimators 100 to 2900 (train and test)

precision recall f1-score support
dridex 0.85 0.92 0.89 1730
ramnit 0.62 0.44 0.51 494
macro avg 0.74 0.68 0.70 2224
weighted avg 0.80 0.82 0.80 2224

accuracy 0.82 2224

Table 6.30. Random Forest: metrics scores

resp port 0.165695
orig ip bytes 0.164490
history 2 0.109854
orig bytes 0.101802
resp ip bytes 0.088401
resp bytes 0.076112
resp pkts 0.060660
protocol 0.048767
orig pkts 0.042580
service 0.041473
history 0 0.031878
conn state 0.020500
history 3 0.015171
history 1 0.013605
history 5 0.010205
history 4 0.008805

Table 6.31. Random Forest: feature scores

80

Results

Figure 6.33. Random forest: feature importance

6.6.2 Gradient Boosting

Testing with the Gradient Boosting model produced slightly higher metric values than those
produced with Random Forest. Differently from what one might imagine from the values of the
metrics; the model is not very complex compared to the hyperparameters which have turned out
to be better. The best hyperparameters obtained produced a train score of 0.8914676015208097
and a test score of 0.8471223021582733 and were the following:

• learning rate= 0.1

• n estimators = 1400

• max depth = 3

It can immediately be seen that both the learning rate and the maximum number of depths are
extremely low.

Instead, the metric values show a slight improvement in both the classification of the Dridex
family and the Ramnit family, especially for the recall values of the latter. The values are shown
in the table 6.32. As could have been previously understood by seeing the values of the hyper-

precision recall f1-score support
dridex 0.87 0.93 0.90 1730
ramnit 0.67 0.51 0.58 494
macro avg 0.77 0.72 0.74 2224
weighted avg 0.83 0.84 0.83 2224

accuracy 0.84 2224

Table 6.32. Gradient Boosting: metrics scores

parameters, especially the maximum depth, the weights associated with the features are strongly
unbalanced. The model tends to mainly use history values and response port to classify the two
malware families. They are represented in the graph in the figure 6.34 and in the table 6.33.

81

Results

history 2 0.320453
resp port 0.243389
resp bytes 0.079560
orig bytes 0.077164
orig ip bytes 0.076155
resp ip bytes 0.075463
resp pkts 0.057931
history 1 0.023191
orig pkts 0.020551
history 0 0.008362
service 0.007129
protocol 0.005593
conn state 0.003215
history 3 0.001343
history 5 0.000404
history 4 0.000097

Table 6.33. Gradient Boosting: feature scores

Figure 6.34. Gradient boosting: feature importance

6.6.3 K-Nearest Neighbours

Also, in this case, the range of values that can be assumed by k is increased to 40, taking the
example of the previous test.
The model produced an excellent learning curve, with a rising edge followed by a downward trend
both jagged. This curve indicates gradual learning to then begin to run into the phenomenon of
overfitting. The k values equal to 16 and 17 were the ones that recorded the best accuracy values
equal to 0.82958633.
The figure 6.35 shows the accuracy values as k increases. Also, the values of the metrics assumed
for k equal to 16 and 17 are the same and for this reason, they have been reported only once in
the following table 6.34.

82

Results

Figure 6.35. KNN: Accuracy per k-value 1 to 40 (train and test)

precision recall f1-score support
dridex 0.87 0.92 0.89 1730
ramnit 0.65 0.51 0.57 494
macro avg 0.76 0.71 0.73 2224
weighted avg 0.82 0.83 0.82 2224

accuracy 0.83 2224

Table 6.34. K-Nearest Neighbours: metrics scores with k = 16 and 17

6.7 Results with Repeated Stratified K-Fold Cross Valida-
tion

6.7.1 Introduction

In this section, I will analyze the most significant of the tests performed with the Repeated Strat-
ified K Fold cross-validator on all three classes of malware families.

In particular, many tests of this type have been carried out, initially, they were carried out in a way
that produced unique metrics and were not divided by the three types of classes but including all
possible metrics both for macro and for weighted but, after careful consideration, it is considered
more important to reduce the study metrics but at the same time explore them on all three classes.

The tests were conducted first on all three families of malware and then, in order to have an
additional method of comparison, also on just the families of Trickbot and Dridex.

Since it is difficult to define how many parts to subdivide the dataset into, tests were carried
out with a variable number of subdivisions, first in sequence and then, once the right stability
and independence were achieved, in parallel to reduce execution times which turned out to be
very long (from 2 to 24 hours). Being very long and branched tests, it was considered appropriate
to summarize as much as possible and to deal with only the most significant in the content of this

83

Results

thesis. For all the tests carried out, the values from 30 to 70 with an increase of 10 were used as
the number of splits, in some cases tests were also carried out on different values such as 5, 10,
and 75 but the results obtained from them were in line with the previous ones. The choice of this
range is due to the online reproduction of the quantity and distribution of the packages on the
number of pcaps, as they appear to be a total of 79 but for 5 of them (derived from stratosphere
IPS) their size is much higher.

The choice not to use the Gradient Boosting model for this type of test is dictated by the lack
of effectiveness found in the previous tests compared to the amount of time necessary for its con-
figuration, in fact, in this paragraph only the tests conducted with the Random Forest and KNN
models will be reported as they turned out to be the most efficient.

6.7.2 Random Forest

The tests conducted on the Random Forest model were produced with a number of estimators
equal to 1000 on the basis of the results produced by the previous tests. This value turned out
to be a good intermediate value as it was neither too low to have a good level of detail nor too
high with the risk of going overfitting.
Before this value, tests were also carried out which had lower results but also considerably reduced
execution times, about 15-25% more performance for accuracy and precision at the cost of almost
double the time.

The following table 6.35 shows the average values of the metrics produced through the cross-
validation with the Repeated Stratified K-Fold method divided by the number of splits, each of
which has a repetition equal to 3.

Splits Accuracy Precision Recall F1-score
30 0.6588938877 0.78881351782 0.42917367359 0.42805994184
40 0.65889693926 0.78893467469 0.42916154205 0.427995380838
50 0.65889999270 0.78938459931 0.429205471297 0.4280652851
60 0.6589019861 0.78948411845 0.429191230768 0.42801547243
70 0.65890200564 0.78870815602 0.42918598243 0.427975557821

Table 6.35. Random Forest: Repeated Stratified K-Fold Cross Validation mean metrics for split

6.7.3 K-Nearest Neighbours

The tests conducted on the KNN model were produced with the value of k equal to 10 as from
the previous tests it turned out to be an intermediate value so it is not too small to have more
distances to compare nor too large incurring error problems in the distinction between classes.

Unlike the tests with the Random Forest model, with the KNN model, the execution times are
significantly lower (enter values) but the metric values are affected. In the table 6.36 it can be
seen how the values of the metrics are very different from those produced by its counterpart.

6.7.4 Comments

In this paragraph, the use of the Repeated Stratified K-Fold Cross Validation has been discussed
as an alternative to the data mining phase as it is too time-consuming.

From the first tests carried out with the KNN model, low results were obtained compared to
both the last tests with the help of data mining and the first ones.

84

Results

Splits Accuracy Precision Recall F1-score
30 0.5082078972 0.79878330669 0.42807574889 0.360580910108
40 0.50820182336 0.79872637866 0.428080483086 0.36055465907
50 0.5081957078 0.7994258277 0.42808307432 0.360552482712
60 0.50820080235 0.79941445206 0.4281066201 0.36057180123
70 0.50820283288 0.79914806923 0.428115518232 0.36056020113

Table 6.36. K-Nearest Neighbours: Repeated Stratified K-Fold Cross Validation mean metrics for split

This observation suggested how important the data mining phase was as a first step before clas-
sification but subsequently, with the first tests conducted on the Random Forest model, it was
noted that the results of the metrics were much more similar to the first ones obtained with the
data mining phase, in fact, the obtained F1-score values are very similar.
In the previous sections, the average values obtained from the metrics were analyzed, but to have
a more detailed view of how the model behaves, it is also necessary to pay attention to the single
values with respect to the classes relating to the malware families.
The following tables (Table 6.37, Table 6.38, Table 6.39, Table 6.40) list the two best examples
obtained from the two models, for each metric three values are listed that correspond to the three
classes.

Model Split Accuracy
KNN 30 0.50944
RF 50 0.66631

Table 6.37. Best accuracy produced by KNN and Random Forest models.

Model Split Precision
KNN 30 0.43263 0.97222 0.99453
RF 50 0.65015 0.96153 0.75287

Table 6.38. Best precision produced by KNN and Random Forest models with values divided by class.

Model Split Recall
KNN 30 0.99951 0.07099 0.22845
RF 50 0.95107 0.08474 0.29287

Table 6.39. Best recall produced by KNN and Random Forest models with values divided by class.

Model Split F1-score
KNN 30 0.60388 0.13232 0.37155
RF 50 0.77233 0.15576 0.42170

Table 6.40. Best F1-score produced by KNN and Random Forest models with values divided by class.

For the KNN model, the number of splits that recorded the best values is 30 and by consulting
the values of each class (in order Trickbot, Dridex, and Ramnit) it can be seen how for the first
class the results are relatively low but compared to the two others are undoubtedly better.
For the Dridex class, as well as in the first tests with data mining, it is noted that the model
has a high precision but a very low recall which leads to a very low classification of this malware
family.
Finally, the Ramnit class follows the trend of the Dridex class with very high precision and recall,
which, although higher than the Dridex family, is still too low to obtain a good final classification
value.

85

Results

Instead, for the Random Forest model, improvements can be noted in the results of the vari-
ous metrics on all classes, they are more uniform in terms of precision while for recall they remain
almost similar, bringing the values of the F1-score per class from 2 to 17 %.

Even though the average values of the metrics seemed lower, or very similar in the case of the
Random Forest model, comparing them to the first results obtained with data mining; and ana-
lyzing the values of the individual classes we notice how the results are completely different. In
fact, it can easily be seen that the models obtain the same trends found by the latest data mining
tests even if with lower values. In particular, the Trickbot class is the one with the best classifica-
tion, the Dridex class always has high precision and very low recall and finally, the Ramnit class
obtains overall low but consistent values. All these behaviors are the same as those found during
the various tests previously analyzed, therefore the models obtained with these tests are able to
learn these important aspects even if the final values are lower.

In summary, the tests carried out with the use of the cross-validator Repeated Stratified K-
Fold have produced very interesting results, in the first part of the tests by analyzing only the
results of the metrics it was understood that these were clearly lower than the results produced
with the phase of data mining, but subsequently analyzing the learning of the model concerning
the different classes it was noted that it had reported the same behaviors found in the previous
tests, although with lower final values. Lastly, the use of this technique has proved to be a good
counterpart to the use of the data mining phase which on the one hand slightly lacks the final
results but on the other hand, greatly decreases the times.

6.8 Final Results

6.8.1 Introduction

During the tests carried out in paragraph 6.6 it was noted how the model changed learning by
improving the recognition of the Dridex class during its evolution over the different years, this
refuted all the hypotheses that had previously been made from the test results.
Being a single test compared to many, this could seem like a mere fortuitous event in which the
model had learned just as we wanted it to, which is why other tests of this type were followed
to see if similar results were obtained again. In fact, the tests have produced very similar results
confirming before, so I started a phase of analysis of the dataset and of the previous tests in order
to understand why there was this great disparity by subdividing the dataset.
The only explanation that I have given is due to the dataset, re-analysing the dataset I noticed
that a problem could be given by the different types of pcap between those treated by the two
sources (Stratosphere IPS and malware-traffic-analysis) and by their different concentration of
flow per pcap.
In fact, Stratosphere IPS produces significantly larger pcaps than malware-traffic-analysis, this
imbalance between the two would lead the models to give more importance to the data obtained
from the first source by specializing the algorithm in recognition and classification based mainly
on those captures, and being that Stratosphere IPS does not have captures of the same malware
family that we deal with in this thesis during their evolution over the years, this leads the algo-
rithm to specialize in that malware version making it less sensitive to learning from its subsequent
versions.
Observing precisely the individual results of the Trickbot and Dridex classes, it can be seen that
the models are able to deal better with the first than the second, this is dictated by the evolution
of the two example cases of malware families, Trickbot has received fewer substantial evolutions
compared to Dridex which has continued to evolve and mask its malicious attachment content.
From these considerations, new tests were carried out in order to confirm or refute these hypothe-
ses.

86

Results

6.8.2 Trickbot and Dridex without Stratosphere IPS pcaps

The first tests carried out focused only on the Trickbot and Dridex families as it was precisely on
these that the behavior of the algorithm could easily be seen and furthermore, since the dataset
was reduced, more tests could be carried out in less time.
These tests have been set up in order to resize the dataset excluding the contributions of Strato-
sphere IPS and considering only those of malware-traffic-analysis, it is not a good idea to decrease
the size of the dataset as in doing so we decrease model learning but in this example case it was
important to understand how it reacted and if indeed, given the difference in the types of pcap,
this could lead the model into error.
Furthermore, in order to further reduce the times it was decided to use the Repeated Stratified
K-Fold Cross Validation which, as we learned previously, manages to reduce the times due to data
mining to the detriment of slightly lower performance without however changing the behavior of
the model.
The Repeated Stratified K-Fold Cross Validator was set up with 10 splits and 3 repetitions and
with the two models that I also used during the previous paragraph with several estimators for
Random Forest equal to 1000 and values of k for KNN equal to 10, 21, and 30.
Contrary to what would normally be expected in machine learning from the decrease in the
dataset, the model recorded significantly higher metric values, managing the evolution of mal-
ware over the years even in the case of the Trickbot and Dridex families.
The Random Forest model was the best performing obtaining the following average metric values:

• Mean Accuracy: 0.883869321082185

• Mean Precision: 0.864191265201137

• Mean Recall: 0.8211042493959468

• Mean F1-score: 0.839009048152071

Furthermore, tests were conducted on the values of the metrics both in the train and test phases,
the recorded values of which are as follows:

• Average train accuracy: 0.9112302194997448

• Average test accuracy: 0.8838693210821847

• Average train f1 score: 0.9088246239581391

• Average test f1 score: 0.8802846821414719

• Average train macro f1 score: 0.8778881549891456

• Average test macro f1 score: 0.839199109652306

As can be seen, the model appears to have much higher metrics than the previous tests and
this is also reflected in the individual classes that will be analyzed at the end of this section.

Instead, for the model developed with KNN the results were slightly worse, but still compa-
rable with the best ones produced by the previous phases. The hyperparameter that yielded the
best results out of the three was the value 10 for K which averaged the following metric values:

• Mean Accuracy: 0.7501020929045431

• Mean Precision: 0.7169129021706336

• Mean Recall: 0.775857327235529

• Mean F1-score: 0.7210024336079129

87

Results

Model Hyp Accuracy Precision Recall F1 score
RF 1000 0.90045 0.85763 0.91257 0.73511 0.95773 0.79166 0.93460
KNN 10 0.79479 0.57718 0.90803 0.76557 0.80495 0.65816 0.85339
KNN 21 0.78407 0.55489 0.92670 0.82492 0.76986 0.66348 0.84103
KNN 30 0.77794 0.54893 0.90669 0.76785 0.78144 0.64019 0.83942

Table 6.41. Best results produced by KNN and Random Forest models with values divided by class.

Finally, the table 6.41 shows the values of the metrics of the best tests for each model of each
class. The order of class is as first Trickbot and second Dridex.

As previously mentioned, the best values of the metrics produced are from the Random Forest
model and it can be seen that the issues relating to recall have considerably improved as a result,
also improving the values of the F1-score.
For the sake of completeness, the table also shows the best results for all three tests carried out
with KNN with different K values, but as can be seen, the difference is small but it can be seen
that as K increases, performance decreases.

6.8.3 Trickbot, Dridex, and Ramnit without Stratosphere IPS pcaps

In this section the last test carried out will be analyzed, it was conducted on all three classes of
malware excluding pcaps with Stratosphere IPS origin with the use of Repeated Stratified K-Fold
Cross Validation dividing the dataset into 10 splits and with 3 reps.
Given the high results from the previous test, it was decided to resume testing with the Gradient
Boosting model, following the hyperparameters of the Random Forest model. Also, in this case,
the models used are Random Forest, Gradient Boosting, and KNN respectively with the number
of estimators equal to 1700 and a value of K equal to 21. The decision to consider only these
two hyperparameters is dictated by previous experiences, I was inspired by the models of the last
experimentation by increasing the values as the dataset has also increased in size and class, taking
an intermediate value to the already extensively tested ranges.
As anticipated, the model obtained with KNN obtained lower metric values than those recorded
by Random Forest, while slightly higher results were obtained than the previous test with the
Dridex and Trickbot classes. The average values of the metrics obtained are listed below:

• Mean Accuracy: 0.7542426814484219

• Mean Precision: 0.7316494138408959

• Mean Recall: 0.780693973365937

• Mean F1-score: 0.7466474173558512

The model obtained with Random Forest reaffirms itself as the most performing, with an average
performance difference on all metrics per class of about 11.4%. On average, the model recorded
metric values equal to:

• Mean Accuracy: 0.8853645926639684

• Mean Precision: 0.8829514075872171

• Mean Recall: 0.8532535987389908

• Mean F1-score: 0.8647551482138447

Instead, the Gradient Boosting model obtained performance similar to Random Forest, which
proved to be a stronger contender against the Random Forest model compared to KNN. On
average, the metric values are the following:

88

Results

• Mean Accuracy: 0.84162116940288

• Mean Precision: 0.8467102698053989

• Mean Recall: 0.7772265521145941

• Mean F1-score: 0.7947646673008734

Furthermore, further investigations on the values of the metrics of Random Forest have been
produced here as well, distinguishing them in the two phases of train and test, placing greater
emphasis on the macro-ones, and are as follows:

• Average train accuracy: 0.9112302194997448

• Average test accuracy: 0.8838693210821847

• Average train f1 score: 0.9088246239581391

• Average test f1 score: 0.8802846821414719

• Average train macro precision: 0.9142280675373732

• Average test macro precision: 0.8838376660009145

• Average train macro recall: 0.8879883678632484

• Average test macro recall: 0.8528917353444776

• Average train macro f1 score: 0.8778881549891456

• Average test macro f1 score: 0.839199109652306

In addition to the average values obtained from the various metrics for train and test, graphs
were also produced on their progress during the two phases and were divided by metric: accuracy
(Figure 6.36), precision (Figure 6.37), recall (Figure 6.38), F1-score weighted (Figure 6.39) and
F1-score macro (Figure 6.40).

Figure 6.36. Random Forest: Accuracy train and test per k-fold

89

Results

Figure 6.37. Random Forest: Precision train and test per k-fold

Figure 6.38. Random Forest: Recall train and test per k-fold

Furthermore, the following tables (Table 6.42, Table 6.43, Table 6.44, Table 6.45) shows
the best values recorded by the two models with the subdivision by class. The classes are listed
in the following order: Trickbot, Dridex, and Ramnit.
Above all in this case, the performances are clearly higher than in the previous tests using the
three classes, instead of comparing it with the previous test with only two classes the performances
remain almost the same, exclusive of a slight decrease in some values, thus obtaining an excellent
result.

90

Results

Figure 6.39. Random Forest: F1-score weighted train and test per k-fold

Figure 6.40. Random Forest: F1-score macro train and test per k-fold

6.8.4 Comments

In this last paragraph, the latest tests conducted were analyzed, the purpose of which was to
find out if the problems relating to the classification of the two malware families (Dridex and
Trickbot) could be attributed to the heterogeneity of the data present in the dataset, being this

91

Results

Model Hyperparameter Accuracy
RF 1700 0.9003957783641161
GB 1700 0.8562953197099539
KNN 21 0.7725774555042848

Table 6.42. Best accuracy produced by KNN, Gradient Boosting, and Random Forest models.

Model Hyp. Precision
RF 1700 0.8705036 0.92822967 0.90281827
GB 1700 0.8504672 0.9009434 0.8487626
KNN 21 0.53829787 0.81938326 0.89390244

Table 6.43. Best precision produced by KNN, Gradient Boosting, and Random Forest
models with values divided by class.

Model Hyp. Recall
RF 1700 0.7202381 0.92380952 0.95773196
GB 1700 0.5400593 0.90952381 0.95463918
KNN 21 0.75074184 0.88151659 0.75644995

Table 6.44. Best recall produced by KNN, Gradient Boosting, and Random Forest models
with values divided by class.

Model Hyp. F1 score
RF 1700 0.78827362 0.92601432 0.92946473
GB 1700 0.66061706 0.90521327 0.89859292
KNN 21 0.62701363 0.84931507 0.81945221

Table 6.45. Best F1-score produced by KNN, Gradient Boosting, and Random Forest
models with values divided by class.

last generated by the merger of two distinct datasets produced by two different sources.

From the analysis of the values of the metrics produced by the two tests in question and from
the analysis of the models, we can say for sure that the data present in the previous dataset with
Stratosphere IPS source actually created difficulties for the models in classifying the Dridex and
Ramnit malware families, in since by excluding them, clearly superior results are obtained.
As anticipated just before, the best hypothesis is that since the previous dataset mainly consisted
of samples with Stratosphere IPS origin and since they did not trace the evolution of the mal-
ware families in question, the models produced recorded great difficulties in managing a possible
evolution of behaviors of the Dridex and Ramnit malware families.

Finally, having to highlight which model is more capable of managing this type of task, the
choice falls on Random Forest which was the model that turned out to be more performing be-
tween the three. The Random Forest model during the last tests recorded higher fit times than
KNN (0.75 compared to 36.5) but this is mainly dictated by the size of the dataset, the KNN
model increases the fit times as the samples grow while the Random Forest is less prone to these
kinds of performance issues.

On the other hand, the Gradient Boosting model achieved very good metrics, securing second
place in the rankings among these three models with metrics closely aligned with those obtained
by the Random Forest model, albeit slightly lower.

92

Chapter 7

Conclusions

The objective of this thesis was to create a tool that was able to classify malware families using
machine learning techniques. In particular, the tool had to be able to determine the family of
malware only through network traffic, which moreover could not be inspected in the contents
due to encryption and avoid dealing with sensitive information. In order to better manage the
classification, the model had to obtain high precision and recall values, to have respectively fewer
false positives and undetected malware; these metrics combine together in the F1-score which has
become the most important metric for evaluating the proposed model.

Various phases were carried out for its realization, the first were data pre-processing and data
mining which reduced the complexity of the data and reconstructed the flows and, lastly, high-
lighted which were the most significant in terms of correlation. With the results of the previously
discussed phases, several solutions of dataset splits were developed which were fed to three differ-
ent machine learning models, which are Random Forest, Gradient Boosting and KNN. This last
phase of model training and testing underwent many rounds of refinement by changing dataset
arrangements, tuning hyperparameters and using cross-validators.

In the results chapter, the metrics obtained were reported and analysed, as well as how they
evolved during the experimentation phase. From the first tests, the models had found difficulty
in managing two families of malware, which was also possible to notice during the data mining
phase as, again for these two families, results had not been obtained as well as for the other family.
Through a specific analysis of these two malware families, in particular the Dridex family, it was
discovered that they have had a much more marked continuous evolution over the years than the
other family. In the last phase of experimentation, with the technical skills developed during the
previous phases and with the new knowledge of the behaviours of these malware families, excellent
results were obtained on all the metrics for managing the task for which it was designed. The
models that obtained the best metrics among all the tests performed during the experimentation
phase were Random Forest and Gradient Boosting. On the other hand, KNN was more useful
when data mining results were used and less with the use of cross validators, while Random Forest
always had good results but especially in the last phase it proved to be the best. Unlike the other
two models, the Gradient Boosting model exhibited a more oscillatory performance. In some
cases, it was slightly better than the Random Forest, while in others, it achieved very low results.
However, on average, its behaviour proved to be very similar to the Random Forest model, just
as in the last test, earning it second place among the three models.

The proposed model, with respect to the traditional malware analysis techniques and the re-
lated works analysed in the early stages of the study on the state of the art, lays the foundations
for the construction of instrumentation that can help malware analysts or even replace the current
methods for the detection and classification of malware over long periods handling their evolu-
tion. The main advantage lies in avoiding the time and costs of static or dynamic analysis of
the malware by an analyst and the comparison with its previous and subsequent versions. On
the other hand, however, it must be said that it cannot help to discover particular behaviours of
malware as it does not produce any evidence on the reason why it has been labelled as belonging

93

Conclusions

or not to that class, especially in the case of an algorithm KNN extension.

7.1 Future Works

The solution presented in this thesis is able to classify malware by inspecting network flows, al-
most allowing an on-the-wire classification without violating privacy terms. This solution could
potentially be used in the future in the field of information security applications. The latest con-
figuration introduced with the use of the Random Forest algorithm and the use of the Repeated
Stratified K-Fold cross-validator obtained excellent results, especially with a resized dataset.

Various limitations were noted during the testing phase. The first of these was due to data
mining, a very slow and expensive solution which led to little improvement in tracking the evolu-
tion of malware. This phase could be very important to improve the performance of the model,
but the use of a powerful system dedicated solely to that purpose should certainly be taken into
consideration. Furthermore, it has been found that the metrics used during the data mining
phases badly manage the evolution of the various classes, in future developments, it would be
useful to try to better distribute the weights of the equation by following the important features
extracted from the model or even think to another equation or a different approach.

A further problem that was encountered during the testing phase is certainly the management of
particular malware which, during its evolution, has used very complex evasion techniques, totally
changing its behaviour. An example case was that of the Dridex family which has undergone a
profound evolution over the years, in its first versions it was based on a malicious link sent in
phishing emails, but subsequently evolved to counter anti-malware solutions sending malicious
word documents that implemented the infection via script, then moving on to encrypted docu-
ments in which the user had to manually enter the password, and finally changing the format
of attached documents by disguising the content with the .pdf extension. With the necessary
precautions, the model was able to manage these cases, but it would be useful to verify if with
other types of malware, as those present in the dataset are all Trojans aimed at the banking
sector, and families are able to promptly manage any evolutions.

Another problem is dictated by the dataset, as widely discussed the datasets that are based
solely on network captures and that are publicly available are few, above all it is difficult to find
different datasets with as many different sources. A future work could certainly be the integration
of different datasets built manually or, even better, with the cooperation of different institutions
or universities.

Finally, it would be very useful to be able to compare the current results with a more com-
plex type of machine learning such as ANNs. In particular, LSTM, Long-Short Term Memory,
has been developed in recent years as an evolution of RNN networks whose advantage is learning
over long but also short time sequences, hence the name, and storing them in memory. These
networks are an evolution of RNN networks as they solve the vanishing gradient problem that led
RNN networks to have difficulties in capturing long-term dependencies. This has been overcome
with a different architecture based on three gates: input, output and forget gates. These last
perform a very important function, namely the management of information that must be dropped
going through the network. In this way, the neural network manages both long-term and short-
term memory and therefore we can pass the information to the network and retrieve it in much
later stages to identify the context of the prediction. This article [47] explains in more detail the
impact of gradient vanishing and how LSTM works as well as the presence of its tutorial.

94

Appendix A

User Manual

The project is mainly based on the Google Colab Python block notes structure, there is also a
Python script that was used during the data mining phase using HPC and Google Colab resources
at the same time.
For these reasons, the code documentation is mainly in .ipynb format, except \Matrix for Datamining.py.
Each file is accompanied by its internal documentation, which explains the inputs and outputs,
the purpose of each module, and the procedure used. It’s important to highlight that when it
comes to .ipynb files, as it’s possible to manage the installation of necessary dependencies within
the files, there’s no need for any specific actions to ensure their resolution. You simply need to
follow the order of code blocks within the module. However, this does not apply to .py files used in
the HPC infrastructure, which require the installation of the following libraries: pandas, numpy,
and math.
To install all dependencies, use the command pip install <library >. All libraries have their
own official page with documentation included; should you need more libraries, they will automat-
ically be downloaded using the command described above. Packages are also available on conda.
Since the project follows a specific flow it is necessary to execute them in the following order:

• \Matrix for Datamining.py

• \Datamining results calculation based on nflow.ipynb

• \Machine learning no cross validation.ipynb

• \Machine learning cross validation.ipynb

For each module, the inputs and outputs are defined, and the former must be correctly respected
for correct functioning.
To run the program in an HPC-like environment, the following command must be executed from
the project folder:

python Matrix for Datamining.py

Instead, for the Google Colab environment it is necessary to open it and execute one by one
each code section. Remember to upload the necessary input files, it is recommended to use
the one present in the repository correlated to this thesis (https://www.dropbox.com/scl/fo/
a9ok5tsmw\l9kagd7g3i4c/h?rlkey=bin9dtgi7npukp99jqr2eidq5&dl=0).

1. For \Matrix for Datamining.py, the output files of the Zeek framework must be defined at
each run, and the data frames necessary for each file divided by malware family and their
respective dictionary with the file names must be defined. It is recommended to use the
files located in the ”code, results, and test documentation” section within the ”pcap to csv”
folder instead of using Zeek framework to regenerate the .txt file and after converting them
into .csv format. There are three subfolders with their respective files for each family. You

95

https://www.dropbox.com/scl/fo/a9ok5tsmw\ l9kagd7g3i4c/h?rlkey=bin9dtgi7npukp99jqr2eidq5&dl=0
https://www.dropbox.com/scl/fo/a9ok5tsmw\ l9kagd7g3i4c/h?rlkey=bin9dtgi7npukp99jqr2eidq5&dl=0

User Manual

should load them one family at a time and specify the filename to be used within the code.
By way of illustration, the list of files used for the Trickbot family has been included in the
code.
As output a series of testing-.csv files shall be created, and they are the correlation matrix
of each pair of input files, as the name suggests.

2. For \Datamining results calculation based on nflow.ipynb the files must be loaded in the
right folder and the number of packages per flow must be defined, it is important to execute
them separately for each family.
The output of this file is a dictionary of the most significant files of each family that can be
used for the next steps in order to improve machine learning results.

3. For \Machine learning no cross validation.ipynb it is needed to load the .csv files necessary
for training separately in the train and test folders and execute the various blocks of code
following the defined procedure and modify the values of the hyperparameters of the various
algorithm models based on the type of experimentation.
The possible hyperparameters are n estimators, learning rate, max features, max depth,
and n neighbors.
The output of this file is the statistics of the evaluated models and their related plots.

4. Finally, for \Machine learning no cross validation.ipynb it is needed to load the dataset files,
follow the procedure, and possibly modify the values relating to the cross-validator and the
hyperparameters of the models to carry out tuning on them.
In addition to the previous file, there are the following hyperparameters for the cross-
validator: n splits and n repeats.
The output of this file is the statistics of the evaluated models and their related plots.

96

Appendix B

Programmer Manual

The project is based on four code files, each one of which is oriented to a specific phase of the
proposed model. Since they follow a precise flow, in order to replicate the same structure, it is
necessary to execute them in the following order:

• \Matrix for Datamining.py

• \Datamining results calculation based on nflow.ipynb

• \Machine learning no cross validation.ipynb

• \Machine learning cross validation.ipynb

Each file has its own documentation inside of it and as many comments, so that they can be
used for future work. Below are the functions divided by file and their description.

B.1 \Matrix for Datamining.py

This module aims to create useful correlation tables between the pcap files in the dataset belonging
to the same family, which have already been processed by the Zeek framework and appropriately
converted into CSV format.

Input:

• Output from the Zeek framework converted into CSV,

• List of files to correlate.

Output:

• Correlation tables.

To ensure proper functioning, data frames containing the files to be correlated must be defined,
one family at a time, along with their respective dictionary compiled with their names. This
dictionary will be used to automate the writing of the output file as a correlation of the two input
files. Once defined, the distances between each packet in file f1 and each packet in file f2 are
calculated, generating a matrix of size equal to the dimensions of files f1 and f2. The following
distances are used for this calculation:

97

Programmer Manual

• Levenshtein Distance,

• Cosine similarity,

• Binary distance,

• Interflow distance.

These four distances are used in the following formula, which determines each entry in the
correlation table:

S = 3 B+2 ld+6 cosine+1 interflow.

Note: The third code block is a script for the automatic conversion of an output file from the
Zeek framework into CSV format.

B.2 \Datamining results calculation based on nflow.ipynb

This module is used after constructing correlation tables to restructure them with a specified
number of flows defined in the first block of code.

Input:

• Correlation tables (.csv),

• File name dictionary.

Output:

• Occurrence dictionary.

By defining the value of “nflow,” the tables are merged based on their value and consolidated
into a single table for each malware family.

After the previous steps, correlations are sought by sorting and filtering the tables (in the ex-
ample case, it was decided to lower the correlation threshold from 12, the maximum value, to 11
because the results obtained could not surpass the value of 11.5. The minimum value chosen is
6, which filters out many results with very low correlation).

After calculating the correlation, the most significant PCAPs are selected based on the aver-
age distance values and the previously calculated occurrence.

B.3 \Machine learning no cross validation.ipynb

This module aims to convert datasets into a format acceptable by machine learning models by
encoding categorical data and then feeding them to Random Forest, Gradient Boosting, and K-
Nearest Neighbors models.

Input:

• Training dataset,

• Test dataset.

98

Programmer Manual

Output:

• Metrics results obtained from Random Forest,

• Metrics results obtained from Gradient Boosting,

• Metrics results obtained from K-Nearest Neighbors.

The initial code blocks handle the concatenation of all the CSV files present in their respective
train and test folders, creating the two train and test CSV files.

After concatenation and saving the two train and test files, they are processed to make them
compatible with machine learning models. This involves converting non-numeric data into nu-
meric data. In the example case, the following operations are performed:

• For the “History” parameter, Binary Encoding is applied, which transforms the categorical
variable by calculating all the values it takes and converting it into a series of columns to
handle all cases.

• For the parameters “protocol, service, conn state,” Ordinal Encoding is applied, count-
ing the possible values and encoding them in the starting column.

• For the parameters “orig bytes and resp bytes,” cases where “-” values are present as
null values are handled and converted to “0.”

After converting the categorical features, two train and test CSV files are generated, and class
distributions are calculated concerning the entire train and test dataset.

Finally, machine learning models are trained and tested as follows:

• Random Forest: After defining the range of the hyperparameter “n estimators” and the
increment step, the model is trained and tested, creating accuracy curves for both train and
test datasets. Based on these models, the value of “n estimators” is selected for in-depth
testing, generating metric results and feature weights.

• Gradient Boosting: An initial testing phase is conducted with default hyperparame-
ter values, and the obtained metrics are extracted. Then, ranges for the hyperparameters
“learning rate,” “n estimators,” and “max depth” are defined, along with their incre-
ment steps. Subsequent tests are performed to search for the best hyperparameters within
the defined ranges. After identifying them, the obtained metrics and feature weights are
reported.

• K-Nearest Neighbors: After defining the range of the hyperparameter “n neighbors”
and the increment step, the model is trained and tested, creating accuracy curves for both
train and test datasets. Based on these models, the value of “n neighbors” is selected for
in-depth testing, generating metric results.

Finally, if necessary, there are two code blocks to list the files that constitute the training and
test datasets.

B.4 \Machine learning cross validation.ipynb

This module aims to convert datasets into a format acceptable by machine learning models by
encoding categorical data and then feeding them to Random Forest and K-Nearest Neighbors
models.

Input:

99

Programmer Manual

• Training dataset,

• Test dataset.

Output:

• Metrics results obtained from Random Forest,

• Metrics results obtained from K-Nearest Neighbors.

The initial code blocks are responsible for concatenating all the CSV files that will constitute
the dataset.

After concatenation and saving the dataset files, they are processed to be usable with machine
learning models, which means converting non-numeric data into numeric data. In the example
case, the following operations are performed:

• For the “History” parameter, Binary Encoding is applied, which transforms the categorical
variable by calculating all the values it takes and converting it into a series of columns to
handle all cases.

• For the parameters “protocol, service, conn state,” Ordinal Encoding is applied, count-
ing the possible values and encoding them in the starting column.

• For the parameters “orig bytes and resp bytes,” cases where “-” values are present as
null values are handled and converted to “0.”

Finally, machine learning models are trained and tested in two major blocks using the Repeated
Stratified K-Fold cross-validator:

1. In the first major block, after defining n splits and n repeats for the Repeated Stratified
K-Fold cross-validator and the model on which to apply the cross-validator (the Random
Forest is available, and KNN is commented out with pre-configured hyperparameter values),
training and testing are performed, and subsequently, metric values (not differentiated by
classes) such as:

• fit time,

• score time,

• test and train accuracy,

• test and train precision weighted,

• test and train recall weighted,

• test and train f1 weighted,

• test and train precision macro,

• test and train recall macro,

• test and train f1 macro.

Based on these values, charts are generated showing trends over various repetitions per-
formed by the cross-validator.

2. In the second major block, after defining n splits and n repeats for the Repeated Stratified K-
Fold cross-validator and the model on which to apply the cross-validator (Random Forest is
available, and KNN is commented out with pre-configured hyperparameter values), training
and testing are performed. As a result, metric values for accuracy, precision, recall, and
f1-score for different classes are displayed.

100

Bibliography

[1] AVAtlas, The threat intelligence platform , https://portal.av-atlas.org/
[2] ermetict, IBM Cost of Data Breach, https://ermetic.com/blog/cloud/

ibm-cost-of-a-data-breach-2022-highlights-for-cloud-security-professionals/

[3] Malwarebytes, Ransomware revenue significantly down over
2022, https://www.malwarebytes.com/blog/news/2023/01/

ransomware-revenue-significantly-down-over-2022

[4] Malwarebytes, What is malware?, https://www.malwarebytes.com/malware?lr
[5] J. T. Force, “Security and Privacy Controls for Information Systems and Organizations”,

NIST SP800-53r5, September 2020, DOI 10.6028/NIST.SP.800-53r5
[6] J. Barriga and S. G. Yoo, “Malware Detection and Evasion with Machine Learning Tech-

niques: A Survey”, International Journal of Applied Engineering Research, vol. 12, Septem-
ber 2017, pp. 7207–7214. https://www.researchgate.net/publication/320255510_

Malware_Detection_and_Evasion_with_Machine_Learning_Techniques_A_Survey

[7] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A Survey on Malware Detection Using
Data Mining Techniques”, ACM Computing Surveys, vol. 50, June 2017, pp. 1–40, DOI
10.1145/3073559

[8] IDS/IPS Evasion Techniques, Alan Neville, https://anev.redbrick.dcu.ie/IDS_IPS_

Evasion_Techniques.pdf

[9] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-rimy, T. A. E. Eisa, and A. A. H. Elnour,
“Malware Detection Issues, Challenges, and Future Directions: A Survey”, Applied Sciences,
vol. 12, August 2022, p. 8482, DOI 10.3390/app12178482

[10] Ö. A. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches”,
IEEE Access, vol. 8, January 2020, pp. 6249–6271, DOI 10.1109/ACCESS.2019.2963724

[11] Y. Tang, B. Xiao, and X. Lu, “Using a bioinformatics approach to generate accurate exploit-
based signatures for polymorphic worms”, Computers & Security, vol. 28, November 2009,
pp. 827–842, DOI 10.1016/j.cose.2009.06.003

[12] H. Borojerdi and M. Abadi, “MalHunter: Automatic generation of multiple behavioral signa-
tures for polymorphic malware detection”, Proceedings of the 3rd International Conference on
Computer and Knowledge Engineering, ICCKE 2013, Mashhad, Iran, October 31 - November
1, 2013, pp. 430–436, DOI 10.1109/ICCKE.2013.6682867

[13] J. Newsome, B. Karp, and D. Song, “Polygraph: automatically generating signatures for
polymorphic worms”, 2005 IEEE Symposium on Security and Privacy (S&P’05), Oakland
(CA, USA), May 08-11, 2005, pp. 226–241, DOI 10.1109/SP.2005.15

[14] R. Perdisci, W. Lee, and N. Feamster, “Behavioral Clustering of HTTP-Based Malware and
Signature Generation Using Malicious Network Traces”, Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, San Jose (CA, USA), April
28-30, 2010, p. 26. https://dl.acm.org/doi/10.5555/1855711.1855737

[15] Y. Fukushima, A. Sakai, Y. Hori, and K. Sakurai, “A behavior based malware detection
scheme for avoiding false positive”, 2010 6th IEEE Workshop on Secure Network Protocols,
Kyoto, Japan, October 05, 2010, pp. 79–84, DOI 10.1109/NPSEC.2010.5634444

[16] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant, “Semantics-aware malware
detection”, 2005 IEEE Symposium on Security and Privacy (S&P’05), Oakland (CA, USA),
May 08-11, 2005, pp. 32–46, DOI 10.1109/SP.2005.20

[17] A. Khalilian, A. Nourazar, M. Vahidi-Asl, and H. Haghighi, “G3MD: Mining frequent opcode
sub-graphs for metamorphic malware detection of existing families”, Expert Systems with
Applications, vol. 112, June 2018, pp. 15–33, DOI 10.1016/j.eswa.2018.06.012

101

https://portal.av-atlas.org/
https://ermetic.com/blog/cloud/ibm-cost-of-a-data-breach-2022-highlights-for-cloud-security-professionals/
https://ermetic.com/blog/cloud/ibm-cost-of-a-data-breach-2022-highlights-for-cloud-security-professionals/
https://www.malwarebytes.com/blog/news/2023/01/ransomware-revenue-significantly-down-over-2022
https://www.malwarebytes.com/blog/news/2023/01/ransomware-revenue-significantly-down-over-2022
https://www.malwarebytes.com/malware?lr
https://doi.org/10.6028/NIST.SP.800-53r5
https://www.researchgate.net/publication/320255510_Malware_Detection_and_Evasion_with_Machine_Learning_Techniques_A_Survey
https://www.researchgate.net/publication/320255510_Malware_Detection_and_Evasion_with_Machine_Learning_Techniques_A_Survey
https://doi.org/10.1145/3073559
https://anev.redbrick.dcu.ie/IDS_IPS_Evasion_Techniques.pdf
https://anev.redbrick.dcu.ie/IDS_IPS_Evasion_Techniques.pdf
https://doi.org/10.3390/app12178482
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1016/j.cose.2009.06.003
https://doi.org/10.1109/ICCKE.2013.6682867
https://doi.org/10.1109/SP.2005.15
https://dl.acm.org/doi/10.5555/1855711.1855737
https://doi.org/10.1109/NPSEC.2010.5634444
https://doi.org/10.1109/SP.2005.20
https://doi.org/10.1016/j.eswa.2018.06.012

Bibliography

[18] A. G. Kakisim, M. Nar, and I. Sogukpinar, “Metamorphic malware identification using
engine-specific patterns based on co-opcode graphs”, Computer Standards & Interfaces,
vol. 71, April 2020, p. 103443, DOI 10.1016/j.csi.2020.103443

[19] W. C. Arnold and G. Tesauro, “Automatically Generated WIN32 Heuristic Virus Detection”,
Virus Bulletin Conference 2000, Orlando (FL, USA), September 28-29, 2000, pp. 51 – 60.
https://api.semanticscholar.org/CorpusID:18981787

[20] Y. Ye, T. Li, Q. Jiang, and Y. Wang, “CIMDS: Adapting Postprocessing Techniques of
Associative Classification for Malware Detection”, IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 40, February 2010, pp. 298–307, DOI
10.1109/TSMCC.2009.2037978

[21] D. Bilar, “Opcodes as Predictor for Malware”, Int. J. Electron. Secur. Digit. Forensic, vol. 1,
May 2007, pp. 156–168, DOI 10.1504/IJESDF.2007.016865

[22] S. Naval, V. Laxmi, M. Rajarajan, M. S. Gaur, and M. Conti, “Employing Program Semantics
for Malware Detection”, IEEE Transactions on Information Forensics and Security, vol. 10,
August 2015, pp. 2591–2604, DOI 10.1109/TIFS.2015.2469253

[23] B. A. AlAhmadi and I. Martinovic, “MalClassifier: Malware family classification using
network flow sequence behaviour”, 2018 APWG Symposium on Electronic Crime Re-
search (eCrime), San Diego (CA, USA), May 15-17, 2018, pp. 1–13, DOI 10.1109/E-
CRIME.2018.8376209

[24] M. Piskozub, R. Spolaor, and I. Martinovic, “MalAlert: Detecting Malware in Large-Scale
Network Traffic Using Statistical Features”, SIGMETRICS Perform. Eval. Rev., vol. 46,
January 2019, pp. 151–154, DOI 10.1145/3308897.3308961

[25] M. Piskozub, F. De Gaspari, F. Barr-Smith, L. Mancini, and I. Martinovic, “MalPhase:
Fine-Grained Malware Detection Using Network Flow Data”, Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, Hong Kong, China, June 7-11,
2021, pp. 774–786, DOI 10.1145/3433210.3453101

[26] J. Ha and H. Roh, “Experimental Evaluation of Malware Family Classification Methods
from Sequential Information of TLS-Encrypted Traffic”, Electronics, vol. 10, December 2021,
p. 3180, DOI 10.3390/electronics10243180

[27] javatpoint, Decision Trees, https://www.javatpoint.com/

machine-learning-decision-tree-classification-algorithm

[28] Analytics Vidhya, Understand Random Forest Algorithms With Examples (Updated 2023),
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

[29] Rohith Gandhi, Support Vector Machine - Introduction to Ma-
chine Learning Algorithms, https://towardsdatascience.com/

support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

[30] javatpoint, K-Nearest Neighbor(KNN) Algorithm for Machine Learning, https://www.

javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

[31] IBM, What are neural networks?, https://www.ibm.com/topics/neural-networks

[32] D. McGrew and B. Anderson, “Enhanced telemetry for encrypted threat analytics”, 2016
IEEE 24th International Conference on Network Protocols (ICNP), Singapore, 8-11 Novem-
ber, 2016, pp. 1–6, DOI 10.1109/ICNP.2016.7785325

[33] Cisco, Cisco Encrypted Traffic Analytics, https://www.cisco.com/c/en/us/

solutions/collateral/enterprise-networks/enterprise-network-security/

nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf

[34] A. Thakkar and R. Lohiya, “A review of the advancement in intrusion detec-
tion datasets”, Procedia Computer Science, vol. 167, 2020, pp. 636–645, DOI
https://doi.org/10.1016/j.procs.2020.03.330

[35] O. Barut, Y. Luo, T. Zhang, W. Li, and A. Peilong Li, NetML: A Challenge for Network
Traffic Analytics, https://arxiv.org/abs/2004.13006

[36] Malware-traffic-analysis, https://www.malware-traffic-analysis.net/

[37] Stratosphere IPS, https://www.stratosphereips.org/

[38] Computational resources provided by hpc@polito, which is a project of Academic Computing
within the Department of Control and Computer Engineering at the Politecnico di Torino,
http://www.hpc.polito.it

[39] Google Colaboratory, https://research.google.com/colaboratory/faq.html#

whats-colaboratory

102

https://doi.org/10.1016/j.csi.2020.103443
https://api.semanticscholar.org/CorpusID:18981787
https://doi.org/10.1109/TSMCC.2009.2037978
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1109/TIFS.2015.2469253
https://doi.org/10.1109/ECRIME.2018.8376209
https://doi.org/10.1109/ECRIME.2018.8376209
https://doi.org/10.1145/3308897.3308961
https://doi.org/10.1145/3433210.3453101
https://doi.org/10.3390/electronics10243180
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://www.ibm.com/topics/neural-networks
https://doi.org/10.1109/ICNP.2016.7785325
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://doi.org/https://doi.org/10.1016/j.procs.2020.03.330
https://arxiv.org/abs/2004.13006
https://www.malware-traffic-analysis.net/
https://www.stratosphereips.org/
http://www.hpc.polito.it
https://research.google.com/colaboratory/faq.html#whats-colaboratory
https://research.google.com/colaboratory/faq.html#whats-colaboratory

Bibliography

[40] Zeek Framework, https://docs.zeek.org/
[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python”,
Journal of Machine Learning Research 12, vol. 12, October 2011, pp. 2825–2830. https:

//jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

[42] geeksforgeeks, Stratified K Fold Cross Validation, https://www.geeksforgeeks.org/

stratified-k-fold-cross-validation/

[43] Machine Learning Mastery, Repeated k-Fold Cross-Validation for
Model Evaluation in Python, https://machinelearningmastery.com/

repeated-k-fold-cross-validation-with-python/

[44] Matplotlib, Visualization with Python , https://matplotlib.org/
[45] seaborn, statistical data visualization, https://seaborn.pydata.org/
[46] v7labs, F1-score, https://www.v7labs.com/blog/f1-score-guide
[47] Siddharth M., Analytics Vidhya, Let’s Understand The Problems with Re-

current Neural Networks, https://www.analyticsvidhya.com/blog/2021/07/

lets-understand-the-problems-with-recurrent-neural-networks/

103

https://docs.zeek.org/
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://www.geeksforgeeks.org/stratified-k-fold-cross-validation/
https://www.geeksforgeeks.org/stratified-k-fold-cross-validation/
https://machinelearningmastery.com/repeated-k-fold-cross-validation-with-python/
https://machinelearningmastery.com/repeated-k-fold-cross-validation-with-python/
https://matplotlib.org/
https://seaborn.pydata.org/
https://www.v7labs.com/blog/f1-score-guide
https://www.analyticsvidhya.com/blog/2021/07/lets-understand-the-problems-with-recurrent-neural-networks/
https://www.analyticsvidhya.com/blog/2021/07/lets-understand-the-problems-with-recurrent-neural-networks/

	Introduction
	Background
	Types of malwares
	Virus
	Worms
	Trojans
	Spyware
	Adware
	Ransomware and crypto-malware
	Fileless malware
	Keyloggers
	Bots and botnets
	PUP malware
	Logic bombs
	RAM Scraper
	Crimeware
	Rootkits
	Backdoor

	Malware spread
	Malware attacks
	Detection evasion
	Encryption
	Packing
	Oligomophism
	Polymorphism
	Metamorphism
	Obfuscation
	Fragmentation and Session Splicing
	Code reuse attacks
	GPU-assisted malware
	File-less malware
	Virtual machine-based malware
	Silent SFX

	Malware detection and classification approaches
	Malware Detection Techniques
	Signature-Based
	Behavioral-Based
	Heuristic-Based

	Malware Classification Approaches
	Consideration of Malware Detection and Classification
	Machine Learning Classification Algorithms
	Decision Tree
	Random Forest
	Support Vector Machine(SVM)
	K-Nearest Neighbors (KNN)
	Artificial Neural Network

	Datasets
	CTU-13 Datset
	Custom Dataset

	Proposed Model
	Work environment and tools used
	Legion
	Google colaboratory
	Zeek
	Scikit-learn

	Pre-processing and Sub-Sequence Extraction
	Data mining
	Machine learning tools and algorithm for Malware Identification and Classification
	Dataset splitting
	Machine learning Algorithms

	Results
	Results with full dataset without manual splitting into train and test
	Random Forest
	Gradient Boosting
	K-Nearest Neighbours
	Comments

	Results with dataset split with data mining evidence
	Random Forest
	Gradient Boosting
	K-Nearest Neighbours
	Comments

	First results with expanded dataset manually split with only Trickbot and Dridex malware families
	Random Forest
	Gradient Boosting
	K-Nearest Neighbours
	Comments

	Final results with expanded dataset (Trickbot and Dridex)
	Random Forest
	Gradient Boosting
	K-Nearest Neighbours
	Comments

	Results with expanded dataset (Trickbot and Ramnit)
	Random Forest
	Gradient Boosting
	K-Nearest Neighbours
	Comments

	Results with expanded dataset (Dridex and Ramnit)
	Random Forest
	Gradient Boosting
	K-Nearest Neighbours

	Results with Repeated Stratified K-Fold Cross Validation
	Introduction
	Random Forest
	K-Nearest Neighbours
	Comments

	Final Results
	Introduction
	Trickbot and Dridex without Stratosphere IPS pcaps
	Trickbot, Dridex, and Ramnit without Stratosphere IPS pcaps
	Comments

	Conclusions
	Future Works

	User Manual
	Programmer Manual
	\Matrix_for_Datamining.py
	\Datamining_results_calculation_based_on_nflow.ipynb
	\Machine_learning_no_cross_validation.ipynb
	\Machine_learning_cross_validation.ipynb

	Bibliography

