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Summary

Deformable object manipulation is a rapidly evolving field in robotics with appli-
cations in various domains such as manufacturing, healthcare, robotics-assisted
surgery and rehabilitation. Traditional motion planning algorithms designed for
rigid objects are inadequate for deformable objects, necessitating the development
of tailored trajectory optimization techniques. This thesis contributes to the field
by investigating a model-based technique for deformable object manipulation. The
proposed task involves a dynamical movement to be executed by a robotic arm,
fixed at the base. This led to assume that the operational space where the end-
effector can move is approximated as a sphere, constraining the manipulated mass
within this volume. To tackle this task, the chosen method is the iterative Linear
Quadratic Regulator (iLQR) one to solve unconstrained trajectory optimization
problems in non-rigid object manipulation. However, since the proposed problem
is a constrained one, the Augmented Lagrangian and Method of Multipliers tech-
nique is employed to handle them. The Mass-Spring-System (MSS) was chosen
for modeling the non-rigid object, specifically a rope. This approach involves
representing the rope using five nodes connected by three different types of springs
and a damping system, all governed by Hooke’s law. The three types of springs
employed are elastic, shear and flexion. The elastic and shear springs connect
adjacent nodes, while the flexion spring connects two diagonal masses. One notable
advantage of the implemented model is its differentiability, which is facilitated
by the JAX environment. Extensive tuning of the rope model is performed to
approximate real-world behavior, and the entire AL-iLQR algorithm is tested
and fine-tuned for optimal performance. Parameter variations, including the cost
function, horizon length and frequency rate, are analyzed to understand their
impact on the controller’s behavior. The importance of selecting an appropriate
cost function is emphasized through an extensive analysis on the parameters and
its shape. The limitations of the Augmented Lagrangian and Method of Multipliers
(ALMM) algorithm, particularly the influence of the penalty parameter µ, are
deeply discussed. Furthermore, an in-depth analysis is conducted on the horizon
length, highlighting its task-dependence and significance in achieving desirable
performance. In conclusion, the research highlights the importance of accurate
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models, suitable cost functions, and the trade-offs involved in balancing simulation
and control aspects. It provides valuable insights and establishes foundations for
further advancements in constrained trajectory optimization for non-rigid object
manipulation.
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Chapter 1

Introduction

Deformable object manipulation has become an important area of research in
robotics, offering vast potential across various fields. Fabrics, cables, and soft
biological tissues are examples of deformable objects with complex dynamics that
necessitate specialized techniques for precise and controlled manipulation.
The applications of deformable object manipulation span diverse fields, including
manufacturing, healthcare, robotics-assisted surgery, interactive virtual environ-
ments, and rehabilitation. In manufacturing, the ability to manipulate deformable
materials facilitates automated production processes involving tasks like folding,
cutting, and stitching. In healthcare and surgery, precise control over the manipula-
tion of soft tissues is critical for robotic surgical procedures to ensure patient safety
and minimize tissue damage. Furthermore, deformable object manipulation has
implications in haptic interfaces, virtual reality, and augmented reality, enhancing
user interactions and providing realistic simulations.
This research focuses on optimizing and controlling trajectories for dynamically
manipulating deformable objects.
Optimizing the trajectory of a robotic manipulator interacting with deformable
objects is a crucial task. Traditional motion planning algorithms designed for rigid
objects often fail to consider the properties of deformable objects, such as elasticity,
compliance, and sensitivity to external forces. Therefore, developing trajectory
optimization techniques tailored to deformable objects is essential for achieving
accurate and efficient manipulation.
Additionally, controlling the trajectory is equally critical to ensure successful ma-
nipulation outcomes. Control algorithms must account for the constantly changing
dynamics of the deformable object during interaction, adapting to variations in its
shape, material properties, and external forces.
In recent years, research in deformable object manipulation has advanced rapidly,
drawing upon multidisciplinary approaches that incorporate robotics, computer
vision, machine learning, and materials science. Techniques such as physics-based
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Introduction

simulation, data-driven models, and hybrid control strategies have been explored to
address the challenges in this field. Advancements in sensing technologies, including
tactile sensing and vision-based sensing, have further enriched the understanding of
deformable object behavior and provided valuable feedback for closed-loop control.
By addressing the challenges and opportunities in trajectory optimization and
control for deformable object manipulation, this research thesis aims to contribute
to the growing body of knowledge in the field.

1.1 Research questions and objectives
This thesis aims to evaluate the benefits of using a model-based approach to tackle
the task of manipulating deformable objects. Despite the growing interest in
model-free approaches, it is important to acknowledge the value of model-based
techniques in handling the complexities of deformable objects. These techniques
utilize well-defined mathematical models that accurately represent the physical
properties and behavior of deformable objects, establishing a strong basis for
trajectory planning and control. By emphasizing the advantages of model-based
techniques, this research aims to highlight their significance and contributions.
The primary objective of this thesis is to address the aforementioned challenge
by employing a model-based approach, specifically a variant of the Differential
Dynamical Programming (DDP) algorithm known as iterative Linear Quadratic
Regulator (iLQR), to solve a constrained trajectory optimization problem.
Additionally, the thesis aims to explore two related objectives: how to handle
constraints and which model to employ for describing deformable objects. To
address the first objective, a relaxation technique based on the Augmented La-
grangian method will be applied. In terms of modeling the non-rigid object, a
physics-based method known as Mass-Spring-System will be implemented due to
its efficiency, simplicity and intuitiveness. An important feature of the model is its
differentiability, which is highly advantageous.
By pursuing these research objectives, the thesis aims to contribute to the field of
deformable object manipulation and shed light on the advantages of model-based
approaches in terms of accuracy, precision, and computational efficiency compared
to model-free alternatives.

1.1.1 Description of the task
The specific task of this thesis project is to investigate the properties and the
behavior of the chosen model-based approach for a dynamical manipulation task.
The manipulated object is a piece of rope, held by one of its ends by the end-effector
of a robotic arm. The task involves a dynamical movement of the end-effector to
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bring the non-rigid object from the starting position shown in Figure 1.1 to the
goal position shown in Figure 1.2.

Figure 1.1: Starting configuration Figure 1.2: Goal configuration

During the execution of the movement, the manipulated mass, the one in the
center of the sphere, must remain inside the sphere. The box, where the rope is to
be laid as the target position, is designed in such a way that the rope cannot pass
through it.
The objective is to generate a trajectory that achieves the needed dynamical impulse
to fulfill the goal.

1.2 Structure of the thesis
The structure of this thesis is organized as follows. Chapter 2 provides an exploration
of the relevant literature pertaining to the main topic. It also introduces the
necessary mathematical tools and theory of optimization and optimal control.
These foundations will serve as a basis for understanding the employed approach
and methodology to address the proposed problem, which will be detailed in
Chapter 3.
Chapter 3 focuses on presenting the utilized approach and the applied methodology.
It will delve into the specific algorithm employed to tackle the problem at hand.
Moving on to Chapter 4, the performance of the algorithm will be thoroughly
analyzed and discussed. This chapter aims to provide a comprehensive evaluation
of the algorithm’s effectiveness.

3
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Lastly, Chapter 5 summarizes the relevant findings and contributions of this work. It
will provide a concise overview of the results and conclude the thesis by highlighting
its significance in the context of the research field.

4



Chapter 2

Literature Review and
Background

In this chapter, the literature about optimal control and trajectory optimization
for manipulation of deformable objects will be explored, along with an overview
of the needed theoretical tools to understand the approach to the solution for the
problem presented in the Introduction. In particular, in the first part, the literature
about modeling and control technique for manipulation of non-rigid objects will be
reviewed, while, in the second part, an overview on optimization and control
theory needed for model-based approaches will be given.

2.1 Literature review
In order to achieve the dexterous properties of the human body, robots need to
fulfill the task of handling non-rigid objects. In the last years, this challenge has
been explored, even though the same dexterity as with the manipulation of rigid
objects has not been achieved.
There are various surveys that collect the work done up to now in this field, like the
one presented by Jiménez [1], which includes an overview of modelling and control
techniques, or the one of Nadon et al. [2] which focuses more on 3D non-rigid
objects manipulation and control. All these approaches share a common objective
of describing non-rigid objects. Typically, they involve modeling the object’s shape
over time by combining a representation for the object’s surface with the associated
deformations. However, there are also solutions that do not rely on a predefined
model. Instead, they acquire the necessary information about the deformation and
shape of the non-rigid object through the use of sensors.
The first scenario is known as model-based approach, whilst the latter as model-free
approach. The choice of the best option has to be made considering the task itself,
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the computational resources available and the accuracy that has to be achieved.
In the paragraphs below, the main differences between these two approaches will be
highlighted along with the different strategies that can be used in both situations
in order to evaluate the best approach to use.

2.1.1 Model-based approaches
A model-based approach for manipulation and control of objects, as the name says,
makes use of a model to describe the dynamics of the object involved in the task.
Once the model is established, this approach can be used to plan and optimize
actions for manipulation tasks; in this sense, it refers to trajectory optimization and
control tools in order to solve variations of the following problem in discrete-time
where the model of the non-rigid object is needed for the equation of the system’s
dynamics: [3]

min
x0:N ,u0:N−1,∆t

ℓN(xN) +
N−1Ø
k=0

ℓk(xk, uk,∆t)

subject to: xk+1 = f(xk, uk,∆t),
gk(xk, uk) ≤ 0,
hk(xk, uk) = 0

(2.1)

Here, k is the time-step index, ℓN and ℓk are the terminal and stage costs, xk and
uk are the states and control inputs, ∆t is the duration of a time-step, f(xk, uk,∆t)
is the discrete dynamics and gk(xk, uk) and hk(xk, uk) are inequality and equality
constraints.
To tackle such problems, two types of solvers exist: direct and indirect methods.
Direct methods approach the problem by considering both states and controls as
decision variables. They make use of widely-used general-purpose nonlinear pro-
gramming solvers (NLP) such as SNOPT and IPOPT. These solvers are well-known
for their numerical robustness and versatility, allowing them to effectively handle
various types of optimization problems, including those with diverse constraints.
However, the optimization process is slowed down because feasibility of dynamics
needs to be imposed.
In contrast, indirect methods leverage the Markov structure of the problems and
only treat the control inputs as decision variables. The dynamics constraints are
implicitly enforced by simulating the system’s dynamics. This approach leads to
faster computation.
Differential Dynamic Programming (DDP), initially introduced by Jacobson and
Mayne [4], is recognized as one of the most successful trajectory optimization
algorithms. Unlike classical approaches like Direct Collocation or Direct Multiple
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Shooting, which optimize open-loop trajectories, DDP and its variants take a dif-
ferent approach. They simultaneously design both a stabilizing feedback controller
and a feedforward controller.
These iterative algorithms are specifically designed to solve optimal control prob-
lems that involve nonlinear cost functions and nonlinear system dynamics. By
iteratively updating the controllers and refining the trajectory, DDP provides an
efficient solution to these challenging problems.
The main reason of its popularity is that often the computational complexity is
linear in the number of time steps, O(N) [Giftthaler et al. 5], and, moreover, under
some assumptions it can shown quadratic convergence in unconstrained problems
[Liao and Shoemaker 6]. Murray and Yakowitz [7] conducted a comparison between
Newton’s method and DDP for solving unconstrained problems. Their findings
demonstrated that although DDP and Newton’s method are not identical, they
exhibit similar convergence rates, specifically quadratic convergence.
However, in the current work, the optimization problem at hand involves constraints.
Therefore, it is important to consider this aspect in the analysis and solution.
A specific version of DDP tailored for constrained optimal control, applied to a
multireservoir control problem [8], relies on the ”stagewise” Kuhn-Tucker condition
[9]. The results of this study suggest that DDP is the most effective technique
among the available methods for a certain class of large-scale control problems.
This research highlighted the remarkable power, robustness, and reliability of DDP
when second derivatives can be conveniently calculated. Consequently, for the
majority of optimal control problems, DDP is considered the method of choice.
Box inequality constraints on control inputs can be included in DDP without sig-
nificantly sacrificing convergence quality or computational effort, using the method
of Tassa et al. [10]. However, the method does not apply to state constraints.
Augmented Lagrangian methods offer an alternative approach for handling con-
straints, and they can be seamlessly integrated into DDP. Aoyama et al. [11]
demonstrated how a specific set of penalty-Lagrangian functions, which maintain
second-order differentiability, can be effectively incorporated within DDP.
Lin and Arora [12] proposed two computational procedures based on DDP for
solving linear or nonlinear constrained optimal control problems.
The first procedure involves solving a quadratic programming problem at each time
step, allowing the construction of a differential control law. This approach enables
handling point-wise constraints effectively.
The second procedure, known as the multiplier method, aggregates all the point-
wise constraints and employs the unconstrained DDP approach to construct the
differential control law. The advantage of this method over the first one is that it
imposes no limitations on the constraints, making it more general and flexible.
Xie et al. [13] introduced a Constrained version of DDP that addressed the incorpo-
ration of nonlinear constraints. In their work, they focused on deriving a recursive

7



Literature Review and Background

quadratic approximation formula for the optimization problem while considering
the presence of nonlinear constraints. This was accomplished by identifying a set
of active constraints at each point in time.
Their CDDP algorithm is capable of iteratively determining the active set, guar-
anteeing convergence to a local minimum. It has been successfully applied to
underactuated optimal control problems, including those with up to 12 dimensions,
involving obstacle avoidance and control constraints. CDDP has demonstrated
superior performance compared to other methods in handling constraints.
During the comparative analysis, CDDP was evaluated against two alternative
methods. The first method replaces hard constraints with a log-barrier penalty
term incorporated into the objective function, while the second method utilizes
sequential quadratic programming implemented through SNOPT software.
CDDP demonstrates superior performance in longer horizons compared to SNOPT.
Furthermore, when compared to the log-barrier constraint penalty approach, CDDP
converges in fewer iterations and exhibits better capabilities in handling more com-
plex dynamic problems.
However, it is important to note that the implementation of CDDP is relatively
slower than the standard DDP method. This is due to the need to solve quadratic
programs instead of employing matrix inversion in the inner steps of the algorithm.
Additionally, like any nonconvex optimization problem, a well-defined initial trajec-
tory is crucial to prevent the algorithm from getting trapped in a bad local minima.
Finally, while the original DDP relies on second-order derivatives, one of its
variations, iterative-Linear-Quadratic-Regulator (iLQR), uses only Gauss-Newton
approximations of the cost Hessians as well as first-order expansions of the dynam-
ics: Li and Todorov [14] proved that this simplified version can be faster in time
and iterations with respect to DDP and other methods like ODE, which solves the
system of state-costate ordinary differential equations resulting from Maximum
Principle, and CGD, that is a gradient descent method based on the Maximum
Principle to compute the gradient of the total cost with respect to the nominal
control sequence, and then calls an optimized conjugate gradient descent routine.
To summarise the literature on DDP, its efficiency in tackling multiple optimisation
problems has been amply demonstrated. Above all, its flexibility in adapting the
method to constrained problems by combining it with others that can handle
the constraints without losing convergence quality has been highlighted. Lastly,
the simplified version, iLQR, which allows for fewer iterations and savings in
computational resources, should be emphasised.

Modeling the deformable object

A model-based approach requires a simulation model that captures the dynamics
of the system.
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Manipulation planning focuses on displacing objects to be manipulated, rather than
solely planning the robot’s motion as in standard motion planning. Manipulating
a rigid object involves changing its pose, which refers to altering its position and
orientation while avoiding collisions. This type of manipulation is typically used
for tasks like pick-and-place or assembly.
When dealing with deformable objects, manipulation also affects their shape, result-
ing in geometric or topological changes. These shape changes must be considered
throughout the planning process.
Planning involves selecting or generating a series of actions from a set of options.
The decision-making process considers not only the desired outcomes, such as the
arrangement of manipulated objects, but also the constraints imposed by each
step in the sequence. These constraints can include both internal and external
limitations, as well as feasibility and optimization considerations, which can be
classified as hard and soft constraints, respectively. By implementing constraints,
the range of potential actions is narrowed, and criteria for evaluating and comparing
different choices are established.
The deformations of an object are influenced by various factors, including the
material properties of the objects, their initial shape and dimensions, and the
specific application of forces for manipulation, such as localization, direction, in-
tensity, duration, and frequency. Two key concepts in object deformations and
manipulation are the reversibility of deformation and the direction and extent of
shape change. In the case of reversibility, the object fully recovers its original shape,
known as the rest shape, when external forces are ceased, and this is referred to as
elastic deformation. On the other hand, permanent and stable changes result in
plastic deformation.
A third category, called flexible deformations, applies to objects that cannot be
strictly classified as either elastic or plastic due to the effects of friction and gravity,
preventing them from returning to a true ”rest shape” after manipulation. However,
these objects can still be altered with minimal effort, indicating that they do not
exhibit strictly plastic properties. Examples include materials like rope or cloth.
Furthermore, deformations are also characterized by the direction in which they
occur, determined by the applied forces and moments. Following this, the aim of
models is to replicate the behavior of manipulated objects, and the accuracy of
these models is dependent on the purpose. Furthermore, the trade-off between
computational efficiency and precision is a crucial factor to consider.
Models aim to replicate the behavior of manipulated objects, and the accuracy
of these models depends on their intended purpose. There is a trade-off between
computational efficiency and precision that needs to be considered.
In contrast to rigid objects, collisions are often less problematic during the manipu-
lation of deformable objects because their shape can adapt to obstacles. Therefore,
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assumptions about the shape of deformable objects can be simplified. Since de-
formable objects change their shape in response to internal and external forces,
this can be either a desired goal of the planning process, such as when they help
avoid obstacles along a path, or a side effect of a planned action.
In any case, the changes in shape are governed by the underlying physical behavior
of the object in three-dimensional space. This behavior can be implicitly considered
using pure geometric models or explicitly incorporated into the model.
As mentioned earlier, the DDP algorithm and its iLQR variant rely on derivatives
of the dynamics equation. Having a differentiable model for the object can be
beneficial as it allows the use of built-in functions for gradient retrieval. However,
it is not always possible to obtain a closed-form solution for the derivatives. Fortu-
nately, this issue can be addressed by employing an implicit integration scheme,
which enables the computation of gradients and Hessians.
Indeed, the challenges inherent to dynamic manipulation of non-rigid items, ac-
cording to Zimmermann et al. [15], arise due to the need to employ advanced
constitutive material models, such as FEM, that relate deformations to internal
restorative forces. Furthermore, these suffer from numerical stiffness issues, which
can only be stably handled by applying implicit integration schemes. Conversely,
explicit schemes tend to be unstable and blow-up quickly, making them practically
unusable.
Their research focused on adapting Newton’s method and DDP to physical systems
that are simulated forward in time using implicit integration schemes. Both meth-
ods are classified as ”single shooting” methods, but they differ in their approach.
The first method operates on the entire control sequence simultaneously, while
the latter is a stage-wise method that processes the control sequence recursively.
Implicit integration methods, unlike explicit alternatives, do not have closed-form
solutions available at each time step. To overcome this challenge, the researchers
demonstrated how sensitivity analysis can be utilized to analytically compute the
derivatives required by both methods.
The effectiveness of their solutions was evaluated through experiments involving
dynamic motions of an elastic object. To assess the trajectory optimization formu-
lations presented, they utilized a dual-armed YuMi IRB 14000 robot and various
types of foam-based elastic objects. The model of the elastic objects employed the
FEM, and the numerical integration scheme used was the second-order accurate
Backward Differentiation Formula (BDF2).
By incorporating suitable regularizers and employing line search mechanisms, both
DDP and Newton’s method demonstrated reliable convergence. DDP exhibited
better scalability than Newton’s method in terms of the planning horizon length.
The overall computational cost heavily depends on the dimensionality of the object’s
state space and its sparsity structure. The relative performance of the methods
appeared to be highly dependent on the specific nature of the problem.
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Additionally, the performances of the proposed methods were compared to an alter-
native trajectory optimization approach known as the Direct Collocation method,
which solves the problem through constrained optimization. Direct Collocation,
using techniques like the interior point method, allows constraints to be violated
during optimization, potentially speeding up the process. However, it typically
requires more iterations compared to DDP and Newton’s method.
In general, the use of explicit or implicit integration schemes depends on the type
of model for the deformable objects.
The deformable modelling strategies can be categorized following a previous model
categorization presented by Montagnat et al. [16] and Salzmann and Fua [17] and
they are: physical, geometric, learned and hybrid models.

Physical models

Physical models aim to replicate the behavior of objects based on the principles of
physical laws. Two prominent examples in this category are Mass-Spring System
(MSS) simulations and Finite Element Method (FEM). The fundamental concept
behind these models is to account for the fact that deformable objects possess
infinite degrees of freedom by discretizing the structure, thereby reducing the
degrees of freedom to a finite number.
Both of them are based on Newton’s law of motion, under which particle or vertex
motion can be described by time derivative of momentum and exerted forces f as

Mp̈ = f (2.2)

where M and p denote the system mass and position, respectively.
The motion of the entire system can be computed by integrating from an initial
state x0. For each particle, the evolution is defined as:

ṗi = vi

v̇i = 1
mi

(f int
i + f ext

i )
(2.3)

with ṗi = vi, that represents the velocity of the ith particle.
The exerted forces explicitly divided into two parts: the component f ext

i sums up
external contributions, such as gravity and input forces, which are known for the
given time step; whereas the term f int

i has the important role of resuming the
internal effects that characterize the deformations and the non-rigid object itself.
After resolving the force terms, simulating the system using explicit Euler integration
or other methods such as Runge-Kutta4 (RK4) is a straightforward process. The
integration scheme chosen depends not only on its computational efficiency but
also on the stability of the dynamics being simulated.
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Generally, FEM-based models are widely recognized as the most popular category
of physical models, offering a well-established methodology for formally describing
deformations [2].
In literature, there are several works that describe its functioning behaviour, most
of them rely on tetrahedral shape and the elasticity properties are describe through
Young’s modulus and Poisson ratio. In general, they are less intuitive and more
computational expensive than Mass-Spring Systems, that is a chain of nodes linked
by damped springs subjected to Damped-Hooke’s law.
However, MSS techniques have widely and effectively been used for modeling
non-rigid object because they are faster and easier to compute with a more intuitive
physical meaning. Conversely, they have stability issues with high stiffness materials
because they require a small time integration step during the simulation process,
slowing down the entire process [18].
Additionally, physical models rely on material parameters, which are often unknown
or challenging to describe accurately in a broader context, particularly for objects
with complex material structures (Yin et al. [19]).

Geometric Models

Geometric models are approaches that focus on representing the surface and its
evolution over time purely as a geometric model, without considering physical
information. One example of such a model is the Position-Based Dynamics (PBD)
model. PBD is a mesh-free method that represents materials as a discrete system
composed of particles. The simulation in PBD follows an implicit integration
scheme, where internal forces are derived from holonomic constraints, including
temporary and unilateral constraints.
Geometric models offer the advantage of accurately depicting the complete de-
formation of an object while effectively preserving its shape. Additionally, PBD
provides a fast and well-controlled simulation with improved stability. This method
allows for the easy incorporation of various constraints and provides the ability to
guide the system by setting specific boundary conditions.
However, one limitation of geometric models like PBD is that it is not always
straightforward to assign a meaningful physical interpretation to some of the pa-
rameters used. Tuning efforts may be required to achieve desired effects compared
to physical models. (Yin et al.[19]).
Other drawbacks are its limited accuracy in simulating force effects, and that its be-
havior is dependent on the time step and iteration count of the simulation (Bender
et al. [20]), to solve this Macklin et al.[21] introduced their extended-Position-Based
Dynamics model (XPBD) that has a new constraint formulation which corresponds
to a well-defined concept of elastic potential energy.
Liu et al. [22], instead, introduced a compliant position-based dynamics to model
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rope-like objects, through the use of geometric constraints which can reproduce
shear/stretch and bend/twist effects. One important feature of their work was
the differentiability of the model which improves the functioning behaviour of the
model and simulation environment.
In the following Table, the considerations are summarized with pros and cons and
respective application fields.

Advantages Limitations Modeling applications

MSSs
Fast Inaccurate for Ropes

large deformation Fabrics
Simple to Lacking physical Sponges
implement interpretability Rubber spheres

PBD
Fast and stable Visual fidelity Paper

only Fabrics
Supports modeling Lacking physical Cushion
of various objects interpretability Fabrics

FEMs

Can be fast Complex and expensive Rods and cables
(linear) to compute (nonlinear) Fabrics

Physical fidelity Not well integrated Food
and interpretability to robotics simulators Tissues

Table 2.1: Overview of deformable objects modeling approaches (Yin et al. [19])

Learned models and hybrid models

The last two categorizations are learned and hybrid models.
Learned models use the available information as training data to infer the shape
of the object; in this way it is addressed the challenge of representing non-linear
objects and estimating unknown parameters.
A wide used tool according to the literature is Neural Network (NN); they are
trained based on data collected from available sensors, such as images, and the
outputs represents the interested object with its deformations [23].
Hybrid models, instead, combine two or more of the previous modelling methods
to improve performance and accuracy [24].

2.1.2 Model-free approaches
The model-free approach to manipulating non-rigid objects involves utilizing ma-
chine learning techniques to learn control policies or behaviors directly, without
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explicitly constructing a model of the object’s dynamics.
In this approach, data is collected through trial and error or demonstrations, and
a policy is trained to replicate the observed behavior. Visual tools are used to
extract various parameters of the object, including shape, dimensions, position, and
orientation. These parameters are then used to search for the best fit in a database.
This approach proves particularly valuable when accurately modeling the complex
physics of non-rigid objects is challenging. In fact, it employs methodologies that
enable online estimation of the deformations.
Model-free methods, such as reinforcement learning, empower a robot to adapt and
learn from its interactions with the object. This adaptability allows for robust ma-
nipulation, even in the presence of uncertainties or variations in object properties.
For example, Chi et al.[25] proposed the Iterative Residual Policy (IRP), that is
a learning framework applicable to repeatable tasks with complex dynamics and
high-speed actions with a strict requirements on the task to be achieved, such as,
in that case, hitting a target positioned somewhere in the operational space with a
rope. It learns an implicit policy via delta dynamics instead of modeling the whole
dynamical system and inferring actions from that model; moreover, it predicts the
effects of delta action on the previously-observed trajectory. Hence, it uses a visual
feedback to improve the action and the trajectory. Machine learning has proven to
be highly effective in dealing with complex interactions when controlling non-rigid
objects. This is especially beneficial in scenarios where it is challenging to develop
precise control algorithms due to the complexity of task descriptions or capturing
all relevant parameters.
Among the different learning approaches for robotic manipulation of non-rigid ob-
jects, learning by demonstration has emerged as a popular choice. In this paradigm,
the robot learns and generalizes tasks by observing a human expert performing
them [26], [27] or by imitating human interaction partners [28]. This approach
empowers a versatile robot to execute multiple tasks involving non-rigid objects
without requiring the development of distinct controllers for each task.
However, while the use of data-driven approaches has gained popularity in the
search for controllers that can learn to perform specific tasks, there is still a strong
inclination towards developing a model-based method that can address multiple
optimization problems.
Model-free approaches indeed may lack interpretability and understanding of the
underlying physical principles governing deformable object behavior. This can
make it challenging to diagnose and correct errors or unexpected behavior during
manipulation, while a model-based approach can address this better because of the
knowledge of the physical model, leading to more stability and robustness.
Moreover, due to the fact that using model-free approaches require more computa-
tional resources and higher costs because it is required to train a large amount of
data to extract the needed features.

14



Literature Review and Background

It should also be noticed that in order to have accurate predictions of how the object
will deform and respond to external forces, leading to more precise manipulation,
with a model-based approach, it is required a model that addresses the physical
properties and behavior of the deformable objects. The use of accurate models
indeed enables optimization and planning techniques to be applied. By formulating
the manipulation problem as an optimization or planning task, it becomes possible
to find optimal control strategies that minimize certain objectives (e.g., energy
consumption, deformation, or contact forces) or satisfy specific constraints. This
can lead to more efficient and effective manipulation of deformable objects.
Here, for simplicity, using a 1D deformable objects, like rope, would improve the
overall performance, since it has been widely studied and modelled through different
techniques.

2.2 Optimization theory
A model-based approach makes use of trajectory optimization and control tools,
as already said in Section 2.1.1. Thus here, the main theoretical aspects will be
given. Optimization allows to find values for variables within a given domain that
minimize or maximize the value of a function, i.e. it allows to solve the following
general problem:

min f(x)
s.t.: x ∈ S

(2.4)

This problem can be solved by employing the following strategy:
1. Analyse properties of the function under the specific domains and derive the

conditions that must be satisfied such that x is a candidate optimal point;

2. Apply numerical methods that iteratively search for points satisfying these
conditions.

In this sense, variables represent decisions, domains are constraints that must not
be violated and the function is an objective function which provides a measure of a
solution quality.
The general form of a problem is:

min f(x)
s.t.: gi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., l
x ∈ S

(2.5)

where f : Rn → R is the objective function, g : Rn → Rm is a set of m inequality
constraints and h : Rn → Rl is a collection of l equality constraints. [29]
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Optimality conditions for unconstrained problems

Most optimization methods are based on successively obtaining directions d of
potential improvement and suitable step sizes λ in this direction, until a convergence
or termination criterion is satisfied, as shown in Algorithm 1. [29]
The problem of the form 2.5 is defined as unconstrained if l = m = 0, i.e. there
aren’t equality and inequality constraints, and the set S is the whole Rn.
For unconstrained problem, we can define the descent direction d in the following
way.
Suppose f is differentiable at x̄. If there is d such that ∇f(x̄)Td < 0, there exists
δ > 0 such that f(x̄+λd) < f(x̄) for each λ ∈ (0, δ), so that d is a descent direction
of f at x̄.
This leads to the first and second order necessary condition.
The first states that if the function is differentiable and x̄ is a local minimum, then
∇f(x̄) = 0.
The second states that if the function is twice differentiable and x̄ is a local
minimum, then H(x̄) is positive semidefinite (PSD).

Algorithm 1 Optimization algorithm
1: ▷ Initialize iteration count k = 0, starting point x0
2: while stopping criteria are not met do
3: ▷ compute direction dk

4: ▷ compute step size λk

5: xk+1 = xk + λkdk

6: k=k+1
7: end while
8: return xk

Line search and convergence criterion

To improve the efficiency of Algorithm 1, it is needed to choose a suitable step size
and to terminate the execution when the result is accurate enough.
To find a suitable step size is itself an optimization problem referred as line search,
that consists of a uni-dimensional search as λk ∈ R. Hence it is possible to define
the function θ(λ) = f(x+λd) and minimizing its value with respect to the variables
λ.
There are designed methods to find the optimal value of the step size, called as
exact line search methods, but often it is worth to sacrifice the optimality of the
solution for the efficiency of the whole method in terms of computational time, as
the Armijo rule that is used in this work.
The Armijo rule is a condition that is tested to decide whether a current step size

16



Literature Review and Background

λ̄ is acceptable or not. The step size is considered acceptable if

f(x+ dλ̄)− f(x) ≤ αλ̄∇f(x)Td (2.6)

where α is a predefined constant.
If λ̄ doesn’t satisfy this condition, it is reduced by a term β ∈ (0,1) until the test is
satisfied.
This rule is also called backtracking due to the successive reduction of the step size
by the factor β.
The convergence instead is analysed by means of the rate of convergence associated
with the error functions e : Rn → R such that e(x) ≥ 0. Typical choices are:

• e(x) = ||x− x̄||;

• e(x) = |f(x)− f(x̄)|.

Thus, the algorithm will stop when the chosen error function goes under a defined
tolerance or the number of maximum iteration is achieved.[29]

2.2.1 Constrained optimization problems
When dealing with constrained optimization problems of the general form of 2.5,
the standard optimization approach of the form shown in the algorithm 1 doesn’t
work because it doesn’t take into account the constraints; hence, it can be modified
in order to guarantee that the computed descent direction d leads to a solution
that is included in the set S of feasible directions. In this sense, the value x̄ is
optimal if there exists no feasible direction that can provide improvement in the
objective function value.
There are several approaches to handle constraints in optimization problems. One
common method is to incorporate constraints directly into the objective function
through penalty or barrier functions [11], where violating constraints leads to
increased costs. This encourages the optimization algorithm to find solutions that
satisfy the constraints.
Another approach is to use inequality constraints, defining feasible regions in the
solution space. Optimization algorithms can then search within these regions to
find optimal solutions that meet the constraints.
Additionally, constraint handling techniques such as constraint aggregation, con-
straint relaxation, or constraint transformation can be employed to simplify or
reformulate the problem, making it more amenable to optimization algorithms.
Furthermore, advanced optimization techniques like Lagrange multipliers [12],
interior-point methods [9], or active-set methods [13] can be utilized to explicitly
account for constraints and find solutions that satisfy them. By employing these
techniques, constraints can be effectively addressed in optimization, enabling the
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discovery of optimal solutions while meeting the desired constraints.
More in details:

• The interior point method is an optimization technique used to solve
constrained optimization problems. It focuses on finding solutions that satisfy
both equality and inequality constraints. This method transforms the original
problem into an unconstrained problem by introducing a barrier or penalty
function that penalizes violations of the constraints. The method then seeks a
solution by iteratively moving towards the interior of the feasible region while
maintaining feasibility. This is achieved by updating a set of iterates that satisfy
the Karush-Kuhn-Tucker (KKT) optimality conditions. The interior point
method is known for its ability to handle large-scale optimization problems
efficiently and to find both feasible and near-optimal solutions.

• The Lagrangian method, also known as the method of Lagrange multi-
pliers, is a mathematical optimization technique used to solve constrained
optimization problems. It involves introducing Lagrange multipliers, which
are scalar variables associated with each constraint, to create a new func-
tion called the Lagrangian. The Lagrangian combines the objective function
with a weighted sum of the constraints, where the weights are the Lagrange
multipliers. The Lagrangian method then seeks to find critical points of the
Lagrangian by taking partial derivatives with respect to the variables and
the Lagrange multipliers. This results in a set of equations called the KKT
optimality conditions, which must be satisfied by the optimal solution. Solving
these conditions yields the optimal values of the variables and the Lagrange
multipliers, providing a solution that satisfies the constraints.

• The active set method is an iterative optimization technique used to solve
constrained optimization problems with both equality and inequality con-
straints. It focuses on identifying and updating an active set, which consists
of the active constraints that are binding at the current solution. The method
starts with an initial guess of the active set and iteratively updates it based on
the optimality conditions and feasibility of the solution. In each iteration, the
active set is refined by checking for violated constraints and adding or removing
them accordingly. The active set method then solves a subproblem restricted
to the active set, typically using techniques like quadratic programming or
linear programming. This process continues until an optimal solution is found
that satisfies the constraints and optimality conditions.
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2.3 Control Theory
In order to achieve the proposed task, it is needed to compute the input value,
i.e. the external force, that the robotic arm has to apply to the rope to reach the
target. We need to define the controller that, given the desired state to reach,
provides the input values to the system, the end of the rope so that this goal state
can be reached as fast as possible with precision and ensured robustness. The block
diagram scheme is shown in the Figure 2.1.

Figure 2.1: Open-loop Control diagram [30]

This is an open-loop control scheme because the controller doesn’t depend on
the new system output, but only on the desired state of the system x(t).
Whereas, if the controller is fed with the difference between the current state and
the desired state, i.e. the error, it is defined as closed-loop and it is more robust
against perturbations of the state, as shown in Figure 2.2.

Figure 2.2: Closed-loop Control diagram [30]

2.3.1 Optimal Control
Optimal control is a sub-branch of the control theory, that focuses on minimizing
a scalar cost that can be computed at each time-step constrained to the system
dynamic of the form ẋ = f(x(t), u(t)), where x(t) is the state of the system and
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u(t) is the input value.
An optimal control problem should then be formulated as:

min
x,u

Ú T

0
ℓ(x(t), u(t))dt

s.t. ˙x(t) = f(x(t), u(t))
(2.7)

where ℓ() is the cost-to-go and T can be either finite or infinite following that in
the first case is a "finite-horizon" problem, while in the latter is an "infinite-horizon"
problem. Hence, optimal control is a control design process that uses optimization.
Due to its generality, it can be applied to a wide range of problems, fully or
underactuated, linear or nonlinear, deterministic or stochastic, continuous or
discrete systems.
Furthermore, it allows to describe very complex desired behaviour through a scalar
objective and a list of constraints and it is amenable to numerical solutions, like
Dynamic Programming for solving multi-stage decision making problems.

Dynamic Programming

Dynamic Programming (DP) is a method to solve optimal control problems. The
key behind this method is to discretize the state space and the control space, to
derive the cost-to-go for all the states and then, starting from the final state, to go
backwards until the initial state is reached.
The goal is to design some control law u to follow a state trajectory x(t) to minimize
a cost function J defined as:

J(x(t), u(t), t0, tf ) = ℓN(x(tf ), tf ) +
Ú tf

0
ℓ(x(τ), u(τ))dτ (2.8)

which is the sum of the running cost and the cost of the final trajectory.
Then, we define the value function as:

V (x(t0), t0, tf ) = min
u(t)

J(x(t), u(t), t0, tf ) (2.9)

that means the control law out of all the possible ones that minimizes the cost
function.
As said previously, one of the main concepts is to optimize the problem by breaking
it into smaller recursive sub-problems. This is due to the Bellman optimality
equation:

V (x(t0), t0, tf ) = V (x(t0), t0, t) + V (x(t), t, tf ) (2.10)

which expresses the fact that the optimal cost-to-go is the sum of the optimal ones
from the initial state to any middle state and from this one to the goal state.
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This implies that any point of the trajectory has to be optimal because we are
considering it as the initial condition for the remaining path. That’s the Markov
decision process. This concept allows to break the problem into smaller ones and
solve them.
We then define the dynamics of the system as:

Figure 2.3: Bellman optimality

ẋ = f(x(t), u(t), t) (2.11)

From (2.8) and (2.9), it is possible to derive the sufficient condition for optimality:
if it can be found an optimal J∗ and V ∗, that satisfy those equations, then V ∗ must
be an optimal controller.
For a system ẋ = f(x, u) and a horizon additive cost

s tf

0 ℓ(x, u)dt:

0 = min
u

[ℓ(x, u) + ∂J∗

∂x
f(x, u)] (2.12)

π∗(x) = argmin
u

[ℓ(x, u) + ∂J∗

∂x
f(x, u)] (2.13)

Equation 2.13 is the optimal control policy.
Equation 2.12 is known as the Hamilton-Jacobi-Bellman equation and can be
written also as:

−∂V
∂t

= min
u(t)

((∂V
∂x

)Tf(x(t), u(t)) + ℓ(x(t), u(t))) (2.14)
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DP works well when there is a low dimensionality for the control input. It is reliable
and it ends up with optimal trajectory 100% of the time. It also allows to include
any kind of constraints.
However, evaluating the HJB for the time-to-go reavels the necessity to have a well
defined ∂J

∂x
everywhere. [31]

Linear Quadratic Regulators

In general, solving the dynamic programming problem for continuous systems is
very hard, but there are few special cases where the solutions are accessible, like
variants that involves linear dynamics and quadratic cost. The simplest is the
linear quadratic regulator (LQR), formulated as stabilizing a time-invariant linear
system to the origin. [31]

Fundamentals

Consider a linear time-invariant (LTI) system in state-space form,

ẋ = Ax+Bu, (2.15)

with the infinite-horizon cost function given by

J =
Ú ∞

0
[xTQx+ uTRu]dt, Q = QT ⪰ 0, R = RT ≻ 0 (2.16)

The goal is to find the optimal cost-to-go function J∗(x) that satisfies the HJB:

∀x, 0 = min
u

[xTQx+ uTRu+ ∂J∗

∂x
(Ax+Bu)] (2.17)

To verify that the optimal cost-to-go function is quadratic, it can be chosen:

J∗(x) = xTSx, S = ST ⪰ 0 (2.18)

Then the gradient of this function is:

∂J∗

∂x
= 2xTS (2.19)

Since all the terms are quadratic and convex by construction, we can find the
solution of 2.17 by doing the gradient:

∂

∂u
= 2uTR + 2xTSB = 0 (2.20)

Then, the optimal policy is:

u∗ = π∗(x) = −R−1BTSx = −Kx (2.21)
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By plugging 2.21 into 2.17:

0 = xT [Q− SBR−1BTS + 2SA]x (2.22)

where all the terms are symmetric except for 2SA, but since XTSAx=xTATSx:

0 = xT [Q− SBR−1BTS + SA+ ATS]x (2.23)

and since it has to hold for all x,

0 = Q− SBR−1BTS + SA+ ATS (2.24)

that is a version of the algebraic Riccati equation.
Examining the optimal policy in more detail reveals interesting insights. The value
function represents the cost-to-go, and the objective is to descend this landscape as
quickly as possible. The direction of steepest descent of the value function is given
by the negative of the state variable multiplied by the matrix S, i.e., -Sx. However,
not all directions in the state-space are feasible to achieve.
To determine the steepest descent direction in the control space, we project the
steepest descent onto the control space using the matrix BT . This projection,
−BTSx, represents the steepest descent achievable with the control inputs u.
To account for different weightings placed on the control inputs, the pre-scaling
by the matrix R−1 biases the direction of descent. This scaling ensures that the
control inputs are appropriately weighted in the descent process.
By considering these factors, the optimal policy is designed to move in the direction
of steepest descent while accounting for the limitations of the state-space and the
weighting of control inputs.

Nonlinear systems

LQR can be used also with system that presents a nonlinear dynamics, because it
can provide a local approximation of the optimal control solution.
Given a nonlinear system ẋ = f(x, u) and a stabilizable operating point (x0, u0),
with f(x0, u0) = 0, we can define:

x̄ = x− x0, ū = u− u0 (2.25)

and observe that ˙̄x = ẋ = f(x, u) Then we can approximate with a first-order
Taylor expansion:

˙̄x ≈ f(x0, u0) + ∂f(x0, u0)
∂x

(x− x0) + ∂f(x0, u0)
∂u

(u− u0) = Ax̄+Bū (2.26)

Similarly, the cost function can be defined in the error coordinates or with a
positive-definite second-order approximation of a nonlinear cost function around
the operating point.
Therefore, optimal control solution is ū∗ = −Kx̄ or u∗ = u0 −K(x− x0)
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Discrete formulation and finite horizon

The results above can be extended to discrete-time systems of the form:

xn+1 = Axn +Bun (2.27)

where the problem is formulated as follows:

min
N−1Ø
n=0

[xT
nQxn + uT

nRun] (2.28)

The cost-to-go is:

J(x, n− 1) = min
u
xTQx+ uTRu+ J(Ax+Bu, n) (2.29)

If, as explained before, we take:

J(x, n) = xTSnx (2.30)

then, the optimal control solution is

u∗
n = −Knxn = −(R +BTSnB)−1BTSnAxn (2.31)

with
Sn−1 = Q+ ATSnA− (ATSnB)(R +BTSnB)−1(BTSnA) (2.32)

that is the Riccati difference equation.
In the finite-horizon formulation we have an extra term for the cost function:

J = h(x(tf )) +
Ú tf

0
ℓ(x(t), u(t)) (2.33)

for the continuous case and

J(x, u) = xT
NQfxN +

N−1Ø
n=0

[xT
nQxn + uT

nRun] (2.34)

for the discrete case.
The first term is the final cost term and it only depends on the state of the system.
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Chapter 3

Methodology

In the previous chapter, the different possibilities of dealing with manipulation and
control of deformable objects were described, as well as the reasons that brought
to the choice of a model-based approach to solve the proposed problem. In Section
2.1.1, it was highlighted that there are two major types of methods for this kind of
solution: direct or indirect methods.
It is needed to recall that the problem has the form shown in 2.1, where inequality
constraints and system’s dynamics are present, making it a constrained opti-
misation problem. This lead to the choice of the implementation of a indirect
method for its solution. Indeed, it was proven that this approach result in a faster
computation since it enforce the dynamics implicitly by simulating the system’s
dynamics, whilst with direct methods it has to be imposed slowing down the
process.
Among these, DDP was proven to be one of the most successful along with the
fact that it can be modified to include other type of constraints, as it does not
handle them in the original form. For sake of simplicity however, iLQR will be
implemented because of the lower required computational cost and the fact that it
was proven to be faster in time and iterations.
To deal with the constraints, there are several approaches: among the different
possibilities, the Augmented Lagrangian and Multipliers Method (ALMM) was
chosen because of the intuitiveness and simplicity of the method itself as it has
been also proven as efficient in literature.
Therefore, the implemented solver will be the following one:
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Algorithm 2 AL-iLQR
1: function AL-iLQR(x0,U,tol.)
2: ▷ Initialize λ, µ, ϕ
3: while max(c)>tol. do
4: ▷ minimize LA(X,U,λ, µ) using iLQR
5: ▷ update the multipliers λ and the penalty term µ
6: end while
7: return X,U,λ
8: end function

For what concerns the model for the non-rigid object, accurate models, like those
associated with FEM, are more appropriate for off-lines simulation; here, however,
the choice of manipulating a DLO, like a rope, leads to a mass-spring-damped
model for modeling it.
In general, the choice of the suitable model relies on the available programming
time and computational resources and the desired accuracy. Physical analogues
like mass-spring models are commonly used due to their ease of implementation
and tuning, they also provide a good trade-off between speed and accuracy, that
can be adjusted by altering the number of nodes and springs.
In the next Section, the above algorithm will be described in details, as well the
model of the rope and the chosen cost function.

3.1 Structure of the Algorithm
Algorithm 2 highlights the two main components: the Augmented Lagrangian
Multiplier Method and the iterative-Linear-Quadratic-Regulator. Here,
the theory behind both of them is explained recalling what has been said in the
previous chapter.

3.1.1 Augmented Lagrangian and Multipliers Method
The ALMM relies on the idea of relaxation and penalty functions.
The first consists of techniques that remove constraints from the problem to allow
for a version, i.e. a relaxation, that is simpler to solve and/or provide information
to be used for solving the original problem.
The second instead relies on the idea of converting the constrained optimization
problem into an unconstrained one that is augmented with a penalty function, that
penalises violations of the original constraints.
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In general, the constrained problem P has the following form:

(P ) : min f(x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ X

(3.1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rl, and X ⊆ Rn is an open set.
Then, when one refers to relaxation, for a given set of dual variables (u,v) ∈ Rm+l

with u ≥ 0, the original problem P is transformed into:

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v) (3.2)

where
ϕ(x, u, v) := f(x) + uTg(x) + vTh(x) (3.3)

is called the Lagrangian function, the original problem is called primal problem,
the relaxation is called (Lagrangian) dual problem and θ(u, v) is the Lagrangian dual
function, which has a built-in optimization problem in x, meaning that evaluating
θ(u, v) requires finding the minimiser x̄ for ϕ(x, u, v), given (u, v).
Whereas, the penalised version of (P) in 3.1 is:

(Pµ) : min .{f(x) + µα(x) : x ∈ X} (3.4)

where µ > 0 is a penalty term and α(x) : Rn → R is a penalty function of the form

α(x) =
mØ

i=1
ϕ(gi(x)) +

lØ
i=1

ψ(hi(x)) (3.5)

For α(x) to be a suitable penalty function, must hold that ϕ : Rn → R and
ψ : Rn → R are continuous and satisfy

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0
ψ(y) = 0 if y = 0 andd ψ(y) > 0 if y /= 0

(3.6)

In this way, the method will solve constrained problems by moving the constraints
into the cost function and iteratively increasing the penalty for either getting closer
or violating the constraint. However, this method converges only if the penalty
terms go to infinite, which is impractical.
A way to seek for the exact convergence with a finite penalty term is the implemen-
tation of the ALMM, that maintains the estimates of the Lagrange multipliers
associated with the constraints. [29]
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The term augmented refers to the fact that the Lagrangian function in 3.3 is
augmented by a penalty term as shown below:

LA = f(x) + λT c(x) + 1
2c(x)T Iµc(x) (3.7)

where λ are the Lagrange multipliers, c(x) is a vector containing both inequality
and equality constraints and Iµ is a diagonal matrix where the diagonal elements
are the penalty multipliers µi and it is computed as:

Iµ =
0 if ci(x) < 0 ∧ λi = 0, i ∈ I
µi otherwise

(3.8)

This allows for noticing that if (x̄, λ̄) is a solution of the problem, then the optimality
condition:

∇xLA = ∇f(x) +
l+mØ
i=1

λ̄∇ci(x) + 2Iµ

l+mØ
i=1

ci(x)∇ci(x) = 0 (3.9)

implies that the optimal solution can be achieved with a finite penalty term.
Then, the discrete-time problem in 2.1 is transformed into:

LA(X,U, λ, µ) = ℓN(xN) + (λN + 1
2IµN

cN(xN))T cN(xN) +
N−1Ø
k=0

ℓk(xk, uk,∆t)+

(λk + 1
2Iµk

ck(xk, uk))T ck(xk, uk)

= LN(xN , λN , µN) +
N−1Ø
k=0
Lk(xk, uk, λk, µk)

(3.10)

where λk ∈ Rpk is a Lagrange multiplier, c is the vector containing the constraints,
µk ∈ Rpk is the penalty terms associated to inequality constraints with index sets
Ik and equality constraints with index set Ek. Then, Iµk

is a diagonal matrix
defined as,

Iµk,ii =
0 if cki

(xk, uk) < 0 ∧ λki
= 0, i ∈ I

µki
otherwise

(3.11)

where ki indicates the i-th constraint at time step k.
In this way, it is possible to employ an unconstrained optimisation method to solve
the augmented Lagrangian function as showed in Algorithm 2:

1. solve minx LA(x, λ, µ), holding λ and µ constant;
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2. update Lagrange multipliers

λ+
i =

λi + µici(x∗) i ∈ E
max(0, λi + µici(x∗)) i ∈ I

(3.12)

this because the correspondent multiplier is 0 when the inequality constraint
is not active;

3. update penalty term: µ+ = ϕµ, ϕ > 1;

4. check constraint convergence;

5. if tolerance not met, go to 1.

3.1.2 Differential Dynamic Programming and iterative
Linear Quadratic Regulators

To solve the augmented lagrangian showed in 3.10, the iLQR method is employed,
that is a simplified version of DDP.
DDP refers to a general class of dynamic programming algorithms that iteratively
solve finite-horizon discrete-time control problems by using locally quadratic models
of cost and dynamics, as explained in Section 2.3.1.
Considering a discrete-time dynamics model for state, control pair (x,u) with a
dynamic as xt+1 = f(xt, ut), let u be a control sequence u0, u1, ..., un, the total cost
J is defined as the sum of the cost-to-go at each time step and the terminal cost as
in 2.34. The solution is a control sequence that minimizes the total cost

u∗ = argminuJ(x, u) (3.13)

With respect to the LQR algorithm in Section 2.3.1, DDP doesn’t require a quadratic
cost and a linear dynamics; it is more general and powerful as a general framework
for solving optimal control problems. In fact, it makes use of a second-order
quadratic approximation of both cost function and dynamics and iteratively solves
the problem to find the optimal control sequence backwards in time recursively.
In addition to what has been said in section 2.3.1, in DDP the aim is to optimize
with respect to a nominal trajectory

τ̂ = {(x̂0, û0), (x̂1, û1), .., ( ˆxn−1, ˆun−1)} (3.14)

Defined (x∗
i , u

∗
i ) as to be the optimal state,control pair for time step i, then we can

define the optimal perturbations (δx∗
i , δu

∗
i )

x∗
i = x̂i + δx∗

i

u∗
i = ûi + δu∗

i

(3.15)
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Then, it is convenient to recast the problem of finding the optimal control sequence
to a separate and equivalent problem of finding the optimal control perturbation
on some nominal trajectory as:

V (x, i) = min
u

[l(x, u) + V (f(x, u), i+ 1)]
V (x, i) = min

δu
[l(x̂+ δx, û+ δu) + V (f(x̂+ δx, û+ δu), i+ 1)]

(3.16)

Now, the problem is formulated with respect to the perturbation from a nominal
trajectory, that’s why it is called differential.
In general, the DDP algorithm can be decomposed in 3 steps: backward-pass,
forward-pass and line search.
To understand the difference of the iterative Linear Quadratic Regulator with the
DDP, one needs to look into the Q-function, defined as:

Q(δx, δu) =
3
ℓ(x̂+ δx, û+ δu)− ℓ(x̂, û)

4
+

3
V (f(x̂+ δx, û+ δu))− V (f(x̂, û))

4
(3.17)

The Q-function is a scalar function taking vector inputs and it expresses the change
in cost that results from perturbing a point in the nominal trajectory τ̂ . The goal
is to find perturbations that minimize the Q-function.
Below there are expressed the derivatives of this function:

Qx = ∂Q

∂x

Qu = ∂Q

∂u

Qxx = ∂

∂x

∂

∂x
Q

Quu = ∂

∂u

∂

∂u
Q

Qxu = ∂

∂x

∂

∂u
Q

(3.18)

The second-order approximation of the Q-function can be then written as:

Q(δx, δu) ≈

 1
δx
δu


T  0 QT

x QT
u

Qx Qxx Qxu

Qu Qux Quu


 1
δx
δu

 (3.19)
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Where

Qx = lx + fT
x V

′
x

Qu = lx + fT
u V

′
x

Qxx = lxx + fT
x V

′
xxfx + (V ′

xfxx)
Quu = luu + fT

u V
′

xxfu + (V ′
xfuu)

Qux = QT
xu = lux + fT

u V
′

xxfx + (V ′
xfux)

(3.20)

The terms in the round brackets describe the difference between DDP and iLQR:
the latter in fact uses a linear approximation instead of a quadratic one. This
results in the cancellation of a few terms in the 2nd order expansion coefficient of
the Q-function derivatives.
The algorithm is shown below:

Algorithm 3 iterative LQR
1: function iLQR(x0,U,tol.)
2: ▷ Initialize x0,U,tol.
3: while |J − J−| > tol. do
4: J− ← J
5: K, d,∆V ← BACKWARDPASS(x, u)
6: x, u, J ← FORWARDPASS(x, u,K, d,∆V, J−)
7: end while
8: return x,u,J
9: end function

It has two main steps: backward pass and forward pass, which are shown in
the pseudo-algorithm 4 and 5 respectively.
In the backward pass, there is the computation of the matrices needed for computing
the optimal control input u.
Here, to handle the constraints, some changes have to be made to the LQR
previously explained in Section 2.3.1. The main change concerns the equation 3.16,
where the cost-to-go has to be replaced by the Lagrangian 3.10, that leads to the
new Q-function derivatives:

Qx = lx + ATp′ + cT
x (λ+ Iµc)

Qu = lx +BTp′ + cT
u (λ+ Iµc)

Qxx = lxx + ATP ′A+ cT
x Iµcx

Quu = luu +BTP ′B + cT
u Iµcu

Qux = QT
xu = lux +BTP ′A+ cT

u Iµcx

(3.21)
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where A = ∂f
∂x
|xk,uk

, B = ∂f
∂u
|xk,uk

and ’ indicates variables at time step k+1.
By optimising 3.19 with respect to the correction to the control trajectory, the
following result is achieved:

δu∗
k = −(Quu + ρI)−1(Quxδxk +Qu) = Kkδxk + dk (3.22)

where the regularization term is added to handle poor conditioned Hessians.
By substituting into 3.19, we derive:

Pk = Qxx +KT
k QuuKk +KT

k Qux +QxuKk

pk = Qx +KT
k Quudk +KT

k Qu +Qxudk

(3.23)

∆Vk = dT
kQu + 1

2d
T
kQuudk (3.24)

For k = N , at the terminal time-step, there are no control to optimize, hence pN

and PN are computed in the following way:

PN = (ℓN)xx + (cN)T
x IµN

(cN)x

pk = (ℓN)x + (cN)T
x (λ+ IµN

(cN)x)
(3.25)

The algorithm is shown below:

Algorithm 4 Backward Pass
1: function BACKWARDPASS(x, u)
2: pN , PN ← (3.25)
3: for k=N-1:-1:0 do
4: δQ← (3.21)
5: if Quu ≻ 0 then
6: K, d,∆V ← (3.22), (3.24)
7: else
8: Increase ρ and go to line 3
9: end if

10: end for
11: return K, d,∆V
12: end function

Once the optimal feedback gains for each time step are computed, the nominal
trajectories can be updated in the forward pass by simulating forward the dynamics:

δxk = x̄k − xk

δuk = Kkδxk + αdk

ūk = uk + δuk

x̄k+1 = f(x̄k, ūk)

(3.26)
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where x̄k and ūk are the updated nominal trajectories and 0 ≤ α ≤ 1 is a scaling
term.
The algorithm is shown below:

Algorithm 5 Forward Pass
1: function FORWARDPASS(X,U,K, d,∆V, J)
2: Initialize x̄0 = x0, α = 1, J− ← J
3: for k=0:1:N-1 do
4: ūk = uk +Kk(x̄k − xk) + αdk

5: xk+1 ← Using x̄k, ūk

6: end for
7: J ← Using X,U
8: if J satisfies line search conditions then
9: X ← X̄, U ← Ū

10: else
11: Reduce α and go to line 3
12: end if
13: return X,U, J
14: end function

Since the optimization problem is nonlinear, a line search along the descent
direction is needed to ensure an adequate reduction in cost. The used one is a
simple backtracking line search on the feed-forward term using the parameter α as
explained previously in Section 2.2.

3.2 Model of the Rope: Damped-Spring-Mass
system

The model of the rope is designed through point masses linked by springs. Each
point is characterized by position, velocity and mass even though it doesn’t take
space. In this way, the state vector of the rope will be a vector of length 6 by the
number of the masses:

x =
C
p
v

D

where p stores the positions of all the masses in a 3D space and v the corresponding
velocities.
The adopted model is shown below:
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Figure 3.1: Mass-Spring-Damped Model [32]

Initially, the object is in a rest shape denoted by S0. When an external force
fext, such as gravity or force applied by a manipulator, is exerted on the object,
it undergoes deformation, causing the masses within the object to move to a new
position represented by pnew.
In physics-based models, the resulting deformation is typically quantified using the
displacement vector ∆p, which is calculated as the difference between pnew and
the initial position p0. Additionally, the displacement unit vector u is defined as
the normalized form of the displacement, obtained as ∆p

||∆p|| .
To model the dynamic behavior of deformations over time, Newton’s second law of
motion is applied. This law relates the forces acting on the object to its resulting
acceleration, enabling the simulation of the object’s dynamic response to external
forces.
Let pt

i be the position of the particle i at the time t:

vt
i = ṗt

i, at
i = v̇t

i, miat
i = f t

exti
(3.27)

where mi, f t
exti

, at
i and vt

i are respectively the mass, the external forces, acceleration
and velocity at time t and ṗt

i, v̇t
i are first-order time derivatives of the position

and velocity [33]. The Hooke’s law is used to simulate the springs, which states
that the force exerted by a spring scales linearly with how much it is elongated or
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compressed:
F = −k(∆p− lrest) (3.28)

where k is the spring stiffness and it is constant, u is the unit vector along the
spring computed earlier, i.e. the normalized version of the distance between the
two endpoints of the springs, ∆p is the current length of the spring and lrest is the
length of the spring at rest.
The Hooke’s law gives the force exerted by the spring on the masses once known
their positions.
When dealing with dynamical manipulation of the object, there are unrealistic
behaviours if the damping factor is not introduced. Hence, in addition to the
Hooke’s law, there is also a damping factor Fdamped = −c∆ṗ along with the forces
derived from the gravitational acceleration g that goes along the negative z direction.
Thus, the total force is given by:

F = −k(∆p− lrest)− c∆ṗ +mg (3.29)

Moreover, there is the external force given by the control input that has to be
added to one of the masses at the end of the rope in order to manipulate it. Hence:
for the manipulated mass, the total force is:

F = −k(∆p− lrest)− c∆ṗ +mg + Finput (3.30)

To ensure stability and simulate shear/strain forces in the original shape formation,
it is necessary to incorporate three types of springs: structural (elastic) springs,
shear springs, and bend (flexion) springs.
The structural springs help maintain the elasticity of the model and provide
resistance against deformation. They contribute to the restoration of the object to
its original shape when external forces are applied.
Shear springs are essential for preventing excessive stretching or elongation of the
model in diagonal directions. They restrict the deformation of the object and
maintain its stability.
Bend springs, on the other hand, exert forces to counteract any bending or folding
of the model. They assist in preserving the structural integrity of the object and
ensure that it retains its desired shape.
Referring to Figure 3.1, the adjacent springs are the elastic and shear ones, whilst
the diagonal are the flexion ones. Thus, the internal forces that act on two adjacent
masses are:

F = −kelastic(∆p− lrest)− celastic∆ṗ− kshear(∆p− lrest)− cshear∆ṗ (3.31)

whereas for two diagonal masses holds:

F = −kbend(∆p− lrest)− cbend∆ṗ (3.32)
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This means that on each mass, the internal force acting on it is the linear combi-
nation of the elastic and shear force from the adjacent masses and the bend force
from the diagonal ones.
The inclusion of additional types of springs, such as shear and bend springs, in ad-
dition to the structural springs, may not be immediately apparent. This arises from
the inherent one-dimensional nature of conventional spring models. This limitation,
indeed, necessitates the introduction of shear and bend springs to capture more
complex deformations accurately. Shear springs help prevent excessive stretching
or elongation of the object in diagonal directions, while bend springs resist bending
or folding of the model.
Consequently, constructing an appropriate spring network often relies on prior
knowledge or an iterative process of trial and error to ensure stability and capture
the desired deformations of the specific object. [34]
Here, the physical parameters of the rope are set based on a trial-and-error proce-
dure as a trade-off between computational issues and the ones that represent in a
better way the behavior of a rope. They are resumed in the table below.

Parameter Value
N° of masses 5

Rest length of the springs 1
Total mass 0.3

Stiffness of elastic springs 140
Stiffness of shear springs 5
Stiffness of bend springs 1

Damping value of elastic springs 28
Damping value of shear springs 1
Damping value of bend springs 0.2

Table 3.1: Parameters of the rope [35]

Once the parameters are defined, to advance in time we can iteratively evaluate
the current rate of change and take small steps forward by using an integration
scheme as:

xk+1 = xk + change_of(xk)dt (3.33)

In order to use the algorithm previously described, we need the Jacobians of the
dynamics with respect to the state and the control input. To get them, it is possible
to use JAX environment in Python.
JAX is a powerful tool that extends the capabilities of NumPy to run on various
hardware platforms such as CPU, GPU, and TPU. It provides excellent support for
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automatic differentiation, making it ideal for high-performance machine learning
research.
One of the key features of JAX is its ability to automatically differentiate native
Python and NumPy code. It supports a wide range of Python features, including
loops, conditional statements (ifs), recursion, and closures. This means that JAX
can handle complex code structures and calculate derivatives of functions that
involve these features.
Additionally, JAX offers the ability to compute higher-order derivatives, allowing
for calculations of derivatives of derivatives of derivatives and so on.
Here, since it is needed to differentiate a vector-valued function, i.e. the dynamics,
that produces the Jacobian, the most suitable function to use is jax.jacfwd due
to the dimensionality of the matrix nxm where n is greater than m.

3.3 The cost function
The other element that contributes to the efficiency of the optimization process is
the employment of a suitable cost function.
In optimal control, the cost function plays a crucial role in determining the optimal
control policy. The cost function represents the objective that the control policy
seeks to optimize over a specified time horizon. It is a mathematical expression
that quantifies the performance of the system being controlled based on the control
inputs and the states of the system.
The role of the cost function is to provide a quantitative measure of how well the
system is performing under a given control policy. The optimal control problem
aims to find the control policy that minimizes the cost function while satisfying
system constraints. The choice of cost function depends on the specific application
and the performance criteria of the system being controlled.
The cost function typically includes two components: a state cost and a control
cost. The state cost penalizes the deviation of the system state from a desired
set-point, while the control cost penalizes the magnitude of the control inputs. The
relative weights assigned to these components determine the trade-off between the
performance of the system and the cost of control.
For the describe problem the cost function of the LQR is expressed as:

J(x, u) = (xN − xgoal)TQf (xN − xgoal) +
N−1Ø
k=0

[(xk − xgoal)TQ(xk − xgoal) + uT
kRuk]

(3.34)
where Q, Qf and R are diagonal and positive definite matrices.
The x vector contains the position and the velocities of all the masses of the rope,
so it aims to minimize the distance between the current position and the target
position. The goal is to manipulate the rope in a such a way that it lies on the box
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as shown in Figure 1.2.
The cost function has to include the goal state because the LQR controller, as it is
constructed, goes to the zero state by default. In this way, a reference is set and
the minimization is done in order to achieve a specific position.
For what concerns the starting position, it was chosen to represent the resting
position of the robotic arm where the end-effector holds one of the ends of the rope.
In this way the first mass is in position (0,0,4) and the last one lays on the ground.
The cost function can be chosen in multiple ways. The goal state, as implemented in
the code, has the manipulated mass in (1,0,4.2) and the last mass in (5,0,4.2). The
weight of the final position has the highest influence on the cost function. However,
the most important aspect is that the end of the rope lays on the box, which means
that the manipulated mass is not forced to reach the goal state (1,0,4.2). In this
sense, a heavier weight on the last masses is a more efficient way to proceed.
In Figure 3.2 and Figure 3.3, it is shown the trajectory and the final position of the
manipulated rope with respectively an equal weight for all the masses and a weight
more significant for the last 3 ones. The weight is set to 150 for high influence and
10−4 for low influence.
Here, the velocity of the last time-step is neglected, hence the weight is set to 150
only for the positions in the state vector, whilst for velocities is set to 10−4.

Figure 3.2: Trajectory and final posi-
tion with a cost function that penalizes
the last three masses

Figure 3.3: Trajectory and final posi-
tion with a cost function that penalizes
all the masses equally

Both figures show the trajectories of the manipulated mass and the masses
involved in the cost function and the final position in output after 1 iteration of the
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algorithm, but this is enough to show that the one that penalizes only the relevant
masses has a smoother trajectory and reaches the goal in a better way, whereas
the other one has a worse behaviour since it tries also to get the manipulated mass
closer to the target position, that is unnecessary for this task.

3.4 Discretization of the model and the role of
the time-step

Once the model of the rope with its equations is defined, one should notice the
nonlinearity of it. Indeed, the dynamical model of the rope is a nonlinear and
continuous model of the form:

ẋ(t) = f(x(t), u(t)) (3.35)

By discretizing it, the controller can be applied, i.e. the continuous-time nonlinear
model has to be approximated by a discrete-time nonlinear model.
The discretization process involves sampling the continuous-time model at discrete
time intervals and approximating the continuous-time dynamics by a difference
equation that describes the evolution of the state variables between samples. The
choice of the sampling interval, or the time step, is critical in determining the
accuracy and stability of the discrete-time model.
There are several methods for discretizing nonlinear models, including the Euler
method, semi-implicit methods like backward Euler method, trapezoidal rule, and
higher-order numerical integration methods such as Runge-Kutta methods. These
methods involve approximating the nonlinear differential equations that describe
the continuous-time dynamics by difference equations that describe the discrete-
time dynamics.
Here, the main differences and advantages are described for each of them:

1. Euler’s Method:

• Euler’s method is a simple and straightforward approach to numerical
integration.

• It uses a first-order approximation to estimate the solution at the next
time step.

• It is explicit, meaning that the solution at the next time step is solely
based on the current solution.

• Euler’s method has a local truncation error of O(h2), where h is the time
step size.

• It is computationally efficient but less accurate compared to higher-order
methods.
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• Euler’s method can exhibit stability issues, especially for stiff systems or
large time step sizes.

2. Semi-Implicit Methods:

• Semi-implicit methods combine implicit and explicit components in their
formulation.

• These methods update some variables explicitly while updating others
implicitly.

• Implicit updates involve solving algebraic equations at each time step,
making them more computationally intensive compared to explicit meth-
ods.

• By incorporating implicit updates, semi-implicit methods can provide
better stability and accuracy compared to explicit methods like Euler’s
method.

• Common semi-implicit methods include the backward Euler method, the
trapezoidal rule, and the midpoint rule.

3. Runge-Kutta 4th order Methods:

• The fourth-order Runge-Kutta method is a widely used numerical inte-
gration technique.

• It is an explicit method that computes the solution at the next time step
based on weighted averages of function evaluations at different points
within the time interval.

• RK4 employs four function evaluations per time step, which improves
accuracy compared to Euler’s method.

• It has a local truncation error of O(h5), making it more accurate than
Euler’s method and semi-implicit methods.

• RK4 is more stable than Euler’s method for a wide range of problems
and can handle stiff systems with appropriate time step sizes.

• However, RK4 is computationally more expensive than Euler’s method
and semi-implicit methods due to the additional function evaluations.

In summary, Euler’s method is simple but less accurate and prone to stability issues.
Semi-implicit methods strike a balance between explicit and implicit approaches,
providing improved stability and accuracy. RK4 is a higher-order explicit method
that offers better accuracy at the cost of increased computational complexity.
In the following tables the equations are shown where the terms t and y are referred
to time-step n, while ′ refers to time-step n+ 1.
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Euler method Semi-Implicit RK4

y′ = y + hf(t, y) y′ = y + hf(t′, y′)

k1 = f(t, y),
k2 = f(t+ h

2 , y + hk1
2 )

k3 = f(t+ h
2 , y + hk2

2 )
k4 = f(t+ h, y + hk3)
y′ = y + 1

6(k1 + 2k2 + 2k3 + k4)h

Table 3.2: Systems equation of the discretization methods described above

It is important to note that discretization of nonlinear models introduces dis-
cretization errors, which can lead to discrepancies between the simulated or con-
trolled system and the actual system. Therefore, it is important to carefully
evaluate the discretization method and the choice of the time step to ensure that
the discretization errors are small and do not significantly affect the performance
or stability of the system.
The time-step determines the interval at which the continuous-time system is
sampled to obtain a discrete-time representation.The choice of time-step size has
significant implications for the accuracy, stability, and computational efficiency of
the resulting discrete-time model.
A smaller time-step size generally leads to a more accurate discretization. When
the time-step is small, the discrete-time model better approximates the behavior of
the original continuous-time system. However, using a very small time-step can
increase computational requirements and may not always be necessary depending
on the dynamics of the system.
The time-step size affects the stability of the discrete-time system. It can introduce
stability issues if the time-step is too large. In general, a smaller time-step size
improves stability by preventing large errors or instability due to nonlinear behavior.
A larger time-step size reduces the number of calculations required to obtain the
discrete-time model, thus improving computational efficiency. However, a larger
time-step can result in a less accurate representation of the system’s dynamics,
potentially leading to performance degradation. Balancing computational efficiency
and accuracy is crucial when selecting an appropriate time-step.
In general, the optimal time step is often determined by trial and error, starting
with a relatively large time step and gradually decreasing it until the desired level
of accuracy is achieved, or until the computational cost becomes prohibitive.
In Section 2.1.1, it has been emphasized that when dealing with high stiffness
materials, mass-spring system techniques face stability issues, thereby necessitating
a smaller time integration step in the simulation process. For this reason, even
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though it’s more computationally expensive, RK4 is needed to have a stable simu-
lation.
Furthermore, it can be shown that, when the time-step is higher than 10−3, the
parameters of the rope in Table 3.1 have to be set to lower values otherwise they
produce Nan values when the transition of the dynamics happens. By having a
time-step of 10−3, the computational cost is more expensive and it is needed a
length horizon of 2000.
The horizon is an important parameter in optimal control and the performances of
the algorithm against different lengths for it will be made in the next chapter.
All these considerations lead to the decision of setting two different time-steps,
a smaller one for the integration time, such that it is possible to achieve a more
accurate simulation of the dynamical behavior of the rope and a slightly bigger one
for the controller. The analysis on the different rates of frequency between them is
made in the next chapter since also the time-step of the controller is an important
feature that describes the performances of the algorithm.
Here it is shown the result achieved with an integration time-step of 0.001 and a
controller time-step of 0.01.

Figure 3.4: Trajectory and final position with time-step of 0.001 for the integration
time and 0.01 for the controller
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In order to simulate the rope dynamic of the form 3.35, the control input u is
needed along all the simulation steps: for this reason, the algorithm computes the
suitable control input every 10 steps of the simulation horizon and it is applied
over the next 10 integration time-steps to roll-out the dynamic of the rope.
Thus, the forward pass of the LQR is modified as follows:

Algorithm 6 Modified Forward Pass
1: function Modified-FORWARDPASS(X,U,K, d,∆V, J)
2: Initialize x̄0 = x0, α = 1, J− ← J
3: for k=0:10:N-1 do
4: ūk = uk +Kk(x̄k − xk) + αdk

5: for l=0:1:10 do
6: xk+l+1 ← Using ¯xk+l, ūk

7: end for
8: end for
9: J ← Using X,U

10: if J satisfies line search conditions then
11: X ← X̄, U ← Ū
12: else
13: Reduce α and go to line 3
14: end if
15: return X,U, J
16: end function

3.5 Structure of the code
The code was implemented in Python making use of classes.
The classes are:

• Rope, rope_system.py;

• LQR, iLQR.py;

• AL-iLQR, AL_iLQR.py;

• Constraints, constraints.py.

3.5.1 Rope
The model of the rope is defined in the python file rope_system.py and shown in
the appendix section A.1.
It is implemented as a class, inherited from another one called DynamicalSystem
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which defines the cost function and the matrices Q and R related to the LQR,
described previously. Its methods compute also the running cost and the final one
and set the target.
Then, the Rope class contains all the needed methods to set the initial and final
positions, the goal state and the dynamic of the system.
Here the hooked-damped law explained earlier is implemented; the internal forces
and the gravity one are then applied to all the masses, whilst the external force,
the control law, is applied only to the actuated one.
The derivative of the state vector, i.e. velocity and acceleration, is computed in
the function change_of_state, where the Newton law is applied.
Finally, the new state is computed in the function transition using Runge-Kutta
4th method.
One of the advantage of using JAX is the jax.jit transform, which performs just in
time compilation of a JAX python function so it can be executed efficiently. In
this case it is applied to the RK4 method because it holds the constraints forced
by JAX and makes the code faster.
Lastly, here it’s also implemented the contact model for the dynamic of the system.
In general, when an object bounces on a surface, it produces a discontinuity in the
differential equation that describes its dynamic, since either the position or the
velocity along some axis change.
There are two options to deal with these:

• Time stepping/Contact-implicit formulation, which solves a constrained opti-
mization problem at every time-step and enforces no interpenetration between
objects by solving for contact forces;

• Event-based/Hybrid formulation, which integrates the ODE while checking
for contact events by making use of a guard function, for example z ≥ 0 for
the contact with the ground. In this way, when contacts happen, it executes
a jump map that models the discontinuity and then it continues with its
dynamic.

In control theory, hybrid formulation is easier to apply with standard algorithms
such as DDP. The downside is that requires pre-specified contact mode sequences,
i.e. which part of the robot is in contact at each time-step. However, with the
hybrid formulation, contact forces are not explicitly computed and we can use
high-accuracy integrators.
Thus, in the rope model, when a transition is performed, the new state is checked
to see if some of the masses is either on the ground or it is bumping against the
box where it is supposed to lay on.
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3.5.2 Constraints

The file constraints.py contains two different classes for two different constraints:
the sphere constraint and the box constraint, that are shown in Figure 3.5. The
code is shown in the appendix section A.4.
The sphere constraint represents the 3D space where the actuated mass can actually
move, i.e. where the end-effector can act. Thus, it is an inequality constraint in
the position of the actuated mass.
In order to compute the needed matrices for the algorithm, the methods of this
class have also to evaluate the value of the constraints for all the affected states of
the trajectory. In this sense, here a scalar value will be returned and it represents
the distance between the surface of the sphere and the state of the actuated mass:
if it is inside the sphere is negative, otherwise positive. This follows the Augmented
Lagrangian method: it will have relevance only if the mass is outside the sphere,
i.e. positive, and the correspondent multiplier will be different form 0.
The sphere is constructed such that the center is in (0,0,4), position in space of the
manipulated mass at the initial state, and radius of 3.
The box constraint instead is a set of inequality constraints on all the axis. In
order to evaluate it, the position of each masses is checked and if it is inside the
box with a certain tolerance, it returns a positive value so that it has a relevance
in the Augmented Lagrangian equation. The box is implemented such that the
upper face is at z = 3.2 .
Both classes compute also the Jacobian of the correspondent constraint as required
from the algorithm.
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Figure 3.5: Sphere and Box constraints

Lastly, iLQR.py computes the backward and forward steps shown in Algorithm 4
and 6 (Appendix Section A.3), whilst AL_iLQR.py implements the whole algorithm
as shown in Algorithm 2 (Appendix Section A.2).
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Analysis and Results

This section aims to assess the algorithm’s performance, with a particular focus
on identifying potential future scenarios and advancements. To achieve this, the
performances of the solver will be analyzed by investigating the impact of various
parameters. These parameters include the horizon length, the controller’s sampling
time, its ability to reject disturbances and the importance of initializing the penalty
term µ effectively.
All the results, both tables and figures, show the outputs after 1 iteration of the
solver AL-iLQR.
For a clearer visualization of the trajectories in output, the only trajectories
displayed in the figures will be the ones of the manipulated mass and the last mass.

4.1 Tuning of the parameters of the cost function
In Section 3.3, the role of the cost function was discussed as well as the choice of
its shape in order to achieve the proposed task. As shown in the equation 3.34, the
parameters that can be chosen and tuned are the goal state xgoal, the running cost
matrix for the state vector Q, the running cost matrix for the control input R and
the final cost matrix for the final state Qf .
For what concerns the final cost matrix Qf , as previously explained, the relevant
entries are the one relative to the position of the last three masses and they are
set equally to 150 because a value of a lower magnitude isn’t enough to produce a
trajectory in output; in fact, with a value of 50, for example, the solver does not
find a optimal or sub-optimal trajectory.
Therefore, in this section, the analysis on the other parameters will be made to
better understand how the behavior and the optimal trajectory change based on
the possible values.
In the following Table, the parameters of the performance shown in Figure 3.2 are
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resumed, such that the analysis will be made by varying one of them each time.

Parameter Description Dimension Value
xgoal Goal State 30x1 4.2 along z axis

Q
Running Cost 30x30 10−4
State Matrix

R
Running Cost 3x3 5−3

Control Matrix

Table 4.1: Parameters’ values of the cost function

4.1.1 The Goal State’s Height

The first parameter to be analysed is the vector containing the goal state. The
goal state vector is a column vector of dimension 30x1 containing the target values
to be achieved by the state vector x representing the rope nodes’ positions and
velocities in the space at the last time-step. The first mass, the manipulated one,
should get to the position (1,0,4.2) while the last one to (5,0,4.2), stating that the
rest length of the springs is of length 1.
As described in Section 3.5.2, the box is positioned such that the upper face is at a
height of 3.2. As it is treated like an obstacle to be avoided and it was implemented
to not be penetrated, with a goal height near to the edge of the box the algorithm
would have more difficulties in achieving the target, since it cannot control directly
the trajectory of all the masses, but only of the manipulated one and the others
through the dynamics of the system. Instead, a target slightly higher than 3.2
would allow a smoother behaviour.
In the next Table, the performances are shown in terms of cost, iterations and
violation of the constraints with different values of the height of the goal; in the
following Figures, the trajectory of the manipulated mass along with the final
position of the rope is displayed.

48



Analysis and Results

Height
along z Total cost Final Cost n° of iLQR

iterations

maximum
violation

of constraints
3.5 417.745 143.444 7 4.737
3.8 631.89 188.475 5 51.277
4 521.071 153.50 8 17.108

4.2 142.837 80.117 5 4.23

Table 4.2: Variation of the final total cost based on the target position

From the results above, it can be said that for values of 3.5 and 4 the performances
are comparable in terms of costs and iterations, whilst the violation of the constraints
is bigger for the second value.
With a value of 3.8, the performance are slightly worse for what concerns the cost
of the trajectory, but the violation of the constraints is significantly higher.
As it is possible to notice from the figures below, as the target moves closer to
the edge, it becomes increasingly challenging for the control input’s impulse to
be effective in achieving the desired task of lifting the other end of the rope to a
suitable height to pass over the upper face of the box.

Figure 4.1: Trajectory and final posi-
tion with height of 3.5

Figure 4.2: Trajectory and final posi-
tion with height of 3.8

The best achieved performance is shown in Figure 4.4, even if the constraint of
the radius of the sphere is slightly violated.
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However, one would expect to have a similar behaviour with a height of 4; as shown
in Figure 4.3, the impulse is similar to the one in Figure 4.4, but less smoother and
intuitive with respect the optimal one. Looking at the maximum absolute value of
the control input u, in the first case, it is around 24, whilst in the latter around
6. Due to the complex dynamics of the system and to its changing the shape as
it is non-rigid, higher values of the control inputs mean greater values of external
forces applied to the deformable objects, implying higher deformations and more
dynamical movements of the masses, i.e. the nodes, leading to less controllable
behaviours and higher total costs.

Figure 4.3: Trajectory and final posi-
tion with height of 4

Figure 4.4: Trajectory and final posi-
tion with height of 4.2

A common behaviour shared by the the first three simulation is that when the
sphere constraint is violated, the solver works such that the manipulated mass
is brought back inside its volume. This involves sudden changes in the direction
of the control input and higher values for it, that cause deeper deformations and
uncontrollable behaviour of the manipulated system along the whole trajectory, as
explained earlier.
In general, a higher value with respect to the surface allows to have a smoother
behaviour, thus in the following analysis the height is set to 4.2 as it gave the best
performance.
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4.1.2 The running cost matrices Q and R
Tuning the weight matrices Q and R, that are the cost-to-go or running cost
matrices, usually involves a trial-and-error procedure. They are usually chosen as
diagonal matrices, so that if there are n states and p control inputs, there are n+p
parameters to choose.
The diagonal values are chosen according to the relative importance of each state
and control variable. As a first choice, they can be of the same order of magnitude
and then they are modified to impose the desired performance. In general, if the
value of the weight is high, the correspondent value of the state or control input
has more relevance in the cost function so the algorithm tries to minimize it, whilst
if the weight is too low, it can assume greater values.
Reminding the result achieved in Figure 3.2, that was the best in terms of trajectory
and final cost, here the performance of the solver will be analysed when the values
of the weights of Q and R are changed to see how it behaves accordingly. The
values of Q and R for the best performance are of Q = 1e−4 and R = 5e−3.

Analysis on the running cost matrix Q

The first parameter to be analysed is the running cost matrix Q, while R is kept
fixed to 5e−3.
The running cost Q matrix is a positive semi-definite matrix that defines the state
cost, i.e. it is used to specify the relative importance of each state variable in
the cost function along the time-steps from 0 to k = N − 1, that is along the
whole trajectory except for the last state. Its relevance plays the role of trying to
minimizing at every time-step the distance between the current position and the
desired one.
In the following Table, the results are resumed.

Q Total Cost Final Cost n° of iLQR
iterations

maximum
violation

of constraints
0.1 11285.992 3247.118 5 -1
0.01 4617.263 48.317 8 7.551
0.001 1288.896 805.413 7 15.21

0.0001 142.837 80.117 5 4.23
0.00001 546.517 451.425 6 8.234

Table 4.3: Variation of the final cost based on the values of Q for both velocities
and positions
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From these results, the best outcome in terms of achieving the goal is the one
with Q = 0.01, because the final cost is lower that the one with Q = 0.0001;
however the violation of the constraints is higher.
The value of the total cost cannot be used as parameter to compare the performances
here, because the accumulation over the time-steps is higher due to the higher
weight itself. Thus, to have more information, one should look at the trajectories
in output that are shown in the following Figures.

Figure 4.5: Trajectory and final posi-
tion with Q = 0.1 and R = 0.005

Figure 4.6: Trajectory and final posi-
tion with Q = 0.01 and R = 0.005
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Figure 4.7: Trajectory and final posi-
tion with Q = 0.001 and R = 0.005

Figure 4.8: Trajectory and final posi-
tion with Q = 0.00001 and R = 0.005

First, by comparing Figure 4.6 and 3.2, one can say that the trajectory in output
from the latter is still the best solution in terms of overall performance, because
of its smoothness and satisfaction of the constraints, as well as feasibility of the
trajectory itself.
Then, it can be stated that with a high value of Q, the velocity is highly penalized,
leading to smaller values than the one needed to fulfill the task and give the
necessary impulse to complete the task. This can be appreciated in Figure 4.5.
Conversely, a smaller value leads to the possibility of having higher velocities and
more dynamical movements, as shown in Figure 4.8.
These results take to the first of conclusion of having different weights for positions
and velocities, such that one can enforce a strong fulfillment of the target through a
higher value for the positions of the masses while neglecting the velocities through
which the input tries to complete the task.
In this sense, for example, one could expect a different behaviour with respect the
output in Figure 4.5, since the velocity is not limited as earlier.
Hence, in the following Figures the Q is set such that the velocities have a weight
of 1e−4 whilst the positions have respectively {0.1,0.01,0.001,0.00001}. In this way
it is possible to notice the influence of the parameter: the higher the faster it tries
to achieve the goal state but now the velocity have a negligible role in the cost
function, so it is not minimized to small values.
In the following Table the results are summarized.
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Q Total Cost Final Cost n° of iLQR
iterations

maximum
violation

of constraints
0.1 12066.317 554.37 6 61.713
0.01 5229.63 541.328 9 20.199
0.001 502.158 293.884 7 5.359

0.0001 142.837 80.117 5 4.23
0.00001 520.071 417.326 8 9.638

Table 4.4: Variation of the final cost based on the values of Q for the position
only

As expected, with respect to the results showed in Table 4.3, the final cost for
the simulations with Q = 0.1 and Q = 0.001 is improved due to the fact that the
velocity is not minimized anymore, whilst with Q = 0.00001 it remains the same,
since the magnitudes of the weights of both velocity and position are comparable
and the output should not change significantly.
Looking at the maximum absolute velocities, in fact:

• with Q = 0.1, the value goes from 3.8 to 51.2;

• with Q = 0.001, the value goes from 12.5 to 16.76.

To compare this with the simulation with Q = 0.0001, here the maximum absolute
value is around 6.5.
From the results in output with Q = 0.1 and Q = 0.001, it is possible to appreciate
that with a higher value of Q the solver tries to minimize in a faster way the
distance from the goal, so it results in higher results and worst performances.
For Q = 0.01, the value of the final cost significantly increased. This could be due
to the fact that in the previous configuration shown in Figure 4.6, the velocity was
limited to lower values but not as in Figure 4.5. This allowed to have velocities
high enough to fulfill the task. i.e. the trade-off between positions and velocities
allowed to have a good result.
In this case instead, the velocity is not limited anymore, while the weight on the
position is still high; hence the solver tries to achieve the target in the fastest
way which leads to high velocities, high external forces and, as said earlier, less
controllable shape and deformations of the deformable object.
By comparing the maximum value of the velocity in both configurations, indeed,
in Figure 4.6 it is around 33, whilst in Figure 4.10 it is around 52. In the following
Figures, the trajectories in output are shown.
As one could see comparing Figures 4.5 and 4.9, the first part of the trajectory is

54



Analysis and Results

the same in both situations, but the possibility of having a wider range of velocities,
when only the position has a higher weight, takes to larger and more dynamical
movements. This produces a significant violation of the constraints and a less
smooth behaviour of the input, as it tries to reduce as fast as possible the distance
between starting and goal positions.
By comparing the trajectories in Figures 4.6 and 4.10, one could notice how in the
second configuration the velocity is not limited to a small range of values. This,
however, leads to wider movements and worst behavior of the overall performance.
As proof, one could try to increase by 10 the weight of the velocity to see how the
solver behaves. One may expect to have a smoother behavior and better results
given all the considerations said up to now.

Figure 4.9: Trajectory and final posi-
tion with Q = 0.1 for position only and
R = 0.005

Figure 4.10: Trajectory and final posi-
tion with Q = 0.01 for position only and
R = 0.005
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Figure 4.11: Trajectory and final po-
sition with Q = 0.001 for position only
and R = 0.005

Figure 4.12: Trajectory and final posi-
tion with Q = 0.00001 for position only
and R = 0.005

Looking at the Table 4.4, the improvement for the value of Q = 0.001 is
significant in terms of final cost and violation of the constraints, however the
trajectory is not as smooth as with the value of Q = 0.0001.
Lastly, for what concerns the trajectories in Figures 4.8 and 4.12, the results are
almost the same, as one may expect.

Analysis on the running cost matrix R

The running cost matrix R is a positive definite matrix that defines the control cost,
also known as the control weighting matrix, used to specify the relative importance
of each control input in the cost function. It determines how much weight is given
to the control inputs in the control objective.
Higher values in R indicate that control inputs are more important in the control
objective, while lower values imply less importance. The diagonal elements of
R represent the individual weights for each control input, and the off-diagonal
elements indicate the relative coupling between control inputs.
A higher weight in R makes the controller prioritize minimizing the control effort,
leading to smoother and potentially less aggressive control actions. Conversely,
a lower weight in R places more emphasis on controlling the states, allowing the
controller to be more responsive to state deviations at the expense of potentially
larger control efforts.
In this work, the maximum absolute value for the control inputs has a crucial
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importance, since it is supposed to be applied by the end-effector of a robotic arm
that has structural and joints limits. However, there are multiple ways of limiting
the control input, either by tuning the R matrix or by using constraints on the
control inputs or by using control bounds and clipping the values to the maximum
and minimum when it exceeds.
As one can notice from the Table below, the control input values for the trajectory in
output shown in Figure 3.2 are reasonable and low. In this section, the performance
and behavior will be analyzed by adjusting the R matrix to lower or higher values
compared to those used for the best outcome.
In the following Table, the results by varying the value of R while keeping the Q
fixed to 1e−4 are resumed.

R Total Cost Final Cost n° of iLQR
iterations

Min/Max
control
input

0.5 6212.921 6204 1 0.001/0.001
0.05 6212.921 6204 1 0.001/0.001

0.005 142.837 80.117 5 5.883/-0.982
0.0005 1667.596 716.891 9 52.109/-19.935

Table 4.5: Variation of the performances based on the values of R

As it is possible to see from the data in the Table, with a R matrix built as an
identity matrix with values on the diagonal of 0.5 and 0.05, the solver does not
succeed in finding any optimal trajectory. The control input values are too low
to manipulate the rope with the needed strength. One could have expected these
results since with a value of 0.005 the maximum absolute value is around 6.
One could expect also the values with R = 0.0005, due to the fact that the weight
is lower so they can assume larger values. However this lead to more dynamical
movements and larger deformations, that makes the deformable object to be less
controllable.
These considerations are confirmed by the trajectories in output shown in the
following Figures.
As said earlier, in Figures 4.13 and 4.14, there is no trajectory in output, while in
4.16 the solver tries to fulfill the goal with more relaxed boundaries for the control
input u. This results in a less controllable behavior of the non-rigid system and
deeper deformations.
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Figure 4.13: Trajectory and final posi-
tion with Q = 0.0001 and R = 0.5

Figure 4.14: Trajectory and final posi-
tion with Q = 0.0001 and R = 0.05

Figure 4.15: Trajectory and final posi-
tion with Q = 0.0001 and R = 0.005

Figure 4.16: Trajectory and final posi-
tion with Q = 0.0001 and R = 0.0005

The results on the analysis of the cost function lead to the performance shown in
Figure 4.15 and the parameters shown in Table 4.1 at the beginning of this section.
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4.2 Analysis on the horizon
In Section 3.4, the choice of the time-step for the integration time of the dynamics
system of the non-rigid object was explained, along with the consequences on the
performance of the algorithm. According to that, then, the forward pass of the
iLQR was modified to have a lower control horizon with respect to the one needed
for the simulation, in order to improve the performances with a lower computational
cost required by the solver.
This section focuses on the importance of the horizon and its influence on the
performance of handling a deformable object. It also discusses the implications of
the horizon in terms of prediction accuracy and computational cost.

4.2.1 The role of the horizon in Optimal Control
In the field of optimal control theory, the horizon refers to the time duration over
which the control problem is considered and it affects the outcome.
The length of the horizon can vary depending on the specific problem and applica-
tion. It can be finite or infinite, and it can be discrete or continuous in time.
For trajectory optimization problems, a finite horizon is the most suitable choice
because it allows to work with algorithm such DDP. Furthermore, a finite horizon
reduces the computational cost by restricting the optimization problem to a finite
time interval, especially for systems with complex dynamics or high-dimensional
state and control spaces. Moreover, by using a finite horizon, at each optimization
iteration, the trajectory can be re-optimized based on the most up-to-date informa-
tion, allowing the system to respond and adapt to current environmental or task
requirements.
It is also needed to keep in mind that models used for trajectory optimization are
typically simplifications of the real system dynamics and, as a result, there are
inherent modeling errors and uncertainties. In this sense, a finite horizon helps
mitigate the impact of modeling errors by limiting the propagation of these errors
over time. By re-optimizing the trajectory periodically, the system can correct for
any deviations from the planned trajectory caused by modeling inaccuracies.
In addition, by optimizing the trajectory over a shorter time period, the solver can
focus on achieving desired objectives within a limited duration while accounting for
uncertainties and disturbances. This approach allows for more agile and responsive
control, achieving optimality while ensuring robustness.
In general, a horizon that is too short may not capture the system’s behavior
adequately, leading to suboptimal control performance, while a horizon that is too
long may introduce unnecessary computational complexity or become sensitive to
modeling errors.
Summarizing these considerations, the horizon could affect the solution in terms of:
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1. Performance: a longer horizon allows for better long-term planning and
optimization, potentially leading to improved performance. By considering a
larger time span, the control system can account for future changes, distur-
bances, and desired system behavior. On the other hand, a shorter horizon
may sacrifice long-term performance in favor of more frequent updates and
responsiveness to immediate changes;

2. Computational Complexity: longer horizons generally require more com-
putational resources and time to solve, as they involve larger optimization
problems. In practical applications, the computational complexity of solving
the control problem within the given horizon may impose limitations on the
real-time implementation of the control system. Therefore, there is often a
trade-off between horizon length and computational feasibility;

3. Robustness: a longer horizon allows the control system to consider a wider
range of possible future scenarios and adapt the control strategy accordingly.
This increased lookahead can enhance the robustness of the control system
by accounting for uncertainties in system dynamics, disturbances, or model
inaccuracies. Shorter horizons, however, may limit the ability to effectively
respond to uncertainties, potentially leading to sub-optimal performance in
the presence of disturbances.

Hence, the choice of the horizon for the controller depends on the specific require-
ments of the task, the complexity of the deformable object, and the capabilities of
the control system. It often requires iterative experimentation and tuning to find
the optimal balance between reactivity and planning for effective manipulation of
the deformable object like a rope.

4.2.2 Analysis of the outcomes based on the value of the
horizon

For the reasons explained above, in this Section, the behavior and performance of
the solver will be examined, focusing on the analysis of trajectories and outputs
with different horizon lengths. The simulation intervals between two consecutive
control updates will be maintained at 10.
In the Table below, the performances are summarized in terms of total and final
cost, number of required iteration for the LQR to converge and maximum value
for the violation of the constraints along the horizon.
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Horizon Total Cost Final Cost n° of iLQR
iterations

Maximum
violation of
constraints

1600 818.96 718.77 5 6.13
1800 612.406 431.193 8 5.61
2000 142.837 80.117 5 4.23
2250 1225.78 717.814 7 11.689
2500 1677.602 780.93 6 19.316
2750 870.203 266.296 7 20.716
3000 1390.733 951.125 7 21.93
4000 2011.663 604.653 4 18.84

Table 4.6: Variation of the final cost based on the values of the horizon

As the total cost accumulates over the time and strictly depend on the length
of the horizon, it cannot be considered as parameter to analyze the performance
of the solver. Instead, the final cost and the violation of constraints are more
suitable, while the number of iterations of the iLQR ranges from 4 to 8, so it’s
quite comparable among all of them.
One could notice that the violation of the constraints increases with the value
of the horizon, which could suggest using shorter values for better performances.
However, it is evident from the final cost values that an excessively short horizon
is not suitable as well. Indeed, the final cost for an horizon of 1600 is comparable
with the one of 4000.
In the following Figures, the trajectories in output for each of them are shown.
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Figure 4.17: Trajectory and final posi-
tion with Horizon=1600

Figure 4.18: Trajectory and final posi-
tion with Horizon=1800

Figure 4.19: Trajectory and final posi-
tion with Horizon=2000

Figure 4.20: Trajectory and final posi-
tion with Horizon=2250
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Figure 4.21: Trajectory and final posi-
tion with Horizon=2500

Figure 4.22: Trajectory and final posi-
tion with Horizon=2750

Figure 4.23: Trajectory and final posi-
tion with Horizon=3000

Figure 4.24: Trajectory and final posi-
tion with Horizon=4000

As it is possible to appreciate from the Figures above, with horizons of 1600
and 1800 in Figures 4.17 and 4.18, the trajectory is quite smooth and they almost
achieved the target, however they are sub-optimal with respect to the trajectory
shown in Figure 4.19, that is the most successful one among all of them in terms
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of final cost and violation of the constraints. The observation that can be made is
that this behaviour of the trajectory, that gets worse as long as the length of the
horizon increases, can be related to task itself. In fact, since the time-step for the
system simulation is of 0.001, having a length of the horizon of 2000 means having
a simulation time for the task of 2 seconds.
The results shown above suggest that the length of the horizon could be dependent
on the task itself, which means that for this specific task a too short time (less
than 2 seconds) does not allow to achieve the goal, whilst a longer time interval
(more than 2 seconds) is not suitable for the task itself because the solver is trying
to develop the movements along a time interval that is too long for achieving the
needed dynamical behavior to reach the proposed purpose.
In this sense, the results suggest that there is an optimal simulation time for
this specific task, i.e. the dynamical manipulation that the solver is trying to
achieve should be fast enough: the trajectory shown in Figure 4.19 is the dynamical
movement that this work is trying to pursue and doing it in 2 seconds allows to have
the suitable control inputs and velocities to realize it. Instead, when attempting
to accomplish the task within a longer timeframe, such as 3 or 4 seconds, that
trajectory undergoes a deceleration. Consequently, this limitation prevents the
attainment of the appropriate impulse and velocities, resulting in an output that
falls short of achieving the intended purpose.
The relation between the final cost and the horizon length is summarized in Figure
4.25.

Figure 4.25: Variation of the final cost vs the horizon

64



Analysis and Results

Based on the numbers, with the horizon of 2000, the solver shows also a faster
convergence with 5 required iterations and a better satisfaction of the constraints
with a value of 4.3.

4.2.3 Analysis on the sampling time of the controller
The time-step of a controller is another important parameter to consider, and it
can impact the performance and stability of the control system. The time-step of a
controller refers to the interval at which the controller computes its output based
on the system input and feedback.
Here it is possible to analyse this parameter because it is a simulation, otherwise
the parameter is fixed based on the frequency of the controller. Indeed, in a
digital control system, the time-step is determined by the sampling rate of the
analog-to-digital converter (ADC) that measures the system input and feedback,
and the processing time of the micro-controller or digital signal processor (DSP)
that runs the control algorithm.
If the time-step of the controller is too large, the controller may not be able to
respond quickly enough to changes in the system input or disturbances, leading to
unstable behavior. On the other hand, if the time-step is too small, the controller
may consume too much processing power or memory, leading to computational
delays or overshoot. The appropriate time-step of a controller depends on several
factors, such as the dynamics of the controlled system and the computational
resources available. In general, a smaller time-step can provide better control
performance by allowing the controller to respond more quickly to changes in the
system, but it may also increase the computational demands of the controller.
Therefore, a balance between performance and computational efficiency needs to
be struck when choosing it.
In practice, the optimal time step is often determined by trial and error, starting
with a relatively large time step and gradually decreasing it until the desired
level of accuracy is achieved, or until the computational cost becomes prohibitive.
The choice of the time step may also depend on the specific requirements of the
application, such as real-time constraints or safety considerations.

4.2.4 Analysis of the outcomes based on the value of the
frequency of the controller

In the previous sections, the best result was obtained with a controller’s sampling
interval of 10 over a simulation horizon of 2000, which leads to a simulation time
of 2s. In this section instead, the behavior and performance of the solver based on
the sampling interval of the controller is analyzed.
As said earlier, the length of the simulation horizon is important in terms of
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dynamics of the task and the trajectory in output; therefore the length of the
horizon will be fixed to 2000, while the analysis will be made by changing the
sampling interval of the controller.
In the Table below, the performances are summarized in terms of total and final
cost, number of required iteration for the LQR to converge and maximum value
for the violation of the constraints along the horizon.

Frequency Total Cost Final Cost n° of iLQR
iterations

Maximum
violation of
constraints

0.002 3238.56 542.53 6 13.86
0.004 1674.39 771.68 5 16.52
0.005 4719.69 3063.79 3 34.32
0.008 614.32 382.27 11 6.02
0.01 142.837 80.177 5 4.23
0.012 333.91 160.04 6 -0.39
0.014 3674.43 3475.57 3 15.21
0.016 3930.54 3591.64 3 21.11

Table 4.7: Variation of the final cost based on the values of the time-step

From the values in the Table above, the best results in terms of number of
violation of the constraints and final cost of the trajectory are obtained with
simulation intervals of 8-10-12.
With a sampling time of 0.002 and 0.004, the final cost and violation of constraints
are comparable whilst the total cost of the first is significantly higher even though
the simulation horizon is the same; this means that the output may assume a worst
behaviour.
Instead, if the time-step interval is too long as in the case of 14 and 16, the solver
produces an output where the total and final cost are comparable. This may suggest
that the solver did not produce any useful trajectory, due to the fact that it failed
to capture the dynamics of the deformable object, due to the long interval between
two samples.
In the Figures below there are shown the correspondent trajectories in output.
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Figure 4.26: Trajectory and final posi-
tion with control input update every 2
simulation steps

Figure 4.27: Trajectory and final posi-
tion with control input update every 4
simulation steps

Figure 4.28: Trajectory and final posi-
tion with control input update every 5
simulation steps

Figure 4.29: Trajectory and final posi-
tion with control input update every 8
simulation steps
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Figure 4.30: Trajectory and final posi-
tion with control input update every 10
simulation steps

Figure 4.31: Trajectory and final posi-
tion with control input update every 12
simulation steps

Figure 4.32: Trajectory and final posi-
tion with control input update every 14
simulation steps

Figure 4.33: Trajectory and final posi-
tion with control input update every 16
simulation steps

As shown from the trajectories in output, the best rate for the sampling is the
one shown in Figure 4.30, which represents a good trade-off between length of
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the simulation steps and responsiveness to the dynamical behavior of the rope in
changing its shape and position along the trajectory.
Also, the trajectories in output with a time-step interval of 0.008 and 0.012 in
Figures 4.29 and 4.31 achieve the target but the trajectories are sub-optimal with
respect to the one in figure 4.30.
From the first three Figures it can be seen instead that if the time-step of the
controller is too low, it leads to unstable and uncontrollable behavior, whereas with
a time-step that is too high as shown in Figures 4.32 and 4.33, the controller is not
able to capture the dynamics of the deformable objects not producing a suitable
trajectory in output.
In Figure 4.34, it is shown the trends of the results in terms of final cost.

Figure 4.34: Variation of the final cost vs the time-step of the controller

Here again, it is possible to analyze the behavior of the final cost term with
respect to the values of the sampling time. As shown, the lower value is achieved
with the sampling interval of 10.
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4.3 Disturbance rejection

The robustness of a trajectory optimization solver refers to its ability to consistently
and reliably produce valid solutions across different scenarios, even in the presence
of uncertainties, variations, or challenging conditions. A robust solver should be able
to handle various sources of disturbances or perturbations without compromising
the quality or feasibility of the optimized trajectories.
A robust solver should be capable of accounting for uncertainties in the system
dynamics, environmental conditions, or input parameters. It should be able to
incorporate probabilistic or stochastic models and adapt its optimization process
to ensure that the resulting trajectories are feasible and effective under uncertain
conditions.
Moreover, trajectory optimization typically involves a set of constraints, such as
physical limitations, safety requirements, or operational constraints. A robust
solver should ensure that these constraints are consistently satisfied across different
scenarios, even in the presence of disturbances or variations. It should be able to
handle both hard constraints (strict limitations) and soft constraints (preferences
or objectives).
To test the ability of the solver to reject the disturbances, the following line of code
is added to the forward pass shown in Algorithm 6

1 x=x+np . random . uniform ( low=−5e −3, high=5e −3, s i z e =(30 ,1) )

This noise vector acts on the state vector x at each simulation step before the
optimal control input u is updated as:

u = u∗ +K∗(x− x∗)

where ∗ indicates the optimal values of control input and state vector in output
where the simulation is run without noise.

It basically adds a uniformly distributed vector of the size of the state vector x
to the state itself. The distribution spans from −5e−3 to 5e−3 or from −1e−3 to
−1e−3.
Due to the randomness of the noise vector, the controller has been run for 100
simulation for both cases and the trajectories in output are shown below, where
the blue ones are the one affected by the noise, whilst the red one is the optimal
one and the one used as reference.
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Figure 4.35: Trajectory and final po-
sition with noise normally distributed
among −1e−3 and 1e−3

Figure 4.36: Trajectory and final po-
sition with noise normally distributed
among −5e−3 and 5e−3

As it is possible to see from the Figures above, the controller is able to handle
properly the noise. The behavior at the last time steps of the horizon is due to
the fact that for the last 10 instants of the simulation horizon the controller is not
updated anymore while the noise is still present.

4.4 Analysis of the performance based on the
initial value of the penalty term µ

When optimizing a trajectory using the Augmented Lagrangian and method of
multipliers, the penalty term µ plays a crucial role in balancing the trade-off
between the original objective function and the constraint violation.
Indeed, the penalty term µ affects the convergence behavior of the optimization
algorithm because a small value may lead to faster convergence but can result in
sub-optimal solutions with large constraint violations.
On the other hand, a large value increases the penalty for constraint violations,
which may slow down the convergence but can yield solutions with better constraint
satisfaction.
The choice of µ should be a trade-off between convergence speed and solution
quality.
Furthermore, it helps enforce feasibility by penalizing constraint violations. As µ
increases indeed, the optimization algorithm becomes more sensitive to constraint
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violations, encouraging the trajectory to satisfy the constraints more strictly.
However, if it is set too high, even small constraint violations may lead to excessively
large penalties, causing convergence difficulties and instability.
Moreover, it determines the weight assigned to constraint violations relative to
the original objective function. If it is too small, the optimizer may prioritize the
original objective, neglecting the constraints. Conversely, if too large, the optimizer
may excessively penalize constraint violations, leading to a significant deviation
from the original objective. The value of µ should be chosen such that both the
objective function and constraints are adequately balanced.
In addition, the penalty term can influence the sensitivity of the optimization
algorithm to the initial conditions. Higher values can make the optimization more
sensitive to the initial guess or starting point, potentially leading to different
solutions for different initial conditions. Lower values instead may provide more
robustness to the initial conditions but can result in convergence to sub-optimal
solutions.
Finally, the value should be chosen with consideration for the scale of the problem.
If the problem involves large constraints or a wide range of magnitudes in the
objective function, it may need to be adjusted accordingly. Scaling the penalty term
appropriately can ensure that the optimization algorithm is effective in handling
both small and large-scale problems.
In summary, selecting an appropriate value for the penalty term µ is a crucial task in
trajectory optimization using the Augmented Lagrangian and method of multipliers.
It requires considering factors such as convergence, feasibility, constraint handling,
sensitivity to initial conditions, and problem scalability. Careful tuning of µ can
lead to improved convergence speed, better constraint satisfaction, and high-quality
solutions.
In the previous simulations, the value for the penalty term was set to 0.1 and, as a
result, the best trajectory was the one in the following Figure.
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Figure 4.37: Trajectory and final position without µ = 0.1

In this section, the role of the penalty term µ will be analysed. In this first part
the trajectories in Figures from 4.38 to 4.43 and the results shown in Table 4.8
refers to the performance of the solver after 1 iteration of the AL-iLQR algorithm.
As shown in Algorithm 2, after 1 iteration, if the violation of the constraints is
not satisfied, the penalty term µ is updated by multiplying it by a constant factor
that was set to 10. By increasing it, one should expect a better satisfaction of the
constraints as the number of iteration grows.
Thus, in the second part it will be analysed how the performance changes along
different iterations of the algorithm.
In the following Table, there are summarized the results in terms of total and final
cost, number of iterations of iLQR and violation of the constraints.
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µ Total Cost Final Cost n° of iLQR
iterations

Maximum
violation of
constraints

5 4024.902 3970.525 2 0.118
1 227.428 144.1705 4 2.307

0.1 142.837 80.117 5 4.23
0.01 220.24 116.01 5 6.77
0.001 727.17 640.19 5 17.36
0.0001 733.55 646.41 6 17.42
0.00001 734.35 647.198 7 17.44

Table 4.8: Variation of the final cost based on the values of the penalty term µ

As said earlier, with a large value of µ as initialization, the non-violation of the
constraints is preferred to the achievement of the goal: in fact, with respect to a
µ equal to 0.1, the maximum violation of the constraints is lower in the case of
1, 2.307, and even lower with an initialization of 5, 0.118. Whereas, the final cost
increases to 144.17 and 3970.525 respectively.
When the value is too low instead, as it resulted with a value lower than 0.001, the
relaxation of the constraint is higher, the value of the violation is around 17, but
at the same time the trajectory seems to be sub-optimal.
In the following Figures, there are shown the trajectories in output.
In Figure 4.38, it is possible to appreciate how a large value can affect the conver-
gence of the solver: the strict requirement on the constraints does not lead to any
trajectories that fulfill the task.
In Figure 4.39, instead, the trajectory starts to look similar to the best one, but it
is a sub-optimal solution to preserve the satisfaction of the constraints.
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Figure 4.38: Trajectory and final posi-
tion without µ = 5

Figure 4.39: Trajectory and final posi-
tion without µ = 1

Figure 4.40: Trajectory and final posi-
tion without µ = 0.01

Figure 4.41: Trajectory and final posi-
tion without µ = 0.001

In Figure 4.40 it is possible to notice that the satisfaction of the goal is more
important than the requirements of the constraints; indeed the movements are
wider and the final position is getting closer to the goal one.
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Figure 4.42: Trajectory and final posi-
tion without µ = 0.0001

Figure 4.43: Trajectory and final posi-
tion without µ = 0.00001

Lastly, with a penalty term µ lower than 0.001, the trajectories in output are
almost the same as it is possible to notice from both Table 4.8 and the Figures
4.41, 4.42 and 4.43. This leads to the maximum relaxation about the violation of
the constraints, but at the same time the goal is not achieved as in Figure 4.37.
One might expect that with a penalty term lower than 0.01, the solver could
produce better results in the next iterations of the algorithm since the requirements
on the constraints become more strictly, thus the trajectory in output should get
closer to the optimal one.
For this purpose, the solver was simulated again with a maximum number of
iteration for the AL-iLQR of 15. The results are shown below.
With µ = 0.1, after the first iteration, the solver is not able to find any better
solution, even if the penalty term is increased at every iteration.
With µ = 0.01, there is a slightly improvement after the first iteration as shown in
the Table and Figures below.
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Iteration Total Cost
Maximum

violation of
constraints

1 220.2438 6.7796
2 204.2344 5.7389
3 204.2338 5.7388

Table 4.9: Improvements of the performance after the first iteration

After the first iteration the cost is again minimized, however in the next ones it
remains almost the same until it does not find any better trajectory. In the Figures
below the difference can be slightly perceived since the movements in the second
Figure are a little bit less wide that the first one.

Figure 4.44: Trajectory and final posi-
tion - first iteration

Figure 4.45: Trajectory and final posi-
tion - second iteration

With µ = 0.001, there is a greater improvement with respect to the previous
case after the first iteration as shown in the Table and Figures below.
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Iteration Total Cost
Maximum

violation of
constraints

1 727.1759 17.3567
2 536.9074 5.6811
3 536.8984 5.6721
4 536.8984 5.6721
5 536.8984 5.6721
6 536.8979 5.6719

Table 4.10: Improvements of the performance after the first iteration

As it is possible to appreciate, the cost significantly decreases after the first
iteration as the penalty term is update and consequently the violation of the
constraints decreases as well. However, after the second iteration the improvements
is almost imperceptible until it does not find any better trajectory.
Following this, there are two of the trajectories in output from the different iterations
where it is possible to notice the improvement that in this case is remarkable.

Figure 4.46: Trajectory and final posi-
tion - first iteration

Figure 4.47: Trajectory and final posi-
tion - forth iteration

In this case, the manipulated mass shows significant improvement in staying
within the sphere constraint. As a result, the goal is achieved more successfully:
indeed, a similarity can be observed in the trajectory in Figure 4.45 and Figure
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4.47.

4.5 Discussion and limitations
This section will provide a comprehensive discussion of the overall results obtained
from the algorithm and the rope model. It will analyse the advantages and
disadvantages of the three main factors: the method of multipliers, the iterative
Linear Quadratic Regulator and the mass-spring-damped model for the rope.

4.5.1 Limitation and advantages of the spring-damped-mass
model for the rope

The chosen model for the deformable object, in this case, a piece of rope, is one of
the primary factors influencing the overall performance. As discussed in Section 3.2,
the Mass-Spring-System is a straightforward and intuitive approach for modeling
non-rigid objects and deformations. The implementation utilized in this study
benefits from a differentiable model, making computations easier by leveraging the
built-in gradient function provided by the JAX module for NumPy and Python.
However, the simplicity of the model’s implementation comes at the cost of reduced
accuracy compared to other potential implementations. This is due to inherent
modeling errors resulting from simplifications and approximations. A key challenge
lies in parameter tuning, which in this case involved a trial-and-error procedure to
set the parameters for a rope model with five nodes and a rest length of 1.
It should be noted that altering the number of nodes can introduce instability or
unrealistic behavior in the simulation. Liu et al. [22] have addressed this issue by
employing learning algorithms for parameter tuning.
As highlighted in Section 3.4, the discrete nature of the model introduced challenges
in determining the appropriate time-step for the simulation. Time-steps higher
than 1e−3 resulted in unrealistic behavior, while smaller time-steps would have
incurred significant computational costs for the control algorithm and optimization
solver. Consequently, modifications were made to the forward pass of the iLQR
algorithm, and further analysis was conducted on the horizon length (Section 4.2.1)
and the interval between two control updates (Section 4.2.3).
Overall, the model demonstrates satisfactory performance for the intended purpose.
Nevertheless, it is worth noting that high control input values can lead to unstable
and non-smooth trajectories.

4.5.2 Limitations of iterative Linear Quadratic Regulator
The primary issues related to iLQR examined in this work are the shape of the
cost function and parameter tuning, as discussed in Section 4.1. Additionally, the
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robustness of the algorithm is explored in Section 4.3. While iLQR aims to optimize
the control policy, it does not explicitly address stability or robustness concerns.
Manipulating deformable objects involves addressing uncertainties, model errors,
and disturbances that can impact stability.
Regarding the cost function, its shape heavily depends on the specific task at hand,
and the tuning of its parameters may vary accordingly. Proper parameter tuning
has been shown to enable smooth achievement of the proposed target, even though
it may result in sub-optimal trajectories. However, it is important to note that the
algorithm is task-oriented, meaning that most parameters were tuned specifically
for the goal in this particular configuration. Changing factors such as the starting
position or the goal position may not yield the same level of smooth convergence,
as the optimal solution found for the current setup may not be applicable.
In summary, this work emphasizes the significance of parameter tuning for achieving
the desired goal smoothly. Nevertheless, it highlights the task-specific nature of
the algorithm, as different configurations or objectives may require adjustments to
the parameters for optimal performance.

4.5.3 Limitations and advantage of method of multipliers
To address the nonlinear constraints, the implementation utilized an augmented
Lagrangian approach with a penalty term using the method of multipliers. However,
a major concern associated with this approach is the penalty term, as discussed
in Section 4.4, and the slow convergence of the algorithm towards satisfying the
constraints. If an optimal or sub-optimal trajectory is not found in the initial
iteration, the solver may struggle to converge properly. Nevertheless, the combined
use of Lagrange multipliers and penalty methods offers faster convergence com-
pared to traditional penalty methods for constrained optimization problems. By
incorporating the constraints into the objective function, it transforms the problem
into an unconstrained one while ensuring constraint satisfaction.
The literature demonstrates that this approach can handle various types of con-
straints, including equality constraints, inequality constraints, and bound con-
straints, providing flexibility in handling a wide range of constraints within the
optimization problem.
In Section 4.4, it was revealed that the penalty parameter governs the balance
between the objective function and constraint satisfaction. It enables adaptive
adjustment during iterations, enhancing the convergence behavior. However, care-
ful tuning of the penalty parameter is required to achieve desirable convergence
behavior. Improper selection of the penalty parameter can lead to slow convergence
or difficulties in attaining the desired solution.
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Conclusions

In conclusion, this thesis has examined the application of a model-based approach
to address a constrained trajectory optimization problem in non-rigid object ma-
nipulation. The iterative Linear Quadratic Regulator (iLQR) method was chosen
for its efficiency in solving the problem while offering a simpler implementation
compared to the standard Differential Dynamical Programming (DDP) algorithm.
To handle the constraints, the Augmented Lagrangian and Method of Multipliers
technique was implemented. A Mass-Spring-System (MSS) model was selected
to represent the non-rigid object, specifically a rope, due to its simplicity and
intuitive nature. The differentiability of the model has been enabled by the JAX
environment, that made possible to use built-in gradients functions.
The rope model was carefully tuned to closely replicate real-world behavior, aiming
to enhance the accuracy of the final results. The entire AL-iLQR algorithm was
tested and fine-tuned to achieve optimal results within the specified conditions.
The solver’s behavior was analyzed by varying the parameters of the cost function,
horizon length, and frequency rate. Additionally, the controller was tested against
noise, and an in-depth analysis was conducted on the penalty parameter µ, which
strongly influenced the outcome.
The analysis demonstrated the validity of a model-based approach when a defined
and differentiable model is available. However, it should be noted that the Mass-
Spring-System (MSS) model, while convenient, may not provide the best accuracy.
Indeed, using a Finite Element Method (FEM) solutions would be more suitable
for simulating the deformable object. This could be a further improvement of this
result, even though it would cause a higher computational cost. Moreover, the
importance of a suitable cost function was highlighted as it significantly improved
the overall performance.
The limitations of the Augmented Lagrangian and Method of Multipliers (ALMM)
algorithm were discussed, particularly in relation to the influence of the penalty
parameter µ. The thesis also emphasized the trade-off between simulation and
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control horizon, as well as the optimal simulation length that varies based on the
specific dynamical tasks to be performed. Further improvements can be made
in this regard, such as incorporating the length of the horizon as an optimized
parameter to find the most suitable solution.
Overall, this research contributes to the understanding and application of model-
based techniques in constrained trajectory optimization for non-rigid object manip-
ulation. It provides insights into the importance of accurate models, appropriate
cost functions, and the trade-offs involved in balancing simulation and control
aspects.
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Appendix A

Code

A.1 Rope_system.py

1 import jax
2 import jax . numpy as np
3 from jax import j i t , jacfwd
4 from jax . c o n f i g import c o n f i g
5 c o n f i g . update ( " jax_debug_nans " , True )
6 jax . c o n f i g . update ( ’ jax_enable_x64 ’ , True )
7 from f u n c t o o l s import p a r t i a l
8 from s k s p a t i a l . o b j e c t s import Sphere
9 import matp lo t l i b

10 import matp lo t l i b . pyplot as p l t
11 from matp lo t l i b import animation
12 from matp lo t l i b . patches import FancyArrowPatch
13 from mpl_too lk i t s . mplot3d import proj3d
14 matp lo t l i b . rc ( ’ animation ’ , html=’ j shtml ’ )
15 import mpl_too lk i t s . mplot3d . art3d as art3d
16 from mpl_too lk i t s . mplot3d . art3d import Poly3DCol lect ion
17

18 c l a s s Arrow3D( FancyArrowPatch ) :
19 # Arrow p l o t t i n g code from :
20 # https : // s tackove r f l ow . com/ que s t i on s /22867620/ putt ing−arrowheads

−on−vectors −in−matp lo t l ib s −3d−p lo t
21 de f __init__( s e l f , xs , ys , zs , ∗ args , ∗∗ kwargs ) :
22 FancyArrowPatch . __init__( s e l f , ( 0 , 0 ) , ( 0 , 0 ) , ∗ args , ∗∗ kwargs )
23 s e l f . _verts3d = xs , ys , z s
24

25 de f draw ( s e l f , r ende re r ) :
26 xs3d , ys3d , zs3d = s e l f . _verts3d
27 xs , ys , z s = proj3d . proj_transform ( xs3d , ys3d , zs3d , r ende re r

.M)
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28 s e l f . s e t _ p o s i t i o n s ( ( xs [ 0 ] , ys [ 0 ] ) , ( xs [ 1 ] , ys [ 1 ] ) )
29 FancyArrowPatch . draw ( s e l f , r ende re r )
30

31 c l a s s DynamicalSystem :
32 de f __init__( s e l f , s t a t e_s i z e , c on t r o l_ s i z e ) :
33 s e l f . s t a t e _ s i z e = s t a t e _ s i z e
34 s e l f . c o n t r o l _ s i z e = c o n t r o l _ s i z e
35

36 de f se t_cost ( s e l f , Q, R) :
37 # one step co s t = x .T ∗ Q ∗ x + u .T ∗ R ∗ u
38 s e l f .Q = Q
39 s e l f .R = R
40

41 de f get_cost ( s e l f ) :
42 re turn s e l f .Q, s e l f .R
43

44 de f s e t_ f ina l_co s t ( s e l f , Q_f) :
45 s e l f . Q_f=Q_f
46

47 de f c a l cu l a t e_co s t ( s e l f , x , u ) :
48 x=np . r a v e l ( x )
49 # return 0 . 5∗ ( x .T. dot ( s e l f .Q) . dot ( x )+u .T. dot ( s e l f .R) . dot (u) )
50

51 re turn 0 . 5 ∗ ( ( x−s e l f . goa l ) .T. dot ( s e l f .Q) . dot (x−s e l f . goa l )+u .T.
dot ( s e l f .R) . dot (u) )

52

53 de f c a l c u l a t e _ f i n a l _ c o s t ( s e l f , x ) :
54 x=np . r a v e l ( x )
55 re turn 0 . 5∗ ( x−s e l f . goa l ) .T. dot ( s e l f . Q_f) . dot (x−s e l f . goa l )
56

57 de f set_goal ( s e l f , x_goal ) :
58 s e l f . goa l = x_goal
59

60

61 c l a s s Rope ( DynamicalSystem ) :
62 de f __init__( s e l f , n_masses , dt ) :
63 super ( ) . __init__( n_masses ∗6 ,3)
64 s e l f . dt = dt
65 s e l f . goa l = np . z e ro s ( s e l f . s t a t e _ s i z e )
66 s e l f . n_masses=n_masses
67 s e l f . l_r e s t=1
68 s e l f .m=0.3/ s e l f . n_masses
69 s e l f . k_e l a s t i c =140.0
70 s e l f . k_shear = 5 .0
71 s e l f . k_bend = 1
72 s e l f . c _ e l a s t i c = s e l f . k_e l a s t i c / s e l f . n_masses
73 s e l f . c_shear = s e l f . k_shear / s e l f . n_masses
74 s e l f . c_bend = s e l f . k_bend / s e l f . n_masses
75 g = 9.80665 # m/ s ^2
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76 s e l f . ag = np . array ( [ 0 . 0 , 0 . 0 , −g ] ) # a c c e l e r a t i o n due to
g rav i ty

77 s e l f . actuated_masses = [ 0 ]
78

79 de f i n i t _ p o s i t i o n ( s e l f , xa , ya , za , i ) :
80 xb = xa
81 yb = ya
82 zb = za−s e l f . l_r e s t ∗ i
83 k=s e l f . n_masses−za−1
84 i f zb < 0 :
85 zb=0
86 xb=xa+s e l f . l_r e s t ∗( i −( s e l f . n_masses −1)+k )
87 re turn np . array ( [ xb , yb , zb ] , dtype=np . f l o a t 3 2 )
88

89 de f i n i t i a l _ p o s i t i o n ( s e l f , x , y , z ) :
90 p0 = np . array ( [ s e l f . i n i t _ p o s i t i o n (x , y , z , i ) f o r i in np . arange

( s e l f . n_masses ) ] )
91 p0=p0 . reshape ( s e l f . n_masses ∗3 ,1)
92 v0 = np . z e ro s ( ( s e l f . n_masses ∗3 , 1) )
93 s0 = np . vstack ( ( p0 , v0 ) )
94 re turn s0
95

96 de f goal_pos ( s e l f , xa , ya , za , i ) :
97 xb = xa+s e l f . l_r e s t ∗ i
98 yb = ya
99 zb = za

100 re turn np . array ( [ xb , yb , zb ] , dtype=np . f l o a t 3 2 )
101

102 de f goa l_pos i t i on ( s e l f , x , y , z ) :
103 p0 = np . array ( [ s e l f . goal_pos (x , y , z , i ) f o r i in np . arange ( s e l f

. n_masses ) ] )
104 p0=p0 . reshape ( s e l f . n_masses ∗3 ,1)
105 v0 = np . z e ro s ( ( s e l f . n_masses ∗3 , 1) )
106 s0 = np . vstack ( ( p0 , v0 ) )
107 re turn s0
108

109 de f return_posit ion_actuated_mass ( s e l f , s ) :
110 p ,_=np . v s p l i t ( s , 2 )
111 p=p . reshape ( s e l f . n_masses , 3 )
112 re turn p [ 0 , : ]
113

114 de f return_pos i t ion_last2mass ( s e l f , s ) :
115 p ,_=np . v s p l i t ( s , 2 )
116 p=p . reshape ( s e l f . n_masses , 3 )
117 re turn p [ s e l f . n_masses −2: s e l f . n_masses , : ]
118

119 #@j i t
120 de f hooke_damped ( s e l f , p , v ) :
121 f = np . z e r o s _ l i k e (p)

85



Code

122 f o r i in range (0 , s e l f . n_masses−1) :
123 # Compute the disp lacement and d i s t ance between

ne ighbor ing p a r t i c l e s
124 delta_pos = p [ i +1 , : ] − p [ i , : ]
125 de l ta_ve l = v [ i +1 , : ] − v [ i , : ]
126 d i s t = np . l i n a l g . norm( delta_pos )
127

128 dist_non_zero=np . maximum( d i s t , s e l f . l_r e s t /10)
129

130 u= delta_pos / dist_non_zero
131 x=( d i s t − s e l f . l_r e s t ) ∗ u
132 x_dot=np . dot ( de lta_vel , u ) ∗u
133 # Compute the f o r c e exer ted by the spr ing
134 f_spr ing = s e l f . k_e l a s t i c ∗ x + s e l f . c _ e l a s t i c ∗x_dot +

s e l f . k_shear ∗ x + s e l f . c_shear ∗x_dot
135 f=f . at [ i ] . add ( f_spr ing )
136 f=f . at [ i +1] . add(−f_spr ing )
137

138 i f i < s e l f . n_masses −2:
139 delta_pos = p [ i +2 , : ] − p [ i , : ]
140 de l ta_ve l = v [ i +2 , : ] − v [ i , : ]
141 d i s t = np . l i n a l g . norm( delta_pos )
142

143 dist_non_zero=np . maximum( d i s t , 2∗ s e l f . l_r e s t /10)
144

145 u= delta_pos / dist_non_zero
146 x=( d i s t − 2∗ s e l f . l_r e s t ) ∗ u
147 x_dot=np . dot ( de lta_vel , u ) ∗u
148 f_bend = s e l f . k_bend ∗ x + s e l f . c_bend∗x_dot
149 f=f . at [ i ] . add ( f_bend )
150 f=f . at [ i +2] . add(−f_bend )
151

152

153 re turn f
154

155 @part ia l ( j i t , static_argnums =(0 ,) )
156 de f change_of_state ( s e l f , s , F_act ) :
157 s=s . reshape (6∗ s e l f . n_masses , 1 )
158 p , v=np . v s p l i t ( s , 2 )
159 p=p . reshape ( s e l f . n_masses , 3 )
160

161 v=v . reshape ( s e l f . n_masses , 3 )
162 F = s e l f . hooke_damped (p , v )
163 F = F. at [ np . index_exp [ s e l f . actuated_masses , : ] ] . add ( F_act )
164

165 a = F / s e l f .m
166 a += s e l f . ag
167 a=a . reshape ( s e l f . n_masses ∗3 ,1)
168 v=v . reshape ( s e l f . n_masses ∗3 ,1)
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169 re turn np . vstack ( ( v , a ) )
170

171 @part ia l ( j i t , static_argnums =(0 ,1 ,) )
172 de f RK4( s e l f , f , x , u ) :
173 k1 = f (x , u)
174 k2 = f ( x + k1 ∗ ( s e l f . dt / 2) ,u )
175 k3 = f ( x + k2 ∗ ( s e l f . dt / 2) ,u )
176 k4 = f ( x + k3 ∗ s e l f . dt , u )
177 x_new = x + ( k1 + 2 ∗ k2 + 2 ∗ k3 + k4 ) ∗ ( s e l f . dt / 6)
178 re turn x_new
179

180 de f t r a n s i t i o n ( s e l f , x , u ) :
181 x=x . reshape (6∗ s e l f . n_masses , 1 )
182 f=s e l f . change_of_state
183 x_new=s e l f .RK4( f , x , u )
184 p , v=np . v s p l i t (x_new , 2 )
185 p=p . reshape ( s e l f . n_masses , 3 )
186 v=v . reshape ( s e l f . n_masses , 3 )
187 #f l o o r
188 z = p [ : , 2 ]
189 jumpv=np . where ( z <= 0 , 0 , v [ : , 2 ] )
190 jumpp=np . where ( z <= 0 , 0 , z )
191 v=v . at [ : , 2 ] . s e t ( jumpv )
192 p=p . at [ : , 2 ] . s e t ( jumpp)
193 #box
194 f o r k in range ( s e l f . n_masses ) :
195 i f p [ k , 0 ] >= 3 .3 and p [ k , 0 ] <=6.7:
196 i f p [ k , 1 ] >= −1.2 and p [ k , 1 ] <=1.2:
197 i f p [ k , 2 ] >= 1 .8 and p [ k , 2 ] <=3.4:
198 i f np . i s c l o s e (p [ k , 2 ] , 2 , a t o l=1e−1) : #z ax i s
199 v=v . at [ k , 2 ] . s e t ( −0.8∗v [ k , 2 ] )
200 p=p . at [ k , 2 ] . s e t ( 1 . 7 )
201 e l i f np . i s c l o s e (p [ k , 2 ] , 3 . 2 , a t o l=1e−1) :
202 v=v . at [ k , 2 ] . s e t ( 0 . 0 )
203 p=p . at [ k , 2 ] . s e t ( 3 . 2 )
204 i f np . i s c l o s e (p [ k , 0 ] , 3 . 5 , a t o l=1e−1) : #x ax i s
205 v=v . at [ k , 0 ] . s e t ( −0.8∗v [ k , 0 ] )
206 p=p . at [ k , 0 ] . s e t ( 3 . 2 )
207 e l i f np . i s c l o s e (p [ k , 0 ] , 6 . 5 , a t o l=1e−1) :
208 v=v . at [ k , 0 ] . s e t ( −0.8∗v [ k , 0 ] )
209 p=p . at [ k , 0 ] . s e t ( 6 . 8 )
210 i f np . i s c l o s e (p [ k ,1 ] , −1 , a t o l=1e−1) : #y ax i s
211 v=v . at [ k , 1 ] . s e t ( −0.8∗v [ k , 1 ] )
212 p=p . at [ k , 1 ] . s e t ( −1.3)
213 e l i f np . i s c l o s e (p [ k , 1 ] , 1 , a t o l=1e−1) :
214 v=v . at [ k , 1 ] . s e t ( −0.8∗v [ k , 1 ] )
215 p=p . at [ k , 1 ] . s e t ( 1 . 3 )
216 # e l i f np . i s c l o s e (p [ k , 2 ] , 4 . 2 , a t o l=1e−1) :
217 # v=v . at [ k , 2 ] . s e t ( 0 . 0 )
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218 # p=p . at [ k , 2 ] . s e t ( 4 . 3 )
219 p=p . reshape ( s e l f . n_masses ∗3 ,1)
220 v=v . reshape ( s e l f . n_masses ∗3 ,1)
221 x_new=np . vstack ( ( p , v ) )
222 re turn x_new
223

224 #@part ia l ( j i t , static_argnums =(0 ,1 ,) )
225 de f t rans i t i on_J ( s e l f , x , u ) :
226

227 x_temp=x . reshape (6∗ s e l f . n_masses , 1 )
228

229 dynamics_jac_state = jacfwd ( s e l f . t r a n s i t i o n , argnums=0) (
x_temp , u)

230

231 dynamics_jac_control = jacfwd ( s e l f . t r a n s i t i o n , argnums=1) (
x_temp , u)

232 A = dynamics_jac_state [ : , 1 , : , 1 ]
233 B = dynamics_jac_control [ : , 1 , : ]
234 # pr in t ( x )
235 re turn A,B
236

237 de f plot_rope ( s e l f , ax , s ,
238 xlim =[−2, 5 ] ,
239 ylim =[−2, 3 ] ,
240 z l im =[0 , 5 ] ) :
241 ux=6.5
242 uy=1
243 uz=3.2
244 l x =3.5
245 l y=−1
246 l z =2.0
247

248 p ,_=np . v s p l i t ( s , 2 )
249 p=p . reshape ( s e l f . n_masses , 3 )
250 x , y , z = np . t ranspose (p)
251 ax . c l e a r ( ) # nece s sa ry f o r the animations
252 ax . set_xlim ( xlim )
253 ax . set_ylim ( ylim )
254 ax . set_zl im ( z l im )
255

256 ax . s c a t t e r (x , y , z , c=’ red ’ , s =10)
257 ax . p l o t (x , y , z , c=’ blue ’ )
258 x = [ lx , ux , ux , l x ] , [ lx , ux , ux , l x ] , [ lx , lx , lx , l x ] , [ lx , lx , ux , ux ] , [

lx , lx , ux , ux ] , [ ux , ux , ux , ux ]
259 y = [ ly , ly , uy , uy ] , [ ly , ly , uy , uy ] , [ ly , ly , uy , uy ] , [ uy , uy , uy , uy ] , [

uy , uy , uy , uy ] , [ ly , ly , uy , uy ]
260 z = [ lz , l z , l z , l z ] , [ uz , uz , uz , uz ] , [ l z , uz , uz , l z ] , [ l z , uz , uz , l z ] , [

l z , uz , uz , l z ] , [ l z , uz , uz , l z ]
261
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262 s u r f a c e s = [ ]
263

264 f o r i in range ( l en ( x ) ) :
265 s u r f a c e s . append ( [ l i s t ( z ip ( x [ i ] , y [ i ] , z [ i ] ) ) ] )
266

267 f o r s u r f a c e in s u r f a c e s :
268 ax . add_co l l ec t ion3d ( Poly3DCol lect ion ( sur face , f a c e c o l o r s=

’ cyan ’ , l i n e w i d th s =1, e d g e c o l o r s=’b ’ , alpha =.2) )
269

270 sphere = Sphere ( [ 0 , 0 , 4 ] , 3 )
271 sphere . plot_3d ( ax , alpha =0.2)
272 ax . s e t_x labe l ( ’ x ’ )
273 ax . s e t_y labe l ( ’ y ’ )
274 ax . s e t_z l abe l ( ’ z ’ )
275

276

277 de f plot_arrow ( s e l f , ax , s t a r t , f o r c e , s c a l e ) :
278 end = s t a r t + s c a l e ∗ f o r c e
279 x0 , y0 , z0 = s t a r t
280 x1 , y1 , z1 = end
281 a = Arrow3D ( [ x0 , x1 ] , [ y0 , y1 ] , [ z0 , z1 ] , mutation_scale =10,

lw=3, a r rows ty l e="−|>" , c o l o r=" mediumseagreen " , zorder =10)
282 ax . add_art i s t ( a )
283

284 de f animate_cloth ( s e l f , hor izon , s_history , dt , f p s =60, F_history
=None , f o r c e _ s c a l e =0.2 , gifname=None) :

285 f i g = p l t . f i g u r e ( f i g s i z e =(5 , 5) , dpi =100)
286 f i g . subplots_adjust ( 0 , 0 , 1 , 1 , 0 , 0 )
287 ax = f i g . add_subplot (111 , p r o j e c t i o n=’ 3d ’ )
288 p l t . c l o s e ( ) # prevents dup l i c a t e output
289

290 fps_s imulat ion = 1 / dt
291 sk ip = np . f l o o r ( fps_s imulat ion / fp s ) . astype (np . in t32 )
292 fps_adjusted = fps_s imulat ion / sk ip
293 pr in t ( ’ f p s was adjusted to : ’ , fps_adjusted )
294 hor izon=horizon −1
295

296 de f animate ( i ) :
297 j = min ( i ∗ skip , hor i zon )
298

299 p = s_his tory [ : , j ] . reshape ( s e l f . n_masses ∗6 ,1)
300

301 s e l f . plot_rope ( ax , p)
302 i f F_history i s not None :
303 s e l f . plot_arrow ( ax , np . r a v e l (p [ 0 : 3 ] ) , np . r a v e l (

F_history [ : , j ] ) , f o r c e _ s c a l e )
304

305
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306 n_frames = ( hor i zon ) // sk ip + 1 # t h i s +1 i s f o r the
i n i t i a l frame

307 i f not ( hor i zon ) % sk ip == 0 :
308 n_frames += 1 # t h i s +1 i s to ensure the f i n a l frame i s

shown
309

310 anim = animation . FuncAnimation ( f i g , animate , frames=n_frames ,
i n t e r v a l =1000∗dt∗ sk ip )

311

312 i f gi fname i s not None :
313 anim . save ( gifname + ’ . g i f ’ , w r i t e r=’ imagemagick ’ )
314

315 re turn anim
316

317 de f d raw_tra j e c to r i e s ( s e l f , ax , x_ t ra j e c t o r i e s , p0 , pend ) :
318 #s e l f . plot_rope ( ax , p0 )
319 s e l f . plot_rope ( ax , pend )
320 p l t . p l o t ( x _ t r a j e c t o r i e s [ 0 , : ] , x _ t r a j e c t o r i e s [ 1 , : ] ,

x _ t r a j e c t o r i e s [ 2 , : ] , c o l o r=’ r ’ )
321 ax . set_aspect ( " auto " )
322 p l t . g r i d ( )
323 p l t . show ( )

A.2 AL_iLQR.py

1 from iLQR import LQR
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 c l a s s AL_iLQR:
6 de f __init__( s e l f , system , i n i t i a l _ s t a t e , hor i zon ) :
7 s e l f . system=system
8 s e l f . hor i zon=hor izon
9 s e l f . x_traj=i n i t i a l _ s t a t e @ np . ones ( ( 1 , s e l f . hor i zon + 1) )

10 s e l f . u_traj =0.001∗ np . ones ( ( s e l f . system . cont ro l_s i z e , s e l f .
hor i zon ) )

11 s e l f . i n i t i a l _ s t a t e=np . copy ( i n i t i a l _ s t a t e )
12 s e l f . c o n s t r a i n t s = [ ]
13 s e l f . t o l = 0 .01
14 s e l f . to l_c = 0 .5
15 s e l f . pena l ty=10 #phi
16

17 s e l f . max_iterat ions=100
18 s e l f . max_iterat ions_al=0
19

90



Code

20 de f add_constra int ( s e l f , c o n s t r a i n t ) :
21 s e l f . c o n s t r a i n t s . append ( c o n s t r a i n t )
22

23 de f a lgor i thm ( s e l f ) :
24 # I n i t i a l i z a t i o n o f lambda , mu and phi
25 s e l f . m u l t i p l i e r s=np . z e ro s ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . hor i zon

) )
26 s e l f .mu=0.1∗np . ones ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . hor i zon ) )
27 i t e r _ a l=0
28

29 # i n i t i a l va lue o f the c o n s t r a i n t s
30 c=np . ones ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . hor i zon ) )
31 f o r i in range ( l en ( s e l f . c o n s t r a i n t s ) ) : # f o r each c o n s t r a i n t
32 c [ i ,0 ]= s e l f . c o n s t r a i n t s [ i ] . eva luate_cons t ra in t ( s e l f .

i n i t i a l _ s t a t e )
33

34 l q r=LQR( s e l f . system , s e l f . i n i t i a l _ s t a t e , s e l f . hor izon , s e l f .
c o n s t r a i n t s )

35 whi le np . max( c ) > s e l f . to l_c and i t e r_a l <=s e l f .
max_iterat ions_al :

36 #minimize Lagrangian us ing iLQR
37 i t e r _ l q=0
38 J_new=0
39 J_prev=0
40 # compute J with X and U
41 f o r i in range ( s e l f . hor i zon ) :
42 J_new += s e l f . system . ca l cu l a t e_co s t ( s e l f . x_traj [ : , i ] ,

s e l f . u_traj [ : , i ] )
43 J_new += s e l f . system . c a l c u l a t e _ f i n a l _ c o s t ( s e l f . x_traj [ : ,

s e l f . hor i zon ] )
44

45 x_new=np . copy ( s e l f . x_traj )
46 u_new=np . copy ( s e l f . u_traj )
47 whi le abs (J_new−J_prev ) > s e l f . t o l and i t e r_lq<=s e l f .

max_iterat ions :
48 J_prev=J_new
49 l q r . backward_pass ( s e l f . m u l t i p l i e r s , s e l f .mu, x_new ,

u_new)
50 x_new , u_new , J_new=l q r . forward_pass (x_new , u_new , J_prev

)
51 i t e r _ l q +=1
52 pr in t ( " D i f f e r e n c e between the prev iou and the new

c o s t s : " , abs (J_new−J_prev ) )
53 pr in t ( "N o f i t e r a t i o n o f iLQR : " , i t e r _ l q )
54 pr in t ( "Number o f r equ i r ed i t e r a t i o n s f o r iLQR : " , i t e r _ l q )
55 s e l f . x_traj=np . copy (x_new)
56 s e l f . u_traj=np . copy (u_new)
57 f i n a l _ c o s t=s e l f . system . c a l c u l a t e _ f i n a l _ c o s t ( s e l f . x_traj

[ : , s e l f . hor i zon ] )
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58 pr in t ( f " F ina l co s t f o r hor i zon { s e l f . hor i zon } = {
f i n a l _ c o s t } " )

59 #update value f o r m u l t i p l i e r s
60 f o r i in range ( l en ( s e l f . c o n s t r a i n t s ) ) : # f o r each

c o n s t r a i n t
61 f o r k in range ( s e l f . hor i zon ) :
62

63 c [ i , k]= s e l f . c o n s t r a i n t s [ i ] . eva luate_cons t ra in t (
x_new [ : , k ] ) # c o n s t r a i n t i at s tep k

64

65 s e l f . m u l t i p l i e r s [ i , k]=max(0 , s e l f . m u l t i p l i e r s [ i , k
] + s e l f .mu[ i , k ] ∗ c [ i , k ] )

66 s e l f .mu[ i , k]= s e l f . pena l ty ∗ s e l f .mu[ i , k ]
67 pr in t ( s e l f . m u l t i p l i e r s )
68 i t e r _ a l=i t e r _ a l+1
69

70 pr in t ( "Maximum v i o l a t i o n o f the c o n s t r a i n t s : " , np . max( c ) )
71

72 s e l f . system . animate_cloth ( s e l f . hor izon , s e l f . x_traj , s e l f .
system . dt , F_history=s e l f . u_traj , gi fname=s t r ( i t e r_a l −1)+"_"+s t r (
s e l f . system . dt )+"_"+s t r (J_new)+"_"+s t r (np . max( c ) ) )

73 pr in t (np . max( s e l f . u_traj ) )
74 pr in t (np . min ( s e l f . u_traj ) )
75 pr in t ( "Maximum v i o l a t i o n o f the c o n s t r a i n t s : " , np . max( c ) )
76 pr in t ( "Number o f r equ i r ed i t e r a t i o n s f o r AL−iLQR : " , i t e r _ a l )

A.3 LQR.py

1 import numpy as np
2 from numpy . l i n a l g import inv
3 import she l v e
4

5 c l a s s LQR:
6 de f __init__( s e l f , system , i n i t i a l _ s t a t e , hor izon , c o n s t r a i n t s ) :
7 s e l f . system=system
8 s e l f . hor i zon=hor izon
9 s e l f . i n i t i a l _ s t a t e = np . copy ( i n i t i a l _ s t a t e )

10 s e l f . reg_factor_u = 1e−3
11 s e l f . c o n s t r a i n t s=c o n s t r a i n t s [ : ]
12 s e l f . m u l t i p l i e r s=np . z e ro s ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . hor i zon

) )
13 s e l f .mu=np . z e ro s ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . hor i zon ) )
14

15 s e l f . pena l ty=10
16 s e l f . a lpha=1
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17 s e l f . e_const ra int =0.5
18 s e l f . d=np . z e r o s ( ( s e l f . system . cont ro l_s i z e , s e l f . hor i zon ) )
19 s e l f .K=np . z e ro s ( ( s e l f . system . cont ro l_s i z e , s e l f . system .

s ta t e_s i z e , s e l f . hor i zon ) )
20 s e l f . delta_V1=np . z e ro s ( s e l f . hor i zon )
21 s e l f . delta_V2=np . z e ro s ( s e l f . hor i zon )
22 s e l f . max_iter=100
23 s e l f . f s =10
24

25 de f s e t _ i n i t i a l _ t r a j e c t o r i e s ( s e l f , x_traj , u_traj ) :
26 s e l f . x_traj = np . copy ( x_traj )
27 s e l f . u_traj = np . copy ( u_traj )
28

29 de f forward_pass ( s e l f , x_up , u_up , J_prev ) :
30 done=0
31 new_J=0
32 current_J=J_prev
33 s e l f . a lpha=1
34 x_new_traj = np . z e ro s ( ( s e l f . system . s ta t e_s i z e , s e l f . hor i zon +

1) )
35 u_new_traj = np . z e r o s ( ( s e l f . system . cont ro l_s i z e , s e l f . hor i zon

) )
36 x = np . copy ( s e l f . i n i t i a l _ s t a t e )
37 i t e r =0
38 whi le done==0:
39 f o r i in range (0 , s e l f . hor izon , s e l f . f s ) :
40 x_new_traj [ : , i ] = np . copy (np . r a v e l ( x ) )
41 delta_x = x − x_up [ : , i ] . reshape (6∗ s e l f . system .

n_masses , 1 )
42 u=u_up [ : , i ]+np . r a v e l ( s e l f .K[ : , : , i ] . dot ( delta_x ) )+s e l f

. alpha ∗ s e l f . d [ : , i ]
43 # +
44 u_new_traj [ : , i ] = np . copy (np . r a v e l (u) )
45 new_J += s e l f . system . ca l cu l a t e_co s t (x , u )
46 x = s e l f . system . t r a n s i t i o n (x , u)
47 f o r j in range (1 , s e l f . f s ) : # run the s imu la t i on

f o r 10 t imes
48 u_new_traj [ : , i+j ] = np . copy (np . r a v e l (u) )
49 x_new_traj [ : , i+j ] = np . copy (np . r a v e l ( x ) )
50 new_J += s e l f . system . ca l cu l a t e_co s t (x , u )
51 x = s e l f . system . t r a n s i t i o n (x , u)
52 x=x+np . random . uniform ( low=−5e −3, high=5e −3, s i z e

=(30 ,1) )
53

54 x_new_traj [ : , s e l f . hor i zon ] = np . copy (np . r a v e l ( x ) )
55 new_J += s e l f . system . c a l c u l a t e _ f i n a l _ c o s t ( x )
56 i f new_J > 1e5 :
57 i t e r+=1
58 i f i t e r == s e l f . max_iter :
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59 pr in t ( ’Max number o f i t e r a t i o n f o r forward pass ’ )
60 re turn x_up , u_up , J_prev
61 new_J=0
62 s e l f . a lpha =0.8∗ s e l f . alpha
63 x_new_traj = np . z e ro s ( ( s e l f . system . s ta t e_s i z e , s e l f .

hor i zon + 1) )
64 u_new_traj = np . z e ro s ( ( s e l f . system . cont ro l_s i z e , s e l f

. hor i zon ) )
65 x = np . copy ( s e l f . i n i t i a l _ s t a t e )
66 e l s e :
67 adelta_V=s e l f . alpha ∗ s e l f . delta_V1+s e l f . alpha ∗∗2∗ s e l f .

delta_V2
68 J=0
69 f o r i in range ( s e l f . hor i zon ) :
70 J+= s e l f . system . ca l cu l a t e_co s t (x_up [ : , i ] , u_up [ : ,

i ] )
71 J+= s e l f . system . c a l c u l a t e _ f i n a l _ c o s t (x_up [ : , s e l f .

hor i zon ] )
72

73 z=(J−new_J)/(−np . sum( adelta_V ) )
74 pr in t ( " z va lue f o r the l i n e search : " , z )
75 pr in t ( " Cost o f the prev ious t r a j e c t o r y " , J )
76 pr in t ( " Cost o f the new t r a j e c t o r y " ,new_J)
77 i t e r+=1
78 pr in t ( " N o f i t e r a t i o n : " , i t e r )
79 i f i t e r == s e l f . max_iter :
80 pr in t ( ’Max number o f i t e r a t i o n f o r forward pass ’ )
81 re turn x_up , u_up , J_prev
82 i f ( z < 15 and z > 1e−8) :
83 x_up=np . copy ( x_new_traj )
84 u_up=np . copy ( u_new_traj )
85 pr in t ( " Cost f o r the new optimal t r a j e c t o r y " ,new_J

)
86 done=1
87 pr in t ( " Forward pass r equ i r ed : " , i t e r , "

i t e r a t i o n s " )
88 i t e r =0
89 re turn x_up , u_up , new_J
90 e l i f abs (new_J−J ) < 0 . 0 0 5 :
91 pr in t ( " Cost f o r the new optimal t r a j e c t o r y " , J )
92 done=1
93 pr in t ( " Forward pass r equ i r ed : " , i t e r , "

i t e r a t i o n s " )
94 i t e r =0
95 re turn x_up , u_up , J
96 e l s e :
97 new_J=0
98 s e l f . a lpha =0.8∗ s e l f . alpha
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99 x_new_traj = np . z e ro s ( ( s e l f . system . s ta t e_s i z e ,
s e l f . hor i zon + 1) )

100 u_new_traj = np . z e ro s ( ( s e l f . system . cont ro l_s i z e ,
s e l f . hor i zon ) )

101 x = np . copy ( s e l f . i n i t i a l _ s t a t e )
102

103

104 de f backward_pass ( s e l f , lam , mu, x_new , u_new) :
105 #pr in t ( " Backward pass " )
106 s e l f .mu=np . copy (mu)
107 s e l f . m u l t i p l i e r s=np . copy ( lam )
108

109 # d e f i n i t i o n o f pn and Pn
110 ln_xx = np . copy ( s e l f . system . Q_f)
111 ln_x = s e l f . system . Q_f @ (x_new [ : , s e l f . hor i zon ] − s e l f .

system . goa l )
112 s e l f . Iu=s e l f .mu [ : , s e l f . hor izon −1]∗np . diag (np . ones ( l en ( s e l f .

c o n s t r a i n t s ) ) )
113 C=np . ones ( l en ( s e l f . c o n s t r a i n t s ) )
114 C_x=np . z e r o s ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . system . s t a t e _ s i z e ) )
115 f o r i in range ( l en ( s e l f . c o n s t r a i n t s ) ) :
116 C[ i ]= s e l f . c o n s t r a i n t s [ i ] . eva lua te_cons t ra in t (x_new [ : ,

s e l f . hor i zon ] )
117

118 # checking i f the c o n s t r a i n t i s a c t i v e
119 i f C[ i ] < − s e l f . e_const ra int and s e l f . m u l t i p l i e r s [ i ,

s e l f . hor izon −1] == 0 :
120 s e l f . Iu [ i , i ] = 0 # i t means that the c o n s t r a i n t i s

not a c t i v e
121

122 C_x[ i , : ] = s e l f . c o n s t r a i n t s [ i ] . eva luate_constra int_J (x_new
[ : , s e l f . hor i zon ] )

123 cu=np . z e r o s ( ( l en ( s e l f . c o n s t r a i n t s ) , s e l f . system . c o n t r o l _ s i z e ) )
# no c o n s t r a i n t s on c o n t r o l t r a j e c t o r y

124 pn=ln_x+C_x.T @ ( s e l f . m u l t i p l i e r s [ : , s e l f . hor izon −1]+ s e l f . Iu @
C)

125 Pn=ln_xx+C_x.T @ s e l f . Iu @ C_x
126

127 f o r i in range ( s e l f . hor i zon − 1 , −1, −s e l f . f s ) :
128 pr in t ( i )
129 u = u_new [ : , i ]
130 x = x_new [ : , i ]
131 # d e f i n i t i o n o f d e r i v a t i v e s o f the co s t func t i on
132 l_xt = s e l f . system .Q @ ( x − s e l f . system . goa l )
133 l_ut = s e l f . system .R @ u
134 l_uxt = np . z e ro s ( ( s e l f . system . cont ro l_s i z e , s e l f . system .

s t a t e _ s i z e ) )
135 l_xxt = np . copy ( s e l f . system .Q)
136 l_uut = np . copy ( s e l f . system .R)
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137 s e l f . Iu=s e l f .mu [ : , i ] ∗ np . diag (np . ones ( l en ( s e l f . c o n s t r a i n t s
) ) )

138 f o r j in range ( l en ( s e l f . c o n s t r a i n t s ) ) :
139 C_x[ j , : ] = s e l f . c o n s t r a i n t s [ j ] . eva luate_constra int_J ( x )
140 C[ j ]= s e l f . c o n s t r a i n t s [ j ] . eva lua te_cons t ra in t ( x )
141 i f C[ j ] < − s e l f . e_const ra int and s e l f . m u l t i p l i e r s [ j

, i ] == 0 :
142 s e l f . Iu [ j , j ] = 0
143 i f i+1==s e l f . hor i zon :
144 p=pn
145 P=Pn
146 e l s e :
147 p=Q_x + s e l f .K[ : , : , i +1] .T @ Q_uu @ s e l f . d [ : , i +1] +

s e l f .K[ : , : , i +1] .T @ Q_u + Q_ux.T @ s e l f . d [ : , i +1]
148 P=Q_xx + s e l f .K[ : , : , i +1] .T @ Q_uu @ s e l f .K[ : , : , i +1]+

s e l f .K[ : , : , i +1] .T @ Q_ux + Q_ux.T @ s e l f .K[ : , : , i +1]
149

150 A, B = s e l f . system . t rans i t i on_J (x , u) #matr i ce s A and B
from dynamics

151 Q_x = l_xt + A.T @ p + C_x.T @ ( s e l f . m u l t i p l i e r s [ : , i ]+
s e l f . Iu @ C)

152 Q_u = l_ut + B.T @ p + cu .T @ ( s e l f . m u l t i p l i e r s [ : , i ]+ s e l f
. Iu @ C)

153 Q_ux = l_uxt + B.T @ P @ A + cu .T @ s e l f . Iu @ C_x
154 Q_uu = l_uut + B.T @ P @ B + cu .T @ s e l f . Iu @ cu + s e l f .

reg_factor_u ∗ np . i d e n t i t y ( s e l f . system . c o n t r o l _ s i z e )
155 Q_xx = l_xxt + A.T @ P @ A + C_x.T @ s e l f . Iu @ C_x
156

157 i f np . a l l (np . l i n a l g . e i g v a l s (Q_uu) > 0) :
158 f o r j in range (0 , s e l f . f s ) :
159 s e l f .K[ : , : , i−j ]=−inv (Q_uu) @ Q_ux
160 s e l f . d [ : , i−j ]=−inv (Q_uu) @ Q_u
161 s e l f . delta_V1 [ i−j ]= s e l f . d [ : , i−j ] . T @ Q_u
162 s e l f . delta_V2 [ i−j ]=0.5∗ s e l f . d [ : , i−j ] . T @ Q_uu @

s e l f . d [ : , i−j ]
163 e l s e :
164 s e l f . reg_factor_u = s e l f . reg_factor_u ∗5

A.4 Constraints.py

1 import numpy as np
2

3 c l a s s SphereConstra int :
4 de f __init__( s e l f , center , r , system ) :
5 s e l f . c en t e r = cente r
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6 s e l f . r = r
7 s e l f . system = system
8

9 de f eva luate_cons t ra in t ( s e l f , x ) :
10 #eva luate the s t a t e to see i f the c o n s t r a i n t i s v i o l a t e d
11 x=x . reshape (6∗ s e l f . system . n_masses , 1 )
12 x_next = s e l f . system . t r a n s i t i o n (x , np . z e r o s ( s e l f . system .

c o n t r o l _ s i z e ) )
13

14 l ength = ( x_next [ 0 ] − s e l f . c en t e r [ 0 ] ) ∗∗2 + ( x_next [ 1 ] − s e l f .
c en t e r [ 1 ] ) ∗∗2 + ( x_next [ 2 ] − s e l f . c en t e r [ 2 ] ) ∗∗2

15 re turn −( s e l f . r ∗∗2 − length )
16

17 de f eva luate_constra int_J ( s e l f , x ) :
18 #evo lve the system f o r one to eva luate c o n s t r a i n t
19 x=x . reshape (6∗ s e l f . system . n_masses , 1 )
20 x_next = s e l f . system . t r a n s i t i o n (x , np . z e r o s ( s e l f . system .

c o n t r o l _ s i z e ) )
21 r e s u l t = np . z e r o s ( x . shape )
22 r e s u l t [ 0 ] = 2∗( x_next [ 0 ] − s e l f . c en t e r [ 0 ] )
23 r e s u l t [ 1 ] = 2∗( x_next [ 1 ] − s e l f . c en t e r [ 1 ] )
24 r e s u l t [ 2 ] = 2∗( x_next [ 2 ] − s e l f . c en t e r [ 2 ] )
25 r e s u l t [ s e l f . system . n_masses ] = 2∗( x_next [ 0 ] − s e l f . c en t e r [ 0 ] )

∗ s e l f . system . dt
26 r e s u l t [ s e l f . system . n_masses+1] = 2∗( x_next [ 1 ] − s e l f . c en t e r

[ 1 ] ) ∗ s e l f . system . dt
27 r e s u l t [ s e l f . system . n_masses+2] = 2∗( x_next [ 2 ] − s e l f . c en t e r

[ 2 ] ) ∗ s e l f . system . dt
28 re turn np . r a v e l ( r e s u l t )
29

30

31 c l a s s BoxConstraint :
32 de f __init__( s e l f , ux , lx , uy , ly , uz , l z , system , hor i zon ) :
33 s e l f . ux=ux
34 s e l f . uy=uy
35 s e l f . uz=uz
36 s e l f . l x=lx
37 s e l f . l y=ly
38 s e l f . l z=l z
39 s e l f . system=system
40 s e l f . hor i zon=hor izon
41

42 de f eva luate_cons t ra in t ( s e l f , x ) :
43 x=x . reshape (6∗ s e l f . system . n_masses , 1 )
44 x_next = s e l f . system . t r a n s i t i o n (x , np . z e r o s ( s e l f . system .

c o n t r o l _ s i z e ) )
45 p , v=np . v s p l i t ( x_next , 2 )
46 p=p . reshape ( s e l f . system . n_masses , 3 )
47 v=v . reshape ( s e l f . system . n_masses , 3 )
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48 f o r i in range ( s e l f . system . n_masses ) :
49 i f p [ i , 0 ] >= s e l f . l x and p [ i , 0 ] <=s e l f . ux :
50 i f p [ i , 1 ] >= s e l f . l y and p [ i , 1 ] <=s e l f . uy :
51 i f p [ i , 2 ] >= s e l f . l z and p [ i , 2 ] <=s e l f . uz :
52 re turn 1
53 re turn −1
54

55

56

57 de f eva luate_constra int_J ( s e l f , x ) :
58 x=x . reshape (6∗ s e l f . system . n_masses , 1 )
59

60 r e s u l t = −np . ones ( x . shape ) ∗ s e l f . system . dt
61 f o r i in range ( s e l f . system . n_masses ∗3) :
62 r e s u l t [ i ]= −1
63 re turn np . r a v e l ( r e s u l t )

A.5 test.py

1 from rope_system import Rope
2 import numpy as np
3 from AL_iLQR import AL_iLQR
4 #import she l v e
5 from c o n s t r a i n t s import SphereConstra int , BoxConstraint
6 import matp lo t l i b . pyplot as p l t
7 i f __name__ == ’__main__ ’ :
8 # I n i t i a l i z i n g the ob j e c t
9 system=Rope ( 5 , 0 . 0 0 1 )

10 # I n i t i a l c o n f i g u r a t i o n
11 x0=system . i n i t i a l _ p o s i t i o n (0 , 0 , 4 )
12 # Set running co s t matr i ce s
13 f i g = p l t . f i g u r e ( f i g s i z e =(8 , 6) , dpi =100)
14 ax = f i g . add_subplot (111 , p r o j e c t i o n=’ 3d ’ )
15 system . plot_rope ( ax , x0 )
16 p l t . s a v e f i g ( " t r a j . png " )
17

18 Q=1e−4∗np . i d e n t i t y ( system . s t a t e _ s i z e )
19 f o r i in range (3∗ system . n_masses ) :
20 Q[ i , i ] = 1e−4 # to change the weight f o r the p o s i t i o n
21 system . set_cost (Q, 0 .005∗ np . i d e n t i t y ( system . c o n t r o l _ s i z e ) )
22 Q_f = 1e−4∗np . i d e n t i t y ( system . s t a t e _ s i z e )
23 # Set f i n a l co s t matrix
24 f o r i in range (3∗ system . n_masses ) :
25 i f i >= (3∗ system . n_masses −9) :
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26 Q_f [ i , i ] = 150 # the l a s t three masses have more
r e l evance in minimizing the co s t func t i on

27 system . s e t_ f ina l_co s t (Q_f)
28 # Set the f i n a l goa l
29 he ight =4.2
30 system . set_goal (np . r a v e l ( system . goa l_pos i t i on (1 , 0 , he ight ) ) )
31 pr in t ( f "The he ight f o r the f i n a l t a r g e t i s { he ight } " )
32 hor izon =2000
33 name_to_save=5.03e−3
34 # d e f i n i t i o n o f the c o n s t r a i n t s
35 c o n s t r a i n t 1=SphereConstra int ( system . return_posit ion_actuated_mass

( x0 ) , 3 , system )
36 c o n s t r a i n t 2=BoxConstraint ( 6 . 6 , 3 . 4 , 1 . 1 , − 1 . 1 , 3 . 3 , 1 . 7 , system , hor i zon

)
37 # s t a r t i n g the s o l v e r
38 s o l v e r=AL_iLQR( system , x0 , hor i zon )
39 s o l v e r . add_constra int ( c o n s t r a i n t 1 )
40 s o l v e r . add_constra int ( c o n s t r a i n t 2 )
41 # s o l v e r . system . animate_cloth ( hor izon , s o l v e r . x_traj , system . dt ,

F_history=s o l v e r . u_traj , gi fname="prova2 " )
42

43 s o l v e r . a lgor i thm ( )
44 pr in t ( f "The maximum and minimum va lues f o r the c o n t r o l input are :

{np . max( s o l v e r . u_traj ) } and {np . min ( s o l v e r . u_traj ) } " )
45 pr in t ( f "The maximum and minimum va lues f o r the v e l o c i t i e s are : {

np . max( s o l v e r . x_traj [ 1 5 : 3 0 , : ] ) } and {np . min ( s o l v e r . x_traj
[ 1 5 : 3 0 , : ] ) } " )

46 #f i g = p l t . f i g u r e ( f i g s i z e =(8 , 6) , dpi =100)
47 f i g = p l t . f i g u r e ( f i g s i z e =(8 , 6) , dpi =100)
48 ax = f i g . add_subplot (111 , p r o j e c t i o n=’ 3d ’ )
49 s o l v e r . system . draw_tra j e c to r i e s ( ax , s o l v e r . x_traj , s o l v e r . x_traj

[ : , 0 ] , s o l v e r . x_traj [ : , hor i zon ] )
50 p l t . s a v e f i g ( " t r a j n o i s e "+s t r ( name_to_save )+" de f . png " )
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