
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

LiDAR SLAM for indoor exploration
using Unmanned Aerial Vehicles

Supervisors

Prof. Alessandro RIZZO

Dr. Phillipp FANTA-JENDE

Candidate

Francesco VULTAGGIO

July 2023

Abstract

The role of Unmanned Aerial Vehicles, UAVs, in the context of disaster response
has usually been to extend the senses of the responders by providing a bird’s eye view
of the affected area. In contrast, the role of indoor exploration has often been the
purview of Unmanned Ground Vehicles, UGVs, since their greater payload allowed
them to use the heavier sensors needed for such tasks. The recent development of
lighter, cheaper, and more accurate sensors has opened the possibility of deploying
small UAVs to map indoor spaces. UAVs offer many advantages over UGVs, they
are more agile and quicker, they can fly over obstacles that may be insurmountable
for UGVs, and reach structures inaccessible from the ground.

The goal of this work has been to identify the best hardware and software setup
to perform Simultaneous Localization And Mapping, SLAM, in indoor spaces using
a small UAV. To this end we performed an extensive battery of tests in simulated
environments using a custom plugin we developed for this purpose. Having selected
the most promising solution we then implemented drift correction strategies to
increase the robustness and accuracy of the solution.

i

Acknowledgements

Working on this project has been the most enriching experience of my academic
career thus far, and its success owes itself to the invaluable guidance and support of
several individuals and organizations. I would like to express my deepest gratitude
to my primary supervisors, Dr. Phillipp Fanta-Jende and Prof. Alessandro Rizzo,
whose profound expertise in the field of computer vision and robotics played a
pivotal role in shaping the direction of my research. Their mentorship not only
helped me make informed decisions but also encouraged me to explore every research
question in great depth.

I am indebted to the entire team at the AIT for their collaborative spirit and
support. Dr. Francesco D’Apolito, Dr. Felix Bruckmüller, and Dr. Christoph
Sulzbachner, in particular, have been instrumental in this journey. Their willingness
to assist, provide valuable insights, and engage in discussions enriched my research
experience. I must also acknowledge the exceptional teamwork of Wolfgang Boltz
and Noah Maikisch, who patiently accommodated my requests for new data and
served as valuable sounding boards for my ideas.

A special thanks goes to my dear friend, Marco Cella, who worked on the
path planning aspects of our project. The countless late nights spent together in
the office and our shared triumphs and challenges have not only forged a strong
professional partnership but also a lasting friendship.

Beyond my academic network, my family has been an unwavering source of
inspiration and motivation throughout this long and rewarding journey. My parents,
in particular, have been a constant pillar of support, encouraging me to pursue my
passions, from Palermo to Turin and now Vienna. While many people shaped my
academic journey they made me the person I am.

As I look forward to the next phase of my research I carry with me the lessons,
support, and inspiration from these remarkable individuals and organizations.

“Wir müssen wissen, wir werden wissen”
D. Hilbert

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Robotics for Disaster Response . 1

1.1.1 The challenges of indoor localization 4

2 Foundations for SLAM 8
2.1 Formulating the problem . 8
2.2 Filter-based approaches . 10

2.2.1 Extended Kalman Filter SLAM 10
2.3 Optimization-based approaches . 11
2.4 Filtering versus Optimization . 14
2.5 Frontend, backend, odometry, and SLAM 14

3 Hardware Selection 16
3.1 Visual SLAM . 18
3.2 LiDAR SLAM . 20
3.3 LiDARs for indoor UAVs . 23

4 Analysis of state of the art SLAM algorithms 28
4.1 Presentation of the selected Algorithms 29

4.1.1 CT-ICP . 29
4.1.2 KISS-ICP . 30
4.1.3 LIO-SAM . 30
4.1.4 FAST-LIO2 . 31

4.2 Benchmarking methodology and analysis 31
4.2.1 Simulation Pipeline . 32
4.2.2 Evaluation procedure . 34

4.3 Selection of the SLAM algorithm 42

iv

4.3.1 Performance on real data . 42

5 Loop Closure implementation 45
5.1 Loop detection . 45
5.2 Loop Correction . 47
5.3 Results . 48

Bibliography 53

Acronyms 64

v

List of Tables

3.1 Sensor characteristics for UAV SLAM 17
3.2 MEMS LiDAR specifications . 25
3.3 Livox Mid-360 specifications . 26

4.1 Local accuracy . 37
4.2 Percentage of drift increase from Cave to House map 37
4.3 RMSE in cm of the point-to-mesh error 39
4.4 Percentage of outliers . 40

vi

List of Figures

1.1 Chernobyl Robots . 2
1.2 WTC UGVs . 2
1.3 Example of UAV used in disaster response 3
1.4 GNSS limitations . 5
1.5 SLAM 3D map . 7

2.1 EKF uncertainty correction . 11
2.2 Graph Structure . 12

3.1 Navlab1 platform . 16
3.2 KITTI dataset performances . 18
3.3 Feature triangulation . 19
3.4 KITTI mapping . 20
3.5 Particulate effects on LiDAR . 22
3.6 Types of LiDAR technologies . 23
3.7 Optomechanical LiDAR design . 24
3.8 Mid360 Pattern . 27

4.1 Plugin comparison . 33
4.2 Maps used for testing . 34
4.3 Ghosting artifacts in the final point cloud 36
4.4 LiDAR scan collected in the house map 39
4.5 Point-to-mesh error distribution for CT-ICP and Kiss-ICP In blue

with the Mid360 and in red with os0-128 40
4.6 Loop closure effects on LIO-SAM 41
4.7 Memory usage of Fast-LIO2. 42
4.8 UAV mounting Livox Mid360 . 43
4.9 Map generated by CT-ICP . 44
4.10 Plot of the height during flight . 44

5.1 Loop Closure Architecture . 46
5.2 Pose Graph generated by Voxgraph 48

vii

5.3 Loop closure correction . 49
5.4 Loop Closure effects on global consistency 50

viii

Chapter 1

Introduction

1.1 Robotics for Disaster Response

In times of natural or man-made disasters, the ability to quickly and effectively
respond to the crisis can make a significant difference in saving lives and minimizing
damage. Traditional disaster response efforts often face challenges such as limited
resources, time constraints, and hazardous conditions that put human responders
at risk. However, with the rapid advancement of robotics technology, a new wave
of innovative solutions has emerged to augment and improve disaster response
operations.

By utilizing robotics in disaster response, response teams can enhance their
capabilities, improve efficiency, and mitigate risks. Robots can operate in hazardous
conditions without endangering human lives, overcome physical limitations, and
provide real-time data for informed decision-making. The integration of artificial
intelligence and further enhances their autonomy and adaptability, enabling them
to learn and respond dynamically to changing circumstances.

According to [1], as of 2012, rescue robots have been used in the aftermath of at
least 28 disasters worldwide. The first ever deployment of robots in the context
of disaster response dates back to 1986 in the aftermath of the Chernobyl nuclear
disaster[2]. Some robots were remote operated machinery used to remove debris
while other were smaller in size and used for remote sensing through cameras and
radiation dosimeters 1.1.

1

Introduction

Figure 1.1: Some of the robots used in Chernobyl, displayed at the Chernobyl
Museum in Kyiv

Another prominent use of robots, often cited as the first ever, occurred following
the 2001 World Trade Center attacks, where small UGV (Unmanned Ground
Vehicle) were used to explore portions of the fallen structure too narrow for humans
to traverse.

Figure 1.2: UGVs used after the World Trade Center collapse

UGVs are designed to operate in various terrains and environments, including
rugged landscapes, collapsed structures, and contaminated areas. UGVs are able
to carry heavier payloads such as manipulator arms, heavy sensors and powerful
processing units. Historically, this has allowed UGVs to perform tasks such as
delivering supplies or conducting remote inspections.

2

Introduction

Whilst UGVs offer many advantages one key limitation stems from their inability
to explore areas inaccessible from the ground and to offer a bird’s eye view of an
area. To tackle this limitation UAV (Unmanned Aerial Vehicle)s are often deployed
alongside them.

UAV is a broad term used to describe aerial platforms with drastically different
capabilities. Figure 1.3 shows two UAVs used for disaster response[3, 4]. UAVs
are often categorised based on their configuration, i.e. fixed wing and multi rotor.
However in this work UAVs will be divided based on their main domain of of
operation:outdoor and indoor UAVs.

(a) Reaper UAV (b) Micro UAV

Figure 1.3: Example of UAV used in disaster response

Outdoor UAV have been used for decades for mapping and remote sensing
applications[5, 6]. Recent advancements have led to the development of more
compact UAVs suitable for indoor exploration of precarious structures in the
aftermath of disasters.

Researchers in the field of disaster response have stressed the importance that
autonomy plays in reducing the cognitive load for first responders. The disaster
robotics community has primarily focused on three domains [7], namely:

• Exploration, planning, and path execution

• Object recognition and scene interpretation

• Localization

• Mapping

3

Introduction

A fully autonomous platform capable of operating in disaster scenarios should
excel in all of these domains, accomplishing goals with minimal human interaction
through high-level commands. Outdoor UAVs have already reached a high level
autonomy, being able to fly and create a bird’s eye view map to first responders
with minimal human input[8, 9]. The same cannot be said for indoor UAVs which
so far have relied on human guidance, mediated by a live video feed, to traverse
the inherently hostile and unstructured environments typical of disaster areas.

Indoor UAVs trade flight time and payload for maneuverability. To achieve a
high degree of maneuverability indoor UAV often rely on multi-rotor configurations.
Due to their reduced payload such systems have historically been reliant on low
weight sensors, mainly IMU (Inertial Measurement Unit) and cameras.

This work will focus on improving the localization and real-time mapping capa-
bilities of autonomous UAVs in indoor environments. While indoor localization
and mapping have already reached a high degree of maturity[10, 11] most solution
don’t focus on negotiating with harsh environments. The design choices will be
motivated by the assumption of an uncooperative environments, i.e.:

• No prior map of the environment

• Absent or inconsistent lighting

• Fog or other suspended particulate

• Aggressive motion profiles

• Limited to no access to external positioning system

1.1.1 The challenges of indoor localization
GNSS (Global Navigation Satellite System) signals, such as those provided by the

American GPS (Global Positioning System) or the European Galileo constellations,
are instrumental in facilitating autonomous mapping for outdoor UAVs. These
signals allow outdoor UAVs to accurately determine their precise location and
orientation in real-time. By combining GNSS data with onboard sensors, such
as IMUs and cameras, UAVs can create detailed maps of the environment while
navigating autonomously. GNSS signals provide a reliable and globally available
source of positioning information, allowing UAVs to efficiently localize themselves
even under adverse conditions.

4

Introduction

The availability of GNSS signals simplifies the process of mapping for outdoor
UAVs in disaster scenarios. Instead of relying solely on visual information, which
can be challenging in chaotic and dynamically changing environments, UAVs can
utilize GNSS signals to establish a reference frame and anchor their mapping efforts.
This helps overcome the limitations posed by adverse weather conditions, low
lighting, or obscured visual cues. GNSS signals provide a robust and independent
source of positioning information, allowing UAVs to adapt to various environmental
challenges and maintain accurate mapping capabilities.

Unfortunately, GNSS data is not a reliable source of positioning for indoor
platforms [12]. We can identify many reasons for why this may be the case, see
Figure 1.4.

Figure 1.4: From left to right, reflection, attenuation, correct signal, multi-path

Firstly, indoor environments typically have limited or no direct line-of-sight with
GNSS satellites this leads to reflection of the signal. Moreover, the signals from
these satellites are easily attenuated or completely blocked by structures, walls,
and ceilings, resulting in weak or no reception. As a result, the UAV cannot receive
accurate GNSS signals indoors, leading to significant errors or complete failure in
positioning.

Secondly, the multi-path effect, where GNSS signals reflect off surfaces before
reaching the receiver, is more pronounced indoors. In indoor environments with
reflective surfaces, such as glass windows or metallic objects, the UAV may receive

5

Introduction

multiple signal reflections, causing interference and leading to inaccurate position
calculations. This multi-path effect further deteriorates the reliability of GNSS data
for indoor positioning. These phenomenons are often encountered also outdoor,
especially in urban canyons, but they are never as pronounced as indoor.

To address these challenges, alternative positioning technologies are used for
indoor UAVs. These technologies include but are not limited to: IPS (Indoor
Positioning Systems) [13] based on Wi-Fi, Bluetooth, or other wireless signals.
These techniques rely on sensors and data sources that are specifically designed for
indoor environments, offering higher accuracy and reliability compared to GNSS
in such settings. IPS systems can offer sub centimeter accuracy when properly
deployed and are often used to to generate ground truth positions in benchmark
efforts[14].

However, there are several limitations that make IPS less suitable for disaster
response. IPS heavily relies on infrastructure such as wireless beacons, which may
become damaged or inaccessible during a disaster, rendering the system ineffective.
Moreover, IPS accuracy can still be affected by factors like: signal interference,
multi-path effects, and signal attenuation in complex indoor environments. These
challenges hinder the reliability and robustness of IPS during critical situations. In
the last decade a new avenue of research sitting at the crossroad between robotics
and computer vision has proposed a software solution to the localization and
mapping problem: SLAM (Simultaneous Localization And Mapping).

SLAM offers a more promising approach for localization in indoor environments
during disasters. SLAM algorithms enable autonomous systems to simultaneously
construct a map of the environment and estimate their own position within it,
without relying on pre-existing infrastructure. This self-contained nature of SLAM
makes it highly adaptable to dynamic and challenging scenarios, allowing robots to
navigate and localize themselves even in the absence of reliable external references.
SLAM’s ability to handle uncertainties and adapt to changing environments makes
it a better-suited approach for the localization problem in indoor settings during
disasters. Moreover, SLAM algorithms are able to provide a map of the environment
in real time, Figure 1.5. Such maps can be highly beneficial in the decision making
process of the first-responders[7].

6

Introduction

Figure 1.5: Example of 3D map generated in real-time by our system

7

Chapter 2

Foundations for SLAM

2.1 Formulating the problem
The SLAM problem has been described as "deceptively easy to state"[15]. As the

name suggest, SLAM algorithms aim to acquire a spatial model of the environment
and localize the sensing apparatus within said model in real time. Starting from a
position x0 the sensing apparatus roams the environment, if the motion is known
we assume this information to be affected by noise. While it moves, the apparatus
collects noisy data regarding the environment, leveraging these data the SLAM
framework estimates its position and incrementally builds a map of the environment.

We can provide a mathematical formulation of the SLAM problem using a
probabilistic framework. We denote the sequence of locations as:

X(T) = {x0, x1, ..., xT }

We denote with T some terminal time at which we assume our observations to
end. The location x0 is assumed to be known by arbitrarily fixing it as the origin
of our local frame of reference.

The set of measurements and controls can be similarly be represented with the
vectors Z(T) and U(T) respectively. Denoting with m the map itself we can then
formulate the SLAM problem as:

p(xt, m|z1:t, u1:t)

Borrowing the terminology used in [16] we can distinguish between two versions
of the SLAM problem. The previous formulation is called online SLAM. Given
that we only seek to estimate the pose at time t. On the other hand, we could
formulate the SLAM problem also as:

8

Foundations for SLAM

p(x1:t, m|z1:t, u1:t)

This second formulation can be denoted as the full SLAM problem, since at
each iteration t we seek to estimate the full trajectory spanning {0,1, ...t}. Tackling
the full SLAM problem is more challenging than the online SLAM problem due to
several reasons.

First, in the online SLAM formulation, the objective is to estimate the pose at a
specific time, which simplifies the problem. In contrast, the full SLAM problem
aims to estimate the entire trajectory spanning from the initial time step to the
current time step, encompassing all intermediate poses. This extended scope
increases the complexity of the problem as it requires considering and integrating a
larger amount of information.

Second, in the online SLAM problem, the estimation can be updated incrementally
as new measurements and controls are obtained, allowing for a more efficient and
real-time processing. The full SLAM problem, however, requires maintaining and
updating the entire trajectory history as new data becomes available, leading to a
growing computational burden and memory requirements. The accumulation of
errors over time can also impact the accuracy of the estimates in the full SLAM
formulation, as any errors in previous poses can propagate and affect subsequent
estimations.

Furthermore, the full SLAM problem poses additional challenges when it comes
to data association. Data association refers to the task of correctly associating
measurements with the corresponding features or landmarks in the environment.
In the online SLAM formulation, the associations can be resolved incrementally,
relying on the previously estimated poses. In the full SLAM problem, however, the
associations need to be consistently maintained throughout the entire trajectory,
considering all past and future measurements. This requires addressing the data
association problem in a global and coherent manner, which can be more difficult
due to the increased complexity and potential ambiguities.

We will now present two different paradigms to tackle the SLAM problem. Many
SLAM algorithms fall into one of these paradigms which represent two ends of the
spectrum of how to tackle the problem.

9

Foundations for SLAM

2.2 Filter-based approaches

EKF (Extended Kalman Filter) based approaches have historically been the first
paradigm explored by the robotics community to tackle the online SLAM problem
[17, 18]. Later, more complex filtering approaches, such as those based on particle
filtering [19, 20], gained popularity due to their ability to handle more extreme
motion profiles and localization ambiguities.

2.2.1 Extended Kalman Filter SLAM

In the EKF formulation the map is assumed to be comprised of distinct features,
which can be imagined as one dimensional points and are often referred to as
landmarks. The belief we are trying to estimate will consequently be constituted
by the coordinates of the sensing apparatus and the coordinates of each landmark
in the map. If we assume our system to move and sense in a 3D space our model
will be:

yt = [xt, yt, zt, rt, pt, yt, m1x, m1y, m1z, ..., mNx, mNy, mNz]

The EKF paradigm represents the belief as a multivariate Gaussian distribution:

p(yt|Z(T), U(T)) = N (µt, Σt)

Indicating by N the number of landmarks constituting our map, the size of
µt is 3N + 6 while the size of the covariance matrix Σt would be its square. The
covariance matrix quantifies the uncertainty about the position of the robot and
each landmark in the space, the off-diagonal elements capture the cross correlations
in the estimate of the different variables.

As the platform moves, the uncertainty represented by the covariance matrix
Σt will grow over time. However, when the platform observes again a previously
mapped landmark the overall uncertainty will decrease. This is due to the correlation
expressed in the covariance matrix of the Gaussian. This phenomenon is illustrated
in Figure 2.1.

10

Foundations for SLAM

Figure 2.1: The dotted line shows the path of the platform and the dots represent
the landmarks position. The shaded ellipses represent the position estimate of the
platform while the red ones the estimate of the landmark. As the platform moves
the uncertainty grows until, after re-observing the original landmark, the EKF
corrects the accumulated drift[16]

The main limitation of the EKF formulation of the SLAM problem is its inherent
poor scalability which stems from the quadratic growth of the covariance matrix.
Over the years many approaches have been deployed to tackle this problem, some
researchers formulated the problem using the inverse of the covariance matrix,
called information matrix, which by it’s very nature is sparse and thus amenable
to efficient inversion algorithms[21, 22]. While others still have been able to
define a measurement model which expresses the geometric constraints between
the landmark poses without having to include the landmark position in the state
vector, resulting in linear complexity over the number of features[23] but with cubic
complexity over the number of old poses.

While filtering based approaches have been at the core of many early seminal
SLAM works, alternative SLAM frameworks have gained in popularity to the
point that in recent reviews the period of EKF dominance has been called "the
classical age" in contrast to the modern age where we can see a prevalence of
optimization-based approaches amongst state of the art frameworks.[24]

2.3 Optimization-based approaches
Optimization-based techniques utilize a graph-like representation of the SLAM

problem. This approach breaks down the comprehensive probability distribution

11

Foundations for SLAM

inherent to the SLAM issue into a sequence of conditional probabilities. These
probabilities encompass only specific subsets of poses, control inputs, and landmark
measurements. The inherent graph structure in this formulation facilitates intuitive
visual representations, as shown in Figure 2.2.

x0 x1 x2 x3

l0 l1 l2

Figure 2.2: Structure of a general graph SLAM

Such graphs are termed factor graphs [25]. The nodes symbolize the estimable
variables, while the edges, or factors ϕi, connect them. Factors in these graphs
can represent any function, distinguishing them from Bayes nets. It’s a common
practice to model these factors as non-linear functions, h(.), linked to nodes,
and accompanied by Gaussian noise, Σi. Within factor graph terminology, these
non-linear functions are known as measurement prediction functions. Notably,
estimating a factor graph’s nodes, X, equates to determining the MAP (Maximum
A Posteriori) of the joint probability distribution.

XMAP = argmax
X

Φ(X)

= argmax
X

Ù
i

ϕi(Xi)

considering that

ϕi(Xi) ∝ exp{−1
2∥hi(Xi) − zi∥2

Σi
}

we can rewrite the XMAP expression as:

XMAP = argmax
X

Ù
i

exp{−1
2∥hi(Xi) − zi∥2

Σi
}

12

Foundations for SLAM

If we take the negative log of this expression it is clear how this problem becomes
the minimization of nonlinear least-squares:

XMAP = argmin
X

Ø
i

∥hi(Xi) − zi∥2
Σi

Optimization within the manifold where our nodes reside is intricate, given that
the manifold’s dimension often surpasses that of our measurements. Therefore,
amassing multiple observations becomes essential for discerning a solution, and even
more so for a robust one. While delving into the complexities of such optimization
problems goes beyond the scope of this work and most SLAM practitioners, there
are recognized strategies to approach them. A prevalent method linearizes the
non-linear function around a point Xi, converting the issue into a more tractable
linear least square problem. Yet, several algorithms directly minimize the problem’s
non-linear formulation [26], including: Steepest Descent, Gauss-Newton, Levenberg-
Marquardt [27], and the Dogleg [28]. Machine learning —a domain necessitating
robust non-linear optimizers— has also birthed algorithms adept at minimizing
notably non-convex cost functions, with Adam [29] standing out prominently.

One might observe that the earlier factor-graph-based optimization description
implies the need for complete data availability. While continually optimizing
with each new data-point’s arrival is feasible, it’s computationally redundant.
Without computational constraints, this would be an ideal problem-solving strategy.
Nonetheless, in most scenarios, newly acquired data rarely affects older nodes.
Hence, the ability to execute incremental updates to our estimates—capitalizing on
previous computations—would be invaluable. Recent innovations, like iSAM2[30],
accomplish this by translating factor graphs into a Bayes tree[31]. This allows
for seamless inclusion of new leaf nodes, capitalizing on earlier calculations, and
retaining precision comparable to comprehensive batch optimization.

Pivotal to understanding factor-graph-based optimization in SLAM is distin-
guishing between full factor graphs and pose graphs. While both are graph-based
representations of the SLAM problem, pose graphs are a condensed version, pre-
dominantly capturing the robot’s trajectory or poses over time. In pose graphs,
nodes represent robot poses, and edges depict spatial constraints between these
poses, often arising from motion models or loop closure detections. Contrarily,
full factor graphs encapsulate a richer set of information, including individual
landmark measurements alongside poses. As such, nodes in full factor graphs
denote both robot poses and observed landmarks, with edges linking nodes based
on measurements and motion controls. The simplification offered by pose graphs

13

Foundations for SLAM

often results in a reduction of computational complexity, making them a favorable
choice for large-scale environments or when real-time processing is paramount.

2.4 Filtering versus Optimization
The question of which paradigm is best to tackle the SLAM challenge often

emerged amongst roboticists [32, 33, 34]. Some like [33] have mathematically
proven that filtering techniques which marginalize out past poses will always be
outperformed by optimization techniques which operate on a selection of most
relevant past data. It is generally accepted that filtering based techniques are able
to run faster and are thus often preferred for embedded systems where real time
operation is crucial. On the other hand, optimization based techniques are often
preferred when accuracy is the main concern. This should make intuitive sense to
those familiar with tasks such as SfM (Structure from Motion) [35].

Choosing which paradigm to subscribe to is not only a matter of raw performance
and many soft-factors play a role in the choice of paradigm. State of the art
optimization-based SLAM libraries[30, 36, 37, 38] often unparalleled modularity
and a high degree of abstraction for the end user which is tasked to mainly work
on the measurement prediction function and many are already provided out of the
box.

The next section, providing a sensor-agnostic overview of modern SLAM solu-
tions, highlights how the choice between filtering and optimization is not a binary
one and often these can work in tandem to achieve the best possible results.

2.5 Frontend, backend, odometry, and SLAM
The previous overview of the SLAM problem proceeded under the assumption

that our system had a preexisting high-level representation of its surrounding. In
practice no sensor is able to measure landmarks themselves: visual sensors output
pixel intensities, LiDAR the distance to the closest obstacle, IMUs accelerations,
and so on. Landmarks are a higher level idea and exist only once identified and,
most importantly, observed over time.

Ever since the seminal PTAM (Parallel Tracking And Mapping) paper[39] the
SLAM community has embraced a general paradigm where the role of landmark
detection and positioning updates is left to the frontend while that of landmark
management and drift correction, also known as loop correction, is left to a backend.
Finding reliable landmarks for the frontend to recognize over time is arguably the
hardest challenge limiting the robustness of SLAM systems and highly platform

14

Foundations for SLAM

dependent. On the other hand the backend is usually highly generalizable across
many robotics systems and is often left to a general purpose SLAM library.

Since the frontend role is to provide an incremental positional update, they are
often referred to in the literature as "odometries". The use of the term odometry
in this context is likely to have originated in works from the early 2000 where we
can first find the term visual-odometry [40, 41]. This term was selected in analogy
to the term used for other sensors like wheel encoders,wheel-odometry, or IMUs,
inertial-odometry. All these sources of positioning share the limitation of not being
able to correct the accumulated drift.

Modern frontends are also able to incrementally build a map of their environment,
thus blurring the line between odometry and SLAM. For the remainder of this
work a SLAM framework will be defined as any localization and mapping system
able to detect and correct its accumulated drift without the use of GNSS data.
Conversely, any localization and and mapping system unable to do the same will
be referred to with the term odometry.

15

Chapter 3

Hardware Selection

The first attempts to tackle the SLAM problem in the context of autonomous
navigation date back to the early days of the Navlab group [42, 43] from Carnegie
Mellon University. The Navlab1 platform, see Figure 3.1, incorporated wheel
encoders, IMUs, RGB cameras, sonars, and 3D laser scanners.

Figure 3.1: Navlab1 development platform from 1986

Sensors can be separated into two families, exteroceptive and interoceptive ones.
Interoceptive sensors measure some aspects of the internal state of the platform.
A wheel encoder measures the rotational position of wheels and by knowing their
geometry, it is possible to estimate the motion of the platform. Wheel odometry
is subjected to drift due mainly to slippage between the wheel and the ground.
Interoceptive sensors, being blind to their surroundings, are inherently unable to
recognize the inevitable drift any localization system is subjected to. This problem
can be mitigated by the use of external positioning systems, IMU-based navigation

16

Hardware Selection

systems, INS (Inertial Navigation System), are for example often equipped with
GNSS receivers to periodically correct the accumulated drift.

On the other hand, an exteroceptive sensor captures information regarding
the environment surrounding the platform itself. The most popular forms of
exteroceptive sensors used for SLAM are cameras[44], LiDARs[45], sonars[46] and
radars[47]. Being able to observe the external world is key to any SLAM framework
which makes these sensors crucial for SLAM applications.

Table 3.1 shows the general characteristics of many popular sensor used for
SLAM. In practice, it is often beneficial to pair exteroceptive and interoceptive
sensors together in order to increase the robustness and accuracy of the SLAM
pipeline. Often the former output data at a much lower rate compared to the
latter, having access to high frequency data is useful to preserve the high frequency
motion of the platform.

Family Frequency Resolution Accuracy SWAP
Camera Exteroceptive 30-60 Hz High Medium Low
LiDAR Exteroceptive 10-20 Hz High High High

IMU Interoceptive 100-1000 Hz Medium Varying Low
Sonar Exteroceptive 10-100 Hz Low Low Low
Radar Exteroceptive 10-20 Hz Low Low High

Table 3.1: Sensor characteristics for UAV SLAM

State of the art SLAM solutions for UGVs use all possible sensors to achieve the
best possible state estimate. UAVs on the other hand are much more constrained
by the maximum payload they can carry while still maintaining airworthiness. For
this reason the vast majority of UAVs rely on cameras as their main exteroceptive
sensor.

Figure 3.2 compiles the localization performances of the top algorithms tested to
date1 on the KITTI benchmark dataset[48]. From the graph we can see that while
camera based algorithms are more popular, LiDAR based ones tend to provide a
lower translational error.

1Rankings as of 2023

17

https://web.archive.org/web/20230907103345/https://www.cvlibs.net/datasets/kitti/eval_odometry.php

Hardware Selection

0 10 20 30 40 50 60 70 80
Method

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
an

sla
tio

n
(%

)

Translation error vs Ranking

Figure 3.2: Performances of various SLAM algorithms on the KITTI dataset
In red LiDAR based ones, in blue camera based, in green Camera and LiDAR
based ones.

While in the previous chapter we explained how SLAM work in an agnostic
fashion, to explain the difference in performances between LiDAR and visual SLAM
we need to explain how their frontends work and what are the inherent limitations
to each of these sensor modalities.

3.1 Visual SLAM

Visual SLAM relies on visual data captured by the camera or set of cameras.
These visual data are translated in 3D data using many different strategies but
at the core of most of them lies the idea of 3D point triangulation from sets
of 2D features. Figure 3.3 provides an intuitive visual understanding of feature
triangulation. In an ideal scenario, Figure 3.3a, we have a perfect camera calibration
matrix P , this matrix establishes a relationship between the 2D image coordinates,
y1, and 3D world coordinates,x, up to a scale factor k:

y = kP x

We can imagine this relationship as casting a ray passing through the y1 and
x the scalar factor k represents the fact that we can’t gauge depth from a single
image. Using another image observing the same feature we can then find the point
in 3D space in which these points intersect and use this information to triangulate
the position of the point in 3D space.

18

Hardware Selection

There are many limitations to this technique, the first is represented in Figure 3.3b,
the projection matrix P cannot be estimated perfectly during the camera calibration
phase[49]. This leads to imperfect triangulation which gets worse the further the
point we are trying to triangulate is from the camera.

x

O O

y y2

2

1

1

(a) Ideal feature triangulation

x

O O

y2

2

y1

1

y1

y2'
'

(b) Realistic feature triangulation

Figure 3.3: Feature triangulation

Another limitation stems from the problem of recognizing the same 2D point
across images in the first place. The usual pipeline first detects points of interest
in each images and for each computes a visual descriptor. These descriptors act as
identifiers for each point of interest that can be used to then find visually similar
points across images. The most well known are probably SIFT[50], ORB[51], and
SURF[52]. These early hand-crafted descriptors are still very popular in the field
of visual-SLAM but can often fail dramatically if the environment is subjected to
poor lighting conditions, fog or is lacking textured areas.

Recently, so called, learned descriptors have been proposed[53, 54, 55] to address
the shortcomings of older methods. These descriptors are derived from machine
learning models trained on datasets of image pairs and can address most of the
shortcomings of older descriptors[56]. However those descriptors are difficult to
compute at the rate at which cameras generate frames making them too expensive
for many robotics applications.

Moreover, since point triangulation is an expensive process in practice most SLAM
approaches try and triangulate as fewer points as possible while still maintaining
accurate localization performances. This results in maps low point density which,
while detailed enough for a robot to localize itself, are hard to understand for
human operators. Triangulating more points would, in principle, be possible as

19

Hardware Selection

demonstrated by SfM techniques which can be imagined as an offline version of
the visual SLAM problem.

Figure 3.4: Mapping results of State of The Art Visual SLAM[57] on the KITTI[48]
dataset

In practice, Visual SLAM can provide accurate localization with moderate
computational resources. This, however, comes at the cost of sparse real time
mapping performances, see Figure 3.4. Moreover, visual data can be effected by
poor visibility conditions making the entire pipeline more fragile and less than ideal
to operate in the aftermath of a disaster scenario.

3.2 LiDAR SLAM
LiDAR provide direct 3D measurements of the environment with respect to

the sensor itself. These point clouds can be extremely dense, a typical LiDAR
outputs hundreds of thousands of points per second and many go up to millions of
points per second allowing for accurate mapping without the need for triangulation.
This technology is extensively employed for the acquisition of precise 3D spatial
information about the surroundings, making it indispensable in various applications,
including autonomous navigation, environmental mapping, and object recognition.
In this section, we delve into the fundamental principles and operational mechanisms
that underlie LiDAR systems.

At its core, LiDAR operates on the principle of emitting laser pulses and mea-
suring the time it takes for these pulses to return after interacting with objects
within the sensor’s field of view. LiDAR systems employ lasers, typically in the
near-infrared spectrum, to generate brief, high-energy pulses of light. These pulses

20

Hardware Selection

are directed into the environment in a controlled manner, an optomechanical
mechanism, allowing them to cover a wide range of angles and distances.

LiDAR SLAM works by aligning subsequent scans using the ICP (Iterative
Closest Point) algorithm, first proposed in [58]. The ICP algorithm is a widely
used method for registering two 3D point clouds, P (t) and Q(t − 1), by iteratively
refining the transformation that aligns them. The goal of ICP is to find the
roto-translation T (t) (a 3D translation and rotation) that minimizes the distance
between corresponding points in P (t) and Q(t − 1). The general steps in the ICP
algorithms are:

• Start with an initial estimate of the transformation T , often recovered assuming
constant velocity between time t and t−1 or assumed to be the identity matrix.

• For each point pi ∈ P (t) find the closest qi ∈ Q(t).

• Minimize the error E(T) between corresponding pairs by optimizing the
transformation T

argmin
∆t,∆R

E(T) = Σi||qi − T pi||2

• Update T using the newly found translation vector ∆t and rotation matrix
∆R

• Iterate until either a maximum number of step is reached or the error falls
below a certain threshold.

LiDAR frontend are thus able to recover the ego-motion of the platform between
each scan and produce an odometry output which can be fed to a pose graph
optimization framework to correct the accumulated drift. The ICP algorithm
derives its robustness from two main assumptions, the fact that the initial alignment
between incoming scans is already close to being correct and that there will be a
great number of points to be observed, thus averaging the noise out over hundreds
of thousands of points.

LiDARs are extremely precise sensors and can provide millions of points per
seconds to centimeter level precision. However, their accuracy is bound by an
inevitable physical phenomenon: diffraction, often referred to as beam divergence
to encompass every aspect which can increase it. The beam divergence angle θ
is typically defined as the angle within which the majority of the laser energy is
concentrated. It can be mathematically expressed as:

θ = λ

πD

21

Hardware Selection

Where λ is the wavelength of the light pulse and D is the diameter of the light
beam at its narrowest point.

This ideal value of represents the best possible beam divergence value for any
given light pulse, a beam approaching this value is said to be diffraction limited. In
real commercial systems this lower bound is never reached and the quality of the
optics plays a much greater role in the actual performances of the LiDAR. However,
while beam divergence plays a pivotal role for systems expected to capture long
range data we expect to operate in indoor environments (10-40m range) where the
beam divergence characteristics of a LiDAR are not mission critical.

LiDARs, as any sensor, can be affected by many disturbances. Since they work
by measuring the time taken by a light pulse to return to the receiver they are
affected by factors which prevent this process to work. In practice we found that
heavy particulate can impede some of the reflection and provide false returns as can
be seen from Figure 3.5. The experiments performed by my colleagues [59] showed
that the LiDAR data, while still effected by smoke are still usable for SLAM.

Figure 3.5: Effects of heavy particulate concentrations on LiDAR point cloud

Except under specific edge cases LiDAR sensor offer an incredible level of precision
and reliability under conditions spanning from fog to total darkness, such scenarios
would prevent RGB-cameras to operate. Moreover, even under ideal conditions
LiDARs can outperform cameras in SLAM applications, see Figure 3.2.

22

Hardware Selection

In applications where accuracy is paramount, such as surveying, LiDARs have
been the de facto standard for decades and have proven themselves to be an essential
tool for autonomous applications ever since the 2007 DARPA challenge[60]. The
reader might then ask why not always use LiDARs in place of cameras? We argue
that the main barriers to LiDAR adoption have been SWAP (Size Weight And
Power).

To illustrate this point, the LiDAR sensor used for the KITTI dataset in 2012 is
a Velodyne HDL-64e2, at the time one of the best sensors on the market. The point
cloud density and accuracy would still make the HDL-64e useful for LiDAR-SLAM
today. However, the size weight and power consumption being 13kg and 60W
respectively, make it unfeasible for indoor UAV platforms.

3.3 LiDARs for indoor UAVs
The last ten years have seen the development of ever smaller and more efficient

LiDAR sensors[61, 62, 63, 64]. Figure 3.6, shows the different kinds of LiDARs
based on their design.

Figure 3.6: Scheme of popular LiDARs technologies available on the market

Optomechanical LiDARs, also known as rotating LiDARs, are designed to capture
detailed 3D spatial information about their surroundings. Optomechanical LiDARs

2HDL-64e datashet

23

https://web.archive.org/web/20221129202227/https://hypertech.co.il/wp-content/uploads/2015/12/HDL-64E-Data-Sheet.pdf

Hardware Selection

rely on a rotating mechanism for beam scanning. One of the key features of
optomechanical LiDARs is their mechanical scanning mechanism. This mechanism
includes a motor that rotates a thin circuit board about its vertical axis. Attached
to this circuit board are laser emitters and receivers pairs.

Figure 3.7: Typical design of an Optomechanical LiDAR[65]

Figure 3.7 shows the design of such sensors. Each pair constitutes a beam and
a single sensor can have between 15 and 128 such beams. Due to their rotating
mechanism, they offer a complete 360-degreeFoV (Field Of View), making them
ideal for applications requiring omnidirectional perception. The main limitation of
these technologies stems from SWAP considerations: optomechanical LiDARs tend
to be larger and heavier compared to solid-state LiDARs, which may limit their
suitability for certain UAV applications where SWAP constraints are critical.

On the totally opposite side we have solid state LiDARs, these sensors rely on
technologies like OPA (Optical Phased Arrays)[64]. OPA LiDARs, operate by
leveraging the principles of optical phase manipulation and beam steering. These

24

Hardware Selection

LiDAR systems replace traditional optomechanical scanning mechanisms with an
array of tiny optical emitters, often lasers, and controlling phase shifts in the
emitted light. By carefully adjusting the phase of the light from each emitter, these
LiDARs can precisely steer and combine multiple laser beams, allowing for rapid
and precise scanning of the environment without any moving parts. As these laser
beams hit objects in the surroundings, they bounce back and are detected by an
array of receivers.OPA LiDARs offer the potential for high-resolution 3D mapping,
fast scanning speeds. Unfortunately, while promising these sensors are still in the
research and development stage and are not yet commercially available.

MEMS LiDARs offer the best compromise between availability on the market and
SWAP considerations. These sensors use tiny, highly precise mechanical components
constructed at the microscale. In MEMS LiDAR systems, a micro-mirror or an
array of micro-mirrors, typically etched onto a silicon substrate, plays a pivotal
role. These micro-mirrors can tilt or rotate rapidly, directing laser beams with
extraordinary precision. As the laser pulses are emitted, these micro-mirrors adjust
their angles to steer the beams towards specific points in the environment and then
capture the reflections. MEMS LiDARs excel in terms of their compact size, low
power consumption, and high reliability.

In practice, the majority of MEMS LiDAR sensors available on the market suffer
from a limitation in their FoV when compared to traditional optomechanical LiDAR
sensors, which offer a complete 360° FoV. This reduced FoV poses challenges for
the robustness of the ICP algorithm and necessitates specific SLAM algorithms to
accommodate them[66]. For your reference, Table 3.2 presents the specifications of
some of the most popular MEMS LiDAR sensors currently widely available.

Ouster Os0-128 Blickfeld QB1 Livox Mid70

H-FOV (°) 360 70 70
V-FOV (°) 90 30 70
Points (hz) 2.4M 70k 100k
Range (m) 100 70 130
Weight (g) 500 275 580
Power (W) 15 12 8
Price (Eur) > 10k not available 1K
Release date 2021 2021 2020

Table 3.2: MEMS based LiDARs specifications

25

Hardware Selection

The primary advantage of MEMS LiDARs lies in their lower power consumption,
reduced weight, and cost-effectiveness. Notably, at the commencement of this
project, Livox introduced a groundbreaking sensor: the Livox Mid360, the details
of which can be found in Table 3.3. This innovative sensor represents a significant
milestone in the world of LiDARs as it offers a full 360-degree FoV while still
maintaining the low SWAP, characteristic typical of MEMS LiDARs.

Livox Mid360

H-FOV (°) 360
V-FOV (°) 59
Points (hz) 200k
Range (m) 40
Weight (g) 265
Power (W) 8
Price (Eur) < 1k
Release date 2022

Table 3.3: Livox Mid-360 specifications

The Livox Mid360 sensor achieves the performance metrics detailed in Table 3.3
through a novel approach. It employs a helicoidal non-repeating pattern to guide the
light beams. You can observe the resulting point clouds in Figure 3.8, showcasing
data generated by the sensor after 0.1 seconds and 2 seconds. To produce these
visualizations, we utilized the data provided by the manufacturer, which can be
found in the official pattern file3.

Our analysis of this data, coupled with subsequent experiments, led us to a
significant insight. The Livox Mid360 sensor consists of four diodes strategically
oriented towards a MEMS mirror, responsible for deflecting their beams. This
unique configuration results in a pattern that efficiently saturates the surrounding
space over time.

After careful evaluation of available LiDARs options, we determined that the
Livox Mid360 was the most suitable choice for our project. The primary factor
influencing our decision was its exceptional low SWAP characteristics, which made
it an ideal candidate for mounting on a small indoor UAV. This feature was crucial

3official pattern

26

https://web.archive.org/web/20231009201324/https://github.com/Livox-SDK/livox_laser_simulation/blob/main/scan_mode/mid360.csv

Hardware Selection

(a) Mid360 pattern after 0.1 seconds (b) Mid360 pattern after 2 seconds

Figure 3.8: Example of the non repeating pattern of the Livox Mid360. Points
from different diodes are coloured in red, green, blue and yellow respectively.

for our specific application, where the UAV’s agility and maneuverability were of
paramount importance.

Moreover, the Livox Mid-360 exhibited performance metrics that we deemed
sufficient for our SLAM requirements. However, it is important to note that the
Livox Mid360 does have a limitation when compared to top-of-the-line optomechan-
ical LiDARs. It offers a lower point cloud density, which can impact the precision
of our mapping and navigation tasks. Moreover it is unclear to what extent the
unique acquisition pattern may effect the LiDAR SLAM developed with traditional
sensors in mind.

To comprehensively assess the implications of this limitation, we conducted a
rigorous benchmarking process. This involved comparing the performance of the
Livox Mid-360 against, arguably, the best LiDAR sensor currently available on
the market: the Ouster Os0-128. While its SWAP characteristics make it a poor
candidate for integration in an indoor-UAV its pointcloud make it an ideal to act
as a baseline for our comparisons. The results of this benchmarking exercise will
be discussed in detail in the following chapter, shedding light on how the Livox
Mid-360’s point cloud density affects its performance in various SLAM scenarios

27

Chapter 4

Analysis of state of the art
SLAM algorithms

In the previous chapter, we discussed the challenges arising from the SWAP
characteristics of traditional optomechanical LiDARs. These challenges have
impeded their incorporation into indoor UAVs, leading to a research gap in SLAM
algorithms specifically designed for indoor platforms with LiDAR sensors. While
LiDARs are commonly used on outdoor UAVs for tasks such as surveying[67,
45] and on ground vehicles including UGVs and automobiles, the majority of
research has been directed towards SLAM algorithms suited for these contexts. We
addressed this disparity in our publication [68], detailing our testing campaign in
the following section."

In our pursuit of advancing indoor UAV-based mapping and navigation, we estab-
lished a set of criteria for selecting suitable SLAM algorithms for our experiments.
These criteria encompassed the following key considerations:

• Dual Sensor Support: Central to our objectives was the evaluation of
the Livox Mid360’s performance in comparison to traditional LiDAR sensors.
Consequently we only tested SLAM pipelines which supported both the Livox
Mid360 and the Ouster Os0-128. This dual-sensor support allowed us to
conduct a comprehensive and fair comparisons between the Livox Mid360 and
traditional LiDAR sensors, taking into account the distinct characteristics of
each sensor. Notably, we excluded popular frameworks such as F-LOAM[69]
and LeGo-LOAM[70] from our testing campaign due to their incompatibility
with the point clouds generated by the Mid360. Conversely Livox-LOAM[66]
was excluded as it was incapable of process the pointcloud generated by the
Os0-128.

28

Analysis of state of the art SLAM algorithms

• Real-time performances: Given the dynamic and real-time nature of indoor
UAV mapping scenarios, the ability to operate in real-time was an imperative
criterion. This ensured that our chosen SLAM algorithms could deliver timely
and responsive localization and mapping results to first responders and enable
effective UAV navigation and mission execution. For this reason we excluded
PUMA[71] because, although it could process both set of data it was unable
to do so in real time.

• ROS compatibility: Recognizing the ubiquity and versatility of the Robot
Operating System (ROS)[72] framework in in robotics research and devel-
opment, compatibility with ROS was deemed essential. This compatibility
streamlined the integration of our selected SLAM algorithms with the broader
robotic system, ensuring seamless communication and data exchange. We
excluded for this reason MULLS[73] since while able to process data from
both data it was not integrated with ROS.

• Open-Source Availability: An implicit but critical requirement was the
availability of SLAM algorithms as open-source software. This stipulation
was essential to enable thorough testing and evaluation, as access to the
algorithm’s source code is indispensable for a comprehensive understanding
of its functionality and performance. Consequently, the many commercial
LiDAR SLAM solutions that lacked open-source availability were excluded
from consideration.

The subsequent sections of this chapter will delve into the specific SLAM al-
gorithms selected based on these criteria and their comprehensive performance
evaluations under these rigorous conditions. Through this research, we aim to shed
light on the capabilities of the Livox Mid360 and its potential to advance indoor
UAV-based mapping and navigation.

4.1 Presentation of the selected Algorithms

4.1.1 CT-ICP
The core of the CT-ICP [74] algorithm is its novel approach to the scan-to-map
registration step. One of the limitations associated with employing the naive ICP[58]
algorithm for matching successive scans stems from the distortion experienced by
each new scan as the sensor undergoes movement during the acquisition process[75].
This work is not the first to implement a de-skewing strategy prior to the scan
matching step. However, the approach taken here is novel in that it does not rely
on a constant velocity model for the sensor motion or IMU data. This system

29

Analysis of state of the art SLAM algorithms

proposes an elastic formulation of the trajectory with continuity of start and end
pose in the scan acquisition step while allowing for discontinuity between adjacent
scans. In particular, during the de-skewing step no assumption is made about the
fact that the pose of the sensor at the beginning of scan Tb(n) is equal to that of
at the end of the previous one Te(n − 1). This approach preserves high-frequency
motion while still correcting for the scan skew. In the same paper, the authors also
introduce a back end pose graph optimizer based on g2o [37] used to implement
Loop Closure. However, it has not been integrated with the ROS framework and
can only be used to process datasets off-line and we consequently did not integrated
it in our tests.

4.1.2 KISS-ICP
The KISS-ICP framework [76] aims to be a general approach applicable to any
LiDAR sensor with minimal to no tuning of its parameters. It does so by having no
assumption on the kind of sensor being used and avoiding point cloud descriptors
to aid in the scan matching step. To this end KISS-ICP forgoes most of the
sophisticated optimization techniques and reduces the odometry estimation loop
to four steps, namely:

• De-skewing the incoming scan using the constant velocity model,

• Sub-sampling of the deskewed point cloud to bound complexity,

• Scan-to-map matching to recover the incremental odometry,

• Updating of the local map stored using a voxel grid using the previously
subsampled point cloud.

During the scan-to-map matching step, the regular ICP algorithm is utilized.
However, instead of establishing a maximum limit for iterations, an adaptive
threshold is employed, using the point-to-point distance between the local map and
the incoming scans as metric.

4.1.3 LIO-SAM
LIO-SAM [77] is an integrated inertial-LiDAR odometry and mapping pipeline.The
utilization of IMU data serves a dual purpose within this framework. First, it plays
a crucial role in the de-skewing step, aligning LiDAR data accurately. Second, the
IMU provides an initial estimation for the scan registration step.

The integrated IMU data and the LiDAR odometry data, together with optionally
loop closure and GNSS signals, are merged into a factor graph which is optimized
using GTSAM [31]. The scan registration step generates the LiDAR odometry

30

Analysis of state of the art SLAM algorithms

factor, i.e., each scan is registered to a local map by first extracting edge and planar
features based on the local roughness [78].

The factor graph formulation allows for the integration of loop closure in the
LIO-SAM framework. Loop detection is initialized based on the Euclidean distance
between the current pose and previous key poses in the previous trajectory. Upon
triggering, the current scan is aligned with the one corresponding to the pose
captured by the key pose which activated the loop closure event, the retrieved
rototranslation is used as a constraint for the pose graph. Like depicted in Figure
2.2.

4.1.4 FAST-LIO2
Fast-LIO2 [79] is a SLAM system that relies on both LiDAR and IMU data. In
its previous iteration [80], the system utilized an iterated EKF for point cloud
deskewing and scan matching initialization. However, one notable evolution in the
latest version is the elimination of the need for a feature extraction step in the scan
matching process.

The standout feature of this updated formulation lies in its ability to handle
dense maps effectively, which consequently enables efficient scan-to-map matching.
Unlike many other LiDAR SLAM systems that either rely on sub-sampling or
require feature extraction to make real-time scan matching feasible, FAST-LIO2
introduces a specialized implementation of a k-d tree for storing and managing
map data. K-d trees are data structures designed for fast point matching using
kNN (k-Nearest Neighbor) search.

One challenge with traditional k-d trees is that inserting new points into the map
requires re-balancing the entire tree, potentially causing non-real-time operation,
especially when incremental map generation is necessary. To overcome this issue,
the authors implemented a self-balancing k-d tree based on the Scapegoat Tree
concept proposed in [81]. This innovative approach ensures that the final algorithm
can handle extremely dense maps while maintaining real-time performance.

4.2 Benchmarking methodology and analysis
Having selected a representative sample of LiDAR SLAM algorithms we moved

onto the testing phase. Many datasets have been proposed in the literature and
are usually used as a benchmark for SLAMs. However, most of these datasets have
been collected from sensors mounted on cars[48, 82, 83, 84] or other UGVs [85, 86,
87]. The comparatively slow and smooth trajectories of ground platforms prevents
them from capturing data challenging enough to tease the differences between
different

31

Analysis of state of the art SLAM algorithms

The trajectories of ground vehicles typically follow slow and smooth paths, which
limit the complexity of the data they capture. Using LiDAR data collected from
ground vehicles may not provide a reliable basis for predicting which algorithm
will excel when the sensor is mounted on a drone. Some recent datasets[88, 89]
have incorporated hand held sequences using MEMS LiDARs. These datasets
could potentially offer intriguing insights, as hand-held sequences often exhibit
greater motion variation compared to those captured from a vehicle. However,
these datasets do not include data from the specific LiDAR models we aimed to
evaluate.

Recognizing the need for relevant and tailored data, we made the decision to
develop a custom dataset within a simulated environment. This approach allowed
us to precisely replicate the characteristics of both the Mid360 and Os0-128 sensors,
ensuring that the data generated closely resembled the real-world scenarios our
research aimed to address.

Furthermore, the simulation environment presented us with an invaluable op-
portunity: the ability to equip the drone with both virtual sensors simultaneously.
This capability allowed us to capture both point clouds during each flight. This
is impossible to achieve in the real world, given the considerable weight of the
Os0-128 sensor for an indoor drone. During this phase, our primary objective
was to assess whether the Mid360 could reliably generate actionable point clouds,
particularly when subjected to the complex motion patterns typical of indoor UAVs.
This investigation was fundamental in the context of our exploration of SLAM
techniques for indoor UAVs.

By creating this custom dataset, we aimed to bridge the gap between existing
datasets and the unique demands of indoor UAV-based mapping and navigation,
enabling a more accurate and comprehensive evaluation of SLAM algorithms and
the performances of the Mid360.

4.2.1 Simulation Pipeline
We choose to integrate our simulation withing the Gazebo simulation environ-

ment[90]. Compared to other popular simulation environments such as AirSim[91],
Carla[92], or Nvidia Omniverse1, Gazebo offers increased efficiency. This comes at
the cost of decreased visual fidelity, however, since it still supports high quality

1Nvidia Omniverse presentation page

32

https://web.archive.org/web/20230321165852/https://www.nvidia.com/en-us/omniverse/

Analysis of state of the art SLAM algorithms

meshes this will not effect the simulation of lidars. The other simulation pipelines
are be better suited for advanced visual SLAM simulations.

In order to generate the point clouds for the Mid360 sensor we elected to use
the official pattern released by the manufacturer. However the official plugin it
is a part of introduces distortion in the point cloud that unacceptably degraded
the SLAM performances. An example of such distortion can be seen in Figure 4.1.
Both point clouds were generated by placing the virtual sensor in the center of a
cylinder, the left point cloud shows a noticeable distortion. Analysis of the original
code showed that this was caused by improper handling of the zenithal coordinate
when computing the distance to the closest mesh.

Figure 4.1: Comparison of point cloud generated by the original plugin, on the
left, and ours, on the right.

We further improved on the original plugin by adding the timestamp of each
point in the point cloud a behaviour present in the data outputted by the original
sensor but not present in the data generated by the official plugin. Lastly, our
implementation is able to work with the latest version of ROS and Gazebo, this is
not the case for the official plugin. We released our version of the plugin2 to the
benefit of the robotic community as part of our previous publication[68].

To the best of our knowledge only one other work tackling the simulation of
the Mid360 is the recently released MARSIM[93]. MARSIM implementation is a
standalone LiDAR simulation framework which forgoes entirely the use of meshes
and only relies on dense point clouds to represent the environment. Their strategy
yields them higher performances compared even to the already fast Gazebo but
requires highly detailed, and manually refined, point cloud maps. We decided to

2Link to the plugin

33

https://github.com/fratopa/Mid360_simulation_plugin

Analysis of state of the art SLAM algorithms

work in as a plugin to gazebo for its deep ROS integration and possibility to use
meshes as maps.

Testing Environments

Being able integrate maps in Gazebo we decided to create two maps as testing
environments. Figure 4.2 shows the two maps we used to run our tests in.

The initial map, referred to as the house, exhibits a relatively compact layout
in comparison to the second map, the cave. Notably, the house map features a
greater number of open spaces, strategically chosen to facilitate the execution of
more aggressive flight maneuvers by our simulated drone. In contrast, the cave map
is characterized substantially larger, maze-like configuration, rendering aggressive
drone piloting unfeasible. However, the extensive network of elongated corridors
within the cave map posed a significant challenge to the overall robustness and
consistency of our SLAM algorithms.

(a) House map (b) Cave map

Figure 4.2: Maps used to run our tests in.

4.2.2 Evaluation procedure
Most benchmarking efforts evaluate only the localization performances of differ-

ent SLAM algorithms. This is partially due to the fact that capturing ground truth
data of the environment is a hard and time consuming endeavour and partially due
to the fact that most of the slam research has focused on improving the localization
accuracy rather than the mapping quality. The metrics most often used to bench-
mark the performances of a SLAM algorithm are the ATE (Absolute Trajectory
Error) and RPE (Relative Pose Error)[94], to measure the global consistency and
the local accuracy respectively.

34

Analysis of state of the art SLAM algorithms

To compute the RPE, the reference trajectory is divided into uniformly spaced
intervals, of 1 m in our case. The relative transformation ∆i,j between the pose
at the beginning Pi and at the end Pj of each segment is then computed for both
trajectories. Finally, using the inverse compositional operator [95], denoted as
⊖, we can compute the RPE between each transformation in the reference and
relative trajectory. Using the RPE is possible to quantify the drift per meter in
each run and in doing so have a metric to represent the local accuracy of each
SLAM pipeline.

RPEi,j = ∆esti,j
⊖ ∆refi,j

= (P −1
ref,iPref,j)−1(P −1

est,iPest,j)

Conversely, the ATE measures the overall consistency of the final trajectory by
aligning the estimated one and the ground truth one, optionally the scale error is
also estimated by computing the overall Umeyama[96] transformation between the
two sets of poses. Once aligned the distance between each estimated pose and its
closest neighbour amongst the ground truth ones is computed.

In our tests we decided to use the RPE measurement using[97] to compute the
local drift of each sensor in each run but we used the final point cloud to measure
the overall consistency of our SLAM. In analogy to the ATE we computed the
global consistency by:

• Aligning the point cloud with the ground truth mesh.

• Computing the distance between each point in the point cloud and the closest
vertex in the mesh

• Computing the RMSE (Root Mean Squared Error) over all the point-to-mesh
distances.

In our analysis of the data we identified as outliers all the points whose distance
from the mesh was greater than 20 cm. These points severely effect the quality of
the final map and present themselves as ghosting artifacts[98] in the point cloud.
An example of these artifacts can be seen in Figure 4.3.

Local Accuracy Results

Table 4.1 presents the local accuracy of the selected algorithms on two different
maps: House and Cave. It is notable that most algorithms found the House map
more challenging than the Cave. One possible explanation is the constrained
environment of the Cave, which restricts the range of potential motions available
to the UAV during flight. In contrast, the House offers open spaces, allowing

35

Analysis of state of the art SLAM algorithms

Figure 4.3: Section of the final point cloud captured in the cave. The points in
red are those whose distance to the original mesh was greater than 20cm

for abrupt changes in both speed and heading. This poses challenges for LiDAR-
based odometry, as this sensor family typically has a low scan acquisition rate.
While conventional cameras capture images at frequencies ranging from 30-60Hz,
LiDAR sensors commonly operate at a scan acquisition rate of 10Hz, making them
especially sensitive to high-speed motion.

High-speed motion coupled with a low scan acquisition rate results in poorly
overlapping scans, regardless of accurate de-skewing. This adversely affects the
scan-matching process, a critical component in any SLAM algorithm, thereby
compromising the overall state estimation performance. The impact of a low data
acquisition rate on odometry estimation has been extensively examined within the
visual SLAM community [99].

CT-ICP demonstrates remarkable performance, particularly given its non-reliance
on IMU data. The high local accuracy can be attributed to its scan registration
method, which effectively preserves the sensor’s high-frequency motion components.
This is particularly evident in its performance on the House map, where it achieves

36

Analysis of state of the art SLAM algorithms

Cave
CT ICP KISS ICP LIO SAM lc LIO SAM Fast LIO2

Mid-360 1.78 3.34 2.50 2.61 1.08
Os0-128 1.53 8.17 1.26 1.24 0.49

House
CT ICP KISS ICP LIO SAM lc LIO SAM Fast LIO2

Mid-360 2.72 6.88 3.54 2.7 1.61
Os0-128 2.79 7.1 1.65 1.51 1.11

Table 4.1: RMSE of the drift in cm per 1 m interval.
In bold the best-performing sensor for each algorithm, underlined the best-
performing algorithm for each sensor

accuracy levels comparable to LIO-SAM.

Examining KISS-ICP we can see the only instance where the local accuracy
decreased going from the Cave to the House map. Nonetheless, it performed worse
than other algorithms. It can be observed that also the other purely LiDAR-
based algorithm outperforms KISS-ICP, as the constant velocity model, employed
to provide the initial guess for scan-to-map registration, frequently experiences
significant violations during our tests where the sensor was mounted on a UAV
subjected to high speed motion.

LIO-SAM, both with and without loop closure, has been able to preserve high
local accuracy in both maps. We attribute this to its use of the IMU pre-integration
used to provide a first guess to the scan alignment step. The local accuracy doesn’t
show a significant improvement by activating the loop closure as loop closure can
only correct the accumulated drift and not the instantaneous one, we will discuss
its impact on global consistency in the next section.

LIO-SAM Fast-LIO2
Mid-360 +3.3% +32.5 %
Os0-128 +17.9% +55.8%

Table 4.2: Percentage of drift increase from Cave to House map

37

Analysis of state of the art SLAM algorithms

The performances of Fast-LIO2 are a testament to the impact that dense matching
can have on LiDAR SLAM. Fast-LIO2 shows the lowest drift of all the algorithms
in either map and using either sensor. While both Fast-LIO2 and LIO-SAM rely on
IMU data to remain accurate at high-speed, the use of dense matching improves the
accuracy of each registration yielding more accurate odometry. However, computing
the drift increase going from the Cave to the House map, see Table 4.2, suggests
the pose graph strategy implemented by LIO-SAM[31] may be a comparatively
more robust method than the iterative EKF implemented by Fast-LIO 2, albeit
less precise in absolute terms.

Looking at the impact of the sensor itself, it is evident that the CT-ICP algo-
rithm’s ability to perform odometry estimation in an indoor environment is largely
unaffected by which sensor is being used. By storing the local map in a sparsified
voxel structure CT-ICP, is able to reduce its computational footprint while at the
same time having the side effect of uniformly processing point clouds with different
densities. Conversely, LIO-SAM shows a clear preference for higher-density point
clouds, this is due to the fact that in order to extract the LAOM[78] features
it needs to perform scan matching, and higher-density point clouds are greatly
beneficial in detecting the features in the first place. Overall the Mid360 measurably
decreases the local accuracy of most SLAM algorithms but, while measurable, it’s
not significant. Its average being below three centimeter per meter in the most
challenging map.

Global consistency

Looking at the Table 4.3 we can see that the Cave map has been the most
difficult to maintain global consistency in. All algorithms succeeded in generating
an accurate final map of the House with both sensors. This is likely due to the
fact that the many openings present in the map, combined with its smaller size,
effectively turned any local map into an equivalent global one, this can be seen in
Figure 4.4. Registering points to what amounts to a global map rather than to a
local one improves the overall consistency of the final map.

Looking at the point-to-mesh histograms in Figure 4.5 we can see that, while
CT-ICP did not show a strong preference for either of the two sensors when looking
at the local accuracy, the global consistency decreases significantly using the data
provided by the Mid360. In particular, Table 4.4 shows a tenfold increase in
the number of outliers. As the authors themselves have highlighted, local maps
maintained on the distance d to the last registered scan, and not on a sliding
window of the n most recent frames, are particularly susceptible to degradation
of the global consistency following bad scan insertion. CT-ICP counteracts this

38

Analysis of state of the art SLAM algorithms

Cave
CT ICP KISS ICP LIO SAM lc LIO SAM Fast LIO2

Mid-360 20.06 22.58 9.99 14.27 19.98
Os0-128 7.68 51.47 6.26 17.19 5.52

House
CT ICP KISS ICP LIO SAM lc LIO SAM FAST LIO2

Mid-360 6.45 6.86 6.95 5.90 5.27

Os0-128 4.33 4.88 3.65 4.19 5.52

Table 4.3: RMSE in cm compued from the point-to-mesh distance.
In bold the best-performing sensor for each algorithm, underlined the best-
performing algorithm for each sensor

Figure 4.4: Scan from the Os0-128 captured in the House map

by adopting a more cautious approach to scan-to-map registration during abrupt
pose changes. Notably, sensors with longer-range capabilities are more sensitive
to minor yet rapid motion changes, aiding early detection. The limited range of
Mid360’s point cloud, however, makes it less conducive to triggering this preventive

39

Analysis of state of the art SLAM algorithms

mechanism, resulting in ghosting artifacts.

Cave
CT ICP KISS ICP LIO SAM lc LIO SAM Fast LIO2

Mid-360 14.95 31.91 3.68 10.68 15.59
Os0-128 1.40 58.25 0.17 21.78 0.18

House
CT ICP KISS ICP LIO SAM lc LIO SAM Fast LIO2

Mid-360 0.13 3.17 4.24 2.28 5.92e-3
Os0-128 0.02 0.45 9.54e-4 9.34e-4 0.02

Table 4.4: Percentages of outliers in each final point cloud.
In bold the best-performing sensor for each algorithm, underlined the best-
performing algorithm for each sensor

Figure 4.5 underscores the efficiency of the optimizations present in CT-ICP.
While KISS-ICP also employs a voxel structure for local map maintenance, it
apparently lacks strategies to counteract poor scan registration. Consequently,
point clouds from the Os0-128 produce amplified ghosting artifacts in the resulting
map.

0.0 0.2 0.4 0.6 0.8 1.0

ct-icp

0.0 0.2 0.4 0.6 0.8 1.0

kiss-icp

0.0 0.2 0.4 0.6 0.8 1.0

lio-sam-lc

0.0 0.2 0.4 0.6 0.8 1.0

lio-sam

0.0 0.2 0.4 0.6 0.8 1.0

fast-lio2

Figure 4.5: Point-to-mesh error distribution for CT-ICP and Kiss-ICP
In blue with the Mid360 and in red with os0-128

The maps generated by LIO-SAM demonstrate the effects that loop closure has
on maintain global consistency. From Figure 4.6 it is possible to see a pronounced

40

Analysis of state of the art SLAM algorithms

bulge in the point-to-mesh distance histogram of the final map generated by LIO-
SAM without the loop closure module active. These are due to entirely misaligned
portions of the final map. Activating the loop closure realigns the trajectory and
the map indirectly. These misalignments occur infrequently but are difficult to
predict, loop closure is the best tool to counteract this phenomenon. However,
finding the right set of parameters for loop detection in LIO-SAM is a trade-
off between real-time operation and the global consistency of the map. As the
authors themselves wrote, the loop detection module, being based on the Euclidean
distance between the current pose and the trajectory, is naive but effective and
more advanced methods are present in the literature [100, 101].

0.0 0.2 0.4 0.6 0.8 1.0

ct-icp

0.0 0.2 0.4 0.6 0.8 1.0

kiss-icp

0.0 0.2 0.4 0.6 0.8 1.0

lio-sam-lc

0.0 0.2 0.4 0.6 0.8 1.0

lio-sam

0.0 0.2 0.4 0.6 0.8 1.0

fast-lio2

Figure 4.6: Point-to-mesh error distribution for LIO-SAM with and without loop
closure active
In blue with the Mid360 and in red with os0-128

Fast-LIO 2 produces admirable results in both the House and the Cave envi-
ronments. The inconsistent proportion of outliers across each of the four tests,
see Table 4.4 is indicative of how the dense scan-to-map registration approach
is susceptible to drift accumulation which is never able to correct. Figure 4.3 is
indicative of the results that can be expected in a worst-case scenario.

However, preserving global consistency using a dense global map comes with
the caveat of considerable memory consumption. The i-k-d tree implemented in
Fast-LIO 2 allows for real-time interaction with a dense global map, as far as CPU
utilization is concerned. However, it does not reduce its size. Figure 4.7 shows the
memory utilization of the algorithm over time and it is evident that the memory
utilization grows linearly with time by a factor proportional to the size of the point
cloud being used. In our tests, after a few hundred seconds the map has grown
to occupy a few gigabytes. The algorithm starts to truncate the global map only
when the sensor is detected as being outside a predetermined distance from the
first scan which by default is set to 1 km. This approach is inherently memory

41

Analysis of state of the art SLAM algorithms

unsafe, not because of the size of the default distance, but because it is possible for
a sensor to remain static and saturate the system RAM.

0 10 20 30 40 50 60

Time (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
em

or
y

us
ed

 (G
B)

os0-128
mid-360

Figure 4.7: Memory usage of Fast-LIO2.
In blue with the Mid360 and in red with os0-128

4.3 Selection of the SLAM algorithm
Upon analysis of the data from each algorithm, we opted for CT-ICP [74] for our
subsequent tests on real hardware. This decision was informed by several factors:

• FAST-LIO2 [79], despite showcasing the best results, exhibited high memory
consumption, rendering it suboptimal for a SLAM framework operating on
power-constrained embedded hardware.

• Kiss-ICP [76], although the simplest to calibrate and execute, performed
the least efficiently among the SLAM systems examined. Notably, while its
constant velocity model suffices for data from ground platforms, it falls short
with data from agile UAV.

• LIO-SAM [77] didn’t present a substantial benefit over CT-ICP. Moreover, its
backend relies on GTSAM [36]. Our team’s path planner [102] incorporates
its backend based on Voxgraph [38] for sub-map maintenance and exploration
decision-making. Hence, to avoid concurrent operation of two backends, we
decided to select CT-ICP and integrate it into the Voxgraph-provided backend.

4.3.1 Performance on real data
The testing platform is depicted in Figure 4.8. Given the minimal size and

power requirements of our sensor, it was integrated into a compact UAV suitable

42

Analysis of state of the art SLAM algorithms

for indoor laboratory piloting. The drone’s dimensions are 40X40X30cm (Width,
Length, and Height), with a flight autonomy approximated at 10 minutes.

Figure 4.8: UAV mounting the Livox Mid360

The final map, constructed using LiDAR data captured by the Mid360 affixed
to the drone, is displayed in Figures 1.5 and 4.9. This map results from a 3:54s
mission during which the drone traversed an estimated 120 meters, as determined
by the odometry data from CT-ICP. Notably, we lacked access to a tracking system
for ground truth position validation during testing. Thus, neither local nor global
error quantification is feasible. Yet, a qualitative analysis suggests that the map’s
reconstruction is precise.

Figure 4.10 shows the plot of the estimated vertical position estimated by
CT-ICP. As we took off and landed from the ground we can quantify the overall
accumulated error in the vertical direction at the end of the run. Using the last 20
position estimates we have a final height estimate of -4.5cm. Assuming the floor
to be level and flat, an overall error of less than 5 centimeters makes us confident
that even assuming degraded performances when deployed in a disaster scenario
the overall consistency should be satisfactory.

43

Analysis of state of the art SLAM algorithms

Figure 4.9: Top down rendering of the point cloud generated by CT-ICP from
data collected from our flying platform

20

15

10

5

0

5

x
(m

)

/ct_icp/pose/odom

25

20

15

10

5

0

5

y
(m

)

400 425 450 475 500 525 550 575
t (s) +1.692714e9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z (
m

)

Figure 4.10: Plot of the height during real flight as elaborated by CT-ICP

44

Chapter 5

Loop Closure
implementation

As described in section 2 a true SLAM framework must incorporate both a way
to detect the accumulated drift and correct it. Amongst the slam framework we
presented in the previous chapter most[74, 79, 76] should be better characterized
as odometries rather tham real slam. The only exception is LIO-SAM which keeps
track of backtracking to take advantage of possible loop closures which it maintains
using GTSAM[36].

In our analysis of the algorithms we selected CT-ICP[74], which does not naively
support loop closure. To mitigate this limitation in this chapter we will present a
possible strategy to integrate true loop detection and correction in the context of
LiDAR SLAM, Figure 5.1 shows the general architecture.

5.1 Loop detection
Many strategies for detecting loop closures with LiDAR data have emerged in the

literature; however, numerous approaches grapple with challenges. Some struggle
to operate in real-time [103], while others cannot recover the full 6 degrees of
freedom correction [100, 74]. To overcome these limitations, our research integrated
a recently proposed methodology: BoW3D [101].

BoW3D is an innovative method that leverages the LinK3D[104] feature descriptor
to offer fast and accurate loop closure detection within 3D point cloud data. The
underlying principle behind this approach is inspired by traditional 2D image
features, such as SIFT[105] and ORB[51], and the method seeks to represent 3D
keypoints using surrounding neighborhood information.

45

Loop Closure implementation

Figure 5.1: Architecture of how we integrated loop closure detection and integra-
tion in a pose graph framework

BoW3D predominantly consists of a vocabulary and associated place sets. The
vocabulary is a compilation of words. Each word represents a unique combination
of dimension values from the LinK3D descriptor. These words encapsulate the
different recognized patterns within the 3D LiDAR data. In essence, they serve as
a summarized representation of the key features found across different frames of
point cloud data.

Accompanying each word in the vocabulary is a respective place set. A place set
enumerates the frames (or scans) in which a particular word (or pattern) has been
identified. The data structure ensures that for any given word in the vocabulary,
all its occurrences across different frames can be quickly ascertained by referencing
its associated place set.

These Binary Words are stored in a hash table allowing for retrieval in constant
time O(1). This speed makes it possible for BoW3D to quickly check each incoming
point clouds against the previously stored binary words to check for possible loop
closure candidates. Once a loop closure candidate is detected the current scan
is matched against the one corresponding to the loop closure position using the
Link3D features to recover the relative transformation as a loop closure constraint.

46

Loop Closure implementation

In our experiment we corroborated the speed of this technique being able to
operate in concert with CT-ICP with little to no overhead. However we also noticed
an abundance of spurious matches. Since the only filtering step implemented by
BoW3D is based on the ratio of distinctive features present in each scan we also
added the following constraints to mitigate this problem:

• Minimum time distance between current and retrieved scan

• Maximum recovered distance during loop closure

The first constraint is instituted to preclude matches with scans acquired in
close temporal proximity. A threshold of 40 seconds was established, premised
on our observation that such a duration was insufficient to manifest any drift.
Imposing loop corrections within this interval only exacerbated computational
demands without enhancing the system’s precision. The second constraint serves
as a safeguard against false matches in map regions exhibiting self-similarity. Given
that our trials without loop closure never exhibited drifts beyond 5 meters, we
instituted this value as the threshold. Any loop correction exceeding this range
was inherently deemed dubious.

5.2 Loop Correction
To act on the loop closure constraints retrieved by BoW3D, we utilized Voxgraph

[38] as our optimization backend. This tool is adept at transforming sparse point
clouds, commonly sourced from LiDAR SLAM, into dense, consistent, and detailed
meshes of the environment.

At its core, Voxgraph operates on a voxelized truncated signed distance field
(TSDF)[106]. In this grid-like structure, each voxel encodes the shortest distance
to the nearest surface. Depending on the side of the surface the voxel is positioned,
distances are either marked as positive (’empty’ side) or negative (’occupied’ side).
By truncating distances beyond a specific threshold, computational efficiency is
achieved, while also curbing the influence of noise.

The environment is modularly represented through submaps in Voxgraph. A
submap is initiated when the robot traverses beyond a designated distance from the
inception of the prevailing submap or after integrating a predetermined number of
measurements. Each submap maintains its individual TSDF, allowing for localized
dense reconstructions.

47

Loop Closure implementation

Concurrently, Voxgraph crafts a pose graph where nodes represent submaps and
edges signify spatial constraints, often stemming from sensor readings or detected
loop closures. The optimization of this graph refines the relative poses of submaps,
ensuring a better alignment with the collected data.

In our tests we wanted to isolate the effects of BoW3D on global consistency
so we disabled any pose graph optimization step in Voxgraph except for the loop
closure constraints provided by BoW3D. The full pose graph at the end of the tests
in the cave map can be seen in Figure 5.2.

Figure 5.2: Pose graph generated by Voxgraph in the cave environment.
In black odometry constraints and in red the loop closure constraints. The green
line is the trajectory of the drone computed by CT-ICP

5.3 Results
We performed our tests to validate the effectiveness of BoW3D in the cave map

as it was the map where we saw the highest level of global inconsistency in the final
point cloud and consequent ghosting artifacts. We used the same data collected in
our previous tests but we now used our pipeline detailed in Figure 5.1 to process
them.

48

Loop Closure implementation

The main limitation of using Voxgraph as our backend is that it is only able to ap-
ply the loop closure corrections to the dense submaps it reconstructs. Consequently
we evaluated the global consistency on the final mesh generated by Voxgraph, with
and without loop closure active. Figure 5.3 shows qualitatively how the loop
closure is able to correct the ghosting artifacts present in the original point cloud.

(a) Ghosting artifacts from accumulated
drift

(b) Loop closure effects on the final re-
constructed mesh

Figure 5.3: BoW3D in concert with Voxgraph is capable of effectively correct the
accumulated drift in the most challenging map.

Figure 5.4 shows the point-to-mesh error distribution of the final map re-
constructed by Voxgraph with and without loop closure. From our analysis we
measured a 22.8% improvement in the number of outliers by activating the loop
closure strategy detailed in Figure 5.1. However, for Voxgraph to run in real time
we had to set the size of the voxels to 0.2m. Such a coarse reconstruction generates
noisy meshes and consequently the outlier percentage without loop closure active
is equal to 41.59%, a substantial increase compared to the overall consistency of
the unprocessed point cloud obtained by CT-ICP.

49

Loop Closure implementation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Loop Closure

Figure 5.4: Point-to-mesh error distribution in our Loop Closure test
In red without loop closure active and in blue with loop closure active

50

Conclusions and future work

In our research, we underscored the significant advantages LiDAR technology
can offer in disaster management. Notably, while the majority of UAVs utilized for
indoor exploration predominantly depended on human pilots due to a deficiency
in autonomy, our findings demonstrate that contemporary MEMS-based LiDARs
enhance localization precision. This facilitates real-time three-dimensional recon-
structions of indoor settings for first responders. Given the pronounced accuracy
and robustness of LiDAR, its value is further evident considering its extensive
application in sectors like surveying and autonomous transportation. Additionally,
the maturity of these sensors now permits their integration into compact aerial
platforms.

Nevertheless, our evaluation revealed that LiDAR SLAM systems, initially
designed for terrestrial platforms, face challenges when adapted to agile UAVs. Our
trials pinpointed CT-ICP as the superior LiDAR SLAM method. We subsequently
refined it by embedding it within a comprehensive framework capable of real-
time loop closure detection and rectification using BoW3D and Voxgraph. This
framework emphasized the imperative for precise dense mesh reconstructions, as
existing pipelines compromise the original point cloud’s accuracy.

Our endeavor underscored the vital role of effective simulation pipelines. The
plugin developed for the Livox Mid360 simulation was pivotal in our data acquisition,
enabling sensor comparisons that would have been impractical on our compact
indoor UAV. We aspire to further enhance simulation efficiency in our subsequent
work through GPU acceleration.

In conclusion, our research has illuminated the transformative potential of LiDAR
technology, especially in the realm of disaster management and indoor exploration.
The enhancements in precision, autonomy, and real-time response underscore the
pivotal role of advanced sensor technology in driving forward the capabilities of
UAVs. As technology continues to evolve, it is imperative for research to stay aligned
with these advancements. Our work contributes to this ongoing dialogue, providing

51

Conclusions and future work

insights and avenues for further exploration in the field of UAV technologies and
their applications.

52

Bibliography

[1] Robin R Murphy. Disaster robotics. MIT press, 2014 (cit. on p. 1).
[2] J. Abouaf. «Trial by fire: teleoperated robot targets Chernobyl». In: IEEE

Comput. Graphics Appl. 18.4 (July 1998), pp. 10–14. doi: 10.1109/38.
689654 (cit. on p. 1).

[3] Geert-Jan M Kruijff et al. «Rescue robots at earthquake-hit Mirandola, Italy:
A field report». In: 2012 IEEE international symposium on safety, security,
and rescue robotics (SSRR). IEEE. 2012, pp. 1–8 (cit. on p. 3).

[4] Daniel P Stormont and Vicki H Allan. «Managing risk in disaster scenar-
ios with autonomous robots». In: Journal of Systemics, Cybernetics and
Informatics 7 (2009), pp. 66–71 (cit. on p. 3).

[5] Jurgen Everaerts et al. «The use of unmanned aerial vehicles (UAVs) for
remote sensing and mapping». In: The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 37.2008
(2008), pp. 1187–1192 (cit. on p. 3).

[6] Stuart M Adams and Carol J Friedland. «A survey of unmanned aerial vehicle
(UAV) usage for imagery collection in disaster research and management».
In: 9th international workshop on remote sensing for disaster response. Vol. 8.
2011, pp. 1–8 (cit. on p. 3).

[7] Robin R Murphy, Satoshi Tadokoro, and Alexander Kleiner. «Disaster
robotics». In: Springer handbook of robotics (2016), pp. 1577–1604 (cit. on
pp. 3, 6).

[8] Phillipp Jende, Francesco Nex, Markus Gerke, and George Vosselman. «A
fully automatic approach to register mobile mapping and airborne imagery
to support the correction of platform trajectories in GNSS-denied urban
areas». In: ISPRS J. Photogramm. Remote Sens. 141 (July 2018), pp. 86–99.
issn: 0924-2716. doi: 10.1016/j.isprsjprs.2018.04.017 (cit. on p. 4).

53

https://doi.org/10.1109/38.689654
https://doi.org/10.1109/38.689654
https://doi.org/10.1016/j.isprsjprs.2018.04.017

BIBLIOGRAPHY

[9] Sudipta Chowdhury, Adindu Emelogu, Mohammad Marufuzzaman, Sarah G.
Nurre, and Linkan Bian. «Drones for disaster response and relief operations:
A continuous approximation model». In: Int. J. Prod. Econ. 188 (June 2017),
pp. 167–184. issn: 0925-5273. doi: 10.1016/j.ijpe.2017.03.024 (cit. on
p. 4).

[10] Heajung Min, Kyung Min Han, and Young J Kim. «OctoMap-RT: Fast
Probabilistic Volumetric Mapping Using Ray-Tracing GPUs». In: IEEE
Robotics and Automation Letters (2023) (cit. on p. 4).

[11] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller,
Vladlen Koltun, and Davide Scaramuzza. «Champion-level drone racing
using deep reinforcement learning». In: Nature 620 (Aug. 2023), pp. 982–987.
issn: 1476-4687. doi: 10.1038/s41586-023-06419-4 (cit. on p. 4).

[12] G. Lachapelle. «GNSS Indoor Location Technologies». In: Journal of Global
Positioning Systems (2004) (cit. on p. 5).

[13] Rainer Mautz. «Overview of current indoor positioning systems». In: Geodez-
ija ir kartografija 35.1 (2009), pp. 18–22. doi: 10.3846/1392-1541.2009.
35.18-22 (cit. on p. 6).

[14] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern
Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. «The
EuRoC micro aerial vehicle datasets». In: The International Journal of
Robotics Research (2016). doi: 10.1177/0278364915620033 (cit. on p. 6).

[15] Cyrill Stachniss, John J Leonard, and Sebastian Thrun. «Simultaneous local-
ization and mapping». In: Springer Handbook of Robotics (2016), pp. 1153–
1176 (cit. on p. 8).

[16] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent Robotics
and Autonomous Agents series. MIT Press, 2005. isbn: 9780262201629 (cit.
on pp. 8, 11).

[17] Randall Smith, Matthew Self, and Peter Cheeseman. «Estimating Uncertain
Spatial Relationships in Robotics». In: Autonomous Robot Vehicles. New
York, NY, USA: Springer, New York, NY, 1990, pp. 167–193. doi: 10.1007/
978-1-4613-8997-2_14 (cit. on p. 10).

[18] Randall C Smith and Peter Cheeseman. «On the representation and esti-
mation of spatial uncertainty». In: The international journal of Robotics
Research 5.4 (1986), pp. 56–68 (cit. on p. 10).

[19] Kevin Murphy and Stuart Russell. «Rao-Blackwellised Particle Filtering
for Dynamic Bayesian Networks». In: Sequential Monte Carlo Methods in
Practice. New York, NY, USA: Springer, New York, NY, 2001, pp. 499–515.
doi: 10.1007/978-1-4757-3437-9_24 (cit. on p. 10).

54

https://doi.org/10.1016/j.ijpe.2017.03.024
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.3846/1392-1541.2009.35.18-22
https://doi.org/10.3846/1392-1541.2009.35.18-22
https://doi.org/10.1177/0278364915620033
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1007/978-1-4757-3437-9_24

BIBLIOGRAPHY

[20] Mark Pupilli and Andrew Calway. «Real-Time Camera Tracking Using a
Particle Filter». In: British Machine Vision Conference. 2005 (cit. on p. 10).

[21] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y. Ng, Zoubin Ghahra-
mani, and Hugh Durrant-Whyte. «Simultaneous Localization and Mapping
with Sparse Extended Information Filters». In: Int. J. Rob. Res. 23.7-8 (Aug.
2004), pp. 693–716. issn: 0278-3649. doi: 10.1177/0278364904045479 (cit.
on p. 11).

[22] Viorela Ila, Josep M. Porta, and Juan Andrade-Cetto. «Information-Based
Compact Pose SLAM». In: IEEE Trans. Rob. 26.1 (Nov. 2009), pp. 78–93.
issn: 1941-0468. doi: 10.1109/TRO.2009.2034435 (cit. on p. 11).

[23] Anastasios I. Mourikis and Stergios I. Roumeliotis. «A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation». In: Proceedings 2007
IEEE International Conference on Robotics and Automation. IEEE, Apr.
2007, pp. 3565–3572. doi: 10.1109/ROBOT.2007.364024 (cit. on p. 11).

[24] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J. Leonard. «Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception
Age». In: IEEE Trans. Rob. 32.6 (Dec. 2016), pp. 1309–1332. issn: 1941-0468.
doi: 10.1109/TRO.2016.2624754 (cit. on p. 11).

[25] Frank Dellaert and Michael Kaess. Factor Graphs for Robot Perception. Now
Publishers Inc., Aug. 2017 (cit. on p. 12).

[26] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. New York,
NY, USA: Springer. isbn: 978-0-387-40065-5 (cit. on p. 13).

[27] Donald W. Marquardt. «An Algorithm for Least-Squares Estimation of
Nonlinear Parameters». In: Journal of the Society for Industrial and Applied
Mathematics (July 2006) (cit. on p. 13).

[28] M. J. D. Powell. «A New Algorithm for Unconstrained Optimization». In:
Nonlinear Programming. Cambridge, MA, USA: Academic Press, Jan. 1970,
pp. 31–65. isbn: 978-0-12-597050-1. doi: 10.1016/B978-0-12-597050-
1.50006-3 (cit. on p. 13).

[29] Diederik P. Kingma and Jimmy Ba. «Adam: A Method for Stochastic
Optimization». In: 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015 (cit. on p. 13).

55

https://doi.org/10.1177/0278364904045479
https://doi.org/10.1109/TRO.2009.2034435
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1016/B978-0-12-597050-1.50006-3
https://doi.org/10.1016/B978-0-12-597050-1.50006-3

BIBLIOGRAPHY

[30] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
Leonard, and Frank Dellaert. «iSAM2: Incremental smoothing and mapping
with fluid relinearization and incremental variable reordering». In: 2011
IEEE International Conference on Robotics and Automation. IEEE, May
2011, pp. 3281–3288. doi: 10.1109/ICRA.2011.5979641 (cit. on pp. 13,
14).

[31] Michael Kaess, Viorela Ila, Richard Roberts, and Frank Dellaert. «The Bayes
Tree: An Algorithmic Foundation for Probabilistic Robot Mapping». In:
Algorithmic Foundations of Robotics IX. Berlin, Germany: Springer, 2010,
pp. 157–173. doi: 10.1007/978-3-642-17452-0_10 (cit. on pp. 13, 30, 38).

[32] Chang Chen, Hua Zhu, Menggang Li, and Shaoze You. «A Review of Visual-
Inertial Simultaneous Localization and Mapping from Filtering-Based and
Optimization-Based Perspectives». In: Robotics 7.3 (Aug. 2018), p. 45. issn:
2218-6581. doi: 10.3390/robotics7030045 (cit. on p. 14).

[33] Hauke Strasdat, J. M. M. Montiel, and Andrew J. Davison. «Real-time
monocular SLAM: Why filter?» In: 2010 IEEE International Conference on
Robotics and Automation. IEEE, May 2010, pp. 2657–2664. doi: 10.1109/
ROBOT.2010.5509636 (cit. on p. 14).

[34] Amay Saxena, Chih-Yuan Chiu, Ritika Shrivastava, Joseph Menke, and
Shankar Sastry. «Simultaneous Localization and Mapping: Through the
Lens of Nonlinear Optimization». In: IEEE Rob. Autom. Lett. 7.3 (June
2022), pp. 7148–7155. issn: 2377-3766. doi: 10.1109/LRA.2022.3181409
(cit. on p. 14).

[35] Johannes Lutz Schönberger and Jan-Michael Frahm. «Structure-from-Motion
Revisited». In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2016 (cit. on p. 14).

[36] Frank Dellaert. «Factor Graphs and GTSAM: A Hands-on Introduction».
In: Georgia Institute of Technology (Sept. 2012) (cit. on pp. 14, 42, 45).

[37] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and
Wolfram Burgard. «G2o: A general framework for graph optimization». In:
2011 IEEE International Conference on Robotics and Automation. IEEE,
May 2011, pp. 3607–3613. doi: 10.1109/ICRA.2011.5979949 (cit. on pp. 14,
30).

[38] Victor Reijgwart, Alexander Millane, Helen Oleynikova, Roland Siegwart,
Cesar Cadena, and Juan Nieto. «Voxgraph: Globally consistent, volumetric
mapping using signed distance function submaps». In: IEEE Robotics and
Automation Letters 5.1 (2019), pp. 227–234 (cit. on pp. 14, 42, 47).

56

https://doi.org/10.1109/ICRA.2011.5979641
https://doi.org/10.1007/978-3-642-17452-0_10
https://doi.org/10.3390/robotics7030045
https://doi.org/10.1109/ROBOT.2010.5509636
https://doi.org/10.1109/ROBOT.2010.5509636
https://doi.org/10.1109/LRA.2022.3181409
https://doi.org/10.1109/ICRA.2011.5979949

BIBLIOGRAPHY

[39] Georg Klein and David Murray. «Parallel Tracking and Mapping for Small
AR Workspaces». In: 2007 6th IEEE and ACM International Symposium
on Mixed and Augmented Reality. IEEE, Nov. 2007, pp. 225–234. doi: 10.
1109/ISMAR.2007.4538852 (cit. on p. 14).

[40] D. Nister, O. Naroditsky, and J. Bergen. «Visual odometry». In: Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Vol. 1. IEEE, June 2004, p. I. doi:
10.1109/CVPR.2004.1315094 (cit. on p. 15).

[41] R. Bunschoten and B. Krose. «Visual odometry from an omnidirectional
vision system». In: 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422). Vol. 1. IEEE, Sept. 2003, 577–583vol.1.
doi: 10.1109/ROBOT.2003.1241656 (cit. on p. 15).

[42] Takeo Kanade, Chuck Thorpe, and William Whittaker. «Autonomous land ve-
hicle project at CMU». In: CSC ’86: Proceedings of the 1986 ACM fourteenth
annual conference on Computer science. New York, NY, USA: Association for
Computing Machinery, Feb. 1986, pp. 71–80. doi: 10.1145/324634.325197
(cit. on p. 16).

[43] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer. «Toward autonomous
driving: the CMU Navlab. I. Perception». In: IEEE Expert 6.4 (1991), pp. 31–
42. doi: 10.1109/64.85919 (cit. on p. 16).

[44] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and
Frédérick Carrel. «A Comprehensive Survey of Visual SLAM Algorithms».
In: Robotics 11.1 (Feb. 2022), p. 24. issn: 2218-6581. doi: 10.3390/roboti
cs11010024 (cit. on p. 17).

[45] Leyao Huang. «Review on LiDAR-based SLAM Techniques». In: 2021 In-
ternational Conference on Signal Processing and Machine Learning (CONF-
SPML). IEEE, Nov. 2021, pp. 163–168. doi: 10.1109/CONF-SPML54095.
2021.00040 (cit. on pp. 17, 28).

[46] Franco Hidalgo and Thomas Bräunl. «Review of underwater SLAM tech-
niques». In: 2015 6th International Conference on Automation, Robotics and
Applications (ICARA). IEEE, Feb. 2015, pp. 306–311. doi: 10.1109/ICARA.
2015.7081165 (cit. on p. 17).

[47] Ziyang Hong, Yvan Petillot, and Sen Wang. «RadarSLAM: Radar based
Large-Scale SLAM in All Weathers». In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2020–24.
doi: 10.1109/IROS45743.2020.9341287 (cit. on p. 17).

57

https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/CVPR.2004.1315094
https://doi.org/10.1109/ROBOT.2003.1241656
https://doi.org/10.1145/324634.325197
https://doi.org/10.1109/64.85919
https://doi.org/10.3390/robotics11010024
https://doi.org/10.3390/robotics11010024
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://doi.org/10.1109/ICARA.2015.7081165
https://doi.org/10.1109/ICARA.2015.7081165
https://doi.org/10.1109/IROS45743.2020.9341287

BIBLIOGRAPHY

[48] Andreas Geiger, Philip Lenz, and Raquel Urtasun. «Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite». In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on pp. 17,
20, 31).

[49] Thomas Schöps, Viktor Larsson, Marc Pollefeys, and Torsten Sattler. «Why
Having 10,000 Parameters in Your Camera Model is Better Than Twelve». In:
arXiv (Dec. 2019). doi: 10.48550/arXiv.1912.02908. eprint: 1912.02908
(cit. on p. 19).

[50] David G. Lowe. «Distinctive Image Features from Scale-Invariant Keypoints».
In: Int. J. Comput. Vision 60.2 (Nov. 2004), pp. 91–110. issn: 1573-1405.
doi: 10.1023/B:VISI.0000029664.99615.94 (cit. on p. 19).

[51] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. «ORB:
An efficient alternative to SIFT or SURF». In: 2011 International Conference
on Computer Vision. IEEE, pp. 06–13. doi: 10.1109/ICCV.2011.6126544
(cit. on pp. 19, 45).

[52] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. «Speeded-
Up Robust Features (SURF)». In: Comput. Vision Image Understanding
110.3 (June 2008), pp. 346–359. issn: 1077-3142. doi: 10.1016/j.cviu.
2007.09.014 (cit. on p. 19).

[53] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. «Superpoint:
Self-supervised interest point detection and description». In: Proceedings of
the IEEE conference on computer vision and pattern recognition workshops.
2018, pp. 224–236 (cit. on p. 19).

[54] Michał Tyszkiewicz, Pascal Fua, and Eduard Trulls. «DISK: Learning local
features with policy gradient». In: Advances in Neural Information Processing
Systems 33 (2020), pp. 14254–14265 (cit. on p. 19).

[55] Jerome Revaud, Cesar De Souza, Martin Humenberger, and Philippe Weinza-
epfel. «R2d2: Reliable and repeatable detector and descriptor». In: Advances
in neural information processing systems 32 (2019) (cit. on p. 19).

[56] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua,
Kwang Moo Yi, and Eduard Trulls. «Image matching across wide baselines:
From paper to practice». In: International Journal of Computer Vision 129.2
(2021), pp. 517–547 (cit. on p. 19).

[57] Carlos Campos, Richard Elvira, Juan J Gómez Rodriguez, José MM Montiel,
and Juan D Tardós. «Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam». In: IEEE Transactions on Robotics
37.6 (2021), pp. 1874–1890 (cit. on p. 20).

58

https://doi.org/10.48550/arXiv.1912.02908
1912.02908
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014

BIBLIOGRAPHY

[58] Paul J Besl and Neil D McKay. «Method for registration of 3-D shapes».
In: Sensor fusion IV: control paradigms and data structures. Vol. 1611. Spie.
1992, pp. 586–606 (cit. on pp. 21, 29).

[59] Bolz Wolfgang, Phillipp Fanta-Jende, and Simon Schwaiger. «Sensor Selec-
tion for Unmanned Aerial Vehicles in Uncooperative Indoor Environments».
2023 (cit. on p. 22).

[60] Chris Urmson et al. «Tartan racing: A multi-modal approach to the darpa
urban challenge». In: (2007) (cit. on p. 23).

[61] Behnam Behroozpour, Phillip AM Sandborn, Ming C Wu, and Bernhard E
Boser. «Lidar system architectures and circuits». In: IEEE Communications
Magazine 55.10 (2017), pp. 135–142 (cit. on p. 23).

[62] Dingkang Wang, Connor Watkins, and Huikai Xie. «MEMS mirrors for
LiDAR: A review». In: Micromachines 11.5 (2020), p. 456 (cit. on p. 23).

[63] Xiaosheng Zhang. «Laser Chirp Linearization and Phase Noise Compensa-
tion for Frequency-modulated Continuouswave LiDAR». In: University of
California. 2021 (cit. on p. 23).

[64] Yong Liu and Hao Hu. «Silicon optical phased array with a 180-degree field
of view for 2D optical beam steering». In: Optica 9.8 (2022), pp. 903–907
(cit. on pp. 23, 24).

[65] David S. Hall. High definition LiDAR system. Apr. 2020. url: https :
//uspto.report/patent/grant/RE47,942 (cit. on p. 24).

[66] Jiarong Lin and Fu Zhang. «Loam livox: A fast, robust, high-precision
LiDAR odometry and mapping package for LiDARs of small FoV». In: 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 3126–3131 (cit. on pp. 25, 28).

[67] Nina Varney, Vijayan K Asari, and Quinn Graehling. «DALES: A large-scale
aerial LiDAR data set for semantic segmentation». In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition workshops.
2020, pp. 186–187 (cit. on p. 28).

[68] F Vultaggio, F d’Apolito, C Sulzbachner, and P Fanta-Jende. «SIMULA-
TION OF LOW-COST MEMS-LIDAR AND ANALYSIS OF ITS EFFECT
ON THE PERFORMANCES OF STATE-OF-THE-ART SLAMS». In: The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 48 (2023), pp. 539–545 (cit. on pp. 28, 33).

[69] Han Wang, Chen Wang, Chun-Lin Chen, and Lihua Xie. «F-loam: Fast lidar
odometry and mapping». In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 4390–4396 (cit. on
p. 28).

59

https://uspto.report/patent/grant/RE47,942
https://uspto.report/patent/grant/RE47,942

BIBLIOGRAPHY

[70] Tixiao Shan and Brendan Englot. «Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain». In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 4758–4765 (cit. on p. 28).

[71] Ignacio Vizzo, Xieyuanli Chen, Nived Chebrolu, Jens Behley, and Cyrill
Stachniss. «Poisson surface reconstruction for LiDAR odometry and map-
ping». In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2021, pp. 5624–5630 (cit. on p. 29).

[72] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y Ng, et al. «ROS: an open-source Robot
Operating System». In: ICRA workshop on open source software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5 (cit. on p. 29).

[73] Yue Pan, Pengchuan Xiao, Yujie He, Zhenlei Shao, and Zesong Li. «MULLS:
Versatile LiDAR SLAM via multi-metric linear least square». In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 11633–11640 (cit. on p. 29).

[74] Pierre Dellenbach, Jean-Emmanuel Deschaud, Bastien Jacquet, and François
Goulette. «CT-ICP: Real-time elastic LiDAR odometry with loop closure».
In: 2022 International Conference on Robotics and Automation (ICRA).
IEEE. 2022, pp. 5580–5586 (cit. on pp. 29, 42, 45).

[75] Anas Al-Nuaimi, Wilder Lopes, Paul Zeller, Adrian Garcea, Cassio Lopes,
and Eckehard Steinbach. «Analyzing LiDAR scan skewing and its impact on
scan matching». In: 2016 International Conference on Indoor Positioning
and Indoor Navigation (IPIN). IEEE, pp. 04–07. doi: 10.1109/IPIN.2016.
7743598 (cit. on p. 29).

[76] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis Wiesmann,
Jens Behley, and Cyrill Stachniss. «Kiss-icp: In defense of point-to-point
icp–simple, accurate, and robust registration if done the right way». In:
IEEE Robotics and Automation Letters 8.2 (2023), pp. 1029–1036 (cit. on
pp. 30, 42, 45).

[77] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and
Daniela Rus. «Lio-sam: Tightly-coupled lidar inertial odometry via smooth-
ing and mapping». In: 2020 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE. 2020, pp. 5135–5142 (cit. on pp. 30, 42).

[78] Ji Zhang and Sanjiv Singh. «LOAM: Lidar odometry and mapping in real-
time.» In: Robotics: Science and systems. Vol. 2. 9. Berkeley, CA. 2014,
pp. 1–9 (cit. on pp. 31, 38).

60

https://doi.org/10.1109/IPIN.2016.7743598
https://doi.org/10.1109/IPIN.2016.7743598

BIBLIOGRAPHY

[79] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. «Fast-lio2:
Fast direct lidar-inertial odometry». In: IEEE Transactions on Robotics 38.4
(2022), pp. 2053–2073 (cit. on pp. 31, 42, 45).

[80] Wei Xu and Fu Zhang. «Fast-lio: A fast, robust lidar-inertial odometry
package by tightly-coupled iterated kalman filter». In: IEEE Robotics and
Automation Letters 6.2 (2021), pp. 3317–3324 (cit. on p. 31).

[81] Igal Galperin and Ronald L Rivest. «Scapegoat trees». In: Proceedings of
the fourth annual ACM-SIAM Symposium on Discrete algorithms. 1993,
pp. 165–174 (cit. on p. 31).

[82] Jinyong Jeong, Younggun Cho, Young-Sik Shin, Hyunchul Roh, and Ayoung
Kim. «Complex Urban Dataset with Multi-level Sensors from Highly Diverse
Urban Environments». In: International Journal of Robotics Research 38.6
(2019), pp. 642–657 (cit. on p. 31).

[83] Albert S Huang, Matthew Antone, Edwin Olson, Luke Fletcher, David
Moore, Seth Teller, and John Leonard. «A high-rate, heterogeneous data set
from the darpa urban challenge». In: The International Journal of Robotics
Research 29.13 (2010), pp. 1595–1601 (cit. on p. 31).

[84] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou,
Peng Wang, Yuanqing Lin, and Ruigang Yang. The ApolloScape Dataset
for Autonomous Driving. [Online; accessed 9. Oct. 2023]. 2018. url: https:
//openaccess.thecvf.com/content_cvpr_2018_workshops/w14/html/
Huang_The_ApolloScape_Dataset_CVPR_2018_paper.html (cit. on p. 31).

[85] Nicholas Carlevaris-Bianco, Arash K. Ushani, and Ryan M. Eustice. «Uni-
versity of Michigan North Campus long-term vision and lidar dataset». In:
International Journal of Robotics Research 35.9 (2015), pp. 1023–1035 (cit.
on p. 31).

[86] Thierry Peynot, Steve Scheding, and Sami Terho. «The Marulan Data
Sets: Multi-sensor Perception in a Natural Environment with Challenging
Conditions». In: Int. J. Rob. Res. 29.13 (Nov. 2010), pp. 1602–1607. issn:
0278-3649. doi: 10.1177/0278364910384638 (cit. on p. 31).

[87] Maurice Fallon, Hordur Johannsson, Michael Kaess, and John J Leonard.
«The mit stata center dataset». In: The International Journal of Robotics
Research 32.14 (2013), pp. 1695–1699 (cit. on p. 31).

[88] Riccardo Giubilato, Wolfgang Stürzl, Armin Wedler, and Rudolph Triebel.
«Challenges of SLAM in extremely unstructured environments: the DLR
Planetary Stereo, Solid-State LiDAR, Inertial Dataset». In: IEEE Robotics
and Automation Letters (2022), pp. 1–8. doi: 10.1109/LRA.2022.3188118
(cit. on p. 32).

61

https://openaccess.thecvf.com/content_cvpr_2018_workshops/w14/html/Huang_The_ApolloScape_Dataset_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w14/html/Huang_The_ApolloScape_Dataset_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w14/html/Huang_The_ApolloScape_Dataset_CVPR_2018_paper.html
https://doi.org/10.1177/0278364910384638
https://doi.org/10.1109/LRA.2022.3188118

BIBLIOGRAPHY

[89] Li Qingqing, Yu Xianjia, Jorge Pena Queralta, and Tomi Westerlund. «Multi-
modal lidar dataset for benchmarking general-purpose localization and
mapping algorithms». In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 3837–3844 (cit. on
p. 32).

[90] N. Koenig and A. Howard. «Design and use paradigms for Gazebo, an open-
source multi-robot simulator». In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).
Vol. 3. IEEE, Sept. 2004, 2149–2154vol.3. doi: 10.1109/IROS.2004.1389727
(cit. on p. 32).

[91] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. «AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles».
In: Field and Service Robotics. Cham, Switzerland: Springer, Nov. 2017,
pp. 621–635. doi: 10.1007/978-3-319-67361-5_40 (cit. on p. 32).

[92] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. «CARLA: An Open Urban Driving Simulator». In: Con-
ference on Robot Learning. PMLR, Oct. 2017, pp. 1–16. url: https://
proceedings.mlr.press/v78/dosovitskiy17a.html (cit. on p. 32).

[93] Fanze Kong, Xiyuan Liu, Benxu Tang, et al. «MARSIM: A Light-Weight
Point-Realistic Simulator for LiDAR-Based UAVs». In: IEEE Rob. Autom.
Lett. 8.5 (Apr. 2023), pp. 2954–2961. issn: 2377-3766. doi: 10.1109/LRA.
2023.3264163 (cit. on p. 33).

[94] David Prokhorov, Dmitry Zhukov, Olga Barinova, Konushin Anton, and
Anna Vorontsova. «Measuring robustness of Visual SLAM». In: 2019 16th
International Conference on Machine Vision Applications (MVA). IEEE,
May 2019, pp. 1–6. doi: 10.23919/MVA.2019.8758020 (cit. on p. 34).

[95] F. Lu and E. Milios. «Globally Consistent Range Scan Alignment for Envi-
ronment Mapping». In: Autonomous Robots 4.4 (Oct. 1997), pp. 333–349.
issn: 1573-7527. doi: 10.1023/A:1008854305733 (cit. on p. 35).

[96] Shinji Umeyama. «Least-squares estimation of transformation parameters
between two point patterns». In: IEEE Transactions on Pattern Analysis &
Machine Intelligence 13.04 (1991), pp. 376–380 (cit. on p. 35).

[97] Michael Grupp. evo: Python package for the evaluation of odometry and
SLAM. https://github.com/MichaelGrupp/evo (cit. on p. 35).

[98] Mahdi Chamseddine, Jason Rambach, Didier Stricker, and Oliver Wasen-
muller. «Ghost Target Detection in 3D Radar Data using Point Cloud based
Deep Neural Network». In: 2020 25th International Conference on Pattern
Recognition (ICPR). IEEE, Jan. 2021, pp. 10398–10403. doi: 10.1109/
ICPR48806.2021.9413247 (cit. on p. 35).

62

https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-3-319-67361-5_40
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1109/LRA.2023.3264163
https://doi.org/10.1109/LRA.2023.3264163
https://doi.org/10.23919/MVA.2019.8758020
https://doi.org/10.1023/A:1008854305733
https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/ICPR48806.2021.9413247
https://doi.org/10.1109/ICPR48806.2021.9413247

BIBLIOGRAPHY

[99] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, et al. «Event-Based
Vision: A Survey». In: IEEE Trans. Pattern Anal. Mach. Intell. 44.1 (July
2020), pp. 154–180. issn: 1939-3539. doi: 10.1109/TPAMI.2020.3008413
(cit. on p. 36).

[100] Giseop Kim and Ayoung Kim. «Scan Context: Egocentric Spatial Descriptor
for Place Recognition Within 3D Point Cloud Map». In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
Oct. 2018, pp. 4802–4809. doi: 10.1109/IROS.2018.8593953 (cit. on pp. 41,
45).

[101] Yunge Cui, Xieyuanli Chen, Yinlong Zhang, Jiahua Dong, Qingxiao Wu,
and Feng Zhu. «Bow3d: Bag of words for real-time loop closing in 3d lidar
slam». In: IEEE Robotics and Automation Letters 8.5 (2022), pp. 2828–2835
(cit. on pp. 41, 45).

[102] M. Cella, F. D’Apolito, P. Fanta-Jende, and C. Sulzbachner. «FUELING
GLOCAL: OPTIMIZATION-BASED PATH PLANNING FOR INDOOR
UAVS IN AN AUTONOMOUS EXPLORATION FRAMEWORK». In:
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLVIII-1-W1-2023 (May 2023), pp. 85–91. issn: 1682-
1750. doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-85-2023 (cit.
on p. 42).

[103] Lin Li, Xin Kong, Xiangrui Zhao, Tianxin Huang, Wanlong Li, Feng Wen,
Hongbo Zhang, and Yong Liu. «SSC: Semantic scan context for large-
scale place recognition». In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 2092–2099 (cit. on
p. 45).

[104] Yunge Cui, Yinlong Zhang, Jiahua Dong, Haibo Sun, and Feng Zhu. «Link3d:
Linear keypoints representation for 3d lidar point cloud». In: arXiv preprint
arXiv:2206.05927 (2022) (cit. on p. 45).

[105] David G Lowe. «Distinctive image features from scale-invariant keypoints».
In: International journal of computer vision 60 (2004), pp. 91–110 (cit. on
p. 45).

[106] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan
Nieto. «Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning». In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2017, pp. 1366–1373 (cit. on p. 47).

63

https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/IROS.2018.8593953
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-85-2023

Acronyms

ATE Absolute Trajectory Error

EKF Extended Kalman Filter

FoV Field Of View

GNSS Global Navigation Satellite System

GPS Global Positioning System

ICP Iterative Closest Point

IMU Inertial Measurement Unit

INS Inertial Navigation System

IPS Indoor Positioning Systems

kNN k-Nearest Neighbor

LiDAR Light Detection and Ranging

MAP Maximum A Posteriori

MEMS Micro Electro-Mechanical Systems

OPA Optical Phased Arrays

PTAM Parallel Tracking And Mapping

RMSE Root Mean Squared Error

RPE Relative Pose Error

64

Acronyms

SfM Structure from Motion

SLAM Simultaneous Localization And Mapping

SWAP Size Weight And Power

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

65

	List of Tables
	List of Figures
	Introduction
	Robotics for Disaster Response
	The challenges of indoor localization

	Foundations for SLAM
	Formulating the problem
	Filter-based approaches
	Extended Kalman Filter SLAM

	Optimization-based approaches
	Filtering versus Optimization
	Frontend, backend, odometry, and SLAM

	Hardware Selection
	Visual SLAM
	LiDAR SLAM
	LiDARs for indoor UAVs

	Analysis of state of the art SLAM algorithms
	Presentation of the selected Algorithms
	CT-ICP
	KISS-ICP
	LIO-SAM
	FAST-LIO2

	Benchmarking methodology and analysis
	Simulation Pipeline
	Evaluation procedure

	Selection of the SLAM algorithm
	Performance on real data

	Loop Closure implementation
	Loop detection
	Loop Correction
	Results

	Bibliography
	Acronyms

