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Abstract

Colorectal cancer is a significant global health concern, ranking as the third most
prevalent malignancy and the second most deadly cancer. Early detection of cancer
plays a pivotal role in improving the chances of survival. Consequently, through
colonoscopy, medical professionals conduct visual examinations of the colon to
identify any early signs of cancer.

Existing endoscopes have been associated with concerns regarding tissue
damage and patient discomfort, leading to a reluctance among patients to undergo
recommended screening procedures. For this reason, significant efforts have been
made over the past two decades to develop alternative devices. In particular,
the STORM Lab has implemented a robotic platform called Magnetic Flexible
Endoscopy (MFE). The MFE stands out for its remarkable front-pull actuation of
the endoscopic tip facilitated by an external magnet. This revolutionary approach
eliminates the need for rear-push mechanical actuation and the use of semi-rigid
insertion tubes.

Accurately estimating the capsule pose is crucial for magnetic actuation systems
to apply the required forces and torques effectively. Therefore, the STORM Lab
developed a localization algorithm based on the Particle Filter (PF).

The first objective of the thesis project was to estimate in real-time the
correctness of the localization algorithm developed at STORM Lab for the
MFE. Therefore, a comprehensive exploration of various parameters was undertaken.
Initially, tests were conducted to ascertain the interrelationships between the
parameters. This process aimed to establish how these parameters should be
interconnected and how their values could be combined to yield meaningful insights
into the localization quality. Additionally, specific thresholds were defined to
discern between good and bad localization. Subsequently, a validation phase was
implemented to rigorously examine and confirm the effectiveness of the identified
parameters and thresholds in different scenarios.

The second goal of the project was to develop a new localization algorithm.
For this purpose, two possible algorithms were analyzed, and the Unscented
Kalman Filter (UKF) was identified as the most suitable. Following the de-
velopment of the novel localization algorithm, the UKF was tested to determine
its parameters optimally. Subsequently, a series of static tests were conducted
to validate the new algorithm and compare its results with those of the PF. The
concluding phase of the project involved the fusion of the two developed
algorithms, PF and UKF, strategically extracting the strengths of each in pursuit
of a unified localization algorithm.



Given that the errors resulting from both localization algorithms, PF and UKF,
are comparable, it is possible to state that the lower limit of error has been
attained and is fundamentally contingent on the system’s intrinsic characteristics.
In pursuit of refining localization, any attempts to achieve further enhancements
would necessitate altering the system.
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Chapter 1

Introduction

The main objectives of this work are as follows:

• Estimate in real-time the correctness of the localization developed at STORM
Lab for the Magnetic Flexible Endoscopy (MFE), using certain parameters.

• Implementation of a new localization algorithm.

• Implementation of an overall localization algorithm, including both the al-
gorithm previously developed at STORM Lab and the newly implemented
algorithm, in order to improve the localization accuracy.

This first chapter explains the motivations for developing such work, the magnetic
capsule endoscopy, and the several localization strategies already implemented.

The second chapter presents an in-depth exploration of the localization algorithm
developed at STORM Lab. This is a fundamental starting point for comprehending
the subsequent real-time evaluation of the algorithm’s performance and its integra-
tion with the new algorithm, ultimately leading to enhanced overall localization
capabilities. Finally, the state of the art of estimation algorithms for localization
that can be used is presented.

In the third chapter, the parameters identified to assess the correctness of local-
ization in real time are presented, and the results obtained with these parameters
are shown.

In the fourth chapter, the newly implemented localization algorithm is explained.
The fifth chapter shows the overall localization algorithm, which includes both the

algorithm previously developed by STORM Lab and the new algorithm presented
in this work.

In the sixth and final chapter, future work to further improve localization is
proposed, and conclusions are drawn.

Finally, tables, graphs, and the developed code are included in the appendix to
provide all the material needed to understand better the work developed.

1



Introduction

1.1 Clinical motivation
Colorectal cancer (CRC) stands as a significant global health concern, ranking
as the third most prevalent malignancy and the second most deadly cancer. In
2020 alone, an estimated 1.9 million people were diagnosed with CRC, resulting in
approximately 0.9 million deaths worldwide. This alarming trend is particularly
pronounced in highly developed countries, while middle- and low-income countries
are witnessing an unfortunate rise in CRC cases due to westernization (see Figure
1.1). Furthermore, an unsettling surge in early-onset CRC cases is also being
observed [1].

The mounting number of CRC cases presents an ever-growing challenge for
public health on a global scale. To effectively address this issue, raising awareness
about CRC is crucial. By fostering awareness, it is possible to encourage individuals
to make healthier lifestyle choices, advocate for novel and effective strategies in CRC
management, and implement comprehensive screening programs on a worldwide
scale. These proactive measures are imperative to curbing the morbidity and
mortality rates of CRC in the future [1].

Figure 1.1: Estimated number of CRC deaths and of CRC incident cases [1].

Early detection of cancer plays a pivotal role in improving the chances of survival
[2] [3] [4]. Consequently, medical professionals frequently utilize endoscopes to
conduct visual examinations of the accessible regions within the gastrointestinal
(GI) tract to identify any early signs of cancer.

Endoscopy is a medical procedure employing an endoscope, a versatile instru-
ment equipped with diagnostic and therapeutic capabilities, to examine the interior
of various hollow organs and body cavities. Areas of focus encompass the gastroin-
testinal tract, respiratory tract, urinary tract, female reproductive system, and
other closed cavities within the body. Notably, colonoscopy stands as one of the
most prevalent screening procedures, carried out using an endoscope to investigate
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the colon and rectum (see Figure 1.2).

Figure 1.2: Traditional endoscope: on the left the control system for the bending
section and endoscopic tip; on the right the illustration of a traditional colonoscopy
[5].

Nevertheless, existing endoscopes have been associated with concerns regarding
tissue damage and patient discomfort, leading to a reluctance among patients
to undergo recommended screening procedures [6]. Moreover, certain regions of
the GI tract, such as the small intestine, present challenges in accessibility using
conventional semi-rigid endoscopes. In response to these limitations, significant
efforts have been made over the past two decades to develop alternative devices
capable of visualizing the GI tract and overcoming these obstacles.

The field of magnetically actuated mesoscale devices (capsules) remains an area
of active research, displaying remarkable potential in terms of maneuverability and
a substantial reduction in risks typically associated with conventional endoscopies.
Among these innovations, actively controlled devices stand out as particularly
promising, leveraging computer algorithms to generate or manipulate magnetic
fields. This advancement has the power to revolutionize GI endoscopy, transforming
patient perceptions and attitudes towards recommended screening procedures [7]
[8].

1.2 Magnetic capsule endoscopy
To overcome the constraints of traditional endoscopes, researchers are delving
into the potential of magnetic fields to wirelessly transmit forces and torques,
enabling the translation and manipulation of capsule endoscopes. This innovative
approach seeks to mitigate the limitations associated with conventional endoscopic
techniques.
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The system shown in Figure 1.3 was developed by the Science and Technologies
Of Robotics in Medicine (STORM) Lab of Vanderbilt University (Nashville, TN)
and of the University of Leeds (Leeds, UK). This robotic platform, called Magnetic
Flexible Endoscopy (MFE), will be presented in detail in the second chapter.

Figure 1.3: Schematic of magnetic capsule endoscopy [9].

The MFE stands out for its remarkable front-pull actuation of the endoscopic
tip, facilitated by an external magnet placed outside the patient’s body. This
revolutionary approach eliminates the need for rear-push mechanical actuation and
the use of semi-rigid insertion tubes, which previously aimed to prevent buckling
and tissue stress-related trauma. However, manual operation of magnetic actuation
isn’t straightforward, necessitating computer-assisted operations to assist operators
during training and complex clinical maneuvers. The MFE also incorporates
proprioceptive sensing and advanced software algorithms for autonomous navigation,
retroflexion, and diagnostic/therapeutic tasks. Particularly noteworthy is the
MFE’s autonomous capability in colonoscopy, mainly aimed at polyp detection.
This cutting-edge technology promises to revolutionize endoscopy by improving
maneuverability, reducing patient discomfort, and enhancing diagnostic accuracy.
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1.3 Review of robotic endoscopic capsule local-
ization strategies

Accurate estimation of the capsule’s pose is crucial for magnetic actuation systems
to effectively apply the required forces and torques. For this reason, it is essential
to implement a localization algorithm to estimate the pose of the endoscope.

In this section, different magnetic localization methodologies are analyzed (see
Figure 1.4).

Hu et al. [10] designed a real-time cubic magnetic sensor array for tracking
a permanent magnet (see Figure 1.4.a). The Honeywell AMR 3-axis sensors,
HMC1043, precision amplifiers, ADCs, and computer make up the system. The
software (using Visual ++) completes the signal processing and all necessary
operations on the sensing data based on the calibrations applied for the sensor
sensitivity, position, and orientation, and computes the magnet 6-D position and
orientation parameters via suitable algorithm.

Hu et al. [11] designed a magnetic localization system for the purpose of tracing
intra-body capsule objects (see Figure 1.4.b). In this system, the source magnetic
field is created by a ring magnet surrounding the capsule, and the reference objects,
two magnets, are fastened to the surface of the human body. A suitable algorithm is
used to analyse the sensing data obtained from a magnetic sensor array composed of
32 triaxial magnetic sensors to estimate the position and orientation characteristics
of these three magnets.

Plotkin et al. [12] designed a multicoils electromagnetic tracking system (see
Figure 1.4.c). They specifically created a novel method that enables the calibration
of the whole magnetic tracking system at a single setting. The new method reduces
the number of individual calibrations, streamlines the calibration process, and
improves calibration accuracy.

Turan et al. [13] created a robust deep learning-based localization system
with 6 degrees-of-freedom (DoF) for endoscopic capsule robots (see Figure 1.4.d).
The primary focus of the system is to precisely locate endoscopic capsule robots
within the GI tract, utilizing solely visual information captured by a mono camera
integrated into the robot. The proposed solution revolves around a 23-layer deep
convolutional neural network (CNN) designed to estimate the robot’s pose in
real-time. Remarkably, this advanced neural network achieves its capabilities using
just a standard CPU, offering efficient and accurate localization for endoscopic
capsule robotics.

In Figure 1.4.e it is possible to see the system developed by Taddese et al. [14],
which will be presented in detail in the next chapter.

Popek et al. [16] present a novel and noniterative approach for accurately deter-
mining the six degrees-of-freedom (6-DOF) position and orientation of a wireless
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Figure 1.4: Examples of magnetic-based localization systems [15]. (a) Hu et
al. [10], scheme and cubic magnetic array of sensors; (b) Hu et al. [11], wearable
magnetic localization array of sensors; (c) Plotkin et al. [12], multicoils electro-
magnetic tracking system; (d) Turan et al. [13], electromagnetic locomotion and
sensors array localization system; (e) Taddese et al. [14], application scenario of
active magnetic manipulation of a capsule endoscope using a permanent magnet
mounted at the end-effector of a robot manipulator; (f) Popek et al. [16], modelling
principle.

capsule endoscope, which is actuated by a rotating magnetic dipole (see Figure
1.4.f). Through extensive experimentation, they demonstrate the effectiveness of
their algorithm in calculating the 6-DOF position and orientation for capsules that
remain stationary and those operated in the "step-out" regime. In the latter sce-
nario, where the magnetic field rotation exceeds the capsule’s synchronous rotation
capability, the capsule exhibits chaotic movement. Despite these challenges, their
solution proves to be robust and reliable.

These are just a few examples of magnetic localization. In the next chapter,
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the system developed by Taddese et al [14] will be introduced, as it represents the
starting point of the entire work.
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Chapter 2

Motivation and Context

In this chapter, the Magnetic Flexible Endoscopy (MFE) system will be thoroughly
explained, and the localization algorithm implemented at the STORM Lab for
estimating the endoscope’s pose will be elucidated. Lastly, the reasons driving
the development of a new localization algorithm will be presented, and so the
state-of-the-art estimation algorithms for localization that can be used are shown.

2.1 Magnetic Flexible Endoscopy system
The STORM Lab team is currently in the process of developing an innovative
Magnetic Flexible Endoscopy (MFE) system. This advanced system is envisioned
to play a pivotal role in clinical investigations and research studies pertaining to
the navigation and examination of the human colon, specifically in the context
of colonoscopy. Conventional colonoscopy procedures utilizing a standard flexible
endoscope have long been associated with challenges for the operator and discomfort
for the patient. The intricacies of standard colonoscopy often necessitate sedation,
leading to suboptimal patient adherence to screening protocols. The MFE system
has been meticulously designed to supplant the conventional colonoscopy approach,
with the potential to address and enhance the prevailing limitations. By doing so, it
holds the promise of substantially improving patient well-being and longevity. This
transformative technology could pave the way for enhanced procedure accessibility,
heightened patient compliance with screening regimens, mitigated risks of colonic
tissue trauma, and ultimately, a more efficacious diagnosis and management of
colorectal ailments. The whole system is depicted in Figure 2.1.

The MFE comprises four primary hardware subsystems: an external robotic
system serving as an actuation source situated adjacent to the patient, a tethered
endoscopic capsule featuring a diverse array of sensors designed to navigate through
the gastrointestinal (GI) tract via magnetic coupling, a processing unit, and a
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Figure 2.1: Overview of the MFE system (source: STORM Lab UK).

dedicated circuit facilitating seamless communication between the capsule and the
MFE software.

The robotic system comprises a 7-axis collaborative robotic manipulator meticu-
lously crafted for medical purposes by KUKA. This manipulator offers dual modes
of operation: direct control by the physician through a specialized joystick interface
or autonomous execution of pre-defined paths through programming. At its end
effector, a custom-designed magnetic system is integrated, facilitating precise local-
ization and proficient actuation functionalities. In essence, this magnetic system
encompasses:

• A neodymium iron boron (NdFeB) cylindrical permanent magnet with axial
magnetization and remanence of 1.48 T. This potent magnet is securely housed
within a precisely crafted 3D printed enclosure. This magnet functions as the
primary actuation source, exerting a compelling magnetic field that propels
the capsule along its designated trajectory. The magnet imparts a propulsive
force, maintaining alignment with the capsule’s movement, provided that
the distance from the endoscopic tip remains within an optimal range. As
this distance increases, the magnetic force between the External Permanent
Magnet (EPM) and Internal Permanent Magnet (IPM) within the capsule
diminishes.
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• An electromagnetic coil, that is constructed using 24 AWG (Rint = 7Ω)
wire, meticulously wound into 160 turns arranged across 2 interlocking layers.
This coil, with a diameter of 180 mm and a length of 40 mm, is ingeniously
secured within a supplementary 3D printed framework for optimal stability
and precision.

Figure 2.2 shows the cylindrical external permanent magnet and the electromagnetic
coil.

Figure 2.2: Representation of EPM and coil [5].

Transitioning to the endoscopic tip, which boasts dimensions of 20 mm in
diameter and 22 mm in length, it is outfitted with a soft tether that not only
accommodates conventional endoscopic practices but also orchestrates the seamless
exchange of data between the embedded sensors and the processing unit. The
capsule’s design encompasses an array of essential components, including a camera
for precise vision, an integrated water nozzle that adeptly irrigates the inspection
area and the camera lens concurrently, a strategically positioned LED to provide
illuminating clarity, and a dedicated instrument channel that empowers proficient
execution of biopsy procedures.

Given the reliance on magnetic direct propulsion for the application, the capsule
itself is ingeniously outfitted with a small, axially magnetized cylindrical NdFeB
permanent magnet, the Internal Permanent Magnet (IPM), boasting a remanence
of 1.48 T. The IPM’s spatial context is carefully considered, surrounded by six Hall
effect sensors meticulously positioned to effectively emulate the presence of two
triaxial Hall sensors, thoughtfully spaced at a consistent interval. The sensors are
placed in order to prevent saturation due to the IPM magnetic field. Importantly,
it is imperative to note that any potential biases introduced by the IPM are
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subsequently rectified from the magnetic field measurements. This process ensures
the precise detection of BEP M and Bcoil, consequently contributing to accurate
and uncompromised results. Furthermore, a 6-DOF Inertial Measurement Unit
(IMU) is integrated inside the capsule. This IMU boasts a 3D digital accelerometer,
engineered to accommodate a wide-ranging full-scale acceleration spectrum of up
to ±16 g, alongside a 3D digital gyroscope with an angular rate capacity reaching
up to ±2000 degrees per second. This sophisticated sensor configuration delivers
invaluable data concerning linear accelerations and angular velocities, critically
contributing to the capsule’s precise localization. While the IMU yields digital
values, readily available for computational processes, the output from the six Hall
effect sensors operates within the analog domain. To bridge this technological
divide and facilitate digital conversion, a 16-bit Analog-to-Digital Converter (ADC)
has been incorporated into the application’s architecture. The architecture of the
endoscope is shown in the Figure 2.3.

Figure 2.3: Endoscope architecture [5].

In conclusion, in the hardware architecture of the MFE there is also an electronic
circuit, composed of a STM Nucleo development board and of a driver circuit. This
integrated circuitry serves a multi-fold purpose: orchestrating the signal processing
techniques utilizing the data harnessed from the Hall effect sensors and IMU;
subsequent to processing, channeling this data via a USB cable to the processing
unit, where they are used in ROS for precise magnetic localization; and finally,
generating the essential square wave signal for the oscillating magnetic field of the
coil. The block diagram of the MFE is shown in Figure 2.4.

2.2 Localization algorithm
The localization subsystem within the MFE has a precise objective: to calculate
both the position and orientation of the endoscope tip relative to a fixed reference
frame positioned at the center of the robot base. Among the various subsystems of
the MFE, the localization process stands out as the most intricate. It is composed
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Figure 2.4: Block diagram of the MFE [5].

of a significant number of elements. In essence, its core concept revolves around
harnessing the magnetic field generated by the EPM. This magnetic field serves
as a foundation for determining the endoscope’s pose with respect to the EPM.
Subsequently, the robot kinematic is used to localize the endoscope with respect
to a fixed frame. However, practical implementation introduces several intricate
challenges:

• the orientation of the endoscope is required as well;

• the localization process must exhibit robustness in the face of spikes and
disturbances;

• the field generated by the EPM has a plane of singularity, in which the field
has the same magnitude in an infinite number of points (see Figure 2.5). In
fact, in the plane passing through the center of the EPM, the field assumes
the same values for every point at a given distance from the center;

• the localization process must generate results at a frequency sufficient to
enable effective closed-loop control of the endoscope’s movements.

In the realm of pose estimation, Di Natali et al. [17] crafted an ingenious
algorithm capitalizing on the axial symmetry inherent in cylindrical magnets.
This innovative approach facilitated the establishment of a real-time 6-DOF pose
estimation system. Subsequently, they introduced an even more computationally
efficient iterative algorithm in a later work [18], outpacing an update rate exceeding
100 Hz.

A comprehensive examination of the workspace of the real-time pose estimation
methods mentioned earlier [17] [18] reveals the presence of singularities within
specific regions of the workspace, which consequently result in the deterioration of
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Figure 2.5: Regions of magnetic field singularity as indicated by high condition
numbers of the Jacobian matrix [14].

estimation capability. These algorithms are predicated on the assumption that a
bijective mapping exists between all workspace positions and magnetic field vectors
for a given configuration of the EPM. Due to this, it is posited that alterations in
the magnetic field consistently correspond to changes in position. However, this
foundational assumption is debunked by Taddese et al. [14], particularly in the
context of the singularity plane of the EPM. This plane is the plane normal to
the dipole moment and intersects the magnet’s center (see Figure 2.5). In various
instances of robotically guided magnetic capsule endoscopy, it is imperative for
the capsule to maintain a nominal position within this specific region throughout
clinical procedures. Regrettably, this constraint serves as a hindrance to the
prospective clinical deployment of these devices. Taddese et al. [14] pioneer a
groundbreaking hybrid system that ingeniously merges static and time-varying
magnetic field sources. This innovative approach culminates in a magnetic pose
estimation method for robotically guided magnetic capsule endoscopy that is not
only robust but also holds significant promise for clinical viability. The system
consisting of EPM and coil was presented earlier in this chapter and is depicted in
Figure 2.2.
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2.2.1 Hybrid magnetic field

Enhancing the system involves the integration of an electromagnetic coil strategically
designed to produce a weak time-varying magnetic field. This coil is affixed to the
EPM in a configuration that ensures the orthogonal alignment of their respective
dipole moments. This ingeniously orchestrated synergy between the EPM’s static
field and the coil’s evolving magnetic field facilitates the simultaneous derivation
of an extra set of equations. This augmented framework, as demonstrated by
Taddese et al. [14], empowers the solution for the capsule’s position and yaw angle.
The strategic juxtaposition of the EPM and the electromagnetic coil ensures that
within the singularity region of the EPM, the magnetic field generated by the coil
consistently maintains orthogonality to the EPM’s magnetic field. Contrastingly,
if the coil were stationed at a fixed position, such as being embedded within the
surgical table, the magnetic fields of the EPM and the coil could potentially align
during magnetic manipulation. In the event of such alignment within the EPM’s
singularity region, the number of available equations for solving the inverse problem
would be diminished. Consequently, the challenge posed by the singularity issue
would persist unabated.

Within a defined workspace, the dynamic magnetic field is calibrated to achieve
detectability by the magnetic field sensors within the capsule, all while avoiding
the imposition of sufficient force and torque to induce physical perturbations in
the capsule’s pose. A time-varying signal is employed to distinctly measure the
magnetic fields emanating from both the EPM and the coil. This approach stands
in stark contrast to the utilization of two static magnetic fields, which, due to the
principle of superposition governing their interaction, would preclude the ability
to make separate measurements; two static magnetic fields would also lead to
a reduction in the count of available equations, thereby diminishing the overall
effectiveness of the approach.

The application of Goertzel’s tone detection algorithm [19] [20] serves as the
conduit for extracting both the magnitude and phase information of the time-
varying signal acquired for each sensor. These extracted values are seamlessly
compiled into a vector, thereby enabling to seamlessly treat the coil as an additional
permanent magnet positioned at the identical origin as the EPM.

Taddese et al. [14] rigorously scrutinize the algebraic equations inherent to
the hybrid system, with the primary objective of ascertaining the presence of any
singularities that could potentially lead to an infinite array of solutions in the
inverse problem of finding the pose given magnetic field measurements. Interestingly,
this analysis compellingly demonstrates that the introduction of an orthogonal
supplementary magnet furnishes an adequate amount of information. This newly
acquired information effectively empowers a nonlinear solver to attain a unique
solution.
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In the majority of instances, the system presents an over-determined configura-
tion, facilitating the resolution of unknown variables. Nevertheless, owing to the
inherent symmetry of magnetic fields, the system of equations can yield multiple
solutions, but always in finite number. These multiple solutions are distinctly situ-
ated in separate and non-overlapping sectors of the workspace, thereby permitting
the selection of an appropriate solution based on the capsule’s previous poses.

2.2.2 Main components of the algorithm
Localization inputs and outputs

The internal sensors of the endoscope, previously described, allow to have the
following data as inputs to the localization algorithm:

• linear acceleration of the endoscope on three axes;

• angular velocities of the endoscope on three axes;

• magnetic field values perceived by the endoscope on three axes.

The six Hall effect sensors are strategically oriented to provide dual readings for
each principal axis within the endoscope’s local reference frame.

The robot establishes a connection to the control system through ROS, periodi-
cally publishing the pose (comprising position and orientation) of the end effector
with respect to the robot’s base.

The localization output is a ROS topic encompassing the endoscope’s pose. This
topic encompasses the following elements:

• endoscope position relative to the robot base;

• endoscope orientation relative to the robot base.

Estimation of roll and pitch

In applications featuring a floating device endowed with 6-DOF, the orientation
determination of said object typically involves a fusion of inertial measurements
and sensing the Earth’s magnetic field, a field known for its established orientation.
This approach stems from the inherent influence of roll and pitch angles on inertial
measurements (reflecting the direction of gravity), while remaining unaffected by
the yaw angle [21]. To accurately compute the yaw angle, the Earth’s magnetic
field is routinely leveraged. This essential computation is complemented by the
gyro’s contributions, encapsulating the angular velocities around all three axes.

The problem has nine inputs and three outputs. For a dependable orientation
calculation, the Mahoney filter [22] stands out as the prevailing approach. This
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filtering technique revolves around a PI feedback loop, seamlessly assimilating the
data originating from both the IMU and the magnetic field sensors. The outcome
is a consistently stable output. A visual representation of the Mahoney filter is
presented in Figure 2.6.

Figure 2.6: Block diagram of the Mahoney filter (source: STORM Lab UK).

In the context of the MFE, the utilization of Earth’s magnetic field for yaw
computation is rendered unfeasible because the field generated by the EPM is
several orders of magnitude bigger. Consequently, a customized iteration of the
Mahony filter is embraced, one that takes into account the EPM’s orientation to
effectively address this challenge.

The Mahoney filter yields the following outputs:

• a dependable estimation of roll and pitch angles;

• an initial approximation of the yaw angle, which serves as a starting point for
the subsequent stage.

Estimation of position and yaw

The preceding stage furnishes two out of the six state variables necessary for
endoscope localization. The remaining quartet of states awaiting determination
comprise position (x, y, and z) relative to the robot base, along with the yaw
angle. The Goertzel filter is able to efficiently compute the magnitude and phase
of the two magnetic fields. Thanks to this, there are six inputs to the localization
problem: [xEP M , yEP M , zEP M ] and [xcoil, ycoil, zcoil], which are the magnetic field
values of the EPM and of the coil.

Endoscope localization is executed through the utilization of a Particle Filter
(PF), a statistical tool proficient in the estimation of a system’s states by absorbing
observations over time. This approach is often used in estimation problems in which
the process has statistical characteristics and the measures dominate the system, in
contrast to Kalman filters that prioritize system dynamics. Central to the PF is a
set of particles, constituting a particle cloud, wherein each particle encapsulates a
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state vector and corresponds to a specific likelihood. With each input measurement,
both state and likelihood are subjected to updates. The particle distribution can
be weighted based on their respective likelihoods, or alternatively, the particle with
the highest likelihood may be selected as the output. In the context of the MFE, a
subset of particles surpassing a predetermined likelihood threshold is considered.
The outcome of the localization process is derived from this subset, specifically by
calculating the average value within it.

For assimilating the data, the PF necessitates a model of the magnetic field
produced by a cylindrical magnet characterized by a specified magnetic moment, a
parameter that is established for both the EPM and the coil. While the magnetic
dipole model is conventionally employed to calculate forces and torques exerted on
the endoscope, its accuracy falls short in meeting the required performance bench-
marks, particularly when dealing with close inter-magnetic distances. Consequently,
the generalized complete elliptic integral model is adopted. This model is chosen
due to its superior ability to furnish accurate results, particularly in scenarios
featuring tight magnetic proximity. To expedite the identification process, the
model is employed to construct a comprehensive map of the fields generated by both
the EPM and the coil. This mapping exercise covers a quarter of the workspace,
encompassing distances up to 30 cm. Subsequently, searches are conducted within
this map. In cases where the PF necessitates computations beyond the scope of
the pre-computed workspace, the integral is explicitly solved.

In the subsequent paragraph the results obtained by Taddese et al. [14] for the
just-presented localization algorithm are presented.

2.2.3 Results obtained with the PF algorithm
Taddese et al. [14] rigorously assessed the pose estimation algorithm through a
comprehensive experimental validation encompassing both static and dynamic
scenarios. In the static condition tests, precise poses were meticulously set for
both the capsule and the EPM. This setup facilitated the computation of average
errors for each position, including those situated within the singular regions of the
EPM and the coil. In the dynamic tests, the evaluation extended to deliberate
movements of either the capsule or the EPM at predefined velocities, aimed at
elucidating trajectory errors.

Validation in static conditions

The capsule was carefully situated within a 3D printed housing and firmly affixed
to the secondary robot manipulator. This manipulator was intentionally positioned
in a precisely known pose relative to the primary robot. In the initial series
of static tests, the EPM underwent a spiral trajectory, tracing the surface of a
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hemisphere while maintaining a consistent distance from the capsule (see Figure
2.7). This encompassed six distinct tests, each involving hemispheres with varying
radii ranging from 150 mm to 200 mm. The decision to cap the maximum radius at
200 mm was a deliberate measure, ensuring the tests remained confined to regions
characterized by clinically relevant forces and torques applied to the capsule.

Figure 2.7: Static validation experiments: spiral trajectory. The red dots are the
positions where the EPM was stopped [14].

The results of the experiment are shown in Figure 2.8.

Figure 2.8: Mean error and its standard deviation of pose estimates for static
tests along a spiral trajectory [14].

A larger positional error was encountered along the y-axis, potentially attributed
to the fact that the capsule was in the singularity region of the EPM for a subset
of the 25 points on the hemisphere. This occurrence led to a reduction in the
count of constraining equations responsible for mapping poses to magnetic field
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vectors. Given that the singularity plane of the EPM in this specific set of trials
corresponded to the yz-plane, it is reasonable to anticipate larger errors along
the y-axis. Furthermore, the error in the yaw angle surpasses that of the other
orientation angles. This phenomenon can be attributed to the yaw being uniquely
susceptible to the bias and noise characteristics inherent in the magnetic field
sources. In contrast, the remaining two angles were derived from accelerometer
measurements.

Validation in dynamic conditions

Validation under dynamic conditions involved the execution of two distinct experi-
ment types. The first, termed the static-dynamic experiment, involved exclusively
mobilizing the capsule along a designated trajectory, while the EPM remained
stationary. Conversely, the second, termed the dynamic-dynamic experiment (see
Figure 2.9), entailed simultaneous movement of both the capsule and the EPM
along an identical trajectory while maintaining a consistent relative velocity. In
both experiment types, the trajectory was meticulously devised to closely emulate
the characteristic curvature of the human colon. Additionally, to establish a baseline
of accurate measurements, a secondary robot manipulator was employed. This
secondary manipulator was responsible for securely holding and orchestrating the
movement of the capsule along the predetermined trajectory, thereby providing
reliable ground truth data for comparison.

The results obtained in the two tests are shown in Figures 2.10 and 2.11. Both
figures show the excellent results achieved by the localization algorithm.

2.3 Reasoning behind the necessity for a new
localization algorithm

The localization algorithm implemented by Taddese et al. [14] yielded excellent
results. However, the PF lacks covariance matrices that enable real-time determi-
nation of localization accuracy. Hence, a primary objective of this thesis work is
to identify specific parameters that facilitate real-time evaluation of localization
correctness.

Furthermore, even though the average errors found are minimal, sporadic
instances of drift do arise, where the estimated pose from the localization algorithm
diverges from the true pose. As a response to this challenge, a parallel effort has been
initiated to develop an alternative localization algorithm. The overarching objective
is to harness the strengths of both the PF and the new algorithm, amalgamating
their respective positive attributes. This strategic fusion is envisioned to yield an
algorithm of enhanced reliability and robustness.
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Figure 2.9: Dynamic-dynamic test: plot of the trajectories of the EPM and the
capsule (10 mm/s) [14].

Figure 2.10: Mean error and its standard deviation of pose estimates for static-
dynamic tests [14].

2.4 Estimation algorithms for localization - state
of the art

Localization is the main focus of the thesis project. The MFE’s localization
subsystem acts to determine the endoscope tip’s position and orientation with
respect to a fixed reference frame (RF) positioned in the middle of the robot base.
Figure 2.12 shows the global RF.

To gain a comprehensive understanding of the most suitable algorithm for
accurately estimating the system’s state (position and orientation), a thorough
theoretical analysis of multiple algorithms is essential. Considering that there are no
linear Gaussian systems in the real world, and our system is not either, algorithms
based on nonlinear, non-Gaussian (NLNG) estimation must be analyzed.
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Figure 2.11: Mean error and its standard deviation of pose estimates for dynamic-
dynamic tests [14].

Figure 2.12: The global RF.

Three estimators for non-linear systems will be analyzed in this section:

• Particle Filter.

• Extended Kalman Filter.

• Unscented Kalman Filter.

The following notation will be used to ensure clarity and consistency in discussing
the various concepts and elements:

• Normal letters (a, b, c, ...) denote scalars, bold (a, b, c, ...) denote vectors,
and uppercase (A, B, C, ...) denotes matrices.

• Subscripts (xa) denote discrete time.

• Conditional subscripts (xa|b) denote the variable x at time a, given measure-
ments up to time b.

• Letters with a hat (â, b̂, ĉ, ...) are estimated values affected by a certain
degree of uncertainty.

• Letter k identifies the discrete time instant at which that variable is evaluated.
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2.4.1 Particle Filter
The Particle Filter (PF) is the algorithm currently used for localization and will be
analyzed in this section from a theoretical point of view.

PF, also known as Sequential Monte Carlo methods (SMC), represents a class
of recursive Bayesian state estimation techniques that find frequent application
in object tracking and localization tasks. In the PF, the posterior distribution,
p(xk|z1:k), of the state xk at time k conditioned on a time series of measurement
z1:k = {zi, i = 1,2, ..., k} is represented by a set of particles, which are assigned a
weight, wi

k.
PF is able to overcome limiting assumptions made by other state estimation

techniques, such as Kalman Filters, where process and measurement models are
linear, and noise distributions are Gaussian. This is due to to the nonparametric
representation of the probability density function (PDF) and the use of Monte
Carlo techniques [9].

PF Algorithm

The following are the main phases of the PF [23].

1. Draw M samples from the joint density comprising the prior and the motion
noise: C

x̂k−1,m

wk,m

D
← p(xk−1|x̂0,v1:k−1,y1:k−1)p(wk), (2.1)

where v is the prior information, y are the measurements, x is the state, w is
the weight associated with the particle m.

2. Prediction phase: generate a prediction of the posterior PDF using vk, and
the nonlinear motion model:

x̂k,m = f(x̂k−1,m,vk,wk,m). (2.2)

All the predicted particles together approximate the density:

p(xk|x̂0,v1:k,y1:k−1). (2.3)

3. Correction phase: correct the posterior PDF using the measurements yk. Two
steps must be followed in this phase:

• Assign a weight to each particle based on the divergence between the
desired posterior and the predicted posterior for each particle:

wk,m = p(x̂k,m|x̂0,v1:k,y1:k)
p(x̂k,m|x̂0,v1:k,y1:k−1)

= ηp(yk|x̂k,m), (2.4)
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where η is a normalization constant. This is typically done by simulating
an expected sensor reading using the nonlinear observation model:

ŷk,m = g(x̂k,m,0). (2.5)

It is therefore assumed p(yk|x̂k,m) = p(yk|ŷk,m), where the right-hand
side is a known density.

• Resample the posterior based on the weight assigned to each predicted
posterior particle:

x̂k,m
resample←−−−−− {x̂k,m,wk,m}. (2.6)

One of the aims of the thesis project is to implement a new localization algorithm,
so two other methods are discussed in the following sections.

2.4.2 Extended Kalman Filter
The Extended Kalman Filter (EKF) continues to hold its ground as a prevalent
choice for estimation and data fusion in various domains, proving particularly
effective for systems with moderate nonlinearity and non-Gaussian characteristics.

EKF Algorithm

First of all, it is necessary to limit the belief function for xk to be Gaussian [23]:

p(xk|x̂0,v1:k,y0:k) = N (x̂k, P̂k), (2.7)

where x̂k and P̂k are respectively the mean and the covariance. Then, it is assumed
that the noise variables wk and nk (∀k) are Gaussian as well:

wk ∼ N (0, Qk), (2.8)

nk ∼ N (0, Rk). (2.9)

The state and measurement equations are the following:

xk = f(xk−1,vk) + wk, (2.10)

yk = g(xk) + nk. (2.11)

Considering that the functions f(·) and g(·) are nonlinear, it is not possible
to compute the integral in the Bayes filter in closed form, so it is necessary to
linearized:

f(xk−1,vk,wk) ≈ x̂k + Fk−1(xk−1 − x̂k−1) + w′
k, (2.12)

g(xk,nk) ≈ ŷk +Gk(xk − x̂k) + n′
k, (2.13)
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where, for the state:
x̂k = f(x̂k−1,vk, 0), (2.14)

Fk−1 = ∂f(xk−1,vk,wk)
∂xk−1

-----
x̂k−1,vk,0

, (2.15)

w′
k = ∂f(xk−1,vk,wk)

∂wk

-----
x̂k−1,vk,0

wk, (2.16)

and for the measurement:
ŷk = g(x̂k, 0), (2.17)

Gk = ∂g(xk,nk)
∂xk

-----
x̂k,0

, (2.18)

n′
k = ∂g(xk,nk)

∂nk

-----
x̂k,0

nk. (2.19)

The equations that describe the EKF are the following:

1. Prediction phase:
P̂k = Fk−1P̂k−1F

T
k−1 +Q′

k, (2.20)

x̂k = f(x̂k−1,vk, 0). (2.21)

2. Kalman gain:
Kk = P̂kG

T
k (GkP̂kG

T
k +R′

k)−1. (2.22)

3. Correction phase:
P̂k = (1−KkGk)P̂k, (2.23)

x̂k = x̂k +Kk(yk − g(x̂k, 0)), (2.24)

where
Q′

k = E[w′
kw′T

k ], (2.25)

R′
k = E[n′

kn′T
k ]. (2.26)
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Figure 2.13: The unscented transform [24].

2.4.3 Unscented Kalman Filter
The unscented transformation presents a technique for computing the statistics
of a random variable when subjected to a nonlinear transformation. This method
is based on the insightful notion that approximating a Gaussian distribution
is more feasible compared to approximating an arbitrary nonlinear function or
transformation (see Figure 2.13).

A set of sigma points are selected, with mean x̄ and sample covariance Pxx. The
nonlinear function is applied to each point in turn to yield a cloud of transformed
points with mean and covariance ȳ and Pyy.

The main difference with respect to Monte Carlo methods is that the sampling
process is not governed by random selection; instead, it follows a precise and deter-
ministic algorithm. As the challenges of statistical convergence are not a concern,
it becomes possible to capture high-order information about the distribution with
a remarkably small number of points [24].

UKF Algorithm

The state and measurement equations are the following:

xk+1 = f(xk,vk), (2.27)

yk = g(xk,nk). (2.28)
The following are the main steps for the Unscented Kalman Filter (UKF) [25]:

1. Definition of sigma points and weights: if N is the dimension of the state,
2N + 1 sigma points are needed. The following equations show how to obtain
sigma points and their associated weights:

X0 = x̄, (2.29)
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Xi = x̄ + (
ñ

(N + λ)Pxx)i, i = 1, ..., N, (2.30)

Xi = x̄− (
ñ

(N + λ)Pxx)i−N , i = N + 1, ...,2N, (2.31)

w0 = λ

N + λ
, (2.32)

wi = 1
2(N + λ) , (2.33)

where λ = 3−N .

2. Initialization:
x̂0 = E[x0], (2.34)

Pxx0 = E[(x0 − x̂0)(x0 − x̂0)T ], (2.35)
x̂a

0 = E[xa] = [x̂T
0 0 0]T , (2.36)

P a
xx0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ] =

P0 0 0
0 Pv 0
0 0 Pn

 . (2.37)

3. Prediction phase, where the state is predicted:

X x
k|k−1 = f [X x

k−1,X v
k−1], (2.38)

x̂−
k =

2NØ
i=0

wiX x
i,k|k−1, (2.39)

P−
xxk =

2NØ
i=0

wi[X x
i,k|k−1 − x̂−

k ][X x
i,k|k−1 − x̂−

k ]T . (2.40)

4. Correction phase, where the state is corrected, taking into account measure-
ments:

Yk|k−1 = g[X x
k|k−1,X n

k−1], (2.41)

ŷ−
k =

2NØ
i=0

wiYi,k|k−1, (2.42)

Pyyk =
2NØ
i=0

wi[Yi,k|k−1 − ŷ−
k ][Yi,k|k−1 − ŷ−

k ]T , (2.43)

Pxyk =
2NØ
i=0

wi[Xi,k|k−1 − x̂−
k ][Yi,k|k−1 − ŷ−

k ]T , (2.44)

K = PxykP
−1
yyk, (2.45)

x̂k = x̂−
k +K(yk − ŷ−

k ), (2.46)
Pxxk = P−

xxk −KPyykKT . (2.47)
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Where: xa =
è
xT vT nT

éT
, X a =

è
(X x)T (X v)T (X n)T

éT
, Pv is the process

noise covariance, Pn is the measurement noise covariance.

2.4.4 Best algorithm selection
As mentioned above, in the case of non-linear systems, the EKF linearises the
system equations. In particular, the EKF uses Gaussian Random Variables (GRV)
to approximate the state distribution, which is then analytically propagated through
the first-order linearization of the nonlinear system. As a result, the EKF can be
seen as providing first-order approximations to the optimal terms. Additionally,
when the system equations are linearized, the EKF does not account for the
uncertainty in the underlying random variable. This is because the first-order
Taylor series linearization expands the nonlinear equations just around a single
point and ignores the spread (uncertainty) of the prior random variable. These
approximations may result in significant errors in the true posterior mean and
covariance of the transformed (Gaussian) random variable (RV), which may lead
to suboptimal performance and occasionally filter divergence [26].

In the UKF, a superior approach is used to linearize the nonlinear function.
Instead of relying on a truncated Taylor-series expansion at a single point, it has
opted for a more effective method. This involves linearizing the function through
linear regression, considering r points (sigma points) sampled from the prior
distribution of the state RV. These points are matched with their corresponding
true nonlinear functional evaluations. By incorporating the statistical properties of
the prior RV, the expected linearization error is significantly reduced compared to
the error resulting from a truncated Taylor-series linearization [26].

The selection of sigma-points should be done in a manner that they capture the
most important statistical properties of the prior random variable x. Because of
this, for non-linear systems the UKF performs better than the EKF and this can
be seen very well in Figure 2.14.

Considering the highly non-linear nature of the system under investigation, the
decision was made to employ a UKF algorithm for localization, as expounded in
subsequent chapters. This choice is additionally motivated by the requirement
to calculate Jacobians for both the state function and measurement function to
develop an EKF algorithm. The problem is that obtaining the Jacobian function
of measurements is an exceedingly intricate task in our case, which again justifies
the use of the UKF over the EKF.
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Figure 2.14: Example of the sigma-point approach for mean and covariance
propagation: A) actual, B) EKF (first-order linearization), c) UKF (sigma-point
approach) [26].
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Chapter 3

Real-time Estimation of
Localization Correctness

Taddese et al. [14] introduced a new system for estimating poses that combines a
permanent magnet and an electromagnet (see Fig. 3.1). The system demonstrated
impressive results in static tests, with average errors of less than 5 mm in any
single position axis and 6° in any orientation angle. By implementing the Particle
Filter (PF) algorithm in parallel, the system achieved an average update rate of
100 Hz. The system surpassed the necessary workspace requirements, which had
a radius of 150 mm, due to the larger size of the External Permanent Magnet
(EPM), utilization of multiple magnetic field sources, and the higher sampling rate
employed during signal acquisition.

Figure 3.1: EPM augmented with an electromagnetic coil.
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Although the PF algorithm has proven to be very successful, there are several
motivations for developing certain parameters to estimate the correctness of the
localization in real-time:

• Drift phenomenon: in certain scenarios, a phenomenon known as drift can
occur, where the estimated position of the endoscope continues to diverge
with respect to the true position.

• Calibration errors: errors can arise from neglecting to calibrate the endoscope
prior to use or employing an incorrect calibration file. In such cases, drift may
not be present, but the localization estimate becomes erroneous. Detecting
this error is challenging, as there are no apparent indicators of localization
issues, unlike with drift.

• Lack of covariance matrices: the PF algorithm lacks covariance matrices that
aid in real-time error determination. The absence of these matrices poses a
challenge when assessing localization errors promptly and accurately.

In order to facilitate real-time evaluation of localization correctness, a com-
prehensive exploration of various parameters was undertaken. These parameters
were carefully identified to establish a robust framework for assessing the correct-
ness of localization in different scenarios. To ensure reliability and effectiveness,
a multi-phased approach was adopted. The initial phase involved conducting
meticulous tests to ascertain the interrelationships between different parameters.
This process aimed to establish how these parameters should be interconnected
and how their values could be combined to yield meaningful insights into the
quality of localization. Additionally, specific thresholds were defined to discern
between good and bad localization. Moving forward, a second validation phase was
implemented to rigorously examine and confirm the effectiveness of the identified
parameters and thresholds. This phase was essential in verifying the reliability and
accuracy of the chosen criteria. By subjecting the system to diverse scenarios and
meticulously analysing the results, any potential limitations or discrepancies were
addressed, ensuring the overall robustness of the evaluation framework. Finally,
the culmination of this extensive investigation led to the integration of the code
into the PF algorithm. By incorporating the identified parameters and thresholds,
the PF algorithm was enhanced to deliver real-time estimation of the correctness of
localization. This integration enabled prompt and continuous evaluation, allowing
users to dynamically monitor and assess the accuracy of the system’s localization
output.
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3.1 Parameters
To evaluate in real-time the correctness of localization, three distinct parameters
have been meticulously identified. The significance and nature of these parameters
are expounded upon below.

3.1.1 Effective Sample Size

The definition of the Effective Sample Size (ESS) parameter is as follows:

ESS = 1qN
n=1 w̄

2
n

, (3.1)

where N is the total number of particles (in our case N = 10000), and w̄n is the
normalized weights:

w̄n = wnqN
i=1 wi

, n = 1, ..., N. (3.2)

The ESS takes into account the weights w assigned to the particles and is an
important measure of the efficiency of Monte Carlo methods. ESS can take values
from 1 to N and is used in the Particle Filter algorithm to decide when to do
resampling:

• ESS = 1 means that all the weight is assigned to one particle;

• ESS = N means that the weights are equally distributed among the N
particles.

3.1.2 Weighted mean Distance

The Weighted mean Distance (WD) is defined as follows:

WD =
qN

n=1 wn · ∥xmean − xn∥
wtot

, (3.3)

where wn is the weight associated with particle n, xmean is the mean value assumed
by the state, taking into account all particles and all weights associated with them,
xn is the state associated with particle n, wtot is the sum of all weights.
WD is the weighted average (with respect to particle weights) of the distance

between the particle values and the calculated mean.
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3.1.3 Weighted mean Square Distance
The Weighted mean Square Distance (WD2) is defined as follows:

WD2 =
qN

n=1 wn · ∥xmean − xn∥2

wtot

, (3.4)

where wn is the weight associated with particle n, xmean is the mean value assumed
by the state, taking into account all particles and all weights associated with them,
xn is the state associated with particle n, wtot is the sum of all weights.
WD2 is the weighted average (with respect to particle weights) of the squared

distance between the particle values and the calculated mean.

3.2 Scenarios
To thoroughly test and validate the parameters, a comprehensive set of seven
distinct scenarios has been identified. These scenarios have been specifically chosen
to ensure robust examination and validation of the parameters under various
conditions.

1. Stationary situation – No singularity: the endoscope remains in a fixed position
and is not aligned with the plane of singularity. The localization is expected
to be correct.

2. Stationary situation – Singularity plane: the endoscope remains in a fixed
position and is aligned with the plane of singularity. Due to the presence of
the coil, the localization is expected to be correct.

3. Coil off – No singularity: the endoscope is in a fixed position. The coil, which
is initially switched on, is switched off. It is expected that after a transient in
which the localization is not good, it will stabilize.

4. Coil off – Singularity plane: the endoscope is in a fixed position. The coil,
which is initially switched on, is switched off. It is expected that localization
will not be good as long as the coil remains switched off.

5. Endoscope outside the workspace: the endoscope starts from a position inside
the workspace, then exits, then re-enters the workspace. It is expected that
when the endoscope is outside, localization is not good.

6. Joystick movement: the EPM, and therefore the endoscope, are moved via
joysticks. Localization is expected to be good. This scenario is very important
as it represents a real operational situation of the system.
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7. Wrong calibration: the endoscope was not calibrated correctly. It is expected
that the localization is not good. As mentioned in the introduction, detecting
the calibration error is challenging, as there are no apparent indicators of
localization issues. It is, therefore, important that the indicators are able to
recognize when the calibration is incorrect.

3.3 Test phase
During the test phase, the primary objective is to establish the thresholds for the
parameters and determine the methodology for analyzing the parameter data. This
includes considerations such as whether the data should be analyzed point by point,
if any filtering techniques should be applied, or if the analysis should be performed
on blocks of points.

It is important to note that the Particle Filter algorithm has an update time of
0.01 seconds. Consequently, the parameter values are also published at the same
frequency, ensuring synchronization between the algorithm’s update intervals and
the publication of parameter values.

Three tests of 30 seconds each were carried out for each of the seven scenarios.
First, the mean value and the mean value of the increase (in absolute value)1 of
the parameters were analyzed (see Fig. 3.2).

The main outcomes of this first analysis are as follows:

• when the coil is deactivated and the endoscope is positioned within the plane
of singularity, it is observed that the increases in ESS and WD2 are notably
higher compared to other scenarios;

• in the presence of an erroneous calibration, the average value of ESS signifi-
cantly decreases, measuring below 1500, whereas in other cases it typically
exceeds 3000. Additionally, the mean value of WD2 is considerably low,
further highlighting the impact of incorrect calibration on the localization
performance.

At this stage, distinct thresholds have been established for the three indicators,
taking into consideration the previously computed means. Subsequently, an analysis
was conducted to determine the number of points surpassing the defined threshold
for each scenario. The results obtained are shown in Appendix A.1.1. Following
the completion of this analysis, it has been determined that the parameter WD2
exhibits a similar trend to WD, but its absolute values do not provide sufficient

1The increase in absolute value of a parameter is the difference, in absolute terms, between
the value of the parameter at instant i and its value at instant i− 1.
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Figure 3.2: Mean values and mean increases of parameters.

discrimination to identify specific scenarios. Consequently, the subsequent analysis
focuses exclusively on the ESS and WD parameters.

To determine the appropriate methodology for analyzing the parameter values
and discerning between good and bad localization, three distinct analyses were
conducted:

1. Single-point analysis.

2. Low-pass filter analysis.

3. Analysis of sets of points (without filter).

3.3.1 Single-point analysis
The parameter values are analyzed individually, then, point by point, it is defined
whether the localization is good or not. After analyzing the results obtained with
the different thresholds and combining the indicators in different ways, it was
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concluded that localization is bad when at least one of the following inequalities
occurs:

ESS ≤ 2500, (3.5)
ESS ≥ 9000, (3.6)

|ESSi − ESSi−1| ≥ 600, (3.7)
WD ≥ 0.018. (3.8)

The results obtained in each scenario using these thresholds and this combination
of parameters are analyzed. The percentage of bad localization for each scenario is
shown in Table 3.1.

Test number Test name % of bad localization
1 Stationary situation – No singularity 0.00%
2 Stationary situation – Singularity plane 2.43%
3 Coil off – No singularity 0.00%
4 Coil off – Singularity plane 45.03%
5 Endoscope outside the workspace 62.31%
6 Joystick movement 13.23%
7 Wrong calibration 90.17%

Table 3.1: Single-point analysis results.

Subsequently, only one of the three tests performed is presented; the other
results are shown in Appendix A.1.2.

Stationary situation – No singularity

Figure 3.3 shows the two parameters in test 1. The horizontal red lines represent
the thresholds. The evolution of the parameters is shown in green. The blue
asterisks represent the result of the localization analysis:

• when the asterisks are above, it means that the localization is bad;

• when asterisks are below, localization is good.

In 100% of the cases the localization was reported as good. This finding
accurately reflects the expected reality, considering that in this scenario it is
expected good localization.
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Figure 3.3: Stationary situation – No singularity: ESS and WD parameters, test
1.

Figure 3.4: Stationary situation – Singularity plane: ESS and WD parameters,
test 1.

Stationary situation – Singularity plane

Figure 3.4 shows the two parameters in test 1. In almost all points the localization
is reported as good. Due to the presence of the coil, even if the endoscope is in the
plane of singularity, the localization is still good, and the parameters indicate this
correctly.

Coil off – No singularity

Figure 3.5 shows the two parameters in test 1. At about 4 seconds the coil is
switched off. It can be seen that there is an increment of the ESS increase and,
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Figure 3.5: Coil off – No singularity: ESS and WD parameters, test 1.

with some delay, an increment in the WD value. However, the change does not
allow the thresholds to be exceeded, so the parameters continue to confirm that
the localization is good, faithfully following what happens in reality.

Coil off – Singularity plane

Figure 3.6: Coil off – Singularity plane: ESS and WD parameters, test 1.

Figure 3.6 shows the two parameters in test 1. At about 6 seconds the coil is
switched off. It can be seen that there is an increment of the ESS increase and,
with some delay, an increment in the WD value. In this scenario, both parameters
are important: ESS is able to notice that localization is no longer good as soon as
the coil is switched off but stabilizes after a certain period; WD notices the change
with a certain delay but is crucial in showing that localization is not good when
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ESS stabilizes.
In general, it should turn out that localization is not good for all points after

the coil is switched off. In the Figure 3.6 it can be seen that there is a continuous
transition between good and bad localization. This is due to the fact that the
points are analyzed individually and not as a whole. To solve this problem, blocks
of points are analyzed in the following analyses.

Endoscope outside the workspace

Figure 3.7: Endoscope outside the workspace: ESS and WD parameters, test 3.

Figure 3.7 shows the two parameters in test 3. The endoscope is taken out of the
workspace between seconds 4 and 15. During this period of time the parameters
clearly show that the localization is not good.

Joystick movement

Figure 3.8 shows the two parameters in test 1. During the test, it was noted that
there are some moments when the localization is not stable, i.e., the estimated
position continues to oscillate. In these instants, the localization is not good, and
this can be seen with the ESS parameter.

Wrong calibration

Figure 3.9 shows the two parameters in test 3. In this scenario, the localization is
completely wrong, and this is correctly seen thanks to the ESS parameter, which
is almost constantly below the threshold.
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Figure 3.8: Joystick movement: ESS and WD parameters, test 1.

Figure 3.9: Wrong calibration: ESS and WD parameters, test 3.
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3.3.2 Low-pass filter analysis
Parameter values are analyzed in blocks of 16 points at a time and are filtered
using a low-pass filter (LPF) with fcutoff = 200Hz. For each block of points, the
localization is defined as bad when at least one of the following inequalities occurs:

ESSmean ≤ 2500, (3.9)
ESSmean ≥ 9000, (3.10)

|ESSmax − ESSmin| ≥ 800, (3.11)
WDmean ≥ 0.014. (3.12)

By filtering the data, the trend in parameter values changes. This is why the
thresholds have been changed from the previous analysis. The percentage of bad
localization for each scenario is shown in Table 3.2.

Test number Test name % of bad localization
1 Stationary situation – No singularity 0.00%
2 Stationary situation – Singularity plane 0.92%
3 Coil off – No singularity 0.00%
4 Coil off – Singularity plane 60.55%
5 Endoscope outside the workspace 75.93%
6 Joystick movement 29.35%
7 Wrong calibration 95.00%

Table 3.2: Low pass filter analysis results.

In general, it can be said that the percentages obtained more closely reflect
reality than in the previous analysis. However, there are two problems:

• by filtering the data, the peaks are dampened, and thus the threshold on the
increase loses some value;

• doing an LPF every 16 points has a computational cost.

Subsequently, only one of the three tests performed is presented; the other
results are shown in Appendix A.1.3.

Stationary situation – No singularity

Figure 3.10 shows the two parameters in test 1. In this analysis, data filtered
through a LPF are shown in black. In 100% of the cases the localization was
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Figure 3.10: Stationary situation – No singularity: ESS and WD parameters,
test 1.

reported as good. This finding accurately reflects the expected reality, considering
that in this scenario it is expected good localization. Compared to the previous
analysis, it can be seen that the filter dampens the peaks.

Stationary situation – Singularity plane

Figure 3.11: Stationary situation – Singularity plane: ESS and WD parameters,
test 1.

Figure 3.11 shows the two parameters in test 1. In almost all points the
localization is reported as good. Due to the presence of the coil, even if the endoscope
is in the plane of singularity, the localization is still good, and the parameters
indicate this correctly. Compared to the previous analysis, the percentage of bad
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localization has decreased. This confirms that analyzing points in blocks and not
individually is better.

Coil off – No singularity

Figure 3.12: Coil off – No singularity: ESS and WD parameters, test 1.

Figure 3.12 shows the two parameters in test 1. At about 4 seconds the coil is
switched off. It can be seen that there is an increment of the ESS increase and,
with some delay, an increment in the WD value. However, the change does not
allow the thresholds to be exceeded, so the parameters continue to confirm that
the localization is good, faithfully following what happens in reality.

Coil off – Singularity plane

Figure 3.13: Coil off – Singularity plane: ESS and WD parameters, test 1.
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Figure 3.13 shows the two parameters in test 1. At about 6 seconds the coil is
switched off. It can be seen that there is an increment of the ESS increase and,
with some delay, an increment in the WD value.

In general, it should turn out that localization is not good for all points after
the coil is switched off. By analyzing the points in blocks and not individually, it
allows to increase the percentage of bad localization when the coil is off, improving
the result previously found.

Endoscope outside the workspace

Figure 3.14: Endoscope outside the workspace: ESS and WD parameters, test
3.

Figure 3.14 shows the two parameters in test 3. The endoscope is taken out of
the workspace between seconds 4 and 15. During this period of time the parameters
clearly show that the localization is not good.

Joystick movement

Figure 3.15 shows the two parameters in test 1. During the test, it was noted that
there are some moments when the localization is not stable, i.e., the estimated
position continues to oscillate. In these instants, the localization is not good, and
this can be seen with the ESS parameter. The analysis of blocks of points allows
to capture this phenomenon better.

Wrong calibration

Figure 3.16 shows the two parameters in test 3. In this scenario, the localization is
completely wrong, and this is correctly seen thanks to the ESS parameter, which
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Figure 3.15: Joystick movement: ESS and WD parameters, test 1.

Figure 3.16: Wrong calibration: ESS and WD parameters, test 3.

is almost constantly below the threshold.
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3.3.3 Analysis of sets of points (without filter)
Parameter values are analyzed in blocks of 15 points at a time. For each block
of points, the localization is defined as bad when at least one of the following
inequalities occurs for more than 6 out of 15 points:

ESS ≤ 2500, (3.13)
ESS ≥ 9000, (3.14)

|ESSi − ESSi−1| ≥ 600, (3.15)
WD ≥ 0.018. (3.16)

The percentage of bad localization for each scenario is shown in Table 3.3.

Test number Test name % of bad localization
1 Stationary situation – No singularity 0.00%
2 Stationary situation – Singularity plane 0.00%
3 Coil off – No singularity 0.00%
4 Coil off – Singularity plane 61.54%
5 Endoscope outside the workspace 66.38%
6 Joystick movement 13.27%
7 Wrong calibration 95.33%

Table 3.3: Results of the analysis of sets of points.

The results obtained with this third type of analysis are better than the analysis
with the filter for the following reasons:

• the bad localization percentages better respect the reality;

• by not filtering the data, the increase can be appreciated more (the peaks are
not dampened);

• there is no high computational cost, considering that a filter is not used.

Subsequently, only one of the three tests performed is presented; the other
results are shown in Appendix A.1.4.

Stationary situation – No singularity

Figure 3.17 shows the two parameters in test 1. In 100% of the cases the localiza-
tion was reported as good. This finding accurately reflects the expected reality,
considering that in this scenario it is expected good localization.
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Figure 3.17: Stationary situation – No singularity: ESS and WD parameters,
test 1.

Stationary situation – Singularity plane

Figure 3.18: Stationary situation – Singularity plane: ESS and WD parameters,
test 1.

Figure 3.18 shows the two parameters in test 1. In 100% of the cases the
localization was reported as good. This finding accurately reflects the expected
reality, considering that in this scenario it is expected good localization.

Coil off – No singularity

Figure 3.19 shows the two parameters in test 1. In 100% of the cases the localiza-
tion was reported as good. This finding accurately reflects the expected reality,
considering that in this scenario it is expected good localization.
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Figure 3.19: Coil off – No singularity: ESS and WD parameters, test 1.

Coil off – Singularity plane

Figure 3.20: Coil off – Singularity plane: ESS and WD parameters, test 1.

Figure 3.20 shows the two parameters in test 1. At about 6 seconds the coil is
switched off. It can be seen that there is an increment of the ESS increase and,
with some delay, an increment in the WD value.

The result obtained is very similar to that of the analysis with the filter.

Endoscope outside the workspace

Figure 3.21 shows the two parameters in test 3. The endoscope is taken out of the
workspace between seconds 4 and 15. During this period of time the parameters
clearly show that the localization is not good.
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Figure 3.21: Endoscope outside the workspace: ESS and WD parameters, test
3.

Joystick movement

Figure 3.22: Joystick movement: ESS and WD parameters, test 1.

Figure 3.22 shows the two parameters in test 1. During the test, it was noted
that there are some moments when the localization is not stable, i.e., the estimated
position continues to oscillate. In these instants, the localization is not good, and
this can be seen with the ESS parameter. Compared to the analysis with the
filter, the points that go under the threshold of ESS rapidly are neglected: if the
variation is very rapid, it is not considered.

48



Real-time Estimation of Localization Correctness

Figure 3.23: Wrong calibration: ESS and WD parameters, test 3.

Wrong calibration

Figure 3.23 shows the two parameters in test 3. In this scenario, the localization is
completely wrong, and this is correctly seen thanks to the ESS parameter, which
is almost constantly below the threshold.

3.4 Validation phase
The validation phase plays a crucial role in confirming the results obtained during
the test phase. Additional experiments were then carried out in the laboratory for
each scenario, and it was assessed whether the parameters are able to correctly
indicate when the localization is good and when it is not. The last analysis
presented, Analysis of sets of points (without filter), was used to analyze the
parameter values, considering that it was the analysis that provided the best results
in the test phase.

For each scenario, the percentage of the following points was calculated:

• Good Estimation: the estimation of the parameters matches the localization
(e.g., the estimation of the parameters says that the localization is not good,
and the localization is not good).

• False Positive: parameters estimates indicate that the localization is good,
but the localization is not good.
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• False Negative: parameters estimates indicate that the localization is not good,
but the localization is good.

This phase is divided into two parts: static scenarios analysis and dynamic
scenario analysis.

3.4.1 Static scenarios
A ground truth is needed to define whether the parameters correctly indicate if the
localization is good or not. In the case of static scenarios, where the endoscope
remains fixed in one position, the known position serves as the reference point.

To define whether localization is good or not, a threshold must be set (relative
to the known position) beyond which the estimated position is no longer good: if
the difference, in absolute value, between the estimated and actual position exceeds
the threshold in at least one of the components of the state (x, y, z, yaw angle), it
means that the localization is not good.

The selection of the threshold took into account two key factors:

• the variations observed in the stationary scenario, which were considered
indicative of good localization;

• the average accuracy of the localization algorithm in static conditions, as
determined by Taddese et al. [14].

The thresholds are presented in Table 3.4.

Linear threshold [m] Angular threshold [°]
0.004 5.00

Table 3.4: Thresholds for the static scenarios.

Three tests of 30 seconds each were carried out for the following static scenarios:

• Stationary situation – No singularity.

• Stationary situation – Singularity plane.

• Coil off – No singularity.

• Coil off – Singularity plane.

• Endoscope outside the workspace.

• Wrong calibration.

50



Real-time Estimation of Localization Correctness

Test name Good Es-
timation

False
Positive

False Nega-
tive

Stationary situation –
No singularity

100.00% 0.00% 0.00%

Stationary situation –
Singularity plane

100.00% 0.00% 0.00%

Coil off – No singular-
ity

76.00% 23.83% 0.17%

Coil off – Singularity
plane

87.87% 11.32% 0.80%

Endoscope outside the
workspace

92.20% 5.40% 2.40%

Wrong calibration 100.00% 0.00% 0.00%

Table 3.5: Results of the validation phase, static scenarios.

Plots of all tests can be found in Appendix A.2.1. The results obtained, con-
cerning good estimation, false positive and false negative, are shown in Table 3.5.

In general, it can be said that the results obtained are good:

1. Stationary situation – No singularity: it was assumed that localization in the
stationary case is good, so obviously a very good result was obtained in this
scenario.

2. Stationary situation – Singularity plane: a very good result was also achieved
in this scenario.

3. Coil off – No singularity: the elevated occurrence of false positives can be
attributed to the position stabilizing towards the end, even though the actual
localization is not accurate. However, this issue is not significantly problematic
for two main reasons. Firstly, the primary objective is to ensure that the
parameters perform effectively during transient phases, considering that in an
operational scenario it is unlikely to stay in a stationary position. Furthermore,
if one inadvertently fails to activate the coil, it can be easily noticed through
alternative means, such as the absence of coil noise.

4. Coil off – Singularity plane: sometimes a good localization is marked when
the coil is off (false positive), but in general the estimation is good.

5. Endoscope outside the workspace: the final part where the endoscope is
put back into the workspace has not been considered, as it is not possible
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to determine exactly what position it is put back into. A good result was
achieved.

6. Wrong calibration: a very good result was achieved in this scenario.

3.4.2 Dynamic scenario
In this scenario, the acceleration of the pose estimated by the localization algorithm
is used as ground truth to define whether the localization is good. If the acceleration
of localization exceeds a certain threshold, it means that the variation is excessive
and localization is not good. However, the actual acceleration of the endoscope
must also be taken into account because if the acceleration of the endoscope is
actually high, it is permissible to have a high acceleration in localization as well.

To determine when localization is not good, it was therefore decided to:

• define a threshold on localization acceleration, above which localization is not
good;

• discard all points where the acceleration of the endoscope is actually high.

To determine the threshold of acceleration:

• it was assumed that in the stationary case (good localization) accelerations
are below the threshold;

• the accelerations in different stationary cases were calculated;

• a threshold value four times greater than the maximum of the accelerations in
the stationary case was chosen.

The threshold is presented in Table 3.6.

Acceleration threshold [m/s2]
0.40

Table 3.6: Thresholds for the dynamic scenario.

A single 120-second test was carried out for the following dynamic scenario:

• Joystick movement.

The plot of the test can be found in Appendix A.2.2.
The results obtained, concerning good estimation, false positive and false nega-

tive, are shown in Table 3.7.
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Test name Good Es-
timation

False
Positive

False Nega-
tive

Joystick movement 92.48% 0.57% 6.95%

Table 3.7: Results of the validation phase, dynamic scenario.

The result is good. The high number of false negatives is probably due to the
fact that in the joystick movement, bad localization is rarely present for some
blocks of points. Considering that blocks of 15 points are analyzed at a time to
determine whether localization is good, it can happen that points representing
good localization end up in the block where bad localization prevails and are
therefore marked as bad localization (false negatives). Considering, however, that
the percentage of good estimation is over 90%, it can be said that the result
obtained is good.
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3.5 Considerations on the results obtained
Considering that the validation phase yielded good results, it can be concluded
that the identified parameters allow for an accurate determination of whether the
localization is good or not. To obtain a real-time estimation of the localization
correctness, lines of code were implemented within the localization algorithm
that calculate the parameter values and determine, point by point, whether the
localization is good or not. The flowchart of the code is represented in Figure 3.24.

Figure 3.24: Flowchart for the real-time estimation of localization correctness.

As highlighted at the beginning of the chapter, detecting calibration errors
poses a challenge, as there are no visible indicators of localization issues. Hence,
it was decided not only to indicate when the localization is good or not, but also
to specify explicitly, in case of bad localization, whether the issue lies with wrong
calibration. Based on the graphs provided for each scenario, it is evident that
the ESS parameter falls below the threshold of 2500 primarily when a wrong
calibration is present. Therefore, it can be inferred that if the ESS value is below
the threshold, there is a high likelihood that the issue is attributed to wrong
calibration.
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Chapter 4

Unscented Kalman Filter
Algorithm

The decision to utilize the Unscented Kalman Filter algorithm for the development
of a novel localization algorithm has been previously mentioned. For a comprehen-
sive understanding of the theoretical concepts underlying the Unscented Kalman
Filter, please refer to section 2.4. This chapter will delve into the algorithm’s
implementation details and present the achieved outcomes.

4.1 State variables and covariance matrices
The pose of the endoscope tip is univocally determined by a 3× 1 position vector
and three Euler Angles, calculated with respect to the world reference system.
Concerning the state, taking into account that the Mahoney filter estimates the
roll and pitch, the localization algorithm employs a state vector with dimensions of
4× 1:

x =


px

py

pz

ψ

 ∈ R4×1, (4.1)

where px, py, pz represent the 3 × 1 position vector, while ψ represents the yaw.
N = 4 denotes the dimension of the state-space model.

In the context of the Unscented Kalman Filter, each variable is considered as a
Gaussian process, characterized by a mean value and a covariance (or standard
deviation). Some covariance matrices were then determined, and the selection of
the values associated with the matrices has been based on empirical observations
through a trial and error process. It is important to note that higher covariance
indicates greater uncertainties associated with the respective variable.
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• Initial Process Covariance Matrix: P0 = diag([0.1, 0.1, 0.1, 0.1]) ∈ R4×4. This
matrix provides insights into the initial uncertainty between the actual states
and the estimated ones.

• Process Disturbance Covariance Matrix: P = diag([0.00015, 0.00015,
0.00015, 0.01]) ∈ R4×4. It provides crucial information regarding the uncer-
tainty impacting the propagation of the states.

• Measurements Covariance Matrix: Q = diag([0.00001, 0.00001, 0.00001,
0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001,
0.00001, ]) ∈ R12×12. The diagonal elements of this matrix convey valuable
information regarding the uncertainties associated with the acquired measure-
ments. These values are dependent on factors such as sensor noise and the
mathematical computations employed to obtain the measurements.

4.2 Process model
Using a process model that integrates actuation control inputs has been recognized
as a means to achieve superior state estimation. However, in specific applications like
magnetically actuated capsule endoscopy, the actual motion of the tracked object
can vary significantly from the intended motion due to various environmental factors
(such as the capsule getting stuck in a tissue fold or peristalsis). Consequently,
constructing an accurate motion model becomes challenging in such scenarios (see
Figure 4.1).

Figure 4.1: Environmental factors, such as tissue folds, can cause different
actuation responses from the capsule despite applying the same EPM displacement
[5].

For this reason, it was decided to use the random walk process model, considering
that Taddese et al. have demonstrated that it is sufficient to localize the endoscope
[14]:
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fk(xi
k−1,vi

k−1) = xi
k−1 + vi

k−1, (4.2)

where
vi

k−1 ∼ N (0, P ) (4.3)

is a sample from a normal distribution, and P is the Process Disturbance Covariance
Matrix described above.

4.3 Measurement model
The system uses six single-axis Hall effect sensors positioned in the capsule (see
Figure 4.2) so as to approximate two triaxial sensors. It is used a signal processing
technique to separately measure the magnetic fields from the EPM and the electro-
magnetic coil (for more information on the system, see the paper by Taddese et al.
[14]).

Figure 4.2: The six Hall effect magnetic field sensors and the inertial measurement
unit (IMU) found inside the capsule [14].

Knowing the relative position vector, as
i , of each Hall sensor with respect to the

center of the capsule, the sensor output is calculated by projecting the magnetic
field at each Hall sensor in the direction of the sensor’s normal vector, rs

i :

bs
Ei

= rsT

i Rs
EBE(TE

s (xw
k )as

i ), i = 1,2, ...,6 (4.4)

bs
Ci

= rsT

i Rs
EBC(TE

s (xw
k )as

i ), i = 1,2, ...,6 (4.5)

where TE
s : R3 × S1 → SE(3) is the homogeneous transformation of the capsule’s

frame with respect to the EPM frame given by:

TE
s (xw) = TE

w T
w
s (xw), (4.6)
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where TE
w is the transformation of the world frame with respect to the EPM frame

(see Figure 4.3), which is assumed to be known thanks to the forward kinematics
of the robot manipulator, while Tw

s (xw) is composed of a rotation part, Rz(γ)R̃w
s ,

and a translation part ([xx, xy, xz]).

Figure 4.3: Coordinate frames of the magnetic pose estimation system showing
the global frame (w), the capsule’s sensor frame (s) and the EPM frame (E) [14].

The accuracy of the pose estimate is directly influenced by the selection of a
magnetic field model for BE and BC . It was chosen to use the generalized complete
elliptic integral:

C(kc, p, c, s) =
Ú π/2

0

c cos2φ+ s sin2φ

(cos2φ+ p sin2φ)
ñ
cos2φ+ k2

c sin
2φ

dφ, (4.7)

which can be efficiently solved numerically using the Bulirschs algorithm [27].
Considering an electromagnetic coil with radius a, length 2b, current I and turns
per unit length n, the magnetic field components in cylindrical coordinates (ρ, φ,
z) are [14]:

bρ = Bo[α+C(k + ,1,1,−1)− α−C(k,1,1,1)], (4.8)
bφ = 0, (4.9)

bz = Boa

a+ ρ
[β+C(k+, η2, 1, η)− β−C(k−, η

2,1, η)], (4.10)

where
η = a− ρ

a+ ρ
, (4.11)

Bo = µ0

π
nI, (4.12)

58



Unscented Kalman Filter Algorithm

α± = añ
z2

± + (ρ+ a)2
, (4.13)

k± =

öõõôz2
± + (a− ρ)2

z2
± + (a+ ρ)2 , (4.14)

z± = z ± b. (4.15)

Considering a permanent magnet with the same dimension, the magnetic remanence
is:

Br = µ0nI, (4.16)

and so Bo becomes:

Bo = Br

π
. (4.17)

The measurement model is crucial because, thanks to it, after predicting the state
with the process model, it is possible to calculate the magnetic field values as
sensed by the sensors. By making the difference between the calculated magnetic
field values and those actually sensed by the sensors, it is possible to estimate the
localization error.

4.4 Algorithm explanation
The algorithm is mainly divided into three parts:

1. Initialization: where the state and covariance matrices are initialized.

2. Prediction: where the state is predicted using the process model.

3. Correction: where the predicted state is corrected using the magnetic field
values from the sensors and the magnetic field values calculated using the
measurement model.

4.4.1 Initialization
• For each of the four variables that make up the state, the initial value is

randomly chosen within the workspace.

• The three covariance matrices described earlier are then initialized: Initial
Process Covariance Matrix, Process Disturbance Covariance Matrix, and
Measurements Covariance Matrix.
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4.4.2 Prediction
• As presented in Chapter 2.4, for each state variable, 2N + 1 sigma points

(with N = 4 in our case) are defined, along with their corresponding weights.

• The random walk process model is applied to all sigma points, and using the
previously calculated weights, the predicted state is then computed. Also the
predicted state covariance is calculated.

4.4.3 Correction
• Through the measurement model, the predicted measurement sigma points are

computed. Using the weights associated with the sigma points, the predicted
measurement vector is calculated.

• The predicted measurement covariance and the cross-covariance matrices are
calculated.

• Finally, the state is estimated, taking into account the predicted state and
the difference between the magnetic field values perceived by the sensors and
the predicted measurement vector.

4.5 Test phase
Given that the Particle Filter algorithm has demonstrated excellent performance
under static conditions [14], to evaluate the new localization algorithm, it was
tested under similar static conditions. The obtained values were then compared
with those obtained using the Particle Filter algorithm.

Several tests were carried out. The results of a 120-second test are shown below
(see Figures 4.4 and 4.5).

In terms of position, the mean errors of the UKF with respect to the PF are
depicted in Table 4.1. In general, it can be said that the errors obtained are very

∆x [m] ∆y [m] ∆z [m]
0.004 0.000 0.004

Table 4.1: Mean errors of the UKF with respect to the PF.

low, on the order of a few millimeters. From the graphical analysis (see Figure 4.4),
it is evident that the UKF yields more stable results compared to the PF. However,
it is worth noting that the UKF occasionally converges to a position that deviates
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Figure 4.4: Localization estimation under static conditions; comparison between
PF and UKF for the position.

Figure 4.5: Localization estimation under static conditions; comparison between
PF and UKF for the orientation.

from the PF’s estimate. This behavior could be attributed to the fact that UKF
occasionally settles in local minima during the estimation process.

In terms of orientation, the mean errors of the UKF with respect to the PF are
depicted in Table 4.2. The errors are very small, and this is also clearly visible in
Figure 4.5.
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∆ϕ [°] ∆θ [°] ∆ψ [°]
0.000 0.000 0.772

Table 4.2: Mean errors of the UKF with respect to the PF.

In conclusion, after this initial analysis, it can be said that the main advantage of
the UKF, compared to the PF, is that it gives a more stable result; the disadvantage
is that it sometimes takes longer to find the correct pose and it sometimes gets
stuck in relative minima.

However, considering that, as presented in Chapter 3, parameters have been
defined to indicate in real-time whether the PF is performing well or poorly, in case
the PF is performing well, it is possible to use the result of the PF to guide the
UKF. The UKF algorithm was modified as follows. Before the prediction phase,
it checks whether the PF is performing well. If it is, the algorithm verifies if the
three state variables that define the position, estimated by the UKF, are within
a proximity of the corresponding variables estimated by the PF. If they are not,
they are forced to stay within the proximity of the PF. By doing so, the estimation
obtained from the PF is leveraged to quickly find the estimation of the UKF, which
can be different and potentially even better than that of the PF.

To determine the size of the proximity range around the PF, three tests were
conducted, which are described below.

4.5.1 Determination of proximity range
Three different ranges in which the UKF has to stay, compared to the PF, were
tested, and the results were analyzed.

The first range tested is ±5 mm: the position values estimated by the UKF
must have a maximum distance of 5 mm to the values estimated by the PF; if this
is not the case, the UKF algorithm is forced to stay within the PF’s range. The
mean errors of the UKF with respect to the PF obtained for this case are shown in
Table 4.3, and the trends of the estimated variables are shown in Figures 4.6 and
4.7.

∆x [m] ∆y [m] ∆z [m] ∆ϕ [°] ∆θ [°] ∆ψ [°]
0.003 0.001 0.003 0.000 0.000 2.939

Table 4.3: Mean errors of the UKF with respect to the PF. Proximity range of
±5 mm.
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Figure 4.6: Proximity range of ±5 mm. Comparison between PF and UKF for
the position.

Figure 4.7: Proximity range of ±5 mm. Comparison between PF and UKF for
the orientation.

The second range tested is ±10 mm: the position values estimated by the UKF
must have a maximum distance of 10 mm to the values estimated by the PF; if this
is not the case, the UKF algorithm is forced to stay within the PF’s range. The
mean errors of the UKF with respect to the PF obtained for this case are shown in
Table 4.4, and the trends of the estimated variables are shown in Figures 4.8 and
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4.9.

∆x [m] ∆y [m] ∆z [m] ∆ϕ [°] ∆θ [°] ∆ψ [°]
0.003 0.001 0.003 0.000 0.000 3.741

Table 4.4: Mean errors of the UKF with respect to the PF. Proximity range of
±10 mm.

Figure 4.8: Proximity range of ±10 mm. Comparison between PF and UKF for
the position.

The third range tested is ±15 mm: the position values estimated by the UKF
must have a maximum distance of 15 mm to the values estimated by the PF; if this
is not the case, the UKF algorithm is forced to stay within the PF’s range. The
mean errors of the UKF with respect to the PF obtained for this case are shown in
Table 4.5, and the trends of the estimated variables are shown in Figures 4.10 and
4.11.

∆x [m] ∆y [m] ∆z [m] ∆ϕ [°] ∆θ [°] ∆ψ [°]
0.003 0.001 0.003 0.083 0.057 0.576

Table 4.5: Mean errors of the UKF with respect to the PF. Proximity range of
±15 mm.

With regard to the mean errors in the tables, the results obtained in the three
cases are very similar. Regarding the trend of the estimated variables, it can be
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Figure 4.9: Proximity range of ±10 mm. Comparison between PF and UKF for
the orientation.

Figure 4.10: Proximity range of ±15 mm. Comparison between PF and UKF for
the position.

stated that the greater the range, the greater the risk of having unstable situations
for the UKF: the variable estimated by the UKF tends to move out of the range
of the PF continually. This can be seen very well for the x position of the third
case (see Figure 4.10). For this reason, the range ±15 mm is discarded. To decide
which of the other two ranges is the best, the results obtained for PF by Taddese
et al. [14] are used: it is true that most of the errors obtained for PF are less than
5 mm (which is why the ±5 mm range was also tested), but there are cases where
the error was greater than 5 mm (but still less than 10 mm). Therefore, in order
to avoid that the range within which the UKF has to stay, in relation to the PF, is
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Figure 4.11: Proximity range of ±15 mm. Comparison between PF and UKF for
the orientation.

less than the error of the PF, the range ±10 mm was chosen.

4.6 Validation phase
The following experiment was carried out to validate the new localization algorithm
(see Figure 4.12). The endoscope was fixed at a known position (our ground truth)
by means of a mount. In this way, the EPM can move around the endoscope
without changing its position. For each test, six positions were identified to place
the EPM. For each position, the mean error of the estimated position relative to
the ground truth and its standard deviation were calculated.

Considering that the localization algorithm is validated when the endoscope is
in a fixed position, the tests that are performed are static. However, taking into
account that under operational conditions the endoscope moves at very low speed,
it is possible to approximate the operational situation as a sum of stationary points.
For this reason, it is possible to validate the algorithm using a static test.

In all tests performed, the position of the endoscope is as presented in Table 4.6.
This position, and all those presented later, are positions with respect to the global
reference system (see Figure 2.12).

4.6.1 First test
As mentioned above, the EPM was placed in six different locations. The positions
of the EPM, in the global reference system, can be found in Table 4.7, while their
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Figure 4.12: Set-up of the validation experiment.

x [m] y [m] z [m]
0.650 -0.333 0.092

Table 4.6: Endoscope position (ground truth).

graphic representation, with respect to the position of the endoscope, can be found
in Figure 4.13.

EPM position number x [m] y [m] z [m]
1 0.573 -0.243 0.218
2 0.648 -0.243 0.218
3 0.722 -0.243 0.218
4 0.722 -0.267 0.208
5 0.648 -0.267 0.208
6 0.573 -0.267 0.208

Table 4.7: EPM position, first test.

67



Unscented Kalman Filter Algorithm

Figure 4.13: Positions of the endoscope and of the EPM, first test.

The mean error and its standard deviation between the estimation given by
the PF and the UKF with respect to ground truth were calculated. The results
obtained for each EPM position are shown in Tables 4.8 and 4.9.

EPM position number ∆x [mm] ∆y [mm] ∆z [mm]
1 1.53± 0.07 3.11± 0.13 1.28± 0.11
2 6.21± 0.06 2.54± 0.05 1.20± 0.06
3 8.80± 0.06 5.38± 0.14 4.40± 0.08
4 2.92± 0.20 6.97± 0.29 3.32± 0.18
5 4.09± 0.20 2.09± 0.04 4.37± 0.03
6 3.71± 0.11 5.35± 0.24 0.15± 0.10

Table 4.8: First test results for PF.

The average of the results obtained at the six points for the two algorithms is
shown in Tables 4.10 and 4.11.

To better visualize the errors, the graph in Figure 4.14 was created. The results
obtained with the UKF algorithm are comparable with those of the PF. Considering
that the PF algorithm used is now employed by the company that implemented it
to perform colonoscopy experiments on humans, and considering that the errors of
the UKF are comparable with those of the PF, it can be concluded that the results
obtained with the new localization algorithm (UKF) are excellent. In general, it
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EPM position number ∆x [mm] ∆y [mm] ∆z [mm]
1 5.12± 0.67 3.54± 2.01 9.33± 2.06
2 0.70± 0.01 0.29± 0.19 6.73± 2.00
3 4.32± 2.73 11.63± 3.03 1.16± 0.88
4 2.27± 1.72 13.13± 2.20 7.85± 3.06
5 5.43± 0.15 0.12± 0.02 1.81± 0.04
6 3.87± 0.22 14.72± 0.91 4.11± 0.23

Table 4.9: First test results for UKF.

∆x [mm] ∆y [mm] ∆z [mm]
4.54± 0.12 4.24± 0.15 2.45± 0.09

Table 4.10: Overall results of the first test, for the PF.

∆x [mm] ∆y [mm] ∆z [mm]
3.62± 0.92 7.24± 1.39 5.17± 1.38

Table 4.11: Overall results of the first test, for the UKF.

can be said that the PF algorithm performed slightly better than the UKF, as is
clear from the Figure 4.14.

The results obtained for PF are in line with those obtained by Taddese et al.
[14]. The slight difference is due to the following reasons:

• the system used to perform the experiment is slightly different;

• the type of experiment is different, as in Taddese’s experiment a second
manipulator robot is used to hold the endoscopic capsule in a fixed position;

• in Taddese’s experiment, the second robot is also used to precisely calculate
the position of the endoscope (ground truth). In the validation experiment
presented in this chapter, the ground truth was calculated manually and is
therefore affected by a small uncertainty.

4.6.2 Second test
A second test was carried out to evaluate the performance of the new algorithm in
the case of the endoscope being in the singularity plane of the EPM. The EPM was
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Figure 4.14: Error plot, first test.

then placed in six different points, and in each position its singularity plane passed
through the endoscope. The positions of the EPM, in the global reference system,
can be found in Table 4.12, while their graphic representation, with respect to the
position of the endoscope, can be found in Figure 4.15.

EPM position number x [m] y [m] z [m]
1 0.650 -0.333 0.207
2 0.650 -0.333 0.230
3 0.650 -0.333 0.253
4 0.650 -0.279 0.253
5 0.650 -0.279 0.230
6 0.650 -0.279 0.207

Table 4.12: EPM position, second test.

The mean error and its standard deviation between the estimation given by
the PF and the UKF with respect to ground truth were calculated. The results
obtained for each EPM position are shown in Tables 4.13 and 4.14.

The average of the results obtained at the six points for the two algorithms is
shown in Tables 4.15 and 4.16.

To better visualize the errors, the graph in Figure 4.16 was created. The results
obtained with the UKF algorithm are comparable with those of the PF. Again, the
PF algorithm performed slightly better than the UKF.
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Figure 4.15: Positions of the endoscope and of the EPM, second test.

EPM position number ∆x [mm] ∆y [mm] ∆z [mm]
1 32.65± 1.67 2.34± 0.02 1.93± 0.46
2 26.38± 1.99 2.02± 0.03 0.37± 0.30
3 20.77± 1.32 1.78± 0.03 0.53± 0.16
4 8.78± 0.55 0.04± 0.03 5.10± 0.08
5 8.84± 0.61 0.31± 0.04 5.33± 0.06
6 11.74± 0.86 0.10± 0.07 5.44± 0.09

Table 4.13: Second test results for PF.

EPM position number ∆x [mm] ∆y [mm] ∆z [mm]
1 34.22± 3.31 2.36± 0.03 10.86± 2.44
2 34.43± 3.70 2.33± 0.01 8.38± 0.50
3 24.47± 3.17 1.92± 0.03 7.95± 2.57
4 13.73± 2.95 3.51± 0.40 3.16± 2.12
5 13.01± 3.03 3.55± 0.44 3.34± 1.39
6 8.86± 0.18 1.97± 0.01 2.34± 0.04

Table 4.14: Second test results for UKF.
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∆x [mm] ∆y [mm] ∆z [mm]
18.19± 1.17 1.10± 0.04 3.12± 0.19

Table 4.15: Overall results of the second test, for the PF.

∆x [mm] ∆y [mm] ∆z [mm]
21.45± 2.72 2.61± 0.15 6.01± 1.51

Table 4.16: Overall results of the second test, for the UKF.

As expected, the error is increased compared to the previous test: along the x-
direction, the error is about 2 cm for both algorithms. As demonstrated by Taddese
et al. [14], from a theoretical point of view, the presence of the coil allows regions of
singularity to be eliminated. In fact, by integrating an electromagnetic coil into the
system that generates a weak time-varying magnetic field, and connecting it to the
EPM such that their dipole moments are orthogonal, the two magnetic fields can
be used simultaneously to obtain an additional set of equations that permit solving
for the position and yaw angle of the capsule. Taddese et al. [14] have achieved
excellent results even when the endoscope is in the plane of singularity of the
EPM. The problem is that, in our case, the system used is different. Furthermore,
uncertainties in the components used (magnets, sensors, magnetic field model, ...)
make the real system different from the ideal one. All these factors influence the
error. Finally, it must be remembered, as mentioned above, that the experiment
performed is different. It can therefore be concluded that the high error in the
x-direction, when the endoscope is in the singularity plane of the EPM, is due to
the limitations of the system.

4.6.3 Consideration regarding orientation
Considering the type of testing done in the validation phase, it was not possible to
calculate the error associated with the orientation estimation, as it was not possible
to have a ground truth for the orientation. However, the error of the orientation
estimated by the UKF versus that of the PF was calculated and the results (mean
error and standard deviation) for all tests shown above are in Table 4.17.

Considering that the difference in the orientation estimation between the two
algorithms is very small, it is possible to assume as results for the orientation of
the UKF those obtained by Taddese et al. [14] for the PF.
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Figure 4.16: Error plot, second test.

∆ϕ [°] ∆θ [°] ∆ψ [°]
0.00± 0.00 0.00± 0.00 4.11± 0.81

Table 4.17: UKF versus PF orientation error.
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Chapter 5

Overall Localization
Algorithm

As elaborated in the preceding chapter, the new localization algorithm (UKF) has
demonstrated outcomes on par with the previous algorithm (PF). This implies
that with the MFE system, the lower limit for localization error has probably
been reached. The limit is therefore caused by the system itself and not by the
localization algorithm.

The concluding phase of this project involves the fusion of the two developed
algorithms, strategically extracting the strengths of each, in pursuit of a unified
localization algorithm. This chapter will elucidate the process of merging the two
algorithms and present the outcomes obtained during the validation experiment.

5.1 Combination of the two algorithms
As seen in the previous chapter, the results of the two algorithms are comparable,
but in general the PF obtained slightly lower errors than the UKF. For this reason,
the PF was used as the basis of the overall localization algorithm.

The UKF estimate is only used when the UKF gives better results than the PF.
In general, when analyzing the performance of the variables estimated by the UKF,
it was noted that the UKF gives excellent results, even better than the PF, when:

• is stable, i.e. when it is not continuously forced to be around the PF;

• the value of the estimated variable is close to that of the variable estimated
by the PF, i.e., when the distance is less than or equal to 6 mm.

These two points are evident in Figures 5.1 and 5.2, which show the estimation
of one of the state variables by the PF (blue line), the UKF (green line) versus
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ground truth (red line). From the figures, it can be seen that in these cases, the
UKF’s estimate is close to that of the PF, is very stable and in fact its error with
respect to ground truth is lower than that of the PF.

Figure 5.1: Position estimation along the z-direction; comparison between PF
and UKF algorithms.

Both PF and UKF are therefore present in the overall localization algorithm.
Both filters estimate the state, but, in general, the state estimated by the PF is
used as the final state in the overall algorithm. However, if the UKF is stable
and gives a result close to that of the PF (difference less than or equal to 6 mm),
the state estimated by the UKF is used. From a practical point of view, in order
to assess whether the estimate of the UKF is stable, a counter is implemented
that decreases if the state variable under consideration is not forced to be in the
proximity of the corresponding state variable of the PF. If this happens for a certain
period of time, the counter goes below a certain threshold, and this means that
the estimated variable is stable.

The code and the full explanation of the UKF localization algorithm implemented
within the PF algorithm, including the choice of which of the two estimated states
to use, can be found in Appendix B.

5.2 Validation experiment
The same validation experiment as in the previous chapter was carried out for the
overall localization algorithm. The endoscope was fixed at a known position (our
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Figure 5.2: Position estimation along the y-direction; comparison between PF
and UKF algorithms.

ground truth) by means of a mount. Six positions were identified to place the EPM.
For each position, the mean error of the estimated position relative to the ground
truth and its standard deviation were calculated. The position of the endoscope in
the global reference system is as presented in Table 5.1.

x [m] y [m] z [m]
0.650 -0.333 0.092

Table 5.1: Endoscope position (ground truth).

The positions of the EPM in the global reference system are the same as in
the first test of the previous chapter and can be found in Table 5.2, while their
graphic representation, with respect to the position of the endoscope, can be found
in Figure 5.3.

The mean error and its standard deviation of the estimation given by the overall
algorithm with respect to ground truth were calculated. The results obtained for
each EPM position are shown in Table 5.3.

The average of the results obtained in the six points by the overall algorithm is
presented in Table 5.4 and is compared with the results obtained by the PF in the
first test of the previous chapter.
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EPM position number x [m] y [m] z [m]
1 0.573 -0.243 0.218
2 0.648 -0.243 0.218
3 0.722 -0.243 0.218
4 0.722 -0.267 0.208
5 0.648 -0.267 0.208
6 0.573 -0.267 0.208

Table 5.2: EPM position, validation experiment.

Figure 5.3: Positions of the endoscope and of the EPM, validation experiment.

EPM position number ∆x [mm] ∆y [mm] ∆z [mm]
1 0.47± 0.55 3.97± 0.31 3.45± 0.22
2 2.03± 0.70 1.00± 1.66 4.42± 0.04
3 1.03± 0.57 4.13± 1.39 0.27± 0.16
4 1.53± 0.20 0.61± 0.16 0.21± 0.13
5 6.81± 0.10 4.88± 0.01 1.35± 0.03
6 7.11± 0.72 1.97± 0.26 5.22± 0.59

Table 5.3: Validation experiment results.
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Algorithm type ∆x [mm] ∆y [mm] ∆z [mm]
Overall algorithm 3.16± 0.47 2.76± 0.63 2.49± 0.20

PF (first test, previous chapter) 4.54± 0.12 4.24± 0.15 2.45± 0.09

Table 5.4: Comparison of the results obtained from the overall algorithm and
from the PF algorithm.

To better visualize the errors, the graph in Figure 5.4 was created. As is clear
from both the figure and the table, the overall algorithm’s results exhibit a slight
improvement over those obtained with the PF alone. This leads to the conclusion
that by harnessing the combined capabilities of both the PF and the UKF, it
becomes feasible to enhance the localization beyond what can be achieved solely
with the PF.

Figure 5.4: Error plot, comparison of the results obtained from the overall
algorithm and from the PF algorithm.
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Chapter 6

Future Works and
Conclusion

6.1 Future works
Given that the errors resulting from both localization algorithms, PF and UKF, are
comparable, it is possible to state that the lower limit of error has been attained
and is fundamentally contingent on the system’s intrinsic characteristics.

In pursuit of refining localization, any attempts to achieve further enhance-
ments would necessitate altering the system. Two prospective avenues for future
development are as follows:

1. changing the position of the coil;

2. using an external magnetic sensor array.

Regarding the position of the coil, it could be considered to put the coil in a
fixed position (e.g., on the robot cart). The main benefits of this development are
the following two:

• no power is brought into the robot, and it also avoids putting electronics in
the robot;

• there is no permanent magnet inside the coil and, therefore, no noise.

As a secondary consequence, the end effector is much simpler and can be disas-
sembled more easily. This solution would therefore certainly improve the product.
However, it would need to be assessed how the localization changes. In the solution
of Taddese et al. [14], the magnetic fields of the coil and of the EPM are always
orthogonal, and this allows the solution of problems in the singularity plane of the
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EPM. If, on the other hand, the coil is in a fixed position, it is possible for the
two magnetic fields to align, and, if this happens in the singularity plane of the
EPM, the number of equations to solve the inverse problem is reduced, and thus
the singularity problem persists. In order to implement this proposal, it is first
necessary to assess how the accuracy of localization changes with the new system
and eventually make changes to the localization algorithm.

The use of an external magnetic sensor array will be explained in detail in the
next section.

6.1.1 Localization using an external magnetic sensor array
Li et al. [28] present a groundbreaking localization approach for active capsule
endoscopy, which uniquely merges external magnetic field sensing and internal
inertial sensing. This innovative combination enables the accurate 6-DOF pose
estimation of a magnetic capsule robot for the first time. The method integrates an
inertial measurement unit within the capsule, coupled with an external magnetic
sensor array, to achieve precise and real-time localization without the need for
complex capsule structures, actuator modifications, or the implementation of
specific motions of the magnets. Consequently, this technique facilitates accurate
and efficient capsule localization within a vast workspace.

Figure 6.1 shows the solution implemented by Li et al. [28]. The procedure begins
with the patient swallowing a capsule, followed by positioning on an examination
bed that features a large sensor array. Adjacent to the bed, a robotic arm equipped
with an actuator, comprising a motor and a spherical magnet, is employed. This
actuator rotates over the capsule, which houses a magnetic ring for propelling it
using an adaptive strategy. Simultaneously, real-time tracking of the capsule is
achieved through an optimally activated subarray of sensors.

Figure 6.1: Overall design of the system implemented by Li et al. [28] and its
application scenario [29].

The sensor array, shown in Figure 6.2, makes it possible to calculate the magnetic
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field, which is the sum of the magnetic field of the capsule, of the actuator, and
of the Earth. Thus, by subtracting the actuator and Earth magnetic field from
the total magnetic field, the magnetic field of the capsule can be found. At this
point, the difference between the capsule’s measured and theoretical magnetic fields
can be minimized to find the position and yaw angle. To uniquely determine the
position of the capsule, at least two sensors are needed, as shown in Figure 6.2.b.

Figure 6.2: (a) Illustration of the localization model. (b) Illustration of the
singularity of position estimation [28].

This solution could lead to an improvement in localization. The main problem is
that for this development, the MFE system would have to be changed considerably,
and therefore a lot of time is required for its implementation.

6.2 Conclusion
Colorectal cancer stands as a significant global health concern, ranking as the third
most prevalent malignancy and the second most deadly cancer. Early detection of
cancer plays a pivotal role in improving the chances of survival, and colonoscopy
stands as one of the most prevalent screening procedures. The STORM Lab team
developed an innovative Magnetic Flexible Endoscopy system, that play a crucial
role in clinical investigations and research studies pertaining to the navigation
and examination of the human colon, specifically in the context of colonoscopy.
Accurate estimation of the capsule’s pose is crucial for magnetic actuation systems
to effectively apply the required forces and torques. For this reason, a localization
algorithm (Particle Filter algorithm) was implemented by STORM Lab.

In this work, two parameters, ESS and WD, were developed and combined
in order to determine the real-time accuracy of the localization algorithm. This
investigation was carried out for the following reasons: drift phenomena rarely
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occur; calibration errors may happen; the PF algorithm lacks elements to determine
whether the estimate made is accurate. The combination of the two parameters
was tested in seven different scenarios, and the results obtained in the validation
phase make it possible to state that the accuracy of localization can be determined
in real-time using these parameters. Subsequently, a novel localization algorithm
was developed using the Unscented Kalman Filter. The outcomes yielded by
this algorithm are comparable with those obtained using the PF algorithm. In
a strategic fusion, the UKF and PF algorithms were integrated to harness the
strengths of each, culminating in final errors that are lower than those arising
from the PF algorithm alone. This leads to the conclusion that by harnessing the
combined capabilities of both the PF and the UKF, it becomes feasible to enhance
the localization beyond what can be achieved solely with the PF.
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Appendix A

Real-time Estimation of
Localization Correctness

A.1 Test phase

A.1.1 Threshold evaluation
After identifying different thresholds for each indicator, the points exceeding the
threshold for each scenario are calculated. The results are depicted in the following
figures. The total number of points for a test is about 530/600.

Figure A.1: Results for the ESS parameter.
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Figure A.2: Results for the WD parameter.

Figure A.3: Results for the WD2 parameter.
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A.1.2 Single-point analysis
Below are depicted the plots of the two indicators for the tests not shown above.

Figure A.4: Stationary situation – No singularity: ESS and WD parameters,
test 2.

Figure A.5: Stationary situation – No singularity: ESS and WD parameters,
test 3.
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Figure A.6: Stationary situation – Singularity plane: ESS and WD parameters,
test 2.

Figure A.7: Stationary situation – Singularity plane: ESS and WD parameters,
test 3.

Figure A.8: Coil off – No singularity: ESS and WD parameters, test 2.
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Figure A.9: Coil off – No singularity: ESS and WD parameters, test 3.

Figure A.10: Coil off – Singularity plane: ESS and WD parameters, test 2.

Figure A.11: Coil off – Singularity plane: ESS and WD parameters, test 3.
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Figure A.12: Endoscope outside the workspace: ESS and WD parameters, test
1.

Figure A.13: Endoscope outside the workspace: ESS and WD parameters, test
2.

Figure A.14: Joystick movement: ESS and WD parameters, test 2.
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Figure A.15: Joystick movement: ESS and WD parameters, test 3.

Figure A.16: Wrong calibration: ESS and WD parameters, test 1.

Figure A.17: Wrong calibration: ESS and WD parameters, test 2.
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A.1.3 Low-pass filter analysis
Below are depicted the plots of the two indicators for the tests not shown above.

Figure A.18: Stationary situation – No singularity: ESS and WD parameters,
test 2.

Figure A.19: Stationary situation – No singularity: ESS and WD parameters,
test 3.
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Figure A.20: Stationary situation – Singularity plane: ESS and WD parameters,
test 2.

Figure A.21: Stationary situation – Singularity plane: ESS and WD parameters,
test 3.

Figure A.22: Coil off – No singularity: ESS and WD parameters, test 2.
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Figure A.23: Coil off – No singularity: ESS and WD parameters, test 3.

Figure A.24: Coil off – Singularity plane: ESS and WD parameters, test 2.

Figure A.25: Coil off – Singularity plane: ESS and WD parameters, test 3.
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Figure A.26: Endoscope outside the workspace: ESS and WD parameters, test
1.

Figure A.27: Endoscope outside the workspace: ESS and WD parameters, test
2.

Figure A.28: Joystick movement: ESS and WD parameters, test 2.
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Figure A.29: Joystick movement: ESS and WD parameters, test 3.

Figure A.30: Wrong calibration: ESS and WD parameters, test 1.

Figure A.31: Wrong calibration: ESS and WD parameters, test 2.
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A.1.4 Analysis of sets of points (without filter)
Below are depicted the plots of the two indicators for the tests not shown above.

Figure A.32: Stationary situation – No singularity: ESS and WD parameters,
test 2.

Figure A.33: Stationary situation – No singularity: ESS and WD parameters,
test 3.

99



Real-time Estimation of Localization Correctness

Figure A.34: Stationary situation – Singularity plane: ESS and WD parameters,
test 2.

Figure A.35: Stationary situation – Singularity plane: ESS and WD parameters,
test 3.

Figure A.36: Coil off – No singularity: ESS and WD parameters, test 2.
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Figure A.37: Coil off – No singularity: ESS and WD parameters, test 3.

Figure A.38: Coil off – Singularity plane: ESS and WD parameters, test 2.

Figure A.39: Coil off – Singularity plane: ESS and WD parameters, test 3.
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Figure A.40: Endoscope outside the workspace: ESS and WD parameters, test
1.

Figure A.41: Endoscope outside the workspace: ESS and WD parameters, test
2.

Figure A.42: Joystick movement: ESS and WD parameters, test 2.

102



Real-time Estimation of Localization Correctness

Figure A.43: Joystick movement: ESS and WD parameters, test 3.

Figure A.44: Wrong calibration: ESS and WD parameters, test 1.

Figure A.45: Wrong calibration: ESS and WD parameters, test 2.
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A.2 Validation phase
A.2.1 Static scenarios
All plots of the validation phase for static scenarios are presented below.

Figure A.46: Stationary situation – No singularity: ESS and WD parameters.

Figure A.47: Stationary situation – Singularity plane: ESS and WD parameters.
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Figure A.48: Coil off – No singularity: ESS and WD parameters.

Figure A.49: Coil off – Singularity plane: ESS and WD parameters.
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Figure A.50: Endoscope outside the workspace: ESS and WD parameters.

Figure A.51: Wrong calibration: ESS and WD parameters.
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A.2.2 Dynamic scenario
The plot of the validation phase for the dynamic scenario is presented below.

Figure A.52: Joystick movement: ESS and WD parameters.
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Appendix B

Explanation of the Code

The implemented code is presented and explained below. The code presented is
located within a function in the PF algorithm.

1 // Est imation o f l o c a l i z a t i o n c o r r e c t n e s s v ia parameters
2 long double pa r t i c l e_we ight s [N] , partic le_weights_norm [N ] ;
3 long double weights_sum = 0 , norm_weights_squared_sum=0, ESS ;
4 s t a t i c long double ESS_old = 5000 ;
5

6 f o r ( i n t i = 0 ; i < N; i++) {
7 par t i c l e_we igh t s [ i ] = sampler_−>GetPart ic leWeight ( i ) ;
8 weights_sum += par t i c l e_we ight s [ i ] ;
9 }

10

11 f o r ( i n t i = 0 ; i < N; i++) {
12 partic le_weights_norm [ i ] = par t i c l e_we igh t s [ i ] / weights_sum ;
13 norm_weights_squared_sum += partic le_weights_norm [ i ] ∗

partic le_weights_norm [ i ] ;
14 }
15

16 ESS = 1 .0 / norm_weights_squared_sum ;
17 ro s : : NodeHandle nh ;
18

19 i n t ESS_increase ;
20 s t a t i c i n t block_counter = 0 , bad_counter = 0 , f l a g = 0 ,

bad_loca l i z a t i on = 0 ;
21 block_counter += 1 ;
22

23 i f ( f l a g == 0) { // The check i s only done i f the f l a g i s 0 ( not
in a bad l o c a l i z a t i o n block )

24 ESS_increase = abs (ESS − ESS_old ) ;
25 i f (ESS <= 2500 | | ESS >= 9000 | | ESS_increase >= 600 | |

we ighted_dists >= 0 .018 ) {
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26 bad_counter += 1 ;
27 }
28

29 i f ( bad_counter >= 7) { // When at l e a s t 7 bad l o c a l i z a t i o n
po in t s −> bad l o c a l i z a t i o n block −> f l a g 1

30 bad_loca l i z a t i on = 10000 ;
31 f l a g = 1 ;
32 }
33 }
34

35 i f ( f l a g == 1) {
36 i f (ESS <= 2500) { // In t h i s case , the problem i s probably the

wrong c a l i b r a t i o n o f the endoscope
37 ROS_WARN_STREAM( "Bad l o c a l i z a t i o n . The problem i s probably an

i n c o r r e c t c a l i b r a t i o n o f the endoscope . " ) ;
38 }
39 }
40

41 ESS_old = ESS ;
42

43 i f ( block_counter == 15) { // At the end o f the 15−po int block :
s t a r t again from 0

44 block_counter = 0 ;
45 bad_counter = 0 ;
46 bad_loca l i z a t i on = 0 ;
47 f l a g = 0 ;
48 }
49

50 BL_pub_ = nh . adve r t i s e <std_msgs : : Float64 >(" Bad_Local izat ion " , 10) ;
51 std_msgs : : Float64 BLValue ;
52 BLValue . data = bad_loca l i z a t i on ;
53 BL_pub_. pub l i sh ( BLValue ) ;
54

55 ESS_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("ESS" , 10) ;
56 std_msgs : : Float64 ESSValue ;
57 ESSValue . data = ESS ;
58 ESS_pub_ . pub l i sh ( ESSValue ) ;
59

60 WD_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("WD" , 10) ;
61 std_msgs : : Float64 WDValue ;
62 WDValue . data = weighted_dists ;
63 WD_pub_. pub l i sh (WDValue) ;
64 // End o f e s t imat i on
65

66 // Unscented Kalman F i l t e r (UKF)
67 s t a t i c Eigen : : Matrix<double , 4 , 1> prevState = Eigen : : Matrix<double

, 4 , 1 >:: Zero ( ) ;
68 s t a t i c bool i s I n i t i a l i z e d = f a l s e ;
69
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70 // Def ine the s t a t e covar iance matrix
71 s t a t i c StateCovar ianceMatr ix s tateCovar iance ;
72

73 i f ( ! i s I n i t i a l i z e d ) {
74 smc : : rng∗ prng ;
75 prng = new smc : : rng ( ) ;
76 prevState [ 0 ] = prng−>Uniform (
77 workspace_pos_ . x ( )−workspace_scale_ . x ( ) /2 ,
78 workspace_pos_ . x ( )+workspace_scale_ . x ( ) /2) ;
79 prevState [ 1 ] = prng−>Uniform (
80 workspace_pos_ . y ( )−workspace_scale_ . y ( ) /2 ,
81 workspace_pos_ . y ( )+workspace_scale_ . y ( ) /2) ;
82 prevState [ 2 ] = prng−>Uniform (
83 workspace_pos_ . z ( )−workspace_scale_ . z ( ) /2 ,
84 workspace_pos_ . z ( )+workspace_scale_ . z ( ) /2) ;
85 prevState [ 3 ] = prng−>Uniform(−M_PI, M_PI) ;
86 d e l e t e prng ;
87

88 s ta teCovar iance . d iagona l ( ) << 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ;
89

90 i s I n i t i a l i z e d = true ;
91 }
92

93 // Def ine the measurement no i s e covar iance matrix
94 MeasurementNoiseCovarianceMatrix measurementNoiseCovariance ;
95 measurementNoiseCovariance . s e t I d e n t i t y ( ) ;
96 measurementNoiseCovariance ∗= 0 .00001 ;
97

98 // Def ine the proce s s no i s e covar iance matrix
99 ProcessNoiseCovar ianceMatr ix proces sNo i seCovar iance ;

100 proces sNo i seCovar iance . s e tZero ( ) ;
101 proces sNo i seCovar iance . d iagona l ( ) << 0.00015 , 0 .00015 , 0 .00015 ,

0 . 0 1 ;
102

103 // Def ine the number o f sigma po in t s
104 const i n t numSigmaPoints = 2 ∗ prevState . rows ( ) + 1 ;
105

106 // Def ine the sigma po in t s matrix
107 SigmaPointsMatrix s igmaPoints = SigmaPointsMatrix : : Zero ( ) ;
108

109 // Def ine the weights vec to r
110 WeightsVector weights = WeightsVector : : Zero ( ) ;
111

112 // Check the e r r o r with r e s p e c t to PF
113 s t a t i c i n t x_counter = 100 , y_counter = 100 , z_counter = 100 ;
114

115 i f ( bad_loca l i z a t i on == 0) { // Only check i f the PF
l o c a l i z a t i o n i s good
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116 i f (x_ [ 0 ] − prevState [ 0 ] > 0 .01 | | x_ [ 0 ] − prevState [ 0 ] < −0.01)
{

117 prevState [ 0 ] = x_ [ 0 ] ;
118 x_counter = 100 ;
119 }
120 i f (x_ [ 0 ] − prevState [ 0 ] <= 0.01 && x_ [ 0 ] − prevState [ 0 ] >=

−0.01) {
121 x_counter −= 1 ;
122 }
123 i f (x_ [ 1 ] − prevState [ 1 ] > 0 .01 | | x_ [ 1 ] − prevState [ 1 ] < −0.01)

{
124 prevState [ 1 ] = x_ [ 1 ] ;
125 y_counter = 100 ;
126 }
127 i f (x_ [ 1 ] − prevState [ 1 ] <= 0.01 && x_ [ 1 ] − prevState [ 1 ] >=

−0.01) {
128 y_counter −= 1 ;
129 }
130 i f (x_ [ 2 ] − prevState [ 2 ] > 0 .01 | | x_ [ 2 ] − prevState [ 2 ] < −0.01)

{
131 prevState [ 2 ] = x_ [ 2 ] ;
132 z_counter = 100 ;
133 }
134 i f (x_ [ 2 ] − prevState [ 2 ] <= 0.01 && x_ [ 2 ] − prevState [ 2 ] >=

−0.01) {
135 z_counter −= 1 ;
136 }
137 }
138

139 // Compute the sigma po in t s and weights
140 const double lambda = 3 − prevState . rows ( ) ;
141 const double sqrtLambdaPlusN = std : : s q r t ( lambda + prevState . rows ( ) )

;
142 s igmaPoints . c o l (0 ) = prevState ;
143 weights (0 ) = lambda / ( lambda + prevState . rows ( ) ) ;
144 Matrix<double , 4 , 4> sqrt_P = stateCovar iance . l l t ( ) . matrixL ( ) ;
145 f o r ( i n t i = 0 ; i < prevState . rows ( ) ; i++)
146 {
147 const VectorXd& prevStateVector = prevState ;
148 s igmaPoints . c o l ( i + 1) = prevStateVector + ( sqrtLambdaPlusN ∗

sqrt_P . c o l ( i ) ) ;
149 s igmaPoints . c o l ( i + 1 + prevState . rows ( ) ) = prevStateVector − (

sqrtLambdaPlusN ∗ sqrt_P . c o l ( i ) ) ;
150 weights ( i + 1) = weights ( i + 1 + prevState . rows ( ) ) = 0 .5 / (

lambda + prevState . rows ( ) ) ;
151 }
152

153 // Compute the pred i c t ed sigma po in t s : Random Walk Process Model
154 SigmaPointsMatrix pred ictedSigmaPoints = sigmaPoints ;
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155 bool yaw_correct = f a l s e ;
156 double coil_mean_norm_mT = coil_mean_mT . norm ( ) ;
157 i f ( yaw_correct_config_ )
158 {
159 yaw_correct = true ;
160 }
161

162 i n t in_sing = 0 ;
163 bool pl_use_x_target = f a l s e ;
164 double pcoe f = 1 . 0 ;
165 dt_ = 0 . 0 1 ;
166 smc : : rng∗ prng ;
167 prng = new smc : : rng ( ) ;
168 i f ( yaw_correct )
169 {
170 i f ( coil_mean_norm_mT > 20e−3 && ! cur_obs_ . mfs_coi l10 . hasNaN ( ) )
171 {
172 i f ( ( in_sing != 3) && (epm_var_mT. array ( ) <

yaw_correction_var_threshold ) . a l l ( ) )
173 {
174 i f ( ! pl_use_x_target )
175 {
176 f o r ( i n t i = 0 ; i < 9 ; i++) {
177 pred ictedSigmaPoints . row (3) [ i ] = pcoe f ∗ s igmaPoints . row (3)

[ i ] + prng−>Normal (0 , stdYaw /10000 .0) ;
178 }
179 }
180 e l s e
181 {
182 f o r ( i n t i = 0 ; i < 9 ; i++) {
183 pred ictedSigmaPoints . row (3) [ i ] = pcoe f ∗ s igmaPoints . row (3)

[ i ] + dt_∗( x_target_ [ 3 ] − s igmaPoints . row (3) [ i ] ) + prng−>Normal (0 ,
stdYaw /10000 .0) ;

184 }
185 }
186 }
187 }
188 }
189

190 i f ( ! yaw_correct_config_ )
191 {
192 f o r ( i n t i = 0 ; i < 9 ; i++) {
193 pred ictedSigmaPoints . row (3) [ i ] = last_known_yaw_err_ ;
194 }
195 }
196 double stdxyz = stdXYZ ;
197 f o r ( i n t i = 0 ; i < 3 ; i++)
198 {
199 i f ( ! pl_use_x_target )
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200 {
201 f o r ( i n t j = 0 ; j < 9 ; j++) {
202 pred ictedSigmaPoints . row ( i ) [ j ] = pcoe f ∗ s igmaPoints . row ( i ) [ j ]

+ prng−>Normal (0 , stdxyz /10000 .0) ;
203 }
204 }
205 e l s e
206 {
207 f o r ( i n t j = 0 ; j < 9 ; j++) {
208 pred ictedSigmaPoints . row ( i ) [ j ] = pcoe f ∗ s igmaPoints . row ( i ) [ j ]

+ dt_∗( x_target_ [ i ] − s igmaPoints . row ( i ) [ j ] ) + prng−>Normal (0 ,
stdxyz /10000 .0) ;

209 }
210 }
211 }
212 d e l e t e prng ;
213

214 // Compute the pred i c t ed s t a t e
215 StateVector p r ed i c t edS ta t e = pred ictedSigmaPoints ∗ weights ;
216

217 // Compute the pred i c t ed s t a t e covar iance
218 StateCovar ianceMatr ix pred i c t edStateCovar iance =

proces sNo i seCovar iance ;
219 f o r ( i n t i = 0 ; i < numSigmaPoints ; i++)
220 {
221 const StateVector& sigmaPoint = predictedSigmaPoints . c o l ( i ) ;
222 StateVector d i f f = sigmaPoint − pred i c t edS ta t e ;
223

224 // Perform angle norma l i za t i on to make sure that the ang le yaw i s
with in −Pi and Pi

225 whi le ( d i f f ( 3 ) > M_PI) d i f f ( 3 ) −= 2 . ∗ M_PI;
226 whi le ( d i f f ( 3 ) < −M_PI) d i f f ( 3 ) += 2 . ∗ M_PI;
227

228 pred i c t edStateCovar iance += weights ( i ) ∗ ( d i f f ∗ d i f f . t ranspose ( )
) ;

229 }
230

231 // Compute the pred i c t ed measurement sigma po in t s
232 MeasurementSigmaPointsMatrix predictedMeasurementSigmaPoints =

MeasurementSigmaPointsMatrix : : Zero ( ) ;
233 Vector3d pos ;
234 pos . s e tZero ( ) ;
235 double dyaw = 0 ;
236

237 f o r ( i n t i = 0 ; i < numSigmaPoints ; i++)
238 {
239 const StateVector& pred i c t edSta teVecto r = predictedSigmaPoints .

c o l ( i ) ;
240 pos [ 0 ] = pred i c t edStateVec to r [ 0 ] ;
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241 pos [ 1 ] = pred i c t edStateVec to r [ 1 ] ;
242 pos [ 2 ] = pred i c t edStateVec to r [ 2 ] ;
243 dyaw = pred i c t edSta teVec to r [ 3 ] ;
244

245 Eigen : : Matrix3d Rc = cur_obs_ . R_capsule_world ;
246

247 Aff ine3d T_particle_world ;
248 T_particle_world . t r a n s l a t i o n ( ) = pos + capsule_delta_pos i t ion_ ;
249 T_particle_world . l i n e a r ( ) = AngleAxisd (dyaw , Vector3d : : UnitZ ( ) ) ∗

Rc ;
250 MfsSensor_t calc_epm ;
251 MfsSensor_t c a l c _ c o i l ;
252 ToSensorReading ( T_particle_world , calc_epm , c a l c _ c o i l ) ;
253

254 predictedMeasurementSigmaPoints (0 , i ) = calc_epm (0) ;
255 predictedMeasurementSigmaPoints (1 , i ) = calc_epm (1) ;
256 predictedMeasurementSigmaPoints (2 , i ) = calc_epm (2) ;
257 predictedMeasurementSigmaPoints (3 , i ) = calc_epm (3) ;
258 predictedMeasurementSigmaPoints (4 , i ) = calc_epm (4) ;
259 predictedMeasurementSigmaPoints (5 , i ) = calc_epm (5) ;
260 predictedMeasurementSigmaPoints (6 , i ) = c a l c _ c o i l ( 0 ) ;
261 predictedMeasurementSigmaPoints (7 , i ) = c a l c _ c o i l ( 1 ) ;
262 predictedMeasurementSigmaPoints (8 , i ) = c a l c _ c o i l ( 2 ) ;
263 predictedMeasurementSigmaPoints (9 , i ) = c a l c _ c o i l ( 3 ) ;
264 predictedMeasurementSigmaPoints (10 , i ) = c a l c _ c o i l ( 4 ) ;
265 predictedMeasurementSigmaPoints (11 , i ) = c a l c _ c o i l ( 5 ) ;
266 }
267

268 // Compute the pred i c t ed measurement
269 MeasurementVector predictedMeasurement =

predictedMeasurementSigmaPoints ∗ weights ;
270

271 // Compute the pred i c t ed measurement covar iance
272 MeasurementNoiseCovarianceMatrix predictedMeasurementCovariance =

MeasurementNoiseCovarianceMatrix : : Zero ( ) ;
273 f o r ( i n t i = 0 ; i < numSigmaPoints ; i++)
274 {
275 const MeasurementVector& predictedMeasurementVector =

predictedMeasurementSigmaPoints . c o l ( i ) ;
276 const MeasurementVector& d i f f = predictedMeasurementVector −

predictedMeasurement ;
277 predictedMeasurementCovariance += weights ( i ) ∗ ( d i f f ∗ d i f f .

t ranspose ( ) ) ;
278 }
279 predictedMeasurementCovariance += measurementNoiseCovariance ;
280

281 // Compute the cros s −covar iance matrix
282 Matrix<double , 4 , 12> measurementFunctionJacobian = Matrix<double ,

4 , 12 >:: Zero ( ) ;
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283 f o r ( i n t i = 0 ; i < numSigmaPoints ; i++)
284 {
285 const StateVector& pred i c t edSta teVecto r = predictedSigmaPoints .

c o l ( i ) ;
286 StateVector d i f f = pred i c t edStateVec to r − pred i c t edS ta t e ;
287

288 // Perform angle norma l i za t i on to make sure that the ang le yaw i s
with in −Pi and Pi

289 whi le ( d i f f ( 3 ) > M_PI) d i f f ( 3 ) −= 2 . ∗ M_PI;
290 whi le ( d i f f ( 3 ) < −M_PI) d i f f ( 3 ) += 2 . ∗ M_PI;
291

292 const MeasurementVector& predictedMeasurementVector =
predictedMeasurementSigmaPoints . c o l ( i ) ;

293 const MeasurementVector& measurementDiff =
predictedMeasurementVector − predictedMeasurement ;

294 measurementFunctionJacobian += weights ( i ) ∗ ( d i f f ∗
measurementDiff . t ranspose ( ) ) ;

295 }
296 KalmanGainMatrix kalmanGain = measurementFunctionJacobian ∗

predictedMeasurementCovariance . i n v e r s e ( ) ;
297

298 // Compute the updated s t a t e
299 MeasurementVector measurement = MeasurementVector : : Zero ( ) ;
300 measurement (0 ) = cur_obs_ . mfs_epm (0) ;
301 measurement (1 ) = cur_obs_ . mfs_epm (1) ;
302 measurement (2 ) = cur_obs_ . mfs_epm (2) ;
303 measurement (3 ) = cur_obs_ . mfs_epm (3) ;
304 measurement (4 ) = cur_obs_ . mfs_epm (4) ;
305 measurement (5 ) = cur_obs_ . mfs_epm (5) ;
306 measurement (6 ) = cur_obs_ . mfs_coi l ( 0 ) ;
307 measurement (7 ) = cur_obs_ . mfs_coi l ( 1 ) ;
308 measurement (8 ) = cur_obs_ . mfs_coi l ( 2 ) ;
309 measurement (9 ) = cur_obs_ . mfs_coi l ( 3 ) ;
310 measurement (10) = cur_obs_ . mfs_coi l ( 4 ) ;
311 measurement (11) = cur_obs_ . mfs_coi l ( 5 ) ;
312

313 StateVector nextState = pred i c t edS ta t e + kalmanGain ∗ ( measurement
− predictedMeasurement ) ;

314 prevState = nextState ;
315

316 // Compute the updated s t a t e covar iance
317 s ta teCovar iance = pred i c t edStateCovar iance − kalmanGain ∗

predictedMeasurementCovariance ∗ kalmanGain . t ranspose ( ) ;
318

319 x_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ p o s i t i o n /x " , 10) ;
320 std_msgs : : Float64 xValue ;
321 xValue . data = nextState [ 0 ] ;
322 x_pub_ . pub l i sh ( xValue ) ;
323
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324 y_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ p o s i t i o n /y " , 10) ;
325 std_msgs : : Float64 yValue ;
326 yValue . data = nextState [ 1 ] ;
327 y_pub_ . pub l i sh ( yValue ) ;
328

329 z_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ p o s i t i o n /z " , 10) ;
330 std_msgs : : Float64 zValue ;
331 zValue . data = nextState [ 2 ] ;
332 z_pub_ . pub l i sh ( zValue ) ;
333

334 Eigen : : Quaterniond q ;
335 q = Eigen : : AngleAxisd ( nextState [ 3 ] , Vector3d : : UnitZ ( ) ) ∗ cur_obs_ .

R_capsule_world ;
336 // o r i g i a l l y l o c a l i z a t i o n was c o n s i d e r i n g z p o s i t i v e in d i r e c t i o n

o f view o f the endoscope ,
337 // the new convent ion i s with x p o s i t i v e ( s ee con f luence ) so I am

r o t a t i n g the f i n a l r e s u l t here
338 q = q ∗ Eigen : : AngleAxisd (M_PI/2 , Vector3d : : UnitZ ( ) ) ;
339 q = q ∗ Eigen : : AngleAxisd(−M_PI/2 , Vector3d : : UnitY ( ) ) ;
340

341 qx_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ o r i e n t a t i o n /x " , 10) ;
342 std_msgs : : Float64 qxValue ;
343 qxValue . data = q . x ( ) ;
344 qx_pub_ . pub l i sh ( qxValue ) ;
345

346 qy_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ o r i e n t a t i o n /y " , 10) ;
347 std_msgs : : Float64 qyValue ;
348 qyValue . data = q . y ( ) ;
349 qy_pub_ . pub l i sh ( qyValue ) ;
350

351 qz_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ o r i e n t a t i o n /z " , 10) ;
352 std_msgs : : Float64 qzValue ;
353 qzValue . data = q . z ( ) ;
354 qz_pub_ . pub l i sh ( qzValue ) ;
355

356 qw_pub_ = nh . adve r t i s e <std_msgs : : Float64 >("UKF/ o r i e n t a t i o n /w" , 10) ;
357 std_msgs : : Float64 qwValue ;
358 qwValue . data = q .w( ) ;
359 qw_pub_. pub l i sh ( qwValue ) ;
360 // End o f UKF
361

362 // Deciding between PF and UKF
363 i f (x_ [ 0 ] − nextState [ 0 ] <= 0.006 && x_ [ 0 ] − nextState [ 0 ] >= −0.006

&& x_counter < 0) {
364 x_ [ 0 ] = nextState [ 0 ] ;
365 }
366 i f (x_ [ 1 ] − nextState [ 1 ] <= 0.006 && x_ [ 1 ] − nextState [ 1 ] >= −0.006

&& y_counter < 0) {
367 x_ [ 1 ] = nextState [ 1 ] ;
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368 }
369 i f (x_ [ 2 ] − nextState [ 2 ] <= 0.006 && x_ [ 2 ] − nextState [ 2 ] >= −0.006

&& z_counter < 0) {
370 x_ [ 2 ] = nextState [ 2 ] ;
371 }
372 // End o f d e c i s i o n

Lines 1-64: Estimation of localization correctness via parameters

• Lines 2-17: calculation of the ESS parameter; the WD parameter was
previously calculated in the PF code.

• Lines 19-48: definition of when localization is good (bad_localization = 0)
or when it is not good (bad_localization = 10000).

• Lines 50-63: publication of the parameters ESS and WD and the value
bad_localization.

Lines 66-360: Unscented Kalman Filter algorithm

• Lines 67-101: initialization of the state and covariance matrices.

• Lines 103-137: if the localization of the PF is good, it is checked whether
the difference between the values of the state variables estimated by the UKF
and those estimated by the PF is greater than 10 mm. If so, the value of the
UKF is forced to be around the PF, and the counter is set to 100. If it is not,
the counter is decremented. The counter is used to determine whether the
estimates given by the UKF are stable: when the counter goes below a certain
threshold, it means that the variable under consideration has not been forced
to stay around the PF for a certain period of time and is, therefore, stable.

• Lines 139-151: definition of sigma points and their weights.

• Lines 153-212: application of Random Walk Process Model to sigma points.
As can be seen, the values stdY aw and stdxyz have been divided by 10000,
and this is an important difference from PF (where the values are not divided).
This is due to the fact that in order not to make the UKF diverge, more
importance must be given to the second part of the algorithm, i.e., the part
where the measurements from the sensors are used.

• Lines 214-229: calculation of the predicted state and predicted state covari-
ance matrix.
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• Lines 231-266: the magnetic field model is used for each of the sigma points
in order to estimate the value given by the sensors if they were at the estimated
position.

• Lines 268-295: calculation of the predicted measurement, of the predicted
measurement covariance matrix, and of the cross-covariance matrix.

• Lines 296-317: calculation of the Kalman Gain Matrix; sensors measurement
values are taken, which are used to calculate the new state, taking into account
both the predicted state and the difference between the sensors measurements
and those calculated using the magnetic field model. The state covariance
matrix is also calculated.

• Lines 319-332: publication of the UKF’s estimated position.

• Lines 334-359: calculation of the quaternion corresponding to the roll, pitch
and yaw angles and publication of the quaternion. Roll and pitch are previously
estimated by the Mahoney filter, while yaw is estimated by the UKF.

Lines 362-372: Decision between the PF and UKF estimates

• Lines 363-371: in general, the state used is that of the PF. If, however, the
state estimated by the UKF is close to that of the PF (difference less than or
equal to 6 mm) and is stable (counter below a certain threshold), the state
estimated by the UKF is used.
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