
Master Degree Dissertation

Master Degree in Mechatronic Engineering

Study and Development of RISC-V

Mitigation Approach Based on

Redundancy

By

Lucio Milanesi

Supervisor:

Prof. Sterpone Luca, Supervisor

Prof. Corrado De Sio, Co-Supervisor

Politecnico di Torino

2023

A mio padre che, nonostante io avessi solo 4 anni, già mi parlava di onde

elettromagnetiche

Declaration

I hereby declare that the contents and organization of this dissertation constitute

my own original work and do not compromise in any way the rights of third

parties, including those relating to the security of personal data.

Lucio Milanesi

2023

Abstract

Field Programmable Gate Arrays (FPGAs) are programmable devices that can

be adapted to different, specific applications through thorough hardware pro-

gramming. Since their first appearance in 1985, they revolutionized the world of

technology development, especially regarding electronics.

Their memory and configuration-RAM, however, are not immune to Single Event

Upsets (SEUs), radiation-induced bit-flips which can corrupt stored data and/or

device behaviour. Since their early discovery in 1954, SEUs have been considered

responsible for many different failures.

In order to mitigate the radiations effects, whose consequences include but are

not limited to SEUs, hardening techniques have to be implemented. For this

project, the redundancy technique was chosen given its satisfying cost-benefit

ratio. The Triple Modular Redundancy (TMR) method makes use of three identical

modules, whose outputs are sent to a majority voter to identify the one obtained 2

out of 3 times (most likely correct).

The main goal of this thesis, in collaboration with the European Space Agency

(ESA), was to compare the SEU-induced processor error probability before and

after TMR implementation, possibly improving it. Given the space application of

this work, a flexible, secure and long-lasting hardware was mandatory: that is why

the GitHub open-source, RISC-V ISA based, VHDL-described NEORV32 processor

was chosen.

By default it was composed of a single-core CPU, IMEM and DMEM, caches

and different optional modules with a standard clock frequency of 100 MHz. To

obtain an error rate profile, an intensive fault analysis has been performed, cor-

rupting bitstreams (sequence of bits needed to "shape" the FPGA and obtain the

desired hardware and behaviour) with an increasing number N of SEUs, simulated

through simple xor operations targeting random bits in the sensitive parts of the

bitstream.

vi

Through a Python script, 10000 tests have been executed for each amount of

simulated SEUs, starting from 0 and increasing by 10 up until 200. The single

test consisted of a simple C two 3x3 integer matrix multiplication program, hard-

coded in the bitstream and thus automatically executed after programming.

The result would then be compared to the stored, correct one and, in case of errors

of any kind, an error count would be incremented. After 10000 tests the error

probability for that amount of simulated SEUs would be calculated and the whole

process would be repeated with the new amount, until eventually obtaining the

processor error rate profile.

The default, single-core NEORV32 processor showed little resistance towards SEUs,

reaching over 50% error probability with just 30 SEUs. It also revealed a saturating

trend towards 95% after 100 SEUs, making it unserviceable after such threshold.

After triplicating the core and adding a TMR module, the results improved signifi-

cantly. Even if the low memory resources of the Xilinx PYNQ Z2 (the board used

for this project) did not allow the creation of separate IMEMs and DMEMs for

each core, the achieved performance was surprising.

Along with an up to 76% reduction of the error probability, the triple-core version

of the NEORV32 processor showed a marked improvement when it came to SEU

resistance. In the considered interval (i.e. the single-core version confidence

interval, e.g. 0-100 SEUs) the average error probability reduction was slightly over

50%. In other words, the processor reliability was more than doubled, leading to

a way more than doubled working area and a saturation trend which tended to

about 85% (10% less).

The results were fully satisfactory and proved how TMR can be a useful hardening

technique, causing a negligible increase of FPGA area consumption but granting

much better performances. In the future, implementing NEORV32 processor on a

more powerful FPGA could be considered: it would allow allocating separate mem-

ory resources (IMEM and DMEM) for each core, preventing the risk of common

errors due to shared data corruption.

Acronyms

ALU Arithmetic-Logic Unit.

ARM Advanced RISC Machine.

ASRAM Asymmetric Static Random Access Memory.

CISC Complex Instruction Set Computer.

CLB Configurable Logic Block.

CPLD Complex Programmable Logic Device.

CPU Central Processing Unit.

CRAM Configuration Random Access Memory.

CRC Cyclic Redundancy Check.

CU Control Unit.

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory.

DMEM Data Memory.

DRAM Dynamic Random Access Memory.

ECC Error Correction Code.

ECC DRAM Error Correcting Code Dynamic Random Access Memory.

ECR Error Correction with Remap.

EDR Error Detection with Remap.

viii Acronyms

EEPROM Electrically Erasable Programmable Read Only Memory.

EPROM Erasable Programmable Read Only Memory.

ESA European Space Agency.

FPGA Field Programmable Gate Array.

GPU Graphic Processing Unit.

IMEM Instruction Memory.

ISA Instruction Set Architecture.

LUT Look-Up Table.

MMU Memory Management Unit.

MPU Memory Protection Unit.

MROM Masked Read Only Memory.

PAR Place and Route.

PIP Programmable Interconnection Point.

PR Partial Reconfiguration.

PROM Programmable Read Only Memory.

RAM Random Access Memory.

RISC Reduced Instruction Set Computer.

ROM Read-Only Memory.

RTL Register Transfer Level.

SDRAM Synchronous Dynamic Random Access Memory.

SEE Single Event Effect.

Acronyms ix

SET Single Event Transient.

SEU Single Event Upset.

SOC System on Chip.

SPLD Simple Programmable Logic Device.

SRAM Static Random Access Memory.

TMR Triple Modular Redundancy.

UART Universal Asynchronous Receiver-Transmitter.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 3

2.1 Field Programmable Gate Arrays . 3

2.2 History of FPGAs . 5

2.3 AMD Xilinx PYNQ Z2: the FPGA used for this work 6

2.4 Bitstream generation . 7

2.5 Impact of Single Event Upsets on FPGAs 8

2.6 System on Chip technology . 10

2.7 NEORV32 Processor . 11

3 State of Art 13

3.1 RISC-V vs ARM: same goals, different strategies 13

3.1.1 Processor ISA Differences . 13

3.1.2 Architectural Characteristics 14

3.1.3 Licensing policies . 16

3.1.4 Advantages of adopting RISC-V solutions 18

Contents xi

3.2 Bitstreams and hardening techniques 20

3.2.1 Partial Reconfiguration (PR) with Error Correction Code (ECC) 20

3.2.2 Scrubbing . 21

3.2.3 Mitigation in Routing Resources 21

3.2.4 Mitigation in Logic Resources 24

3.3 NEORV32 Processor Main Components 25

3.3.1 Core vs CPU . 25

3.3.2 Instruction Memory . 28

3.3.3 Data Memory . 28

3.3.4 Caches . 30

3.3.5 Bus Switch . 32

3.3.6 Core Triplication . 33

4 Methodology 35

4.1 Execution of a Fault Analysis . 35

4.2 Triple Modular Redundancy: explanation and implementation . . . 40

5 Results 45

5.1 SEU-Induced Error Rate for Single-Core NEORV32 Processor 45

5.2 SEU-Induced Error Rate for Triple-Core NEORV32 Processor 47

5.3 Comparison between the two profiles 49

6 Conclusions & Future Works 51

References 53

Appendix A Python Fault Injection code 55

Appendix B NEORV32 TMR Module VHDL code 61

xii Contents

Appendix C C Test Program 64

List of Figures

2.1 FPGA schematics . 5

2.2 PYNQ Z2 board . 7

2.3 Simple representation of a SEU . 10

2.4 System on a Chip schematic . 11

2.5 NEORV32 Processor official schematic (source GitHub project) . . . 12

3.1 A quick look at RISC-V and ARM differences 18

3.2 FPGA routing architecture [1] . 22

3.3 Asymmetric SRAM cell [1] . 23

3.4 K-input LUT [1] . 24

3.5 Core architecture . 26

3.6 CPU architecture . 27

3.7 DRAM cell (left) and SRAM cell (right) 29

3.8 Cache Hierarchy . 30

3.9 Cache Architecture in Multi-Core CPU 32

3.10 Proof of Core Triplication in Vivado Implemented Design (see sec-

tion 2.4) . 34

4.1 Partial visualization of the bitstream active parts with PyXEL 36

4.2 Methodology Workflow Map . 38

4.3 TMR logic scheme . 41

xiv List of Figures

4.4 Area occupied by Single-core NEORV32 on PYNQ Z2 in Vivado Design 42

4.5 Area occupied by Triple-core NEORV32 on PYNQ Z2 in Vivado Design 42

4.6 TMR implementation scheme . 43

5.1 Single-Core NEORV32 processor error probability trend 45

5.2 Triple-Core NEORV32 processor error probability trend 47

List of Tables

3.1 Core vs CPU: main differences . 27

5.1 Single-Core NEORV32 processor error probability values 46

5.2 Triple-Core NEORV32 processor error probability values 48

5.3 Comparison of error probabilities before and after TMR implemen-

tation . 49

Chapter 1

Introduction

Deep within the soul of any man in the world, lies the fear of the Unknown.

Analysis and tests, rules and procedures, even technologies have been created to

simulate a logic path, a precise consequence that derives from precise actions, and

penalties for when the established paths are bypassed. Especially in electronics,

where the hierarchical pyramid is clear and everything behaves according to pre-

defined stats and requirements, the presence of the Unknown must be accounted

for.

It acts in the form of radiations (mostly solar) that hit device cells programmed by

an apposite binary code, causing a bit-flip. Their effect can be approximated to a

switch button, turning on (1) cells which were supposed to stay inactive (0) and

vice-versa. They may, through the accumulation of charge, even change transis-

tors internal voltages leading to potentially corruptive or destructive behaviour.

Since their first discovery in 1954, Single Event Upsets (SEUs) have been responsi-

ble for many failures ranging from Aerospace to Electoral sectors. Proof of their

existence has been found in Implantable Cardioverter Defibrillators (eg pacemak-

ers) as well [2], and thus it is of the utmost importance to minimize their effects.

The fields which are most subject to them are those where radiations grow in

number and intensity, leading to the Spatial Exploration being the main candidate.

This project applications, though, are not limited to this sector as vehicles and

standard electronic devices are all subject to radiations and solar rays.

In collaboration with the European Space Agency, this work aimed to reduce the

Single Event Effects (SEEs) caused by SEUs. Such goal was meant to be achieved

2 Introduction

through the implementation of a Triple Modular Redundancy check, and address

the question of whether it was a worthy hardening technique or not.

Chapter 2

Background

2.1 Field Programmable Gate Arrays

Field Programmable Gate Array are semiconductor devices that are built around a

matrix of customizable logic blocks (CLBs) coupled via programmable intercon-

nects. After being manufactured, FPGAs can be reprogrammed to meet specific

application or feature needs. Although one-time programmable (OTP) FPGAs are

available, the most common models are SRAM-based and may be reprogrammed

as the design changes. This capability sets FPGAs apart from Central Process-

ing Units (CPUs), Graphics Processing Units (GPUs) and Application Specific

Integrated Circuits (ASICs): each one represents a different type of computer

processors, and every one has its most suitable applications.

CPUs, despite being extremely adaptable, feature an immutable underlying

hardware. Once a CPU’s circuitry has been manufactured, it cannot be altered.

It relies on software instructions regarding which specific operation (arithmetic

function) to execute on which memory data. The hardware must be able to per-

form all conceivable operations, which are summoned by software commands

and are typically executed one at a time. FPGAs, on the other hand, can simultane-

ously process enormous quantities of data. The benefit of adaptive hardware over

CPUs varies by application, largely depending on the nature of the computation

and its ability to run in parallel. With suitable applications, a 20X performance

4 Background

improvement (when compared to CPUs standards) can be easily obtained.

GPUs rectify a significant flaw of CPUs – the inability to process a large quantity

of data in parallel – and are capable of operating on very large data sets. GPUs and

CPUs similarities lie in their fixed hardware and reliance on software commands

to execute operations. A single instruction is able to process over a thousand

blocks of data, making them suitable for domains such as graphical acceleration,

high performance computation, video processing, and various types of machine

learning, among others. However, a GPU’s fundamental architecture and data

transmission are fixed prior to production.

Application-Specific Integrated Circuits (ASICs) are designed with the goal

of optimizing the execution of a predetermined task, providing them a perfor-

mance and speed advantage over general processors (for that specific task). This

characteristic makes them an appealing option for operations requiring extreme

computing power, such as intensive data mining or cryptocurrency mining. How-

ever, given their design strictly oriented towards specific functions, their ability to

perform other tasks outside the intended one is highly limited. In contrast to a

general-purpose processor, which can be repurposed for a variety of activities, an

ASIC cannot be reconfigured because its circuitry was designed to perform only

one type of job.

When compared to all the various solutions listed above, FPGAs have - in

terms of flexibility - a distinct advantage over every single one of them. FPGAs can

be reprogrammed to perform multiple duties, allowing the same hardware to be

utilized across multiple applications. This reduces expenses for businesses that

must develop multiple solutions with comparable underlying requirements, and

makes them optimal for applications where performance and configurability are

crucial.

Today they are chosen for different sectors, including aerospace engineering, de-

fense, artificial intelligence (AI), industrial IoT (Internet of Things), wired and

wireless networking, and automotive development. In essence, FPGA devices

are frequently found in environments where consumers require real-time data.

FPGAs also aid in the acceleration of functions that would ordinarily be performed

2.2 History of FPGAs 5

by software. This makes them a useful instrument for outsourcing performance-

intensive tasks, such as artificial intelligence deep neural network (DNN) infer-

ence.

FPGA programming is based on Hardware Description Languages (HDLs) to shape

circuits and actually build the desired hardware. Hardware programming differs

from software one - among the other things - since it is not executed sequentially

but everything happens simultaneously. The output is a binary file (i.e. a bit-

stream, a sequence of bits) that, once loaded onto an FPGA device, assembles

lower-level elements, such as logic gates and memory units, according to the

specific application. Memory and power usage constraints can be specified - in

the programming tool - to enhance customization and satisfy requirements.

A more detailed explanation of the FPGA development flow is presented in section

2.4.

Fig. 2.1 FPGA schematics

2.2 History of FPGAs

The first Field Programmable Gate Arrays were released in the early 1980s, but it

wasn’t until the late 1990s that they really took off. The first businesses to invest

6 Background

in this emerging technology were Altera and Xilinx, with the first commercially

accessible FPGAs being the EP300 and XC2064, respectively. The world began

to consider them as an alternative to ASICs, which had been employed to create

systems that were too complicated for regular CPUs or GPUs, a little more than

ten years after they were first developed.

Field Programmable Gate Arrays still constitute a wise choice even by today’s

standards since they’re cheaper and consume less power than its competitor

technologies. Their applications include the aerospace and medical industries, as

well as image processing, automobiles, and communications.

2.3 AMD Xilinx PYNQ Z2: the FPGA used for this work

Xilinx, Inc. was one among the first American technology and semiconductor

firms, specialized in the production of programmable logic devices. The company

is renowned for developing the first fabless manufacturing approach and the first

commercially successful field-programmable gate array (FPGA). Ross Freeman,

Bernard Vonderschmitt, and James V. Barnett II co-founded Xilinx in Silicon Valley

in 1984; its headquarters are in San Jose, California. Today it produces FPGAs,

CPLDs, SPLDs, design tools and reference designs and its customers make over

51% of the whole programmable logic market.

The Zynq-7000 family, announced in March 2011, stands out among the many

product lines that Xilinx has to offer. It incorporates a full ARM Cortex-A9 MPCore

processor-based system atop a 28 nm FPGA for system architects and embedded

software developers. The Zynq-7000 series of SoCs targets high-end embedded-

system applications such video surveillance, automotive driver assistance, next-

generation wireless, and industrial automation.

Belonging to this family is the FPGA used for this work, the Xilinx PYNQ-Z2 (figure

2.2). A few of the Zynq-7000 SoC Features [3]:

• Dual ARM® Cortex™-A9 MPCore™ with CoreSight™

• 32 KB Instruction, 32 KB Data per processor L1 Cache

• 512 KB unified L2 Cache

• 256 KB On-Chip Memory

2.4 Bitstream generation 7

• 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO

• 85K logic cells (13300 logic slices, each with four 6-input LUTs and 8 flip-

flops)

• 630 KB of fast block RAM

• Internal clock speeds exceeding 450MHz

Fig. 2.2 PYNQ Z2 board

2.4 Bitstream generation

As described earlier, a bitstream is a sequence of binary values used to program

CLBs inside an FPGA target. It is the result of a chain of complex operations

performed by a specific software - Vivado in this case - developed by AMD Xilinx

for its FPGA devices. The main steps are:

Elaboration: sometimes included in the synthesis phase, it consists of reading

and understanding the different VHDL-written files, looking for elements

8 Background

descriptions in the code. Its output is a technology-independent netlist, i.e.

a file format that specifies the components, connectivity, and optionally the

placement and routing of an electronic circuit’s components.

Synthesis: starting from the independent netlist, the goal of the synthesis tool is

to obtain its technology-dependent version, known as unrouted netlist. It is

achieved by applying timing constraints and high & low level optimizations

to the elaborated design, adapting the abstract hardware configuration to

the specific FPGA device capabilities. It accurately describes FPGA-related

primitives (the smallest configurable logic elements) and how they are con-

nected, but it lacks placement information.

Implementation: also known as Place and Route (PAR), this last step aims to

physically map primitives and wires to the actual target device. The result is

enclosed inside the routed netlist file, ready to be translated into a .bit file.

Bitstream Generation: last step of the series, it provides a .bit file which is a

sequence of logic bits needed to shape the FPGA configuration and program

its behaviour.

Testing: although not a strict component of this process, it is often performed

after FPGA programming to ensure that everything behaves as expected.

It makes use of testbenches, separate VHDL modules whose purpose is to

stimulate the achieved design and verify its behaviour and outputs.

Testbench files usually contain only local signals and inputs/outputs for the

Device Under Test (DUT), without signals entering or exiting it. It may also

include a copy of the expected results, in order to facilitate the comparison

between the correct outputs and the produced ones.

2.5 Impact of Single Event Upsets on FPGAs

A single ionizing particle (ions, electrons, photons, etc.) impacting a sensitive

node in a live micro-electronic device results in a single-event upset, or SEU (see

fig 2.3). The free charge produced by ionization in or near a key node of a logic

element (a memory bit) is what causes the state change. Single Event Effect (SEE),

which refers to the fault in a device’s output or operation brought on by a strike, is

2.5 Impact of Single Event Upsets on FPGAs 9

temporary because reprogramming the device returns it to its original, expected

behavior. It might appear unimportant and improbable to happen at first, but it

was sufficient to provide a candidate in Belgium during the 2003 elections 4096

more votes, for instance.

To have a clearer view on how SEUs can influence the FPGA behaviour, it should

be noted that FPGA devices use both memory in user logic (i.e. registers) and

in Configuration RAM (CRAM). The latter is a memory loaded with the user’s

design, defining all logic and routing in the device and shaping what is known

as netlist, namely a map of circuital connections. In SRAM-based Xilinx devices,

signal routing is performed through the usage of interconnection matrices named

Programmable Interconnection Points (PIPs). As a consequence, SEUs in the

configuration bits of interconnection bridges may modify one PIP, potentially

interfering with the signal propagation between CLBs and, on a larger scale, circuit

modules [4].

Different fault effect scenarios can be identified [5]:

Open: an open error occurs when a PIP configuration (related to a specific input

IN - output OUT connection) is set to an open state by a SEU strike. This

prevents the IN pin to drive the OUT one, leading elements constituting

that link to become dangling. What’s more, the uncontrolled output may be

latched to another - hopefully unused - input.

Bridge: starting from the same situation characterizing the open error, if the

dangling output is connected to an input already employed in other con-

figurations, a bridge error takes place. It has a much bigger impact, since

the output is not null anymore, but instead is driven by a random, unknown

input and the resulting behaviour is unpredictable.

Input Antenna: an input antenna error arises when an output, already in use and

connected to its input, latches on to another unused one.

Output Antenna: opposite to the previous one, an output antenna error presents

itself when an input, already connected to a predefined output, drives an-

other - unused one - too.

Conflict: last but not least, an undesired input-output connection (where both

pins are already in use) results in a conflict error, with the consequent

propagation of unknown values.

10 Background

Fig. 2.3 Simple representation of a SEU

SEUs have been proven to be responsible for a number of errors since they were

originally discovered in 1954 during nuclear tests, and many more are still under

investigation. Devices are highly susceptible to SEU-induced failures, particularly

in Aerospace and Space applications where radiations (with solar being their

prime example) become stronger. The flight of an A330 Airbus on July 10, 2008,

which almost resulted in a crash ostensibly because of an Event Upset, was one of

the most famous.

2.6 System on Chip technology

A System-on-Chip (SoC) is an integrated circuit that integrates the majority or all

of the parts of a computer or other electronic system. On a single substrate or

microchip, these components frequently include an on-chip central processing

unit (CPU), memory interfaces, input/output devices, input/output interfaces

and secondary storage interfaces, along with other elements like radio modems

and a graphics processing unit (GPU).

The typical traditional motherboard-based PC architecture, which divides compo-

nents based on function and connects them via a central interface circuit board,

contrasts with newline SoCs. SoCs combine all of these parts into a single inte-

2.7 NEORV32 Processor 11

grated circuit, as opposed to motherboards, which hold and connect removable

or swappable components. Instead of connecting these modules as independent

parts or expansion cards, a motherboard often integrates a CPU, graphics and

memory interfaces, secondary storage, USB connectivity, and I/O interfaces on a

single chip.

A SoC performs better and uses less power than a multi-chip architecture while

also having a smaller semiconductor die size than a multi-chip design with the

same functionality. This comes at the cost of reduced replaceability of compo-

nents.

Fig. 2.4 System on a Chip schematic

2.7 NEORV32 Processor

The NEORV32 Processor is a platform-independent system on chip (SoC) that

resembles a microcontroller and is designed around the NEORV32 RISC-V CPU,

created by Stephan Nolting and provided for free on GitHub platform [6]. The

processor is designed to serve as an auxiliary controller in bigger SoC designs or

as a fully operational standalone bespoke microcontroller that can even fit into

low-power & low-density FPGAs.

In order to deliver defined and predictable behavior at any time, execution safety

12 Background

is given special attention. The CPU makes sure that all memory accesses are

correctly acknowledged and that any erroneous or flawed instructions are con-

sistently identified as such. The application program is alerted whenever an

unexpected circumstance arises via precise and resumable hardware exceptions.

Fig. 2.5 NEORV32 Processor official schematic (source GitHub project)

Chapter 3

State of Art

3.1 RISC-V vs ARM: same goals, different strategies

RISC-V is an open standard instruction set architecture (ISA) whose foundations

are laid by the reduced instruction set computer (RISC) framework. Since it is

offered under royalty-free open-source licenses, it is now supported by a number

of well-known software toolchains, in contrast to the majority of other ISA designs

(with ARM serving as their leading example). It’s important to step back and

consider what a processor’s properties are in order to comprehend why RISC-V

was chosen (for this application) above its rivals.

3.1.1 Processor ISA Differences

The Instruction Set Architecture (ISA), a design outlining the set of instructions

a processor can comprehend and implement, is fundamental to the operation

of every processor. It influences the capabilities and performance of a processor

by serving as a vital connection between hardware and software. The selected

ISA affects software development and has a long-term impact on the productivity,

interoperability, and adaptability of a CPU.

ISAs can be broadly categorized as either Open or Closed. Closed ISAs, such as

ARM, are proprietary and strictly governed by specific companies (in this case,

Arm Holdings), providing known stability and compatibility but limiting flexibility.

14 State of Art

On the other hand, open ISAs, like RISC-V, are community-driven and offer more

customization options, encouraging innovation and adaption to particular needs.

3.1.2 Architectural Characteristics

RISC-V structure

The RISC-V architecture is based on the RISC blueprint, which places an empha-

sis on a compact, straightforward, and effective instruction set (as opposed to

CISC, Complex Instruction etc.). A load-store architecture, a fixed-length 32-bit

instruction format, and a limited amount of general-purpose registers are some

of RISC-V fundamental architectural characteristics.

Different integer instruction set extensions that specify the fundamental instruc-

tion set for various address space sizes are supported by RISC-V, including RV32I

(32 bits), RV64I (64 bits), and RV128I (128 bits). Little-endian byte ordering, which

places the smallest significant byte of multi-byte data at the lowest memory ad-

dress, is used by RISC-V in the memory system.

Listed below are several distinguishing characteristics of RISC-V architecture:

Modularity & Extensibility: The modularity and extensibility of the RISC-V archi-

tecture is one of its defining characteristics. The ISA is designed to be easily

extended with special instructions and coprocessors, enabling customized

implementations that adhere to particular application needs.

This adaptability is made possible by the modular architecture of the sys-

tem, which enables the base ISA to be combined with optional standard

extensions like the M extension for integer multiplication and division, the

A extension for atomic operations, and the F and D extensions for single-

and double-precision floating-point arithmetic.

Compressed instruction set: In contrast to ARM’s Thumb instruction set, RISC-V

additionally supports RV32C (or RV64C for 64-bit), a compressed instruc-

tion set extension that offers 16-bit compressed instructions that can be

combined with the usual 32-bit instructions.

This feature makes RISC-V especially suitable for embedded systems and

low-power applications by reducing code size and increasing energy effi-

ciency.

3.1 RISC-V vs ARM: same goals, different strategies 15

Privilege levels & Virtual Memory: The support for virtual memory and privi-

lege levels in RISC-V’s architecture is a crucial component. Machine mode

(M-mode), Supervisor mode (S-mode), and User mode (U-mode) are the

three privilege levels that are specified in the RISC-V Privileged Architecture

Specification.

These privilege levels offer a way to isolate the user programs, hypervisors,

and operating system kernel, assuring system security and stability. A virtual

memory system based on a multi-level page table structure is also supported

by RISC-V, allowing for effective memory management and security.

ARM structure

The RISC foundation serves as the foundation for ARM architecture, which simi-

larly emphasizes simplicity and power economy. The load-store architecture, a

combination of fixed-length 32-bit and variable-length Thumb instructions, and

a significant amount of general-purpose registers are among ARM’s core architec-

tural features. Bi-endian byte-ordering is used in the memory system, allowing

an ARM processor or device to handle and transfer data in both endian forms

without any issues at the hardware level.

Each family of ARM processors is designed to meet a particular set of performance

and power criteria. The most common ARM processor families are the Cortex-A,

Cortex-R, and Cortex-M series. High-performance applications like those found

in servers, tablets, and smartphones are catered to by the Cortex-A family. These

processors support cutting-edge functions including hardware virtualization, su-

perscalar pipelines, and out-of-order execution. The Cortex-R family provides

quick interrupt response times and deterministic behavior, making it ideal for

real-time systems. These processors are frequently utilized in applications that

are safety-critical, industrial, and automotive. The Cortex-M family is designed

specifically for microcontrollers and low-power gadgets, with an emphasis on

usability and energy efficiency.

The ARM architecture has the following special characteristics:

Thumb Instruction Set: The Thumb instruction set, which offers 16-bit com-

pressed instructions for better code density and energy economy, is com-

monly implemented by ARM processors. As an optional 16-bit addition to

16 State of Art

the standard 32-bit ARM instructions, ARM developed the Thumb instruc-

tion set.

The ability to reduce code size while retaining acceptable performance

makes this feature appropriate for memory-constrained devices like embed-

ded systems.

Memory Management & Protection: Memory management and protection are

supported at several levels by ARM processors, including a Memory Protec-

tion Unit (MPU) for straightforward systems and a Memory Management

Unit (MMU) for more intricate systems with support for virtual memory.

The 64-bit address space support and the AArch64 execution state, which

offers a new 64-bit instruction set in addition to the current 32-bit ARM and

Thumb instruction sets, were introduced with the ARMv8-A architecture,

which was released in 2011.

Optional Enhancements: The NEON SIMD (Single Instruction, Multiple Data)

extension for multimedia and signal processing workloads and the Cryptog-

raphy extension for hardware-accelerated encryption and decryption are

two optional extensions that ARM processors may contain in addition to

the base ISA.

With the help of these additions, ARM processors can effectively handle a

variety of workloads while still consuming little power and taking up little

silicon space.

3.1.3 Licensing policies

This last comparison is focused on the licensing and business model of RISC-V

and ARM, illuminating how these strategies affect the creation, acceptance, and

customization of processors.

RISC-V :

Open-Source Licensing: Permissive open-source and royalty-free licenses,

like the Apache License 2.0, are used to operate RISC-V. Developers can

access, study, alter, and distribute the architecture without restriction,

which promotes openness, cooperation, and innovation.

3.1 RISC-V vs ARM: same goals, different strategies 17

Flexibility: Organizations are able to modify the processor design to suit

their own requirements because of RISC-V’s open-source nature. Ex-

tensions and configurations allow for customization, making it possi-

ble to create processors that are optimized for a variety of applications.

Reduced Costs: The absence of licensing fees is one of the main benefits of

RISC-V. This can greatly reduce the costs related to RISC-V processor

adoption and product development.

Ownership Control: RISC-V users have complete control over their proces-

sor designs, which lessens reliance on a single vendor. This ownership

control may be especially helpful to businesses looking to safeguard

their intellectual property.

ARM :

Licensing Tiers: Depending on the licensing level, ARM offers a number

of licensing tiers that grant access to different instruction sets and

architectures. Companies can select the level of access that best suits

their needs using this tiered concept.

Proprietary Elements: While ARM offers openness through its architec-

ture, some cutting-edge features or technologies may be proprietary

and call for licensing agreements. This combination of openness and

proprietary components enables ARM to balance customisation and

the protection of important innovations.

Licensing Fees: ARM’s licensing approach frequently entails licensing costs

depending on the degree of usage. These fees affect the overall cost

structure for businesses using ARM processors and contribute to ARM’s

revenue strategy.

Vendor Relationship: ARM or its licensees are frequently partners in the

adoption of ARM CPUs. Businesses may work closely with ARM to gain

access to deluxe features, support, and customizations.

18 State of Art

Fig. 3.1 A quick look at RISC-V and ARM differences

3.1.4 Advantages of adopting RISC-V solutions

As introduced, this work aimed to lower the SEU-induced error rate of a processor

implemented on FPGA. With ESA being the engine company, the main application

of such processor relies in the Aerospace sector. Why they would choose RISC-V

over ARM and other competitors is understandable considering the following

advantages:

• Trusted components are necessary for aerospace applications, such as the

one taken into account for this work. The open ISA of RISC-V may be more

advantageous for verification than closed architectures like ARM. Due to

RISC-V’s openness, businesses are free to choose whether to make their

RISC-V IP cores’ whole register-transfer level (RTL) source code available

to designers without worrying about being subject to ISA licensing and

protected IP restrictions. The RTL can then be thoroughly examined by

designers, confirming there was no malevolent intent and building trust.

• Platforms used in aerospace and military frequently have service lives mea-

sured in decades rather than in months or years. Due to the underlying

RISC-V specs and instruction set being frozen, RISC-V offers an architec-

3.1 RISC-V vs ARM: same goals, different strategies 19

ture that is well suited for extended service life. Designers may expect the

platform they are basing their work on to be stable for a very long time.

Future RISC-V chips will continue to support software developed for current

RISC-V technology. This implies that code can be tested only once and then

utilized on RISC-V processor generations to come.

This long-term stability is generally absent from closed, commercial ISAs.

Since they were not created with extensibility in mind, software modifica-

tions that add new features or functions frequently need to be rebuilt from

the ground up in order to stay current.

• Given the high cost of constructing new platforms from scratch, aerospace

platforms frequently have lengthy service lifetimes. The capabilities of

current platforms are frequently upgraded by incorporating technological

advancements in subsequent models, even when major redesigns are ex-

pensive. For these kinds of situations, RISC-V provides designers with a base

upon which to develop.

Along with stability, RISC-V is also built to be extensible. The initial instruc-

tion set is fixed, but additions that add new features can be made without

impairing the operation of software that is already in place. Applications can

be catered for by creating unique accelerators that combine the standard

instruction set with particular extensions.

Developers are permitted to alter chip designs however they see fit thanks

to the open RISC-V ISA license. For greater efficiency, processor microar-

chitectures can be modified and changed. Hardware can be created to

achieve particular objectives like high performance, secure data processing,

or minimal power usage.

• Intellectual property laws protect commercial ISAs. Any developer inter-

ested in creating a new chip based on the ARM architecture would normally

be required to pay both upfront costs and per-chip royalties in order to do

so. Contrarily, the RISC-V ISA is open source, making it available for usage

as the foundational architecture for processor designs by anyone.

However, RISC-V-based hardware designs are not required to be open source.

Developed designs have the option to be kept private as exclusive intellec-

tual property, and eventually be sold by their authors or generate profit for

them in anyway they feel to be appropriate.

20 State of Art

3.2 Bitstreams and hardening techniques

In order to program the PYNQ board, bitstreams generated by the AMD Xilinx

Vivado Suite have been used (see section 2.4). A bistream is a sequence of bits (bi-

nary values) which is sent to a target FPGA device to configure its CLBs according

to desired applications, leading to a custom implemented hardware.

One or more bits can be flipped as a consequence of SEUs, resulting in unpre-

dictable and/or undesired behaviour. Such dramatic epilogue is not unavoidable

however, as many different techniques have been developed to prevent SEUs from

turning into SEEs. This procedure is known as Hardening, and can be performed

both on hardware and software components. Along with preventing errors from

occurring, different methodologies have also been presented in order to detect

whether SEUs took place and, if they did, restore the system state to the expected

one.

These techniques vary in complexity and reliability, meaning each method has its

limitations and drawbacks, and could only protect the device or reveal faults up to

an extent. The current state of art allows to define different approaches, ranging

from simple operation-checks up to core duplication:

3.2.1 Partial Reconfiguration (PR) with Error Correction Code

(ECC)

Readback, which is the process of reading from post-configuration memory, is a

method for detecting static bitstream disruptions [7]. It offers a non-intrusive way

to read the status of each flip-flop and configuration memory cell inside the FPGA.

In order to ensure the integrity of the bitstream during configuration, the majority

of contemporary FPGAs have a cyclic redundancy check (CRC) register that uses

a conventional 32-bit CRC checksum technique. The data blocks or frames are

given a CRC checksum value, which is then placed into the bitstream. In order to

update the CRC, a CRC checker reads back the frames or blocks. The predicted

checksum for the current configuration can be compared to this CRC checksum;

if they do not match, a SEU may have happened. [1, 8, 9]

The mitigation method suggested in [10] uses a small auxiliary FPGA for error

checking and recovery together with reserving a few rows of FPGA for checksum

storage. The frames are repeatedly read back from the primary FPGA by the auxil-

3.2 Bitstreams and hardening techniques 21

iary FPGA, and the CRC checksums of the frames are recalculated and compared

to the primary checksum as part of the error checking process. Since the system

state and ECC are both kept in the auxiliary memory, the system must be returned

to its most recent correct state if any single bit error is discovered by the ECC. This

recovery process is known as rollback recovery.

The faults can be found by readback and CRC checksum; these errors can be fixed

by a procedure called PR, which is a post configuration write to the configuration

memory [11]. The literature has proposed methods for partially reconfiguring a

corrupted module of a triple modular redundant (TMR) implementation, which

tackles the speed penalty associated with such methods and offers a generalized

method for reducing it [12]. Mission-specific flexibility on demand is made pos-

sible by dynamic PR, which gives the FPGA device the ability to be reconfigured

while other operations are still running on the remainder of the device.

3.2.2 Scrubbing

Scrubbing is a method for restoring the initial state via a periodic post-configuration

configuration memory write [13, 14]. It is an efficient technique for preventing

errors in the configuration memory of SRAM-based FPGAs. Scrubbing is primarily

employed to prevent the accumulation of configuration memory errors, and there-

fore a suitable scrub interval is chosen to ensure that the probability of multiple

disturbances accumulating is virtually zero [15].

The component that conducts this function is known as the scrubber. In certain

circumstances, the complete bitstream is injected into the configuration layer,

and the application is briefly suspended and then reinitialized. The scrubber’s

detection phase is optional, which makes it more complicated but provides a

robust mitigation.

A read back, on the other hand, is performed in the background and does not

interfere with the performance.

3.2.3 Mitigation in Routing Resources

An FPGA programmable routing consists of routing within each logic block and

routing between logic blocks. Switch blocks define the routing structure between

logic blocks. The interconnect matrix defines the routing structure within the

22 State of Art

logic blocks. The interconnections are made using programmable switches, which

are comprised of a pass transistor controlled by a static RAM cell [16]. A detailed

view is presented in figure 3.2:

Fig. 3.2 FPGA routing architecture [1]

The majority of configuration bits are devoted to routing resources: nearly

90% of them. A reliability-oriented place and route algorithm (RoRA) is imple-

mented, which first performs a reliability-oriented placement of each logic block

in the design, and then routes the signals between the logic blocks ensuring that

multiple errors affecting two different connections are not possible.

There are three kinds of errors which occur in switch blocks due to SEUs: open

error, bridge error and short error. An open error occurs when a SEU causes an

ON switch to become OFF; a bridging error occurs when a SEU causes two distinct

nets to be coupled together; and a short error occurs when a net is connected to

an unused routing resource [17, 18].

Using the unused programmable switches in the switch module, a new program-

ming method for SRAM has been proposed for SEU-caused open errors: some

of the switches are programmed to be ON or OFF depending on the type of con-

nection. If a SEU disconnects a connection, other programmed switches can

3.2 Bitstreams and hardening techniques 23

reconnect the terminals and prevent the network from opening.

Another method based on programmable and hardwired switch module struc-

ture to mitigate SEU-caused short errors involves replacing some programmable

switches with hard-wired nets, removing some programmable switches, and pro-

gramming the remaining switches as before [19].

Less than 40% of the configuration bits are critical, and the vast majority of these

bits are zero. A technique for soft error tolerance in configuration memory [20]

proposes the use of an asymmetric SRAM (ASRAM) cell optimized for zero storage.

This decreases failure risks by 25% when compared to the original design.

An optimization algorithm to enhance the number of zeros in the bitstream while

maintaining functionality has also been developed [20]. However, this technique

is only beneficial for reducing bridging errors and is not applicable to routing

open errors.

Fig. 3.3 Asymmetric SRAM cell [1]

The flexibility of the switch box is the utmost number of switches that can be

used: in conventional switch boxes, this number is three. The unused switches

increase the likelihood of bridge and short errors, so another hardening technique

employs a flexibility of two, thereby decreasing the likelihood of errors. Each track

entering and exiting one side of the switch block is connected to two other tracks

24 State of Art

on the remaining three sides [21].

Moreover, a decoder-based switch box architecture [17] could reduce the amount

of SRAM bits necessary for configuring the switch box. While causing no effect on

the switch box’s routing capability, it would reduce the likelihood of SEU errors in

the switch module.

3.2.4 Mitigation in Logic Resources

A Look-Up Table (LUT) with k inputs can implement any function with k inputs

3.4: critical bits are stored in SRAM cells. A logic error may cause one of the LUTs’

entries to be inverted, thereby altering the functionality of the mapped logical

function.

Fig. 3.4 K-input LUT [1]

Specific CLB architectures can be implemented to decompose 4-input LUTs

into 3-input functions to minimize self-maps [22]: these are called Error Detection

with Remap (EDR) and Error Correction with Remap (ECR). They split the logic

function in CLB into two sub-functions and combines them through a carry chain,

which makes the circuit more resistant to SEUs.

3.3 NEORV32 Processor Main Components 25

3.3 NEORV32 Processor Main Components

The chosen hardware hardening technique for this work was, however, the TMR

implementation at core level, which meant that the single-core version of the

NEORV32 processor had to be turned into a triple-core one (see section 4.2). In

order to understand how this was made possible, a closer look at the processor

basic components is required.

3.3.1 Core vs CPU

Before delving into the processor architecture, especially the one constituting the

NEORV32 one, an important difference has to be marked: how a core differs from

a CPU.

What is a core

A core is a processing unit of the CPU. It is responsible for executing programs and

numerous other operations on a computer. Memory, control unit, and arithmetic-

logic unit are the three primary components of a core. Each component of the

core is tasked with specific responsibilities:

Control Unit (CU): this unit allows the core of a computer system to commu-

nicate with other components. It deals with signals and data in order to

handle the other two modules behaviours.

Arithmetic-Logic Unit (ALU): it comprises of electronic circuits that execute arith-

metic and logical operations. The ALU typically performs four arithmetic

operations: addition, subtraction, multiplication, and division. Additionally,

it commonly executes three logical operations: equal-to, less-than, and

greater-than.

Memory: registers and cache constitute the memory constructed within the core.

Registers are used to store data, whereas caches are high-speed RAM useful

to quickly provide information.

26 State of Art

Fig. 3.5 Core architecture

A more detailed analysis can be found in the following sections.

What is a CPU

A computer’s central processing unit (CPU) is the component responsible for coor-

dinating the processors and executing tasks. As a consequence, a computer with a

single CPU is able to simultaneously execute n duties, where n is the number of

cores.

Along with hosting and coordinating the processing cores, the CPU handles com-

munication between the other modules of a computer system and the processing

cores (via their control unit). Typically, the CPU incorporates an additional cache

level shared by all cores (usually a L2-L3 cache) and may include additional com-

ponents, which benefit from being close to the cores.

3.3 NEORV32 Processor Main Components 27

Fig. 3.6 CPU architecture

In conclusion, the main differences are those listed in table 3.1

Table 3.1 Core vs CPU: main differences

Processing Core Central Processing Unit (CPU)

Processing element of the CPU Processing component of the system

One (Single-core)

Multiple (Multi-core)

One (Uniprocessor)

Multiple (Multiprocessor)

Control Unit; Arithmetic-Logic Unit;

Memory (Cache & registers)

Controllers; caches;

Processing cores

The default NEORV32 project features a uniprocessor, single-core system,

and the goal of this thesis was to triplicate its core turning it into a uniprocessor,

triple-core version. Along with the core itself, other sections had to be instantiated

multiple times: to understand which and why, a brief description of the main

NEORV32 components follows.

28 State of Art

3.3.2 Instruction Memory

IMEM, which stands for Instruction Memory, is NEORV32 processor ROM mem-

ory. Read Only Memory (ROM) is a type of non-volatile memory used to store

permanent, fixed data (firmware) - even if updates allow to modify such data. As

explained in section 4.1, it proved essential to reduce tests execution times and

error probability.

There are 4 types of ROM technologies, namely:

Masked ROM (MROM): affordable hard-wired devices with preprogrammed data

and instructions; those were the first to be developed.

Programmable ROM (PROM): one-time programmable memory, with no possi-

bility to change or erase content of any kind afterwards.

Erasable PROM (EPROM): reprogrammable memory which exploits exposure to

ultraviolet light to destroy stored charges and thus erase data, returning to a

programming-ready state.

Electrically EPROM (EEPROM): electrically-erasable memory, which employs

a significantly more convenient deleting process thanks to a less invasive

bombing technique, along with the possibility to select precise locations

and data amounts to wipe out.

3.3.3 Data Memory

DMEM, which stands for Data Memory, is instead NEORV32 processor RAM

memory. Random Access Memory is a kind of volatile memory whose values can

be read and changed freely, useful to store operations results and addresses. It is

divided in two types, both of which are necessary in a standard computer system.

Dynamic RAM (DRAM)

DRAM is a compact technology and among the first memories to be commercial-

ized. A single DRAM cell contains one transistor and one capacitor, and has higher

storage capability when compared to an SRAM cell. It is therefore employed in

the main memory architecture, and several types can be realized:

3.3 NEORV32 Processor Main Components 29

Synchronous DRAM (SDRAM): it increases performance through its pins, which

improve data synchronization between main memory and the processor.

Double Data Rate SDRAM (DDR SDRAM): a doubled-speed version of SDRAM,

which nowadays features 6 versions (up to DDR6).

Error Correcting Code DRAM (ECC DRAM): DRAM memory with the ability to

detect errors and potentially fix them.

Static RAM (SRAM)

SRAM is a quick access RAM that can store data as long as power is available, up-

dating saved values at the same time as they change. It features CMOS technology

and, due to the presence of 4-6 transistors for each cell, a periodic refresh cycle is

not necessary.

Higher costs, more energy and heat consumptions and less storage availability

(when compared to DRAMs) constitute the price to pay to employ such fast and

effective technology. That is why it is mainly used in cache memory (see section

3.3.4), which are meant to be small but efficient.

Fig. 3.7 DRAM cell (left) and SRAM cell (right)

30 State of Art

3.3.4 Caches

A cache is a hardware or software component that stores data in order to expedite

future requests: data stored in a cache may be the result of an earlier computation

or a copy of data stored elsewhere. A cache strike occurs when the requested data

can be found in a cache, while a cache error occurs when it cannot. Cache hits

are served by reading data from the cache, which is speedier than recomputing a

result or reading from main memory; therefore, the greater the number of requests

that can be served from the cache, the quicker the system performs.

For caches to be cost-effective and to facilitate the efficient use of data, they must

be relatively tiny. Despite this, caches have proven their worth in many areas of

computation, as typical computer applications access data according to locality

principles. These patterns are temporal locality, where requested data has been

recently requested, and spatial locality, where it is physically near to previously

requested data.

The NEORV32 processor makes use of a split cache architecture (opposite to the

unified cache one) that consists of two physically distinct portions, one of which is

dedicated to storing instructions (i-cache) and the other to storing data (d-cache).

Since both are hardware-managed and target the same physical address space

at the same hierarchy level (see fig 3.8), they are logically deemed to be a single,

divided cache. Instruction retrieve requests are exclusively serviced by the i-cache,

while memory operand read and write requests are exclusively serviced by the

d-cache.

Cache memory is structured into levels that are used to describe the proximity

and speed of access to primary or CPU memory. Typically a three level hierarchy

is used (namely L1, L2, and L3, fig 3.8) although a fourth level L4 is sometimes

implemented.

Fig. 3.8 Cache Hierarchy

3.3 NEORV32 Processor Main Components 31

L1 Cache

Level 1 cache, also referred to as registers, is a type of memory that is implanted on

the processor chip as the CPU chip. It is a primary memory which does not shine

in size but is significantly faster than other forms of memory. This level 1 cache

serves the purpose of storing data by first receiving it from the central processing

unit (CPU), after which it saves the information as quickly as possible. The data

stored in such cache level is data that is of the utmost importance for the CPU to

complete certain tasks.

This L1 cache is further subdivided into components, known as the information

cache, which provides details about the operations that the CPU should perform,

and the data cache, which stores data regarding the specifics of the data on which

these operations should be performed. In average, for nowadays technologies, an

L1 cache is designed with a size of 1-2 MB.

L2 Cache

Level 2 cache is default cache memory, slower than level 1 cache because data

stored in this memory is only temporarily stored. However, the level 2 cache has

a larger storage capacity when compared to level 1 cache. The level 2 cache has

a typical size interval, ranging from 256KB to 8MB, although this size is likely to

increase in the future.

L3 Cache

Level 3 cache, also considered the primary memory, is a highly specialized kind of

memory that is designed to perform better than level 1 cache and level 2 cache.

Level 3 cache is larger than both level 1 and level 2 ones, but it is the slowest of the

three. In multi-core processors, each core has its own level 1 and may partially

share level 2 cache, but all cores share a level 3 cache with twice the performance

of RAM memory.

32 State of Art

Fig. 3.9 Cache Architecture in Multi-Core CPU

L4 Cache

Level 4 cache, also considered the secondary memory, is external and is slower

than level 3 cache or main memory. However, unlike level 3 cache, level 4 cache

data remain stored even when the power is off. This type of cache is typically

implemented with DRAM instead of SRAM.

3.3.5 Bus Switch

A bus switch is a module whose aim is to facilitate data communication between

multiple digital system devices or components. Its primary purpose is to multiplex

and arbitrate various transit requests and responses, and allows multiple devices

or components to share a single bus (or communication channel). Since multiple

devices may request access to such shared bus at the same time, the bus switch

includes arbitration logic to determine, in a fair and efficient manner, which

device is granted access.

The bus switch is also useful when multiple devices require access to a shared

resource (such as memory, peripheral, or communication interface). It ensures

that only one device at a time can access the resource, preventing data corruption

3.3 NEORV32 Processor Main Components 33

and contention issues. It also processes read and write requests from connected

interfaces.

Lastly, the bus switch is also responsible for handling error conditions. If an error

occurs during a bus transaction (such as data corruption or an expiration), the

requesting port may receive an error signal. Moreover, the NEORV32 bus switch

enables read-only configuration of the connected ports. This allows to specify if a

specific port is permitted to conduct write operations on the shared resource.

In the NEORV32 processor, the bus switch is explicitly used to connect the core

with its relative i-cache and d-cache memories.

3.3.6 Core Triplication

Now that all of the main processor components have been introduced, it is finally

possible to comprehend how the core triplication has been possible. First of all it

was mandatory to instantiate three times the processor core, each with its own

signals and inner modules: this meant triplicating ALUs, CUs, register files and

buses.

Secondarily, its external connected entities had to be replicated: since not every-

thing was needed multiple times, this was a very delicate step. In fact, each new

instantiation would take up space in both the FPGA area and the bitstream file,

leading to higher consumptions and SEU sensitivity.

The essential items that had to be repeated were those previously described,

namely instruction-caches and data-caches, bus-switches and, ideally, IMEMs

and DMEMs. As explained in section 4.2, the latter two could not be triplicated

due to PYNQ Z2 low memory availability, but in the same section the eventual

solution is presented.

It is important to note that just like the bus switch handles accesses to i-cache and

d-cache, the NEORV32 gateway module controls communication with IMEM and

DMEM. Had those been instantiated multiple times, so would have the gateway

entity - one for each core: however, in this case, it was totally unnecessary. Luckily,

when it came to the other components, no problem arose in their triplication.

Proof of the hardened NEORV32 processor is shown in figure 3.10, where:

34 State of Art

Yellow: shows the several bus switch entities.

Blue: marks the three cores. Note that, even though the denomination features

neorv32_cpu, it actually refers to the core level (differences are explained in

section 3.3.1). Its default name was only kept in order to avoid jeopardizing

modules communication.

Green: highlights the different data caches.

Red: indicates the multiple instruction caches.

Purple: testifies the presence of the TMR module.

Fig. 3.10 Proof of Core Triplication in Vivado Implemented Design (see section 2.4)

Chapter 4

Methodology

Reliability is a key concept in technology fields. It defines the possibility to trust a

component or a device, with little-to-zero questioning about its functioning and

outputs. It also means, in some applications like the one considered for this work,

entrusting life itself. That is why it is of the utmost importance to guarantee the

best possible performances under any situation, and minimize any possible issue.

If the previous works implemented Triple Modular Redundancy at the Arithmetic

Logic Unit (ALU) level [23], the goal of this project was to triplicate the Processing

Core and only then applying TMR.

4.1 Execution of a Fault Analysis

As previously mentioned, FPGAs device can be programmed through bitstream

injections. SEUs, on the other hand, corrupt these sequences potentially leading

to unpredictable and/or unwanted implemented hardware and corresponding

behaviours. For this project, SEUs have been emulated through bitstream bit-flips,

i.e. changes applied to the golden bitstream file obtained by toggling N selected

bits (from 0 to 1 and viceversa) [24].

In order to simulate bitstream bit-flips, GitHub-private python library PyXEL [25]

has been used. As first thing, the .bit file generated by Vivado after synthesis and

implementation was converted to a .pmb one. PMB stands for Polar Uplink Tool

Bitmap, i.e. a 2D visual representation of the correspondence between the single

bit and the relative configured resource in the device.

36 Methodology

Such operation was needed to identify the Bitstream Active Parts, which are the

actual bitstream sections that are interested by the current configuration. A thor-

ough analysis revealed few and distinct sections (fig 4.1), yet quite large, indicating

that specific areas of the FPGA can be more SEU-susceptible than others.

Fig. 4.1 Partial visualization of the bitstream active parts with PyXEL

Bit-flips simulation has been performed through a simple XOR operation

which toggled the valued of a cartesian-coordinate defined bit. Toggling only bits

belonging to the up-cited active parts can have a few advantages:

• It covers the worst case scenario, since almost every simulated SEU strikes

meaningful sections of the bitstream.

• The responsibility of success shifts from luck in SEUs avoiding sensitive

portions to real hardware robustness.

The whole fault injection process featured a series of well-established steps:

1. Acquisition of the default Vivado-generated bitstream and subsequent cor-

ruption with N simulated SEUs.

2. Injection of the faulty bitstream into the FPGA.

4.1 Execution of a Fault Analysis 37

3. Verification of the obtained results, if obtained (i.e. if the device was able to

send comprehensible data within the timeout).

4. Recording (and optional categorization) of the error, if occurred.

5. Presentation of the results, after 10000 tests have been performed.

The goal of this work was to determine and compare the SEU-induced error

rate profiles, before and after TMR implementation. A 0-to-200 range has been

considered regarding SEUs occurrences, whereas the output was an error proba-

bility (in percentage) corresponding to the processor failure possibility. For each

number of simulated SEUs, 10000 tests have been performed in order to evaluate

a reliable error rate (i.e. for 30 SEUs 10k tests, for 40 too, and so on).

A detailed workflow scheme of the whole process, starting from bitstream genera-

tion up to the results analysis, is presented in the following map:

38 Methodology

Fig. 4.2 Methodology Workflow Map

4.1 Execution of a Fault Analysis 39

Responsible for the fault analysis execution was an apposite Python script,

whose duties included initialising the PYNQ FPGA and storing temporary results.

This backup maneuver proved necessary since the whole process could take over a

week of uninterrupted execution, and a few times the host computer would expe-

rience unexpected reboots leading to results losses. Storing temporary outcomes

allowed, in these cases, to restart from checkpoints and shorten the time needed

to complete the analysis.

In order to test the correct functioning of the implemented hardware, the NE-

ORV32 processor, a test program had to be sent to the board. As a first implementa-

tion, the NEORV32 Bootloader had been configured, so that the application could

be sent in binary mode through UART communication. This method, despite

finely working, required much more time when compared to the one eventually

used. In fact, each execution used to take little less than a minute, causing the

whole testing process to last for the inadmissible period of 1.7 years (approxi-

mately).

In addition to that, such procedure would have been way more susceptible to

SEUs effects. This was due to the fact that many steps preceded the start of the test

program, as the bootloader required precise instructions. It meant both that the

bitstream active parts grew in number and size, leading to more sensitive areas,

and that failure had more chances to occur.

As a consequence, it felt mandatory to opt for the other configuration, which

featured a disabled bootloader but an enabled IMEM. The test application was

now hardcoded into the bitstream, and automatically executed upon bitstream in-

jection. This was made possible through the make clean_all install command for

a compatible RISC-V toolchain, an array of programming tools used for complex

software development tasks.

It generated a NEORV32_application_image.vhd file that could be added to the Vi-

vado bitstream generation flow (see section 2.4). Doing so reduced error likeliness

and, with its ∼3sec duration, dramatically shortened the analysis execution time

to little more than one week.

Given the limited resourced of the PYNQ Z2 FPGA, the test program had to be

simple but effective. A 2, 3 by 3, integer matrix multiplication application felt

appropriate, with the correct result being fixed and known to the Python script.

Whenever the NEORV32 output could not be delivered or read correctly, or did

40 Methodology

not match with the stored one, the error count was updated by a +1 increase.

After 10000 tests the error count would become definitive, and would be con-

sidered the error rate corresponding to that precise number of simulated SEUs

(N). Last but not least, such N value would be incremented by a 10-default step

value, potentially tuned accordingly to the obtained error rate. Had it been too

close to the previous one, then the step would be increased, otherwise decreased:

eventually another 10000 executions would start.

The core goal of this thesis was to delineate and compare the processor error rate

before and after hardening, namely TMR implementation in this case. Before

analyzing the results, a detailed introduction of the Triple Modular Redundancy

technique is now presented.

4.2 Triple Modular Redundancy: explanation and im-

plementation

Triple Modular Redundancy (TMR) is a fault-tolerant variant of N-modular redun-

dancy in which three systems perform a process and the result is processed by a

majority-voting system to generate a single output. If one of the three systems

fails, the other two can correct and conceal the error: that is why it is frequently

adopted as an hardening-by-design method [26–29]. In the general case of N-

modular redundancy, any positive number of replications of the same action are

utilized. In order for error correction by majority vote to be possible, the number is

typically assumed to be at least three, and it is also assumed to be an odd number

so that ties cannot occur.

It can also be coupled with the Isolation Design Flow (IDF), a design technique

used to guarantee the non-interference of functions within the same processor by

physically isolating the resources, thereby preventing fault propagation between

modules. During the placement phase of design, a fence must be used to separate

each module from the others, where fences are rows/columns of unused resources

that separate two isolated regions. The on-chip communication must utilize re-

liable channels, namely routes (nets connecting isolated modules) that connect

only one source and one destination (point-to-point connection) and traverse

4.2 Triple Modular Redundancy: explanation and implementation 41

only fence tiles separating the two isolated regions the route is connecting [30].

Fig. 4.3 TMR logic scheme

TMR check can be placed at many levels, but this project aimed to place it

on the very top of the hardware hierarchy: between multiple cores. This meant

that the NEORV32 processor, single core by default, had to be turned into a three

core processor. Triplicating the core has a few drawbacks, like occupying more

FPGA area and thus enhancing the probability that SEUs strike used parts of the

bitstream (fig 4.4 and fig 4.5).

42 Methodology

Fig. 4.4 Area occupied by Single-core NEORV32 on PYNQ Z2 in Vivado Design

Fig. 4.5 Area occupied by Triple-core NEORV32 on PYNQ Z2 in Vivado Design

However, it also has many advantages: the first and foremost is the enabling

of parallel computing, since different cores mean different, separate and au-

tonomous calculating machines. Errors on one core processing unit are not

reflected on the others, and can instead be detected and corrected through TMR

4.2 Triple Modular Redundancy: explanation and implementation 43

implementation.

Ideally, each core should have its own IMEM and DMEM, allowing full operational

autonomy. Such desirable configuration was not possible on the PYNQ Z2 how-

ever, due to its limited blockRAM resource (∼630 kB). Even if the simple matrix

test application (described above) was just 219 kB in size, it would have required

at least 3x256kB (min size of suitable IMEM) and it was not feasible.

That’s why the TMR module has been instantiated according to the figure 4.6:

Fig. 4.6 TMR implementation scheme

The gateway module regulates accesses to IMEM and DMEM and is polled

by the value exiting from the TMR block. By collocating the latter here, storing

corrupted data into memory is less likely to happen since, should only one core

be faulty anytime during an execution, the majority voter would ignore it.

With particular reference to the actual implemented TMR module in the NEORV32

processor, it is important to highlight that it does not only check for data equality

but it compares all fields of the NEORV32 data bus type:

bus.addr: 32-bit logic vector containing the access address.

bus.data: 32-bit logic vector containing data to be written.

bus.ben: 4-bit logic vector corresponding to the byte enable signal.

44 Methodology

bus.we: 1-bit single shot write request.

bus.re: 1-bit single shot read request.

bus.src: 1-bit access source marker (1 = instruction, 0 = data).

bus.priv: 1-bit signal set to indicate privileged access (in Machine mode).

bus.rvso: 1-bit signal set to indicate atomic operation.

This choice was made to realize the best possible TMR check, preventing the

possibility to be fooled by equal .data fields potentially hiding different addresses,

with one (or more) of those wrong.

Chapter 5

Results

Based on the results obtained in the testing phase, the following graphs, trends

and tables have been drawn up.

5.1 SEU-Induced Error Rate for Single-Core NEORV32

Processor

The GitHub opensource project NEORV32, in its default version, when tested led

to this error rate profile:

Fig. 5.1 Single-Core NEORV32 processor error probability trend

46 Results

Table 5.1 Single-Core NEORV32 processor error probability values

N° of simulated SEUs Corresponding Error Probability

0 0%

1 2.25%

4 10.01%

7 15.86%

10 24.07%

20 40.82%

30 52.3%

40 63.95%

50 75.54%

60 75.75%

70 79.14%

80 84.53%

90 87.03%

100 90.81%

110 94.09%

120 95.03%

150 95.57%

200 96.92%

As shown in graph 5.1 and in table 5.1, the default single-core version of the

NEORV32 processor is quite vulnerable to SEEs. It only takes about 30 SEUs to

produce more incorrect than correct results (P(30) = 52.3%), and even with just 10

SEUs there is still a 1 out of 4 possibility that errors occur (P(10) = 24.07%).

Defining an operational confidence interval for the NEORV32 processor can be

useful to understand its SEU resistance. Setting an upper bound threshold allows

to consider the processor serviceable as long as the error probability is contained

in the range [0,threshold]. It is essential to determine the processor failure point,

and enables fair comparisons between processors.

For this work, a 90% tolerance interval has been chosen: this meant classifying

the single-core NEORV32 as working up until 100 SEUs (where P(100) = 90.81%).

Further testing revealed a flattening trend, with an error rate almost saturating at

5.2 SEU-Induced Error Rate for Triple-Core NEORV32 Processor 47

97% when 200 SEUs strike the device. It will eventually converge towards a 100%

error probability, but it may require hundreds of impacts.

5.2 SEU-Induced Error Rate for Triple-Core NEORV32

Processor

The GitHub opensource project NEORV32, in its TMR-improved version, when

tested led to this error rate profile:

Fig. 5.2 Triple-Core NEORV32 processor error probability trend

48 Results

Table 5.2 Triple-Core NEORV32 processor error probability values

N° of simulated SEUs Corresponding Error Probability

0 0%

10 5.57%

20 12.83%

30 21.51%

40 25.94%

50 31.83%

60 41.96%

70 45.99%

80 53.24%

90 62.11%

100 63.82%

110 72.77%

120 73.22%

130 77.52%

140 79.58%

150 81.11%

160 81.89%

170 83.65%

180 84.04%

190 84.20%

200 84.39%

The triple-core NEORV32 with TMR implementation proved to be much more

robust against SEEs. As shown in graph 5.2 and in table 5.2, when compared to

the previous results there are three main differences:

Single Values Gain : injecting the same number of simulated SEUs, a significant

improvement stands out for each N value. Its prime example is the error

probability for N = 10, which is now about 1
5 of the one obtained with a single

core processor (5.57% against 24.07%). This indicates a 76.86% error rate

reduction, meaning that (for 10 SEUs) a 76.86% gain in processor robustness

and reliability has been obtained.

5.3 Comparison between the two profiles 49

A more detailed comparison between single values is presented in section

5.3.

Confidence interval : should the same threshold as before be chosen, i.e. 90%,

the processor operational interval would exceed 200 SEUs. Basically, the

acceptable working area would be way more than doubled. Such result

would not change much even in the case of an upper bound of 80%, since

the single-core version would become unserviceable after 70 SEUs whereas

the triple-core would resist until 140.

Saturation : last but not least, the single-core NEORV32 showed a saturating

trend towards 97%, whereas the same SEU values now lead to about 85%.

Even this version will, eventually, converge at 100% error probability but, if

hundreds of SEUs were required to so for the single-core processor, thou-

sands may instead now be needed.

5.3 Comparison between the two profiles

In the following table, the two error rates are compared (the interval considered is

the tolerable working range for the single-core processor):

Table 5.3 Comparison of error probabilities before and after TMR implementation

N° of simulated SEUs Error Probability Reduction (w.r.t. default value)

10 76.86%

20 68.57%

30 58.87%

40 59.44%

50 57.86%

60 44.61%

70 41.89%

80 37.02%

90 28.63%

100 29.72%

Average error reduction 50.35%

50 Results

As clearly depicted in table 5.3, the average error probability in the considered

interval, namely the single-core version confidence one, was slightly more than

halved by the core triplication and the TMR implementation. As a consequence,

the NEORV32 processor robustness and reliability has been slightly more than

doubled.

Chapter 6

Conclusions & Future Works

Space missions are dangerous by nature, but the human desire for knowledge and

exploration provides the courage to face challenges. In an environment already

full of risks though, it is crucial to have the best available technology. Along with

fast, reliable devices, this means having adequate protection against possible

menaces such as, in this case, cosmic rays.

These radiations can cause SEUs inside FPGA devices, leading to potential SEEs

and subsequent errors and failures. That is why it is of the utmost importance

to employ an hardware whose robustness against them is the brought to its max-

imum. Such result can be obtained through hardening implementation and,

among the several different applicable techniques, the Triple Modular Redun-

dancy one was chosen for this work.

The tested processor was the GitHub open source NEORV32 processor, based on

RISC-V ISA and described in VHDL. The testing process featured a Python script

programming the Xilinx PYNQ Z2 FPGA 10000 times, each time with a different

corrupted bitstream with a predefined amount of corrupted bits (simulated SEUs).

The program would then read the obtained result and would check it with the

correct, stored one, increasing the error counter in case of mismatches or impossi-

bility to communicate.

After 10000 tests, the number of simulated SEUs would increase by 10 and the

whole process would be repeated: this constituted the performed fault analysis.

Its result was an error rate profile, which showed the error probability related to

the amount of bitstream bit-flips.

The goal of this thesis was to analyze the NEORV32 processor error probability

52 Conclusions & Future Works

profile before and after TMR implementation, which took place at core level (i.e.

the processing core was chosen to be triplicated). Despite technical limitations,

such as not enough memory resources to allocate separate IMEMs and DMEMs

for each core, the project proved successful.

Such hardened version, in the working area of the default NEORV32 CPU, showed

an average >50% error rate reduction. As a consequence, the triple-core NEORV32

processor more than doubled its confidence interval, leading to minor error prob-

abilities and with higher numbers of SEUs needed to incur them.

This thesis lays the foundation for future, more in-depth analyses, which could

be performed according to a few suggestions based on the limitations of this work.

First of all, an FPGA with higher memory availability could be used to allocate

separate IMEMs and DMEMs for each core, in order to avoid the risk of common

errors due to shared resources corruption.

In addition to that, employing more cores for the modular redundancy control

could result in interesting improvements. However, it would come at the cost of

increased FPGA area and power consumptions, thus it should be carefully evalu-

ated whether or not to pursue this idea.

A promising technique could be implementing .tcl scripts, possibly written in

Python, to guarantee Isolation Flow constraints so that SEUs striking FPGAs may

not cause multiple SEEs. These are constituted by specific hardware paths that

must be followed to guarantee physical distance between different FPGA allocated

resources. It is a way of reducing the risk of multiple errors due to a single particle,

as a single radiation could not damage several sections thanks to actual module

distances.

Last but not least, a more detailed error rate profile representation could be pre-

sented: different types of programs could be tested, in order to stress several

processor sections, and errors could be categorized according to their nature

(communication, value, timing etc..).

References

[1] T. S. Nidhin, Anindya Bhattacharyya, R. P. Behera & T. Jayanthi. A review on
SEU mitigation techniques for FPGA configuration memory. 2017.

[2] E. Normand P.D. Bradley. Single event upsets in implantable cardioverter
defibrillators. 1994.

[3] AMD Xilinx. PYNQ Z2 - python productivity for zynq. https://www.xilinx.
com/support/university/xup-boards/XUPPYNQ-Z2.html.

[4] S. Azimi, C. De Sio, A. Portaluri, D. Rizzieri and L. Sterpone. A comparative
radiation analysis of reconfigurable memory technologies: FinFET versus
bulk CMOS. 2022.

[5] P. Bernardi, M. Sonza Reorda and D. Bortolato. Evaluating the effects of seus
affecting the configuration memory of an SRAMbased FPGA. 2004.

[6] Stephan Nolting. NEORV32 processor - GitHub. https://github.com/
stnolting/neorv32.

[7] AMD Xilinx. Correcting single- event upset through virtex partial reconfigu-
ration, 2000.

[8] Xilinx. PR user guide. 2012.

[9] P. Brinkley, Avnet, and C. Carmichael. SEU mitigation design techniques for
the XQR4000. 2000.

[10] G.-H. Asadi and M. B. Tahoori. Soft error mitigation for SRAM-based FPGAs.
2005.

[11] C. Carmichael. Correcting single-event upsets through virtex partial configu-
ration. 2000.

[12] E. Cetin, O. Diessel, and L. Gong. Improving fmax of FPGA circuits employing
DPR to recover from configuration memory upsets. 2015.

[13] I. Herrera-Alzu and M. L opez Vallejo. Design techniques for xilinx virtex
FPGA configuration memory scrubbers. 2013.

https://www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html
https://www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

54 References

[14] L.Sterpone and M. Violante. Hardening FPGA-based systems against SEUs:
A new design methodology. 2006.

[15] A. Evans, R. Wong, S. Wen and G. Chen. New insights into the impact of SEUs
in FPGA CRAMs. 2015.

[16] M. I. Masud. FPGA routing structures: A novel switch block and depopulated
interconnect matrix architectures. 1999.

[17] H. Ebrahimi, M. S. Zamani, and H. R. Zarandi. Mitigating soft errors in
SRAM-based FPGAs by decoding configuration bits in switch boxes. 2011.

[18] E. S. S. Reddy, V. Chandrasekhar, M. Sashikanth, and V. Kamakoti. Detecting
SEU-caused routing errors in SRAM-based FPGAs. 2005.

[19] H. R. Zarandi, S. G. Miremadi, D. K. Pradhan and J. Mathew. Soft error
mitigation in switch modules of SRAM-based FPGAs. 2007.

[20] S. Srinivasan, A. Gayasen, N. Vijaykrishnan and M. Kandemir. Improving
soft-error tolerance of FPGA configuration bits. 2004.

[21] H. Ebrahimi, M. S. Zamani and A. Razavi. A switch box architecture to
mitigate bridging and short faults in SRAM-based FPGAs. 2010.

[22] E. S. S. Reddy, V. Chandrasekhar, M. Sashikanth and V. Kamakoti. Novel CLB
architecture to detect and correct SEU in LUTs of SRAM-based FPGAs. 2004.

[23] E. Vacca. Study and development of a radiation-hardened implementation of
the RISC-V processor on reconfigurable devices. Master’s thesis, Politecnico
di Torino, 2021.

[24] S. Azimi, C. De Sio, D. Rizzieri and L. Sterpone. Analysis of single event effects
on embedded processor. 2021.

[25] C. De Sio, S. Azimi and L.Sterpone. PyXEL: Exploring bitstream analysis to
assess and enhance the robustness of designs on FPGAs. 2023.

[26] E. Vacca, C. De Sio and S. Azimi. Layout-oriented radiation effects mitigation
in RISC-V soft processor. 2022.

[27] C. De Sio. SEU evaluation of hardened-by-replication software in RISCV soft
processor. 2021.

[28] S. Azimi. A radiation-hardened CMOS full-adder based on layout selective
transistor duplication,. 2021.

[29] S. Azimi. A new single event transient hardened floating gate configurable
logic circuit. 2020.

[30] A. Portaluri, C. De Sio, S. Azimi and L. Sterpone. A new domains-based
isolation design flow for reconfigurable SoCs. 2021.

Appendix A

Python Fault Injection code

A few notes on the fault injection Python script:

• In lines 14/18 lies the Customization Section, where the user can set whether

to target only the bitstream active parts and how many tests to perform for

each injected-SEUs value. Moreover, it is possible to adjust start, end and

increment amounts of the number of simulated SEUs. Last but not least, a

randomseed parameter can be added to generate always the same sequence

of bits to be corrupted in the bitstream: this can be useful for more advanced

testing.

• Line 28 configures a timeout for the serial port used to communicate with

the NEORV32 processor: this proved mandatory in order to avoid never-

ending loops while waiting for the results to be read.

• Lines 65 and 66 were used once to create the bitstream viewable file, thanks

to PyXEL Python library.

• The exception clauses in lines 118 and 120 were implemented as a backup

plan to terminate communication with the processor: many times before

such implementation, especially with heavy corrupted bitstreams, the pro-

gram would exit abruptly or remain stuck in these sections.

• Note that lines 126 and 127 are necessary to restore the default, uncorrupted

bitstream before the following corruption and injection.

56 Python Fault Injection code

1 import serial
2 import shutil
3 import math
4 import os
5 import numpy as np
6 import random
7 from pyxel.core.xbitstream.xbitstream import Xbitstream
8 from pyxel.core.xtools.xxsct.xxsct import XXsct
9 from serial import EIGHTBITS

10 from serial import STOPBITS_ONE
11 from serial import PARITY_NONE
12

13 # MODIFIABLE VALUES
14 only_active_parts = True # select only parts actually written

and used in the bitstream
15 start = 0
16 stop = 250 # not reached
17 step = 10
18 n_attempts = 10000
19 # END OF CUSTOMIZATION
20

21 e = 0
22 a = 0
23 b = 0
24 test_number = 1
25 dim = (stop - start) / step
26 err = np.zeros(math.ceil(dim), dtype=int)
27 correct_results = np.array ([443, 428, 533, 603, 584, 725, 666,

647, 798])
28 ser = serial.Serial(timeout =0.1) # specified for readline
29 ser.port = ’COM3’
30 ser.baudrate = 19200
31 ser.bytesize = EIGHTBITS
32 ser.parity = PARITY_NONE
33 ser.stopbits = STOPBITS_ONE
34 ser.rtscts = False
35 ser.dsrdtr = False
36 ser.open()
37

38 shutil.copyfile(’C:/ Users/lupol/Desktop/PoliTO/TESI/
Backup_Bootloader_Bitstream/TripleCoreDesign_wrapper.bit’,

39 ’C:/Users/lupol/Vivado_project/TripleCore/
TripleCore.runs/impl_1/TripleCoreDesign_wrapper.bit’)

57

40

41 xsct = XXsct()
42

43 x = xsct.communicate(’connect ’)
44 print(x)
45

46 x = xsct.communicate(’target 1’)
47 print(x)
48

49 x = xsct.communicate(’source C:/users/lupol/ps7_init.tcl’)
50 print(x)
51

52 x = xsct.communicate(’ps7_init ’)
53 print(x)
54

55 x = xsct.communicate(’ps7_post_config ’)
56 print(x)
57

58 for k in range(start , stop , step):
59 temp_err = 0
60 for x in range(n_attempts):
61 results_array = np.zeros(9, dtype=int)
62 xbs = Xbitstream(
63 ’C:/Users/lupol/Vivado_project/TripleCore/

TripleCore.runs/impl_1/TripleCoreDesign_wrapper.bit’)
64

65 # create visual file to know used zones of the
bitstream

66 # xbs.cm2pbm(’C:/Users/lupol/Vivado_project/SingleCore/
SingleCore.runs/impl_1/SingleCore_design_wrapper.bit.pbm ’)

67

68 # Load .bit in-memory
69 xbs.remove_crc_from_tail () # disable crc control when

.bit is downloaded in the fpga
70 for i in range(k):
71 if only_active_parts:
72 select = random.randint(0, 4)
73 if select == 0:
74 a = random.randrange (600, 650)
75 b = random.randrange(0, 3232)
76 if select == 1:
77 a = random.randrange (1800, 2600)
78 b = random.randrange (1600, 1650)

58 Python Fault Injection code

79 if select == 2:
80 a = random.randrange (3200, 3900)
81 b = random.randrange(0, 3232)
82 if select == 3:
83 a = random.randrange (4300, 7500)
84 b = random.randrange(0, 3232)
85 if select == 4:
86 a = random.randrange (8700, 10007)
87 b = random.randrange(0, 3232)
88 else:
89 a = random.randrange(0, 10008)
90 b = random.randrange(0, 3232)
91

92 xbs.cmem.flip_bit(a, b) # modify .bit (in memory)
93

94 xbs.store_to(
95 ’C:/Users/lupol/Vivado_project/TripleCore/

TripleCore.runs/impl_1/TripleCoreDesign_wrapper.bit’)
96

97 # implementing RISCV on PYNQ Z2
98 x = xsct.communicate(
99 ’fpga C:/Users/lupol/Vivado_project/TripleCore/

TripleCore.runs/impl_1/TripleCoreDesign_wrapper.bit’)
100 print(x)
101

102 try:
103

104 read = ser.readline (45)
105

106 # Why max size in readline ()? Easy to explain
107 # Despite timeout being set , the program can

sometimes remain stuck here since the function
108 # readline () reads a variable number of bytes until

a newline is encountered. Internally ,
109 # it does this by calling read() repeatedly. The

timeout parameter applies individually to each read()
110 # call , but not to the overall readline () -- it

will keep trying to read() until it gets a newline ,
111 # no matter how long it takes. So no EOL (maybe due

to corruption) and program gets stuck forever
112

113 if ’Printing results ’.encode () in read:
114 for n in range (9):

59

115 try:
116 value = ser.readline (6) # same error

as above could happen here
117 results_array[n] = value
118 except Exception:
119 pass
120 except Exception:
121 pass
122 if not np.array_equal(results_array , correct_results):
123 temp_err += 1
124

125 # restoring the original bitstream before next
injection

126 shutil.copyfile(’C:/ Users/lupol/Desktop/PoliTO/TESI/
Backup_Bootloader_Bitstream/TripleCoreDesign_wrapper.bit’,

127 ’C:/Users/lupol/Vivado_project/
TripleCore/TripleCore.runs/impl_1/TripleCoreDesign_wrapper.
bit’)

128 print(’Executed test n. ’ + str(test_number) + ’ of ’ +
str(dim * n_attempts))

129 print(temp_err)
130 test_number += 1
131

132 err[e] = temp_err
133 e += 1
134

135 # saving data so far in case there is a problem not to
restart the analysis

136

137 with open(
138 ’C:/Users/lupol/Desktop/PoliTO/TESI/run_results ’
139 ’/

TEMP_SINGLE_CORE_matrix_multiplication_fault_injection_errors
.txt’,

140 ’a’) as f_temp:
141 print(’N. attempts per n. of simulated SEUs =’,

n_attempts , file=f_temp)
142 print(’Only active parts of the bitstream have been

corrupted =’, only_active_parts , file=f_temp)
143 print(’Start =’, start , file=f_temp)
144 print(’Stop (not reachable) =’, stop , file=f_temp)
145 print(’Step =’, step , file=f_temp)
146 print(’N. of errors =’, err , file=f_temp)

60 Python Fault Injection code

147 print(’Execution worked until k =’, k, file=f_temp)
148

149 print(’DONE’)
150 print(’Results obtained: n. of errors is equal to ’)
151 print(err)
152 with open(’C:/ Users/lupol/Desktop/PoliTO/TESI/run_results/

SINGLE_CORE_matrix_multiplication_fault_injection_errors.txt
’,

153 ’a’) as f:
154 print(’N. attempts per n. of simulated SEUs =’, n_attempts ,

file=f)
155 print(’Only active parts of the bitstream have been

corrupted =’, only_active_parts , file=f)
156 print(’Start =’, start , file=f)
157 print(’Stop (not reachable) =’, stop , file=f)
158 print(’Step =’, step , file=f)
159 print(’N. of errors =’, err , file=f)
160

161 # removing temporary file
162

163 if os.path.exists(’C:/Users/lupol/Desktop/PoliTO/TESI/
run_results ’

164 ’/
TEMP_SINGLE_CORE_matrix_multiplication_fault_injection_errors
.txt’):

165 os.remove(’C:/ Users/lupol/Desktop/PoliTO/TESI/run_results ’
166 ’/

TEMP_SINGLE_CORE_matrix_multiplication_fault_injection_errors
.txt’)

167 ser.close ()

Listing A.1 Python code to perform fault analysis

Appendix B

NEORV32 TMR Module VHDL code

Showing how the core triplication had taken place and how the different signals

had been connected seemed unnecessary: however, a quick look at the VHDL

TMR entity and behaviour felt way more interesting:

• As shown in figure 4.6, the TMR module was connected to the three cores:

this is why lines 48/50 assign to the different core-specific response signals

the value obtained by the NEORV32 gateway.

• Line 73 implements an extra check: if all three cores show different results,

than none of them is forwarded to the memories and a request termination

is performed.

• An extra control signal - tmr_err - has been defined: it allows the system to

know a priori whether everything is working fine or not. In fact, it is set to

1 only when the TMR module does not recognize two values as equal and

thus detects the presence of errors.

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4

5 library neorv32;
6 use neorv32.neorv32_package.all;
7

8 entity neorv32_bus_tmr is
9 port (

62 NEORV32 TMR Module VHDL code

10 -- global control --
11 clk_i : in std_ulogic;
12 rstn_i : in std_ulogic;
13 -- core complex ports --
14 core_a_req_i : in bus_req_t;
15 core_a_rsp_o : out bus_rsp_t;
16 core_b_req_i : in bus_req_t;
17 core_b_rsp_o : out bus_rsp_t;
18 core_c_req_i : in bus_req_t;
19 core_c_rsp_o : out bus_rsp_t;
20 -- system port --
21 sys_req_o : out bus_req_t;
22 sys_rsp_i : in bus_rsp_t
23);
24 end neorv32_bus_tmr;
25

26 architecture neorv32_bus_tmr_rtl of neorv32_bus_tmr is
27

28 signal tmr_err : std_ulogic; -- in future could be used to
detect discrepancies

29

30 function cmp_bus_req_f(x : bus_req_t; y : bus_req_t) return
boolean is

31 begin
32 if (x.addr = y.addr) and
33 (x.data = y.data) and
34 (x.ben = y.ben) and
35 (x.we = y.we) and
36 (x.re = y.re) and
37 (x.src = y.src) and
38 (x.priv = y.priv) and
39 (x.rvso = y.rvso) then
40 return true;
41 else
42 return false;
43 end if;
44 end function cmp_bus_req_f;
45

46 begin
47

48 core_a_rsp_o <= sys_rsp_i;
49 core_b_rsp_o <= sys_rsp_i;
50 core_c_rsp_o <= sys_rsp_i;

63

51

52

53

54 write_tmr: process(rstn_i , clk_i)
55 begin
56 if (rstn_i = ’0’) then
57 sys_req_o <= req_terminate_c;
58 tmr_err <= ’1’;
59 elsif rising_edge(clk_i) then
60 if (cmp_bus_req_f(core_a_req_i , core_b_req_i) = true) or
61 (cmp_bus_req_f(core_a_req_i , core_c_req_i) = true) then
62 sys_req_o <= core_a_req_i;
63 tmr_err <= ’0’;
64 elsif (cmp_bus_req_f(core_b_req_i , core_a_req_i) = true) or
65 (cmp_bus_req_f(core_b_req_i , core_c_req_i) = true)

then
66 sys_req_o <= core_b_req_i;
67 tmr_err <= ’0’;
68 elsif (cmp_bus_req_f(core_c_req_i , core_a_req_i) = true) or
69 (cmp_bus_req_f(core_c_req_i , core_b_req_i) = true)

then
70 sys_req_o <= core_c_req_i;
71 tmr_err <= ’0’;
72 else -- discrepancy detected
73 sys_req_o <= req_terminate_c; -- no system bus access is

performed at all
74 tmr_err <= ’1’;
75 end if;
76 end if;
77 end process write_tmr;
78

79

80

81 end architecture neorv32_bus_tmr_rtl;

Listing B.1 VHDL definition and architecture of the TMR entity

Appendix C

C Test Program

This is a simple C two 3x3 integer matrix multiplication program, with only a

couple highlights:

• Lines 11 and 17 are used as safety check to communicate via UART with the

NEORV32 processor.

• Line 65 and 66, on the other hand, actually handle information communica-

tion through UART channel.

1 #include <neorv32.h>
2

3 #include <stdio.h>
4

5 #define BAUD_RATE 19200
6

7 int main() {
8

9 // capture all exceptions and give debug info via UART
10 // this is not required , but keeps us safe
11 neorv32_rte_setup ();
12

13 // setup UART at default baud rate , no interrupts
14 neorv32_uart0_setup(BAUD_RATE , 0);
15

16 // check available hardware extensions and compare with
compiler flags

17 neorv32_rte_check_isa (0); // silent = 0 -> show message if
isa mismatch

65

18

19 int results [9];
20

21 int c[3][3];
22

23 int a[3][3] = {
24 {10, 11, 12},
25 {14, 15, 16},
26 {13, 19, 17}
27 };
28

29 int b[3][3] = {
30 {11, 12, 13},
31 {15, 16, 17},
32 {14, 11, 18}
33 };
34

35 int p = 0;
36

37 for (int i = 0; i < 3; ++i) {
38 for (int j = 0; j < 3; ++j) {
39 c[i][j] = 0;
40 }
41 }
42

43 for (int i = 0; i < 3; ++i) {
44 for (int j = 0; j < 3; ++j) {
45 for (int k = 0; k < 3; ++k) {
46 c[i][j] += a[i][k] * b[k][j];
47 }
48 }
49 }
50

51

52 neorv32_uart0_puts("Printing results \n"); // now we can start
printing the results

53

54 for (int i = 0; i < 3; i++) {
55 for (int j = 0; j < 3; j++) {
56 results[p] = c[i][j];
57 p ++;
58 }
59 }

66 C Test Program

60

61 char buffer [16];
62

63 for (int i = 0; i < 9; i ++) {
64 // printf ("%d \n", results[i]);
65 snprintf ((char *)buffer , sizeof(buffer), "%d \n", results[i])

;
66 neorv32_uart0_puts(buffer);
67 }
68

69

70 return 0;
71 }

Listing C.1 C program to stress the NEORV32 processor

Acknowledgements

Vorrei ringraziare tutti quelli che mi sono stati accanto in questi impegnativi 5

anni di università. In primis vorrei ringraziare mia madre, in quanto si è sempre

sacrificata affinchè io potessi avere il meglio e dare il massimo, e per il costante

supporto.

Un grazie sincero va ai miei fratelli, Fabrizio Ferruccio e Stefano, e ai miei nipoti,

Federico Elena e Sofia, per avermi sempre fatto sentire accettato e anzi desiderato.

E avermi dato esempi costanti, in qualsiasi settore. Un abbraccio anche a tutta

la mia famiglia, zii e cugini, per essere sempre stati al mio fianco (tra questi un

pensiero speciale va a zia Anna, zia Lea e zio Gianpaolo).

Un profondo grazie va alla mia ragazza, Valeria, per avermi sempre sostenuto e

stimolato a dare di più. Una vigorosa stretta di mano va poi ai miei amici, per

avermi accompagnato e fatto distrarre e divertire ogni volta che c’era occasione,

e per essermi invece stati vicini quando le cose andavano male. Anna, Fabio,

Roberta, Marta, Peppe e Gaia (tra i tanti): grazie davvero!

Un grazie più "tecnico" va invece a Stephan Nolting, creatore del "programma"

alla base di questa tesi, il NEORV32. Senza la tua disponibilità e gentilezza non

sarei riuscito a venire a capo di tutti i problemi e le difficoltà che hanno costellato

questo lavoro: grazie dal profondo del cuore.

Infine vorrei ringraziare il mio relatore, il professore Luca Sterpone, ed i suoi collab-

oratori, tra cui Corrado de Sio e Daniele Rizzieri, per avermi dato quest’opportunità

ed accompagnato in questa fantastica esperienza.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Field Programmable Gate Arrays
	2.2 History of FPGAs
	2.3 AMD Xilinx PYNQ Z2: the FPGA used for this work
	2.4 Bitstream generation
	2.5 Impact of Single Event Upsets on FPGAs
	2.6 System on Chip technology
	2.7 NEORV32 Processor

	3 State of Art
	3.1 RISC-V vs ARM: same goals, different strategies
	3.1.1 Processor ISA Differences
	3.1.2 Architectural Characteristics
	3.1.3 Licensing policies
	3.1.4 Advantages of adopting RISC-V solutions

	3.2 Bitstreams and hardening techniques
	3.2.1 Partial Reconfiguration (PR) with Error Correction Code (ECC)
	3.2.2 Scrubbing
	3.2.3 Mitigation in Routing Resources
	3.2.4 Mitigation in Logic Resources

	3.3 NEORV32 Processor Main Components
	3.3.1 Core vs CPU
	3.3.2 Instruction Memory
	3.3.3 Data Memory
	3.3.4 Caches
	3.3.5 Bus Switch
	3.3.6 Core Triplication

	4 Methodology
	4.1 Execution of a Fault Analysis
	4.2 Triple Modular Redundancy: explanation and implementation

	5 Results
	5.1 SEU-Induced Error Rate for Single-Core NEORV32 Processor
	5.2 SEU-Induced Error Rate for Triple-Core NEORV32 Processor
	5.3 Comparison between the two profiles

	6 Conclusions & Future Works
	References
	Appendix A Python Fault Injection code
	Appendix B NEORV32 TMR Module VHDL code
	Appendix C C Test Program

