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Abstract

Nowadays the computation of trigonometric functions has great significance in
various scientific areas, such as robotics, signal and image processing, 3-D graphics,
and communication systems. But usually, it is performed with software routine
or with the architecture of the processor using floating-point instructions. This
may present long latency and slow down the program execution by spending the
majority of the time in long trigonometric computation. Improvement in this can
be achieved by using a dedicated unit for the calculation of trigonometric identities.
Thus, this thesis aims to implement this computation with dedicated hardware
to have high performances in terms of frequency, clock cycles, and instructions
using the algorithm known as COordinate Rotation DIgital Computer (CORDIC).
It is an iterative algorithm with which it is possible to compute trigonometric
functions such as sine, cosine, hyperbolic sine, hyperbolic cosine, exponential and
logarithmic functions, and multiplication and division operations. By taking initial
the argument of the function as input, along with two initial values that are already
established by the algorithm for each function. The algorithm computes the result
in the same way, independently of the type of function selected. The operations
performed in an iteration depend on the sign of the argument of the function
chosen, and with each iteration, increasingly accurate values for the functions are
produced and the argument is updated. The algorithm terminates in the case
in which the argument reaches zero. However, it may take many iterations to
reach this value, and this could be a problem depending on the task at hand.
Thus an optimum number of iterations is required. For this reason, the number of
iterations chosen for all the implementations developed in this thesis is 5, intended
as a good compromise between the accuracy of the results and the latency needed
for the computation. In this work, the binary format IEEE-754 single-precision
floating-point is used for all the implementations. The initial objective consists of
implementing an architecture for CORDIC that can operate at the frequency of the
order of 1GHz to be compatible with modern processor cores. To reach this target,
a pipeline stage has been gradually added to the starting architecture in the area
identified as a critical path, generating in this way different versions of the same
architecture. For each version the area, frequency, and latency have been computed,
using the logic synthesis tool Synopsys Design Vision, and the simulation tool
Modelsim. To enhance the latency of the iterative approach, a different version of
the architecture is proposed, and it is an unrolled version of the basic CORDIC
algorithm. To test the proposed design in a real scenario a RISC-V processor core
is utilized. For this reason, PULPino, an open-source single-core microcontroller
system from the literature, has been chosen based on 32-bit RISC-V cores. The



same trigonometric functions have been computed on PULPino with and without
CORDIC architecture, computing the number of clock cycles and the number of
instructions in both cases. The results demonstrated that increasing the number of
trigonometric functions to calculate, PULPino using CORDIC architectures takes
fewer clock cycles and instructions than using its computation resources, but the
cost is paid in terms of area.
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Summary

Nowadays the computation of trigonometric functions has great importance in
various scientific areas, such as communication systems, robotics, digital signal
processing, software radio, 3-D graphics. But usually, it is performed with the
processor using floating-point instructions or in software using routines. But this
can slow down the program execution, because the processor could spend majority
of the time in long trigonometric computations. For this reason the need emerged
to assign the calculation of trigonometric identities to a dedicated hardware unit.
Thus, this thesis work aims to implement this computation with dedicated hardware
to reach high performances in terms of clock cycles, instructions, and frequency
using the algorithm known as COordinate Rotation DIgital Computer (CORDIC).
It is an iterative algorithm with which it is possible to compute trigonometric
functions such as sine and cosine, exponential and logarithmic functions, hyperbolic
functions such as hyperbolic sine and hyperbolic cosine, and multiplication and
division operations. This algorithm operates in two ways, known as Rotation
mode, that is the mode chosen in this thesis, and Vectoring mode, but for both
the general behavior is the same: at first, the initial argument of the function is
taken as input, along with two initial values that are already established by the
algorithm for each function. The operations performed in an iteration depend
on the direction of the rotation di, which can have as values either +1 or -1.
This direction in Rotation mode is equal to the sign of the value in the iteration
taken by the argument of the function chosen, instead in Vectoring mode this
direction is equal to the opposite value of the sign of the product of the values
in the iteration taken by the other two functions. At each iteration, increasingly
accurate values for the functions are produced and the argument is updated. The
algorithm terminates in the case in which the argument reaches zero or a value
close to zero. However, it may take many iterations to reach this value, becoming a
possible problem for the application in which it works. Thus an optimum number
of iterations is required. In this thesis, the number of iterations chosen for all the
implementations developed is 5, and it constitutes a good compromise between
the accuracy of the results and the latency needed for the computation. Moreover
for all the implementations is used the binary format IEEE-754 single-precision
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floating-point format. The initial objective consists of implementing an architecture
for CORDIC that can work at the frequency of the order of 1 GHz in order
to be compatible with modern processor cores. Thus, the architectures in the
literature were studied, and among them one chosen that focused on working at
high frequency and minimizing the area. But this architecture was appropriate for
two complement format and fixed-point format. Therefore it was adapted to the
floating-point format, and the most important change was to replace the present
asynchronous binary adder with an asynchronous floating-point adder. So the
latter was implemented and then was subsequently tested with the UVM testbench.
Then the maximum clock frequency and the area of this floating-point CORDIC
architecture were measured using the logic synthesis tool Synopsys Design Vision,
and the maximum frequency reached by this architecture was equal to 251.26MHz.
From the critical path analysis, it was identified that the floating-point adder was
the component that introduced the largest contribution to the delay. Thus the
pipeline stages were gradually introduced within the floating-point adder, and
the CORDIC architecture constituted by floating-point adders with 4 pipeline
stages reached a frequency equal to 641.03MHz. In addition, soliciting Synopsys
to make optimizations on the architecture, the latter could achieve a frequency
of 970.87MHz. But this architecture has a defect, it consists of a high latency:
for this type of architecture, pipelined floating-point adders are not used to their
full efficiency, in other words, it is not possible to wait for N clock cycles as many
as the number of pipeline stages introduced, to compute the sums in the first
iteration and then begin the computation of the sums of subsequent iterations
each clock cycle. This is because a given data dependency is present, since each
iteration starts the computations with the values of the previous iteration. So
in this case the pipelined floating-point adders are useful only for reducing the
critical path of the circuit, and not for doing parallel operations. So, as suggested
in the literature, an unrolled version of the CORDIC architecture was implemented,
obtained by instantiating the previous CORDIC one, making some changes, a
number of times equal to the number of iterations chosen, which is five. The
unrolled CORDIC architecture with four pipeline stages reached a maximum clock
frequency of 621.12MHz, and with Synopsys optimization, this frequency reached
a value equal to 813MHz. Moreover, this architecture has a latency smaller than
the CORDIC one by an amount equal to 7 clock cycles, and using this type of
architecture it is possible to start the computation of new trigonometric functions
at each clock cycle. But using the unrolled version has a cost in terms of area,
since its area is 5 times larger than the cordic version. To test the proposed design
in a real scenario, a RISC-V processor core is utilized. For this reason, PULPino,
an open-source single-core microcontroller system from the literature, has been
chosed based on 32-bit RISC-V cores. Thus PULPino was compiled, and then
an APB bus was created to connect the CORDIC architectures to the system.
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Then the same trigonometric functions have been computed on PULPino with
and without CORDIC architecture, computing the number of clock cycles and
the number of instructions in both cases. In particular, internally PULPino has
performance counters, that compute the event that is specified, such as clock cycles,
instructions, jumps, and branches. To compute the number of clock cycles and
instructions, it is sufficient to access these counters, and starting from zero begin
counting the clock cycles and instructions at the beginning of the computation of
functions, then stop these counters as soon as the functions have been computed,
thus reading the values of these counters. From the results obtained, using the
two types of architectures implemented PULPino employs the same number of
instructions, which is approximately half the number of instructions employed to
use the floating-point mathematical functions internal to PULPino. Regarding the
clock cycles measured on PULPino, performance counters were not used during
the calculation of functions with the CORDIC architectures, because the number
read by the counter also counts the clock cycles spent to communicate with the
peripheral. Using the internal mathematical functions on PULPino, the calculation
of five trigonometric functions takes 245 clock cycles. Instead, using Unrolled
CORDIC architecture for the calculation of the first function requires 30 clock
cycles, and then other 4 clock cycles to compute the remaining four functions.
Therefore the Unrolled CORDIC architecture can be considered a valid alternative
to PULPino’s mathematical functions.
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Chapter 1

Introduction

Nowadays the computation of trigonometric functions has great relevance in var-
ious places such as digital signal processing, robot control, software radio, math
processors, navigation systems [1], wireless communications [2]. Normally their
values are calculated with software routine or using the units of calculation of the
processor, but this negatively affects the performance in terms of speed of the whole
architecture, just as reported in [3]. In fact, to compute trigonometric functions
the processor can spend the majority of the time in long computations, causing a
slowdown of the program execution. Therefore it is very important that it works
together with a hardware architecture dedicated to the calculation of trigonometric
identities, to reach higher performance.

This thesis aims to design this hardware architecture. Generally, various methods
exist in literature to compute hardware functions such as sine, cosine, hyperbolic
sine, hyperbolic cosine, exponential, and logarithmic functions. Some methods use a
lookup table(LUT) or memory approach [4], others use techniques such as Taylor’s
series, but most of these use COordinate Rotation DIgital Computer (CORDIC)
algorithm [1, 2, 3, 5, 6, 7, 8, 9]. Lookup table or memory approach consists in
storing the results of the chosen function into a memory. Therefore at each entrance
angle corresponds a value of the memory. The hardware implementations based on
this approach are simple and fast, but they have problems related to accuracy and
area efficiency. With small memory, the results are inaccurate, although increasing
the size of the memory their values are more accurate, but it also makes the
hardware implementation inefficient in terms of the area. The technique based on
Taylor’s series consists of calculating the functions using the related Taylor’s series.
For example, the sine function can be computed as shown in the equation 1.1

sin(x) =
∞Ø

n=0

(−1)n

(2n + 1)!x
2n+1 = x − x3

3! + x5

5! ... (1.1)

where x denotes the angle. To implement this method an adder, subtractor,
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multiplier, and divider is required. To have higher accuracy, both higher factorial
terms and higher powers are required. Therefore this method is slow and requires
a large area 1-4.

CORDIC is an iterative algorithm. Starting from the argument of the function
and two initial values, that are already established by the algorithm for each
function, it computes at each iteration a more accurate value of the function. It is
explained in detail in 2.3. Its advantage over other methods is that it uses adders,
subtractors, shifters, small LUT, and not multipliers and dividers. In this way, the
architecture is fast and efficient in area[1]. For these good reasons, the algorithm
chosen in this thesis is CORDIC. The binary format IEEE-754 single-precision
floating-point is used for all the implementations. The initial objective consists of
implementing an architecture for CORDIC that can operate at the frequency of
the order of 1GHz to be compatible with modern processor cores. Thus CORDIC
architectures found in the literature [1, 2, 5, 7] have been very helpful in figuring out
which type of implementation was most appropriate for working at high frequency.
These architectures presented had significant latency, thus more solutions have
been explored [6], [7]. This thesis offers CORDIC architectures that can work at
the frequency of the order of 1GHz and have low latency.
Moreover, these architectures are tested on PULPino [10], an open-source single-
core microcontroller system based on 32-bit RISC-V cores.
The remaining of this thesis is organized as follows:

1. Chapter 2 presents the Background: Here floating point format, floating point
addition, and the CORDIC algorithm are explained in detail. Moreover, all
the scientific articles studied are summarized, and the differences among the
architecture present in the literature will be presented.

2. In chapter 3 the proposal architectures will be explained. They comprise the
pipelined CORDIC and the unrolled CORDIC. The chapter also details the
implementation strategies of the proposed CORDIC.

3. In chapter 4, a RISC-V core called the PULPino platform from the literature
is presented. Including all the steps to build PULPino on the server; how the
proposed architecture is connected to PULPino how it is executed and how
the results about clock cycles and number of instructions are computed.

4. In chapter 5 the results are presented for all the versions of the CORDIC
implemented. Also, a comparison with state-of-the-art is provided.

5. In chapter 6 the conclusions of the whole work are given. In addition, some
future works on this topic are also proposed.
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Chapter 2

Background

2.1 Floating point format
IEEE-754 single-precision floating-point format has 32 bits, divided into sign,
exponent, and mantissa. The sign is the Most Significant Bit (MSB), and it is
positive if its value is equal to zero logic, otherwise, it is negative. The exponent
is unsigned and consists of 8 bits, ranging from position 30 to 24. Its minimum
decimal value is zero, its maximum decimal value is 255. The mantissa is formed
by 23 bits, ranging from position 23 to 0. Its decimal value is greater than or equal
to zero and it is lower than one. A representation of this format is given in figure
2.1.

Figure 2.1: IEEE-754 single-precision floating-point format

The decimal value corresponding to the binary representation is shown by the
following expression

decimal value = −1Sign × 2Exp−Exp_bias × (1 +
23Ø

n=1
b23−n 2−n) (2.1)

of which
Exp_bias = 2Num_bits_Exp −1 − 1 = 28−1 − 1 = 127 (2.2)

For example, the number 01000000101000000000000000000000 has

• sign bit equal to zero logic, therefore the sign is positive

• the decimal value of the exponent is 129
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• the decimal value of the mantissa is equal to 0.25

Using the equation 2.1, this binary value is equal to 5.
Instead, to convert a decimal number to the floating-point format, it is necessary
to follow these steps:

1. Convert decimal numbers in binary fixed-point format

2. Represent the number obtained in binary scientific notation

3. Convert the number in IEEE-754 single-precision floating-point format, making
sure both to add the exponent of the number with the exponent bias to get
the new exponent and to consider that the new mantissa is composed of all
the bits that are to the right of the fixed point.

As an example, the floating point representation of the number 88.6 is shown below
88.6 fixed−point−−−−−−−→ 1011000.10011001100110011

1011000.10011001100110011 binary scientific notation−−−−−−−−−−−−−−→ 1.01100010011001100110011 × 26

1.01100010011001100110011 × 26 IEEE−754−−−−−−→ 01000010101100010011001100110011

2.2 Floating point addition
To add two floating point numbers, these steps must be followed:

1. At each mantissa a bit equal to one must be added in the MSB position,
bringing their size to 24 bits.

2. Both numbers must have the same exponent. Otherwise, for the number
that has a lower exponent, it needs to make a shift right of its mantissa of a
quantity equal to the magnitude of the difference between the two exponents.
In this case, the exponent of the final result is equal to the value of the bigger
exponent, but it can change in the next steps.

3. If the two numbers have the same sign, of course, is the case of the addition,
and the sign of the final result is equal to the sign of one of the two operands.
Therefore the two mantissas can be added. If the carry_out of the sum is
equal to one, the sum is shifted to the right by one position and the exponent
of the final result is increased by one.

4. If the two numbers have different signs, the mantissa of the positive number
is subtracted from the mantissa of the negative number. The sign of the final
result is equal to the opposite value of the carry-out. If the value of carry-out
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is zero, it is need to change the sum with its opposite value. In a binary
system, this means changing each bit of the sum with the bit of the opposite
value and then adding one to this modified sum. Moreover, if the MSB of
the sum is equal to zero, it is needed both to decrease one the value of the
exponent of the final result and to shift to the left the sum until the MSB bit
of the sum is equal to 1.

5. To get the final result, it needs to concatenate the MSB, exponent, and the
range of bits of the sum between 22 and 0 positions computed in the previous
steps.

For a better understanding of these steps, an algorithmic state machine(ASM)
chart is represented in figure 2.2
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Figure 2.2: Floating point adder ASM chart
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In the previous steps and ASM chart, the following cases are not included:

1. One operand or both operands are equal to zero. In this case, with both
operands zero, the sum is zero, otherwise, it is equal to the non-zero operand.

2. One operand or both operands have values like +infinite, -infinite, NaN.
In this case, the possible combinations of the operands with their respective
sums are represented by the table 2.1

operand1 operand2 sum

+∞ - +∞
- +∞ +∞

+∞ +∞ +∞
+∞ −∞ NaN
−∞ - −∞

- −∞ −∞
−∞ −∞ −∞
−∞ +∞ NaN
NaN - NaN

- NaN NaN
+∞ NaN NaN
NaN +∞ NaN
−∞ NaN NaN
NaN −∞ NaN
NaN NaN NaN

- all the numbers except special values

Table 2.1: Behavior of a floating-point sum

3. Overflow. This is the case in which the sum of two positive numbers exceeds
the positive limit of 3.4 · 1038, or the sum of two negative numbers exceeds the
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negative limit of −3.4 · 1038. The correct result is fixed to the corresponding
limit.

4. Underflow. This is the case in which the difference of two numbers exceeds
the positive limit of 1.18 · 10−38 or the negative limit of −1.18 · 10−38. Also in
this case the correct result is fixed to the corresponding limit.

These four cases have been studied together in the thesis work [11], and the
implementation of the floating-point adder is inspired by this work, and of course
it has changed.

2.3 CORDIC
The COordinate Rotation DIgital Computer (CORDIC) algorithm is an iterative
algorithm, with which it is possible to compute transcendental functions such
as trigonometric functions, logarithmic and exponential functions, square roots,
multiplications, and divisions.
In particular, in this thesis work the architectures use it to compute sine and cosine
functions.
It was initially designed to determine the exact coordinates of a vector after its
rotation by an alpha angle in the Cartesian plane, as represented in figure 2.3

Figure 2.3: Rotation of a vector in the Cartesian plane

In mathematics there are equations that can calculate these coordinates, and they
are known as Givens Rotations, described by the system of equations 2.3, in
which x(i) and y(i) are the coordinates before the rotation, α(i) is the angle of
rotation, x(i+1) and y(i+1) are the coordinates got after the rotation.

8



Background

x(i+1) = x(i) · cos(α(i)) − y(i) · sin(α(i))
y(i+1) = y(i) · cos(α(i)) + x(i) · sin(α(i))

(2.3)

The coordinates of the vector related to the final destination are associated with
the trigonometric functions having alpha as the angle. Since the rotation of the
vector from position A to position B is not so easy in a single step, this algorithm
proposes to approximate this rotation in a sequence of rotations, with each of them
having its own angle.
It is possible to rewrite the system of equations 2.3, making a trigonometric
transformation, in the system represented in 2.4

x(i+1) = x(i))−y(i)·tan(α(i))√
1+tan2(α(i))

y(i+1) = y(i))−x(i)·tan(α(i))√
1+tan2(α(i))

(2.4)

But these formulas cannot be used yet, because there is the tangent function, and
the algorithm was precisely designed to calculate functions just like the tangent.
Thus it is possible to make a first simplification in the equations 2.4, and it consists
of removing the two denominators, getting the system of equations shown in 2.5
and known as pseudo-rotationsx(i+1) = x(i)) − y(i) · tan(α(i))

y(i+1) = y(i)) − x(i) · tan(α(i))
(2.5)

Without these denominators, the computations related to the coordinates of the
final destination will be easier, but the modulus of its vector will be larger than
expected. This effect is shown in figure 2.4
In pseudo-rotations it is possible to make another simplification: it consists of
selecting only those angles whose tangent can be easily calculated. In other words,
this means that tan(α(i)) is equal to 2−i, and therefore α(i) can be computed as
tan−1(2−i). After these simplifications, the final system of equations related to the
coordinates of the final destination is described in 2.6

x(i+1) = x(i)) − y(i) · 2−i · di

y(i+1) = y(i)) + x(i) · 2−i · di

z(i+1) = z(i) − di · α(i)
(2.6)

In this system, di is the direction of the rotation, which can be clockwise or
counterclockwise and its values are equal to +1 or -1. A third equation is present
within the system and computes z(i+1): this is the amount of rotation in degrees
that the moving vector lacks in order to reach the final destination. The main
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Figure 2.4: Pseudo-rotations effect

advantage of using the system of equations 2.6 is that there is no multiplication to
be done because di changes only the signs into the equations, and the factor 2−i is
a simple right shift.
CORDIC operates in two modes to compute transcendental functions, known as
Rotation mode and Vectoring mode. The Rotation mode uses the formulas
described in 2.6 and it has the following features:

1. the initial position of the vector is along the x-axis, therefore y(0) = 0

2. it stops iterations in case the vector has reached exactly the final destination
or the amount of rotation required to reach it, is approximately zero

3. the direction of the rotation di is equal to the sign of z(i)

A graphical representation of the vector after two iterations is shown in figure 2.5
The only thing left to do is to compensate for the error Km, described in 2.7,
generated by each iteration as a consequence of the first simplification. 2.5

Km =
mÙ

i=1

1ñ
1 + tan2(α(i))

= 0.6073 (2.7)

To solve it, mathematically it is enough to multiply the coordinates x and y got in
the last iteration by Km.
Also the Vectoring mode uses the formulas described in 2.6 and it has these features:

1. the initial amount of rotation is zero, therefore z(0) = 0
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Figure 2.5: Vector rotation in Rotation mode

2. it stops iterations in case the value of the y-coordinate is exactly or approxi-
mately equal to zero.

3. the direction of the rotation di is equal to the opposite value of the sign of the
product between x(i) and y(i)

Both modes arrive at the same results: the calculated x-coordinate corresponds to
the cosine function, instead, the calculated y-coordinate corresponds to the sine
function.
In general, the following system of equations is used to calculate different types of
functions 

x(i+1) = x(i)) − µ · y(i) · 2−i · di

y(i+1) = y(i)) + x(i) · 2−i · di

z(i+1) = z(i) − di · α(i)
(2.8)

with
µ ∈ {−1,0,1} (2.9)

Considering the error factors, generated by the simplifications made to derive the
system in 2.8 and shown in 2.10,


K = 1.6468
1
K

= 0.6073
K ′ = 0.8282
1

K′ = 1.2075

(2.10)
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the table 2.2 summarizes the settings to be followed to calculate the main functions
correctly.

Functions Mode µ α(i) Initializations

cos(β), sin(β) Rotation 1 tan−1(2−i) x = 1
K

, y = 0, z = β

Multiplication Rotation 0 2−i y = 0, x = number1,
z = number2

cosh(β), sinh(β) Rotation -1 tanh−1(2−i) x = 1
K′ , y = 0, z = β

tan−1(β) Vectoring 1 tan−1(2−i) x=1, z=0, y = β

Division Vectoring 0 2−i z = 0, x = number1,
y = number2

tanh−1(β) Vectoring -1 tanh−1(2−i) x=1, z=0, y = β

Table 2.2: Functions setting

Obviously, not all transcendental functions are represented in the table 2.2 because
some of them can be derived from functions already present. For example, the
exponential function can be computed as the sum of the hyperbolic sine and
hyperbolic cosine, or the tangent function can be obtained as the ratio between the
sine and cosine functions. Interestingly, in Rotation mode, approximation errors
are solved by simply initializing the variables with their respective error factors.
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2.4 Existing works

Some articles in the literature have been studied to understand the various methods
used to compute transcendental functions and their corresponding implementations.
The table 2.3 describes the main information found in the articles.

Algo Date Dtype Op Area Power Latency Frequency

[mm2] [mW] [MHz]
CORDIC [1] 2010 Compl2 Sen - - 400ns -

Cos
CORDIC [2] 2018 FixedP Sen - - 120ns 197.6

Cos
Sen−1

Cos−1

Tan−1

CORDIC [8] 2012 FloatP Sen - - - -
Cos

Tan−1

CORDIC [7] 2019 FloatP Sen - 48.75 14ck -
Cos 48.75 14ck
Exp 48.65 10ck
Log 49.92 18ck

CORDIC [9] 2013 FloatP Sen - - - -
Cos

CORDIC [5] 2017 FixedP Senh - - 120ns 195.48
Cosh

Arcsenh
Arccosh
Arctanh

CAM [4] 2015 FixedP Sen - 8 - -
CORDIC [6] 2002 FixedP - - - - -

CORDIC [3] 2021 FixedP Sen - - 1ck -
Cos

Table 2.3: Articles Overview
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The table 2.4 shows, for each method, the functions that can be computed, the
resources expended in terms of hardware such as multipliers, adders, and shifters,
and also the clock cycles spent and the throughput got.

Algorithm Ops App Ops per Cycle Cycles Th

Mul Sum Sh

CORDIC Sen [1], [2], [8] , [7] 0 3 3 N 1
TCK

Cos [9] ,[5], [6], [3]
Tan
Exp
Log
Senh
Cosh
Tanh

CAM Sen [4] 0 0 0 1 1
TCK

Cos
Tan
Exp
Log
Senh
Cosh
Tanh

N is the number of iterations

Table 2.4: Algorithms Overview

The CAM-based method [4] was not used because its implementation might require
large memory sizes in order to obtain more accurate results. Moreover, with this
type of implementation, it is necessary to fill memory with new values each time a
different function is computed. Instead, CORDIC-based implementation makes it
easier the computation of different transcendental functions because it is sufficient
to direct the architecture to calculate the corresponding equation shown in 2.8
and initialize the inputs correctly, as represented in the table 2.2. In the articles
studied, the main architectures based on CORDIC are differentiated according to
their intended goal. Typically, most of them fall into two types: the first type aims
to have high frequency and small area, while the second type focuses on reducing
latency. Their implementations are depicted respectively in figures 2.6 and 2.7
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Figure 2.6: CORDIC architecture focused on area and frequency optimization [7]

Figure 2.7: CORDIC architecture focused on latency optimization [7]
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In these architectures, ROM contains α(i) values described in the table 2.2 It is
easy to see that the second architecture shown in figure 2.7 is an unrolled version of
the first architecture shown in figure 2.6, and it is obtained by duplicating the first
architecture a number of times equal to the established number of iterations. Since
the goal of this thesis work is to implement a CORDIC architecture capable of both
working at high frequency on the order of 1GHz and employing as few clock cycles
as possible to compute multiple transcendental functions, both architectures were
chosen as a reference from which to start. But they work well with fixed-point and
two complement formats, not for floating-point. For this reason, both architectures
have been adapted to the floating-point format, and all the details about this are
described in the following chapter.
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Chapter 3

Architectures proposal

As already anticipated, first the architecture in figure 2.6 was adapted to the
floating-point format. To succeed in this, the following changes have been made:

1. ROM has been replaced by a lookup table (LUT).

2. Obviously both the inputs x0, y0, z0, and the values stored in the LUT are in
floating-point format.

3. Binary adders have been replaced by floating-point adders.

4. In the floating-point format, divisions for a number by a power of base two
cannot be done by adopting the same method used for binary numbers, that
is by shifting the number to the right by as many positions as the value of the
exponent. Instead, they are done simply by subtracting the exponent of the
floating-point number from the exponent of the power of two. Therefore, it is
necessary to replace the right shifters with binary subtractors.

Moreover, the number of iterations performed is counted by a simple binary counter.

3.1 Floating point adder
The floating point adder implementation has been developed taking as reference
the previous ASM chart represented in figure 2.2. The whole implementation of the
asynchronous floating point adder is represented by the figures 3.1, 3.2, 3.3, 3.4.

17



Architectures proposal

Figure 3.1: Asynchronous floating-point adder(part 1)
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Figure 3.2: Asynchronous floating-point adder(part 2)
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Figure 3.3: Asynchronous floating-point adder(part 3)
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Figure 3.4: Asynchronous floating-point adder(part 4)
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It is composed of the following components:

1. The adder named ADDER1, used to make the difference between the two
exponents, to establish which of the two is greater or if they are equal. It is
important to note that this adder has a parallelism equal to nine, and not
to eight like the exponents. There is an extension of one bit and it is the
zero logic because the exponents are unsigned binary numbers. In this way,
both become numbers with positive signs and thus it is possible to compute
correctly the difference and its sign.

2. The multiplexers MUX1 and MUX2, and they have an extension of one
bit. Their inputs are on 24 bits and not on 23 bits because a bit equal to one
is added in the MSB position at each mantissa. Of course, only one of the
two mantissa is sent to the first barrel shifter because in the worst case, only
the exponent of one addend is lower than the exponent of the other addend.

3. The RIGHT_SHIFTER, that is a barrel shifter with the shift_right signal
fixed at logical one. It used to shift to the right its input by a value equal to
the absolute value of the difference of the exponents.

4. The multiplexers MUX3 and MUX4, whose outputs correspond respec-
tively to the outputs of MUX1 and the RIGHT_SHIFTER if the two addends
have the same sign. Otherwise, one of them will pass the mantissa belonging
to the addend with the negative sign with all its bits replaced by those of
opposite logical value. Their selection signals have been implemented simply
using a process and the cases treated are described in detail in the following
table 3.1

sign_diff sign_diseq sel_mux3 sel_mux4

0 0 0 0
0 1 SIGN1 SIGN2
1 0 0 0
1 1 SIGN2 SIGN1

Table 3.1: Behavior of the selection signals sel_mux3 and sel_mux4

5. A second adder called ADDER2, with which it is possible to make two
operations: the sum of the two mantissa, if the addends have the same sign.
In this case, the carry-in of the adder is set equal to zero; the subtraction of
the two mantissa. Of course, the carry-in of the adder is set equal to one.
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6. The component called SUM_MODIFYING. It accepts the output signal
sum of the adder2, its c_out, and the signal sign_diseq.
In the case in which sign_diseq is equal to one and c_out is zero, its output
will be equal to the value of the sum generated by adder2 but with opposite
sign. As previously explained, this means that each bit of the sum is replaced
with its opposite logical value, and the number is added to one. Otherwise,
its output will be equal to the sum without any changes.

7. The component called MY_INF_OR_NAN_ABN. It is possible that
each input of the floating-point adder can have special values as +∞, or −∞
or NaN. In the case in which both addends have special values like NaN or
+∞ or −∞, the output signal abn_case is put equal to logical one .
Instead, if only the addend1 has a special value, the binary value of the output
signal inf_or_NaN is put equal to 01, otherwise if only the addend2 has a
special value, the binary value of the output signal inf_or_NaN is put equal
to 10.
In order to make its behavior clearer, the table 3.2 summarizes all the infor-
mation already mentioned about this component.
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number1 number2 result abn_case inf_or_NaN
+∞ - +∞ 0 01

- +∞ +∞ 0 10
+∞ +∞ +∞ 1 00
+∞ −∞ NaN 1 00
−∞ - −∞ 0 01

- −∞ −∞ 0 10
−∞ −∞ −∞ 1 00
−∞ +∞ NaN 1 00
NaN - NaN 0 01

- NaN NaN 0 10
+∞ NaN NaN 1 00
NaN +∞ NaN 1 00
−∞ NaN NaN 1 00
NaN −∞ NaN 1 00
NaN NaN NaN 1 00

- - - 0 00

- all the numbers except special values

Table 3.2: Behaviour of the component INF_OR_NAN_ABN

8. The component called EXPONENT_UPDATER. This is a fundamental
unit in the floating point adder because it determines the right value of the
final exponent in all the possible cases. To implement this unit, the ASM chart
represented in figure 2.2 has been taken as a reference, and all its cases in
which the final exponent changes have been identified. To these, the four cases
previously explained in the section 2.2 have been added. The whole block has
been implemented in a behavioral way, and it corresponds to a sequence of
cases, reported below:

1) With the signal abn_case equal to one, the possible results of the sum
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can have values such as +∞, −∞, NaN. These three values have all bits
of the exponent equal to one, and therefore the final exponent has the
binary value 11111111.

2) If the two addends have different signs the difference between their ex-
ponents is equal to zero and the signal exp_quantity received from the
NORMALIZER has an integer value of 24, this is the case of a sum of
two addends with opposite signs. Therefore the binary value of the final
exponent is 00000000.

3) With the signal inf_or_NaN equal to 01 or 10, just as in the first case,
the possible results of the sum are +∞, −∞, NaN. Therefore, the final
exponent is equal to 11111111.

4) This is the case of overflow, identified by the c_out of ADDER2 equal to
logical one, one of the two exponents is equal to 11111110 and the two
addends have the same sign. The final exponent is equal to 11111110.

5) This is the case of underflow, identified by the c_out of ADDER2 equal
to logical one, both exponents are equal to 00000001 and the two addends
have different signs. The final exponent is equal to 00000001.

The remaining cases have been implemented simply by translating the ASM
chart conditions into the respective logic signals, which corresponds of course,
to various values that the final exponent can take on. All these cases are
summarized in the table 3.3

sign_diff sign_diseq c_out MSB_SUM final exponent

0 0 0 - exp1
0 1 - 1 exp1
1 0 0 - exp2
1 1 - 1 exp2
0 0 1 - exp1 + 1
1 0 1 - exp2 + 1
0 1 - 0 exp1 - exp_quantity
1 1 - 0 exp2 - exp_quantity

- don’t care

Table 3.3: Values of the final exponent in the remaining cases.
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9. The component called NORMALIZER. It is another fundamental compo-
nent, and with its work, it is possible to compute the final mantissa correctly
and contribute to the calculation of the final exponent by cooperating with the
component EXPONENT_UPDATER via the exp_quantity signal.Its outputs
are: the signals shift_sig_right and shift_sig_left, used to control the direc-
tion of the shifting operation of the component BARREL_SHIFTER, which
will shift by an amount indicated by the other output signal shift_quantity;
the signal exp_quantity, sent to the component EXPONENT_UPDATER,
and corresponds to the quantity that must be subtracted in the computation
of the final exponent because this is the same quantity that the NORMAL-
IZER calculated as the left shift number to correct the mantissa; the signal
from_normal, that is the selection signal of MUX5. With this signal, the
NORMALIZER can decide to continue the computation of the final mantissa
choosing between the output of the SUM_MODIFYING component and the
mantissa mant_changed generated by itself; the signal mant_changed, that is
the correct mantissa related to special cases, such as the presence of overflow
or underflow, or one of the two addends has +∞ or −∞ as values, or both
addends have opposite signs and the same modulus equal to ∞ or NaN. In
detail, all cases handled by the NORMALIZER are described below:

1) With the signals abn_case and sign_diseq equal to the logical one, and the
sum generated by ADDER2 equal to zero, this is the case in which both
addends have opposite signs and the same modulus equal to ∞ or NaN.
The result of this sum is NaN, and therefore the mantissa mant_changed
has all its bits equal to the logical one and from_normal is put equal to
the logical one.

2) With inf_or_NaN equal to 01, the result of the floating-point sum has
the same value as the first addend. Therefore mant_changed is composed
of a logical one in the MSB position followed by the same bits present in
the mantissa of the first addend. Similarly, with inf_or_NaN equal to
10, mant_changed is composed of logical one in MSB position followed
by the same bits present in the mantissa of the second addend. In both
cases, from_normal is put equal to the logical one.

3) The two cases of overflow and underflow are identified by the same condi-
tions described previously for the EXPONENT_UPDATER component.
In the first case, all the bits of mant_changed are equal to the logical one,
in the second case they are equal to the logical zero. Also in these two
cases, from_normal has a logical one as a value.

4) If the two addends have the same signs and the c_out of the ADDER2
is equal to the logical one, as described in the previous ASM chart, this
means that the sum_changed must be shifted to the right by one position.
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Therefore shift_quantity has an integer value equal to one, and the signal
shift_sig_right has logic one as value.

5) With signal_diseq equal to the logical one and MSB_SUM equal to the
logical zero, a check is performed on sum_changed, which should have a
logical one as MSB. The NORMALIZER calculates the position of the
first logical one starting at the MSB position in the direction of the LSB.
It counts from zero and increases by one unit each time, not finding the
logical one, it moves to the next position. For example, if the logical
one is at bit 21, the NORMALIZER will match the number two as the
position. This number is transmitted to the EXPONENT_UPDATER
via the exp_quantity signal and to the BARREL_SHIFTER via the
shift_quantity signal along with the shift_sig_left signal put equal to
the logical one, so that sum_changed can be shifted to the left and the
exponent can be decremented, thus obtaining the correct mantissa and
exponent.

One consideration need to be made regarding the implementation of the
NORMALIZER: initially, this component was implemented in a behavioral
way as done for the EXPONENT_UPDATER, that is, describing a sequence
of cases, and for each case, the corresponding outputs were well defined. But
in the next step of analyzing the frequency of the floating-point adder, the
NORMALIZER introduced a major delay in the critical path, severely limiting
the working frequency of the adder. Thus the NORMALIZER was implemented
with a structural architecture, obtained by translating all the cases explained
in detail previously into logic gates, and multiplexers, and also using a new
component named ONE_DETECTOR_32BIT. This component accepts the
24-bit sum_changed signal and its output is on 8 bits, corresponding to the
binary value of the position of the first logical one. This output is computed
in a behavioral way using a series of when to check which bit of the input is
at the logical one. At each of these when’s corresponds to a certain value of
its output. The following figures show the architectures implemented for each
output of the NORMALIZER.

27



Architectures proposal

Figure 3.5: Implementation of from_normal output
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Figure 3.6: Implementation of shift_sig_left output
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Figure 3.7: Implementation of shift_sig_right output

Figure 3.8: Implementation of exp_quantity output
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Figure 3.9: Implementation of shift_quantity output
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Figure 3.10: Implementation of mant_changed output
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10. The multiplexer MUX5, whose selection signal is controlled by the NOR-
MALIZER. Its output can be equal to the sum_changed signal or mant_changed
signal.

11. the second BARREL_SHIFTER, used to correct the mantissa. Both its
shift direction control signals and the amount to be shifted are sent by the
NORMALIZER. All bits of its output signal, except the MSB, correspond to
the final mantissa.

12. The logic function implemented to calculate the final sign has been derived
simply by identifying the ASM chart conditions for which the final sign has
certain values.

Therefore, the final result of the floating-point adder is given by the concatenation
of the sign, exponent, and mantissa computed by the described architecture.

3.2 Testing floating-point adder using UVM
To be sure that the implemented floating-point adder works for any value of the
inputs, it was tested by UVM testbench. Its structure is represented in figure 3.11
with a block diagram.

Figure 3.11: UVM testbench

This particular testbench uses an object-oriented approach, in which every compo-
nent is a class. Its general behavior is as follows: at the output of the Sequencer,
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there is a flow of random stimuli. These stimuli are converted by the driver into
transactions, which are translated into pin signals by the interface. Subsequently,
the interface translates the pin signals generated by the DUT into transactions,
which arrive at the monitor input. The latter performs the inverse function of
the driver and the translated values arrive at the Scoreboard input, which groups
the prediction task and the evaluation task. The first task is performed by its
internal component called predictor, which takes the same input transactions that
are sent to the DUT and produces the expected output transactions. Instead, the
evaluation task is performed by its internal component called comparator, which
compares the expected and actual outputs. If both values are equal to each other, a
match message is produced, otherwise, a mismatch message is generated, as shown
in figure 3.12

Figure 3.12: Match and mismatch messages generated during UVM testbench

It is necessary to make one consideration about this testbench: most of the time,
the expected and actual outputs are equal to each other, but in some cases, such
as the one shown in figure 3.12, there are mismatches because the actual outputs
have different digits than expected starting from the seventh decimal digit. The
reason is related to the precision of the floating-point format, that is between 6
and 7 digits. Therefore, mismatches of this kind were considered as matches.

3.3 CORDIC architecture
After designing the floating-point adder, the CORDIC architecture has been
implemented, represented in figure 3.13
As already anticipated, the number of iterations chosen is five, and the outputs
of the X and Y registers correspond respectively to the cosine and sine functions.
The ASM chart of this architecture, from which the control unit can be derived
immediately, is shown in figure 3.14

34



Architectures proposal

Figure 3.13: CORDIC architecture
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Figure 3.14: ASM chart CORDIC architecture that uses asynchronous floating-
point adders
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The only disadvantage of using this architecture is related to its working frequency.
This is equal to 251.26MHz, so rather far from the frequency of the order of 1GHz
that, instead, is desired. The interesting aspect of its critical path is that precisely
the floating-point adder introduces most of the delay. Thus, pipeline stages were
gradually introduced within the floating-point adder to increase the CORDIC
architecture’s working frequency, until a frequency close to 1GHz was achieved.

3.4 Pipelined 32-bit floating-point adders
For each pipeline stage added, special emphasis was placed on the frequency of both
the modified floating-point adder and the CORDIC architecture that integrates
it, so as to identify the sufficient number of pipeline stages. A total of four
pipeline stages were added to the floating-point adder thus generating four versions
of the floating-point adder and the CORDIC architecture. The changes made
regarding the parts that constitute the floating-point adder are represented from
figure 3.15 to figure 3.27 . The colored lines present within the figures are registers.
Obviously, a different control unit is needed than previously used, since this time the
floating-point adders are pipelined. For this reason, a new ASM chart, obtained by
modifying the previous one shown in figure 3.14, was designed. It is represented in
figure 3.28 and it is suitable for both CORDIC architectures that use asynchronous
floating-point adders and those that use pipelined floating-point adders.
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Figure 3.15: Floating-point adder with one pipeline stage(part 1)

38



Architectures proposal

Figure 3.16: Floating-point adder with one pipeline stage(part 2)
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Figure 3.17: Floating-point adder with one pipeline stage(part 4)
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Figure 3.18: Floating-point adder with two pipeline stages(part 1)
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Figure 3.19: Floating-point adder with two pipeline stages(part 2)
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Figure 3.20: Floating-point adder with two pipeline stages(part 4)
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Figure 3.21: Floating-point adder with three pipeline stages(part 1)
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Figure 3.22: Floating-point adder with three pipeline stages(part 2)
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Figure 3.23: Floating-point adder with three pipeline stages(part 4)
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Figure 3.24: Floating-point adder with four pipeline stages(part 1)
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Figure 3.25: Floating-point adder with four pipeline stages(part 2)
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Figure 3.26: Floating-point adder with four pipeline stages(part 3)
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Figure 3.27: Floating-point adder with four pipeline stages(part 4)

50



Architectures proposal

Figure 3.28: ASM chart CORDIC architecture that uses both asynchronous and
pipelined floating-point adders
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The CORDIC architecture that uses floating-point adders with 4 pipeline stages,
being synthesized with appropriate optimizations, reaches a frequency of 970.87
MHz. Therefore the objective related to the frequency has been achieved. But this
architecture has a defect, it consists of a high latency: for this type of architecture,
pipelined floating-point adders are not used to their full efficiency, in other words,
it is not possible to wait for N clock cycles as many as the number of pipeline
stages introduced, to compute the sums in the first iteration and then begin the
computation of the sums of subsequent iterations each clock cycle. This is because
a given data dependency is present that cannot be resolved since each iteration
starts the computations with the values of the previous iteration. So in this case
the pipelined floating-point adders are useful only for reducing the critical path of
the circuit, and not for doing parallel operations. In this way, considering that the
CORDIC architecture with floating-point adders with 4 pipeline stages takes 37
clock cycles to compute sine and cosine functions, it would take 154 clock cycles
to compute consecutively the same functions of four different values, considering
that two clock cycles are required to bring the control unit start signal to logical
zero and then to logical one before starting the computation of a new function.
So, as previously anticipated, in order to greatly reduce the latency related to the
computation of consecutive sine and cosine functions, while trying to maintain a
high-frequency level, the architecture in figure 2.7 was taken as a reference. Thus,
an unrolled version of the CORDIC architecture was produced.

3.5 Unrolled CORDIC architecture
In figure 3.29 is represented the Unrolled CORDIC architecture. This architecture
behaves exactly like the one analyzed so far in figure 3.13. It is evident that this
architecture was obtained by instantiating the CORDIC one, making some changes,
a number of times equal to the number of iterations chosen, which is five. Compared
with the CORDIC architecture, each instance introduces the following changes at
the architecture level:

1. It is no longer necessary to use either the counter or the LUT because each
instance has already fixed the number of its iteration and the corresponding
value of the LUT.

2. Also the multiplexers at the input of the registers are no longer needed, since
the outputs of each instance go to the input of the registers that follow them,
except of course those of the last instance since two of them are the outputs
of the circuit.

3. This architecture has no control unit. In fact, the load signals of registers X,
Y, and Z are linked to the start signal, so that with the start equal to logical
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zero, the architecture does not accept values that occur at its inputs. Instead,
the remaining registers keep their load signal fixed at a logical one. The reset
signal of each register corresponds to the reset signal of the entire architecture.
The multiplexer selection signals of each instance are handled by the MSB of
the output of its Z register.

4. Since there is no control unit, the done signal is obtained by sampling the
start signal from a consecutive series of flip-flops whose number is such that
the corresponding done signal arrives at the clock cycle following the one in
which the architecture outputs are ready.

As with the CORDIC architecture, five versions were produced for this unrolled
CORDIC architecture, each with a different type of floating-point adder. The
main advantage of this architecture is the absence of the previously identified data
dependency, and thus it is possible to start at each clock cycle the computation of
new values for the sine and cosine functions. Considering consecutive calculations of
these functions, each version of this architecture introduces both a latency reduction
of 7 clock cycles compared to that obtained with the corresponding version of the
CORDIC architecture for the first calculation and a latency of one clock cycle
for all remaining calculations. So, taking the previous example of the CORDIC
architecture that takes 154 clock cycles to calculate 4 different values of the sine
and cosine functions, this architecture with the same type of floating-point adders
takes 33 clock cycles. However, the main disadvantage of this architecture is related
to its large area.
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Figure 3.29: Unrolled CORDIC architecture
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Chapter 4

RISC-V PULPino

The proposed designs have been tested using a RISC-V processor core. In particular
PULPino, an open-source single-core microcontroller system, based on 32-bit
RISCV-V cores, has been employed. Its structure is represented with a block
diagram shown in figure 4.1

Figure 4.1: PULPino structure [12]
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In this system can be used either RISCY core or zero-riscy core: RISCY core
has 4 pipeline stages, and it can support integer instruction set, multiplication
instruction set extension, and also compressed instructions. Moreover, it can be
configured to have single-precision floating-point instruction set extension [10];
zero-riscy core has 2 pipeline stages, and it can support integer instruction set,
multiplication instruction set extension, and compressed instructions. Since the
RI5CY core supports floating-point extensions, it is the core chosen in this thesis
work. PULPino has two separate single-port RAMs for data and instructions, and
a boot ROM in which a boot loader is stored, and it can load a program from an
external flash device using SPI protocol. As interconnections, there are AXI and
APB buses, which have 32-bit wide data channels. The AXI type is connected by
bridges to both the core and the two RAMs. Through another bridge, information
on the AXI is transmitted to the APB type and vice versa. The APB type is used
to connect peripherals to the system and to enable communication between the
two. PULPino has peripherals such as GPIO, UART, I2C, and SPI. Moreover, it
has also an advanced debug unit, with which the core and IO memory areas can
be accessed, and the two RAMs via JTAG.

4.1 Building PULPino
As described in [10], PULPino has the following requirements:

1. Modelsim in a recent version, reasonably versions equal or greater than 10.2c.

2. Python2 version equal or greater than 2.6.

3. In case Verilator is used, it is necessary that its version is 3.884.

4. CMake version equal or greater than 2.8.0.

5. Riscv-toolchain, specifically riscv32-unknown-elf-gcc compiler is needed. It is
suggested to use the custom RISC-V toolchain from ETH.

Both during the building phase of PULPino and during the simulation phase of the
CORDIC architecture, it was very useful to take the thesis work [13] as a reference.
The toolchain was downloaded from the link [14]: the files and folders present in
the link were copied into a folder using the git clone command followed by the link,
and then in the same folder the command make was executed, as shown below

1 g i t c l one https : // github . com/pulp−plat form / ri5cy_gnu_toolchain
2 make
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After, in a new folder PULPino was downloaded from GitHub at link [10], using
the git clone command again and followed by the link.

1 g i t c l one https : // github . com/pulp−plat form / pulp ino

Then, to clone git sub repositories and update them, the python file update-ips.py
of PULPino was executed

1 . / update−i p s . py

In case running this file an error is generated due to the missing yaml module, it is
possible to fix it by first downloading it through the following commands

1 python3 −m venv venv3 .12
2 . / venv3 .12/ bin / pip i n s t a l l pyyaml==3.12

and then entering its path in the python file in which it is called. In addition,
running this python file, other errors may also be generated caused by the difference
between the version of python in which PULPino was written and the one present
on the platform on which it was downloaded. In this case, it is necessary to
replace the code, indicated as an error, with the equivalent code suitable for the
python version present on the platform. Then, inside the sw folder, the build
folder was created. It is necessary to copy inside the build folder one of the four
cmake-configure bash scripts that are in the sw folder, modify it, and run it so that
it is possible to do simulations using Modelsim. These four bash scripts are the
following:

1. cmake_configure.riscv.gcc.sh , which selects the RISCY cores and equips the
system with PULP-extensions and RV32IM support. Moreover, it is necessary
to check that the GCC march flag is set to "IMXpulpv2".

2. cmake_configure.riscvfloat.gcc.sh , which selects the RISCY cores and equips
the system with PULP-extensions and RV32IMF support. Moreover, it is
necessary to check that the GCC march flag is set to "IMFDXpulpv2".

3. cmake_configure.zeroriscy.gcc.sh , which selects the zero-riscy cores and equips
the system with RV32IM support. Moreover, it is necessary to check that the
GCC march flag is set to "RV32IM".

4. cmake_configure.microriscy.gcc.sh , which selects the zero-riscy cores and
equips the system with RV32E support. Moreover, it is necessary to check
that the GCC march flag is set to "RV32I".
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Moreover, inside all four bash files there is RVC flag, and only by setting it equal
to one it is possible to have the compressed instructions.
cmake_configure.riscvfloat.gcc.sh is the bash file chosen, because then riscy can
have the floating point extensions and therefore PULPino can easily communicate
with architectures, such as CORDIC, that use the floating-point format. Within
this file, must be indicated the riscv32-unknown-elf-gcc compiler path, using the
export command. Finally, inside the build folder, it is enough to run the following
commands to complete the compilation of PULPino and the libraries it uses.

1 . / cmake_configure . r i s c v f l o a t . gcc . sh
2 make vcompile

Obviously, if vhd files are added to PULPino, as in the case of CORDIC architecture,
their names have to be inserted with the command vcom inside vcompile_pulpino.sh
at the path vsim/vcompile/rtl, before typing make vcompile command, since with
this last command vcompile_pulpino.sh file is executed and consequently the vhd
files are compiled. It may happen that, with the make vcompile command, errors
may be generated, indicating that Modelsim commands such as vmap or vlog are
not found. To resolve them, it is enough to indicate on the shell, using the export
command, the path of these commands.

4.2 Connecting CORDIC architectures to PULPino
with APB bus

After compiling PULPino, it was first necessary to connect CORDIC architectures to
it and then begin the testing part. Since the added architectures can be considered
as peripherals, a dedicated APB bus was created for them. This type of bus is
composed by the following signals:

• HCLK, it is the peripheral clock.

• HRESETn, it is the asynchronous reset.

• PADDR, it is the address that will be read or written. It is on 12 bits.

• PWDATA, it corresponds to the data to be written and it is on 32 bits.

• PWRITE, with its value equal to the logical zero, it corresponds to the read
signal, otherwise with its value equal to logical one it is equivalent to the write
signal. This signal is synchronous.

• PSEL, it selects the peripheral, in case it is equal to the logical one.
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• PENABLE, it enables the peripheral.

• PRDATA, it corresponds to the data to be read and it is on 32 bits.

• PREADY, it is the ready signal, and it indicates that the peripheral is ready
to communicate or not.

• PSLVERR, it corresponds to the error signal that the peripheral sends to the
core, for example in the case in which the core wants to access an address
inside the peripheral where there is no register.

In order to implement it on PULPino, and thus define read and write operations
aimed at the CORDIC architecture, the followed steps were followed:

1. Inside a subfolder of rtl folder, called includes, there is the file apb_bus.sv
. In this file, the memory space dedicated to the CORDIC peripheral has
been defined, and it is between the addresses 0x1A108000 and 0x1A108FFF.
Moreover, the number of peripherals has been updated from 9 to 10.

2. In the file periph_bus_wrap.sv placed in rtl folder, the master associated with
the new peripheral has been defined. To this master were given, as start and
end addresses, the two described in the previous step.

3. Inside apb subfolder of ips folder, a new folder has been created with a
dedicated file for the new APB bus in it, defining it as follows: first 7 addresses
have been defined for the inputs and outputs of the CORDIC architecture,
which are 0x410, 0x474, 0x4D8, 0x53C, 0x5A0, 0x604, 0x668. Each of them
will be associated respectively with the input angle, the initialization value
of the variable x, the initialization value of the variable y, the start signal
for the architecture, the output value computed for the cosine, the output
value computed for the sine, the done output signal; then for this bus were
added as outputs the signals that will be sent to the CORDIC architecture,
which are the angle, the initialization values of the variables x and y, and
the start signal. As inputs the signals that will be received by it, which
are the two functions computed by the architecture and the done signal;
Successively, write operation was defined. In particular, with the peripheral
ready for communication, if the signals PSEL, PENABLE, PWRITE are
at the logical one, the value of PADDR is checked. If its value is equal to
0x410, the output signal corresponding to the angle will be associated with
the PWDATA signal. Instead, if its value is equal to 0x474, the output signal
corresponding to the initialization value of the variable x will be associated
with the PWDATA signal. Or, if its value is equal to 0x4D8, the output signal
corresponding to the initialization value of the variable y will be associated
with the PWDATA signal. Otherwise, if its value is equal to 0x53C, the
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output signal corresponding to the start signal will be associated with the
LSB of PWDATA signal; finally, the read operation was defined. With the
peripheral ready for communication, if the signals PSEL and PENABLE are
at the logical one and PWRITE is at the logical zero, the value of PADDR
is checked. If its value is equal to 0x5A0, PRDATA will be associated with
the input signal corresponding to the cosine function. If its value is equal to
0x604, PRDATA will be associated with the input signal corresponding to the
sine function. If its value is equal to 0x668, PRDATA will be associated with
the input signal corresponding to the done signal on 32 bits.

4. The new bus was instantiated in the file peripherals.sv, placed in rtl folder.

5. In the file pulpino_top.sv, placed in rtl folder, the CORDIC architecture was
instantiated, taking care to connect the outputs of the dedicated APB bus
with the inputs of the CORDIC architecture, and connecting the outputs of
the latter with the inputs of the APB bus.

4.3 Testing CORDIC architectures on PULPino
Since the Modelsim version used for the simulations is 64-bit, first the presence
of the flag -64 was checked inside the CMakeSim.txt file, located in the apps
subfolder of the sw folder. Moreover, to be sure that Modelsim uses the toolchain
gcc and not its own, it is necessary to add to the file vsim.tcl, located at path
vsim/tcl_files/config, under the line -voptargs=+̈acc -suppress 2103¨, the line
$VSIM_FLAGS -dpicpppath /usr/bin/gcc", as shown below

1 −voptargs=\"+acc −suppres s 2103\ " \
2 $VSIM\_FLAGS −dpicpppath / usr / bin / gcc "

Then, inside the apps subfolder of sw folder, a new folder called cordic was created,
with inside the C file cordic.c used for the test and present in the Appendix section,
and also the file called CMakeLists.txt containing the following instruction

1 add_appl icat ion ( c o r d i c c o r d i c . c )

in which cordic is the name of the program to be run, and obviously cordic.c is
the name of the C program to be compiled. So as to make PULPino aware of the
existence of this folder and these created files, it is enough to add the name of
the folder in the CMakeLists.txt file present inside the apps subfolder of sw folder,
using add_subdirectory command, as shown below
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1 add_subdirectory ( c o r d i c )

In order to run simulations related to the CORDIC architecture on the Modelsim
GUI, it is sufficient to run the command
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Chapter 5

Results and Discussion

In this section, the results of the previous work are presented. The logic synthesis
tool Synopsys Design Vision and the simulation tool Modelsim were used. First,
the maximum clock frequency of each floating-point adder was calculated, so as to
figure out the number of pipeline stages needed to achieve a frequency on the order
of 1GHz. The table 5.1 shows the periods and frequencies obtained with Synopsys
and the latencies of each floating-point adder.

Floating point adders Period [ns] Frequency [MHz] Latency [cycles]

Without pipeline stages 2.84 352.1 0
With one pipeline stage 2.08 480.8 1
With two pipeline stages 1.58 632.9 2

With three pipeline stages 1.52 657.9 3
With four pipeline stages 1.58 632.9 4

Table 5.1: Period, frequency and latency of floating point adders

From table 5.1 the floating-point adder with three pipeline stages has its maximum
clock frequency larger than the frequencies of the other floating-point adders, but
its value is still not close to 1GHz. Thus, the same frequencies were calculated
using compile_ultra command of Synopsys, which optimizes the distribution of
instantiated registers in architectures, and the corresponding results obtained are
shown in table 5.2
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Floating point adders Period [ns] Frequency [MHz] Latency [cycles]

Without pipeline stages 2.34 427.35 0
With one pipeline stage 1.59 628.93 1
With two pipeline stages 1.33 751.88 2

With three pipeline stages 1.34 746.27 3
With four pipeline stages 1.23 813.01 4

Table 5.2: Period, frequency and latency of floating point adders with com-
pile_ultra

From table 5.2 it is clear that the floating-point adder with four pipeline stages can
reach the highest clock frequency, and its value of 813 MHz is close to the target
of 1GHz set. Then also for the CORDIC architectures, with each characterized
by a different type of floating-point adders, the period and the maximum clock
frequency obtained with Synopsys and the latencies were calculated, shown in table
5.3

Floating point adders Period [ns] Frequency [MHz] Latency [cycles]

Without pipeline stages 3.98 251.26 12
With one pipeline stage 1.81 552.49 22
With two pipeline stages 1.84 543.48 27

With three pipeline stages 1.55 645.16 32
With four pipeline stages 1.56 641.03 37

Table 5.3: Period, frequency and latency of CORDIC measured

From the table 5.3 the CORDIC architecture that uses floating-point adders with
three pipeline stages reaches the highest frequency, but the target is 1GHz. For
this reason the same frequencies were calculated using compile_ultra command of
Synopsys, thus obtaining the results shown in table 5.4
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Floating point adders Period [ns] Frequency [MHz] Latency [cycles]

Without pipeline stages 2.58 387.60 12
With one pipeline stage 1.37 729.93 22
With two pipeline stages 1.35 740.74 27

With three pipeline stages 1.39 719.42 32
With four pipeline stages 1.03 970.87 37

Table 5.4: Period, frequency and latency of CORDIC obtained with compile_ultra

From the table 5.4 the CORDIC architecture that uses floating-point adders with
four pipeline stages can reach a frequency on the order of 1GHz. Subsequently, the
maximum clock frequency, corresponding period, and latency were also measured
for each type of unrolled CORDIC architecture, obtaining the values shown in
table 5.5

Level of pipe at each stage Period [ns] Frequency [MHz] Latency [cycles]

0 3.55 281.69 5
1 1.61 621.12 15
2 1.93 518.13 20
3 1.56 641.03 25
4 1.61 621.12 30

Table 5.5: Period, frequency and latency of Unrolled CORDIC architecture

From the table 5.5, the architecture that uses floating-point adders with three
pipeline stages achieves the highest clock frequency, but as happened with the
CORDIC architecture, even with this architecture using the command com-
pile_ultra, the Unrolled CORDIC architecture capable of operating at the highest
frequency is the one that uses floating-point adders with four pipeline stages, reach-
ing a frequency of 813MHz. Comparing the latencies of the CORDIC architectures
with the latencies of Unrolled CORDIC architectures, it’s clear that the latter are
smaller than the former by an amount equal to 7 clock cycles. But this type of
architecture has a cost in terms of area. The tables 5.6 and 5.7 show the area of
CORDIC architectures and Unrolled CORDIC architectures respectively.
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Floating-point adders used in CORDIC Area µm2

Without pipeline stages Combinational 7367.402019
Non combinational 575.092019

Total cell area 7942.494038
With one pipeline stage Combinational 8796.886000

Non combinational 3256.904105
Total cell area 12053.790105

With two pipeline stages Combinational 8782.522025
Non combinational 4853.170156

Total cell area 13635.692181
With three pipeline stages Combinational 9578.926033

Non combinational 6527.640211
Total cell area 16106.566243

With four pipeline stages Combinational 10032.722039
Non combinational 8609.622278

Total cell area 18642.344316

Table 5.6: Area of CORDIC architectures estimated with Synopsys
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Floating-point adders used in CORDIC Area µm2

Without pipeline stages Combinational 35993.257992
Non combinational 2588.712084

Total cell area 38581.970076
With one pipeline stage Combinational 48313.314182

Non combinational 42860.315382
Total cell area 91173.629565

With two pipeline stages Combinational 41875.848130
Non combinational 24054.912775

Total cell area 65930.760905
With three pipeline stages Combinational 45750.936147

Non combinational 32458.385047
Total cell area 78209.321194

With four pipeline stages Combinational 48313.314182
Non combinational 42860.315382

Total cell area 91173.629565

Table 5.7: Area of Unrolled CORDIC architectures estimated with Synopsys

Comparing the two tables, the unrolled version occupies a total area 5 times larger
than the cordic version.
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Then the number of clock cycles and instructions employed by PULPino during
the computation of trigonometric functions were calculated using its internal math-
ematical functions and not the two types of CORDIC architectures implemented,
obtaining the results shown in table 5.8

Instructions in C Number of clock cycles Number of instructions

m1 = fSin(0) 57 45
m1 = fSin(0)

m2 = fSin(1.05) 104 83
m1 = fSin(0)

m2 = fSin(1.05)
m3 = fSin(0.52) 151 121

m1 = fSin(0)
m2 = fSin(1.05)
m3 = fSin(0.52)
m4 = fSin(0.78) 198 159

m1 = fSin(0)
m2 = fSin(1.05)
m3 = fSin(0.52)
m4 = fSin(0.78)
m5 = fSin(0.26) 245 197

0 → 0°
1.05 → 60°
0.52 → 30°
0.78 → 45°
0.26 → 15°

Table 5.8: Numbers of clock cycles and instructions using fSin (Pulpino function)

From table 5.8 it is clear that by increasing the number of functions to be computed,
the number of clock cycles and instructions used for the computation increases
accordingly. Finally, the number of clock cycles and instructions employed by
PULPino during the computation of the same trigonometric functions using both
types of CORDIC architectures were calculated. In particular, PULPino employs
the same number of instructions both using the CORDIC architecture and using
the Unrolled CORDIC architecture, whose values are shown in table 5.9
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Pipe levels per stage Clock cycles Instructions for each set of C instructions

0 5 24, 35, 45, 55, 65
1 15 26, 38, 48, 58, 68
2 20 26, 38, 48, 58, 68
3 25 28, 41, 51, 61, 71
4 30 28, 41, 51, 61, 71

Table 5.9: Numbers of clock cycles and instructions using CORDIC architecture
in Pulpino with the equivalent C commands seen in the previous table

As represented in table 5.9, the number of instructions obtained for each set of
trigonometric function calculations is smaller than the corresponding value obtained
by PULPino with its internal functions. So, the target of implementing a CORDIC
architecture with which PULPino can employ fewer instructions than those obtained
through the use of its internal functions has been fully achieved. On the other side,
regarding the number of clock cycles employed using the CORDIC architecture, it
is not possible to calculate them using the performance counters of PULPino, since
it takes 9 clock cycles to write two consecutive angles to the CORDIC architecture,
not one. So the values given in the table 5.9refer to the latency of Unrolled CORDIC
architecture, but the latter architecture can be considered very good in terms of
latency, since with the exception of the first calculated, all the other functions are
ready at each clock cycle. But it is necessary to pay a cost in terms of area.
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Conclusions

With this thesis work, first the CORDIC algorithm was presented at the mathe-
matical level, and then its possible implementations were analyzed. Among them,
two were investigated in depth: the first one was adapted to floating-point format
and then modified in order to have high frequency; the second one was the unrolled
version of the first implementation, and it is used to have a reduced latency. Both
types of architectures can work up to a maximum frequency on the order of 1GHz.
In addition, it has been shown that a system such as PULPino, using these types
of architectures instead of its internal functions, employs fewer instructions dur-
ing the computation of trigonometric functions such as sine and cosine. Finally,
the Unrolled CORDIC architectures can be considered valid alternatives to the
PULPino functions in case the target consists to have a reduced latency but being
ready to pay costs in terms of area.

6.1 Future works
This thesis work can be considered a good starting point for possible future
works: one of these could aim to resolve the data dependency present in the first
architecture implemented. In this way an architecture capable of working at high
frequency, with reduced latency and also optimized in terms of area would be
implemented; another work could be to optimize the proposed architectures in
terms of power. Both architectures described so far contain registers used for
pipeline, that are always active, and therefore they negatively affect the power
consumption. By adopting low-consumption techniques, the power consumed could
be reduced. Another work could also be to implement a control architecture that
can manage CORDIC architecture in the calculation of each type of function, in
order to have a unique architecture that is capable of calculating any transcendental
function.
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Appendix A

Listing A.1: C code used to compute the number of instructions employed during
the computation of five sine functions using CORDIC architectures.

1 #inc lude " bench . h "
2

3 #d e f i n e REG_ANGLE 0x1A108410
4 #d e f i n e REG_X 0x1A108474
5 #d e f i n e REG_Y 0x1A1084D8
6 #d e f i n e REG_START 0x1A10853C
7 #d e f i n e REG_FUNC1 0x1A1085A0
8 #d e f i n e REG_FUNC2 0x1A108604
9 #d e f i n e REG_DONE 0x1A108668

10

11 i n t main ( )
12 {
13 f l o a t m1, m2, m3, m4, m5;
14 cpu_perf_conf_events (SPR_PCER_EVENT_MASK(1) ) ;
15 pe r f_re s e t ( ) ;
16 ∗( v o l a t i l e f l o a t ∗) REG_ANGLE = 0 . 0 ;
17 ∗( v o l a t i l e f l o a t ∗) REG_X = 0 . 6 0 7 3 ;
18 ∗( v o l a t i l e f l o a t ∗) REG_Y = 0 . 0 ;
19 ∗( v o l a t i l e i n t ∗) REG_START = 1 ;
20 whi le (∗ ( v o l a t i l e i n t ∗) REG_DONE != 1) {
21 }
22 m1 = ∗( v o l a t i l e f l o a t ∗) REG_FUNC2;
23

24 ∗( v o l a t i l e f l o a t ∗) REG_ANGLE = 6 0 . 0 ;
25 whi le (∗ ( v o l a t i l e i n t ∗) REG_DONE != 1) {
26 }
27 m2 = ∗( v o l a t i l e f l o a t ∗) REG_FUNC2;
28 ∗( v o l a t i l e f l o a t ∗) REG_ANGLE = 3 0 . 0 ;
29 whi le (∗ ( v o l a t i l e i n t ∗) REG_DONE != 1) {
30 }
31 m3 = ∗( v o l a t i l e f l o a t ∗) REG_FUNC2;
32 ∗( v o l a t i l e f l o a t ∗) REG_ANGLE = 4 5 . 0 ;
33 whi le (∗ ( v o l a t i l e i n t ∗) REG_DONE != 1) {
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34 }
35 m4 = ∗( v o l a t i l e f l o a t ∗) REG_FUNC2;
36 ∗( v o l a t i l e f l o a t ∗) REG_ANGLE = 1 5 . 0 ;
37 whi le (∗ ( v o l a t i l e i n t ∗) REG_DONE != 1) {
38 }
39 m5 = ∗( v o l a t i l e f l o a t ∗) REG_FUNC2;
40 perf_stop ( ) ;
41 p r i n t f ( "Number o f i n s t r u c t i o n s : %d\n" , cpu_perf_get (1 ) ) ;
42 re turn 0 ;
43 }
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Listing A.2: C code used to compute the number of clock cycles employed during
the computation of five sine functions using fSin function of PULPino.

1 #inc lude " bench . h "
2 #inc lude " math_fns . h "
3

4 i n t main ( )
5 {
6

7 double m1, m2, m3, m4, m5;
8 cpu_perf_conf_events (SPR_PCER_EVENT_MASK(0) ) ;
9 pe r f_re s e t ( ) ;

10 m1 = f S i n (0 ) ;
11 m2 = f S i n ( 1 . 0 5 ) ;
12 m3 = f S i n ( 0 . 5 2 ) ;
13 m4 = f S i n ( 0 . 7 8 ) ;
14 m5 = f S i n ( 0 . 2 6 ) ;
15 perf_stop ( ) ;
16 p r i n t f ( " Clock c y c l e s : %d\n" , cpu_perf_get (0 ) ) ;∗/
17 re turn 0 ;
18 }

Listing A.3: C code used to compute the number of instructions employed during
the computation of five sine functions using fSin function of PULPino.

1 #inc lude " bench . h "
2 #inc lude " math_fns . h "
3

4 i n t main ( )
5 {
6

7 double m1, m2, m3, m4, m5;
8 cpu_perf_conf_events (SPR_PCER_EVENT_MASK(1) ) ;
9 pe r f_re s e t ( ) ;

10 m1 = f S i n (0 ) ;
11 m2 = f S i n ( 1 . 0 5 ) ;
12 m3 = f S i n ( 0 . 5 2 ) ;
13 m4 = f S i n ( 0 . 7 8 ) ;
14 m5 = f S i n ( 0 . 2 6 ) ;
15 perf_stop ( ) ;
16 p r i n t f ( "Number o f i n s t r u c t i o n s : %d\n" , cpu_perf_get (1 ) ) ;∗/
17 re turn 0 ;
18 }
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